A 1-MHz Series Resonant DC–DC Converter With a Dual-Mode Rectifier for PV Microinverters

Yanfeng Shen, Student Member, IEEE, Huai Wang, Senior Member, IEEE, Zhan Shen, Student Member, IEEE, Yongheng Yang, Senior Member, IEEE, and Frede Blaabjerg, Fellow, IEEE

Abstract—The photovoltaic (PV) output voltage varies over a wide range depending on operating conditions. Thus, the PV-connected converters should be capable of handling a wide input voltage range while maintaining high efficiencies. This paper proposes a new series resonant dc–dc converter for PV microinverter applications. Compared with the conventional series resonant converter, a dual-mode rectifier is configured on the secondary side, which enables a twofold voltage gain range for the proposed converter with a fixed-frequency phase-shift modulation scheme. The zero-voltage switching turn-on and zero-current switching turn-off can be achieved for active switches and diodes, thereby, minimizing the switching losses. Moreover, a variable dc-link voltage control scheme is introduced to the proposed converter, leading to a further efficiency improvement and input-voltage-range extension. The operation principle and essential characteristics (e.g., voltage gain, soft-switching, and root-mean-square current) of the proposed converter are detailed in this paper, and the power loss modeling and design optimization of components are also presented. A 1-MHz 250-W converter prototype with an input voltage range of 17–43 V is built and tested to verify the feasibility of the proposed converter.

Index Terms—1-MHz frequency, dc–dc converter, photovoltaic (PV) microinverter, series resonant converter (SRC), wide input voltage range.

I. INTRODUCTION

Comparative with central and string photovoltaic (PV) inverters, microinverters are favorable in low-power applications, due to the capability of the module-level maximum power point tracking (MPPT), low installation efforts, easy monitoring and failure detection, and low maintenance cost [1]–[3]. Nevertheless, certain challenges remain for PV microinverters, which are as follows.

1) The efficiency performance of microinverters is relatively low compared with string inverters (e.g., the peak efficiency is around 99.2% in [4]).
2) There is a trend that microinverters will be incorporated into PV modules in the future [5], [6], which implies that microinverters should be more compact (i.e., high power density and low profile).
3) Panel-embedded microinverters may be inevitably heated up by the PV panels, accelerating the degradation [7], [8]. Improving the power conversion efficiency and reducing power losses can be an effective way to enhance the energy yield and reliability of PV microinverters [3], [9].

In the literature, three power conversion structures can be found for PV microinverters, i.e., the high-frequency-link (single-stage) microinverter [10], pseudo-dc-link microinverter [11], and dc-link (two-stage) microinverter [12], [13]. The dc-link microinverters have the advantages of simpler structure, lower power decoupling capacitance, and easier performance optimization for each stage; therefore, recently, they attracted much interest [6], [9], [12]–[16]. Fig. 1 shows the configuration of a two-stage grid-connected PV microinverter system. Typically, the front-end dc–dc converter is controlled to achieve the MPPT of the PV module. Depending on the module characteristics and the operating conditions (i.e., the solar irradiance and ambient temperature), the output voltages of PV modules at maximum power points (MPPs) vary over a wide range (e.g., 20–40 V). Therefore, the dc–dc converter should be able to handle a wide input voltage range while maintaining high efficiencies. It is also required that the dc–dc converter should boost the low-voltage (< 50 V [6]) PV module output to a desired high voltage (at the dc link) in order to feed a grid-connected or standalone inverter [17]. Preferably, a high-frequency transformer is inserted into the front-end dc–dc stage to achieve the galvanic isolation, leakage current elimination, and a high voltage-boost ratio [13]. Furthermore, in order to reduce the system profile,
it is required to increase the switching frequency and/or adopt low-profile passive components (e.g., planar magnetics [18] and low-profile decoupling capacitors [19]).

Traditional flyback converters with snubbers or active clamping circuits are simple in topology and low in cost; therefore, they are adopted as the front-end dc–dc stage in some microinverters [20], [21]. However, the voltage stress of the primary switches is high, and thus, low-voltage MOSFETs with low ON-state resistances cannot be used [22], [23]. In the phase-shift full-bridge dc–dc converter, the primary switches can achieve zero-voltage switching (ZVS); however, it is challenged when operating in a wide voltage gain range, e.g., the narrow ZVS range for the lagging leg switches, duty cycle loss, large circulating current, and voltage spikes across the output diodes [24].

The LLC resonant converter is a promising topology in terms of high efficiency and high power density [24]–[27]. However, the primary concern for this topology is that the voltage gain range is not wide, and thus, hybrid control schemes [28]–[30] have to be applied, which increases the realization complexity of the MPPT. For instance, a full-bridge LLC resonant converter is designed for PV applications in [28]; however, the burst mode control has to be used in addition to the variable frequency control. In [29], a hybrid control combining the pulse-frequency modulation (PFM) and phase-shift pulsedwidth modulation (PS-PWM) is employed to a full-bridge LLC resonant converter to improve the efficiency, but the control complexity is significantly increased as well.

In addition to the hybrid control schemes, many modified LLC resonant converter topologies have been proposed [17], [31]–[41]. Structural modifications can be made to the primary-side inverter [31]–[35], the secondary-side rectifier [36]–[38], and the transformer/resonant tank [39]–[41]. Instead of the conventional half-bridge or full-bridge structure, a variable frequency multiplier is applied to the LLC resonant tank to extend the voltage gain range while maintaining high efficiencies [32]. In [33], the primary-side full-bridge inverter is replaced by a dual-bridge inverter; thus, a multi-level ac voltage can be applied to the resonant tank, and a twofold voltage gain range can be achieved; however, the primary-side switches have high turn-off currents, and may suffer from high off-switching losses when operating in high step-up applications (e.g., PV microinverters). By combining a boost converter with an LLC resonant converter, two current-fed LLC resonant converters are proposed in [34] and [35]. Nevertheless, the primary-side switches share uneven current stresses, which may lead to high conduction losses as well as high off-switching losses. To avoid the high off-switching losses on the high-current primary-side switches, [36]–[38] propose secondary-rectifier-modified LLC resonant converter topologies. Specifically, in [36] and [37], two diodes in the full-bridge rectifier (FBR) are replaced with two active switches, yielding a controllable rectifier. In [38], two active switches are utilized to obtain a reconfigurable voltage multiplier rectifier, leading to a squeezed switching frequency range and improved efficiencies over a wide input voltage range; notably, the number of rectifier components is high (eight diodes + two active switches + six capacitors), and thus, this topology may not be cost effective for PV microinverter applications. Furthermore, [39]–[41] modify the transformer and resonant tank to extend the voltage gain range of the LLC resonant converter. In [39], an auxiliary transformer, a bidirectional switch (implemented with two MOSFETs in an anti-series connection), and an extra FBR are added to the conventional LLC resonant converter. Thus, the equivalent transformer turns ratio and magnetizing inductance can be adaptively changed in order to achieve a wide voltage gain range; however, the component count is high and the transformers utilization ratio is relatively low. To address the issues in [39] as well as to maintain high efficiencies over a wide input voltage range, Sun et al. [41] proposed a new LLC resonant converter with two split resonant branches; in this way, two operation modes, i.e., the low- and medium-gain modes, are enabled, and the gain range for mode transition is 1.5 times, leading to a smoother efficiency curve over the gain range. Moreover, in [40], a new transformer plus rectifier structure with fractional and reconfigurable effective turns ratios is proposed for a widely varying voltage gain.

As aforementioned, there is a trend to increase the switching frequency and lower the converter profile such that the microinverter can be mechanically and physically integrated with a PV module [5], [6]. Therefore, the megahertz operation and design optimization of resonant dc–dc converters [42]–[48] are becoming attractive to achieve so. Notably, the reported peak efficiency of a 1-MHz LLC resonant converter has reached 97.6% with an optimal design of the integrated planar matrix transformer [46]. However, the voltage conversion ratios in these systems are fixed [43]–[48] or vary within a narrow range (±5%) [42], which is not suitable for PV microinverter applications where the dc–dc stage should handle a wide voltage gain range.

In light of the aforementioned, this paper proposes a new dual-mode rectifier (DMR)-based series resonant dc–dc converter for PV microinverter systems. A twofold voltage gain range can be achieved with a fixed-frequency phase-shift modulation scheme. The active switches can turn ON under zero-voltage switching (ZVS) and the rectifier diodes can turn OFF under zero-current switching (ZCS), leading to minimized switching losses. Also, a variable dc-link voltage control is applied, yielding a significant efficiency improvement and input-voltage-range extension. The experimental tests on a 1-MHz microinverter prototype show that the proposed converter can achieve high efficiencies over a wide input voltage range, i.e., 17–43 V.

This paper is an expansion of our previous conference publication in [49] by adding two topology derivatives, detailed characteristics analysis, power loss modeling and design optimization of components, and 1-MHz experimental verifications. The contributions of this paper are summarized as follows.

1) Three DMR-based series resonant dc–dc converter topologies are proposed for PV microinverter systems.
2) The operation principle, critical characteristics (including voltage gain, root-mean-square current, and soft switching), and design optimization of the basic DMR series resonant converter (SRC) are analyzed in detail.
3) A variable dc-link voltage control is introduced to the proposed converter.
4) A 1-MHz microinverter prototype is built and tested to verify the feasibility of the proposed converter.
The remainder of this paper is organized as follows. Section II presents the operation principles of the proposed converter. In Section III, the key operating characteristics are analyzed and parameter design guidelines are presented. Then, the power loss modeling and design optimization of main components are performed in Section IV. After that, the control strategy, modulation implementation, and extensive experimental tests are provided in Section V. Finally, conclusions are drawn in Section VI.

II. OPERATION PRINCIPLES OF THE PROPOSED CONVERTER

A. Topology Description and Operation Modes

The proposed DMR-based SRC (DMR-SRC) is shown in Fig. 2. The DMR is implemented by adding a pair of anti-series transistors S_5–S_6 between the midpoints of the diode leg (D_3–D_4) and the output capacitor leg (C_{o1} and C_{o2}). Thus, the following two rectifier modes can be achieved by controlling the anti-series transistors S_5–S_6.

1) Half-Bridge Rectifier (HBR) Mode: When the anti-series transistors S_5–S_6 are triggered ON, an HBR (voltage doubler) consisting of D_1, D_2, S_5, S_6, C_{o1}, and C_{o2} presents on the secondary side.

2) FBR Mode: When S_5–S_6 are disabled, there is an FBR (D_1–D_4) on the secondary side.

Inspired by the dual-mode rectification concept, two extended series resonant dc–dc converters are derived for high-voltage output applications, as shown in Fig. 3. All the secondary diodes and transistors only need to withstand half of the output voltage V_o. By controlling the secondary-side active switches S_5 and S_6, a dual-mode rectifier can be formed on the secondary side, and therefore, a wide voltage gain can be achieved. Nevertheless, this paper will only focus on the basic topology shown in Fig. 2.

A fixed-frequency phase-shift modulation is applied to the proposed DMR-SRC, as illustrated in Fig. 4. The primary-side diagonal switches are driven synchronously, and the upper and lower switches of each leg are phase shifted by π. On the secondary side, the turn-ON instant of S_5 is synchronized with that of S_2 and S_3, but the turn-OFF of S_5 is lagged by a phase of ϕ with respect to that of S_2 and S_3. The gate signal of S_6 is shifted by a phase of π with that of S_5. It is noted that the fixed-frequency phase-shift modulation scheme is also applicable to the two extended topologies shown in Fig. 3(a) and (b).
With this modulation scheme, the voltage across the midpoints of the two primary-side switch legs, i.e., v_{ab}, is an ac square wave (with an amplitude of V_o) that applies to the transformer. In addition, the switching frequency f_s is equal to the series resonant frequency of the resonant inductor L_r and capacitor C_r, i.e., $f_s = f_r = 1/(2\pi \sqrt{L_r C_r})$.

The primary-side transformer current i_p is the sum of the magnetizing current i_{Lm} and the resonant current i_{Lr} referred to the primary side, i.e.,

$$i_p = n(i_{Lm} + i_{Lr})$$

where n represents the transformer turns ratio.

The waveform of capacitor voltage v_{Cr} has half-wave symmetry, i.e., $v_{Cr}(t) = -v_{Cr}(t + T_s/2)$. Thus, the charge variation of the resonant capacitor over half a switching cycle $[0, T_s/2]$ can be obtained as

$$q_{hs} = [v_{Cr}(T_s/2) - v_{Cr}(0)]C_r = -2V_{Cr0}C_r$$

$$= \int_0^{T_s/2} i_{Lr}(t)dt = \int_0^{T_s/2} \frac{i_p(t)}{n}dt - \int_0^{T_s/2} i_{Lm}(t)dt$$

$$= \int_0^{T_s/2} \frac{i_p(t)}{n}dt = \frac{T_s}{2nV_m} \int_0^{T_s/2} [V_m i_p(t)]dt = \frac{P}{2n f_s V_m}$$

where V_{Cr0} denotes the initial resonant capacitor voltage at $t = 0$ (see Fig. 4) and P is the transferred power.

The voltage gain of the converter and the inductors ratio of L_m to L_r are defined as $Q = V_o/(nV_m)$, and $m = L_m/L_r$, respectively. The quality factor is denoted as $Q = Z_r/R_o = P/(V_o^2/Z_r)$, in which the characteristic impedance $Z_r = \sqrt{L_r/C_r}$. Thus, the quality factor Q is also termed as the normalized power.

The initial capacitor voltage V_{Cr0} can be obtained from (2) as

$$V_{Cr0} = \frac{P}{4n f_s C_r V_m} = -\pi G Q V_o$$

The magnetizing current i_{Lm} can be expressed as

$$i_{Lm}(\theta) = I_{Lm0} + \frac{nV_m}{m\omega_r L_r} \theta = I_{Lm0} + \frac{nV_m \theta}{mZ_r}$$

where $\theta = \omega_r t$ with $\omega_r = 2\pi f_s$ being the resonant angular frequency and I_{Lm0} represents the initial magnetizing current at $\theta = 0$. The peak magnetizing current I_{Lmpk} is reached at $\theta = \pi$, i.e., $I_{Lmpk} = I_{Lm}(\pi)$. Due to the half-wave symmetry of the magnetizing current i_{Lm}, we have

$$I_{Lm0} = i_{Lm}(0) = -i_{Lm}(\pi) = -I_{Lmpk}$$

Substituting (5) into (4) yields the peak and initial magnetizing currents, i.e.,

$$I_{Lmpk} = -I_{Lm0} = \pi n V_m \theta \left(\frac{V_o}{m Z_r G}\right)$$

B. Operation Principle

The key operating waveforms of the proposed DMR-SRC are shown in Fig. 4. Neglecting the deadtime, six stages can be identified over one switching cycle. Due to the symmetry of operation, only Stages I–III over the first half switching cycle $[0, \pi]$ are described.

Stage I ($\theta \in [0, \phi]$): Before the time instant 0, S_2, S_3, and S_5 are conducting. At $\theta = 0$, S_2, and S_5 are turned off, the negative magnetizing current I_{Lm0} begins to charge/discharge the parasitic output capacitors (C_{oss1}–C_{oss4}) of primary-side switches, such that S_1 and S_4 can achieve ZVS-ON. During this stage, S_5 is turned ON, and an HBR is formed on the secondary side. The voltage v_{cd} is clamped by half of the output voltage $V_o/2$. The resonant inductor L_r and capacitor C_r resonate, and the resonant current i_{Lr} starts increasing from zero. When the parasitic output capacitor of S_6, i.e., C_{oss6}, is fully discharged, the antiparallel diode of S_6 begins to conduct. Thus, ZVS-ON of S_6 can be achieved subsequently by applying the turn-ON gate signal. The governing differential equations in this stage are obtained as

$$\omega_r L_r \frac{dv_{cd}(\theta)}{d\theta} = n V_m \cos(\theta) - v_{Cr}(\theta)$$

$$\omega_r C_r \frac{dv_{Cr}(\theta)}{d\theta} = i_{Lr}(\theta).$$

Considering the initial conditions $v_{Cr}(0) = V_{Cr0}$ and $i_{Lr}(0) = 0$, (7) can be solved as

$$i_{Lr}(\theta) = \frac{r_1}{r_2} \sin \theta = A_1 \sin \theta$$

$$v_{Cr}(\theta) = -r_1 \cos \theta + n V_m - V_o/2$$

where $r_1 = n V_m - V_o/2 - V_{Cr0}$, and $A_1 = r_1/Z_r$.

Stage II ($\theta \in [\phi, \alpha]$, see Figs. 4 and 5(b)): At $\theta = \phi$, S_5 is turned OFF, the resonant current is diverted from S_3 to S_6. This completes Stage II.

Stage III ($\theta \in [\alpha, \pi]$): When $\theta = \alpha$, the resonant current i_{Lr} becomes zero. Then, the resonant voltage v_{Cr} begins to decrease as $\pi/2$, and the antiparallel diode of S_6 begins to conduct. This completes Stage III.

Stage IV ($\theta \in [\pi, \phi + \alpha]$): This stage is mirror-symmetrical to Stage III.

Stage V ($\theta \in [\phi + \alpha, \phi + \alpha + \pi/2]$): When $\theta = \phi + \alpha$, the resonant current i_{Lr} reaches zero, the antiparallel diode of S_5 begins to conduct. Then the resonant voltage v_{Cr} begins to decrease as $\pi/2$, and the antiparallel diode of S_6 begins to conduct. This completes Stage V.

Stage VI ($\theta \in [\phi + \alpha + \pi/2, \phi + \alpha + \pi]$): This stage is mirror-symmetrical to Stage V.

Thus, the resonant current is clamped by half of the output voltage $V_o/2$ in Stage III and Stage V.
and an LLC is presented on the secondary side. Thus, the ac voltage v_{ac} is equal to the output voltage V_o, causing the resonant current to decrease sinusoidally. The governing differential equations in this stage are

$$\begin{align*}
&\frac{d}{dt}i_{Lr}(t) = n v_{ac}(t) - v_{Cr}(t) - v_C(t) \\
&\frac{d}{dt}v_{Cr}(t) = n V_o - V_o - v_{Cr}(t)
\end{align*}$$

(9)

The inductor current and capacitor voltage at $\theta = \phi$, i.e., $i_{Lr}(\phi)$ and $v_{Cr}(\phi)$, can be obtained from (8). Then, (9) can be solved as

$$\begin{align*}
i_{Lr}(\phi) &= \frac{2}{\omega_r} \sin(\theta - \phi) + i_{Lr}(\phi) \cos(\theta - \phi) = A_2 \sin(\theta + \delta) \\
v_{Cr}(\phi) &= -r_2 \cos(\theta - \phi) + i_{Lr}(\phi) Z_r \sin(\theta - \phi) + n V_o - V_o
\end{align*}$$

(10)

where $r_2 = n V_o - V_o - v_{Cr}(\phi)$, $A_2 = \sqrt{(r_2/Z_r)^2 + i_{Lr}(\phi)^2}$, and $\delta = \arccos((r_2/Z_r)/A_2) - \phi$.

Stage III ($\theta \in [\alpha, \pi]$) see Figs. 4 and 5(c): When the resonant current i_{Lr} falls to zero at $\theta = \alpha$, D_1 and D_2 turn off under ZCS. Thus, the resonant tank is prevented from resonance and the resonant current and voltage are kept at 0 and $V_{Cr,0}$, respectively. The output capacitors are discharged to supply the load.

III. CHARACTERISTICS OF THE PROPOSED CONVERTER

In this section, the characteristics of the proposed converter are analyzed in detail in terms of the dc voltage gain, RMS currents, and the soft-switching performance. Additionally, basic design guidelines are also presented.

A. DC Voltage Gain

Because of the half-wave symmetry of both the resonant inductor current i_{Lr} and the capacitor voltage v_{Cr}, we have

$$\begin{align*}
i_{Lr}(\pi) &= -i_{Lr}(0) = 0 \\
v_{Cr}(\pi) &= -v_{Cr}(0) = -V_{Cr,0}
\end{align*}$$

(11)

Solving (3), (8), (10), and (11) yields the expressions for the voltage gain G and phase angle α as

$$G = \frac{V_o}{n V_a} = \frac{1}{2 \pi Q(3+\cos \phi)} \left(K + \frac{4 \pi Q(2 \pi Q + \sin^2 \phi - \cos \phi) - 3 \pi \cos \phi - 2}{2 + 4 \pi Q - \cos \phi - \cos^2 \phi} \right)$$

$$\alpha = \cos^{-1} \left(\frac{4(1 + 4 \pi Q - 3 \pi \cos \phi - (3 + 8 \pi Q) \cos(2 \phi))}{2 + 4 \pi Q + 32 \pi^2 Q^2} \right)$$

(12)

where $K = \sqrt{8 \pi Q(2 \pi Q - \cos^2 \phi - \cos \phi + 2) + (1 - \cos \phi)^2}$.

According to (12), the voltage gain can be depicted in Fig. 6. It can be seen that the range of the voltage gain is always between 1 and 2 irrespective of the quality factor (i.e., the load). It should be noted that the inductors ratio $m = L_o/L_r$ does not affect the voltage gain. Therefore, the magnetizing inductance can be designed as a large value under the condition that the ZVS-ON of primary-side switches can be achieved. Circuit simulations of the proposed converter are conducted, and the results are also presented in Fig. 6, which validates the obtained analytical gain model (12).

To compare, the voltage gain characteristics of the full-bridge SRC [50] and the full-bridge LLC resonant dc–dc converter are shown in Fig. 7. For the PFM controlled SRC, the light-load gain range is narrow (e.g., 0.85−1 at a light load $Q = 0.1$) even within a wide normalized switching-frequency range $f_n \in [1, 5]$. The PFM-controlled LLC resonant converter has improved gain characteristics. However, the heavy-load gain range is still narrow (e.g., 1–1.47 at a heavy load $Q = 0.3$). In order to have a high full-load gain peak, the characteristic impedance Z_r has to be decreased, resulting in a wider frequency range and/or increased conduction losses.
Table I

<table>
<thead>
<tr>
<th>Components</th>
<th>Full-bridge SRC [50]</th>
<th>Full-bridge LLC resonant converter [25]</th>
<th>Proposed DMR-based SRC (Fig. 2)</th>
<th>Proposed DMR-SRC derivatives A and B (Fig. 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary-side active switch</td>
<td>Count</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Voltage stress</td>
<td>Input voltage</td>
<td>Input voltage</td>
<td>Input voltage</td>
<td>Input voltage</td>
</tr>
<tr>
<td>Secondary-side active switch</td>
<td>Count</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Voltage stress</td>
<td>—</td>
<td>2</td>
<td>Half of output voltage</td>
<td>Half of output voltage</td>
</tr>
<tr>
<td>Diode</td>
<td>Count</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Voltage stress</td>
<td>Output voltage</td>
<td>Output voltage</td>
<td>Output voltage</td>
<td>Half of output voltage</td>
</tr>
<tr>
<td>Transformer</td>
<td>Count</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Voltage stress</td>
<td>Output voltage</td>
<td>Output voltage</td>
<td>Output voltage</td>
<td>Half of output voltage</td>
</tr>
<tr>
<td>Resonant inductor</td>
<td>Count</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Voltage stress</td>
<td>Output voltage</td>
<td>Output voltage</td>
<td>Output voltage</td>
<td>Half of output voltage</td>
</tr>
<tr>
<td>Resonant capacitor</td>
<td>Count</td>
<td>2 in series</td>
<td>2 in series</td>
<td>2 in series</td>
</tr>
</tbody>
</table>

With the fixed-frequency PWM or phase-shift modulation (PSM) control, the gain ranges of the SRC and the LLC resonant converter are extended. However, the variation of the duty cycle \(D \) is also wide. When the duty cycle \(D \) is small, the conduction losses will rise and the soft-switching condition will be lost, because the peak magnetizing current is reduced dramatically in this case. In addition, when controlled with the PWM or PSM scheme, the primary-side (low-voltage and high-current side) switches of the SRC and LLC converter have to turn OFF at a large current, and thus, the OFF-switching loss is large. By contrast, the peak magnetizing current of the proposed resonant converter does not vary significantly with respect to the voltage gain \(G \): the variation range of \(I_{L_{\text{mpk}}} \) is twofold according to (6). Therefore, the ZVS-ON of the primary-side switches can be achieved while keeping the magnetizing inductance large. Moreover, the primary-side switches in the proposed converter are turned OFF at the small peak magnetizing current; thus, the OFF-switching loss is small as well.

Furthermore, the bill of materials (BOM) of the five topologies, i.e., the full-bridge SRC [50], the full-bridge LLC resonant converter [25], the proposed DMR-based SRC (see Fig. 2), and the derivatives A and B of the DMR-based SRC (see Fig. 3), is shown in Table I. Compared with the conventional SRC and LLC resonant converter, the proposed DMR-based SRC (see Fig. 2) has a higher component count. More specifically, two active switches withstanding half of the output voltage are added on the secondary side, and the output capacitor is split into two low-voltage ones. Likewise, the proposed DMR-SRC derivatives A and B (see Fig. 3) also employ two secondary-side switches and two output capacitors in series. However, the secondary-side diode count is reduced from 4 to 2, and the voltage stress of the diodes is only half of the output voltage, which is beneficial to cost reduction.

B. RMS Currents

The secondary and primary transformer RMS currents can be obtained by

\[
I_{L_{\text{rms}}} = \sqrt{\frac{1}{\pi} \int_0^{\alpha} \frac{1}{2} i_{L_r}(\theta) d\theta}
\]

\[
I_{p_{\text{rms}}} = \sqrt{\frac{1}{\pi} \int_0^{\alpha} \frac{1}{2} i_{L_r}(\theta) + i_{L_m}(\theta)^2 d\theta}
\]

The final expressions of \(I_{L_{\text{rms}}} \) and \(I_{p_{\text{rms}}} \) are given in Appendix as (39). Fig. 8 shows the normalized RMS currents at different quality factors. The current normalization base is \(V_o / Z_r \). It can be seen in Fig. 8 that at heavy loads, the RMS resonant current \(I_{L_{\text{rms}}} \) increases with respect to the voltage gain. The reason is that when the gain increases, the input voltage decreases, and thus, the RMS current increases if the power is fixed. However, at light loads, the RMS current first increases, and then, decreases. This is because the angle \(\alpha \) (see Fig. 4) is small at light loads when the voltage gain is in the middle area. A smaller \(\alpha \) means a larger RMS current if the power is fixed. For the primary transformer RMS current \(I_{p_{\text{rms}}} \), it is overall rising as the voltage gain \(G \) increases. However, at light loads, \(I_{p_{\text{rms}}} \) becomes flat with respect to \(G \). When comparing the two RMS currents, it can be obtained that the difference between them is small. It is because the inductors ratio \(m = L_m / L_r \) can be designed to be large for the proposed converter.

For the proposed converter, the characteristic impedance \(Z_r \) has a significant impact on the RMS current characteristics when the load is fixed. Fig. 9 shows the full-load RMS current curves under different characteristic impedances \(Z_r \) and voltage gains \(G \). As can be seen, the full-load RMS currents decrease with respect to the increase of the characteristic impedance \(Z_r \), except for \(G = 1 \) and \(G = 2 \) in Fig. 9(a). Considering the conduction losses, the characteristic impedance \(Z_r \) should be designed as large as possible. Moreover, when the resonant frequency is fixed, a larger \(Z_r \) means a larger \(L_r \), which is beneficial to
the short-circuit current suppression. However, a larger Z_r also leads to a larger ac voltage ripple and a higher voltage peak over the resonant capacitor C_r. Therefore, a tradeoff should be made in practice.

C. Soft Switching

Ideally, the primary and secondary MOSFETs can achieve the ZVS turn-ON if $i_p(0)$ and $-i_{Lr}(\theta_d)$ (see Fig. 4) are negative, as analyzed in Section II-B. This ideal ZVS condition always holds, as indicated by (6) and (8). In practice, however, there are parasitic output capacitances in parallel with MOSFETs and diodes. Therefore, a certain amount of charge is required to fully discharge the output capacitance of the MOSFET during the deadtime interval, such that its antiparallel diode will conduct before the turn-ON signal is applied [51]. Fig. 10 shows the ZVS mechanism of the primary and secondary transistors, and Fig. 11 illustrates the operating waveforms considering the deadtime and output capacitance of transistors. During the deadtime intervals, the output capacitances of the transistors are charged or discharged with i_p, i_{Lm}, and/or i_{Lr}. It is assumed that $C_{oss1} = C_{oss2} = C_{oss3} = C_{oss4} = C_{oss5} = C_{oss6} = C_{oss,S}$, and $C_{ossD1} = C_{ossD2} = C_{ossD3} = C_{ossD4} = C_{oss,D}$. Then, the voltage change and charge required for the ZVS-on can be obtained, as summarized in Table II.

1) Primary-Side ZVS: The ZVS-on realization of S_1 requires a complete charging of C_{oss1} and a complete discharging of C_{oss2} during the deadtime interval $I_{d,p}$, as shown in Figs. 10(a) and 11. The total required charge $q_{req,p}$ (see Table II) can be divided into $q_{req,p}/2$ within $[0, I_{d,m}]$ and $q_{req,p}/2$ within $[I_{d,m}, I_{d,p}]$, as illustrated in Fig. 11. Due to the high nonlinearity of the parasitic output capacitance with respect to the drain–source voltage, the current waveforms i_{Lm} and i_p will not be distorted significantly during the deadtime interval [52].

To achieve the complete charging and discharging of output capacitances, the charge provided by the currents i_{Lm} and i_p (see
Fig. 11) during the deadtime interval \([0, t_{d, P}]\) should satisfy

\[
\int_{0}^{t_{d, m} - I_{LM}(\omega, t)} dt = \int_{0}^{t_{d, m} - I_{P}(\omega, t)} dt = \int_{0}^{t_{d, P} - t_{d, m}} dt = \int_{0}^{t_{d, P} - t_{d, m}} dt - I_{LM} - \left[A_{1} \sin(\omega, t) + I_{LM}(\omega, t)\right] dt
\]

\[
\approx \int_{0}^{t_{d, P} - t_{d, m}} dt - I_{LM} - \left[A_{1} \sin(\omega, t) + I_{LM}(\omega, t)\right] dt \geq \frac{\Delta q_{m, F}}{2}.
\]

(14)

From the aforementioned equation, it is obtained that the inductors ratio \(m\) should be designed according to

\[
m = \frac{L_{m}}{L_{r}} \leq \min \left\{ \frac{2n_{d, m} V_{m}(2\pi - t_{d, P})}{8d_{req, P} Z_{r} + n_{v} \omega, t} \mid G(\pi G Q - 1) + 2 \right\}.
\]

(15)

2) Secondary-Side ZVS: Before the output rectifier conducts, e.g., before \(t = 0\) in Fig. 11, a capacitor network composed of \(C_{os,D1} - C_{os,D4}\) and \(C_{os,S2}\) presents on the secondary side, as shown in Fig. 10 (b). By applying the Kirchhoff’s voltage and current laws to the capacitor network, the steady-state capacitor voltages (i.e., the voltages at \(t = 0\)), can be obtained as

\[
\begin{align*}
V_{D1,0} &= V_{oc}/2 - (1 - \gamma) V_{cd,0} \\
V_{D2,0} &= V_{oc}/2 + (1 - \gamma) V_{cd,0} \\
V_{D3,0} &= V_{oc}/2 + \gamma V_{cd,0} \\
V_{D4,0} &= V_{oc}/2 - \gamma V_{cd,0} \\
V_{D5,0} &= 0 \\
V_{D6,0} &= \gamma V_{cd,0}
\end{align*}
\]

where

\[
\left\{ \begin{array}{l}
\gamma = \frac{V_{cd,0}}{2V_{m} + \phi_{os} + \delta_{os}} \\
(V_{cd,0} = -n_{v} V_{m} - V_{C_{r}} = V_{r} - \frac{\pi G Q}{2} - 1). \end{array} \right.
\]

(16)

The turn-ON of \(S_{6}\) lags the turn-OFF of \(S_{2}\) and \(S_{3}\) with a deadtime \(t_{d, s} = \phi_{d, s}/\omega,\) and the turn-ON of \(S_{2}\) lags the turn-OFF of \(S_{1}\) and \(S_{4}\) with the same deadtime \(t_{d, s} = \phi_{d, s}/\omega,\) as shown in Fig. 11. At \(t = t_{d, s},\) the secondary-side capacitors reach new steady states with the final voltages showing in Table II. Then, the absolute charge variation of each capacitor and the minimum charge \(q_{req, S}\) required for the secondary-side ZVS-ON can be obtained, as listed in Table II. To achieve the ZVS-ON operation for the secondary transistors \(S_{2}\) and \(S_{6},\) the charge provided by the resonant current should be larger than the required one \(q_{req, S},\) i.e.,

\[
\int_{0}^{\phi_{os} / (\omega, t)} i_{L, r}(\omega, t) dt = \int_{0}^{\phi_{os} / (\omega, t)} A_{1} \sin(\omega, t) dt + \int_{0}^{\phi_{os} / (\omega, t)} A_{2} \sin(\omega, t + \delta) dt \geq q_{req, S}.
\]

(18)

Simplifying the aforementioned equation yields the practical complete ZVS-ON conditions for \(S_{2}\) and \(S_{6},\) i.e.,

\[
A_{1}(1 - \cos \phi) + A_{2}[\cos(\phi + \delta) - \cos(\phi + \alpha)] \geq \omega_{r} q_{req, S}.
\]

(19)

If the aforementioned equation is not satisfied, \(S_{2}\) and \(S_{6}\) will withstand incomplete ZVS-ON. Nevertheless, the drain–source voltage of \(S_{2}\) and \(S_{6}\) is low, i.e., \(\leq V_{d, P}/2.\) Therefore, the turn-ON losses are not significant even operating under an incomplete ZVS-ON condition. Based on (19), the areas for the complete ZVS-ON and incomplete ZVS-ON of \(S_{2}\) and \(S_{6}\) can be obtained, as shown in Fig. 12. It is seen that the incomplete ZVS-ON occurs only when the quality factor \(Q\) (i.e., the load) is very low (e.g., \(Q < 0.007\) at \(G = 2\)).

Table II: Required Minimum Charge to Achieve ZVS for Different Switch Legs

<table>
<thead>
<tr>
<th>Commutation mode</th>
<th>Current to achieve ZVS</th>
<th>Output capacitor</th>
<th>Initial capacitor voltage at (t = 0)</th>
<th>Final capacitor voltage at (t = t_{d, o}) or (t_{d, s})</th>
<th>Absolute charge variation of a capacitor</th>
<th>Charge variation of an HBT-type leg</th>
<th>Minimum charge (q_{req, S}) for ZVS-ON of all switches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary side ZVS (see Fig. 9(a))</td>
<td>(i_{Lm}) and (i_{p})</td>
<td>HB leg 1</td>
<td>(C_{o1})</td>
<td>(V_{m})</td>
<td>0</td>
<td>(V_{C_{m}, P})</td>
<td>(2V_{C_{m}, P})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HB leg 2</td>
<td>(C_{o2})</td>
<td>0</td>
<td>(V_{m})</td>
<td>(V_{C_{m}, P})</td>
<td>(2V_{C_{m}, P})</td>
</tr>
<tr>
<td>Secondary side ZVS (see Fig. 9(b))</td>
<td>(i_{Ls})</td>
<td>HB leg 3</td>
<td>(C_{o3})</td>
<td>0.5(V_{oc} - (1 - \gamma) V_{cd, P})</td>
<td>(0)</td>
<td>(0)</td>
<td>(q_{req, S} = 2V_{C_{m}, P})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T-type leg</td>
<td>(C_{o4})</td>
<td>0.5(V_{oc} + (1 - \gamma) V_{cd, P})</td>
<td>(V_{C_{m}, D})</td>
<td>(V_{C_{m}, D})</td>
<td>(q_{req, S} = \max {0.5V_{oc} - (1 - \gamma) V_{cd, P}, V_{C_{m}, D} - \gamma V_{cd} (2V_{C_{m}, D} + V_{C_{m}, D})})</td>
</tr>
</tbody>
</table>
System Specifications

- Most probable PV voltage range \(V_{in} \in [20 \text{ V}, 40 \text{ V}] \);
- Nominal output (dc-link) voltage \(V_o = 400 \text{ V} \);
- Maximum output power \(P = 250 \text{ W} \);

Voltage stresses of components

Output capacitances \(C_{o1} \rightarrow C_{o2} \)

Transformer turns ratio \(n \)

Magnetizing inductance \(L_m \)

Resonant inductance \(L_r \) and capacitance \(C_r \)

Voltage stress of \(S_1-S_2 \): \(V_{in} \)

Voltage stress of \(S_3-S_4 \): \(V_{d/2} \)

Voltage stress of \(D_1-D_2 \): \(V_o \)

Voltage stress of \(C_{o1}-C_{o2} \): \(V_o/2 \)

Parameter determination

Current stresses of components

Component selection and design optimization

D. Design Guidelines

The flowchart of the design process for the main components of the proposed converter is shown in Fig. 13. Before the design, system specifications, e.g., the most possible PV voltage range, nominal output (dc-link) voltage, and maximum output power, are determined. Then, the voltage stresses of semiconductor devices and output capacitors can be obtained based on Table I. After that, the component parameters, e.g., output capacitances \(C_{o1} \rightarrow C_{o2} \), transformer turns ratio \(n \), magnetizing inductance \(L_m \), and resonant tank \((L_r \text{ and } C_r)\) can be determined. Subsequently, the current stresses of the main components can be calculated based on the mathematical models built in Sections II and III. Finally, the component selection and design optimization can be performed.

The parameter determination process is detailed as follows.

1) **Output (DC-Link) Capacitances:** The output capacitors of the proposed dc–dc converter also act as an energy buffer in the two-stage PV microinverter. The instantaneous feeding power to the grid contains a fluctuating power at twice the line frequency, whereas the PV output is dc power. Thus, the output (dc-link) capacitors are used to decouple the power mismatch. The electrical stresses over the dc-link capacitors can be calculated as [53]

\[
\begin{align*}
\Delta V_o & \approx P / (2 \pi f_0 f_0 C_o V_o) \\
I_{C_{o,rms}} & = P / (\sqrt{2} V_o)
\end{align*}
\]

where \(f_0 \) represents the line frequency, \(P \) is the average power injected to the grid, the equivalent output (dc-link) capacitance \(C_o = 1/(1/C_o1 + 1/C_o2) \), \(\Delta V_o \) is the peak-to-peak ripple of the output voltage \(V_o \), and \(I_{C_{o,rms}} \) is the RMS current flowing through the output (dc-link) capacitors. Considering a 6% voltage ripple on the dc-link voltage, the required minimum capacitance output capacitance equals 83 \(\mu \text{F} \). In this design, two low-profile (height: 1.5 cm) 250-V 180-\(\mu \text{F} \) electrolytic capacitors are adopted and connected in series.

2) **Transformer Turns Ratio and Magnetizing Inductance:** The transformer turns ratio \(n \) is determined by

\[n = N_p : N_s = V_o / G V_{in} \]

where \(N_p \) and \(N_s \) are the numbers of primary and secondary turns. Considering the ranges of the voltage gain \(G \) (see Fig. 6) and the input voltage \(V_{in} \) (see Fig. 13), the transformer turns ratio \(n \) is chosen as 10.

For the magnetizing inductance \(L_m \), it is used to assist the primary-side switches achieve the ZVS-ON. A smaller \(L_m \) leads to a higher magnetizing current, thereby being beneficial to ZVS-ON. However, the conduction loss will be increased due to the higher circulating current (i.e., magnetizing current). Therefore, the design principle of \(L_m \) is that it should be possibly large under the premise that the ZVS-ON of \(S_1-S_4 \) can be achieved, as illustrated by (15).

3) **Resonant Inductance and Capacitance:** As analyzed in Section III-B, a tradeoff between the RMS currents and the resonant capacitor voltage ripple (or peak voltage) should be made for the design of the characteristic impedance \(Z_r \). Meanwhile, it is seen from Fig. 9 that the RMS current curves become flat when \(Z_r \) exceeds a certain value (e.g., 175 ~ 225 \(\Omega \)), which means that increasing \(Z_r \) cannot further reduce the conduction losses. Therefore, the design of \(L_r \) and \(C_r \) follows

\[
\begin{align*}
fs = f_r & = \frac{1}{2 \pi \sqrt{L_r C_r}} = 1 \text{ MHz} \\
175 \Omega & \leq Z_r = \sqrt{\frac{L_r}{C_r}} \leq 225 \Omega.
\end{align*}
\]

Solving the aforementioned equation and considering the availability of resonant capacitors yield \(L_r = 34 \mu \text{H} \) and \(C_r = 7.5 \text{nF} \).

IV. POWER LOSS MODELING AND DESIGN OPTIMIZATION

A. Power Semiconductors

1) **Primary-Side Switches \(S_1-S_4 \):** All the primary-side switches can achieve the ZVS-ON and are turned off at the small peak magnetizing current \(I_{m,off} \). Therefore, the switching losses of the primary-side switches are small and can be neglected. The total conduction losses of the four switches \(S_1-S_4 \) can be calculated as

\[
P_{S_{14,con}} = 4 R_{S_{14,on}} \left(I_{p, rms} / \sqrt{2} \right)^2
\]

where \(R_{S_{14,on}} \) is the ON-state resistance of the primary-side switches \(S_1-S_4 \).

As analyzed in Section III, the voltage stress of \(S_1-S_4 \) equals the input voltage \(V_{in} \), which is determined by the PV module properties (e.g., number of cells and material) and environmental conditions (i.e., solar irradiance and ambient temperature).
In this paper, a maximum input voltage of 43 V is considered for the proposed converter, and thus, the 80-V eGaN FETs [54] from Efficient Power Conversion (EPC) Corporation are chosen for a sufficient voltage margin. The maximum RMS current flowing through \(S_1 \) is about 14.1/\(\sqrt{2} = 10 \) A [see Fig. 9(b)]. Considering the availability of 80-V GaN transistors, EPC2029 is finally selected for the implementation of \(S_1 \).

2) Secondary-Side Switches \(S_5 \)–\(S_6 \): The voltage stress of the secondary-side switches \(S_5 \)–\(S_6 \) is half of the output voltage \(V_o \). The maximum output voltage is 430 V in this paper, and the maximum withstanding voltage of \(S_5 \)–\(S_6 \) is about 215 V. Considering a 1.5-2 times voltage margin, the voltage rating of \(S_5 \)–\(S_6 \) should be 322.5–430 V. However, the available voltage ratings of GaN transistors on the market were either below 200 or above 600 V when the PV microinverter was designed in 2017. To the best of our knowledge, the 350- and 400-V GaN transistors [55], [56] have not been commercialized until 2018.

For a series of GaN transistors with the same voltage rating, their current ratings and drain–source ON-state resistances are achieved by employing different numbers of standard die units in parallel. For instance, the numbers of die units inside the 650-V GaN eHEMTs, GS66502B, GS66504B, GS66506T, and GS66508B [57] are 2, 4, 6, and 8, respectively, as shown in Fig. 14(a). Their drain–source ON-state resistances are inversely proportional to the number of die units, whereas the parasitic input and output capacitances of a GaN transistor are proportional to the total die area. Thus, the lower the drain–source ON-state resistance, the higher the parasitic input and output capacitances. In this case, the gate drive loss and incomplete ZVS loss [61] will be increased. For the proposed converter, the incomplete ZVS range of \(S_5 \)–\(S_6 \) is very small, as indicated in Fig. 12. Hence, the conduction loss and cost are the main factors affecting the selection of GaN transistors. Fig. 14(b) shows the market price of the 650-V GaN eHEMTs of GaN Systems. It can be seen that the price of a GaN transistor increases with respect to the number of die units inside. As mentioned before, the ON-state resistance and conduction loss can be reduced with a higher number of die units, but the implementation cost will be increased as well. Therefore, as a tradeoff between the cost and the power conversion efficiency, GS66504B with \(N_{\text{unit}} = 4 \) is selected for \(S_5 \) and \(S_6 \).

The secondary switches \(S_5 \)–\(S_6 \) can achieve the ZVS-ON operation, but are turned off with a relatively large current, as shown in Fig. 4. Therefore, there may be an amount of turn-off losses if the turn-off speed is not fast enough. A double-pulse testing setup has been built up in order to explore the turn-off power losses of GS66504B devices. The turn-off waveforms at \(V_{ds} = 200 \) V and \(I_{ds} = 1.43 \) A are shown in Fig. 15(a). When the gate voltage \(V_{gs} \) falls below the threshold voltage, the channel is cut off quickly, but the drain–source voltage \(V_{ds} \) has not significantly increased. Therefore, the drain–source current is diverted to the output capacitor of the GaN eHEMT, causing \(V_{ds} \) to rise from 0 to 200 V. The measured turn-off energy loss is approximately equal to the energy stored in the output capacitor \(C_{\text{oss}} \), as shown in Fig. 15(b). It should be noted that the calculated turn-off energy loss \(E_{\text{off}} \) (\(\approx E_{\text{oss}} \)) is not truly dissipated during the turn-off period. If the switch is subsequently turned ON under hard switching, then the energy stored in the output capacitor \(C_{\text{oss}} \), i.e., \(E_{\text{oss}} \), will be dissipated on the channel. However, the switch in this converter can achieve the ZVS-ON, which means that the energy stored in the output capacitor is transferred instead of being dissipated. Therefore, for the proposed converter, the secondary-side switches implemented with GaN HEMTs can achieve a quasi-lossless turn-off. For the conduction loss of \(S_5 \)–\(S_6 \), it can be calculated as

\[
P_{S56,\text{con}} = 2R_{S56,\text{on}}I_{S56,\text{rms}}^2
\]

where \(R_{S56,\text{on}} \) is the ON-state resistance of \(S_5 \) and \(S_6 \), and \(I_{S56,\text{rms}} \) is the RMS current flowing through \(S_5 \) and \(S_6 \).

3) Secondary-Side Rectifier Diodes: The rectifier diodes \(D_{1} \)–\(D_{4} \) are operating in the discontinuous conduction mode, and theoretically, the ZCS-Off can be achieved for \(D_{1} \)–\(D_{4} \), as shown in Fig. 4. In practice, however, the ZCS condition (i.e., \(i_{D}(t) = 0 \)) cannot be always guaranteed due to the resonance of the parasitic output capacitors of rectifier diodes, resonant capacitor \(C_{r} \), and series inductor \(L_{r} \). If \(D_{1} \)–\(D_{4} \) are implemented with silicon ultrafast recovery diodes, the reverse-

Fig. 14. (a) Microscopy images of four 650-V GaN dies [58]; the total die area of GS66508P (12.3 mm² [59]) is almost twice of GS66504B (6.1 mm² [60]). (b) Market price of GaN Systems’ 650-V GaN eHEMTs with different numbers of die units; the survey was conducted at Mouser Electronics in 2017.
recovery losses will be high at the 1-MHz switching frequency despite of a quasi-ZCS operation. Hence, four 600-V SiC Schottky diodes, C3D02060E, are utilized in order to ensure a negligible reverse-recovery loss at the 1-MHz switching frequency.

The conduction loss of the rectifier diodes can be calculated as

$$P_{D,\text{con}} = 2(I_{D12,\text{avg}} + I_{D34,\text{avg}})V_F + 2\left(I_{D12,\text{rms}}^2 + I_{D34,\text{rms}}^2\right)R_D$$

where V_F and R_D are the voltage drop at the zero current and the resistance of the diode, respectively; $I_{D12,\text{avg}}$ and $I_{D34,\text{avg}}$ represent the average currents of D_1–D_2 and D_3–D_4, respectively; and $I_{D12,\text{rms}}$ and $I_{D34,\text{rms}}$ denote the RMS currents of D_1–D_2 and D_3–D_4, respectively.

B. Magnetic Components

Planar transformers and inductors are used in this research, and the magnetic core material is ML91S from Hitachi Metal, which has the lowest core loss density at the 1-MHz frequency among all available materials [46], [47]. Fig. 16 presents the power loss density data of the ML91S material under the sinusoidal excitation. With curve fitting, its Steinmetz parameters k, α, and β can be obtained, as shown in Fig. 16.

For the proposed converter, the magnetic cores are excited with nonsinusoidal voltages, and therefore, the core loss density can be calculated with the improved generalized Steinmetz equation [62]

$$P_v = \frac{1}{T_s} \int_0^{T_s} k_i \left| \frac{dB}{dt} \right|^\alpha (\Delta B)^{\beta - \alpha} dt$$

$$k_i = \frac{k}{(2\pi)^{\alpha - 1} \int_0^{2\pi} |\cos \phi|^\alpha |\sin \phi|^{\beta - \alpha} d\phi}$$

The ac resistance of the winding increases dramatically with respect to the frequency due to the skin effect and proximity effect, and it can be calculated with the Dowell equation [63], [64] as

$$R_{ac} = \frac{R_{dc}}{F(h)} = \frac{\xi}{2} \left(\frac{\sinh \xi + \sin \xi}{\cosh \xi - \cos \xi} + (2m - 1) \frac{\sinh \xi - \sin \xi}{\cosh \xi + \cos \xi} \right)$$

where $\xi = h/\delta_s$, h is the thickness of printed circuit board (PCB) traces, δ_s is the skin depth of the conductor, and m is a magnetomotive force (MMF) ratio

$$m = \frac{F(h)}{F(0)}$$

in which $F(0)$ and $F(h)$ are the MMFs at the borders of a layer. The winding loss calculation requires the RMS values of the harmonics of the resonant current i_L. Therefore, the resonant current is expanded based on the Fourier series, as shown in Appendix.

1) Transformer: For the transformer in the proposed converter, applying the Faraday’s law to (26) yields a simplified core loss density equation

$$P_v = k_i (2f_c)^{\alpha - \beta} \left(\frac{V_m}{N_p A_e} \right)^\beta$$

where N_p is the number of primary turns and A_e is the effective sectional area of the magnetic core.

The planar core ER32/6/25 and two-layer PCB windings (70-μm copper thickness for each layer) are adopted to fabricate the transformer. For the PCB winding layout, three arrangements are explored, as illustrated in Fig. 17. As can be seen, different winding arrangements lead to different MMF distributions, which affect the ac resistance and power loss of windings. Compared with the non-interleaving [see Fig. 17(a)] and interleaving [see Fig. 17(b)] winding arrangements, the arrangement 0.5P-S-P-S-0.5P [see Fig. 17(a)] enables the minimum MMF ratio for windings, and therefore, the ac resistance can be reduced. In addition to the power loss, the intra- and inter-winding
capacitances of planar transformers will affect the converter operation, and they should be controlled as low as possible for the proposed converter. It is proved in [65] and [66] that the arrangement 0.5P-S-P-S-0.5P can achieve the minimum stray capacitance while maintaining the lowest resistance.

Fig. 18 shows the calculated power losses of the planar transformers with different winding arrangements and different numbers of primary turns \(N_p \). As can be seen, the winding arrangement 0.5P-S-P-S-0.5P can achieve the minimum power losses compared with the other two arrangements. From Fig. 18, it can also be observed that with the increase of the number of primary turns \(N_p \), the core loss decreases, whereas the winding loss rises due to the increased resistance. The case when \(N_p = 2 \) allows the transformer to achieve the minimum power loss.

2) Resonant Inductor: The voltage across the resonant inductor can be obtained as

\[
v_{Lr}(t) = v_{ab}(t) - v_{cd}(t) - v_{Cr}(t). \tag{31}
\]

Substituting (8) and (10) into (31) yields \(v_{Lr} \) over half a switching cycle \([0, \pi]\), i.e.,

\[
\Delta B_{Lr} = \frac{L_r \Delta I_r}{N_{Lr} A_{e,Lr}} = \frac{L_r}{N_{Lr} A_{e,Lr}} \times \begin{cases} 2A_2, & 0 \leq \phi < \frac{\pi}{2} - \frac{\delta}{2} \\ 2A_1, & \frac{\pi}{2} - \frac{\delta}{2} \leq \phi < \frac{\pi}{2} \\ 0, & \frac{\pi}{2} \leq \phi \leq \pi \end{cases}
\tag{32}
\]

where

\[
\phi = \arccos \left(1 - \frac{4\pi QG(G-1)}{2 - G(1 + \pi QG)} \right). \tag{33}
\]

For the magnetic flux density swing of the resonant inductor, it is related to the peak resonant current, which has three different cases, as illustrated in Fig. 19. Then, the flux density swing can be obtained as

\[
\Delta B_{Lr} = \frac{L_r \Delta I_r}{N_{Lr} A_{e,Lr}} = \frac{L_r}{N_{Lr} A_{e,Lr}} \times \begin{cases} 2A_2, & 0 \leq \phi < \frac{\pi}{2} - \frac{\delta}{2} \\ 2A_1, & \frac{\pi}{2} - \frac{\delta}{2} \leq \phi < \frac{\pi}{2} \\ 0, & \frac{\pi}{2} \leq \phi \leq \pi \end{cases}
\tag{34}
\]
where $A_1 = r_1/Z_r$, $A_2 = \sqrt{(r_2/Z_r)^2 + I_{Lr,\phi}^2}$, $\delta = \arctan[(r_2/Z_r)/A_2] - \phi$, and $I_{Lr,\phi} = (r_1/Z_r) \sin \phi$. The core loss can be subsequently calculated based on (26).

The magnetic core ER26/6/15 and two-layer PCB windings (70-μm copper thickness for each layer) are used to implement the planar resonant inductor. The calculated power losses of planar inductors with different numbers of turns N_{Lr} are shown in Fig. 20. It is seen that $N_{Lr} = 12$ enables the inductor to achieve the minimum power loss.

C. Capacitors

The power losses in capacitors are generally composed of dielectric losses and thermal losses [67]. The dielectric losses associated with the cycle of charging and discharging of dielectrics are calculated as

$$P_{Cd} = C_r |V_{Cr0}| f_s \tan \delta$$ \hspace{1cm} (35)

where $\tan \delta$ is the dielectric loss factor of the chosen capacitor.

The thermal losses are derived as

$$P_{Cth} = R_e I_{Lr,\text{rms}}^2$$ \hspace{1cm} (36)

where R_e is the equivalent series resistance of the resonant capacitor C_r.

V. CONTROL STRATEGY, MODULATION IMPLEMENTATION, AND EXPERIMENTAL VERIFICATIONS

A. Control Strategy

Depending on the PV panel properties and the environmental conditions (i.e., the solar irradiance and ambient temperature), the PV output voltage and power at the MPPs may change significantly. Fig. 21 depicts a typical operation profile, i.e., the maximum power with respect to the input voltage, for PV microinverter systems. In this case, the maximum power P_{max} is 250 W when V_{in} is within the range $[25 \text{ V}, 38 \text{ V}]$, but P_{max} declines when V_{in} is out of this range. Six operating points are identified, as shown in Table III.

In the PV microinverter systems (see Fig. 1), the dc-link voltage can be regulated either by the front-end dc–dc stage or by the dc–ac inverter stage. If the MPPT is implemented with the dc–dc stage, then the dc-link voltage will be regulated by the inverter stage, and vice versa. However, it is not necessary.
Fig. 22. Control diagram of the proposed dc–dc converter with two operation modes: output (dc-link) voltage regulation or MPPT.

Fig. 24. Photo of the PV microinverter prototype.

TABLE IV
PARAMETERS OF THE CONVERTER Prototype

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage V_{in}</td>
<td>17.43 V</td>
</tr>
<tr>
<td>Nominal input voltage V_{in}</td>
<td>34 V</td>
</tr>
<tr>
<td>Most probable PV (input) voltage range</td>
<td>20.40 V</td>
</tr>
<tr>
<td>Output voltage V_o</td>
<td>340-430 V</td>
</tr>
<tr>
<td>Rated power P_n</td>
<td>250 W</td>
</tr>
<tr>
<td>Transformer turns ratio $n = N_s : N_p$</td>
<td>10</td>
</tr>
<tr>
<td>Magnitizing inductance L_m</td>
<td>152 μH</td>
</tr>
<tr>
<td>Resonant inductor L_r</td>
<td>34 μH</td>
</tr>
<tr>
<td>Resonant capacitor C_r</td>
<td>0.75 nF</td>
</tr>
<tr>
<td>Switching frequency f_s</td>
<td>1 MHz</td>
</tr>
<tr>
<td>Primary-side switches S_1,S_2</td>
<td>eGan FET, EPC2029</td>
</tr>
<tr>
<td>Secondary-side switches S_3,S_4</td>
<td>GaN eHEMT, GS66504B</td>
</tr>
<tr>
<td>Rectifier diodes D_1,D_2</td>
<td>SiC Schottky Diode, C3D02060E</td>
</tr>
<tr>
<td>DC-link capacitors C_{d1},C_{d2}</td>
<td>LGJ2E181MEL15, 180 μF/250 V</td>
</tr>
</tbody>
</table>

to always keep the dc-link voltage constant [9]. In this paper, a variable dc-link voltage control is proposed, as shown in Fig. 21. When the input PV voltage V_{in} is lower than 34 V, the dc-link (output) voltage will be always regulated to 340 V; however, when V_{in} is higher than 34 V, then the dc-link (output) voltage reference will rise with the increase of V_{in}. Thus, the input voltage range can be extended from [20 V, 40 V] with the conventional fixed dc-link voltage control to [17 V, 43 V] with the new control. In the meanwhile, the RMS currents under the variable dc-link voltage control are also reduced, which is beneficial to efficiency improvement.

As aforementioned, the proposed dc–dc converter can be controlled either to achieve the MPPT of the PV panel or to regulate the dc-link voltage. In order to demonstrate the feasibility of the proposed converter in both cases, a flexible control scheme is applied, as shown in Fig. 22. If operation mode 1 is enabled, the proposed dc–dc converter will be connected to a PV simulator and it will be controlled to achieve the MPPT; if operation mode 2 is selected, then the proposed converter will be powered by a dc power supply and it will be used to regulate the output voltage to the reference V_o,ref.

Fig. 23. Modulation waveforms based on TMS320F28075 DSP. (a) $\phi > \phi_d, \phi_d$. (b) $\phi \leq \phi_d$. PRD1 and PRD2 represent the period registers of the two ePWM modules (ePWM1 and ePWM2), PHS2 is the phase register of ePWM2, and CMP2A and CMP2B are the counter-compare A and B registers of ePWM2. CAU indicates the event when the counter CTR2 equals the active CMP2A resistor and CTR2 is incrementing. CAD indicates the event when the counter CTR2 equals the active CMP2A resistor and CTR2 is decrementing. CBU indicates the event when the counter CTR2 equals the active CMP2B resistor and CTR2 is decrementing. Z and P represent the events when the counter equals zero and the period, respectively.
Steady-state performance of the proposed converter under different conditions (see Fig. 21 and Table III). (a) Operating point A: $V_{in} = 17\text{ V}$, $V_o = 340\text{ V}$, and $P_o = 170\text{ W}$. (b) Operating point B: $V_{in} = 25\text{ V}$, $V_o = 340\text{ V}$, and $P_o = 250\text{ W}$. (c) Operating point C: $V_{in} = 30\text{ V}$, $V_o = 340\text{ V}$, and $P_o = 250\text{ W}$. (d) Operating point D: $V_{in} = 34\text{ V}$, $V_o = 340\text{ V}$, and $P_o = 250\text{ W}$. (e) Operating point E: $V_{in} = 38\text{ V}$, $V_o = 380\text{ V}$, and $P_o = 250\text{ W}$. (f) Operating point F: $V_{in} = 43\text{ V}$, $V_o = 430\text{ V}$, and $P_o = 220\text{ W}$.

B. Modulation Implementation

The modulation waveforms are shown in Fig. 23. Two enhanced pulsewidth modulator (ePWM) peripherals of TMS320F28075 digital signal processor (DSP), i.e., ePWM1 and ePWM2, are utilized, and their output signals are EPWM1A/EPWM1B and EPWM2A/EPWM2B, respectively. EPWM1A and EPWM1B are the gate signals of S_1 and S_4 and S_2 and S_3, respectively. EPWM2A and EPWM2B are used to control S_5 and S_6, respectively. Each time-base counter CTR of the ePWM modules is running in the count-up-and-down
Fig. 26. Transient performance of the proposed converter with the output voltage closed-loop control (the input voltage $V_{in} = 30$ V and the output voltage reference $V_{o \text{ref}} = 340$ V). (a) Transition between $P = 250$ W and $P = 125$ W. (b) Zoomed-in waveforms at $P = 250$ W. (c) Zoomed-in waveforms at $P = 125$ W.

As stated in Section V-A, there are two control options for the dc–dc stage in microinverter applications, i.e., the dc–dc converter can be used either to achieve the MPPT or to regulate the dc-link voltage. Fig. 26 presents the dynamic experimental waveforms of the proposed converter with the output voltage closed-loop control (i.e., operation mode 2 is enabled in Fig. 22). As can be seen, the output voltage V_o can be regulated to the reference being 340 V after the load changes. A good dynamic performance is achieved: the transition time is less than 10 ms and the voltage overshoot and undershoot are quite small, i.e., less than 5 V.

Then, the MPPT control mode (i.e., operation mode 1 in Fig. 22) is selected for the proposed dc–dc converter, and the experimental dynamic performance is tested, as shown in Fig. 27. It is seen that the proposed converter with the MPPT control enables the PV simulator to track its MPPs under different conditions.

The soft-switching performance of the proposed converter is tested at different operating points, as shown in Fig. 28. Due to the symmetry of the topology and the modulation scheme, only the waveforms of S_4 and S_6 are given. As can be seen, the drain–source voltage has fallen to zero before the corresponding respect to the turn-off events of S_1 and S_4 and S_2 and S_3, as indicated by $\phi_{d,s}$ in Fig. 11.

The values of the period registers $PRD1$ and $PRD2$ are determined by

$$\text{PRD1} = \text{PRD2} = f_s/(2f_{cpu})$$ \hspace{1cm} (37)

where f_{cpu} is the clock frequency of the microcontroller. For the two counter-compare registers CMP2A and CMP2B, their values and actions generated by the “CTR2 = CMP2A/B” event are different in two cases

$$\text{CMP2A} = \begin{cases} PRD2 \times (\phi - \phi_{d,s})/\pi & \text{Action : EPWM2A clears at CAU} \\ PRD2 \times (\phi_{d,s} - \phi)/\pi & \text{Action : EPWM2A clears at CAD} \end{cases} \hspace{1cm} (38)$$

$$\text{CMP2B} = \begin{cases} PRD2 \times \left(1 - (\phi - \phi_{d,s})/\pi \right) & \text{Action : EPWM2B clears at CBD} \\ PRD2 \times \left(1 - (\phi_{d,s} - \phi)/\pi \right) & \text{Action : EPWM2B clears at CBU} \end{cases}$$

The modulation scheme enables the converter control variable, i.e., the phase shift ϕ, to be adjusted from 0 to π.

C. Experimental Verifications

A 250-W converter prototype with the dimension of 14.8 cm \times 9.8 cm \times 2 cm has been built up, as shown in Fig. 24. The detailed parameters are listed in Table IV. The steady-state performance at the six operating points (see Table III) is shown in Fig. 25. As can be seen, the steady-state waveforms are in close agreement with the theoretical analysis in Section II.

As stated in Section V-A, there are two control options for the dc–dc stage in microinverter applications, i.e., the dc–dc converter can be used either to achieve the MPPT or to regulate the dc-link voltage. Fig. 26 presents the dynamic experimental waveforms of the proposed converter with the output voltage closed-loop control (i.e., operation mode 2 is enabled in Fig. 22). As can be seen, the output voltage V_o can be regulated to the reference being 340 V after the load changes. A good dynamic performance is achieved: the transition time is less than 10 ms and the voltage overshoot and undershoot are quite small, i.e., less than 5 V.

Then, the MPPT control mode (i.e., operation mode 1 in Fig. 22) is selected for the proposed dc–dc converter, and the experimental dynamic performance is tested, as shown in Fig. 27. It is seen that the proposed converter with the MPPT control enables the PV simulator to track its MPPs under different conditions.

The soft-switching performance of the proposed converter is tested at different operating points, as shown in Fig. 28. Due to the symmetry of the topology and the modulation scheme, only the waveforms of S_4 and S_6 are given. As can be seen, the drain–source voltage has fallen to zero before the corresponding...
Fig. 28. Soft-switching waveforms of the proposed converter at different operating points. (a) Operating point A: \(V_{\text{in}} = 17 \) V, \(V_o = 340 \) V, and \(P_o = 170 \) W. (b) Operating point B: \(V_{\text{in}} = 25 \) V, \(V_o = 340 \) V, and \(P_o = 250 \) W. (c) Operating point E: \(V_{\text{in}} = 38 \) V, \(V_o = 380 \) V, \(P_o = 250 \) W. (d) Operating point F: \(V_{\text{in}} = 43 \) V, \(V_o = 430 \) V, and \(P_o = 200 \) W.

gate–source voltage rises to its threshold voltage. That is, the antiparallel diode conducts before the gate signal is applied. Thus, the ZVS-ON is achieved, leading to a negligible turn-ON loss for the switches.

The measured efficiency curves of the proposed converter with the variable dc-link voltage control (see Fig. 21) at different input voltages are shown in Fig. 29(a). As can be seen, peak efficiencies over 95% are achieved for a wide input voltage range, i.e., \(V_{\text{in}} = 25, 30, 34, 38, \) and 43 V. The measured full-load (250-W) efficiency increases with respect to the input voltage. This is due to the fact that the RMS currents and conduction losses reduce as the input voltage rises. When the proposed converter is controlled to have a constant dc-link (output) voltage 400 V, the efficiency is measured at different input voltages \(V_{\text{in}} = 25, 34, \) and 38 V, as shown in Fig. 29(b). It can be seen that the variable dc-link voltage control enables a significant efficiency improvement for the proposed converter. Moreover, the proposed variable dc-link voltage control allows the converter to cope with a more wide input voltage range \(V_{\text{in}} \in [17 \text{ V}, 43 \text{ V}] \) than the conventional fixed dc-link voltage control (\(V_{\text{in}} \in [20 \text{ V}, 40 \text{ V}] \)).

The power losses of the main components are calculated at different input voltages and control schemes, as shown in Fig. 30. Overall, the power semiconductors devices (\(S_1–S_4, S_5–S_6, D_1–D_4 \)) and magnetic components (transformer \(T_x \) and resonant inductor \(L_r \)) represent the major power loss sources. The power losses of \(S_1–S_4, S_5–S_6, D_1–D_4, \) and \(L_r \) decline with respect to the increase of \(V_{\text{in}} \), whereas the power loss of \(T_x \) rises due to the increased core loss at a higher input voltage \(V_{\text{in}} \). Meanwhile, it is seen from Fig. 30 that the power losses of \(D_1–D_4 \) become higher with the variable dc-link voltage control; it is because \(D_1–D_4 \) suffer from a higher rectifier current in comparison with the fixed dc-link voltage (\(V_o = 400 \) V).
In this paper, a new dual-mode-rectifier-based series resonant dc–dc converter was proposed for PV microinverter applications. The modulation, operation principles, and key characteristics were analyzed. A detailed power loss modeling and design optimization of main components were performed, and a variable dc-link voltage control scheme was introduced to the proposed converter. A 1-MHz 250-W converter prototype has been tested and the experimental results have verified the theoretical analysis. The proposed converter with the variable dc-link voltage control can cope with a wide input voltage range, e.g., from 17 to 43 V. The active switches and diodes can achieve ZVS-ON and ZCS-OFF, respectively. Compared with the conventional constant dc-link voltage control, the proposed variable dc-link voltage control enables a remarkable efficiency improvement. High power conversion efficiencies (peak efficiency = 95.5%) can thus be achieved over the wide input voltage range from 17 to 43 V, as tested on the 250-W prototype. Therefore, the proposed topology is a promising converter candidate for PV microinverter systems.

APPENDIX

The secondary and primary transformer RMS currents are expressed as

$$I_{Lr,rms} = \sqrt{2\omega_A GZ Lr/V_o + A_1[Gm_r(\phi - \sin \phi \cos \phi)]}$$

$$I_{P,rms} = \frac{V_o}{2\sqrt{\omega_m gZ_e}} \left[6\pi \left(\frac{\alpha + \sigma - 2\phi}{2} - \phi^2\right) + 3\pi^2(-\alpha + \sigma + \phi) - 4(\alpha - \sigma)^3 + 4\phi^3 + \phi^3\right] + \frac{m A_2^2 G Z_e V_o}{2\sqrt{\omega_m gZ_e}}$$

$$+ \frac{A_2 [2(\phi - 2\sigma + 2\phi + \pi) \cos \sigma - \sin \sigma (A_2 G m \cos \sigma Z_e / V_o + 4) - (2\pi - 2\alpha)]}{\sqrt{\pi}}$$

where \(\sigma = \alpha - \phi\).

The resonant current in (8) and (10) can be expanded into its Fourier series as

$$i_{Lr}(t) = \sum_{n=1,3...} [a_n \sin(n \omega_r t) + b_n \cos(n \omega_r t)]$$

where (41) shown at the bottom of this page.

$$a_1 = \frac{1}{\pi} \left(A_2 [(\alpha - \phi) \cos \delta - \sin(\alpha - \phi) \cos(\alpha + \delta + \phi)] + A_1(\phi - \sin \phi \cos \phi)\right)$$

$$b_1 = \frac{1}{\pi} \left(A_2 [\alpha \sin \delta + [\cos(\delta + 2\phi) - \cos(\delta + 2\alpha)]/2 - \phi \sin \delta] + A_1 \sin^2 \phi\right)$$

$$a_n = \frac{1}{\pi^{(\alpha - 1)}} \left[-A_2 \left((n + 1) \sin[\delta - (n - 1)\alpha] + (n - 1) \sin[\delta + (n + 1)\alpha]\right) - 2n \sin(\delta + \phi) \cos(n\phi) - \cos(\delta + \phi) \sin(n\phi)\right]$$

$$+ 2A_1 [n \sin \phi \cos(n\phi) + \cos \phi \sin(n\phi)], \quad n = 3, 5, \ldots$$

$$b_n = \frac{1}{\pi^{(\alpha - 1)}} \left(A_2 \left((n + 1) \cos[\delta - (n - 1)\alpha] - (n - 1) \cos[\delta + (n + 1)\alpha]\right) - 2n \sin(\delta + \phi) \sin(n\phi) + \cos(\delta + \phi) \cos(n\phi)\right)$$

$$+ 2A_1 [n \sin \phi \sin(n\phi) + \cos \phi \cos(n\phi)] - 1], \quad n = 3, 5, \ldots$$
Then, the RMS value of the n_{th} harmonic of the resonant current can be obtained as

$$I_{RMS,n} = \frac{\sqrt{a_n^2 + b_n^2}}{2}.$$ \hspace{1cm} (42)

ACKNOWLEDGMENT

The authors would like to thank Hitachi Metals, Ltd. for providing magnetic cores to the prototype.

REFERENCES

Zhan Shen (S’16) received the B.E. degree in electrical engineering and automation from the Nanjing University of Aeronautics and Astronautics, Nanjing, China, in 2013, and the M.E. degree in electrical engineering from Southeast University, Nanjing, in 2016. He is currently working toward the Ph.D. degree with the Center of Reliable Power Electronics, Aalborg University, Aalborg, Denmark.

He was a Research Assistant and pursued his master thesis with the RWTH Aachen University, Aachen, Germany, from 2014 to 2016, and a Visiting Scientist with the Massachusetts Institute of Technology, Cambridge, MA, USA, in 2018. He was with the ABB Corporate Research Center, Beijing, China, in 2016. His research interests include the electromagnetic-thermal-reliability modeling and design of magnetic components in power electronic converters.

Yongheng Yang (S’12–M’15–SM’17) received the B.Eng. degree in electrical engineering and automation from Northwestern Polytechnical University, Shannxi, China, in 2009, and the Ph.D. degree in electrical engineering from Aalborg University, Aalborg, Denmark, in 2014.

He was a postgraduate student at Southeast University, China during 2009–2011. In 2013, he spent three months as a Visiting Scholar with Texas A&M University, College Station, TX, USA. He is currently an Associate Professor with the Department of Energy Technology, Aalborg University. His research interests include the grid integration of renewable energies, in particular, photovoltaics, power electronic converter design, analysis and control, and reliability in power electronics.

Dr. Yang served as a Guest Associate Editor for the IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS. He is an Associate Editor for the CPSS Transactions on Power Electronics and Applications and the Electronics Letters. He was the recipient of the 2018 IET Renewable Power Generation Premium Award.

Frede Blaabjerg (S’86–M’88–SM’97–F’03) received the Ph.D. degree in electrical engineering from Aalborg University, Aalborg, Denmark, in 1995.

He was with ABB-Scandia, Randers, Denmark, from 1987 to 1988. He became an Assistant Professor in 1992, an Associate Professor in 1996, and a Full Professor of power electronics and drives in 1998 with Aalborg University. In 2017, he became a Villum Investigator. His current research interests include power electronics and its applications such as in wind turbines, photovoltaic systems, reliability, harmonics, and adjustable speed drives. He has authored and coauthored more than 600 journal papers in the fields of power electronics and its applications. He is the co-author of four monographs and an editor of 10 books in power electronics and its applications.

Dr. Blaabjerg was the recipient of 28 IEEE Prize Paper Awards, the IEEE Power Electronics Society Distinguished Service Award in 2009, the EPE-PEMC Council Award in 2010, the IEEE William E. Newell Power Electronics Award 2014, and the Villum Kann Rasmussen Research Award 2014. He received the honoris causa from the University Politehnica Timisoara, Timisoara, Romania and Tallinn Technical University, Tallinn, Estonia. He was the Editor-in-Chief for the IEEE TRANSACTIONS ON POWER ELECTRONICS from 2006 to 2012. He has been a Distinguished Lecturer for the IEEE Power Electronics Society from 2005 to 2007 and for the IEEE Industry Applications Society from 2010 to 2011 as well as from 2017 to 2018. In 2018, he became the President Elect of the IEEE Power Electronics Society. He was nominated in 2014, 2015, 2016, and 2017 by Thomson Reuters to be between the Most 250 Cited Researchers in Engineering in the World.