

Cascading implementation of a magnetocaloric heat pump for building space heating applications

10th International Conference on System Simulation in Buildings SSB 2018 Liège, Belgium

Aalborg University Department of Civil Engineering Hicham Johra 10-12 December 2018

- We need to save the world !!! (obviously)
- Large continuous increase of market demand for heat pumps
- Need to develop new cost effective heating / cooling systems
- Problem with use of liquid / gas refrigerant:
 - F-gas
 - Flammability
 - Toxicity
 - Greenhouse gas effect

...

Potential of innovative systems

Comparison of technical energy savings potential [U.S. Department of Energy, 2014]

Potential of innovative systems

Comparison of technical energy savings potential [U.S. Department of Energy, 2014]

<u>Caloric effect in solid refrigerant:</u> material phase transition resulting in large adiabatic temperature change when specific parameter of surrounding environment is changed:

- **Electrocaloric** effect: variation of electrical field
- **Barocaloric** effect: variation of hydrostatic pressure
- **Elastocaloric** effect: variation of uniaxial mechanical stress
- Magnetocaloric effect: variation of magnetic field

. . .

- Large COPs (in theory) because (nearly) reversible caloric effects
- Solid refrigerant + sustainable heat transfer fluid
- Active regenerator cycle to achieve temperature span above adiabatic temperature change of caloric effects

But not mature technologies compared to vapor-compression

Creation of an innovative and efficient magnetocaloric heat pump for a single family house in Denmark:

- Provide indoor space heating during winter (no DHW)
- 1 1.5 kW of heating power
- 20 25 K of temperature span between heat source and heat sink

COP of 5

Magnetocaloric technology:

- Currently the most studied and developed of all caloric effects
- Reversible temperature change in a magnetocaloric material when subjected to magnetization or demagnetization:
 - Warms up when magnetic field is applied
 - Cools down when magnetic field is removed
- Can be used to create a thermodynamic cycle (active magnetic regenerator cycle) to transfer heat from cold source to warmer heat sink

Magnetocaloric material

Gadolinium: a famous magnetocaloric material

Hicham Johra – SSB 2018 – Liège, Belgium – 10-12 December 2018

Magnetocaloric heat pump

Regenerator casing containing magnetocaloric material (packed sphere bed)

Magnetocaloric heat pump

"MagQueen" the ENOVHEAT magnetocaloric heat pump prototype

Hicham Johra – SSB 2018 – Liège, Belgium – 10-12 December 2018

Magnetocaloric heat pump

"MagQueen" the ENOVHEAT magnetocaloric heat pump prototype

Magnetocaloric heat pump Active magnetic regenerator cycle

Active magnetic regenerator cycle: Initial state with temperature gradient

Magnetocaloric heat pump Active magnetic regenerator cycle

Active magnetic regenerator cycle: adiabatic magnetization

Magnetocaloric heat pump Active magnetic regenerator cycle

Towards heat sink

Active magnetic regenerator cycle: cold-to-hot blow

Active magnetic regenerator cycle: adiabatic demagnetization

Magnetocaloric heat pump **Active magnetic regenerator cycle Towards heat source** Hot inlet Cold outlet From heat sink Temperature Position in regenerator

Active magnetic regenerator cycle: hot-to-cold blow (regeneration)

Active magnetic regenerator cycle: back to initial state

Heat pump implementation

Conventional and magnetocaloric heat pump implementation in buildings

Cascading regenerators

Cascading connection diagram (hot-to-hot and cold-to-cold)

 Integrate the magnetocaloric heat pump in a Danish residential building to provide space heating (no DHW)

Test 2 different magnetocaloric materials:

- Gadolinium
- La(Fe,Mn,Si)₁₃H_y

 Test different cascading configurations for higher temperature span for poorly-insulated buildings

Building study cases

- Danish single-family house
- Low / high space heating needs
- Radiant under-floor heating
- Vertical borehole ground source heat exchanger
- Winter / spring season

A typical danish house

Different cascading configurations (same mass of magnetocaloric material):

- Single heat pump with Gadolinium (24 regenerators)
- Single heat pump with La(Fe,Mn,Si)₁₃H_v (24 regenerators)
- 12 cascaded heat pumps with Gadolinium (2 regenerators each connected in parallel)
- 4 cascaded heat pumps with La(Fe,Mn,Si)₁₃H_y (6 regenerators each connected in parallel)

AMR model: Engelbrecht and Lei

$$\frac{\partial}{\partial x} \left(k_{\text{disp}} A_c \frac{\partial T_f}{\partial x} \right) - \dot{m}_f c_f \frac{\partial T_f}{\partial x} - \frac{Nuk_f}{d_h} a_s A_c \left(T_f - T_s \right) + \left| \frac{\partial P}{\partial x} \frac{\dot{m}_f}{\rho_f} \right| \\ = A_c \varepsilon \rho_f c_f \frac{\partial T_f}{\partial t} \\ \frac{\partial}{\partial x} \left(k_{\text{stat}} A_c \frac{\partial T_s}{\partial x} \right) + \frac{Nuk_f}{d_h} a_s A_c \left(T_f - T_s \right) \\ = A_c \left(1 - \varepsilon \right) \rho_s \times \left[c_H \frac{\partial T_s}{\partial t} + T_s \left(\frac{\partial s_s}{\partial H} \right)_{T_s} \frac{\partial H}{\partial t} \right]$$
5-dimensional lookup tables with 1600 points

Building modelling

 Multi-zone building model of the house developed with MATLAB-Simulink

 Hydronic systems (underfloor heating and ground source) with ε-NTU model combined with plug-flow model

MATLAB-Simulink building model

Heating power production as function of fluid flow rate

Fluid temperature as function of fluid flow rate

COP entire heating system as function of fluid flow rate

Temperatures during heating period: well-insulated house with single heat pumps

COP during heating period: well-insulated house with single heat pumps

Temperatures during heating period: poorly-insulated house with cascaded heat pumps

COP during heating period: poorly-insulated house with cascaded heat pumps

- A magnetocaloric heat pump system can be used for indoor space heating application in buildings
- It can operate in a single hydronic loop with under-floor heating system and ground source
- For single Gadolinium system, nominal COP at maximum flow is similar to conventional heat pumps
- However, part load operation leads to poor seasonal COP
- Single La(Fe,Mn,Si)₁₃H_y system has modest performance due to its limited heating power output
- Cascaded heat pumps show appreciable temperature spans with good seasonal COPs for space heating

- Full scale experimental tests for building applications
- Improve performance of magnetocaloric material compounds
- New designs for minimizing pressure, heat, friction and magnetic losses
- Test new hydronic configurations for heating purpose
- Develop efficient control strategies to keep heat pump operation within conditions for best COPs
- Cascading implementation for domestic hot water production
- Testing elastocaloric heating / cooling systems

Thank you for your attention ! Any questions ?

Contact:

Hicham Johra

Postdoctoral Researcher

Aalborg University

Department of Civil Engineering Division of Architectural Engineering Laboratory of Building Energy and Indoor Environment

Further information: www.civil.aau.dk www.enovheat.dk hj@civil.aau.dk 🖂

(+45) 53 82 88 35 🕋

linkedin.com/in/hichamjohra in

Thomas Manns Vej 23 9220 Aalborg Øst Denmark

