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ABSTRACT

In this paper, a novel method for analyzing guitar performances
is proposed. It is both fast and effective at extracting the acti-
vated string, fret, and plucking position from guitar recordings. The
method is derived from guitar-string physics and, unlike the state of
the art, does not require audio recordings as training data. A maxi-
mum a posteriori classifier is proposed for estimating the string and
fret based on a simulated model of feature vectors while the pluck-
ing position is estimated using estimated inharmonic partials. The
method extracts features from audio with a pitch estimator that esti-
mates also the inharmonicity of the string. The string and fret clas-
sifier is evaluated on recordings of an electric and acoustic guitar
under noisy conditions. The performance is comparable to the state
of the art, and the performance is shown to degrade at SNRs below
20 dB. The plucking position estimator is evaluated in a proof-of-
concept experiment with sudden changes of string, fret and plucking
positions, which shows that these can be estimated accurately. The
proposed method operates on individual 40 ms segments and is thus
suitable for high-tempo and real-time applications.

Index Terms— Physical Modeling, Statistical Signal Process-
ing, Parametric Pitch Estimation, Music Information Retrieval

1. INTRODUCTION

The analysis of individual instruments in musical performances has
various applications, such as music learning, detailed transcription,
artist recognition and extraction of stylistic details. Analysis and
synthesis of plucked string instruments have been studied for elec-
tric [1] and acoustic guitars [2, 3]. The present paper is concerned
with the analysis of guitar string signals for detailed transcription.
To date, there are only few papers on extracting information from
electric guitar signals, such as the work concerned with multipitch
transcription [4] or classifying the types of effects used [5] and es-
timating decay times of electric guitar tones [6]. Other research
involved the extraction of information from plucked string instru-
ments, such as plucking position [7–10] or plucking styles and dy-
namics for classical guitar [11] and electric bass guitar [12]. Re-
cent papers introduce models of the physical interactions between
player and string to make synthesized guitar sound more realistic,
such as interactions with the string and guitar pick [13, 14] or the
fingers [15], and the fingers with the fretboard [16].

It is well-known that the transducer position and plucking po-
sition produce a comb-filtering effect in the guitar signal spec-
trum [17] and that stringed instruments are inharmonic because
of stiffness in the string [18]. Inharmonicity is also related to the

plucking deflection as shown in [19–22]. The inharmonicity has
been proven useful for detailed transcription [23], a topic in its in-
fancy, wherein not only notes are identified but also where and how
they are played (i.e. string, fret and plucking positions). In [24],
a string and fret classification method was proposed using a 10-
dimensional feature set and a SVM classifier. In [12], the electric
guitar strings were distuingished with a string model comprising a
48-dimensional feature set, wherein the inharmonicity coefficient
was selected as one of the most discriminative features.

Large feature sets are prone to overfitting and rarely contribute
to meaningful cause and effect findings. On top of this, they also
typically results in computationally complex algorithms. To over-
come such problems, [23] proposed an inharmonicity and amplitude
based method for accurate generation of guitar tablature where the
fundamental frequency was assumed to be known, and the main pa-
rameter for classification of string and fret was based on counting
the number of partials that follow the piano model derived in [25].
Recently, [26] proposed to classify string and fret by modeling each
inharmonicity coefficient as a Gaussian distribution. Both meth-
ods [23, 26] operate on multiple segments, each in the order of 100
ms, making them unsuitable for high-tempo and real-time applica-
tions. To overcome such problems, [27] proposed a fast inharmonic
parametric pitch estimation algorithm that operates on a single 40
ms segment to estimate string, fret and the plucking position. The
methods presented in [23, 26, 27] require training data in the form
of audio recordings to build a model of the guitar, which can be
very many, i.e., for 6 strings and 12 frets that is K = 72 classes.

Although [23, 27] showed that a model can be trained from au-
dio recordings captured from only one fret per string, there are three
main challenges associated with such a procedure:

• With only a few observations (e.g., 10 per string [27]), it is
impossible to conclude anything significant with respect to the
covariance structure of each class in the feature space.

• Although training is relatively fast, it is required for every dif-
ferent set of guitar strings.

• There is no information of class dependent distributions in the
observed feature space, i.e,. covariance structures, except for
the 6 classes represented in the training set.

In this paper, we extend the work of [27] by eliminating the training
procedure that requires the user to provide recordings and as we
shall see, we obtain detailed and class dependent distributions in the
feature space. Instead of training a model from audio recordings,
we propose to simulate a model of guitar string vibrations based
on physical properties of the string, such as string dimensions and
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Figure 1: The plucking position is controlled by the right hand while
the left hand controls pitch using the fretboard (adapted from [30]).

material properties, which are often available on string packets and
in data sheets. The objective of the proposed method is to extract the
location of interactions of both hands of the guitar player (as these
can be arbitrarily located along a string) on a segment-by-segment
basis from a single pitch guitar signal.

Figure 1 gives an overview of the guitar, where the right hand
controls plucking position and the left hand controls pitch by using
the fretboard. One pitch is produced in various positions and each
string and fret combination is defined as one class, such that we have
a set of K mutually exclusive classes. The feature set which we
model in detail in the proposed simulation, consists of fundamen-
tal frequency ω0 and inharmonicity B and it is extracted from the
signal with the parametric pitch estimation method of [27]. This is
contrary to other literature, where ω0 andB are used as “black box”
parameters, for accurate fundamental frequency estimation [28, 29]
and feature extraction [5, 23, 26, 27].

2. SIGNAL MODEL

The string has an initial deflection δ at the plucking position P ,
which is at the P th fraction of its length (0<PL<L), where L
is the length of the vibrating string (see Fig. 1). Assuming that the
string is inharmonic and pinned at locations l = 0 and l = L, its
general solution at time t ≥ 0 is a sum of M normal modes [17]

y(l, t) =

M∑
m=1

Cm cos(ψm(ω0, B)t+ φm) sin
(mπl
L

)
, (1)

with fundamental frequency ω0, inharmonicity coefficient B and
amplitude Cm and phase φm of the mth mode. The instanta-
neous frequency ψm(ω0, B) follows the model ψm(ω0, B) =
mω0

√
1 +Bm2 [25]. Assuming the initial displacement to be tri-

angular with no initial velocity ∂y
∂t

= 0 ∀ l, the mth amplitude Cm
is given by the Fourier sine series as [18, 19]

Cm =
2δ

m2π2P (1− P )
sin(mπP ). (2)

From (2), it can be observed that the spectral envelope is sinusoidal
along the partials, and dependent only on the plucking position P
scaled by m−2 for the mth mode.

On the guitar, we assume that a pickup is measuring the dis-
placement y(l, t) in close proximity to the string at location l= λ.
At the discrete time instance n the observed signal x(n) is uni-
formly sampled such that is proportional to y, i.e., x(n)|l=λ ∝
y(λ, t). We parametrize x(n) as proposed in [27], where x(n) is
modeled as an inharmonic sinusoidal part and a noise part v(n),

i.e.,

x(n)=

M∑
m=1

αm exp
(
jψm(ω0, B)n

)
+ v(n), (3)

where αm is the complex amplitude of themth partial andM is the
number of partials. At time instance n, the observed signal vector
x ∈ CN is represented as x = [x(0)x(1) · · · x(N − 1)]T , with
T denoting the transpose. To simplify the notation, ψm(ω0, B)
is denoted ψm in what follows. In matrix notation the observed
signal is x = Zα + v, where α = [α1 · · · αM ]T is a vector
containing complex amplitudes, v = [v(0) v(1) v(N − 1)]T con-
tains all noise terms and the Vandermonde matrix Z ∈ CN×M is
defined as Z = [z(ψ1) z(ψ2) · · · z(ψM )], where each column is

z(ψm) =
[
1 ejψm ejψm2 · · · ejψm(N−1)

]T
. We denote the un-

known and deterministic parameters that comprise the feature set
θ = {ω0, B,α}. The amplitudes α are linear, while fundamental
frequency ω0 and inharmonicity B both are non-linear parameters.

3. PROPOSED METHOD

To obtain a class dependent model and to overcome the prob-
lem of the user having to provide audio recordings, as done
in [12, 23, 26, 27], we propose a physical model of the feature
space, only requiring knowledge of string properties. The proposed
method implicitly increases computational efficiency on two levels;
the user is not required to record audio for training, and the model
is obtained from one simulation instead of features estimated from
several audio recordings. Specifically, the features that we simulate
are ω0 and B, which have been proven useful for string and fret
classification [23, 26, 27]. The string properties are:

• String length L, string tension T0, plucking deflection δ, core
diameter dc, core density ρc, wrapping diameter dw, and wrap-
ping density ρw.

We assume that the user knowsL from the guitar-type, and the prop-
erties T0, dc, dw, ρc and ρw are available on string packaging or
datasheets. The first feature ω0 is well defined as

ω0 =

√
T0

υ

1

2L
[s−1], (4)

where the mass per unit length υ is found from string properties
[31], i.e., υ = π

4

(
ρcd

2
c +ρw

[
(2dw +dc)

2−d2
c
])

. In the following,
we extend on the state of the art [22] by providing a more accurate
description of the inharmonicity coefficient. We hypothesize that
this will provide more accurate string and fret classification.

3.1. Simulation of the inharmonicity coefficient

The authors of [21] state that string inharmonicity arises from two
sources: the intrinsic inharmonicity due to the stiffness of the string
and inharmonicity due to stretching caused by deflection. Assum-
ing the definitions quantifying these effects as proposed in [22] can
simply be added together, we propose the inharmonicity coefficient
in the model of [25] to be:

B =
π3Ed2

c

16T0L2

(
d2

c

4
+

3δ2

8

)
=
π3Ed2

c (2d2
c + 3δ2)

128T0L2
[·]. (5)

where Young’s ModulusE of the string material is defined in (8). It
is expected that dc � δ, i.e., the inharmonicity caused by the pluck-
ing deflection dominates the intrinsic inharmonicity. However, this
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is only true immediately after the plucking event, as the effect of δ
dies down rapidly after the string is excited [22]. In our application,
we solely use the first 40 ms of the plucked string sound, as we hy-
pothesize that it is of importance to include the effect that the initial
displacement has on the total inharmonicity. In [22], for the use of
δ it is assumed that P = 0.5, i.e. the string is plucked at the center.
Realistically, this is rarely the case, which is why we propose to cal-
culate δ in (5) from the transverse displacement at any P th fraction
of the string-length. We define the change in string length due to
plucking ∆LP as

∆LP =

√
(LP )2 + δP

2+

√
(L(1− P ))2 + δP

2−L [m]. (6)

This will also retain the tension present in the string as T0 and ∆L
are proportional according to (8). By setting P = 0.5, we simplify
(6) such that ∆L0.5 = 2

√
(0.5L)2 + δ2 − L, after which ∆L0.5

is replaced with the length extension ∆LP in (6) and solving for δ
yields

δ =

√
∆LP

2 + 2L∆LP
2

[m], (7)

which can be used to calculate the inharmonicity due to plucking for
any P . When the string is brought to pitch (i.e., tuned) it stretches
according to its Young’s modulus (or elastic modulus) E which is
defined as

E =
Tensile stress

Strain
=

T0/Ac

∆L/(L−∆L)
[N ·m−2], (8)

whereAc = πd2
c /4 is the cross-sectional area of the string-core and

∆L is the amount by which the string is stretched. The variablesE,
Ac and L are often considered constant and we know that T0 and
∆L are proportional. It is important to note that we use L − ∆L
to describe the original string length before stretched to L. The
Young’s modulus is a property defined for solid materials. Even
though the string core and wrapping could be the same material, the
wrapping is not solid. This means that when calculating the total
inharmonicity using (5) for a wrapped string, the Young’s modu-
lus – or more specifically, T0 – will be incorrect. To overcome this
problem we express the total tension as T0 = Tw + Tc, where Tw

is the tension contributed by the wrapping and Tc the tension con-
tributed by the core. We can assume the wrapping to be a spring as

in [32] having the spring constant k =
Gd4w

8ND3 [33]. Here, G is the
shear modulus of the wrapping material,N = L−∆L

dw
is the number

of turns in the coil (assuming that for the untensioned string, every
coil touches the previous and the next coil) and D = dw + dc is the
mean diameter of the spring [32]. The length extension ∆L for a
spring is

∆L =
Tw

k
=

8TwLD
3

Gd5
w + 8TwD3

[m]. (9)

For the core of the string we can rewrite (8), i.e.,

∆L =
LTc

AcE + Tc
, [m], (10)

and as the core and wrapping are part of the same string, they un-
dergo the same length-extension ∆L, meaning that we can set (9)
and (10) equal to each other and (recalling T0 = Tw + Tc) we can
solve for Tw and Tc

Tw =
GT0d

5
w

Gd5
w + 8AcD3E

, Tc =
8AcD

3ET0

Gd5
w + 8AcD3E

[N]. (11)

Finally, inserting Tw into (9) or Tc into (10), gives the length exten-
sion based on the string-material properties of both core and wrap-
ping, which can then be used in (8) to calculate the correct Young’s
modulus E.

This concludes the derivations used for the proposed method of
simulating the feature set {ω0, B}. In the following we explain how
to estimate these from the observed signal x and how to classify x
as being produced from a specific string and fret combination.

3.2. Estimation of String, Fret and Plucking Position

The feature set θ is estimated using the principle of maximum like-
lihood. In doing so, the observed signal distribution is modeled as
circular complex white Gaussian noise, and as derived in [27,34], a
computationally efficient approach can be shown to be

{ω̂0, B̂} = argmax
ω0,B

∥∥∥ZHx
∥∥∥2

2
, (12)

which can be implemented using just one FFT per segment, i.e.,
‖ZHx‖22 =

∑M
m=1 |X(ψm(ω0, B))|2 with X(·) being the FFT

of x. To increase computational efficiency, an initial fundamental
frequency estimate is obtained with B = 0, and then a two dimen-
sional search grid is defined for estimating {ω̂0, B̂}. Finally, the
amplitudes of the inharmonic partials are found using least squares,
i.e., α̂ = (ZHZ)−1ZHx. Having found the fundamental frequency
and the inharmonicity parameters φ = [ω̂0, B̂]T from the observed
signal snapshot x, the next step is to classify the observed signal as
being produced from a string and fret combination.

We have a set of K mutually exclusive classes Γ =
{γ1, . . . , γK} representing all possible string and fret combina-
tions. The MAP classifier with decision function γ̂(·) : RI → Γ
is γ̂(φ) = argmaxγ∈Γ p(φ|γ)P (γ). We model φ as coming from
a normal object with class γk, then the kth conditional probability
density is p(φ|γk) = N (µk, Λk) where the expectation vector µk
and covariance matrix Λk are computed from a Monte Carlo simu-
lation using (4) and (5), where we assume all physical properties of
the strings are normally distributed random variables. The covari-
ance matrices are here modeled as being class dependent, unlike
the state of the art [27]. Neglecting terms that do not depend on the
class index k yields the following, classification scheme γ̂(φ) = γi,
with

i= argmax
k=1,...,K

{
−ln|Λk|+2lnP (γk)−(φ−µk)TΛ−1

k (φ−µk)

}
. (13)

The prior P (γk) can be specified from the number of training sam-
ples from class γk or simply be assumed uniform.

As demonstrated in [27], once the partial amplitudes have been
estimated using α̂ = (ZHZ)−1ZHx, the plucking position P̂ can
be found. As proposed in [27] we minimize the log spectral (LS)
distance between the estimated amplitudes α̂ and the model C to
find P̂ , i.e.,

P̂ = argmin
P

(
dLS(α̂,C)

)
, (14)

where C is obtained from the model in (2). To emphasize the
dependency on plucking position C can be written as a func-
tion of P , i.e., C(P ) = [C1(P ), C2(P ), . . . , CM (P )]T and
the log spectral distortion is thus defined as dLS(α̂,C(P )) =√

1
M

∑
m 10 log10

|α̂m|2
|Cm(P )|2 .
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Figure 2: String, fret and plucking position estimates with moving
plucking position and moving string and fret for electric guitar.

4. EVALUATION AND DISCUSSION

This section describes the experiments conducted to evaluate the
proposed string and fret classifier along with the plucking position
estimator. These experiments aim to demonstrate that the physical
model helps to obtain a class dependent model for the classifier.
They also aim to show that it is possible to classify string and fret
from the simulated feature space, and to determine to what extent
the classifier is robust towards noise. Lastly, we demonstrate an
application of detailed transcription of string, fret and plucking po-
sition. The classifier is compared to [27] and tested on 1560 record-
ings of two guitars from [27], namely an electric Les Paul Firebrand
with Elixir Nanoweb (.010-.054) strings and an acoustic Martin DR
with SP (.012-.052) strings. The data and MATLAB code are avail-
able online1 and we refer to the available code for implementation
details. The estimation and classification is done from one 40 ms
segment for each recording, extracted at the onset event using [35].

Figure 2 demonstrates an example application of detailed tran-
scription, where we can observe that the proposed method is capa-
ble of estimating string, fret and plucking position, when the elec-
tric guitar is played fast with changing string and fret combinations
and a moving plucking position, from the bridge towards the nut.
Figure 3 shows the sensitivity of the classifier to noise. Here, all
observed signals x have been induced with additive white Gaus-
sian noise (AWGN) at various levels of average signal to noise ratio
(SNR). A plausibility filter as the one proposed in [12] can be ap-
plied to the classifier such that only a few candidates out of all K
classes are probable, hence speeding up the algorithm. The state-
of-the-art model [27] is trained on 60 recordings obtained from the
12th fret on all six strings. It can be observed that the proposed
method performs slightly better than the trained model of [27]. In-
terestingly, we can see from this graph that the method has a higher
error-rate at a higher SNR for the electric guitar than for the acous-
tic, which implies that the higher harmonics of the latter have a
relatively higher amount of energy than in the electric signal, which
can be related to the electronics of the transducers on these guitars.

Finally, we can evaluate the detailed and class dependent sim-
ulation of the feature space and compare it to estimates obtained
with [27]. In this simulation, all string properties are normally dis-
tributed with a standard deviation specified as 0.5 % of their respec-
tive mean value (see the available evaluation code). The resulting
distributions are shown in Figure 4, where the consistency between
simulation and measurement can clearly be observed. Note here,

1https://tinyurl.com/waspaa19
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Figure 3: String, fret classification error rate as a function of SNR.
Each marker represents 720 classifications. The trained model rep-
resents [27] and the simulated model is the proposed method.
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]

Figure 4: Comparison of simulated random variables to the mea-
sured estimates of the features for the acoustic guitar. For each class
there are 500 simulated values and 10 estimated measurements.

that the simulation obtains a detailed and class dependent distribu-
tion of ω0 and B, which is not possible to obtain with state-of-the-
art method [27]. In the proposed simulation framework, we have
not observed that a plucking deflection influences the inharmonic-
ity as denoted by (5). As stated in [22], the effect of δ dies down
rapidly after the string excitation, and we consider this to happen in
a time-period an order smaller than 40 ms. We also emphasize that
the computation time for simulating a model with 500 realizations
of 78 classes takes 45 ms on an i7 processor using MATLAB.

5. CONCLUSION

In this paper, a fast and effective method for estimation of guitar
string, fret and plucking position based on a physical model of string
excitation and vibration was proposed. The proposed classifier uses
physical properties of the guitar string to simulate a class depen-
dent pitch and inharmonicity distribution. The classifier was proven
to perform as good as [27] under noisy conditions, and since no
audio needs to be recorded to build a model, it is faster than state-
of-the-art methods by nature. The plucking position estimator is the
minimizer of the log spectral distance between the amplitudes of
the observed signal and the plucking model and it is evaluated in
a proof-of-concept experiment with sudden changes of string, fret
and plucking positions, with accurate results. The estimator oper-
ates on a 40 ms segment-by-segment basis and is suitable for high
tempo and real-time applications.
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[6] A. Paté, J.-L. Le Carrou, and B. Fabre, “Predicting the decay
time of solid body electric guitar tones,” J. Acoust. Soc. Am.,
vol. 135, no. 5, pp. 3045–3055, 2014.

[7] Z. Mohamad, S. Dixon, and C. Harte, “Pickup position and
plucking point estimation on an electric guitar,” in Proc. IEEE
Int. Conf. Acoust., Speech, Signal Process., 2017.

[8] C. Traube and J. O. Smith, “Estimating the plucking point on
a guitar string,” Proc. Int. Conf. Digital Audio Effects, 2000.
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plucking point estimation in real time,” Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., vol. 3, pp. 209–212, 2005.
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