Short and medium-term scenarios for the three pilot islands (Samsø, Orkney, Madeira)

Marczinkowski, Hannah Mareike; Østergaard, Poul Alberg

Publication date: 2018

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
SMILE
Smart Island Energy Systems

Deliverable D8.2
Short and medium-term scenarios for the three pilot islands

Document Details

<table>
<thead>
<tr>
<th>Due date</th>
<th>31-12-2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual delivery date</td>
<td>26-12-2018</td>
</tr>
<tr>
<td>Lead Contractor</td>
<td>AAU Plan (Aalborg University, Department of Planning)</td>
</tr>
<tr>
<td>Version</td>
<td>Final rev0</td>
</tr>
<tr>
<td>Prepared by</td>
<td>Hannah Marczinkowski (AAU Plan)</td>
</tr>
<tr>
<td>Input from</td>
<td>AAU, SK, SE, EEM, LIBAL, CES</td>
</tr>
<tr>
<td>Reviewed by</td>
<td>RINA-C</td>
</tr>
<tr>
<td>Dissemination Level</td>
<td>Public</td>
</tr>
</tbody>
</table>

Project Contractual Details

<table>
<thead>
<tr>
<th>Project Title</th>
<th>Smart Island Energy Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Acronym</td>
<td>SMILE</td>
</tr>
<tr>
<td>Grant Agreement No.</td>
<td>731249</td>
</tr>
<tr>
<td>Project Start Date</td>
<td>01-05-2017</td>
</tr>
<tr>
<td>Project End Date</td>
<td>30-04-2021</td>
</tr>
<tr>
<td>Duration</td>
<td>48 months</td>
</tr>
</tbody>
</table>

The project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No 731249
Table of Contents
Keywords, Acronyms ... 3
1 Introduction .. 4
2 Clarifications .. 5
 2.1 Review of WP8 .. 5
 2.2 Review of D8.1 .. 6
3 Regional Demonstrators’ Future Energy System Models ... 7
 3.1 General approach ... 7
 3.2 Samsø .. 11
 3.2.1 Short term scenario 2022 for Samsø ... 11
 3.2.2 Medium term scenario 2030 for Samsø ... 14
 3.2.3 Overview and discussion for Samsø ... 15
 3.3 Orkney ... 19
 3.3.1 Short-term scenario 2022 for Orkney ... 19
 3.3.2 Medium-term scenario 2030 for Orkney ... 22
 3.3.3 Overview and discussion for Orkney ... 23
 3.4 Madeira ... 27
 3.4.1 Short-term scenario 2022 for Madeira ... 27
 3.4.2 Medium-term scenario 2030 for Madeira ... 31
 3.4.3 Overview and discussion for Madeira ... 32
4 Demonstrator Comparison and Discussion ... 36
5 Conclusions ... 39
6 Bibliography .. 40
7 Appendix ... 41
 7.1 Samsø EnergyPLAN data sheets for the 2015, 2022 and 2030 scenarios ... 42
 7.2 Orkney EnergyPLAN data sheets for the 2014, 2022 and 2030 scenarios ... 45
 7.3 Madeira EnergyPLAN data sheets for the 2014, 2022 and 2030 scenarios .. 48
Keywords, Acronyms

AAU Aalborg University
BESS Battery Energy Storage System
CES Community Energy Scotland
CHP Combined Heat and Power plant
Dx,y Deliverable y from WP x
DH District Heating
DSM Demand Side Management
EEM Electricity Company of Madeira (Empresa De Electricidade Da Madeira Sa)
EV Electric Vehicles
HP(s) Heat pump(s)
JP Jet Petrol
LPG Liquefied Petroleum Gas
N/A Not available (data)
PES Primary Energy Supply
PV Photovoltaic
RE(S) Renewable Energy (Source)
RAM Região Autónoma da Madeira
V2G Vehicle To Grid
WP Work Package

EnergyPLAN – modelling tool for the analysis of the whole energy system by identifying and exploiting technologies and synergies across sectors (also referred to as smart energy systems) by AAU; more details in D8.1

Load curve – is a chronological chart that illustrates the variation in electricity or other energy demands

Self-consumption – electricity that is produced from renewable energy sources, not injected to the distribution or transmission grid or instantaneously withdrawn from the grid and consumed by the owner of the power production unit

Smart charging – charging techniques, which do not follow the normal plug and charge paradigm
1 Introduction

In this report, we present the outcome of Task 8.2: Establishing and simulating short- and medium-term (high-RE) scenarios for the three pilots, which is in the scope of the SMILE project work package WP8. The Smart Island Energy System (SMILE) project combines the forces of a number of partners to investigate smart island energy systems for three pilot islands – Samsø in Denmark, the Orkney Isles in the United Kingdom and Madeira in Portugal.

The three pilot islands Samsø, Orkney and Madeira are all investigating ways of becoming carbon neutral, though local conditions differ widely. While the electricity grid of the Orkney Isles and Samsø are connected to the rest of the United Kingdom and Denmark respectively, Madeira is an isolated stand-alone system. Samsø and the Orkney Isles also both have significant heat demands, while Madeira has a warmer climate. In terms of population, they range from Samsø with 3,700 inhabitants via Orkney with approx. 21,000 inhabitants to Madeira with about 250,000 inhabitants, influencing demands and available resources per capita.

All islands present unconventional energy systems shaped by their surroundings: Samsø has been undergoing a decade-long transition after winning a competition of being Denmark’s officially designated renewable energy island. The Orkney Isles are characterised by a large number of wind turbines and offshore testing facilities, and Madeira lies far off the European continent and stands out in European terms with great solar potential. These islands are therefore sites with good potentials for renewable energy production, which is addressed within the SMILE project.

This report describes the future scenarios (short-term, i.e. up to five years, as well as medium-term, i.e. up to 15 years) which include the demonstration projects in the three pilot islands in the perspective of a shift from energy systems relying on fossil fuels to energy systems relying highly or exclusively on renewable energy sources. In particular, this report presents:

- Chapter 2 gives a clarification and outline of the contents and aims of WP8 in order to establish the framework for this deliverable and the future energy system models. For this, a quick review of D8.1 is presented.
- Chapter 3 presents the future scenario creation in general and for the individual pilots. Therefore, the phases of RES integration are presented and the pilot islands classified in their terms. Furthermore, the islands are discussed individually in terms of the relevant energy system changes planned or necessary to establish high RE scenarios. Thus, Chapter 3 contains energy system overviews and their modification from the reference year 2014/2015 to the short- and medium-term.
- After presenting the islands separately, a comparison allows for the evaluation of similarities and differences in Chapter 4. This Chapter sums up the main data resulting from the reference models in comparison to the future scenarios and gives an overview of the applied data and results. Additionally, it allows for a validation and discussion of the before presented models of Samsø, Orkney and Madeira.
- Chapter 0 briefly concludes the deliverable D8.2 with a short summary on outcomes and discussion.
- In the Appendix, both the results of short- and medium-term scenarios as well as for comparison also the reference models are attached in the form of the EnergyPLAN data sheets including all system inputs and outputs for the three islands.

While the scenarios in D8.2 are made with great care, taking trends and plans into consideration, the development of short- and medium-term scenarios for the three pilot islands only provide one set of realistic pathways among many plausible. While the final scenarios inevitable will deviate from actual development paths, they do include the most relevant technologies for the three islands. The work presented can therefore be well used to evaluate the existing trends and plans, as well as reflect on ongoing work towards the most sustainable future. In this regard, the individual ideas behind the SMILE project are included, evaluated and discussed.
2 Clarifications

This Chapter presents the framework of WP8 with its tasks and deliverables for this report. First, a short review of WP8 with its objectives, tasks and deliverables is presented, before revising D8.1 briefly to explain its role in D8.2. This is to clarify the description and plan versus the realization of task 8.2. Besides this, further explanatory information, such as an introduction to the modelling tool EnergyPLAN, can be found in D8.1.

2.1 Review of WP8

Within the Framework of the SMILE project, the main goal of WP8 is to analyse and present the pilot islands’ energy systems and the impacts, strategies and energy market designs associated with the demonstration projects. The details of its objectives, tasks and deliverables are listed below.

The main objective of WP8 is to investigate potential development pathways towards high-RE energy systems for the three pilot islands taking into consideration the energy systems impacts of the demonstration projects and their role in such high-RE scenarios. Primary focus is on the short- and medium-term. Secondly, the WP will investigate the energy market structures and policy strategies that impact and are impacted by the transition process in the three pilot islands. This will be achieved through meeting the following objectives:

- Establishment of reference energy systems simulations models of the three pilot islands,
- Establishment of short and medium-term (5-15 years) high RE scenarios for the three pilot islands,
- Establishment of recommendations for market design structures to support the transition to high-RE energy systems in the three pilot islands,
- Establishment of policy strategies to support the transition to high-RE energy systems in the three pilot islands.

Resulting from the second bullet point, Task 8.2 aims at: Establishing and simulating short- and medium-term high-RE scenarios for the three demonstrators looking specifically into Orkney, Samsø and Madeira respectively.

Task 8.2 takes its starting point in the reference models developed in Task 8.1. Starting in these reference models, future scenarios are developed which include the demonstration projects, potentially a larger deployment of the demonstration projects and in general a shift from energy systems relying on fossil fuels to energy systems relying highly or exclusively on renewable energy sources. The focus of the scenarios is on the short-term (up to five years), however in order to ensure that short-term measures are aligned with longer-term requirements, a medium-term perspective is also addressed.

The scenarios take into consideration a) case-specific end-use savings potentials, b) case-specific renewable energy resource availability and c) case-specific potential energy conversion shifts (e.g. individual oil or gas boilers to heat pumps (HP) or district heating (DH)). The scenarios consider as an integrated part the extent to which the systems should or could rely on interconnection to the mainland or be self-sufficient. Reducing or limiting the amount of import and export is therefore aimed for – also as this indicates the ability of the systems to balance themselves – and not rely on the balancing capability of surrounding energy systems.

The activities on the individual demonstrators are handled and coordinated in parallel as the work involve similar tasks for different geographic areas – though different starting points and renewable energy options result in scenarios of varying complexity and composition.

Dependencies on other tasks:
Input: Task 8.2 is dependent on Task 8.1 as well as partner inputs regarding general development path and partner inputs and deliverables on specific SMILE technologies.
Output: Task 8.2 will provide relevant contribution to T8.3, T8.4 and T8.5 about scenarios on the pilot islands. Furthermore, the output can contribute to the demonstrator islands, but also other islands worldwide in the framework of replication activities, and their long-term planning towards a sustainable future by providing suggestions and technical models as a base for discussion and development.

For alignment, the years 2022 and 2030 are chosen for the short- and medium-terms to present the future energy systems of the demonstrator islands. These years present the foreseeable changes by the end of the SMILE project (April 2021), as well as give an idea on the future in longer term, yet also foreseeable.

2.2 Review of D8.1

Deliverable D8.1 presents the result from the corresponding Task 8.1, which focuses on establishing and modelling reference scenarios for the three demonstrator islands. This is approached in an hourly resolution for a whole reference year from January 1st to December 31st. This way, differences of seasons, weekdays and daytimes are considered. This is important when analysing present and future energy scenarios characterised by a strong or increasing connection between sectors and by increasing shares of fluctuating renewable energy-based productions. The reference models are generally defined through the existing energy systems and available data related to it at the time of the Task 8.1. Depending on the availability of data at the different pilot islands, the reference models are created.

Task 8.2 is in close relation to the Task 8.1 and building upon it, as it uses the resulting reference models for future simulation. A reference of high quality is therefore of importance, and the validation and consequences of this is presented in D8.1, Chapter 4 and 5.

The software used for the hourly simulation of supply and demand for a complex energy system is EnergyPLAN, developed at Aalborg University. This model is presented in further detail in D8.1. Task 8.1 resulted in the presentation of three EnergyPLAN models, one for each demonstrator island in SMILE. The respective local partners reviewed these models to ensure that they represent the islands to the best extent possible.

While these are referred to as the reference models – presenting the various reference energy systems for a specific recent year – the future models developed under Task 8.2, present the paths and possibilities of high-RE scenarios for Samsø, Orkney and Madeira. While based on the reference models, they further include the respective technological additions as part of SMILE (see deliverables D2.1, D2.2, D2.4, D3.1, D3.2 and D4.1-D4.6). Furthermore, probable future changes in the energy systems besides the SMILE approaches are adapted at the same time. The result is a second and third set of three EnergyPLAN models that are presented in the following. Next to the reference models of D8.1, the D8.2 includes short-term future models of 2022 and medium-term models for the year 2030.
3 Regional Demonstrators’ Future Energy System Models

The future energy system models – or scenarios – rely on the reference models from D8.1. Therefore, these are briefly recapitulated in the presentation of each demonstrator island, before the SMILE approaches and possible future changes are adapted to model the scenarios for 2022 and 2030. The general approach is presented in the following, before presenting the islands separately afterwards. The structure of each presentation includes the following:

- Reference energy system layout
- SMILE demonstration project(s) and impacts
- Short-term changes in the respective energy systems (until 2022)
- Medium-term changes in the respective energy systems (until 2030)
- Overview of results: tables and diagrams with key indicators regarding energy supply and demand
- Discussion of further potential changes towards 100% RE systems

The structure is kept at a comparable level, yet due to the individual characteristics of each island, different changes are applied in each of them. The following Chapter 4 presents the results of the different islands in a comparable way to see similarities and options from and for Samsø, Orkney and Madeira.

3.1 General approach

As mentioned above, the task and deliverable 8.2 address the short- and medium-term developments for the demonstrator islands, which results in the model years of 2022 for short- and 2030 for medium-term scenarios. For the aim of high-RE scenarios, further developments beyond 2030 are introduced and discussed, but not modelled in D8.2. The only exception is Samsø, since it reaches a high share of RE in the medium term, while Orkney and Madeira would only reach this level most likely after 2030.

As also described before, the future scenarios created in D8.2 are based on the reference scenarios developed under task 8.1 and presented in D8.1. For the creation of the future scenarios, the references were used to the best extent and with the fewest modifications possible. These updates may include technical data, such as updated technology costs or adjusting specific values in the model, which have been found incorrect. Hence, the future scenarios have the same energy system set-up, keeping the framework conditions the same and simple, while focusing on the changes in the technical aspects. By this, the SMILE demonstration projects are in focus, as well as possible technical changes to the energy system, such as new capacities or efficiencies. With this simplified approach, certain possible changes are neglected, such as potential changes in weather conditions, demography and unforeseeable changes in production or consumption. In relation to this, the temporal distribution profiles for heating and electricity are kept the same, unless specifically changed due to a certain technical modification. Again, this strengthens the understanding of the changes we do see instead of looking into possibilities we do not see yet.

Furthermore, the future scenario creation is based on today’s understanding of technologies including its current characteristics as well as projections. Potential new inventions cannot be included, but this could be kept in mind for long-term considerations. The existing plans and strategies from the demonstrator islands also have a large impact on the scenarios, as they present most likely changes and potentials for the individual islands. Therefore, these are realized to a large extent in the future models. In similar terms, updated statistics (since D8.1) influence the creation of the scenarios. These things are verified and elaborated by the partners on the respective islands.

Finally, next to the business-as-usual conditions and trends as well as the existing plants, the future scenarios are influenced by the experience and common practices at AAU regarding the planning of energy systems. This entails for example the integration of energy sectors instead of approaching the electricity sector alone.
Therefore, the future scenarios sometimes go well beyond what is suggested in SMILE, especially in the 2030 scenarios.

Focus in the scenario development is on the best technical integration of energy systems with a view to establishing environmentally benign high-RES scenarios. Costs are also considered but only secondarily. Costs are based on general technology and fuel costs and may not reflect actual local costs for implementing technologies on the different islands and in the different time horizons.

The general approach for the future island scenarios targets the increase in the RES share in the total energy system’s primary energy supply (PES). While this can be compared to the RES share in the electricity sector, the whole system balance is in focus for WP8. In line with the renewable aspect, fossil fuels, but also biomass should be limited to the maximum or to a sustainable level respectively. This goes hand in hand with the target of reducing CO₂ emissions, and combined aligns with the EU climate targets¹. While costs play a secondary role in the scenario making, its reduction should nonetheless also be aimed for. Finally, the aim should be to minimize losses in the entire energy system. The large extent of these losses are illustrated in the respective Sankey diagrams in D8.1 and in the respective sections in D8.2.

Beyond these global basic guidelines for smart energy systems, islands have further criteria to aim for in future energy systems. Due to either being limited by the (inexistence of a) transmission line or by importing fuels and products to an often higher price than on the mainland, islands should aim for the reduction of imports and dependency on such. Instead, local products should be used for the local systems to the largest sustainable extent possible, including using otherwise exported or curtailed electricity directly in the local grid. For this, the integration and balancing of energy sectors becomes important.

The integration of RES into an energy system, island or not, can be defined by three major steps. These are explained in the following and are used to describe the current and possible future situation of the SMILE islands in terms of RES integration. By this, the different statuses of the islands clarify the different approaches taken for creating their future short- and medium-term scenarios. The following three phases can be considered in terms of implementing RES technologies:

“The introduction phase: This phase represents a situation in which no or only a small share of renewable energy is present in the existing energy system. The phase is characterized by marginal proposals for the introduction of renewable energy, for example, wind turbines integrated into a system without or with only a small share of wind power. The system will respond in the same way during all hours of the year, and the technical influence of the integration on the system is easy to identify in terms of saved fuel on an annual basis.

The large-scale integration phase: This phase represents a situation in which a large share of renewable energy already exists in the system, for example, when more wind turbines are added to a system that already has a large share of wind power. In this phase, further increases in renewable energy will have an influence on the system, which will vary from one hour to another, depending, for example, on whether a heat storage is full or whether the electricity demand is high or low during the given hour. The influence of wind power integration on the system, and thereby the calculation of the fuel saved on an annual basis, becomes complex and requires a detailed calculation with hourly simulation models.

The 100 percent renewable energy phase: This phase represents a situation in which the energy system has been or is being transformed into a system based 100 percent on renewable energy. The system is characterized by the fact that new investments in renewable energy must be compared not to nuclear or fossil fuels, but to other sorts of renewable energy system technologies. These technologies include conservation,

¹ By 2020: reduce CO₂ by 20% and increase RES share to 20% of all consumed energy; by 2030: reduce CO₂ by 40% and increase RES share to 27% (compared to 1990)
efficiency improvements, and storage and conversion technologies, as well as the use of smart grids (electricity, district heating, and gas). The influence on the system is complex, not only in terms of differences from one hour to another, but also regarding the identification of adequate conversion and storage technologies as well as the smart operation of grid infrastructures." [1]

With the definition of the three phases, the SMILE demonstrator islands are classified in different stages as seen in Table 1. As presented in detail in D8.1, Samsø is furthest ahead in terms of self-sufficiency and supply through RES. With the reference model having a RES share of almost 60%, Samsø is classified as being in the second phase of RE-integration, aiming for the third phase: 100% renewable energy. It can be said that Samsø achieved the first level of RE-introduction already in 2007. This is shaping the evaluation of technologies and creation of the short- to medium-term scenarios in D8.2.

Likewise, Orkney and Madeira have 17% and 11% RES share in their respective reference models, classifying them to still be in the RE-introduction phase as of 2014. Consequently, the next step is to reach a large-scale RE-integration, before working on the 100% target. For D8.2, the short- and medium-term scenarios therefore aim at a RES share of the PES of 50%. This is characterized by the expansion of RES, such as wind and PV capacity, instead of a focus on integration and balancing, as would be the case afterwards. The technologies considered for these steps are presented in the overview in Table 1, where the blue lines frame the phases in focus for D8.2.
Table 1: The SMILE islands and the phases of RES integration/implementation

<table>
<thead>
<tr>
<th>Phases</th>
<th>RE-Introduction</th>
<th>Large-scale RE-Integration</th>
<th>Towards 100% RE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example energy system</td>
<td>Small share of RE, no problem integrating, direct fuel reduction</td>
<td>Existing large share of RE, system influence and interference time-dependent due to large share of intermittent RE</td>
<td>Transformation into 100% RE-based system, complex comparison of various technologies requiring balance, sector integration, optimized biomass utilization</td>
</tr>
<tr>
<td>Samsø</td>
<td>Wind turbines, biomass and solar DH, indiv. heating with biomass and electricity</td>
<td>More PV, wind turbines and indiv. heating with biomass, electric and solar thermal, savings</td>
<td>SMILE: BESS, DSM, PV Short/Medium-term: update DH, Biogas plant, LBG/CBG, EV, RES, HP 100% RES share? (2030)</td>
</tr>
<tr>
<td>(from Reference / Large-scale to 100% RE)</td>
<td>25% RES share (2007)</td>
<td>60% RES share (2015)</td>
<td></td>
</tr>
</tbody>
</table>
| **Orkney** | Wind turbines, electric heating | SMILE: BESS, TES, HP, EV Short/Medium-term: More PV, wind turbines, wave and tidal capacity, savings, more HP and TES, hydrogen, electrolyzer | Discussion to include in medium term: DH (biomass or electric), TES, CHP, HP, savings, synthetic fuels, EV 100% RES share? (?)
| (from Reference / Introduction to large-scale RE) | **17% RES share (2014)** | **50% RES share (2030)** | |
| **Madeira** | Hydro, wind, PV, autonomy | SMILE: PV, DSM, BESS, EV Short/Medium-term: More PV, wind turbines, hydro and pump storages, geothermal | Discussion to include in medium term: District cooling, CHP, solar thermal and TES, DSM, BESS, EV, savings 100% RES share? (?) |
| (from Reference / Introduction to large-scale RE) | **11% RES share (2014)** | **50% RES share (2030)** | |

3.2 Samsø

The energy system of Samsø is presented with the reference model based on 2015 data. Recapitulating, the island is connected with a 40 MW transmission line to the national grid, but barely utilizes this for import since the electricity demand can be supplied by 94% through local renewables, such as the 24.4 MW wind turbines and 1.3 MW PV plants. With further heat demand being supplied with a large share of biomass, both individual and district heating wise, the island Samsø already has a high RE-share of 60% of the PES. The rest of the heating is supplied by electricity and oil, as is the transport sector. Here, the dependency on fossil fuel is still at 99%, since only a small number of EV exist and the main consumers – the ferries connecting Samsø to Denmark – run on oil, but also more and more on gas, currently natural gas.

Compared to the other SMILE islands, Samsø is the smallest and with the highest RES share (60%) and the comparably lowest CO₂ emissions (28.5 kt). The biomass heating share is 69% in the reference model with 35% of the heat supplied through four DH grids. The electric heating share is at 11% and the electric transport share at 1%, hence with room for improvements, especially with 78% of the local electricity being exported.

In SMILE, Samsø therefore addresses the possibility of employing more local electricity on the island. For this, some further RE capacity is installed, but with the help of SMILE partners LiBAL and RouteMonkey with their smart controls and a BESS, also unused existing capacity can be better integrated. This is tested in the scope of a local marina, which is both used by locals and tourists, which make up an important contribution to the local economy. Here, new PV capacity is planned to be smartly used and stored to decrease the dependency on imports, as well as the addition of HP further contributes to this local test scope. If successful, this idea could be spread to the other marinas on Samsø, as well as be replicated on other islands.

The expected outcome is a reduction of imports by shaving the local marina’s peaks, increase the usage of fluctuating renewable electricity locally, and thereby decrease the island’s dependency on others. Looking further ahead, the improved utilization of local RE becomes important when more electric heating and EVs are introduced.

The smart controlling of heat production via HPs further opens up the possibility to reduce the operation of biomass boilers. While biomass heating is renewable, it is not an optimal use of a storage fuel, and the biomass could alternatively enable the production of biogas for other uses – e.g. for running one of the ferries such as the natural gas-run Prinsesse Isabella. The overall goal of Samsø is therefore the reduction of imports by using more otherwise exported electricity, reducing further biomass consumption in the heating sector and aiming at an eventually fossil fuel free and CO₂ neutral island. This is modelled from a technical perspective in the following.

3.2.1 Short term scenario 2022 for Samsø

The short-term scenario of Samsø focusses on the year after which the SMILE demonstration is installed and running, next to some other minor updates in the energy system by 2022, based on communication with SMILE partners on Samsø. To illustrate the impact the Ballen Marina demonstration can have, Figure 1 reminds us of the distribution of electricity demands by sectors, including the demand of the Ballen Marina specifically. With only 0.4% of the total electricity demand of 25.5 GWh, the marina presents a small consumer, which consumed 105 MWh in 2015, mostly in the summer. This demand and its hourly distribution of 2015 forms the base of the SMILE demonstration scenario.
For Ballen Marina, a BESS of 240 kWh capacity and 50 kW power is selected to be tested and therefore analysed in the following. This is to be charged with a new local installation of 60 kW PV capacity\(^1\). To ensure a long lifetime of the battery, it is charged to a maximum of 90% of full capacity and discharged to a minimum of 10% of the full capacity, hence 80% or 196 kWh storage capacity is used for the simulations. Any potential excess electricity is injected into the national electricity grid, available for other users on Samsø, or on the mainland. Considering the small share of the marina of the total island consumption, the impact can be expected to be minor.

Figure 2 presents the results of combining the BESS with the usable capacity of 0.196 MWh and the PV simulation of 0.06 MW with local radiation data. As it can be seen, the demand at the marina surpasses the production from PV especially in the winter, when not a lot of PV production is modelled, as well as in the summer, when the demand and the marina peaks due to the summer holiday tourists. Nonetheless, the calculation shows that the PV production of about 69 MWh can – to a large share – be directly used (43%) or stored in the BESS for later use at the marina (38%), while some of the remaining production (14%) can be used other places on Samsø and the rest is lost (5%) in the charging and discharging processes.

\(^1\) Tender pending in December; planned installation March 2019; potential expansion in the future not excluded
The impact of the Ballen demonstration can be integrated in the EnergyPLAN reference model by adapting the total remaining electricity demand and by adding the excess PV production as supply available for other uses. In EnergyPLAN, this simulation reduces the import on Samsø by 10 MWh and increases the export by 40 MWh. If there would not be so much wind power already, the excess PV from Ballen Marina could have been integrated almost to the full extent locally (0.01 GWh increase in exports compared to 0.07 GWh increase of RE production – otherwise no visible impact on the system).

The focus of SMILE – besides the BESS demonstration – lies with HPs. The installation of a single HP at the harbour master’s buildings, however, impact the energy system of Samsø only to a negligible extent. Instead, the following presents the updates and upgrades in the Samsø energy system until 2022, before presenting the overall 2022 scenario results.

At the Samsø municipality, the idea of building a biogas plant has been around for some time. Until 2022, this is to be realized, mostly contributing to the fuel demand of the ferries, which supply Samsø. As presented in D8.1, the fossil fuel consumption for ferries lies at around 52 GWh annually, besides the 47 GWh of oils for road transport. With biogas, the fossil fuel demand of the ferries can be reduced, and potentially also some of the road transport in the future. According to Samsø municipality, the biogas plant is supposed to produce 30 GWh by 2022 – in future potentially more – and therefore requires a large amount of biomass, which explains the increase in biomass in Table 2. With a 90% efficiency, the final input to the gas sector is 27 GWh annually.

Furthermore, the boiler at the oldest DH plant in Tranebjerg on Samsø is reaching the end of its lifetime. By 2022, it is therefore expected to be replaced by a HP. This way, the large amount of excess electricity production from wind and PV can be used to supply this DH grid. Due to limits on the operation over the year caused by low winter resource temperatures in this 1 MW_{el} air-to-water HP, it will be supplemented by an alternative boiler, explaining why biomass is still consumed in this sector even after the installation of the HP. However, this is kept to a minimum, similar to the existing oil-based back-up systems, with the help of a 2.6 MWh thermal energy storage (TES) allowing for the HP to increase its operation in time of wind even without a heat demand. As a recent (SMILE related) study shows [2], an increase in the size of the TES results in only minor improvements for the energy system. Due to the uncertainty of availability and willingness for a large TES, a small one of 3x4 m (38 m3) is chosen. Larger TES capacity would increase the HP production slightly, reducing the biomass consumption by a similar minor share.

Otherwise, some minor improvements in the energy system are expected due to recent trends and strategies. This includes the increase of wind capacity by a minor share through the installation of a few small-scale turbines (five 6 kW turbines), which tend to be installed at the private level, as well as some further PV installations. These are either privately or installed on public buildings, where the trend of the recent years suggests the total capacity to reach 1450 kW. This new capacity would increase the export and decrease the import, but the following two updates oppose this trend again. First, an increase of EVs is expected by 2022 with twice the amount compared to the reference model 2015, which equals about 100 EVs. Secondly, the effort of the energy academy and some external causes would lead to an uptake of HP at private buildings, resulting in a replacement of oil-based heating by electricity-based heating.

The results of the scenario 2022 measures combined reduce the CO$_2$ emissions by 22% (6.2 out of 28 kt annually) compared to the reference scenario and increase the RES share from 59.5 to 69%. Furthermore, the fuel consumption on Samsø is reduced by 7.4 GWh; with oil consumption -6.5 GWh, natural gas consumption -23 GWh and biomass consumption +21 GWh. Even though the electricity demand for transport and heating increases, the amount of imported electricity can remain the same (1.5 GWh), with the electricity export even decreasing (from 87.5 to 84.8 GWh). The details can be found in Table 2 next to the results of updating the scenario to 2030, which is explained in the next section.
3.2.2 Medium term scenario 2030 for Samsø

In the following, a scenario is presented with realistic changes to Samsø’s energy system by the year 2030. For this, the local energy strategy and current trends are used as guidelines, as well as ambitious energy goals as targets [2], [3].

Similar to the case of the oldest DH grid in the centre of Samsø, the other three smaller DH plants will need to be changed or expanded within the medium term. Due to the still high amount of excess electricity and the scarcity of local natural resources, large HPs are considered for this. By keeping the existing boilers for peaks, HP support and backup, the HPs can be operated to run entirely on excess electricity from RES. This resulting total HP capacity of 2 MW is furthermore supported by additional TES, in total 7.8 MWh in addition to the existing solar heat storage tank. Depending on the available excess RE electricity on Samsø, the amount of heat produced from HPs depends on the increase of electricity consumption in the other sectors. Hence, if the number of EV increases, the HP production might be reduced to avoid increasing electricity imports.

At this point, a sensitivity study of additional RES capacity is applied, looking into an increase of wind and PV capacity under the condition of limiting the critical excess electricity production (CEEP), which results from the combination of production, demand and transmission line. Other conditions influencing the choice are a limit to the export, a reduction of the import as well as the fuels. At this point, large RES capacities can result in large amounts of excess electricity, so an increase of wind and/or PV capacity with a total of 10 MW is suggested. The combination of both results in the lowest import of 0.7 GWh annually. This, however, increases again with the increase of EVs.

Another effect the HPs have is the reduction of fuels – mostly biomass – in the heating sector. This is an important aspect in regards to the increased production of biogas, which is suggested to cover more of the transport fuels in the energy system of Samsø. By 2030, an expansion of biogas production by 50% is considered. From the original production in 2022 of 27 GWh the production increases to 40.5 GWh annually, with a total biomass requirement similar to the 2022 scenario due to the previous reductions in biomass as heating fuel.

The next aspect is the improvement of the transport sector. Next to the increase in local biogas, which is mostly used in the ferries, the road transport is considered to be further electrified. This is modelled in two steps, first with an uptake to 1,000 EVs and second up to 2,000 EVs, representing all the personal vehicles. From 2022, where the number of EVs is estimated to be 100, this increases also the electricity demand in transport ten-fold and about 20-fold respectively. With the higher efficiency of electric compared to internal combustion vehicles, the total energy demand, however, decreases. While the first increase of EVs causes the import to increase by 0.4 GWh, the second causes an increase of another 0.5 GWh, even though the steps are very similar in demand changes. Otherwise, the otherwise exported electricity supplies the new electricity demand, hence, it decreases by 2.4 GWh and again by 2.2 GWh.

With the steps mentioned so far, the RES share surpasses the 80% mark and the CO₂ emissions have been more than halved, but the oil consumption is still at 50 GWh annually. To reduce this further, by 2030 HPs should replace the individual boilers still using oil, reducing the CO₂ balance by annually 3 kt. After this step, the remaining fossil fuel consumption is found in the transport sector (and the minor industry demand, which is not further addressed).

One option to lower the remaining fuel consumption in transport and integrate the still high RE export is through electrolysers and hydrogen production as fuel replacement. Through cooperation with Orkney and possible knowledge transfer, a similar set-up can be considered for Samsø. With a 1.5 MW electrolyzer capacity 3.3 GWh of oil can be replaced while reducing the export by 2 GWh. In total, by then, the RES share reaches 85% and the CO₂ emissions are below 10 kt compared to the reference model with 59.5% and 28.5 ktCO₂.
3.2.3 Overview and discussion for Samsø

The final results of the short- and medium-term scenarios presented in Table 2 are including the increase of RES capacity through PV solely. Even though an increase of 10 MW RES with wind turbines would result in similar outcomes, the electricity from PV is better integrable in the energy system and potentially easier realized regarding space demand and potential NIMBY opposition in the population. In the following, this is discussed besides other aspects of the Samsø energy system going towards a 100% RE system.

Table 2: The annual energy supply and demands on Samsø – reference, short- and medium-term

<table>
<thead>
<tr>
<th>Supply (GWh)</th>
<th>2015 Reference</th>
<th>2022 SMILE (BESS, PV), HP, biogas</th>
<th>2030 HPs, EVs, PV, H2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind onshore</td>
<td>27.5</td>
<td>27.6</td>
<td>27.6</td>
</tr>
<tr>
<td>Wind offshore</td>
<td>80.9</td>
<td>80.9</td>
<td>80.9</td>
</tr>
<tr>
<td>PV</td>
<td>3.1</td>
<td>3.4</td>
<td>26.9</td>
</tr>
<tr>
<td>Solar collectors, indiv.</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Solar collectors, DH</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Biomass</td>
<td>52.2</td>
<td>73.3</td>
<td>74.2</td>
</tr>
<tr>
<td>Oils</td>
<td>89.0</td>
<td>83.5</td>
<td>36.0</td>
</tr>
<tr>
<td>Gas (natural), LPG</td>
<td>23.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Total PES</td>
<td>279.0</td>
<td>272.0</td>
<td>249.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Demand (GWh)</th>
<th>2015 Reference</th>
<th>2022 SMILE (BESS, PV), HP, biogas</th>
<th>2030 HPs, EVs, PV, H2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity for heating</td>
<td>3.8</td>
<td>6.8</td>
<td>14.3</td>
</tr>
<tr>
<td>Electricity for transport</td>
<td>0.2</td>
<td>0.3</td>
<td>6.0</td>
</tr>
<tr>
<td>Electricity for electrolyser</td>
<td>0</td>
<td>0</td>
<td>2.1</td>
</tr>
<tr>
<td>Biomass for DH plants</td>
<td>26.3</td>
<td>17.5</td>
<td>3.3</td>
</tr>
<tr>
<td>Biomass for indiv. boilers</td>
<td>25.8</td>
<td>25.8</td>
<td>25.8</td>
</tr>
<tr>
<td>Biomass for biogas</td>
<td>0</td>
<td>30</td>
<td>45</td>
</tr>
<tr>
<td>Oil for indiv. boilers</td>
<td>12.5</td>
<td>11.6</td>
<td>0</td>
</tr>
<tr>
<td>Gas for industry</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Diesel for ferries</td>
<td>29.4</td>
<td>25.4</td>
<td>11.9</td>
</tr>
<tr>
<td>Diesel for cars</td>
<td>35.1</td>
<td>34.5</td>
<td>20.1</td>
</tr>
<tr>
<td>Petrol for cars</td>
<td>12.0</td>
<td>12.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Gas for ferries</td>
<td>23.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Biogas for ferries</td>
<td>0</td>
<td>27</td>
<td>40.5</td>
</tr>
<tr>
<td>Hydrogen for cars</td>
<td>0</td>
<td>0</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Results/System indicators

<table>
<thead>
<tr>
<th></th>
<th>2015 Reference</th>
<th>2022 SMILE (BESS, PV), HP, biogas</th>
<th>2030 HPs, EVs, PV, H2</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES share of PES</td>
<td>59.5%</td>
<td>69.0%</td>
<td>85.3%</td>
</tr>
<tr>
<td>RES share of electricity prod.</td>
<td>437.1%</td>
<td>391.1%</td>
<td>324.3%</td>
</tr>
<tr>
<td>Imported electricity</td>
<td>1.5 GWh</td>
<td>1.5 GWh</td>
<td>1.8 GWh</td>
</tr>
<tr>
<td>Exported electricity</td>
<td>87.4 GWh (78%)</td>
<td>84.8 GWh (76%)</td>
<td>93.4 GWh (69%)</td>
</tr>
<tr>
<td>CO₂ emissions on island</td>
<td>28.5 kt</td>
<td>22.3 kt</td>
<td>9.7 kt</td>
</tr>
<tr>
<td>Electric heating share</td>
<td>11.4%</td>
<td>24.1%</td>
<td>60.2%</td>
</tr>
<tr>
<td>Bio heating share</td>
<td>68.7%</td>
<td>56.3%</td>
<td>38.5%</td>
</tr>
<tr>
<td>Electric transport share (incl. H2)</td>
<td>0.5%</td>
<td>1.1%</td>
<td>23.4%</td>
</tr>
<tr>
<td>Bio transport share</td>
<td>0%</td>
<td>27.0%</td>
<td>40.6%</td>
</tr>
<tr>
<td>Total system costs</td>
<td>16.5 M€</td>
<td>17.0 M€</td>
<td>15.6 M€</td>
</tr>
</tbody>
</table>
All details from the scenarios, including input and output specifications can be found in Appendix 7.1.

Potential sensitivity aspects to consider: The combination of both 10 MW wind and PV would result in the additional 25 GWh electricity exported (0.2 GWh critical), while reducing the import by less than 1 GWh and increasing the RES share by 1.3%-points to 86.6%. This excess electricity could also increase the DH HP production if its production is linked to the excess, but only by a minor share. Another important aspect to further improve this scenario could be for example heat savings, reducing the electricity and fuel demand for boilers, which could be important if the biomass would need to be reduced further.

To address the remaining fossil fuels in transport, a further extension of the biogas plant or a replacement of remaining fuels with electro- or biofuels could be considered. These might have to be imported if a realistic scope is too big for an island the size of Samsø and should otherwise include the limited amount of biomass and the excess fluctuating electricity. In Figure 3, the remaining fossil fuel can be noticed as the main remaining point for improvement. Finally, further smart controlling and management of various demands could improve the energy system of Samsø to reach the final target of a 100% RE, so further exploration and integration of solutions such as presented in SMILE is recommended.

The concluding Figure 3 presents a comparison of the different scenarios through Sankey diagrams. Different to the graphic from D8.1, the fossil fuels are illustrated darker to mark a difference between fossil and biofuels. Additionally, the number of nodes and connection between sector increases as interconnections and balance options are pointed out.

Most interesting may be the growth in losses from 2015 to 2022, but that can be related to the local biogas production, which has an efficiency of 90% besides the engines’ (in)efficiencies in the transport sector. Regarding this, it must be noted, that the production and transportation of the alternative fossil fuels are by far worse, except that they are not presented in this local image of the island’s energy system. For the replacement of the last amount of fossil fuels are alternative fuels needed, as explained above, which can also further reduce the total amount of losses in the system. Next to the further increase of the RE share (currently 85%) should the reduction of losses be addressed in the future by more efficient heating and transport options.
Figure 3: Sankey diagrams of Samsø 2015, 2022 and 2030
Figure 4 illustrated the fuels and results of the various scenarios, presenting oil, gas, biomass and electricity demands and resulting CO₂ emissions and annual system costs. While the SMILE demonstration can only barely be made out, also the 2022 scenario shows only minor updates in total fuel consumption with the production of biogas. Through the approach of the transport sector with EVs as well as electrifying more of the heating sector, the final scenario presents a large drop in fuel consumption and CO₂ emissions.

Despite the high EV share and a biogas plant beyond the current plans implemented by 2030, the medium-term scenario still requires 36 GWh of oil, which must be replaced with biofuels or other synthetic fuels in similar quantities. Further research is recommended for the best alternative technologies in the heavy transport sector to make Samsø finally reach the 100% RE share for the energy system. As Figure 4 further suggests, the development until now could be made with a reduction of annual costs, so a continuation of this should be economically feasible.

Figure 4: Scenario comparison of demands and resulting CO₂ emission and costs for Samsø
3.3 Orkney

In D8.1, the energy system of Orkney is presented with the reference data from 2014. The main island ("Mainland") is connected with two submarine cables with a total capacity of 40 MW to mainland Scotland, and the minor inhabited islands around Mainland are connected to it with smaller transmission line capacities. The total capacity of wind turbines (48.3 MW) and PV (1.3 MW) can supply the majority of the islands’ electricity demand: only 7% of the demand is imported and some power must be supplied by the local power plant (27%). With the heat demand further relying to a large extent on electricity, the total RES share of the PES reaches 17.6% for the reference model. A large part of the heat is still relying on oil, as is the industry and transport sector. Despite the relatively high amount of electric vehicles compared to other regions in the UK or Europe, its share is still estimated at only around 0.1% of the road and marine transportation (0.2% of the road transport).

In the reference model of Orkney, the CO₂ emissions are at 186 kt annually, resulting in a similar amount per capita as on Samsø. The biomass share, however, is much smaller with 1% of the modelled heat sector for 2014, while the electric heating share is at 44%, resulting in a still high share of fuel poverty in the area. With a current export share of 32% of the local RE production and no existing DH grid yet, there is room for many improvements.

To address the option of more efficient heating in combination with otherwise curtailed or exported electricity, the SMILE demonstration project on Orkney focuses at new domestic heat installs at currently 45 planned households, as well as include electric transport through more EV charging stations. Both options include smart planning and operation, meaning taking into account the temporality of excess of renewable electricity production and the potential demands. This is tested in one of the zones of Orkney, which encompasses some of the mainland island and most of the northwestern situated ones. However, in D8.2, as was the case for D8.1, the whole island and its energy system is modelled.

By integrating RE in a smarter way, the local energy can be used locally and benefit both the heating and the transport sector. Furthermore, this can reduces the import of electricity or otherwise at the power plant produced electricity if demands can be shifted to hours of excess production. This reduces the island’s fuel use and CO₂ emissions, as well as reduced electricity exchange and/or curtailment. An increase in self-sufficiency is the overall goal and is presented in the following through a technical approach including the SMILE demonstration.

3.3.1 Short-term scenario 2022 for Orkney

For the 2022 scenario, documents from Orkney, such as the SMILE deliverable D2.1 or the EV strategy [5], as well as UK statistics [6] were studied and used, some of it extrapolated. The details of the basic model are found in D8.1.

The short-term scenario for Orkney addresses mainly the private customers and households and their electricity and heating, while the measures for the industrial sector are introduced afterwards. Within the electricity sector, the RE production from wind and marine energy plays a role, as well as the consumption of electricity in the heating and transport sector. As Figure 6 shows, the share of domestic heating is 16% of the total electricity demand, while the transport was at merely 0.05%. However, this number has been increasing since the reference model of 2014, as can be expected from Figure 5. By 2017, the share is at about three times the amount of 2014 and in the short-term perspective of 2022, the share is even assumed to ten-fold.
As Figure 6 further shows, electric heating also makes up a large share of the heating sector with 44% of demand supplied with HP or electric boiler as of 2014, which is 16% of the demand in the total electricity demand. The details presented in D8.1 indicate that electricity forms the largest share, while also oil and coal form important parts of the current heating supply. With the SMILE demonstration project, both the electricity demand and the heat supply are therefore effected.

The 45 heat installs introduced to the heating sector, which are presented in Table 3 (cf. D2.1) to be installed on Orkney as part of SMILE are of a total capacity of 234 kWel. With an average annual heat demand of 15 MWh per household\(^1\), these would produce up to 675 MWh heat with electricity, replacing heat production from fossil fuels. Additionally, heat storage of a total capacity of 2,000 kWh is added.

The resulting impact on, on the one hand, CO\(_2\) emissions can therefore be connected to the reduction in heating oils, while the HPs, on the other hand, increase the total electricity demand, causing a reduction in exported electricity. By keeping both heating systems in the houses – both HPs and oil boilers – the production depends on available excess electricity, while a complete replacement of oil boilers with HP would reduce the oil consumption more while the electricity demand (incl. import) would increase. In the 2022 scenario, both heating units are kept as it represents the SMILE demonstration more closely.

\(^1\) Average heat demand applied for both Orkney and Samsø
Table 3: Overview of SMILE demonstration project on Orkney (based on D2.1)

<table>
<thead>
<tr>
<th>Load type</th>
<th>No</th>
<th>kW</th>
<th>kW total</th>
<th>kWh storage</th>
<th>BESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic heat installs type 1 (PCM & TES)</td>
<td>15</td>
<td>5.6</td>
<td>84</td>
<td>65 (975)</td>
<td>-</td>
</tr>
<tr>
<td>Domestic heat installs type 2 (HP, PCM & TES)</td>
<td>15</td>
<td>5</td>
<td>75</td>
<td>65 (975)</td>
<td>-</td>
</tr>
<tr>
<td>Domestic heat installs type 3 (HP & TES)</td>
<td>10</td>
<td>5</td>
<td>50</td>
<td>65 (650)</td>
<td>-</td>
</tr>
<tr>
<td>Domestic heat installs type 4 (BESS, HP, TES)</td>
<td>5</td>
<td>5</td>
<td>25</td>
<td>“100-300l + 500-1000l”</td>
<td>3.6kW/7.5kWh_{el} (total 18/37.5)</td>
</tr>
</tbody>
</table>

All heat installs	45	234	~2,000
EV smart slow chargers	30	7	210
Industrial load	1	500	500
TOTAL	944		

Adding more EVs, even though smart charged, adds to this reduction of export and CO\textsubscript{2} because of the shift from transport oils to electricity. Furthermore, an increase of import happens due to inevitable temporal mismatches between RE production and charging. In the short-term scenario of 2022, 33\% of the total expected EV fleet of 500 vehicles is expected to be able to use smart chargers, while the remaining demand is charged normally, modelled via dump charge. The charging and total storage capacities are based on typical EV Nissan Leaf specifications, which is the most common EV on Orkney.

The impacts of a few heat installs and EVs are of very small extent (1\%) in the energy system of the whole Orkney, but generally suggest an increase in RE capacity if import and export are not to grow. Both ideas are scaled up to a higher penetration in the 2030 scenario below.

Besides the above presented heat installs and EV demonstrations by 2022, further development is to be included in the short-term scenario of Orkney. As presented in D2.1, the curtailment is addressed with “domestic heat installs, EV smart charging and large industrial load”, meaning the hydrogen production facility at the Orkney-based European Marine Energy Centre (EMEC). “SMILE will help implement the smart control of switching between the two generators and the local grid to maximise generation and hydrogen production” with the local RE. Through “smart control of the switching and storage system, including the existing electrolyser”, more of the excess electricity from local RE can be integrated in the local energy system. [7]

This has been increasing in importance in the recent months, since the EMEC’s test side of tidal energy is to be further integrated into the energy system of Orkney, adding more fluctuating electricity to the already inflexible grid. The 500 kW electrolyzer on Eday [8], as well as one of 1 MW on Shapinsay [9], will be included in the short-term scenario, as will be the tidal energy capacity of 2 MW1 and the wave energy capacity of 7 MW [6],[10]. Both these marine energy production sites are partly in test mode and were therefore not included in the reference model for 2014. In the short-term towards 2022, both marine energy technologies are part of the Orkney energy system. With the existing hydrogen storage of several tanks adding up to 1,250 kg, a total storage capacity of 42 MWh is added to the system and the final potential annual energy from hydrogen for transport is defined as 1.66 GWh, based on the 50 t of hydrogen expected to be produced each year [11].

Based on the statistics from DBEIS [6], additional wind power and PV capacity is further added to the energy system. By the latest update to the statistic for 2017, the wind and PV capacity on Orkney increased by 0.4 MW and 0.03 MW respectively per year since 2014. Comparing to the reference model, the total wind capacity of Orkney is estimated to increase with 4.5 MW and PV with 0.2 MW by 2022.

1 Even though the installed capacity is 4 MW, the scenarios are made with 2 MW since this was the peak production recorded until now and because tidal energy is still under development and is considered with limited outcome
Regarding RES share and CO$_2$ reduction, these additional RE capacities have the biggest impact from the changes made since 2014. Furthermore, the import could be reduced by 27% to present only 5% of the total electricity demand (before 7%), even though the demand increased. The export of electricity is also reaching a slightly different level with 36% of the total RES production (before 32%), even though the total export increased by 14 GWh (28%). All the scenario 2022 data can be found in Table 4.

3.3.2 Medium-term scenario 2030 for Orkney

For the medium-term scenario of Orkney, likely changes up until 2030 are included. The EV strategy from 2018 influenced the transport aspects of the scenario [5], while the latest SMILE research paper1 presents some of the ideas affecting the heating sector.

With a focus on banning the sale of diesel and petrol cars by 2032 in Scotland [5], Orkney is on the way to increasing the use of EVs to a maximum around the year 2030. As it is uncertain if there will be other future technologies and alternative fuels available, the most anticipated vehicles are stated to be EVs as of now. However, this opens up the opportunity of storage through V2G connections. The Orkney Electric Vehicle Strategy [5] states that the “Envisaged Future of Orkney’s +10,000 vehicles being electric will represent up to 500 MWh of battery storage” if every EV was to be supplied with larger battery capacity (50 kWh) as might be expected for the future. Therefore, for the 2030 scenario, 80% of the road transport2 is modelled to be relying on EVs with V2G balancing the electricity import and export to the best extent possible and by allowing to supply the grid via a standard 10 kW capacity per car of battery to grid connection [12]. This is estimated to be possible with a EV share of 20%, which results in the maximum V2G capacity of 33,400 kW. The total EV battery capacity is estimated to be at 350 MWh since not all the EV battery capacities are expected to reach 50 kWh.

While the increase of EVs results in higher imports (+7.5 GWh), the additional V2G options limit this again (-3.2 GWh). With the following proposals to increase the hydrogen production further and install HPs by 2030, the import might need to be answered with new RE capacity nonetheless. Hydrogen production as an alternative fuel in the energy system of Orkney is already established in the 2022 scenario. By 2030 it is deemed likely to double this production, hence 3.3 GWh of hydrogen to be replacing fossil fuels. This requires now a total of 4.2 GWh electricity, which can be mostly meet by local RE.

To improve the heating sector of the island, DH is further proposed to be implemented in the largest town on Orkney, namely Kirkwall. The studies of both the Scottish Heat Map [13], as well as the Heat Roadmap Europe [14] suggest large heat densities in the center of Kirkwall. With the selection of this central heat demand, 33% of the current heat demand on Orkney could be covered with DH. Due to the still large amounts of excess electricity, a HP is to supply this DH grid, as well as a biomass boiler as a supplement and back-up. In the following, the HP is to operate only at hours with excess electricity, while a full-load operation could also be modelled. However, due to the target of keeping imports as well as the electricity production from the local fossil-fueled power plant or similar at a minimum, this is not further pursued. The alternative of using the HP not only during hours of excess electricity but at full-load is discussed at the end of this chapter.

The DH grid is modelled by moving the individual heating demands to this centralized solution, resulting in less fuels needed for individual coal, oil, gas and biomass boilers. Since the exact types of buildings and boilers are not known, all of them are reduced by 33%, except already electrically heated houses. The final share of DH in the heating sector is therefore 19%. The impact of DH for Orkney ranges from the reduction of CO$_2$ by 3-4 kt annually, to reduced fuel consumption at individual buildings and in total, as well as a reduction in the overall system costs.

1 Evaluation of Electricity Storage versus Thermal Storage as part of two different Energy Planning Approaches for the Islands Samsø and Orkney; Submitted to Energy; Nov. 28th, 2018

2 16,700 vehicles
If the heating sector is to further develop towards renewable heat, the remaining boilers are to change to biomass or HP as alternatives. While this, on the one hand, increases the RE share beyond 30%, it also increases both electricity demand and/or biomass consumption. The potential for biomass on Orkney is unknown, therefore, additional RE capacity based on wind, sun or water is presented. The results of the combination of 2030 aspects with additional 10 MW tidal and 10 MW PV capacity are presented in Table 4, while a sensitivity study of alternative capacities is discussed afterwards. This 20 MW combination, though – with the modelled energy system – results in the least critical excess production while reducing the import, fuel and CO₂ the most. The details are listed in the last column of Table 4.

3.3.3 Overview and discussion for Orkney

The following presents a presentation and comparison of the main scenarios for Orkney, from reference over SMILE to short- and medium-term changes. The details from the EnergyPLAN models are further added in the Appendix, where the data for Orkney can be found in section 7.2.

Further included is a discussion of aspects included in the creation of the scenarios as well as of ideas for the long term. Table 4 shows all input and output specifications of the three models for Orkney, which is illustrated in Sankey diagrams in Figure 7 below. This illustrates that one of the main focus, namely the fossil fuel consumption, is changing the most. Instead of using these, electricity replaces some of the corresponding demands.

<p>| Table 4: The annual energy supply and demands on Orkney – reference, short- and medium-term |
|---|---|---|
| | 2014 Reference | 2022 SMILE (HP, TES, EV), H2, EMEC | 2030 EVs, DH, HP, Tidal, PV |
| Supply (GWh) | | | |
| Wind onshore | 149.7 | 163.6 | 163.6 |
| PV | 1.2 | 1.4 | 10.6 |
| Tidal | 0 | 7.4 | 44.2 |
| Wave | 0 | 2.9 | 2.9 |
| Solar collectors, indv. | 0.1 | 0.1 | 0.1 |
| Biomass | 2.0 | 2.0 | 69.1 |
| Oils | 598.8 | 592.9 | 425.6 |
| Gas (natural), LPG | 94.5 | 83.8 | 35.5 |
| Coal | 21.1 | 21.1 | 12.6 |
| Total PES | 878.2 | 882.8 | 767.9 |
| Demand (GWh) | | | |
| Electricity for heating | 15.3 | 15.5 | 21.2 |
| Electricity for transport | 0.1 | 0.8 | 27.0 |
| Electricity for electrolyser | 0 | 2.1 | 4.2 |
| Biomass for indv. boilers | 2.0 | 2.0 | 54.6 |
| Biomass for DH | 0 | 0 | 23.5 |
| Oil for indv. boilers | 76.0 | 75.2 | 0 |
| Gas for indv. heating | 1.4 | 1.4 | 0 |
| Coal for indv. heating | 8.5 | 8.5 | 0 |
| Gas for power plant | 93.1 | 82.4 | 35.5 |
| Oil for industry | 176.8 | 176.8 | 176.8 |
| Coal for industry | 12.6 | 12.6 | 12.6 |
| Diesel for boats | 228.0 | 228.0 | 228.0 |
| Diesel for cars | 75.1 | 69.8 | 12 |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Petrol for cars</td>
<td>36.1</td>
<td>36.0</td>
<td>2</td>
</tr>
<tr>
<td>Hydrogen for cars</td>
<td>0</td>
<td>1.7</td>
<td>3.3</td>
</tr>
<tr>
<td>Jet fuel for airplanes</td>
<td>6.9</td>
<td>6.9</td>
<td>6.9</td>
</tr>
</tbody>
</table>

Results/System indicators

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RES share of PES</td>
<td>17.6%</td>
<td>20.3%</td>
<td>38.0%</td>
</tr>
<tr>
<td>RES share of electricity prod.</td>
<td>97.5%</td>
<td>111.2%</td>
<td>113.5%</td>
</tr>
<tr>
<td>Imported electricity</td>
<td>10.8 GWh</td>
<td>7.9 GWh</td>
<td>3.8 GWh</td>
</tr>
<tr>
<td>Exported electricity</td>
<td>48.9 GWh (32%)</td>
<td>62.6 GWh (36%)</td>
<td>46.0 GWh (21%)</td>
</tr>
<tr>
<td>CO₂ emissions on island</td>
<td>186.0 kt</td>
<td>182.2 kt</td>
<td>124.9 kt</td>
</tr>
<tr>
<td>Electric heating share</td>
<td>43.8%</td>
<td>44.3%</td>
<td>56.8%</td>
</tr>
<tr>
<td>Electric transport share (incl. H2)</td>
<td>0.1%</td>
<td>1.7%</td>
<td>28.5%</td>
</tr>
<tr>
<td>Bio transport share</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Total system costs</td>
<td>57.7 M€</td>
<td>61.7 M€</td>
<td>59.6 M€</td>
</tr>
</tbody>
</table>

Alternative RE capacity in the future further includes wind power, as well as wave power, based on the existing installations. Further wind capacity is not chosen since its additional capacity would increase the already extensive fluctuations between windy and non-windy hours. Wave power, on the contrary – though at same potential capacity – has a very limited effect on reducing imports or fossil fuel consumption. Further, wave power is still comparably expensive at the same capacity of wind or PV. PV is a technology much underestimated, yet comparably inexpensive with RE production during times when there is usually demand for electricity (daytime). Tidal power is furthermore chosen – even though it might be most expensive – due to its great results regarding import and fuel reduction at the same capacities as other technologies.

To address the remaining fossil fuels in transport, a replacement with electro- or biofuels could be considered similar to Samsø with either local biogas production or additional hydrogen. However, if electricity-based fuels are considered, so must the amount of excess electricity be taken into account, which is still making up a large share as can be seen in Figure 7. Alternatively, additional RE capacity might be required to allow these further electrification measures. The options for the long-term scenario targeting 100% RE requires further discussion in the following.

As is further illustrated in Figure 7, the industrial demands have not been addressed with these improvements of heating and transport sector. Due to insufficient data and the unusually complex conditions in the industrial sector, an optimization of it requires an in-depth study. Another recommendation is therefore the investigation of this sector, besides the transport sector, which might still rely on fossil fuels. The final Sankey diagram presents Orkney in the second RE-integration phase, after which balancing and interconnected are needed to further approach the 100% RE target.
Figure 7: Sankey diagrams of Orkney 2014, 2022 and 2030
While the total heat demand in the scenarios is rather limited, as was discussed in D8.1, the potentially larger demands could require further improvements. Even though the majority of heat demand could be supplied by individual HPs or biomass boilers, alternatively, an additional DH system in Stromness, next to the maximal possible extension of the presented Kirkwall DH could be targeted. After evaluation of possible current waste heat sources, such as from industry, the DH could furthermore be expanded and/or improved.

Figure 8 illustrates the presented steps in terms of fuel and electricity demands, as well as resulting CO₂ emissions and annual costs. As presented above, the increase of tidal power capacity has the best impacts on import and fuel reduction, while it is the most costly. This cost, however, can barely be noted. The result is an almost constant cost of the total system over the years, while the cheapest solution of wind and PV capacity combination would result in 52.6 M€ instead of 59.9 M€ as is the case for same PV and tidal capacity.

Further sensitivity study shows the potential share of 41% RE share with additional 20 MW PV and 5 MW wind capacity, which would, however, result in a minimum of 2.5 GWh critical electricity production – potentially more if placed unfavourable regarding internal bottlenecks.

Above, the DH operation is presented as being supplied electrically with a HP during excess electricity production and otherwise relying on a back-up unit using biomass. If this DH demand was to be fully supplied by HP, the total electricity demand would increase by 13 GWh annually, of which 4 GWh would have to be imported and 3 GWh could come from otherwise exported electricity. The remaining demand could be provided from the local power plant, hence, not very sustainable. However, this scenario would not require more biomass than the amount used in the reference model and might be cheaper. It therefore presents an alternative 2030 scenario⁴ to consider, while the scenario presented in the following models a combined DH supply from HP and biomass.

Figure 8: Scenario comparison of demands and resulting CO₂ emission and costs for Orkney

⁴ With less biomass consumption, but more electricity consumption and resulting fossil fuel demand for the power plant, as well as higher CO₂ emissions
3.4 Madeira

The high RE scenarios for Madeira take their starting point in the reference model presented in D8.1, which uses 2014 as the reference year. Without a transmission line to neither Europe nor Africa, Madeira is the only SMILE island with an autonomous electricity grid – 900 km from the European continent. Therefore, the dependency on imports and need for better utilization of local resources is even greater than for most other islands.

The Madeira energy system as of 2014 is supplied with various hydro power plants, as well as onshore wind turbines and PV power from a number of small installations. This sums up to 115 MW RE capacity, which is far from sufficient for the comparably large electricity demands on Madeira, resulting in the necessary operation of oil and gas-based power plants to supply the majority of power. The heating sector – and with it the cooling sector – is further heavily electrified, which makes it hard to evaluate the actual heating demand. Otherwise, the heat supplied by furnaces and similar are mainly supplied with gas and biomass – on top of which comes some solar heat in 2014. With high amounts of fossil fuels in the electricity and heating sector, as well as the transport sector, the RE-share reaches only 11% if waste incineration is to be considered renewable – 7% if not.

Comparing to the other SMILE islands, Madeira is the only autonomous island with resulting large power plant capacity and local waste incineration, as well as limits in terms of capability to install more RE capacity due to grid limits and stabilization problems that potentially come with fluctuating electricity. If heating or transport were to increase the electricity consumption, it has to be done in compliance with various stakeholders, such as the local electricity company.

This results in the definition of the SMILE demonstration projects (“pilots”) for Madeira. These address the existing PV installations with BESS, which are partly restricted from injecting surplus electricity into the grid, as well as the optimization of the transport sector through EVs. In relation to the first BESS pilot, a final demonstration pilot utilizes BESS to optimize conditions and options in the grid further. The overall target under SMILE on Madeira lies in the optimization of local resources and the reduction of fossil fuels in the power production and transport sector.

3.4.1 Short-term scenario 2022 for Madeira

The short-term evaluation for Madeira includes the SMILE demonstration pilots 1-5, as well as the local strategies and plans regarding the energy system, provided by EEM. With pilot 1-4, the electricity demand of Madeira is addressed as it is influencing – firstly – the demand at households and businesses, which have PV installation, of which currently some of this electricity is lost due to non-existing storage possibilities and – secondly – the electricity needed for the uptake and improvement in the transport sector.

Figure 9 from D8.1 reminds us of the currently highest electricity demands being in the service sector (hotels, public business, etc.) and the household sector, while the transport sector represented the smallest share in 2014 of less than 0.01% (0.1 out of 839 GWh). Further presented is the current electricity sector’s hourly demand and supply over the whole year for 2014, showing the currently insufficient RE production to supply the electricity consumption.
First, the currently limited utilization of the installed PV panels, which are not connected to the grid (so-called UPACs) is addressed with pilots 1 and 2, which address domestic and commercial UPAC owners respectively. As presented in WP4, UPAC PV installations are restricted in their ability to provide any excess electricity into the Madeira grid, which results in a comparably low total number of these RE installations even though the climate conditions are very appropriate for such in this region. With a successful pilot 1 and 2, this number might be increased and can be an important part of the future energy system of Madeira.

Out of the existing 36 private and 13 commercial UPAC installations, about half of them are studied to select the ones suitable for the pilots [D4.5]. Out of those, several have limited PV power or have a demand high enough that a BESS would not make any significant improvements. Table 5 shows the resulting selection to demonstrate how BESS can improve the energy system with already existing PV installations.

<table>
<thead>
<tr>
<th>UPAC</th>
<th>Type</th>
<th>Contracted Power (kVA)</th>
<th>Installed PV Power (kWp)</th>
<th>Tariff</th>
<th>BESS Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>U06</td>
<td>Domestic</td>
<td>10.35</td>
<td>2.7</td>
<td>Single-rate</td>
<td>3 kW / 8.6 kWh Single-phase</td>
</tr>
<tr>
<td>U09</td>
<td></td>
<td>6.9</td>
<td>4.5</td>
<td>Single-rate</td>
<td></td>
</tr>
<tr>
<td>U12</td>
<td></td>
<td>6.9</td>
<td>3</td>
<td>Dual-rate</td>
<td></td>
</tr>
<tr>
<td>U2/U5/U10</td>
<td></td>
<td>10.35</td>
<td>1.5</td>
<td>Single-rate</td>
<td></td>
</tr>
<tr>
<td>U8</td>
<td>Commercial</td>
<td>20.7</td>
<td>3.92</td>
<td>Single-rate</td>
<td>3 kW / 8.6 kWh Three-phase</td>
</tr>
</tbody>
</table>

For D8.2, these households and one business are modelled hourly over a year with the typical PV production data on Madeira and the BESS specifications from LiBAL. The electricity demand from these houses is represented as a relative share of the total hourly electricity consumption from the reference year [see D8.1]. Similar to the related SMILE publication on PV and battery combination, this model operates without regard to the overall system and is therefore developed externally before implementing the results into EnergyPLAN [2]. As presented in D8.1, EnergyPLAN simulates the different production and consumption sides aggregated, which requires external modelling of these pilots.

Figure 10 presents how this model looks before and after installation of the BESS. Before, according to the simulation, a majority of the PV production is lost and only 44% can be directly used without adjusting the...
hours of consumption. Any possible adjustments of consumption1 due to PV availability are disregarded in this simulation. After the BESS addition to these selected houses, the usable share increases by another 34%-points, hence, 78% of the PV can now be utilized directly or within a few hours afterwards. While some of the remaining PV production might be lost due to conversion losses and dis-/charging efficiencies, the overall losses are reduced by 60%.

In total, pilots 1 and 2 can reduce the demand from the grid by 11.34 MWh annually in this model, especially in hours after sunset and in the summer. Figure 10 further shows the utilization of the various BESS combined to the total capacity of about 60 kWh of which 80% is made available for the simulation. This reduction, as well as the resulting new total demand distribution is used in the new EnergyPLAN scenario. What Figure 10 suggests is potentially a larger exploration of these pilots with similar BESS specifications, as the constellation and its results look promising.

![Figure 10: Electricity demand and production at selected households with BESS and PV (UPAC) for a whole year and a week in March](image)

Secondly, pilots 3 and 4 address the electricity demand through EVs and the approach of 1) two local companies with various EVs and a sightseeing vehicle fleet2, as well as 2) the EEM garage consisting of several charging points and EVs. For the SMILE scenario, the demand for electric transportation is expected to increase, of which 20% if assumed to be charging the EVs smartly. This results from the number of selected vehicles for the pilots in comparison to the total number of EVs. The EV charging is simulated with a semi-flexible charging demand profile, as well as fixed capacities and shares of vehicles being able to charge at the same time.

The number of EVs is even considered to be reaching 1,000 in the short-term until 2022, hence, the demand would increase to 1.6 GWh annually for charging, while at the same time, the number of combustion vehicles is reduced. Out of this, 25% is assumed to be able to charge smartly by then, based on the SMILE demonstrations. At this moment, the effects on the energy system of Madeira do not show a clear advantage in the switch from combustion vehicles to EVs, because the replaced Diesel/Petrol will now be required as power plant fuel to produce the additionally needed electricity for the EVs. While the efficiency of EVs is better than combustion cars, the previous conversion from fuel oil to electricity in the power plants to a large extent counterbalances this advantage. This step would only be truly beneficial to the system when additional RE capacity is supplying more electricity for the EVs.

1 E.g. moving large demands from night time to hours with sunshine/PV production
2 20 Renault Twizy + 6 Piaggio (Tukxi)
Finally, Madeira is presenting a final pilot 5 within the SMILE project, which also includes BESS and addresses the limits within PV electricity production. In a residential area of several PV installations, this BESS is supposed to stabilize the electricity grid, as sudden overcast can cause instability in the grid. Therefore, this pilot aims at improving the integration of UPP-PV installations, which are fully injecting into the island grid. An extra (6th) pilot is working similar to pilot 5 with the aim of improving the stability for the time of sunset and evening peaks, where a duck curve challenge can be observed [D4.5]. However, both pilot 5 and the extra pilot are addressing intra-hour problems or problems limited to a specific local area. Therefore, they play no role in the short- or medium-term scenarios that are looking at the hourly level and above1.

Despite some of the limits and difficulties, the SMILE approaches in the currently planned scope (without upscaling and replicating the different demonstrations) would already cause reductions in the overall oil consumption (transport fuel), as well as reductions in the annual CO\textsubscript{2} emissions. These are reduced by about 122 t per year, due to the reduced electricity demands at UPAC houses and the replacement of transport fuel with electricity, which is produced at the PP, but partly with the more efficient natural gas as fuel.

Next in line to finalize the energy system scenario of Madeira for 2022, the plans and changes regarding RE capacity are implemented. Expected invested to be made in Madeira in the next few years are as follows2:

- 2018: Decommission of old hydro plant with 3.5 MW
- 2018: New PV capacity since 2014 of 50 kW
- 2019: New dammed hydro plant of 30 MW with 16.5 MW pump (1 million m3 storage; 16 GWh)
- 2019: New wind capacity of 18 MW
- 2020: New PV capacity of 50 MW
- 2020: New battery of 15 MW and 10 MWh
- 2021: New dammed hydro plant of 4.4 MW with 1 MW pump

Despite the effort of moving towards RE electricity, the power plants are still highly utilized to supply the demands. As Figure 11 below points out, the largest share of the electricity demand must be met by something else than the now installed 63.1 MW wind, 69.1 MW PV, 23.2 MW run-of-river hydro and 58.4 MW dammed hydro power. In 2022, the electricity is supplied by 52% from power plants, while the RE combined present 48%. This may also be one of the reasons the 15 MW battery is not utilized as much as it could be, since the model would only store excess renewable energy and the fossil-fuelled and hydro productions already offer some flexibility.

1 EnergyPLAN simulates hour-to-hour which leads to difficulties of spotting bottlenecks within the system
2 Source: EEM
While the electricity production now reaches 48% from RES, the total PES is supplied only with a share of 16%. This is due to the mainly fossil-fuelled heating and transport sectors as well as industrial fuels. The total amount of fossil fuels on Madeira would by 2022 be reduced by 11% compared to the reference model, but still amount to 3 TWh annually. Further details of the short-term scenario for Madeira can be found in Table 6.

3.4.2 Medium-term scenario 2030 for Madeira

The medium-term scenario for Madeira firstly incorporates the additionally planned RE capacities as follows:

- 2023: Decommission of Vitória power plant (167 MW out of 203 MW (EEM))
 - Not removed in the model, due to insufficient supply
- 2024: New wind capacity of 30 MW
- 2024: New hydro capacity of 30 MW with 27.5 MW pumps
- 2024: New PV capacity of 12.6 MW
- 2025: Decommission of Caniçal power plant (remaining 36 MW (Private))
- 2025: New geothermal capacity of 30 MW

Even though the power plants are planned to be decommissioned partly in 2023 (EEM’s thermal power plant) and 2025 (Private power plant), this is not possible even with the extended RE capacities and the total RE production (585 GWh) in combination with the reference energy demand (840 GWh). Especially with the upcoming presentation of an EV uptake as well as the recommendation to install HPs instead of gas boilers, complementary to biomass heater or solar thermal production. Regarding the decommissioning of the power plants, they will remain in the energy system model, but a possible partly decommission can be discussed with the final scenario.

All additional RE capacity is modelled with efficiencies and production similar to the respective data in the reference model or with slightly improved capacity factors, representing probable production for the specific location of Madeira. For some of the new technologies, such as the new geothermal power plant, research influenced the modelling, such as expected efficiencies for this type of power plant being modelled at 12% [16].

Next to the new RE capacities, the transport sector can be addressed closer. After the introduction of EV for both commercial, touristic and private purposes with the addition of smart chargers, a further exploration can be assumed. Similar to Orkney, an exponential increase of EV by the year 2030 is modelled in the
medium-term scenario. With a final electricity demand for EVs instead of combustion vehicles equalling 100,000 vehicles, about 50% of the transport can be covered. Further fuel options for this sector can be discussed for the time after 2030. Instead, the number of EVs can be modelled to include the option of V2G, reducing the production at the power plant by enabling EVs to be used as temporary electrical storages.

Eventually also the heating sector must be addressed. With the uncertainty of heating demand within the electricity consumption, improvements can only be modelled to a limited extent. A first logic step is the replacement of oil and natural gas for heating with HP. In the same step, more solar thermal could be explored to support this heat production and keep the electricity requirement to hours with insufficient natural heat resources. In total, the solar heat production is doubled from the reference to the medium-term scenario.

After the electricity demand is increased as a consequence of increased demands from EVs and HPs, new RE capacity is required. While the EV demand added 158 GWh to the total demand and HPs another 46 GWh, the power plant produced an additional 160 GWh. Therefore, a sensitivity study of additional RE capacity is made, resulting in the suggestion of 40 MW additional capacity for both wind and PV. Further capacity would result in critical excess electricity production at only minor system improvements.

The results of the additional capacities, as well as of the other assumed improvements – partly based on SMILE demonstrations – can be seen in Table 6. The RE-share reaches just above 30.6% while the share for the electricity production is at 73.5%. Adding RE capacity would increase both even further, but would at the same time result in critical excess electricity production, so the benefits would decrease. Therefore, a more balanced approach towards the 100% RE share is required in the longer term.

3.4.3 Overview and discussion for Madeira

Table 6 presents the results of both the reference model of Madeira, as well as the short- and medium-term scenarios. These are further illustrated with the corresponding Sankey diagrams in Figure 12 and Figure 13 depicting the final demands and results in one graph including all scenarios. Appendix 7.3 presents the final overview of inputs and outputs from the EnergyPLAN models.

Table 6: The annual energy supply and demands on Madeira – reference, short- and medium-term

<table>
<thead>
<tr>
<th>Supply (GWh)</th>
<th>2014 Reference</th>
<th>2022 SMILE (BESS, EV), PV, hydro wind</th>
<th>2030 RES, EV, HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind onshore</td>
<td>85.9</td>
<td>141.9</td>
<td>311.5</td>
</tr>
<tr>
<td>PV</td>
<td>25.0</td>
<td>98.8</td>
<td>214.0</td>
</tr>
<tr>
<td>Hydro</td>
<td>95.3</td>
<td>132.9</td>
<td>151.4</td>
</tr>
<tr>
<td>Geothermal</td>
<td>0</td>
<td>0</td>
<td>31.6</td>
</tr>
<tr>
<td>Waste incineration</td>
<td>32.9</td>
<td>32.9</td>
<td>32.9</td>
</tr>
<tr>
<td>Solar collectors, indv.</td>
<td>22.3</td>
<td>22.3</td>
<td>38.8</td>
</tr>
<tr>
<td>Biomass</td>
<td>32.4</td>
<td>32.4</td>
<td>32.4</td>
</tr>
<tr>
<td>Oils</td>
<td>2910.4</td>
<td>2582.7</td>
<td>1791.7</td>
</tr>
<tr>
<td>Gas (natural), LPG</td>
<td>503.3</td>
<td>438.9</td>
<td>232.0</td>
</tr>
<tr>
<td>Total PES</td>
<td>3848.1</td>
<td>3623.3</td>
<td>2953.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Demand (GWh)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity for heating</td>
<td>N/A¹</td>
<td>N/A</td>
<td>N/A +46.3</td>
</tr>
<tr>
<td>Electricity for transport</td>
<td>0.1</td>
<td>1.6</td>
<td>160.0</td>
</tr>
</tbody>
</table>

¹ Data not available, but large heating and cooling demands expected within the electricity sector
Results/System indicators

<table>
<thead>
<tr>
<th></th>
<th>System 1</th>
<th>System 2</th>
<th>System 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES share of PES (incl. waste)</td>
<td>10.5%</td>
<td>15.7%</td>
<td>30.6%</td>
</tr>
<tr>
<td>RES share of electricity prod.</td>
<td>28.5%</td>
<td>48.4%</td>
<td>73.6%</td>
</tr>
<tr>
<td>CO₂ emissions on island</td>
<td>894.5 kt</td>
<td>794.1 kt</td>
<td>541.1 kt</td>
</tr>
<tr>
<td>Electric heating share</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A+ 60.5%</td>
</tr>
<tr>
<td>Bio heating share</td>
<td>12.3%</td>
<td>12.3%</td>
<td>12.3%</td>
</tr>
<tr>
<td>Solar heating share</td>
<td>11.6%</td>
<td>11.6%</td>
<td>23.2%</td>
</tr>
<tr>
<td>Electric transport share (no H2)</td>
<td>0.1%</td>
<td>0.4%</td>
<td>42.6%</td>
</tr>
<tr>
<td>Bio transport share</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Total system costs</td>
<td>315.7 M€</td>
<td>296.7 M€</td>
<td>251.2 M€</td>
</tr>
</tbody>
</table>

The data from Table 6 is depicted in Figure 12 through Sankey diagrams, showing the energy flows of the three scenarios. The major change that can be noted is the reduction in fossil fuels, mainly oils from 2014 to 2030. Instead, electricity is produced more from RES, but further optimization should be found for the remaining oil and gas consumption.

As it could be tested for Samsø and expanded on Orkney, Hydrogen production through electrolyzer could become relevant for the replacement of fossil fuels in the transport sector. Alternatively, biogas production could be strived for. With respect to the second technology, the local biomass potential – both dry and wet biomass – should be evaluated, before it can be included in the model.

Besides the above suggested additional RE capacity of wind and PV, the potential for further hydro power plants or even offshore energy could be exploited. For this, another evaluation of potential areas is required before it can be further discussed for a long-term scenario.

1 Not including the small UPAC production, since their demand is also not part of model; would increase the share only slightly
Figure 12: Sankey diagrams of Madeira 2014, 2022 and 2030
The final point of discussion relates to the heating sector optimization, since – also here – improvements are required for the overall development of the Madeira energy system towards 100% RE. The actual heating demands within the electricity sector can provide relevant information for possible improvements. If inefficient boilers and heaters are used, a replacement with efficient HPs or even the establishment of DH could improve the energy system. Besides the uncertainties in the heating sector, the demands for cooling could be evaluated and improved. With the possibility of district cooling, the service sector of Madeira could achieve benefits through better suitable technologies and supply of the demands.

The final illustration in Figure 13 for Madeira shows the different scenarios in the short and medium term. Especially the changes presented until 2030 decrease the fuel consumption and CO₂ emissions with a minor increase in total electricity demand, similar to the Samsø and Orkney scenarios.

![Figure 13: Scenario comparison of demands and resulting CO₂ emission and costs for Madeira](image-url)
4 Demonstrator Comparison and Discussion

This section presents an overview of the different scenarios and resulting island energy systems’ characteristics. It can be used to review the different changes between the reference year, 2022 and 2030 and their results. The overview can help see the short- and medium-term changes with its impacts and can give information also to the other demonstrator islands. Even though the three islands are of different size and population, some similarities in regards to their energy systems can be made out. For example, the RE electricity production capacity are rather similar despite the large differences in demands. By presenting the different RE capacities and their impacts, possible gaps or potentials in the plans and models of the other islands can be found and help shape the future creation of the energy systems.

Table 7 present the energy demands by sectors for Samsø, Orkney and Madeira with the reference, short- and medium-term scenario. Here, only the electricity demand seems to change, which is mostly due to more electricity in the heating or the transport sector. The other sectors, however, but also the electricity one, are improved within, while the total demands stay the same. As explained in Chapter 3, some general possible changes in the demand due to demography or efficiency measures are excluded, even though they could interfere with these. The changes that are made within the main sectors of electricity and heat production are presented in the tables afterwards, along with the overall fuel consumption.

Table 7: Comparison of energy demands

<table>
<thead>
<tr>
<th>Annual reference data</th>
<th>Samsø</th>
<th>Orkney</th>
<th>Madeira</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity Demand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(GWh)</td>
<td>25.5</td>
<td>28.6</td>
<td>41.8</td>
</tr>
<tr>
<td>Heat Demand</td>
<td>51.9</td>
<td>51.9</td>
<td>51.9</td>
</tr>
<tr>
<td>Cooling Demand</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Transport Demand</td>
<td>30.0</td>
<td>29.9</td>
<td>28.9</td>
</tr>
<tr>
<td>Industry Demand</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>

In D8.1 in the corresponding table to Table 7, also the cooling demand is listed, as it presents an important part of the energy system, especially for Madeira. Similarly to the heating demand, this is currently obscured within the electricity consumption data while no detailed data is available and hence an optimization neglected for now. This could be a relevant contribution in future energy scenarios and might even find potential on the industrial sites on Samsø and Orkney.

Table 8 shows the different approaches for the demonstrator islands in regard of added RE capacity and resulting RE production. Despite the plans of decommissioning the power plants on Madeira, as well as lifting the dependence on the power plant on Orkney, the energy system analysis shows the still required power to be supplied from there under the modelled circumstances.

Table 8: Comparison of electricity production

<table>
<thead>
<tr>
<th>Annual reference data</th>
<th>Samsø</th>
<th>Orkney</th>
<th>Madeira</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power plant capacity</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(MW)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power plant power</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>supply (GWh)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind power capacity</td>
<td>34.4</td>
<td>34.4</td>
<td>34.4</td>
</tr>
<tr>
<td>(MW)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind power supply</td>
<td>108.4</td>
<td>108.5</td>
<td>108.5</td>
</tr>
<tr>
<td>(GWh)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PV capacity</td>
<td>1.3</td>
<td>1.5</td>
<td>11.5</td>
</tr>
<tr>
<td>(MW)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PV power supply</td>
<td>3.1</td>
<td>3.4</td>
<td>26.9</td>
</tr>
<tr>
<td>(GWh)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tidal, Wave capacity</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(MW)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tidal, Wave supply</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(GWh)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geothermal capacity</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(MW)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 9 shows the shifts of fuel within the heating sector and Table 10 present the resulting fuel demands, partly resulting from the changes in the heating sector, but also from the transport upgrades and power plant reliance. Since the fossil fuel reduction was paid special attention to in order to increase the RE share in the energy systems, they are included in the last rows of Table 10. It shows that the fossil fuel consumption on Samsø is reduced by 68% between 2015 and 2030 with the presented scenarios. Similarly, on Orkney, this number is reduced by 34% and on Madeira by 40%.

<table>
<thead>
<tr>
<th>Annual reference data</th>
<th>Samsø</th>
<th>Orkney</th>
<th>Madeira</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat production DH</td>
<td>35%</td>
<td>35%</td>
<td>35%</td>
</tr>
<tr>
<td>Heat from oil (GWh)</td>
<td>10.0</td>
<td>9.5</td>
<td>-</td>
</tr>
<tr>
<td>Heat from biomass (GWh)</td>
<td>50.3</td>
<td>42.1</td>
<td>28.9</td>
</tr>
<tr>
<td>Heat from gas (GWh)</td>
<td>-</td>
<td>-</td>
<td>1.2</td>
</tr>
<tr>
<td>Heat from electricity (GWh)</td>
<td>5.9</td>
<td>14.9</td>
<td>32.6</td>
</tr>
<tr>
<td>Heat from coal (GWh)</td>
<td>-</td>
<td>-</td>
<td>6.0</td>
</tr>
<tr>
<td>Heat from solar (GWh)</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Total heat production (GWh)</td>
<td>51.9</td>
<td>51.9</td>
<td>51.9</td>
</tr>
</tbody>
</table>

Table 10: Comparison of fuel consumption

<table>
<thead>
<tr>
<th>Annual reference data</th>
<th>Samsø</th>
<th>Orkney</th>
<th>Madeira</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil consumption (GWh)</td>
<td>89.0</td>
<td>83.5</td>
<td>36.0</td>
</tr>
<tr>
<td>Biomass consumption (GWh)</td>
<td>52.2</td>
<td>73.3</td>
<td>74.2</td>
</tr>
<tr>
<td>Gas consumption (GWh)</td>
<td>23.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Coal consumption (GWh)</td>
<td>-</td>
<td>-</td>
<td>21.1</td>
</tr>
<tr>
<td>Total fossil fuels (GWh)</td>
<td>112.4</td>
<td>83.9</td>
<td>36.4</td>
</tr>
<tr>
<td>Total consumption (GWh)</td>
<td>164.6</td>
<td>157.2</td>
<td>110.6</td>
</tr>
</tbody>
</table>

Finally, Table 11 presents the overall energy system indicators for the demonstrator islands, including RES shares, electricity exchange and resulting emissions as well as costs. These are shortly discussed below.

<table>
<thead>
<tr>
<th>Annual reference data</th>
<th>Samsø</th>
<th>Orkney</th>
<th>Madeira</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES share of PES</td>
<td>60%</td>
<td>69%</td>
<td>85%</td>
</tr>
<tr>
<td>RES share of electricity prod.</td>
<td>437%</td>
<td>391%</td>
<td>324%</td>
</tr>
<tr>
<td>Imported electricity (GWh)</td>
<td>1.5</td>
<td>1.5</td>
<td>1.8</td>
</tr>
<tr>
<td>Exported electricity (GWh)</td>
<td>87.5</td>
<td>84.8</td>
<td>93.4</td>
</tr>
<tr>
<td>CO2 emissions on island (kt)</td>
<td>28.5</td>
<td>22.3</td>
<td>9.7</td>
</tr>
<tr>
<td>Total system costs (M€)</td>
<td>16.5</td>
<td>17.0</td>
<td>15.6</td>
</tr>
</tbody>
</table>

In Table 11, the comparison of the RES share shows generally great improvements with increases of 20% points and more. However, for Orkney and Madeira is still a long way to the large-scale and high RE target of
100%, despite the ambitious scenarios to improve the energy systems presented in this report. This can partly be explained by the more balanced approach taken in the scenario creation, rather than a simple increase in RE capacities, which would increase the RES share, but also the export and potential curtailment/critical excess production. Instead, more moderate capacity additions are introduced together with balancing options, such as smart charging and storage options.

Further targets for island energy systems are the limitation of both import and export to increase the share of local energy consumption and self-sufficiency. While Samsø’s share of renewable electricity is very large and the suggested additional capacity increases this slightly, the share of the local electricity that is exported is still lower (see Table 2). The same can be said about Orkney, while the island furthermore reduces their import share from 7% to 2% of the electricity demand. Finally, on Madeira, it is possible to keep the critical excess production at 0.02%.

Similarly, the CO₂ emissions are reduced with the increase of RE and decrease of fuel combustion. On Samsø, the reduction is 66%, 33% on Orkney and 40% on Madeira, being in line with the phase they are currently modelled in, as presented in Table 1 with the definition of RE integration phases. The final CO₂ emissions are equal to about 2.6 t, 5.7 t and 2.2 t per capita for Samsø, Orkney and Madeira respectively. The high amount for Orkney might relate to the big industrial sector and limited biomass potential.

And finally, the last row of Table 11 shows the tendencies for annual total system costs with current data on technologies, fuels, operation and CO₂ costs. For each of the islands Samsø, Orkney and Madeira, the annual costs are similar or even decreased in the medium term – compared to the references – by -5%, +3% and -20%.
5 Conclusions

For the SMILE project, this report present D8.2 resulting from the corresponding Task 8.2 of establishing and simulating short- and medium-term high-RE scenarios for the three pilot islands. Build upon D8.1, where the reference energy systems of 2014/2015 were created through cooperation with the SMILE partners, D8.2 is incorporating the SMILE demonstration projects for each island, as well as changes in the energy system to present possible future energy system scenarios. Therefore, the current state and reports of the demonstrators’ work influenced the results, as well as local plans and strategies for the upcoming years. The result is the presentation of the SMILE impacts on the three island energy systems, as well as short-term scenario of the year 2022 and a medium-term scenario of 2030. For this, the general approach of targeting an energy system of high RE-share is presented as a three-step approach, of which Samsø is at the farthest step while Orkney and Madeira are in the second step towards high RE systems.

Therefore, Samsø’s energy system is moving from the reference system with already 60% RE share towards a system with 100%, resulting in the incorporation of technologies focusing at balancing the energy system instead of increasing RE capacity. Within the medium-term timeframe, the RE share is presented to reach 85% with possibilities of further improvements. As part of both scenarios, the SMILE approach directs the energy system of Samsø in the right direction with the addition of PV, HP and BESS, but represents only a minor step of what is required to reach high RE shares. While the application for the SMILE demonstration is somewhat limited due to the specific application at marinas, the combination of PV and BESS, as well as electrifying heat during hours of RE production can generally be replicated and thereby improve the energy system from various consumption sides.

Orkney’s energy system of 2014 consists of 18% RE in the PES, hence, the increase of this share was in focus instead of balancing the energy production and demands. Incorporating the marine energy production facilities and additional RE capacity, next to improvements in the heating and transport sector raised this share to 38%. More RE capacity could benefit the energy system further, which should be further discussed in the development of the future Orkney energy system. Additionally focusing more on the heating sector, as well as improving the transport sector, as is suggested with the local SMILE demonstration, can aid this future development in Orkney. In combination with the consideration of managing the industrial load(s) in a smart way, various demands, which are currently still fossil-fuelled, can make the switch to a renewable alternative. As D8.2 showed, more potential RE capacity would be required as well as the potential further exploration of BESS to support this fragile energy system.

Also Madeira is in the process of introducing more RE to their energy system and aiming at an increase of its share, while targeting the 100% RE goal also in the long term. With an initial RE share in 2014 of 11%, Madeira’s medium-term development focuses at the expansion of various RE capacity. Taking into further consideration the SMILE project, as well as potentials in the transport and heating sector, the RE share by 2030 can reach 31% with the suggested technologies under these specific circumstances. The importance of the SMILE project was shown in the various demonstrations implemented in the energy system scenarios. Approaching not only the electricity consumers, but also the private PV owners and taking smart transportation options into account addresses many critical points in the energy system of Madeira. The combination with BESS in various alternatives plays another major part in an autonomous energy system, such as Madeira.

D8.2 presented scenarios of Samsø, Orkney and Madeira as evaluated with the current data on the islands and general technologies available, as well as influenced by SMILE demonstrations projects. The SMILE scenarios of 2022 and 2030 have shown that more of these smart technologies could be required to help the islands reach higher RE shares and secure their energy systems. Hence, the scenarios can always be improved with further re-evaluation of the presented scenarios and taking other options into account. Further cooperation between the SMILE partners and discussions based on this report could therefore benefit the development of the demonstrator islands and secure long-term sustainable growth.
6 Bibliography

7 Appendix

Here, the data sheets of the EnergyPLAN simulations can be found, as created through the tool. While the reference models of Samsø (2015), Orkney and Madeira (2014) are also included in D8.1, the following presents them with updated cost data and included minor modifications. Being followed by the data sheets for the short- and medium-term scenarios of 2022 and 2030 for each of the demonstrator islands, a comparison can made between all three major scenarios. On the sheets, all inputs and outputs specifications of the EnergyPLAN model are presented, including demands, productions, fuel use and costs.
7.1 Samsø EnergyPLAN data sheets for the 2015, 2022 and 2030 scenarios

Input

<table>
<thead>
<tr>
<th>Samsø 2015 Reference.txt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity demand (GWh/year)</td>
</tr>
<tr>
<td>Fixed demand 0.94</td>
</tr>
<tr>
<td>Electricity supply = 3.68 TWh</td>
</tr>
<tr>
<td>Electricity cost</td>
</tr>
<tr>
<td>Electricity selling 0.08</td>
</tr>
</tbody>
</table>

Output

<table>
<thead>
<tr>
<th>District heating</th>
<th>Newshares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>Production</td>
</tr>
<tr>
<td>Electricity</td>
<td>Net shares</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td>4173</td>
<td>1791</td>
<td>1473</td>
<td>1371</td>
<td>1245</td>
<td>1121</td>
<td>1025</td>
<td>1118</td>
<td>1057</td>
<td>1117</td>
<td>1041</td>
<td>947</td>
</tr>
</tbody>
</table>

Outspecifications

<table>
<thead>
<tr>
<th>Samsø 2015 Reference.txt</th>
</tr>
</thead>
<tbody>
<tr>
<td>District Heating Production</td>
</tr>
<tr>
<td>Electricity</td>
</tr>
<tr>
<td>Demand</td>
</tr>
<tr>
<td>Supply</td>
</tr>
<tr>
<td>Cost</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>Emission</td>
</tr>
<tr>
<td>Carbon</td>
</tr>
<tr>
<td>Price</td>
</tr>
<tr>
<td>Income</td>
</tr>
<tr>
<td>Output</td>
</tr>
<tr>
<td>Use</td>
</tr>
<tr>
<td>Net</td>
</tr>
</tbody>
</table>

Natural Gas Exchange

<table>
<thead>
<tr>
<th>NATURAL GAS EXCHANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANNUAL COSTS (2000 EUR)</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Own use of heat from industrial CH 0.05 GWh/year

<table>
<thead>
<tr>
<th>ANNUAL COSTS (2000 EUR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Page 42 of 50
Output

District Heating

<table>
<thead>
<tr>
<th>District Heating</th>
<th>Production</th>
<th>Consumption</th>
<th>Electricity</th>
<th>Exchange</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Output specifications

<table>
<thead>
<tr>
<th>District Heating</th>
<th>Production</th>
<th>Consumption</th>
<th>Electricity</th>
<th>Exchange</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuel costs

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Cost</th>
<th>Utility</th>
<th>Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total for the whole year

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7.2 Orkney EnergyPLAN data sheets for the 2014, 2022 and 2030 scenarios

Input
Orkney 2014 Reference.pdf

The EnergyPLAN model 13.0

Electricity demand (GWh/yr) = 1815.29
Fixed demand = 150.00
Electrical heating = 1815.29
Transportation = 7.07
Electricity cooling = 0.00

Output
District Heating

District Heating Production

The EnergyPLAN model 13.0

Orkney 2014 Reference.pdf

Orkney EnergyPLAN data sheets for the 2014, 2022 and 2030 scenarios
Output WARNING!! (1) Critical Excess;

<table>
<thead>
<tr>
<th>Demand</th>
<th>District Heating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash</td>
<td>GWh</td>
</tr>
<tr>
<td>Heat</td>
<td>0.00</td>
</tr>
<tr>
<td>Gas</td>
<td>0.00</td>
</tr>
<tr>
<td>Oil</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exchange</th>
<th>Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash</td>
<td>GWh</td>
</tr>
<tr>
<td>Heat</td>
<td>0.00</td>
</tr>
<tr>
<td>Gas</td>
<td>0.00</td>
</tr>
<tr>
<td>Oil</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>0.00</td>
</tr>
</tbody>
</table>

| Electricity ||
|-------------|
| Cash |
| Heat |
| Gas |
| Oil |
| Total |

<table>
<thead>
<tr>
<th>TOTAL ENERGY (GWh)</th>
<th>Total</th>
<th>0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Heat</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Gas</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Oil</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOTAL CO2 emissions (Gt)</th>
<th>Total</th>
<th>0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Heat</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Gas</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Oil</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOTAL O&M costs (Yen)</th>
<th>Total</th>
<th>0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Heat</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Gas</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Oil</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOTAL CAPEX costs (Yen)</th>
<th>Total</th>
<th>0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Heat</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Gas</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Oil</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOTAL O&M costs (Yen)</th>
<th>Total</th>
<th>0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Heat</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Gas</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Oil</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOTAL CAPEX costs (Yen)</th>
<th>Total</th>
<th>0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Heat</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Gas</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Oil</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOTAL O&M costs (Yen)</th>
<th>Total</th>
<th>0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Heat</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Gas</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Oil</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOTAL CAPEX costs (Yen)</th>
<th>Total</th>
<th>0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Heat</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Gas</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Oil</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
7.3 Madeira EnergyPLAN data sheets for the 2014, 2022 and 2030 scenarios

Madeira 2014 Reference update.txt

The EnergyPLAN model 13.0

Electricity demand (GWh/year) Flexible demand 0.05

Fixed demand 838.78 Fixed imports 0.00

Electricity import 10.00 Transportation 0.10

**Electric heating 0.00 Total 838.88

District heating (GWh/year)

- **G99**
- **G100**
- **G101**

Demand solar and CHP 0.00

Wind power 8507 kW 65.9 GWh/year 0.00 Offshore

Hydro River 29800 kW 86.5 GWh/year 0.00 storage

Hydro Power 24000 kW 30.5 GWh/year share

Geothermal/hot rocks 0 kW 0.00 Offshore

Short and medium-term scenarios for the three pilot islands

Madeira EnergyPLAN data sheets for the 2014, 2022 and 2030 scenarios

Output

- **District heating**
- **Electricity exchange**

Demand Production

<table>
<thead>
<tr>
<th>Year</th>
<th>-5</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>1129</td>
<td>0</td>
<td>1115</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2015</td>
<td>1492</td>
<td>0</td>
<td>1482</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2016</td>
<td>1711</td>
<td>0</td>
<td>1701</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2017</td>
<td>1984</td>
<td>0</td>
<td>1974</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2018</td>
<td>2205</td>
<td>0</td>
<td>2195</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2019</td>
<td>2405</td>
<td>0</td>
<td>2395</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2020</td>
<td>2591</td>
<td>0</td>
<td>2581</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2021</td>
<td>2791</td>
<td>0</td>
<td>2781</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2022</td>
<td>3001</td>
<td>0</td>
<td>2991</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2023</td>
<td>3211</td>
<td>0</td>
<td>3201</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2024</td>
<td>3421</td>
<td>0</td>
<td>3411</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2025</td>
<td>3631</td>
<td>0</td>
<td>3621</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2026</td>
<td>3841</td>
<td>0</td>
<td>3831</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2027</td>
<td>4051</td>
<td>0</td>
<td>4041</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2028</td>
<td>4261</td>
<td>0</td>
<td>4251</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2029</td>
<td>4471</td>
<td>0</td>
<td>4461</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2030</td>
<td>4681</td>
<td>0</td>
<td>4671</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Electricity exchange (GWh/year)

<table>
<thead>
<tr>
<th>Year</th>
<th>2014</th>
<th>2022</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Output specifications Madeira 2014 Reference update.txt

The EnergyPLAN model 13.0

District heating Production

Etude

- **Group 2**
- **Group 3**

District heating (GWh/year)

<table>
<thead>
<tr>
<th>Year</th>
<th>2014</th>
<th>2022</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Electricity exchange

- **RES**

<table>
<thead>
<tr>
<th>Year</th>
<th>2014</th>
<th>2022</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

SMILE – D.8.2 Short and medium-term scenarios for the three pilot islands

Page 48 of 50
SMILE – D8.2 Short and medium-term scenarios for the three pilot islands