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ABSTRACT The paper proposes a new structure of SEPIC with high voltage gain for renewable energy
applications. The proposed circuit is designed by amalgamating the conventional SEPIC with a boosting
module. Therefore, the converter benefits from various advantages that the SEPIC converter has, such as
continuous input current. Also, high voltage gain and input current continuity make the presented converter
suitable for renewable energy sources. The modified SEPIC converter (MSC) provides higher voltage gain
compared to the conventional SEPIC and recently addressed converters with a single-controlled switch. The
analysis of voltage gain in continuous current mode (CCM) and discontinuous current mode (DCM) is
analyzed by considering the non-idealities of the semiconductor devices and passive components. The
selection of the semiconductor devices depending on the voltage–current rating is presented along with the
designing of reactive components. The numerical simulation and experimental work are carried out, and the
obtained results prove the feasibility of the MSC concept and the theoretical analysis.

INDEX TERMS DC-DC converter, energy conversion, high voltage gain, SEPIC, renewable energy.

NOMENCLATURE
S Active switch
LX ,LY and LZ Inductors
C1,C2 and C3 Capacitors
D1,D2 and D3 Diodes
Vin and V0 Input and output volt-

age
VC1,VC2 and VC3 Average voltage

across capacitor
C1,C2 and C3.

VLX ,VLY and VLZ Voltage across induc-
tor LX ,LY and LZ .

k Duty ratio
(ILX )min,(ILY )min and (ILZ )min Minimum peak cur-

rent through inductor
LX ,LY and LZ .

The associate editor coordinating the review of this manuscript and
approving it for publication was Sing Kiong Nguang.

(ILX )max,(ILY )max and (ILZ )max Maximum peak cur-
rent through inductor
LX ,LY and LZ .

IC1,IC2 and IC3 Average current
through capacitor
C1,C2 and C3.

ID1,ID2 and ID3 Average current of
diode D1,D2 and D3.

Iin, and I0 Average input and out-
put current

τ Normalized inductor
time constant

τB Boundary normalized
inductor time constant

TS and fS Switching time and
switching frequency

Pin and P0 Input and output
power

R Resistive load
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(LX )cri, (LY )cri, and(LZ )cri Critical values of
inductor LX , LY and
LZ .

1ILX , 1ILY , and 1ILZ Peak to peak ripple
currents of inductor
LX , LY and LZ .

1VC1, 1VC2, and 1VC3 Peak to peak ripple
voltage of capacitor
C1,C2 and C3.

rLX , rLY , and rLZ Equivalent series
resistance of inductor
LX , LY and LZ .

rD1, rD2, and rD3 ON state resistance of
diode D1, D2 and D3.

VF1,VF2, and VF3 Internal forward volt-
age drop of diode D1,
D2 and D3.

rS ON state resistance of
switch S

φ, ϕ, and γ Voltage drop
contributed by
inductor LX , LY
and LZ .

ϑ Voltage drop across
switch S

ζ , ψ , and σ Voltage drop across
the diodes D1, D2 and
D3.

η Efficiency
PSloss,P

D
loss,P

L
loss and P

C
loss Power loss across

the switch S,
diodes, inductors
and capacitors.

PSsw−loss,P
S
c−loss, Switching and

conduction power
loss by the switch.

Rds(ON ) ON state resistance of
switch S

VDS and IS Drain to source
voltage and current
across/through switch
S

tr and tf Rising and falling
switching time of
switch S

I. INTRODUCTION
The utilization of existed fossil fuels is tremendously
increased in the last decade, which leads to environmental
contaminations and increases the cost of the system [1].
These problems attracts the researcher to work on Renewable
Energy Resources (RES) such as Photovoltaic (PV), wind
turbine, fuel cells, etc. Among these RES, PV is gaining
more attraction and become noticeable as consequence of its

FIGURE 1. Modern smart grid architecture.

various advantages such as eco-friendly, abundant in nature,
freely available, etc. However, the voltage generated from
the PV modules is comparatively low and depends on the
environmental conditions [2]. Therefore, in order to boost the
PV voltage, series and parallel combinations of PV panels
can be a solution to fulfill the load demand, which results
in lower efficiency, high cost and large the size of the sys-
tem [3], [4]. A high voltage gain DC-DC converter can be a
practicable solution to boost the low voltage generated from
PV. Fig. 1 shows the general architecture of modern smart
DC grid system integrated with PV and fuel cell system.
To meet the high voltage demand of DC home, electric
vehicle, DC microgrid etc. high voltage gain converter is
utilized as intermediate stage. The conventional boost, buck-
boost, SEPIC, CUK, etc. can be utilized for high voltage
applications at maximum duty ratio, but that decreases the
efficiency and affects the functionality of converter [5], [6].
Recently, various high voltage gain DC-DC converters have
been proposed with utilization of reactive components in
boosting stages [7], [8]. In isolated DC-DC converter, High-
Frequency Transformer (HFT) adopted to boost the input
voltage by adjusting its turn ratio [9], [10]. Nevertheless,
voltage based isolated DC-DC converters have high ripple
in the input current and high voltage stress across the sec-
ondary side. Moreover, the leakage energy, bulky transformer
and multistage power conversion process are the main short-
coming of the isolated converters [11]. Besides that, non-
isolated DC-DC converters are the impeccable solution for
PV applicationwith high efficiency and compact size. In liter-
ature, various voltage-boosting techniques such as cascading
of converters e.g. Quadratic Boost Converter (QBC) [12],
voltage lift structure [13]–[19] or coupled inductor [20]–[22]
have adopted with non-isolated converter to achieve high
output voltage.

In the coupled inductor based converters, the output is
controlled by adjusting turns ratio of inductor coil. The leak-
age inductance of the coupled inductor is inexorable which
generates a spike in switch current and demands the clamping
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circuit to suppress the current spike [23]. By utilizing the volt-
age lifting techniques/structures, numerous high gain DC-DC
converters have been proposed in [9]–[19]. In [24], second
order boost converter with voltage multiplier has been dis-
cussed. Presented converter has flexible structure and output
voltage depends on the duty ratio as well as on the number
of voltage multiplier level. Nonetheless, converter has low
voltage gain even though with several numbers of voltage
multiplier levels. Additionally, converter has very high input
current ripple in the proportion of average input current that
implies high-value inductor. In addition, converter has bal-
ancing issue of the voltage multiplying capacitors. Moreover,
efficiency is decreasing with increasing number of level by
the effect of the uncontrolled diodes. A switched capacitor
based high gain DC-DC converter with multiple inductors
and capacitors has been present in [24]. The presented con-
verter shows the good regulation with lower voltage gain in
comparison to the number of components. In [11], high gain
switched capacitor DC-DC converter with the active network
has been presented. The converter achieves high gain with
pulsating current and poor regulation. The converter con-
trolled with two switches and that make the complexity in the
control scheme and affects the efficiency. Additionally, dis-
continues input current is another drawback of the circuitry
which proves the minimum utilization of the sources [25].

II. MODIFIED SEPIC CONVERTER
In this paper, a new structure of single switch non-isolated
high gain SEPIC is introduced for high voltage application.
The MSC has single input-output port and derived by trans-
forming the classical SEPIC as shown in Fig. 2(a). Fig. 2(b)
shows the power circuit of MSC consisting three inductors
(LX ,LY and LZ ), three capacitors (C1,C2 and C3) and three
diodes (D1,D2 andD3) which are controlled by single switch
S with switching frequency (fs). In the MSC, inductor LY and
capacitor C1 serve as a voltage-boosting element in addition
with two diodes. The key features of the proposed MSC are;
1) operates with single switch that reduces the complexity of
control circuitry, 2) continuous input current, 3) high voltage
gain, 4) maximum utilization of input source.

A. CCM OPERATION AND ANALYSIS
In order to explain the steady state operation, some assump-
tions are to be consider as: all components to be ideal and
all capacitors should be large enough to achieve constant
voltage. The MSC controlled by single switch S, hence the
converter operates in two different modes as mode-I (t0 to
t1) and mode-II (t1 to t2) as shown in Fig. 2(c) and (d)
respectively. Where k is duty ratio and TS = 1/fS is the time
required to complete one switching operation.

1) MODE-I [to TO t1]
In mode-I, three inductors are magnetized with current path
as follow: inductor LX from input supply (Vin − VLX −D2 −

S−Vin), inductor LY from capacitorC1 (VC1−VLY−S−VC1)
and inductor LZ from capacitor C2 (VC2 − S − VLZ − VC2).

FIGURE 2. Power circuitry of (a) SEPIC and (b) MSC, CCM operating
modes of MSC in (c) mode-I and (d) mode-II.

At the same instant, capacitor C3 reverse bias the diode D3
and transfer energy to the load as shown in Fig. 2(c). The
characteristic waveforms of each component in mode-I are
presented in Fig. 3.

VLX = Vin
VLY = VC1
VLZ = VC2

mode-I (1)

where, VLX ,VLY ,VLZ are the voltages across inductor
LX ,LY ,LZ respectively. VC1,VC1 are the voltage across
capacitor C1,C2 respectively.

2) MODE-II [t1 TO t2]
In mode-II, all three inductors are demagnetized as follow:
inductor LX along with input voltage (Vin) charges the capac-
itor C1 (Vin − VLX − D1 − C1 − Vin). The combination of
inductor LY and capacitor C1 charges to capacitor C2 through
the path VC1 − VLY − VC2 − D3 − V0 − VC1. Also at the
same time, inductor LZ discharges through the load with
following the path (VLZ − D3 − V0) as shown in Fig. 2(d).
The characteristic waveforms of each component in mode-II

VOLUME 7, 2019 89859
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FIGURE 3. Characteristic waveforms of MSC in CCM.

are presented in Fig. 3

VLX = Vin − VC1
VLY = Vin − VL1 − VC2 − V0
VLY = VC1 − VC2 − V0
VLZ = V0

 mode-II (2)

where, VC0 is the voltage across capacitor C3. By applying
Inductor Volt Second Balance (IVSB) principle for the induc-
tors LX ,LY and LZ ,

VC1
Vin
=

1
1− k

(3)

VC2 =
VC1
1− k

− V0 (4)

V0
VC1
=

k
1− k

(5)

MCCM =
V0
Vin
=

k
(1− k)2

(6)

Equation (6) represents the voltage gain of the proposed
converter in CCM mode.

B. DCM OPERATION AND ANALYSIS
The MSC can be operates in Discontinuous Conduction
Mode (DCM) as current through inductor/s reaches to zero
levels individually or together as respective diode become
reverse bias. The DCM operation of MSC is divided into
three modes as mode-I, II and III. Where, mode-I and II
have similar operating principle similar to CCM. Whereas,
mode-III is a prolongation of Mode-II. Based on the inductor

current and respective diode operating state, the MSC can
be work in three different possible DCM mode as mode-
A, mode-B and mode-C. In mode-A, inductor LX current
(ILX )min individually reach to zero level as diodeD1 becomes
reverse bias. In mode-B, diode D1 is forward bias and Diode
D3 becomes reverse bias due to inductor LY and LZ cur-
rent ((ILY )min,(ILZ )min). Similarly in mode-C, both diodes
D1 and D3 become reverse bias by the effect of current
through inductor LX ,LY and LZ . The power circuitry with
respective current path in three possible DCM modes are
shown in Fig. 4. Based on the three different possible modes,
MSC has three different voltage gain in DCM. Hence, for
simplicity the MSC is analyzed with mode-B DCM mode.
The respective characteristic waveforms of each component
are shown in Fig. 5.

FIGURE 4. Possible DCM operating modes of MSC (a) mode-A,
(b) mode-B, and (c) mode-C.

1) MODE-I [to TO t1]
The equivalent circuit is same as mode I of CCM (Fig. 2(c)).
In this mode, switches S turned ON. For this mode, the peak
amplitude of current through inductor LX , LY and LZ can be
expressed as,

(ILX )max =
VinkTS
LX

(ILY )max =
VC1kTS
LY

(ILZ )max =
VC2kTS
LZ


mode-I (7)
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FIGURE 5. Characteristic waveforms of MSC in mode-B of DCM.

2) MODE-II [t1 TO t2]
The equivalent circuit is same as mode II of CCM (Fig. 2(d)).
In this mode, switches S turned OFF. For this mode, the peak
amplitude of current through inductor LX , LY and LZ can be
expressed as,

(ILX )min = −
(Vin − VC1) k1TS

LX
(ILY )min = −

(VC1 − VC2 − V0) k1TS
LY

(ILZ )min =
V0k1TS
LZ


mode-II (8)

3) MODE-III [t2 TO t3]
The equivalent circuit of mode-III (mode-B) shown in Fig.
4(b). In this mode, switches S turned OFF. At the end of this
mode, the energies stored in inductor LY and LZ are zero.
Hence, only energy stored in capacitor C3 is discharges to
the load. Therefore, from (7) and (8),

k1 =
VC1k
V0

(9)

From Fig. 5, the average capacitor C3 current during each
switching period is given by

IC3 =
0.5k1TS (ILY + ILZ )max − I0TS

TS
=

1
2
k1(ILY + ILZ )max − I0

 (10)

By substituting (7) and (9) in (10), IC3 is derived as

VC2k2TS
2

(
VC2 + VC1

L

)
=
V0
R

(11)

From (3)-(6), (11) rearranged as

MDCM =
V0
Vin
=

√
k2

(1− k)2τ
, τ =

L
RTS

(12)

where τ is normalized inductor time constant.
Equation (12) represents the voltage gain of the proposed

converter in DCM. Using (6) and (12), the boundary for CCM
and DCM is derived as

τB = (1− k)2 (13)

where τB is boundary normalized inductor time constant.

FIGURE 6. (a) Plot of voltage gain of MSC in CCM and DCM Vs. duty ratio
and (b) plot of boundary normalized inductor time constant Vs. duty ratio.

The plot of voltage gain of MSC in CCM and DCM mode
Vs. duty ratio is depicted in Fig. 6(a). Fig. 6(b) represents
the graph of boundary normalized inductor time constant Vs.
duty ratio. It is noteworthy that, if τ is greater than τB, then
MSC operates in CCM. It is investigated that, after attaining
the peak value there is decrement in normalized inductor time
constant (τB) when duty ratio k is increased.

C. DESIGN CONSIDERATION OF INDUCTORS
The selection of inductor is depends on the duty ratio, switch-
ing frequency and resistive load [3]. The current carrying
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capacity and critical value of respective inductor to operate
MSC in CCM is derived by;

(VLX )ON =
(
LX

diLX
dt

)
ON
= Vin (14)

where ILX is a current flowing through inductor LX and dt is
a change in time. Rearranging (14)

LX
1ILX
kTS
= Vin

1ILX =
kVin
fSLX

 (15)

where fS is a switching frequency to control the switch S.
To find the input inductor LX current, equate input power to
output power.

Pin = P0 = VinILX =
V 2
0

R
(16)

Rearranging the (16) and equating to (6)

ILX =
k2Vin

(1− k)4R
(17)

The maximum and minimum value of inductor current ILX
is derived as(

ILX
)
max = ILX +

1ILX
2
=

k2Vin
(1− k)4R

+
Vink
2LX fS

(18)

(
ILX
)
min = ILX −

1ILX
2
=

k2Vin
(1− k)4R

−
Vink
2LX fS

(19)

To operate the converter in CCM mode, the inductor cur-
rent must remain positive. To determine the boundary condi-
tion between CCM and DCM, (ILX )min is set to zero in (19)

(LX )crit =
(1− k)4 R

2fSk
(20)

By (20) gives the critical value of inductor LX below which
(LX < (LX )crit ) MSC work in DCM mode and work in CCM
as LX > (LX )crit .

With the same concept, the ripple content of ILY can be
derived from (4) as

1ILY =
kVC1
fSLY

=
kVin

fS (1− k)LY
(21)

The MSC has cascaded connection of boost followed by
SEPIC converter. As SEPIC receives the input from boost
converter, the inductor LY current can be derived as,

VC1ILY =
V 2
0

R

ILY =
V 2
0

VC1R
=

k2Vin
(1− k)3R

 (22)

The maximum and minimum peak value of inductor cur-
rent ILY can be derived as(
ILY
)
max= ILY +

1ILY
2
=

k2Vin
(1− k)3R

+
Vink

2(1− k)LY fS
(23)

(
ILY
)
min= ILY −

1ILY
2
=

k2Vin
(1− k)3R

−
Vink

2(1− k)LY fS
(24)

To determine the boundary condition between CCM and
DCM arries by the inductor LY current, (ILY )min is set to zero
in (24)

(LY )crit =
(1− k)2 R

2fSk
(25)

With the same concept, the current ripple of inductor LZ is
derived from (1) and (9) as

1ILZ =
kVC2
fSLZ

=
kVin

fS (1− k)LZ
(26)

In MSC, the current through inductor LZ is load current
and can be derived as

ILZ =
V0
R
=

kVin
(1− k)2 R

(27)

The maximum and minimum value of inductor current (ILZ )
are(
ILZ
)
max= ILZ +

1ILZ
2
=

kVin
(1− k)2R

+
Vink

2(1− k)LZ fS
(28)(

ILZ
)
min= ILZ −

1ILZ
2
=

kVin
(1− k)2R

−
Vink

2(1− k)LZ fS
(29)

By equating (ILZ )min to zero in (29), The critical value of
inductor LZ can be derived after rearranging as

(LZ )crit =
(1− k)R

2fS
(30)

D. DESIGN CONSIDERATION OF CAPACITORS
The value of capacitors depends on the voltage ripple (1VC1
in C1, 1VC2 in C2 and 1VC3in C3), duty ratio, load resis-
tance, and switching frequency [3]. All three capacitors
C1,C2 and C3 are selected with following expression as;

|1Q| =
VC1
R

kTS = C11VC1

1VC1 =
VC1k
RC1fS

 (31)

The output stage consisting of the diode D3, capacitor C3,
and the load resistor is the same as in the boost converter,
so the output ripple voltage is same as the first stage boost
converter and it is express as

1VC3 =
VC3k
RC3fS

(32)

The voltage variation in capacitorC2 is determined to from
the circuit with the switch closed as presented in Fig. 3. From
the definition of capacitance and accounting the magnitude
of the charge,

1VC2 =
1QC2
C2

=
I0kTS
C2

=
V0k
RfSC2

 (33)
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FIGURE 7. MSC with ESR of inductor, switch and voltage drop of diodes.

III. EFFICIENCY ANALYSIS AND COMPARISON
A. EFFICIENCY ANALYSIS
In this sub-section, converter efficiency analysis is discussed.
The equivalent circuit of MSC with non-idealities of circuit
components i.e. internal resistance of respective components
is shown in Fig. 7. Where rLX , rLY , rLZ are the Equiva-
lent Series Resistance (ESR) of inductor LX , LY and LZ
respectively. Similarly rD1, rD2, rD3 are internal resistance
and VF1,VF2,VF3 are the forward voltage drop of three
diodes D1,D2 and D3 respectively. Whereas, rS is forward
ON state resistance of a controlled switch S.

The equivalent voltage equations of three inductors with
consideration of non-idealities in conducting and non-
conducting state are

VLX = Vin − iLX (rLX + rS + rD2)
−iLY rS − iLZ rS − VF2
VLY = VC1 − iLX rS − iLY (rLY + rS )
−iLZ rS
VLZ = VC2 − iLX rS − iLY rS
−iLZ (rS + rLZ )


ON state (34)

VLX = Vin − iLX (rLX + rD1)
−VF1 − VC1
VLY = VC1 − iLY (rLY + rD3)
−iLZ rD3 − VF3 − VC2 − V0
VLZ = −V0 − iLZ (rLZ + rD3)
−iLY rD3 − VF3


OFF state (35)

By the principle of IVSB, the resultant output voltage of
MSC in terms of voltage drops across each component can
be expressed as;

V0 =
kVin

(1− k)2
−

[
rLXφ + rLY ϕ + rZDγ
+rSϑ + rD2ψ + rD1ζ + rD3σ

]
(36)

where,
φ = Vink3

R(1−k)5

}
voltage drop across inductor LX ,

ϕ = Vink3

R(1−k)4

}
voltage drop across inductor LY ,

γ = kVin
R

}
voltage drop across inductor LZ ,

ϑ = kVin
R(1−k)2

(
(2−k)k2

(1−k)2
+ k3(2− k)+ 1+ (1− k)2

)}
by

switch S,
ζ = kVin

R(1−k)2
(
k2 + VF1

)}
voltage drop across diode D1,

FIGURE 8. Voltage drop across each component with respect to output
voltage in (%) at 0.7 duty ratio.

ψ = k3Vin
R(1−k)4

(k + VD2)
}
voltage drop across diode D2,

σ = kVin
R(1−k)2

(1− k + VF3)
}
voltage drop across diodeD3.

The percentage of voltage drop across each inductor, diode
and switch by their ESR with respect to output voltage is
depicted in Fig. 8. It is observed that, switch S has higher
contribution (3.56%) in voltage drop as compared to other
circuit components at 0.7 duty ratio. However, diode D2
and inductor LZ have relatively less contribution (0.05%) in
voltage drop. The voltage gain and efficiency of the converter
are affected by conduction loss due to the parasitic resistance
of circuit element and switching loss by the semiconductor
devices. Equation (37) gives the relation of output power with
the efficiency. To evaluate the power losses and efficiency
of MS converter, the losses can be calculated as for each
component,

η=
P0

P0 + Ploss
=

P0
P0 + PSloss + P

D
loss + P

L
loss + P

C
loss

(37)

where,PSloss is loss across switches,P
D
loss is loss across diodes,

PLloss is loss by inductors, and P
C
loss is loss by capacitors. How-

ever, the switching and conduction loss of switches can be
calculated based on the following equations for each switch.

PSloss = PSc−loss + P
S
sw−loss

PSc−loss = Rds(on)I2S
PSsw−loss =

1
2
VDS IS (tr + tf )fs

 (38)

where, PSc−loss is a conduction loss contributed by switch,
PSsw−loss is a switching loss contributed by switch, Rds(on) is
ON-state resistance, VDS is a voltage across switch in OFF
state, tr and tf are rising and falling time of switch and fs
represents the switching frequency of switch. With the help
of (17), (22), (27), and (38) the expression of switching and
conduction loss of MS converter is derived

PSSW−loss =
k2V 2

in

2R(1− k)4
(tr + tf )fs

PSC−loss = RdS(ON )

[
kVin

R(1− k)4

]2
 (39)
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TABLE 1. Comparison of MSC with existing high gain converters.

TABLE 2. Simulation and hardware parameters of MS converte.

The power loss by each diode can be calculated as

PDloss =
(
VF × ID(avg)

)
+

(
rD × i2D(rms)

)
=
Vink(1− k + k2)

R(1− k)4

 (40)

The power loss by the capacitors and inductors can be
derived as

PCloss = rC i2C,rms
PLloss = rL i2L,rms

}
(41)

where rC is ESR of capacitor. In this paper, magnetic loss by
inductor and body diode conduction loss in switches are not
considered.

B. COMPARISON WITH RECENTLY ADDRESED
CONVERTERS
The proposedMSC is compared with recently addressed high
gain converters as discussed in the literature. The comparison
is made in term of number of active and passive components
requirements, voltage stress across controlled switch (VDS ),
voltage gain (MCCM ) as tabulated in Table 1. It is observed
that, the MSC required less components as compared to other
converters. From Fig. 9, it is noticed, the proposed converter
gives higher voltage gain as compared to other converters.

FIGURE 9. Graph of voltage gain of recently addressed converter and
MSC Vs duty ratio.

FIGURE 10. Waveform of current through inductor LX , LY and LZ in
(a) simulation and (b) hardware.

IV. DISCUSSION ON SIMULATION AND HARDWARE
RESULTS
The simulation and experimental work of proposed converter
is performed to test its functionality. The MSC is imple-
mented according to the aforementioned design procedure
with the parameters given in Table 2. To operate the converter
in CCM, the inductors LX ,LY and LZ values are selected
more than respective critical value as derived in (14), (15)
and (16), respectively. The gate pulse with 70 % duty ratio is
generated through Virtex-5 FPGA. Fig. 10(a) depicts the sim-
ulation result waveform of inductor LX , LY and LZ current.
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FIGURE 11. Waveform of voltage across capacitor C1, C2 and C3 in
(a) simulation and (b) hardware.

It is observed that, inductor LX ,LY and LZ carry 4 A, 1.4 and
0.5 A (average) current.Whereas, Fig. 10(b) shows the exper-
imental result waveform of output voltage (V0), inductor LY
current (ILY ), LX (ILX ) and LZ (ILZ ) current from top to bot-
tom. During mode-I, current through all three inductors are
increasing with positive slope at the same instant.Whereas, in
mode-II, it starts decreasing with negative slope as expected.
Fig. 11(a) depicts the simulation results waveform of capac-
itor C1,C2 and C3 voltage. It is observed that, +80 V is
developed across the both capacitor C1 and C2. Also, non-
inverted 186 V across the capacitor C3.

Fig. 11(b) depicts the experimental waveform of voltage
across the capacitor isC2 andC1; current through inductor LX
and voltage across capacitor C3 from top to bottom. A non-
inverting 76 V, 75.3 V and 172 V is developed across capac-
itor C1, C2 and C3 respectively in steady state as observed
from Fig. 11(b). Fig. 12(a) and (b) shows the blocking voltage
across diode D1,D2 and D3 in reverse bias condition. In
mode-I, It is observed that Peak Inverse Voltage (PIV) across
diode D1 is equal to voltage across capacitor C1 and equal to
76 V. Whereas, PIV across diode D3 is equal to addition of
voltage across capacitor C2 and C3 i.e.(VC2 + V0 = 184V).
In mode-II, diode D2 is reverse bias and handle PIV equal
to output voltage (V0) and equals to 172V. Fig. 13 depicts
the hardware result waveform of input voltage (Vin), output
current (I0), inductor LX current (ILX ) and output voltage (V0)
from top to bottom. It is noticed from experimental results,

FIGURE 12. Waveform of voltage across diode D1, D2 and D3 in
(a) Simulation and (b) hardware.

FIGURE 13. Experimental result of input voltage and current; output
voltage and current.

MSC operates with 24 V input supply and draw the input
current (ILX = Iin) of 4 A with input power of 96 W.
Furthermore, MSC develop 172 V at the load end (V0) with
0.51 load current (I0).
The DCM operation of proposed converter depends on

the inductors value, duty ratio, value of resistive load and
switching frequency. Therefore, the DCM mode can be
achieved either by decreasing the duty ratio or switch-
ing frequency or by increasing the load resistance value.
In this paper, the proposed converter operated in DCM oper-
ation by decreasing the duty ratio up to 60 % from 70 %
without disturbing the other parameters. The experimental
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FIGURE 14. Experimental results of proposed converter in DCM mode
(a) voltage across diode D3, inductor LY and LZ current and output
voltage and (b) voltage across diode D3, inductor LY and LX current and
input voltage.

FIGURE 15. Experimental efficiency curve at different power with
constant load.

results of proposed converter in DCM mode are shown
in Fig. 14. It is observed that, with decrease in duty ratio
inductors LX ,LY and LZ current reaches to their maxi-
mum level in mode-I. In mode-II, inductors current (ILX ILY
and ILZ ) start decreasing. Whereas, ILY and ILZ reaches
to zero level at the end of mode-II by the effect of
reverse bias condition of diode D3. It worth to note that
from experimental results as shown in Fig. 14 (a) and (b),
the proposed converter work in DCM mode (mode-B)
due to the ILZ = ILY = 0. It is observed that, 92 V is
developed at the load end at with 24 V input voltage at
inductor time τ = 0.142. Whereas, across diode D3 a 152 V
(cathode to anode) voltage is appear as PIV.

FIGURE 16. Graph of power loss distribution across each component with
respect to output power loss in (%) at 0.7 duty ratio.

Efficiency of proposed converter is experimentally ana-
lyzed for different power from 60 W to 100 W. It is observed
that proposed converter operates with 89.1 % efficiency at
60 W load and 91.4 % at 100 W as shown in Fig. 15. With
the help of (37)-(41), the power loss distribution across each
component in the proposed converter calculated with ESR as
(rS = rL = 0.2�, rC = 0.1�, rD = 0.01� and VF = 0.9V).
The power loss distribution across the each components is
calculated and graphically shown in Fig. 16 with respect to
output power loss. It is observed that, the maximum power
loss is contributed by switch (47%). Whereas, capacitor C2,
C3 and inductor LZ have very less contribution (>1%) in
power loss as compared to other components.

V. CONCLUSION
A new structure of high gain modified SEPIC DC-DC con-
verter has been introduced for renewable energy applica-
tions. High voltage gain and continuous input current are the
advantages of MSC. The working principle of MSC in CCM
and DCM mode has been presented. Additionally, the math-
ematical voltage gain derivation in CCM and DCM mode
with non-idealities consideration and parameter design has
been shown sequentially. Also, overall comparison between
MSC and other non-isolated single switch converters has
been addressed. The performance of the proposed converter
is tested with numerical simulation and hardware implemen-
tation for 100 W prototype model. The results are shown for
172 V output from 24 V input supply with a gain of almost 8.
According to the obtained results, it can be concluded that the
proposed converter is well suited for high voltage renewable
energy applications.
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