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Abstract

Computing mode-decomposed energy release rates in arbitrarily shaped delaminations involving

large fracture process zones has not been previously investigated. The J-integral is a suitable method

for calculating this, because its domain-independence can be employed to reduce the integration do-

main to a cohesive interface, and reduce it to a line integral. However, the existing formulations

for the evaluation of the mode-decomposed J-integrals rely on the assumption of negligible fracture

process zones. In this work, a method for the computation of the mode-decomposed J-integrals in

three-dimensional problems involving large fracture process zones and using the cohesive zone model

approach is presented. The formulation is applicable to curved fronts with non-planar crack faces. A

growth driving direction criterion, which takes into account the loading state at each point, is used

to render the integration paths and to decompose the J-integral into loading modes. This results in

curved and non-planar integration paths crossing the cohesive zone. Furthermore, its implementation

into the finite element framework is also addressed. The formulation is validated against virtual crack

closure technique (VCCT) and linear elastic fracture mechanics (LEFM)-based analytical solutions

and the significance and generality of the formulation are demonstrated with crack propagation in a

three-dimensional composite structure.
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J-Integral

1. Introduction1

Laminated composite materials are built by stacking plies with different material and reinforcement2

orientations, e.g. fiber reinforced polymers. During service, excessive interlaminar stresses can lead3

to a loss of cohesion between constituent layers. This failure mechanism is known as delamination,4

and it is one of the most common cause of failure in structures made of layered materials. Therefore,5

analyzing the onset and growth of delamination is essential for any mechanical application of laminated6

composites. In this regard, the finite element (FE) method has become an indispensable tool for7

designing layered composite structures and predicting their service life.8

The most common methods for predicting interlaminar failure can be divided into two main ap-9

proaches: Methods based purely on fracture mechanics and methods based on the concept of the10

cohesive zone model (CZM) [1, 2]; the latter of which combines the framework of fracture mechanics11

and damage mechanics.12

In the fracture mechanics approach, usually a local Griffith’s criterion [3] is used to predict delam-13

ination growth, i.e., the energy release rate, G, is compared to the interlaminar fracture toughness, Gc.14

Two of the most common extraction methods for the energy release rate (also called the crack exten-15

sion force) rely either on the VCCT [4] or the J-integral [5]. Then, applying Griffith’s criterion, crack16

propagation occurs at the points where G ≥ Gc. This local energy balance criterion implies a negligible17

fracture process zone. Conversely, CZMs can capture the fracture energy dissipation mechanisms of18

quasi-brittle materials, such as the formation of micro cracks ahead of the crack tip before complete19

separation of the crack faces occurs. Therefore, the CZM approach is a suitable means of predicting20

crack propagation when a non-negligible fracture process zone is present. The strain singularity at21

the tip of a sharp crack is removed by accounting for a cohesive zone (CZ), where the material un-22

dergoes degradation until complete decohesion. The mechanical behavior of the interface is modeled23

by means of a damage variable, which is a measure of the degradation of the mechanical properties24

2
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of the material ahead of the crack tip. When the damage variable reaches its maximum value, a new25

crack surface is created. Moreover, CZMs are particularly suited for simulating interlaminar cracks in26

laminated structures because the delamination is confined to propagate between two adjacent plies.27

Thus, when a progressive delamination simulation is solved using an FE analysis, the potential failure28

surfaces are known in advance, and the cohesive elements can be efficiently located.29

Under static loading conditions, existing CZMs [6–12] do not require the energy release rate to be30

computed in order to simulate crack growth. However, some of the recently published methods for31

simulating fatigue-driven delamination based on CZM [13–18] link the rate of the local fatigue damage32

with any variant of the Paris’ law [19]. The Paris’ law-like expressions relate the crack growth rate33

with a power law function of the loading level in terms of a fracture mechanics parameter [13, 20],34

usually the stress intensity factor, K, or the energy release rate, G, where only the latter is relevant for35

a CZM. Therefore, computing the energy release rate is required in order to integrate the rate of the36

local fatigue damage. In this regard, the J-integral directly equates to G [21]. In fact, the benchmark37

study of the simulation methods for fatigue-driven delamination using a CZM approach presented in38

[18] showed a better performance for the methods using the J-integral as the means of extracting the39

energy release rate.40

The path-independence of the two-dimensional J-integral makes it very attractive in practice, since41

it avoids the need for accurate computations on the stress field at the crack tip; something which is42

hard to deal with in an FE framework. For this reason, considerable effort has been devoted to43

extending the applicability of the J-integral to three-dimensional (3D) domains [22–32]. The published44

extensions of the J-integral for its evaluation in three-dimensional problems, where the crack extension45

force may change along the crack front, commonly employ two approaches. The first is a point-wise46

evaluation of the J-integral on a cross-section normal to the crack front, resulting in the combination47

of a contour integral and a surface integral defined over the area enclosed by the contour. See [30]48

for a detailed description. Computing the surface integral requires accurately calculating the field49

quantities at the crack tip. For this reason, the boundary element method is commonly used [27, 30].50

3
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The second approach is the equivalent domain integral over a finite volume surrounding the crack51

front [25, 26, 33]. With this method, capturing the singular field near the crack tip is not required52

which is why it is usually applied in a FEM framework. Regardless, the applicability of most of53

these J-integral extensions to three-dimensional domains is restricted to certain assumptions such as54

plane-strain/stress, i.e., at the vicinity of the crack tip, or planar cracks. By employing curvilinear55

coordinates, Eriksson [34] and Fernlund et al. [35] obtained generalized expressions applicable to56

curved cracks with non-planar crack surfaces. In [34], a volume-independent integral expression for57

evaluating the crack extension force is derived from the principle of virtual work. In [35], the decrease58

of the potential energy with crack extension is employed to obtain a general path-area independent59

J-integral expression for non-planar cracks with curved crack fronts. In both cases, the fracture process60

zone is considered negligible and the mode-decomposition is not addressed.61

Delamination propagation can be described through a combination of the three basic fracture62

modes (Modes I, II and III) [36], and the fracture resistance of the interface, under both static and63

fatigue loading, highly depends on the mode mixity conditions. Consequently, the delamination models64

available in the literature [13, 20, 37] are based on a mode-decomposed definition of the load, expressed65

in terms of the energy release rate (GI , GII and GIII). In this regard, the decomposition of the J-66

integral into fracture modes, as a tool for extracting energy release rates, becomes necessary.67

In this work, a new procedure to numerically evaluate mode-decomposed J-integrals in a 3D body68

undergoing delamination is presented. The method is applicable to curved crack fronts with non-planar69

crack surfaces. Moreover, the method enables, for the first time, the application of the J-integral70

in 3D problems involving large fracture process zones. In addition, in contrast to current cohesive71

models where the mode mixity is evaluated locally (point-wise) using the interface separation, the72

presented J-integral formulation enables defining the mode mixity parameter as a function of the73

mode decomposed GI , GII and GIII (global measures). This is of crucial importance to improve the74

accuracy of the simulation of delamination propagation under quasi-static and fatigue loading.75

The formulation is derived from the general expression of the J-integral for 3D curved delaminations76

4
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with non-planar surfaces expressed in terms of curvilinear coordinates [35], which relies on LEFM.77

Its application to cohesive interfaces is addressed in Section 2, while its implementation in an FE78

framework is presented in Section 3 and Appendix A. In Section 4, the formulation is applied to79

a moment-loaded double-cantilevered-beam (DCB) and the mixed-mode J-components are compared80

to the mode-decomposed energy release rates obtained from VCCT. In Section 5, the formulation is81

applied to an embedded penny-shaped crack in a steel cylinder and the determined mode-components82

are compared to and validated against an analytical LEFM-based solution [38]. In Section 6, the83

formulation is used to compute the J-integral components of a partially reinforced end-loaded split84

(ELS) specimen with a non-straight crack front and non-planar crack interface. Finally, the conclusions85

on this work are presented.86

2. Formulation of mode-decomposed energy release rates87

In this section, the formulation of the mode-decomposed energy release rates in 3D delaminations,88

modeled using a cohesive zone model approach, is presented. The point of departure is the generalized89

J-integral for non-planar curved cracks obtained by Fernlund et al. [35].90

2.1. Assessment of the energy release rate by means of the J-integral formulation in curvilinear coor-91

dinates92

Consider an elastic body (cf. Figure 1), with a crack, subjected to prescribed tractions, T , and93

displacements, u, along parts of its boundary surface (Note that T and u are physical entities that94

are not yet described in any particular coordinate basis). In a general three dimensional domain, both95

the crack surfaces and the crack front may be curved. Let θi, i = 1, 2, 3, be an orthogonal curvilinear96

coordinate system with origin at a given point P along the crack front. This local coordinate system is97

oriented such that, at point P , θ3 is normal to the crack surface, θ2 is the coordinate along the crack98

front and θ1 is the direction of crack propagation, which is always tangent to the crack surface and99

perpendicular to θ2 and θ3.100

5
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Figure 1: a) Three-dimensional body undergoing a delamination with curved front and non-planar crack
surfaces. b) The integration domain is a slice of infinitesimal thickness, dl2.

Let us focus on a thin slice of elemental thickness, dl2, of the cracked body, which contains P (cf.101

Figure 1). Note that an infinitesimal length segment, dli along a curvilinear axis, θi is given by:102

dli =
√
giidθ

i (1)

where gij is the covariant metric tensor. In the absence of body forces, the change in potential energy,103

Π, per unit of newly created crack area is [35]:104

−dΠ

dA
= −

∫

V

dW

dA
dV +

∫

S

T i
dui
dA

dS (2)

where dA is the elemental crack area extension, V is the volume of the slice, S is the surface surrounding105

V , W is the strain energy density, T i are the contravariant components of the traction vector and ui106

are the covariant components of the displacement vector.107

The infinitesimal thickness of the slice, allows to lump the three-dimensional slice into a surface S1,108

defined by θ2 = 0 (dl2 → 0). Then, by applying Green’s theorem, and under the assumption of small109

deformations, elastic material behavior, symmetry of the stress tensor and equilibrium conditions, the110

decrease in potential energy per unit area extension is expressed, in [35], as a contour integral and an111

6
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area integral on the surface S1:112

J = −dΠ

dA
=

1√
g11

∮

Γ

(
Wn1 − T i

∂ui
∂θ1

)
dΓ − 1√

g11g22

∫

S1

∂

∂θ2

(
σi2

∂ui
∂θ1

)
dS (3)

where Γ is the contour enclosing S1 in the clockwise direction and nj is the outward unit normal vector113

on Γ . Note that in [35], the curvilinear coordinate system is rotated 90◦ around the θ1-coordinate.114

The J-integral is equivalent to the energy release rate, G, for an elastic material response. In a115

three-dimensional body, the energy release rate may vary along the crack front. Therefore, in order to116

assess the delamination extension force in three-dimensional problems, it is customary to compute the117

point-wise value of J as a function of the crack front position, P .118

2.2. Application to cohesive interfaces119

Unlike LEFM, the CZM relies on the existence of a band of material ahead of the crack tip (known120

as the cohesive zone (CZ)), where the material behaves nonlinearly [1, 2]. In the CZ, a cohesive traction121

distribution acts on the separating surfaces, thus avoiding stress singularities at the tip of sharp cracks.122

The constitutive law that relates the cohesive tractions to the displacement jumps at the interface is123

governed by a scalar damage variable. The damage variable evolves monotonically with time to ensure124

irreversibility. To guarantee the proper energy dissipation under mixed-mode conditions, in [11] the125

cohesive law is formulated in a one-dimensional space, where the equivalent mixed-mode traction, µ, is126

related to the norm of the displacement jump, λ. Thus, the equivalent one-dimensional displacement127

jump, λ, is defined as:128

λ =

√
(δ1)

2
+ (δ2)

2
+ (〈δ3〉)2 (4)

and the equivalent one-dimensional interface traction, µ, is related to λ as follows:129

µ =
(
1−DK

)
Kλ (5)

7



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

where DK ∈ [0, 1] is a scalar damage parameter degrading the constitutive tangent stiffness, K, and 〈〉130

is the Macaulay bracket ensuring that negative normal opening (interpenetration of crack faces) does131

not affect damage development.132

A sketch of the bilinear cohesive law used in [11] is represented in Figure 2. An energy-based133

damage variable, De, is introduced as the ratio of specific dissipated energy due to fracture, ωd (Figure134

2.b), and the fracture toughness, Gc (Figure 2.a). Thus, De ranges from 0 to 1, and can be understood135

as the degree of crack development, taking a value of 0 if the degradation process is yet to start, and136

a value of 1 if the crack is fully developed.137
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Figure 2: Equivalent one-dimensional cohesive law. The shadowed area in a) represents the fracture toughness,
Gc, in b), the specific dissipated energy, ωd and in c), the total specific work, ωtot, for a given state of damage.

The constitutive law is formed by an initial elastic region, before damage initiation, and a softening138

region. The onset and propagation of delamination are limited by the onset mixed-mode displacement139

jump, λo, and the critical mixed-mode displacement jump, λc, such that the applicability of the140

energy-based damage variable, De, is restricted to:141





De = 0 for λD ≤ λo

De =
ωd
Gc

for λo ≤ λD ≤ λc

De = 1 for λD ≥ λc

(6)

where λD is the mixed-mode displacement jump associated to the current damage state.142

When applied to delamination modeling in laminated composite materials, the cohesive behavior143

is lumped into the interface between subsequent plies. In [35], it is demonstrated that the J-integral144
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of Equation (3), generalized in terms of curvilinear coordinates for cracks with curved front and145

non-planar crack surfaces, is path-area-independent. Then, for the measurement of the delamination146

extension force in 3D laminated structures modeled using a CZM approach, the path-area-independence147

of Equation (3) can be employed to reduce the contour Γ to the cohesive interface (cf. Figure 3), similar148

to what is done with the two-dimensional form of the J-integral [5]. Therefore, because of the zero-149

thickness of the cohesive interface, and taking into account that the opening displacements are very150

small, the differentials n1dΓ ≈ dθ3 and dS in Equation (3) vanish. Thus, Equation (3) is reduced to:151

J = − 1√
g11

∫

Γ

(
T i
∂ui
∂θ1

)
dΓ (7)
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Figure 3: The integration path, Γ (dashed line), is reduced to the zero-thickness cohesive interface.

Let σij be the contravariant components of the cohesive stress tensor. Then, the contravariant152

traction vector at the crack faces is given by:153

T i = σijnj (8)

where nj is the outward unit normal vector on the contour Γ , i.e., on the crack surfaces. Thus, nj154

vanishes for j 6= 3, and Equation (7) reads:155

J = − 1√
g11

∫

Γ

(
σi3

∂u+i
∂θ1

+ σi3
∂u−i
∂θ1

)
dθ1 (9)

where u+ and u− are the displacements at the upper (+) and lower (−) crack surfaces, respectively.156
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Finally, by introducing the displacement jump as the separation of two initially coinciding points on157

the interface, defined as:158

δi =
(
u+i − u−i

)
(10)

the curvilinear CZ J-integral, when applied to cohesive interfaces, can be expressed as:159

J = − 1√
g11

∫

CZ

(
σi3

∂δi
∂θ1

)
dθ1 (11)

Observe, in Figure 3, that the integration path is the entire CZ so that all the cohesive stresses160

contribute to the CZ J-integral. Further details on the integration path shape and limits in 3D161

applications are provided in Section 2.3.162

2.3. Integration paths163

As demonstrated in Section 2.2, the integration domain of the curvilinear CZ J-integral applied164

to cohesive interfaces is a slice of infinitesimal thickness, dl2, lumped into the delamination interface.165

Thus, the integration domain is reduced to a path contained in the delamination interface that follows166

the direction of crack propagation, θ1. In order to compute the J-distribution in three-dimensional167

structures, the interface can be divided into infinite slices. Obviously, the J-value of each slice is168

unique and is obtained when the integration path is covered in its entirety, i.e., going through the169

entire cohesive zone, from the completely damaged zone (point 1 in Figure 3, with zero cohesive stress)170

to the end of the zone in elastic regime (point 2 in Figure 3, with zero cohesive stress).171

In LEFM, the propagation direction, θ1, is assumed to be the normal to the crack front at the point172

P , where the crack front is the line separating the damaged and undamaged parts (cf. Figure 4.b).173

However, the definition of the propagation direction as the normal to the crack front does not apply for174

CZM, due to the existence of a cohesive zone of variable length. The authors have recently introduced175

the concept of the growth driving direction (GDD) for CZM [39], as an analog to the crack propagation176

direction in LEFM. The GDD is defined as the gradient vector field of the scalar energy-based damage,177
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De, with respect to the coordinates tangent to the cohesive interface mid-surface:178

GDD = −∇De (12)

Thus, the GDD is normal to the energy-based damage, De, isolines (cf. Figure 4.a) and it converges179

with the normal to the crack front in LEFM (cf. Figure 4.b) in the limiting case where the length180

of the CZ approaches zero. Therefore, by making use of the criterion presented in [39], θ1 can be181

defined according to the GDD. In this way, the integration paths, defined along the θ1-coordinate,182

never intersect and the three-dimensional structure can be understood as the aggregation of infinite183

individual slices of infinitesimal thickness which contain a crack propagating in the GDD. It is worth184

mentioning that the damage isolines may not be parallel along the CZ, leading to slices with double185

curvature if, in addition, the cohesive interface mid-surface is non-planar.186
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Figure 4: a) The growth driving direction (GDD) is assumed to be the normal direction to the energy-based
damage isolines in the CZM framework. The integration paths are tangent to the local GDD direction. b) The
propagation direction is assumed to be the normal direction to the crack front in the LEFM framework.

It is noted that, to compute the J-value in cohesive interfaces using Equation (11), the contribu-187

tion of the stress, σi3, and displacement jump slope in the GDD direction, ∂δi
∂θ1 , in the elastic regime188

is needed. However, the criterion in Equation (12) for identifying the GDD, based on the negative189
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gradient of the energy-based damage, De, is only meaningful for De ∈]0, 1[ (see Equation (6)). There-190

fore, a new criterion to identify the GDD in the elastic regime must be used. In this regard, another191

criterion, which is also active before the initiation of the degradation process, is proposed in [39]:192

GDD = −∇
(
ωtot
Gc

)
(13)

where ωtot
Gc is the ratio between the total specific work (cf. Figure 2.c) and the fracture toughness. Both193

the conservative and the non-conservative work are computed in this criterion. This implies that as194

soon as two initially coinciding points separate from each other (λ > 0), some elastic energy is stored195

which makes this criterion active before damage onset. Once the damage is initiated, both criteria196

lead to the same GDD solution.197

2.4. Mode-decomposition of the CZ J-integral for its application to cohesive interfaces198

A crack can grow under a combination of three loading modes [36]: the opening mode (mode I), the199

sliding mode (mode II) and the tearing mode (mode III). Mode I is defined as normal to the cohesive200

interface mid-surface, mode II, tangent to the mid-surface in the propagation direction and mode III,201

tangent to the mid-surface and perpendicular to mode II. In this work, the crack propagation direction202

is defined as the GDD (cf. Section 2.3). This implies that the mode II direction is also defined as the203

GDD, and the mode III direction is defined as the direction perpendicular to the mode I and mode II204

direction.205

For the mode decomposition of the J-integral, the integrands in Equation (11) must be decomposed206

according to the local basis vectors, aligned with the three loading modes directions. Thus, θ1 is locally207

coincident with the GDD (i.e. tangent to the mid-surface), θ3 is normal to the mid-surface, and θ2208

is normal to θ1 and θ3. Moreover, since θi are orthogonal curvilinear coordinates, the local covariant209

and contravariant basis vectors are collinear.210

At an interface modeled using a CZM approach, only three uncoupled components of cohesive211

stresses (σ13, σ23 and σ33) result from the displacements jumps between crack faces (δ1, δ2, δ3). The212
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quantities σ13 and ∂δ1
∂θ1

contribute to mode II, σ23 and ∂δ2
∂θ1

, to mode III, and σ33 and ∂δ3
∂θ1

, to mode213

I crack loading. Hence, the mode-decomposed CZ J-integrals are defined according to the local θi214

coordinate system such that the terms with i = 3 are attributed to Mode I, i = 1, to Mode II and215

i = 2, to Mode III:216

JI = − 1√
g11

∫

CZ

(
σ33 ∂δ3

∂θ1

)
dθ1

JII = − 1√
g11

∫

CZ

(
σ13 ∂δ1

∂θ1

)
dθ1

JIII = − 1√
g11

∫

CZ

(
σ23 ∂δ2

∂θ1

)
dθ1

(14)

Note that Equation (14) represents an expression for the evaluation of the mode-decomposed energy217

release rates in arbitrarily shaped delaminations involving a large fracture process zone modeled using218

a CZM approach. The integration paths are curved lines crossing the CZ formed according to the219

GDD, which is rendered taking into account the loading state at each point. Moreover, the mode II is220

collinear with the GDD and mode III is perpendicular to it. This results in the mode directions not221

being constant along the integration paths. On the contrary, in LEFM approaches, mode II and mode222

III directions are the normal and tangent to the crack front, respectively.223

For 3D planar cracks described by a rectangular Cartesian coordinate system, the work by Rigby224

and Aliabadi [30] and Eriksson [40] propose equivalent expressions for the mode-decomposed J-225

integrals, which are in agreement with those presented in Equation (14) in the limiting case where226

the length of the CZ tends to zero. Moreover, by limiting the integration domain to the cohesive227

interface, the error committed in the decomposition of the far-field quantities due to the out-of-plane228

stress gradients [27, 40] is avoided, thus, allowing the integration domain of the CZ J-integrals to229

extend to large fracture process zones.230
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3. FE-discretized mode-decomposed CZ J-integrals231

In the following, the formulation presented in Section 2 is applied in an FE framework. The CZM232

used in this work, and its implementation to FE, was presented by Turon et al. in [10, 11]. Complying233

with the cohesive element definition, the interfacial tractions and displacement jumps are expressed234

in a local Cartesian coordinate system, xi, located on the deformed mid-surface, Scoh, defined as the235

average distance between two initially coinciding points, P− and P+ (cf. Figure 5). The direction236

cosines of the local Cartesian coordinate system are the normal, ê3, and tangential, ê1 and ê2, unit237

vectors to Scoh. Furthermore, employing the criterion developed in [39], the local tangential coordinates238

can be oriented in such a way that x1 and x2 are the tangential and normal coordinates to the GDD,239

respectively.240
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Figure 5: Description of the undeformed, So, and deformed, S+ and S−, configurations of the delamination
interfaces. The quantities of the CZM are calculated at the deformed misurface, Scoh, in terms of the local
Cartesian coordinates xi. P is a point located at the mid-surface in the deformed configuration, while points
P+ and P− are points belonging to the upper and lower crack surfaces, respectively. P , P+ and P− coincide
at Po in the undeformed configuration.

To numerically integrate Equation (14), trapezoidal integration is employed (although any other241

numerical integration method could be used). Thus, the curved integration pathline is discretized into242

small linear subintervals tangent to the curvilinear coordinate θ1. The quantities in the integrand243
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of Equation (14) must, therefore, be defined according to the local Cartesian coordinate system, xi,244

with a locally coincident direction with the covariant and contravariant basis vectors of the orthogonal245

curvilinear coordinate system, θi. Further details on the discretization of the formulation with the FE246

method, such as the tracking of the integration path, as well as its limits, are addressed in Appendix247

A.248

After the discretization of the cohesive interface into FE, the numerical integration of Equation249

(14), performed under the trapezoidal rule, reads:250

JI w −
∑

k


hk


σ

k
33
∂δk3
∂x1

+ σk+1
33

∂δk+1
3

∂x1

2






JII w −
∑

k


hk


σ

k
13
∂δk1
∂x1

+ σk+1
13

∂δk+1
1

∂x1

2






JIII w −
∑

k


hk


σ

k
23
∂δk2
∂x1

+ σk+1
23

∂δk+1
2

∂x1

2






(15)

where hk is the integration interval length, approximated to the Euclidean distance between two251

consecutive points along the integration path, P k and P k+1.252

The accuracy on the computation of the CZ J-integral depends both explicitly on the integration253

interval length, and implicitly on the size of the cohesive elements due to the discretization of the254

displacement field in the FE model.255

4. Comparison with mode-decomposed energy release rates extracted by VCCT256

The capabilities of the CZ J-integral formulation presented are assessed by comparing the energy257

release rate mode-components of a moment-loaded DCB model obtained by VCCT. The specimen is258

30 mm long, 6 mm wide and 3 mm thick (Figure 6). The elastic properties, corresponding to a uni-259

directional laminate made of a carbon fiber reinforced polymer (CFRP) material used in aeronautical260

applications, are listed in Table 1. The fracture properties of the interface are presented in Table 2.261
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The fracture toughnesses, GIc, GIIc and GIIIc, are close to typical values for this material. The inter-262

laminar strengths, τIc, τIIc and τIIIc, have been selected such that the fracture process zone is small, to263

enable a fair comparison between the VCCT and the cohesive zone model, while ensuring a minimum264

number of 3 damaged elements spanning the cohesive zone, to provide an accurate distribution of the265

tractions ahead of the crack tip [41, 42]. The specimen arms are modeled in the commercial FE code266

ABAQUS [43] using C3D8I hexahedral elements. The undeformed elements are 0.4 mm wide, 0.2 mm267

long and 0.5 mm thick. The delamination front is completely straight and located at the mid-surface268

at a distance of 15.1 mm from the loading application edges. A combined I, II and III fracture mode is269

created by applying four force pairs (Figure 6). M1 and M2 generate uneven opening Y -moments at270

the upper and lower arms, respectively. M3 and M4 generate even tearing Z-moments at both arms.271

The resultant bending moments are listed in Table 3.272

Laminate properties
E11: longitudinal Young’s modulus 154 GPa
E22 = E33: transversal Young’s modulus 8.5 GPa
G12 = G13: shear modulus in the longitudinal planes 4.2 GPa
G23: shear modulus in the transversal plane 3.0 GPa
µ12 = µ13: Poisson’s coefficient in the longitudinal planes 0.35 -
µ23: Poisson’s coefficient in the transversal plane 0.4 -

Table 1: Elastic properties of the laminate used in the simulation studies of the moment-loaded DCB and the
ELS specimens.

Interface properties
GIc: mode I fracture toughness 0.3 N/mm
GIIc = GIIIc: modes II and III fracture toughness 3 N/mm
τIo: mode I interlaminar strength 10 MPa
τIIo = τIIIc: modes II and III interlaminar strengths [11] 31.62 MPa
η: Benzeggagh-Kenane’s interpolation parameter [44] 2 -
K: penalty stiffness 105 N/mm3

Table 2: Fracture properties of the interface used in the simulation study of the moment-loaded DCB specimen.

In the FE analysis using the VCCT [4], the energy release rates are evaluated locally, at every273

node forming the delamination front, using the nodal forces, Fi, and relative displacements between274

released nodes on the upper and lower crack faces, uupperi − uloweri :275
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Figure 6: DCB specimen dimensions with four force pairs: M1 and M2 generate uneven opening Y -moments,
while M3 and M4 generate even tearing Z-moments.

Bending moment [Nmm]
M1 270
M2 135
M3 960
M4 960

Table 3: Bending moment resultants from the application of the four force couples to the double-cantilevered-
beam model.
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)
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1

2le1l
e
2

F2

(
uupper2 − ulower2

)

(16)

where lei is the element length in the i-direction. A local crack coordinate system, xi with i = 1, 2, 3,276

defines the mode-components, such that mode II (x1-direction) and mode III (x2-direction) are normal277

and tangential to the delamination front, respectively, and mode I (x3-direction) is normal to mode II278

and III directions. For a straight front, like the one under study, the orientation of this local coordinate279

system is constant along the front and aligned with the mesh [45]. The same results are obtained using280

the built-in implementation available in the commercial FE code ABAQUS [43].281
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To evaluate the J-values, the interface undergoing delamination has been modeled using user-282

defined cohesive elements. To this end, the method presented in [10, 11] has been enhanced with283

the formulation for the numerical evaluation of the mode-decomposed CZ J-integrals presented in284

Appendix A. For the purpose of comparison with VCCT, a fixed GDD is defined normal to the285

straight delamination front.286

The mode-decomposed energy release rate distributions along the width of the specimen, from287

both the VCCT and the CZ J-integral extraction methods, are plotted in Figure 7. Both results are288

in good agreement, although there are small differences at some points. However, determining which289

is the most accurate is not straightforward. On the one hand, in a real specimen, a damage process290

zone develops ahead of a crack tip, thus increasing the compliance of the specimen. Using the VCCT291

approach, the development of a damage process zone ahead of the crack tip is neglected. Using cohesive292

elements, the development of this damage process zone is captured and therefore, the compliance of293

the specimen increases with respect to the compliance of the VCCT specimen. On the other hand, the294

penalty stiffness of the cohesive law can introduce an error into the computation of the energy release295

rate [46], especially when the damage process zone is not fully developed. However, it is worth noting296

that the initial stiffness that has been selected is very high to minimize this effect. In any case, the297

good agreement between both approaches validates the methodology presented here.298
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Figure 7: Comparison of the mode-components of energy release rate between VCCT and CZ J-integral
extraction methods.
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Furthermore, the standard formulations for VCCT require having orthogonality of the mesh with299

the delamination front in order to obtain accurate energy release rate components [47]. Therefore,300

its application to three-dimensional FE models requires the option of being able to move meshes that301

conform according to the delamination front, something which is not available in commercial finite302

element codes [48]. Alternative solutions that enable the use of stationary meshes are presented in303

[49, 50]. These techniques consist of tracing a smooth virtual front around the stepped front. Either304

way, the basic assumption of these formulations is that the nodes at the delamination front will305

propagate along a normal vector to the current front. However, when the delamination originates from306

an artificial initial defect, e.g. caused by a Teflon insert, or when the loading conditions change, there is307

a transient stage during which the shape of the crack front changes according to the current propagation308

conditions. The formulation for the evaluation of the GDD does not depend on the geometry of the309

crack front (which is historical information), but rather on the current displacement field. Further310

details are given in [39]. Thus, any variation in the displacements due to a change in the loading311

scenario is captured by the GDD criterion at the current time. Therefore, the mode-decomposition312

scheme according to the GDD can be applied during transient propagation.313

5. Comparison with the LEFM analytical solution of a penny-shaped crack314

In this section, the formulation of the CZ J-integral is applied to a penny-shaped crack embedded315

at the centre of a steel cylinder of 20 mm radius, r, and 20 mm height, h (c.f. Figure 8.a). The radius316

of the penny-shaped crack, a, is 5.1 mm. A shear force, Q, is applied at the center of each crack face,317

pointing in opposite directions, as shown in Figure 8.b. The cylinder is modeled in the commercial318

FE code ABAQUS [43] using C3D8I hexahedral elements. Exploiting Y -symmetry, only one half of319

the specimen is modeled (c.f. Figure 8.c). The crack interface is modeled using user-defined cohesive320

elements [10, 11] enhanced with the CZ J-integral formulation (c.f. Appendix A for the finite element321

implementation). The undeformed cohesive elements are 0.32 mm wide and 0.1 mm long (tangential322

and radial direction to the crack front, respectively). The elastic and fracture properties used in the323
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FE model are listed in Table 4.324
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Figure 8: a) Penny-shaped crack embedded at the center of a cylinder. b) Detail of the penny-shapped crack
with the applied shear load [38]. c) FE model.

Properties
E: Young’s modulus 210 GPa
µ: Poisson’s coefficient 0.3 -
Gc: fracture toughness 11 N/mm
τo: strength 400 MPa
K: penalty stiffness 105 N/mm3

Table 4: Elastic and fracture properties used in the simulation study of the penny-shaped crack.

The CZ J-integral mode II and III components computed according to Equation (15) are repre-325

sented in Figure 9 together with the LEFM analytical solution of a penny-shaped crack in an infinite326

domain available in [38]. The mode I component is not plotted since it is negligible under these loading327

conditions. The represented results have been normalized by:328
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F =

(
2Q

(πa)3/2

)2

E
(17)

The energy release rates extracted using the CZ J-integral formulation are in good agreement with329

those from the LEFM analytical solution [38]. However, likewise in the VCCT example presented330

in Section 4, the LEFM analytical solution does not take into account the development of a damage331

process zone ahead of the crack tip. Even though the parameters of the cohesive law have been332

selected such that a fair comparison with LEFM can be made (small fracture process zone), there333

still exist a small discrepancy between the results of the two methods. In any case, the derivation334

and implementation of the proposed CZ J-integral mode-decomposition scheme is validated with high335

accuracy.336
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Figure 9: Comparison of the mode-components of the energy release rate between the LEFM-based analytical
solution [38] and CZ J-integral method.

6. Application to a partially reinforced ELS specimen337

In [39], an end-loaded split (ELS) test on a symmetric run-out specimen is presented. A Teflon insert338

is placed at the mid-plane of the specimen and acts as an initial delamination. A pulling displacement339

is applied to the cracked end of the specimen causing the two specimen beams to deflect. The test rig340

allows the applied displacement to be maintained in the initial direction (usually the vertical direction)341
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by clamping the opposite end of the specimen between rollers. Consequently, the movement in the342

horizontal direction is not constrained and axial forces are avoided. Because of this test configuration,343

the specimen is subjected to large deflections. Moreover, the particularity of this kind of test is that344

the delamination shape changes during propagation as it approaches the stiffened region created by345

bonded reinforcements on the upper and lower faces (cf. Figure 10). The reinforcements do not span346

the entire width of the specimen in order to promote a curved delamination. As a consequence, during347

propagation, both the delamination front and the crack surfaces are curved. Therefore, the partially348

reinforced ELS specimen is considered to be suitable to exemplify the applicability of the generalized349

CZ J-integral methodology for 3D curved and non-planar delamination fronts.350
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Figure 10: a) Sketch of the partially reinforced ELS specimen [39], consisting of a CFRP plate with an initial
delamination caused by a Teflon insert and two CFRP reinforcements bonded to the upper and lower faces.
The grey-shadowed area represents the Teflon insert. The blue-shadowed area is the part of the mid-surface
represented in figures 11, 12 and 13. b) Simplified model for FE simulation and dimensions (units in mm).

The mid-surface is modeled using user-defined cohesive elements which incorporate the formula-351

tion presented in [10, 11], enhanced with the GDD criterion presented in [39] and the CZ J-integral352

formulation described in Appendix A. The undeformed cohesive elements are 0.27 mm wide, 0.23353

mm long and have zero thickness. To reduce the computational resources required, only one half of354

22



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Interface properties
GIc = GIIc = GIIIc: mode-independent fracture toughness 2 N/mm
τIo = τIIo = τIIIo: mode-independent interlaminar strength 35 MPa
K: penalty stiffness 105 N/mm3

Table 5: Fracture properties of the interface used in the simulation study of the ELS specimen.

the specimen is modeled by exploiting X2-symmetry. The elastic properties of the laminate and the355

fracture properties of the interface are listed in Tables 1 and 5, respectively. Note that, as a simple356

way to check the CZ J-integral implementation, the fracture toughness is set to be mode-independent357

(Gc = GIc = GIIc = GIIIc = 2 N/mm) to ensure a constant J-value (J = Gc) during static crack358

propagation. Thus, the sum of the three mode-decomposed CZ J-integrals in Equation (15) must be359

constant and equal to 2 N/mm at every integration contour, regardless of the loading mode. In the360

following figures, only the blue-shadowed area of the mid-surface in Figure 10 is represented.361

The historical evolution of the 0.5-valued energy-based damage isoline is plotted in Figure 11.a. The362

energy-based damage, De, distribution is projected onto the deformed mid-surface (cf. Figure 11.c)363

for a prescribed end displacement of 27.7 mm. Note that a large fracture process zone is developed364

(the maximum length of the CZ is approximately 20 mm). The GDD distribution within the CZ is365

represented in Figure 12. As mentioned in Appendix A, the CZ J-integral can be evaluated at any366

point within the CZ and, therefore, infinite integration paths can be tracked. For illustrative purposes,367

only a few selected integration paths are plotted on top of the GDD distribution. Note that the368

trajectory of the integration paths is established according to the GDD. Thus, since the ωtot
Gc isolines369

are not parallel, the integration paths are curved lines throughout the CZ.370

The total J-value is evaluated at each of the 30,000 integration points forming the CZ. The result is371

represented in Figure 13.a. The step length ∗hk used is 0.3 mm (1.3 times the element length), where372

the superscript ∗ means before the projection on the cohesive interface mid-surface (see Appendix A373

for further description of ∗hk). Note that the J-distribution is constant and equal to the fracture374

toughness, which, during static propagation and for any mode mixity, amounts to 2 N/mm. The total375

J-value computed is equal to the fracture toughness at all the integration points within the cohesive376
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Figure 11: a) Historical evolution of the 0.5-valued energy-based damage isoline extracted at the integration
points. b) Reaction force vs prescribed displacement curve with the current loading state highlighted in red.
c) Energy-damage projected onto the deformed mid-surface at the current loading stated marked in (b).

zone with a maximum error of 3.7% (cf. Figure 13.a). By reducing ∗hk, more accurate results may377

be obtained. However, for such a large CZ, the computational cost increases significantly with the378

number of segments in which the integration paths are discretized.379

The decomposition of the CZ J-integral into modes, computed according to Equation (15), is also380

represented in Figure 13. The mode II and III components of the CZ J-integral are predominant,381

while mode I slightly appears at a small region close to the specimen’s edge (cf. Figure 13.b). The382

contribution to the J-value of the tangent quantities to the mid-surface is decomposed into modes II and383

III according to the GDD. The bonded reinforcements cause the loading state to be uneven throughout384

the specimen’s width, leading to a curved crack, so that the GDD amounts to 60◦ with respect to the385

X1 at the zones with the highest delamination front curvature. Due to the test configuration, the386
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Figure 12: Growth driving direction (GDD) distribution along the cohesive zone and a few selected integration
paths (black solid lines) plotted on top of it.The current loading state is marked in Figure 11.b.

maximum interlaminar shear stress is applied in the global X1-direction. For straight cracks where387

the GDD is aligned with the X1-direction, the shear component would be pure mode II. However, in388

the studied case with a curved delamination front, the maximum contribution of the external loading389

to the mode III CZ J-integral is at the region where the GDD differs most from the X1-direction (cf.390

Figures 13.c and 13.d).391
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Figure 13: Distribution of a) Jtotal/Gc (where Jtotal = JI + JII + JIII and Gc=2 N/mm), b) JI , c) JII and d)
JIII within the cohesive zone at current loading state marked in Figure 11.b.
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7. Conclusions392

A novel methodology for calculating the mode-decomposed J-integrals in three-dimensional delam-393

ination simulation using a cohesive zone model approach is presented. The methodology incorporates394

the growth driving direction criterion, recently developed by the authors, to track the integration paths395

and to determine the local directions of mode I, II and III components. The generality of the formu-396

lation makes it applicable to curved fronts with non-planar delamination interfaces and large fracture397

process zones. The application of the described methodology results in curved integration paths.398

The calculation of the J-integral is based on dividing the delamination interface into elemental399

thickness slices so that the J-value of each slice is unique. The curvature of such slices is defined400

according to the growth driving direction. Since the growth driving direction is mesh independent, the401

definition of the slices is not affected by the mesh size.402

By applying the formulation presented here, a global measure of the energy release rate in three-403

dimensional structures modeled using a cohesive zone model approach can be obtained. To the authors404

knowledge, this has not been previously addressed. Furthermore, the energy release rate can be405

decomposed into mode I, II and III components. The decomposition of the shear component of the406

energy release rate into mode II and III, to date, has only been addressed under the assumption of407

elastic fracture mechanics. In addition, the new formulation enables a global measure of the mode408

mixity to be obtained, overcoming the limitation of the current 3D cohesive zone model formulations409

where the mode mixity is only obtained at integration point level in terms of opening displacements.410

The limitations of the presented formulation are related to the use of cohesive zone models, and411

therefore, the crack is confined to propagate within the interface between layers. The possibility of412

crack migrating to another interface is not accounted for.413

Besides the immediate applications of the formulation, the authors believe that more applications414

will be uncovered in future research. The CZ J-integral presented here is a decisive contribution to415

fracture mechanics-based procedures in a cohesive zone model framework, which will allow the design of416

lighter and more reliable structures. In addition, a direct application of the CZ J-integral formulation417
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is its implementation in combination with existing fatigue simulation methods formulated in a CZM418

approach that rely on mode-dependent Paris law’ like expressions. Thus, the mode-decomposed CZ J-419

integral formulation developed becomes a new solution for extracting mode-decomposed energy release420

rates of real complex three-dimensional structures.421
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Appendix A. Discretization with the FE method425

Using Equation (15), the mode-decomposed CZ J-integrals, which may vary for every slice, can be426

evaluated everywhere within the CZ. Moreover, any point within the CZ belongs to a single slice, i.e.427

to a single integration path. The integration paths are defined according to the local GDD. Therefore,428

one can randomly select any location of the CZ and, by means of the GDD, identify the tangent to the429

integration pathline at that point in order to move, either forward or backward, along the integration430

path. The mode-decomposed CZ J-integrals corresponding to such slice are obtained when the path431

is tracked in its entirety.432

The procedure for the evaluation of the mode-decomposed CZ J-integral of Equation (15) is shown433

in Figure A.15 and described in the following. Consider a point, P k, belonging to the CZ. In order to434

assess the mode-decomposed CZ J-integrals at the slice which the point P k belongs to, the numerical435

integration of Equation (14) is performed along the integration path, defined as tangent to the local436

GDD direction and limited by vanishing stress conditions at both ends (cf. Figure 3). In the general437

case, the initial point P k is not located at one end of the integration path, i.e. point P k is located in438

the middle of the CZ. In this case, the path will be tracked from P k in the GDD (Loop 1 in Figure439

A.15) and in the opposite direction to the GDD (Loop 2 in Figure A.15). In other words, in the440

positive GDD until vanishing elastic stress is reached (point 2 in Figure 3), while in the negative GDD441
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until the intersection with the 1-valued energy-based damage isoline, where the cohesive stress also442

equals zero (point 1 in Figure 3). The condition for vanishing cohesive stresses reads:443

µ < tol (A.1)

where µ is the norm of the cohesive stresses and tol is a user-defined threshold close to zero.444

To move along the integration path, the following procedure is applied. Starting from P k, the next445

point along the integration path is established by moving in a straight line a ∗hk-length step further446

in the local GDD, which is tangent to the cohesive interface mid-surface, S̄coh, at P k. Then, a new447

point, ∗P k+1, in the space is found. Nevertheless, ∗P k+1 is not necessarily placed on the mid-surface,448

S̄coh. This becomes evident when S̄coh is highly non-planar (cf. Figure A.14). Thus, the real next449

point constituting the integration path, P k+1, is found by projecting ∗P k+1 on S̄coh in the normal450

x3-direction of point P k.451
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Figure A.14: Point P k is a point on the integration path of a curved cohesive interface, S̄coh. The following
point on the integration path, P k+1, is found by projecting point ∗P k+1 along the normal direction to the
interface at point P k. Point ∗P k+1 is at an ∗h distance from P k in the tangential GDD.

The integrands in Equation (15), σii and ∂δi
∂x1

, are evaluated at every point P k along the integration452

path. σii are the components of the cohesive stress tensor expressed according to the local Cartesian453

coordinate system. On the other hand, the derivative of the displacement jumps, δi, with respect to454

the local Cartesian coordinate aligned with the GDD, x1, is addressed in the following. Xj is the455
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Cartesian reference system, xi is the local Cartesian coordinate system and Rij is the transformation456

tensor which relates the global to the local coordinate system. The derivative of the rotation matrix,457

Rij , with respect to the coordinate x1 can be approximated to zero by assuming that the curvature458

of the interface within the integration subinterval is small. This is achieved by setting an ∗hk-length459

step similar to the element length. Moreover, its derivation would increase the complexity of the460

formulation without a substantial improvement in the accuracy of the solution. Thus, by assuming461

that the derivative of Rij with respect to x1 can be omitted, the derivative ∂δi
∂x1

reads:462

∂δi
∂x1

= Rij
∂Mjm

∂x1
Qm (A.2)

where Mjm is the transformation matrix that relates the global displacement jump with the nodal463

global displacement, Qm. The size of Qm is the number of degrees of freedom of the element (in the464

case of 8-noded cohesive elements, m = 1...24). The derivative of the transformation matrix, Mjm,465

with respect to the local coordinate, x1, is obtained by applying the chain rule:466

∂Mjm

∂x1
=
∂Mjm

∂ηα

∂ηα
∂x1

(A.3)

The first partial derivative in the right hand side of Equation (A.3) is the variation of the trans-467

formation matrix, Mjm, with the isoparametric coordinates of the cohesive element formulation, ηα468

(α=1,2):469

∂Mjm

∂ηα
=

[
−∂Njk
∂ηα

,
∂Njk
∂ηα

]
(A.4)

where Njk is the shape function matrix and the subscript k runs from 1 to the number of degrees of470

freedom,respectively, of the top and bottom surface of the cohesive element. In the case of an 8-noded471

element, k = 1...12. In [10, 11], the material coordinates and the displacement fields are interpolated472

within the domain of the interface element using isoparametric bilinear shape functions:473
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L1 =
1

2
(1− η1) (1− η2) ; L2 =

1

2
(1 + η1) (1− η2)

L3 =
1

2
(1 + η1) (1 + η2) ; L4 =

1

2
(1− η1) (1 + η2)

(A.5)

organized in Njk as follows:474

Njk =




L1 0 0 L2 0 0 L3 0 0 L4 0 0

0 L1 0 0 L2 0 0 L3 0 0 L4 0

0 0 L1 0 0 L2 0 0 L3 0 0 L4




(A.6)

where the local isoparametric coordinates, η1 and η2, range from -1 to 1 over the element domain.475

The derivatives ∂ηα
∂x1

are the inverse of the derivatives of the local coordinate, x1, with respect to476

the isoparametric coordinates, ηα, defined as:477

∂x1
∂ηα

= R1j
1

2

∂Njk
∂ηα

(
C+
k + C−k +Q+

k +Q−k
)

(A.7)

where C−k and C+
k are the global coordinates of the nodes at the lower and upper surfaces, and Q−k and478

Q+
k are the nodal displacements, relative to the global coordinates, of the lower and upper surfaces.479
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Figure A.15: Flow chart of the calculation of the CZ J-integrals at a given point within the cohesive zone
discretized with the FE method.
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