

Built environment facing climate change

REHUA 13th HUAC World Congress 26 - 29 May, Bucharest, Romania

Federation of European Heating, Ventilation and Air Conditioning Associations

BUILT ENVIRONMENT FACING CLIMATE CHANGE

Energy flexibility of office buildings: Potential of different building types

Authors: Mingzhe Liu, Hicham Johra, Per Kvols Heiselberg, Ivan Kolev, Kremena Pavlova

Affiliation: Department of Civil Engineering, Thomas Manns Vej 23, 9220 Aalborg Øst, Denmark

Session no. 3E: Tuesday 28th of May 2019

ENT FACING CLIMATE CHANGE

Energy flexibility of office buildings – Potential of different building types

Mingzhe Liu, **Hicham Johra**, Per Kvols Heiselberg, Ivan Kolev, Kremena Pavlova

Mismatch between power demand and renewable energy production

Energy flexibility of office buildings – Potential of different building types

Mingzhe Liu, **Hicham Johra**, Per Kvols Heiselberg, Ivan Kolev, Kremena Pavlova

Demand side management with building energy flexibility

- Change demand with load shifting, peak shaving and valley filling to avoid critical or costly periods
- Useful to operate a Smart Energy Grid with large share of intermittent renewable energy sources
- Possible optimization of the heating / cooling / ventilation systems operation
- Can help solving local bottle neck problems with power peak issues
- Avoid costly peak power needs

Energy flexibility of office buildings – Potential of different building types

Mingzhe Liu, **Hicham Johra**, Per Kvols Heiselberg, Ivan Kolev, Kremena Pavlova

Building energy flexibility: definition

"The ability for a building to adapt its profile of energy use to the requirements of the grid (penalty signal) without jeopardizing technical and comfort constraints"

REHUR ISth HURC World Congress 26 - 29 May, Bucharest, Romania

Energy flexibility of office buildings – Potential of different building types

Mingzhe Liu, **Hicham Johra**, Per Kvols Heiselberg, Ivan Kolev, Kremena Pavlova

Examples of energy flexibility and demand side management

- Delay of white-good appliance services
- Scheduling charging of electrical vehicles connected to buildings
- Electrical storage in batteries of electrical vehicles connected to buildings or in batteries of building photovoltaic systems
- Thermal storage in hot water tank (domestic of water and heating system)
- Thermal storage in the indoor environment and thermal mass of buildings

26 - 29 May, Bucharest, Romania

CING CLIMATE CHANGE

Energy flexibility of office buildings – Potential of different building types

Mingzhe Liu, **Hicham Johra**, Per Kvols Heiselberg, Ivan Kolev, Kremena Pavlova

Price-based indoor temperature set point modulation

Energy flexibility of office buildings – Potential of different building types

Mingzhe Liu, **Hicham Johra**, Per Kvols Heiselberg, Ivan Kolev, Kremena Pavlova

7

Examples of energy flexibility: load shifting

Energy flexibility of office buildings – Potential of different building types

Mingzhe Liu, **Hicham Johra**, Per Kvols Heiselberg, Ivan Kolev, Kremena Pavlova

Research Question

- Previous studies demonstrated the capacity of residential buildings to enable energy flexibility
 - What is the energy flexibility potential in office buildings in Denmark?

REHUR 13th HURC World Congress 26 - 29 May, Bucharest, Romania

Energy flexibility of office buildings – Potential of different building types

Mingzhe Liu, **Hicham Johra**, Per Kvols Heiselberg, Ivan Kolev, Kremena Pavlova

Methodology

- Identify and classify typical office building types in Denmark
- Determine properties of the 4 categories (construction period):
 - 1890 1930

- 1940 1980
- Buildings complying with "Building regulation 2015"
- "Building Class 2020"
- Simulation with building energy modelling tool "Energy Plus" software
- Danish weather conditions
- "Nord Pool" electricity price for price-based demand control (rule-based controller)
- Indoor temperature set point modulation for heating and cooling systems
- Comparison of each study cases with energy flexibility index

Energy flexibility of office buildings – Potential of different building types

Mingzhe Liu, **Hicham Johra**, Per Kvols Heiselberg, Ivan Kolev, Kremena Pavlova

Building energy flexibility assessment

• Ability to shift heating and cooling use from high energy price periods to low energy price periods

• Energy flexibility index:

$$F_{Flexibility} = \frac{\int\limits_{Low} q_{heating+cooling} dt - \int\limits_{High} q_{heating+cooling} dt}{\int\limits_{Low} q_{heating+cooling} dt + \int\limits_{High} q_{heating+cooling} dt}$$

BU

NVIRONMENT FACING CLIMATE CHANGE

Energy flexibility of office buildings – Potential of different building types

Mingzhe Liu, **Hicham Johra**, Per Kvols Heiselberg, Ivan Kolev, Kremena Pavlova

Results: comparison of energy use and distribution

BUILT

ENVIRONMENT FACING CLIMATE CHANGE

Energy flexibility of office buildings – Potential of different building types

Mingzhe Liu, **Hicham Johra**, Per Kvols Heiselberg, Ivan Kolev, Kremena Pavlova

Results: comparison of energy use and distribution

Energy flexibility of office buildings – Potential of different building types

Mingzhe Liu, **Hicham Johra**, Per Kvols Heiselberg, Ivan Kolev, Kremena Pavlova

Results and discussion

Building class	Equipment option	Thermal comfort Class II [%]		Energy cost savings [%]	Energy flexibility [%]
		Ref	Flex	Flex	Flex
1890 - 1930	1	73	60	-13%	70%
	2	79	62	-16%	76%
	3	71	59	-11%	67%
	4	77	61	-15%	73%
1940 - 1980	5	72	69	26%	86%
	6	80	77	23%	94%
	7	67	64	26%	83%
	8	78	75	23%	92%
BR 2015	9	74	74	27%	99%
	10	85	84	14%	100%
	11	66	66	26%	99%
	12	83	82	16%	99%
Class 2020	13	88	88	41%	99%
	14	88	89	20%	100%
	15	83	81	32%	98%
	16	89	88	22%	 100%

European Heating, Ventilation and Air Conditioning Associations

BUILT ENVIRONMENT FACING CLIMATE CHANGE

Mingzhe Liu, **Hicham Johra**, Per Kvols Heiselberg, Ivan Kolev, Kremena Pavlova

Energy flexibility of office buildings – Potential of

Conclusions

- Office buildings in Denarmk also have a significant potential for thermal storage in indoor environment and load shifting for enabling energy flexibility
- Price-based temperature set point modulation in buildings with high energy performance envelope can generate significant energy cost savings and can provide load shifting to the grid
- Price-based temperature set point modulation is not cost beneficial for buildings with low energy performance envelope
- However, poorly insulated buildings can perform load shifting
- Degradation of indoor comfort for poorly insulated buildings

co - co may, ducharest, humania

Energy flexibility of office buildings – Potential of different building types

Mingzhe Liu, **Hicham Johra**, Per Kvols Heiselberg, Ivan Kolev, Kremena Pavlova

Suggestions for future work

- Use of Model Predictive Control (MPC) to optimize energy flexibility control and energy cost savings
- Development of new business models are needed to motivate building owners to enable building energy flexibility
- Large scale studies of building clusters performing energy flexibility are needed

REHUR 13th HURC World Congress 26 - 29 May, Bucharest, Romania

Built environment facing climate change

REHUA 13th HUAC World Congress 26 - 29 May, Bucharest, Romania

Universitatea Tehnică de Construcții București

Federation of European Heating,

Ventilation and Air Conditioning

Associations

BUILT ENVIRONMENT FACING CLIMATE CHANGE

Thank you for your attention

Built environment lacing climate change

Authors: Mingzhe Liu, Hicham Johra, Per Kvols Heiselberg, Ivan Kolev, Kremena Pavlova

Affiliation: Department of Civil Engineering, Thomas Manns Vej 23, 9220 Aalborg Øst, Denmark

Session no. 3E: Tuesday 28th of May 2019