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Motivations (((

m We need to save the world !!! (obviously)
m Large continuous increase of market demand for heat pumps
m Need to develop new cost effective heating / cooling systems

m Problem with use of liquid / gas refrigerant:
F-gas
Flammability
Toxicity
Greenhouse gas effect




Potential of innovative systems

Technical Energy Savings Potential (Quads/year)
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Thermoelastic

Evaporative Liquid Desiccant A/C
Membrane Heat Pump
Magnetocaloric

Ground-Coupled Solid Desiccant A/C
Vuilleumier Heat Pump
Evaporative

Absorption Heat Pump
Thermotunneling

Thermoelectric

Adsorption Heat Pump
Thermoacoustic

Duplex-Stirling Heat Pump

Brayton Heat Pump 7 ® Residential Space Heating

Ejector Heat Pump m Residential Space Cooling
Standalone Liquid Desiccant A/C | m Commercial Space Heating
Standalone Solid Desiccant A/C | ®m Commercial Space Cooling

Comparison of technical energy savings potential [U.S. Department of Energy, 2014]




Potential of innovative systems

Technical Energy Savings Potential (Quads/year)
0.0 0.5 1.0 1.5 2.0 2.5 3.0

| Thermoelastic | —

Evaporative Liquid Desiccant A/C

Membrane Heat Pump

Magnetocaloric
Ground-Coupled Solid Desiccant A/C
Vuilleumier Heat Pump

|

Evaporative
Absorption Heat Pump
Thermotunneling

I Thermoelectricl

Adsorption Heat Pump
Thermoacoustic

Duplex-Stirling Heat Pump

Brayton Heat Pump 7 ® Residential Space Heating

Ejector Heat Pump m Residential Space Cooling
Standalone Liquid Desiccant A/C | m Commercial Space Heating
Standalone Solid Desiccant A/C | ® Commercial Space Cooling

Comparison of technical energy savings potential [U.S. Department of Energy, 2014]




Caloric effects (((

Caloric effect in solid refrigerant: material phase transition resulting in
large adiabatic temperature change when specific parameter of
surrounding environment is changed:

m Electrocaloric effect: variation of electrical field
m Barocaloric effect: variation of hydrostatic pressure
m Elastocaloric effect: variation of uniaxial mechanical stress

m Magnetocaloric effect: variation of magnetic field



Potential of caloric effects (((

m Large COPs (in theory) because (nearly) reversible caloric effects

m Solid refrigerant + sustainable heat transfer fluid

m Active regenerator cycle to achieve temperature span above
adiabatic temperature change of caloric effects

m But not mature technologies compared to vapor-compression




Objectives of the ENOVHEAT project ((‘

Creation of an innovative and efficient magnetocaloric heat pump for
a single family house in Denmark:

m Provide indoor space heating during winter (no DHW)
m 1-1.5KkW of heating power
m 20 - 25 K of temperature span between heat source and heat sink

m COPof5
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Magnetocaloric effect (((

Magnetocaloric technology:

m Currently the most studied and developed of all caloric effects

m Reversible temperature change in a magnetocaloric material when
subjected to magnetization or demagnetization:

Warms up when magnetic field is applied
Cools down when magnetic field is removed

m Can be used to create a thermodynamic cycle (active magnetic
regenerator cycle) to transfer heat from cold source to warmer heat
sink




Magnetocaloric material

Gadolinium: a famous magnetocaloric material




Magnetocaloric heat pump ((‘

Regenerator casing containing magnetocaloric material (packed sphere bed)




Magnetocaloric heat pump ((‘

“"MagQueen” the ENOVHEAT magnetocaloric heat pump prototype




Magnetocaloric heat pump ((
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“"MagQueen” the ENOVHEAT magnetocaloric heat pump prototype




Magnetocaloric heat pump ((‘
Active magnetic regenerator cycle
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Active magnetic regenerator cycle: Initial state with temperature gradient




Magnetocaloric heat pump ((‘
Active magnetic regenerator cycle
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Magnetocaloric heat pump ((‘
Active magnetic regenerator cycle
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Active magnetic regenerator cycle: cold-to-hot blow




Magnetocaloric heat pump ((‘
Active magnetic regenerator cycle
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Magnetocaloric heat pump ((‘
Active magnetic regenerator cycle
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Magnetocaloric heat pump ((‘
Active magnetic regenerator cycle
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Heat pump implementation (((
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Conventional and magnetocaloric heat pump implementation in buildings




Cascading regenerators ((‘

Cascading connection diagram (hot-to-hot and cold-to-cold)




Objectives of the numerical study (((

m Integrate the magnetocaloric heat pump in a Danish residential
building to provide space heating (no DHW)

m Test 2 different magnetocaloric materials:
Gadolinium
La(Fe,Mn,Si),5H,

m Test different cascading configurations for higher temperature
span for poorly-insulated buildings




Building study cases

m Danish single-family house

m Low / high space heating
needs

m Radiant under-floor heating

m Vertical borehole ground
source heat exchanger

m Winter / spring season
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A typical danish house




Heat pump study cases (((

Different cascading configurations (same mass of magnetocaloric
material):

m Single heat pump with Gadolinium (24 regenerators)
m Single heat pump with La(Fe,Mn,Si);3H, (24 regenerators)

m 12 cascaded heat pumps with Gadolinium (2 regenerators
each connected in parallel)

m 4 cascaded heat pumps with La(Fe,Mn,Si),;H, (6 regenerators
each connected in parallel)




Magnetocaloric heat pump modelling

AMR model: Engelbrecht and Lei
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Building modelling

m Multi-zone building model of
the house developed with
MATLAB-Simulink

m Hydronic systems (under-
floor heating and ground
source) with &-NTU model
combined with  plug-flow
model
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Numerical study: results ((‘
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Numerical study: results (‘
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Numerical study: results ((‘
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Numerical study: results
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Numerical study: results ((‘
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Numerical study: results ((‘
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Numerical study: results ((‘
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Conclusions (((

m A magnetocaloric heat pump system can be used for
Indoor space heating application in buildings

m It can operate in a single hydronic loop with under-floor
heating system and ground source

m For single Gadolinium system, nominal COP at maximum
flow is similar to conventional heat pumps

m However, part load operation leads to poor seasonal COP

m Single La(Fe,Mn,Si);3H, system has modest performance
due to its limited heating power output

m Cascaded heat pumps show appreciable temperature
spans with good seasonal COPs for space heating



Recommendations for future work (((

m Full scale experimental tests for building applications
m Improve performance of magnetocaloric material compounds

m New designs for minimizing pressure, heat, friction and
magnetic losses

m Test new hydronic configurations for heating purpose

m Develop efficient control strategies to keep heat pump
operation within conditions for best COPs

m Cascading implementation for domestic hot water production

m Testing elastocaloric heating / cooling systems
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