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Motivations

 Large increase of market demand for heat pumps
* Need to develop cost effective heating / cooling systems

* Problems with use of liquid / gas refrigerant:
* F-gas
* Flammability
* Toxicity
« Greenhouse gas effect
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Potential of innovative systems

Technical Energy Savings Potential (Quads/year)
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Thermoelastic

1

Evaporative Liquid Desiccant A/C

1

Membrane Heat Pump

Magnetocaloric
Ground-Coupled Solid Desiccant A/C
Vuilleumier Heat Pump

L

L

L

Evaporative

1

Absorption Heat Pump

1

Thermotunneling
Thermoelectric
Adsorption Heat Pump

1

Thermoacoustic

L

Duplex-Stirling Heat Pump

L

Brayton Heat Pump m Residential Space Heating

1

Ejector Heat Pump ® Residential Space Cooling Comparison of technical
Standalone Liquid Desiccant A/C ® Commercial Space Heating energy savings potential.
Standalone Solid Desiccant A/C ® Commercial Space Cooling U.S. Department of

R Energy, 2014.

Numerical Simulation of a Magnetocaloric Heat Pump for Domestic Hot Water Production in Buildings

Hicham Johra, Aalborg University, Denmark




Potential of innovative systems

Technical Energy Savings Potential (Quads/year)
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Thermoelastic

Evaporative Liquid Desiccant A

Membrane Heat Pump
Ground-Coupled Solid Desiccant A [— |

Vuilleumier Heat Pump —
Evaporative
Absorption Heat Pump mmm

Thermotunneling M
Thermoelectric
Adsorption Heat Pump

Thermoacoustic 1l

Duplex-Stirling Heat Pump n

Brayton Heat Pump m Residential Space Heating

Ejector Heat Pump ® Residential Space Cooling
Standalone Liquid Desiccant A/C | ®m Commercial Space Heating
Standalone Solid Desiccant A/C ® Commercial Space Cooling

Comparison of technical
energy savings potential.
U.S. Department of
Energy, 2014.

Numerical Simulation of a Magnetocaloric Heat Pump for Domestic Hot Water Production in Buildings

Hicham Johra, Aalborg University, Denmark




Caloric effects

Large adiabatic temperature change when varying a
specific environment parameter of a material:

* Electrocaloric effect: variation of electrical field
 Barocaloric effect: variation of hydrostatic pressure

* Elastocaloric effect: variation of uniaxial mechanical stress
» Magnetocaloric effect: variation of magnetic field
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Potential of caloric effects
* Thermodynamic cycle to transfer heat from cold source
to warmer heat sink

» Large COPs (in theory) because (nearly) reversible
caloric effects

* Solid refrigerant + sustainable heat transfer fluid

* Active regenerator cycle to achieve temperature span
above adiabatic temperature change of caloric effects
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Challenges

* Not mature technologies compared to vapor-compression

* Has to prove its competitiveness
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Objectives of the ENOVHEAT project

Create a magnetocaloric heat pump prototype for a
single-family house in Denmark:

* Provide indoor space heating
*1-1.5 kW of heating power
« 20 - 25 K of temperature span

*COP of 5 m
HEAT
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Magnetocaloric heat pump

The ENOVHEAT
magnetocaloric heat pump
prototype:

"MagQueen”
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Magnetocaloric effect

* The most studied and developed of all caloric effects

* Reversible temperature change in a magnetocaloric
material magnetized or demagnetized:
- Warms up when magnetic field is applied

» Cools down when magnetic field is removed

* Thermodynamic cycle to transfer heat from cold source
to warmer heat sink: active magnetic regenerator cycle
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Magnetocaloric heat pump Cold side

Packed sphere bed of
magnetocaloric material:

* Gadolinium
. La(Fe,Mn,Si)13Hy

Regenerator casing:

Heat exchanger
Hot side
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Magnetocaloric heat pump
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Active magnetic regenerator cycle

Heat transfer fluid Magnetocaloric material
Cold side: _ Hot side:
Heat source : Heat sink
— [
Regenerator | |,
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o Initial state with
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2 Position in regenerator
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Active magnetic regenerator cycle

Adiabatic
magnetization

Temperature

Position in regenerator
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Active magnetic regenerator cycle
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Active magnetic regenerator cycle

g Adiabatic
£ demagnetization
2

Position in regenerator
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Active magnetic regenerator cycle
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heat source | Hot inlet
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Active magnetic regenerator cycle

Back to initial state

Temperature

Position in regenerator
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Cascading regenerators: increase temperature span
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Obijectives of this numerical study

Test different cascading The%:tatw
configurations for higher Cascaded /" [ 3
temperature span for " eat pump 7 s
Domestic Hot Water | .j =
production in a Danish - - % 10°c |
single-family house. ~ tank

Ground source
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Study case

* Hot water draw-off profile from a single-family house in
Denmark: 60 °C

250 L hot water storage tank

5 cascaded heat pump configurations:
« 2 — 24 cascaded heat pumps
* 1 — 12 regenerators each

* Magnetocaloric material: La(Fe,Mn,Si),;H,
* Vertical borehole ground source
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Numerical modelling
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Detailed heat pump model

[Engelbrecht and Lei] MATLAB-Simulink
model of ground source,

storage tank and piping
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Results: outlet fluid temperature
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Heating power output [W]

Results: useful heating power output
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Results: system COP
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One-month test results: hot water draw-off temperature
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One-month test results: COP
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Conclusion

A cascaded magnetocaloric heat pump system can
produce a sufficient temperature span for the production
of domestic hot water at 55 °C — 60 °C

* Possible to produce hot water need for a single-family
house

* Monthly average COP up to 2.78
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