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1. Introduction

Laminated composite materials are built by stacking plies with diff ~ent material and reinforcement
orientations, e.g. fiber reinforced polymers. During service, exce ssive i *erlaminar stresses can lead
to a loss of cohesion between constituent layers. This failure ~~ecti. " .a is known as delamination,
and it is one of the most common cause of failure in structurc. .nade of layered materials. Therefore,
analyzing the onset and growth of delamination is essential for any mechanical application of laminated
composites. In this regard, the finite element (FE) mc."hod has become an indispensable tool for
designing layered composite structures and predicting ' heir service life.

The most common methods for predicting int rls minar failure can be divided into two main ap-
proaches: Methods based purely on fracture .1e  anics and methods based on the concept of the
cohesive zone model (CZM) [1, 2]; the latter ~f which combines the framework of fracture mechanics
and damage mechanics.

In the fracture mechanics approach, “su .y a local Griffith’s criterion [3] is used to predict delam-
ination growth, i.e., the energy . 'er se r# e, G, is compared to the interlaminar fracture toughness, G..
Two of the most common e t.. ~tion methods for the energy release rate (also called the crack exten-
sion force) rely either on che VCCT [4] or the J-integral [5]. Then, applying Griffith’s criterion, crack
propagation occurs at the po’ ~ts where G > G.. This local energy balance criterion implies a negligible
fracture process zonc. Jon ersely, CZMs can capture the fracture energy dissipation mechanisms of
quasi-brittle m: terials, uch as the formation of micro cracks ahead of the crack tip before complete
separation . vae crack faces occurs. Therefore, the CZM approach is a suitable means of predicting
crack propag-tion when a non-negligible fracture process zone is present. The strain singularity at
the tip 0. a sharp crack is removed by accounting for a cohesive zone (CZ), where the material un-
dergoes degradation until complete decohesion. The mechanical behavior of the interface is modeled

by means of a damage variable, which is a measure of the degradation of the mechanical properties
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of the material ahead of the crack tip. When the damage variable reaches its maximu.. value, a new
crack surface is created. Moreover, CZMs are particularly suited for simula. ~o .terlaminar cracks in
laminated structures because the delamination is confined to propagate betw. n two adjacent plies.
Thus, when a progressive delamination simulation is solved using an » ™ a .alysis, the potential failure
surfaces are known in advance, and the cohesive elements can be flicien.'v located.

Under static loading conditions, existing CZMs [6-12] do r- . requ... the energy release rate to be
computed in order to simulate crack growth. However, some or the recently published methods for
simulating fatigue-driven delamination based on CZM [13-18] lin: the rate of the local fatigue damage
with any variant of the Paris’ law [19]. The Paris’ law-.." expressions relate the crack growth rate
with a power law function of the loading level in ter.. - of a fracture mechanics parameter [13, 20],
usually the stress intensity factor, K, or the energy re ease rate, G, where only the latter is relevant for
a CZM. Therefore, computing the energy releas > 1" is required in order to integrate the rate of the
local fatigue damage. In this regard, the J-in. >oral directly equates to G [21]. In fact, the benchmark
study of the simulation methods for “atig. -driven delamination using a CZM approach presented in
[18] showed a better performance ‘or tu. ™ thods using the J-integral as the means of extracting the
energy release rate.

The path-independence t v. ~ two-dimensional J-integral makes it very attractive in practice, since
it avoids the need for ac ura e computations on the stress field at the crack tip; something which is
hard to deal with ir an Fr. “ramework. For this reason, considerable effort has been devoted to
extending the applica.” ity ¢ the J-integral to three-dimensional (3D) domains [22-32]. The published
extensions of th ' J-intey -al for its evaluation in three-dimensional problems, where the crack extension
force may c.ange along the crack front, commonly employ two approaches. The first is a point-wise
evaluation o, “he “-integral on a cross-section normal to the crack front, resulting in the combination
of a cont. 1 integral and a surface integral defined over the area enclosed by the contour. See [30]
for a detailed description. Computing the surface integral requires accurately calculating the field

quantities at the crack tip. For this reason, the boundary element method is commonly used [27, 30].
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The second approach is the equivalent domain integral over a finite volume surroun’'ng the crack
front [25, 26, 33]. With this method, capturing the singular field near the ~ra x tip is not required
which is why it is usually applied in a FEM framework. Regardless. the «, nlicability of most of
these J-integral extensions to three-dimensional domains is restricteu o ertain assumptions such as
plane-strain/stress, i.e., at the vicinity of the crack tip, or plane - crack By employing curvilinear
coordinates, Eriksson [34] and Fernlund et al. [35] obtained _enei....ed expressions applicable to
curved cracks with non-planar crack surfaces. In [34], a volu..e-ind :pendent integral expression for
evaluating the crack extension force is derived from the nrinciple >f virtual work. In [35], the decrease
of the potential energy with crack extension is employeu “o obtain a general path-area independent
J-integral expression for non-planar cracks with curvea . ~ack fronts. In both cases, the fracture process
zone is considered negligible and the mode-decom, 7 .tion is not addressed.

Delamination propagation can be described ti.ough a combination of the three basic fracture
modes (Modes I, IT and III) [36], and the fre *ure resistance of the interface, under both static and
fatigue loading, highly depends on the moa. mixity conditions. Consequently, the delamination models
available in the literature [13, 20, 77] arc “as :d on a mode-decomposed definition of the load, expressed
in terms of the energy release 1."» (Gr Gyy and Grrr). In this regard, the decomposition of the J-
integral into fracture modes, a. ~ tool for extracting energy release rates, becomes necessary.

In this work, a new 1 .oce 'ure to numerically evaluate mode-decomposed J-integrals in a 3D body
undergoing delaminat on is p. <ented. The method is applicable to curved crack fronts with non-planar
crack surfaces. More. er, .he method enables, for the first time, the application of the J-integral
in 3D problems involvi g large fracture process zones. In addition, in contrast to current cohesive
models whe e the mode mixity is evaluated locally (point-wise) using the interface separation, the
presented J-. tec 4l formulation enables defining the mode mixity parameter as a function of the
mode dec 'v.posed Gr, Grr and Grrr (global measures). This is of crucial importance to improve the
accuracy of the simulation of delamination propagation under quasi-static and fatigue loading.

The formulation is derived from the general expression of the J-integral for 3D curved delaminations
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with non-planar surfaces expressed in terms of curvilinear coordinates [35], which re..2s on LEFM.
Its application to cohesive interfaces is addressed in Section 2, while its . ~v] mentation in an FE
framework is presented in Section 3 and Appendix A. In Section 4, the to. ~ulation is applied to
a moment-loaded double-cantilevered-beam (DCB) and the mixed-mc '@  -components are compared
to the mode-decomposed energy release rates obtained from VC( T. In ."sction 5, the formulation is
applied to an embedded penny-shaped crack in a steel cylinder _ id tu. uetermined mode-components
are compared to and validated against an analytical LEFM-._ased olution [38]. In Section 6, the
formulation is used to compute the J-integral components of a sartially reinforced end-loaded split
(ELS) specimen with a non-straight crack front and non-p.. nar crack interface. Finally, the conclusions

on this work are presented.

2. Formulation of mode-decomposed enc+y - re.ease rates

In this section, the formulation of the moac lecomposed energy release rates in 3D delaminations,
modeled using a cohesive zone model appro. -h, is presented. The point of departure is the generalized

J-integral for non-planar curved r cacks o. * vned by Fernlund et al. [35].

2.1. Assessment of the enerrc 1 release .ate by means of the J-integral formulation in curvilinear coor-

dinates

Consider an elasti~ bo - (cf. Figure 1), with a crack, subjected to prescribed tractions, T, and
displacements, u, & mg par’s of its boundary surface (Note that T' and w are physical entities that
are not yet desc 1bed ii. any particular coordinate basis). In a general three dimensional domain, both
the crack sur® zes ... the crack front may be curved. Let 6%, i = 1,2, 3, be an orthogonal curvilinear
coordinate . "stem - sith origin at a given point P along the crack front. This local coordinate system is
orientea ~uc'. w.at, at point P, 63 is normal to the crack surface, 62 is the coordinate along the crack
front and 6* is the direction of crack propagation, which is always tangent to the crack surface and

perpendicular to 6% and 63.
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Figure 1: a) Three-dimensional body undergoing a delaminat: . with curved front and non-planar crack
surfaces. b) The integration domain is a slice of infinites.. *al thickness, dls.

Let us focus on a thin slice of elemental thickne »,, dis, of the cracked body, which contains P (cf.

Figure 1). Note that an infinitesimal length segi. env, dl; along a curvilinear axis, §° is given by:

U; = \/g:d0" (1)

where g;; is the covariant metric ten- or. ™1 the absence of body forces, the change in potential energy,

I, per unit of newly created ‘rack area is [35]:

d11 aw du;
—a_—/vﬂdVJr/STdAds @)

where dA is the elemen.. ' ¢ ack area extension, V' is the volume of the slice, S is the surface surrounding
V, W is the str in ener y density, 7% are the contravariant components of the traction vector and u;
are the cov riant « \mponents of the displacement vector.

The infinive. ..al thickness of the slice, allows to lump the three-dimensional slice into a surface S,
defined by 2 =0 (dlz — 0). Then, by applying Green’s theorem, and under the assumption of small
deformations, elastic material behavior, symmetry of the stress tensor and equilibrium conditions, the

decrease in potential energy per unit area extension is expressed, in [35], as a contour integral and an
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area integral on the surface Si:

1T 1 . .
g4 (Wnl _pidu 0 5

1 ’ 9 Oug
Y dI' = —— ’ ds 3
dA Va1 Jr 591) V911922 /s1 o (o ) (3)

where [ is the contour enclosing S; in the clockwise direction and n - i~ the . 'tward unit normal vector
on I'. Note that in [35], the curvilinear coordinate system is rotat *d 90° - round the 6'-coordinate.
The J-integral is equivalent to the energy release rate, (, for au elastic material response. In a
three-dimensional body, the energy release rate may vary alo..- the crack front. Therefore, in order to
assess the delamination extension force in three-dimen<iona. »ro' ems, it is customary to compute the

point-wise value of J as a function of the crack fror' ___l.cu, P.

2.2. Application to cohesive interfaces

Unlike LEFM, the CZM relies on the existend = 0. a band of material ahead of the crack tip (known
as the cohesive zone (CZ)), where the material . ~haves nonlinearly [1, 2]. In the CZ, a cohesive traction
distribution acts on the separating sv faces, "hus avoiding stress singularities at the tip of sharp cracks.
The constitutive law that relates .he cown - ve tractions to the displacement jumps at the interface is
governed by a scalar damage vari.. e. T.ae damage variable evolves monotonically with time to ensure
irreversibility. To guarante : the ~roper energy dissipation under mixed-mode conditions, in [11] the
cohesive law is formulatr d in + one-dimensional space, where the equivalent mixed-mode traction, u, is
related to the norm - ¢ the dis, lacement jump, A. Thus, the equivalent one-dimensional displacement

jump, A, is defined as:

A= 1/(01)” + (82) + ((0))° (4)

and the ~qu. . at one-dimensional interface traction, u, is related to A as follows:

p=(1-D")K\ (5)
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where DX € [0,1] is a scalar damage parameter degrading the constitutive tangent stifi.. s, K, and ()
is the Macaulay bracket ensuring that negative normal opening (interpenet. *ic . of crack faces) does
not affect damage development.

A sketch of the bilinear cohesive law used in [11] is representec m " igure 2. An energy-based
damage variable, D¢, is introduced as the ratio of specific dissipate | energ - due to fracture, wy (Figure
2.b), and the fracture toughness, G. (Figure 2.a). Thus, D¢ rar__3 fro... v to 1, and can be understood
as the degree of crack development, taking a value of 0 if the wcgrad .tion process is yet to start, and

a value of 1 if the crack is fully developed.

a) ) B
n
M, /\ .
B (1 -DY)-fd Ao A
0 u
g‘ mwt
A A N A Ay A

Figure 2: Equivalent one-dimensional cohe<ive law. The shadowed area in a) represents the fracture toughness,
Ge, in b), the specific dissipated energy, vq ana ‘u c¢), the total specific work, wiot, for a given state of damage.

The constitutive law is forme { by an i~itial elastic region, before damage initiation, and a softening
region. The onset and propa ation of welamination are limited by the onset mixed-mode displacement
jump, A,, and the critic'. mixed-mode displacement jump, A., such that the applicability of the

energy-based damage var.. " le, D¢, is restricted to:

D=1 for AD > e

where A7 is che mixed-mode displacement jump associated to the current damage state.
When applied to delamination modeling in laminated composite materials, the cohesive behavior

is lumped into the interface between subsequent plies. In [35], it is demonstrated that the J-integral
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of Equation (3), generalized in terms of curvilinear coordinates for cracks with cu. ed front and
non-planar crack surfaces, is path-area-independent. Then, for the measurc. ~er ., of the delamination
extension force in 3D laminated structures modeled using a CZM approach the . -th-area-independence
of Equation (3) can be employed to reduce the contour I" to the cohesiv. it :rface (cf. Figure 3), similar
to what is done with the two-dimensional form of the J-integral 5]. TL vefore, because of the zero-
thickness of the cohesive interface, and taking into account tF ' the ¢ening displacements are very

small, the differentials n;dI” ~ df* and dS in Equation (3) va..sh. Taus, Equation (3) is reduced to:

L g

J:—\/;T/F(T%)dr (7)

Delamination surface

Figure 3: The integration yath, ' (ds shed line), is reduced to the zero-thickness cohesive interface.

Let 0% be the contravariant ¢ nponents of the cohesive stress tensor. Then, the contravariant

traction vector at the c.~ck aces is given by:

T" = o'in; (8)

where n; is .ue outward unit normal vector on the contour I, i.e., on the crack surfaces. Thus, n;

vanishes for  # 3 and Equation (7) reads:

J=—

1 i3 a“j i3 Ouy 1
i S (o G+ ) 0 ®)

where v+ and v~ are the displacements at the upper (*) and lower (7) crack surfaces, respectively.
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Finally, by introducing the displacement jump as the separation of two initiallv coinc.ing points on

the interface, defined as:

6 = (uf —uy) (10)

the curvilinear CZ J-integral, when applied to cohesive interfaces, can be axpressed as:

_ 1 i3£\ g
J = \/gj/cz (U 891/49 (11)

Observe, in Figure 3, that the integration path is the ~ntire CZ so that all the cohesive stresses
contribute to the CZ J-integral. Further details on "he integration path shape and limits in 3D

applications are provided in Section 2.3.

2.8. Integration paths

As demonstrated in Section 2.2, the integration domain of the curvilinear CZ J-integral applied
to cohesive interfaces is a slice of in. ~itesim I thickness, dls, lumped into the delamination interface.
Thus, the integration domain is edv ed to a path contained in the delamination interface that follows
the direction of crack propar ation, ¢ . In order to compute the J-distribution in three-dimensional
structures, the interface -~~~ be divided into infinite slices. Obviously, the J-value of each slice is
unique and is obtained ..“ .n the integration path is covered in its entirety, i.e., going through the
entire cohesive zone fro 1 the completely damaged zone (point 1 in Figure 3, with zero cohesive stress)
to the end of th zone ‘n elastic regime (point 2 in Figure 3, with zero cohesive stress).

In LEFM. the , ~~~ gation direction, 8", is assumed to be the normal to the crack front at the point
P, where t e crack front is the line separating the damaged and undamaged parts (cf. Figure 4.b).
Howeve uu. ' “nition of the propagation direction as the normal to the crack front does not apply for
CZM, due tc the existence of a cohesive zone of variable length. The authors have recently introduced
the concept of the growth driving direction (GDD) for CZM [39], as an analog to the crack propagation

direction in LEFM. The GDD is defined as the gradient vector field of the scalar energy-based damage,

10
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D¢, with respect to the coordinates tangent to the cohesive interface mid-surface:

GDD = —VD* (12)

Thus, the GDD is normal to the energy-based damage, D¢, isolin~~ (cf. Toure 4.a) and it converges
with the normal to the crack front in LEFM (cf. Figure 4.b) in *he lin ting case where the length
of the CZ approaches zero. Therefore, by making use of tl e cr’.e1 o presented in [39], § can be
defined according to the GDD. In this way, the integration ~aths, defined along the §'-coordinate,
never intersect and the three-dimensional structure can be “md rstood as the aggregation of infinite
individual slices of infinitesimal thickness which cor ' ... .. c.ack propagating in the GDD. It is worth

mentioning that the damage isolines may not b | ~~lel along the CZ, leading to slices with double

curvature if, in addition, the cohesive interfac = ™id-+ "rface is non-planar.

a) b)

Intact

Intact

Growth driving

dire _u. n A \

direction ®

Delaminat o Delaminated

Figure 4: a) The g ~wtl driving direction (GDD) is assumed to be the normal direction to the energy-based
damage isoli".es in the CZM framework. The integration paths are tangent to the local GDD direction. b) The
propagation directioi is assumed to be the normal direction to the crack front in the LEFM framework.

It is . °t .d that, to compute the J-value in cohesive interfaces using Equation (11), the contribu-

tion of the stress, %3, and displacement jump slope in the GDD direction, %, in the elastic regime

is needed. However, the criterion in Equation (12) for identifying the GDD, based on the negative

11
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gradient of the energy-based damage, D¢, is only meaningful for D¢ €]0, 1] (see Equatic.. (6)). There-
fore, a new criterion to identify the GDD in the elastic regime must be use.’ I this regard, another

criterion, which is also active before the initiation of the degradation prrcess, . nroposed in [39]:

GDD = -V <“gt°t) (13)

where “’é—:t is the ratio between the total specific work (cf. Fig re 2 _j « nd the fracture toughness. Both
the conservative and the non-conservative work are compute.’ in vnis criterion. This implies that as
soon as two initially coinciding points separate from each ¢ her A > 0), some elastic energy is stored
which makes this criterion active before damage ¢ ... C..ce the damage is initiated, both criteria

lead to the same GDD solution.

2.4. Mode-decomposition of the CZ J-integral j. v «.> application to cohesive interfaces

A crack can grow under a combination of tu. ~e loading modes [36]: the opening mode (mode I), the
sliding mode (mode II) and the teari «g mo. = (mode III). Mode I is defined as normal to the cohesive
interface mid-surface, mode II, ta .gent v ‘ae mid-surface in the propagation direction and mode III,
tangent to the mid-surface and pe._ and’ ular to mode II. In this work, the crack propagation direction
is defined as the GDD (cf. Lecti » 2.3). This implies that the mode II direction is also defined as the
GDD, and the mode III Jirer sion is defined as the direction perpendicular to the mode I and mode II
direction.

For the mode decon. >os"ion of the J-integral, the integrands in Equation (11) must be decomposed
according to the local be sis vectors, aligned with the three loading modes directions. Thus, ' is locally
coincident - vith tt~ GDD (i.e. tangent to the mid-surface), 6 is normal to the mid-surface, and 6>
is normal to v .d 63. Moreover, since 6’ are orthogonal curvilinear coordinates, the local covariant
and contr. - ariant basis vectors are collinear.

At an interface modeled using a CZM approach, only three uncoupled components of cohesive

stresses (013, 022 and 033) result from the displacements jumps between crack faces (1, d2, d3). The
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quantities ¢'? and % contribute to mode II, 623 and %, to mode III, and ¢33 anau g%f, to mode

I crack loading. Hence, the mode-decomposed CZ J-integrals are defined -~cr rding to the local 6°

coordinate system such that the terms with ¢ = 3 are attributed to Mede 1, * = 1, to Mode II and

i = 2, to Mode III:

1 15)}
Jr = — 33 a,
! g1 /cz ( o )
1 801\
J — 0,137 \‘91 14
II oo /CZ< 891) (14)
1 . 00
Jrr=— / (U‘” > E) de*
g1 Jo . -

Note that Equation (14) represents an express: uic. vw.e evaluation of the mode-decomposed energy
release rates in arbitrarily shaped delaminatioi.: .. vol.ing a large fracture process zone modeled using
a CZM approach. The integration paths « = cu..ed lines crossing the CZ formed according to the
GDD, which is rendered taking into ar _ "nt the loading state at each point. Moreover, the mode II is
collinear with the GDD and mode l1. ‘s pe’ pendicular to it. This results in the mode directions not
being constant along the integr: -ior pat} ;. On the contrary, in LEFM approaches, mode II and mode
IIT directions are the norma’ n»d tangent to the crack front, respectively.

For 3D planar cracks .c. ribed by a rectangular Cartesian coordinate system, the work by Rigby
and Aliabadi [30] and Ei.-sson [40] propose equivalent expressions for the mode-decomposed J-
integrals, which arc ‘n igre ment with those presented in Equation (14) in the limiting case where
the length of t' e CZ . nds to zero. Moreover, by limiting the integration domain to the cohesive
interface, th~ _ror co.amitted in the decomposition of the far-field quantities due to the out-of-plane
stress gradi nts [27, 40] is avoided, thus, allowing the integration domain of the CZ J-integrals to

extend 1 la ge iracture process zones.
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3. FE-discretized mode-decomposed CZ J-integrals

In the following, the formulation presented in Section 2 is applied in a~ Fk  -amework. The CZM
used in this work, and its implementation to FE, was presented by Turca e al. in [10, 11]. Complying
with the cohesive element definition, the interfacial tractions and displa. “ment jumps are expressed
in a local Cartesian coordinate system, z;, located on the deform d mid-¢ rface, S.op, defined as the
average distance between two initially coinciding points, P~ and =%t (cf. Figure 5). The direction
cosines of the local Cartesian coordinate system are the nc.mal, Z5, and tangential, é; and és, unit
vectors to S.,n. Furthermore, employing the criterion deve. ned i+ [39], the local tangential coordinates
can be oriented in such a way that z; and x5 are the t~»~~~ "al and normal coordinates to the GDD,

respectively.

Figure 5: Descrir dion of the undeformed, S,, and deformed, ST and S™, configurations of the delamination

interfaces. The « nantities of the CZM are calculated at the deformed misurface, Scon, in terms of the local
Cartesian coordina ~< = P is a point located at the mid-surface in the deformed configuration, while points
P* and P~ .re points belonging to the upper and lower crack surfaces, respectively. P, P and P~ coincide
at P, in the undefor: \ed configuration.

To nu. v rically integrate Equation (14), trapezoidal integration is employed (although any other

numerical integration method could be used). Thus, the curved integration pathline is discretized into

small linear subintervals tangent to the curvilinear coordinate #'. The quantities in the integrand
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of Equation (14) must, therefore, be defined according to the local Cartesian coordin. e system, x;,
with a locally coincident direction with the covariant and contravariant basi. ec ors of the orthogonal
curvilinear coordinate system, 6°. Further details on the discretization of +he 1. “mulation with the FE
method, such as the tracking of the integration path, as well as its li.. ‘ts are addressed in Appendix
A.

After the discretization of the cohesive interface into FE. '’ e nu...crical integration of Equation

(14), performed under the trapezoidal rule, reads:

_ 1985t

Jpo =Y (b w—f;ﬂL

k
' Sep k1957
o, ~—+o0 -
Jir= = }f(L“lf;3ml (15)

k

, k+1 005+
© .39z, 1023 5
Jrr e — Z h | x1 1

L\ ’ _

where h* is the integration interval i -ot', approximated to the Euclidean distance between two

consecutive points along the inuv. ~v7 .ion path, P* and P**1.
The accuracy on the cor.p. “ation of the CZ J-integral depends both explicitly on the integration
interval length, and imp icit y on the size of the cohesive elements due to the discretization of the

displacement field in “he Fr. ~odel.

4. Compariso « witk mode-decomposed energy release rates extracted by VCCT

The car sbilitie= of the CZ J-integral formulation presented are assessed by comparing the energy
release rate 1..~ 7~ components of a moment-loaded DCB model obtained by VCCT. The specimen is
30 mm lo. ¢, 6 mm wide and 3 mm thick (Figure 6). The elastic properties, corresponding to a uni-
directional laminate made of a carbon fiber reinforced polymer (CFRP) material used in aeronautical

applications, are listed in Table 1. The fracture properties of the interface are presented in Table 2.
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The fracture toughnesses, Gy., Grr. and Gyyyc, are close to typical values for this mate. al. The inter-
laminar strengths, 77, 777 and 7777, have been selected such that the fractu. ~ or scess zone is small, to
enable a fair comparison between the VCCT and the cohesive zone mode! wh. ~ ensuring a minimum
number of 3 damaged elements spanning the cohesive zone, to provid. ~n accurate distribution of the
tractions ahead of the crack tip [41, 42]. The specimen arms are aodeled in the commercial FE code
ABAQUS [43] using C3D8I hexahedral elements. The undefor~ .d eic...cats are 0.4 mm wide, 0.2 mm
long and 0.5 mm thick. The delamination front is completely ..raigh, and located at the mid-surface
at a distance of 15.1 mm from the loading application edoes. A cc nbined I, IT and III fracture mode is
created by applying four force pairs (Figure 6). M1 and .72 generate uneven opening Y-moments at
the upper and lower arms, respectively. M3 and M4 g. ~erate even tearing Z-moments at both arms.

The resultant bending moments are listed in Tabi 3

Lamina‘e | operties

F41: longitudinal Young’s = .2 -'n< 154 GPa
FE55 = Ej33: transversal Young . modulus 8.5 GPa
(G12 = G13: shear modulus in the longitudinal planes 4.2 GPa
(G23: shear modulus ir the . ansversal plane 3.0 GPa
W12 = p13: Poisson’s ~efficie’ t in the longitudinal planes 0.35 -
wo3: Poisson’s coeficient .~ he transversal plane 0.4 -

Table 1: Elastic properties of the la. * iate ised in the simulation studies of the moment-loaded DCB and the
ELS specimens.

Interface properties

Gro: mode 1 . cture toughness 0.3 N/mm
Grie = C 11100 modes IT and 111 fracture toughness 3 N/mm
Tro: 1 :de " intr /laminar strength 10 MPa
Trro = Tr1,.° 7.0des IT and III interlaminar strengths [11] 31.62 MPa
7: enzeg vagn-Kenane’s interpolation parameter [44] 2 -
K penalty stiffness 10°  N/mm?

Table 2: Fre ture p: ‘perties of the interface used in the simulation study of the moment-loaded DCB specimen.

In ti» b waalysis using the VCCT [4], the energy release rates are evaluated locally, at every

node forming the delamination front, using the nodal forces, F;, and relative displacements between

upper
pper u(ower:

released nodes on the upper and lower crack faces, u, "
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Wt

Figure 6: DCB specimen dimensions with four force pairs: "71 an." "2 generate uneven opening Y-moments,

while M3 and M4 generate even tearing Z-moments.

Bending moment

Nmm)|

M1
M2
M3
M4

270
135
960
960

Table 3: Bending moment resultants from the applic tion of the four force couples to the double-cantilevered-

beam model.

1
y_ F upper
91= gt (3
_ F upper
Grr 2Asis 1 (uy
Grir = Fy (ug?Pe”

20615

o uéo’we’r)
o ullowe'r) (16)

o ulzower)

where [§ is the lemen. length in the i-direction. A local crack coordinate system, z; with ¢ = 1,2,3,

defines the 1 le-co...ponents, such that mode I (x;-direction) and mode III (z5-direction) are normal

and tangeni'al to t'.e delamination front, respectively, and mode I (z3-direction) is normal to mode IT

and IIT ¢"rec 1ous. For a straight front, like the one under study, the orientation of this local coordinate

system is constant along the front and aligned with the mesh [45]. The same results are obtained using

the built-in implementation available in the commercial FE code ABAQUS [43].
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To evaluate the J-values, the interface undergoing delamination has been mode. 1 using user-
defined cohesive elements. To this end, the method presented in [10, 11} “as been enhanced with
the formulation for the numerical evaluation of the mode-decomposed €7 ., ‘ntegrals presented in
Appendix A. For the purpose of comparison with VCCT, a fixed D is defined normal to the
straight delamination front.

The mode-decomposed energy release rate distributions #'_1g v.. width of the specimen, from
both the VCCT and the CZ J-integral extraction methods, a.. plott :d in Figure 7. Both results are
in good agreement, although there are small differences at some joints. However, determining which
is the most accurate is not straightforward. On the one . ~nd, in a real specimen, a damage process
zone develops ahead of a crack tip, thus increasing the ~mpliance of the specimen. Using the VCCT
approach, the development of a damage process zou. ~ 7 nead of the crack tip is neglected. Using cohesive
elements, the development of this damage procss . ~ne is captured and therefore, the compliance of
the specimen increases with respect to the cow. ~liance of the VCCT specimen. On the other hand, the
penalty stiffness of the cohesive law ¢ .n 1. "oduce an error into the computation of the energy release
rate [46], especially when the damr ige p. <€ s zone is not fully developed. However, it is worth noting
that the initial stiffness that ha. ™ en s .lected is very high to minimize this effect. In any case, the

good agreement between be . h . ~nroaches validates the methodology presented here.

0.12
. Gr VCCT
. . g[] VCCT
0.1T G111 VCCT
T
_oosp 7
g
=
z 0.06f + 4
>
0.04 ¢ %i +
A S S
0.02_-_+++ i ‘ +++__
0 . A S S o '
T T
0 1 2 3 4 5 6

Coordinate along the width of the specimen (mm)

Figure 7: Comparison of the mode-components of energy release rate between VCCT and CZ J-integral
extraction methods.
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Furthermore, the standard formulations for VCCT require having orthogonality o1 .1e mesh with
the delamination front in order to obtain accurate energy release rate coi. ~or :nts [47]. Therefore,
its application to three-dimensional FE models requires the option of being ai,_> to move meshes that
conform according to the delamination front, something which is nc av.iilable in commercial finite
element codes [48]. Alternative solutions that enable the use of station vy meshes are presented in
[49, 50]. These techniques consist of tracing a smooth virtual “- nt a..und the stepped front. Either
way, the basic assumption of these formulations is that the .odes at the delamination front will
propagate along a normal vector to the current front. However, w 1en the delamination originates from
an artificial initial defect, e.g. caused by a Teflon insert, o. ~hen the loading conditions change, there is
a transient stage during which the shape of the crack fro. * changes according to the current propagation
conditions. The formulation for the evaluation ot “b . GDD does not depend on the geometry of the
crack front (which is historical information), L 't . ther on the current displacement field. Further
details are given in [39]. Thus, any variatio. in the displacements due to a change in the loading
scenario is captured by the GDD cri erio.. at the current time. Therefore, the mode-decomposition

scheme according to the GDD car be a, ~i d during transient propagation.

5. Comparison with the - ¥FM analytical solution of a penny-shaped crack

In this section, the f rmu ation of the CZ J-integral is applied to a penny-shaped crack embedded
at the centre of a ste ( cylinde. of 20 mm radius, r, and 20 mm height, h (c.f. Figure 8.a). The radius
of the penny-shaped ci. “k. 4, is 5.1 mm. A shear force, @), is applied at the center of each crack face,
pointing in opg ite di1 :ctions, as shown in Figure 8.b. The cylinder is modeled in the commercial
FE code A AQUS [43] using C3DS8I hexahedral elements. Exploiting Y-symmetry, only one half of
the specimen .. .odeled (c.f. Figure 8.c). The crack interface is modeled using user-defined cohesive
elements |7, 11] enhanced with the CZ J-integral formulation (c.f. Appendix A for the finite element
implementation). The undeformed cohesive elements are 0.32 mm wide and 0.1 mm long (tangential

and radial direction to the crack front, respectively). The elastic and fracture properties used in the
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FE model are listed in Table 4.

a)
TN

=)
~

Y-symmetry

Figure 8: a) Penny-shaped crack + nbe .ded t the center of a cylinder. b) Detail of the penny-shapped crack

with the applied shear load [38]. ¢) r.  mc tel.

Properties

E: Young’s modulus 210
w: Poisson’s coefficient 0.3

G.: fracture toughness 11
T,: strength 400
K: penalty stiffness 10°

GPa
N/mm
MPa
N/mm?

Table 4: E. stic ar 1 fracture properties used in the simulation study of the penny-shaped crack.

The CZ .7 inte_ral mode II and III components computed according to Equation (15) are repre-

sented in 7 sure 9 together with the LEFM analytical solution of a penny-shaped crack in an infinite

domain available in [38]. The mode I component is not plotted since it is negligible under these loading

conditions. The represented results have been normalized by:
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F= 17
L (17)

The energy release rates extracted using the CZ J-integral formulat on : = in good agreement with

those from the LEFM analytical solution [38]. However, likewise » the YVCCT example presented
in Section 4, the LEFM analytical solution does not take into ac  ~unt tf : development of a damage
process zone ahead of the crack tip. Even though the pa ame’ crs of the cohesive law have been
selected such that a fair comparison with LEFM can be m. 'e (small fracture process zone), there
still exist a small discrepancy between the results of the .o r.ethods. In any case, the derivation
and implementation of the proposed CZ J-integral - _ . J..omposition scheme is validated with high

accuracy.

. Grr anal;_c—
osf| 15 e
Jrrr ++
0.4 ++
+
% 03 +
5 R
0.2 +
o
Tt e
0. FT v +i:§:++++
+7 F
O'b_L++ f**{LH* 44
0 20 40 60 80

0 (degrees)

Figure 9: Comparison ¢ . the 1.. de-components of the energy release rate between the LEFM-based analytical
solution [38] and CZ -int’ gral method.

6. Applicati~n .. = partially reinforced ELS specimen

In [39], an ~~ loaded split (ELS) test on a symmetric run-out specimen is presented. A Teflon insert
is placed . * ¢che mid-plane of the specimen and acts as an initial delamination. A pulling displacement
is applied to the cracked end of the specimen causing the two specimen beams to deflect. The test rig

allows the applied displacement to be maintained in the initial direction (usually the vertical direction)
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by clamping the opposite end of the specimen between rollers. Consequently. the mc ement in the
horizontal direction is not constrained and axial forces are avoided. Because ~f t'.is test configuration,
the specimen is subjected to large deflections. Moreover, the particularit*v ot .“is kind of test is that
the delamination shape changes during propagation as it approaches “he stiffened region created by
bonded reinforcements on the upper and lower faces (cf. Figure 1J). The reinforcements do not span
the entire width of the specimen in order to promote a curved < amin...on. As a consequence, during
propagation, both the delamination front and the crack surfac s are curved. Therefore, the partially
reinforced ELS specimen is considered to be suitable to exemplit - the applicability of the generalized
CZ J-integral methodology for 3D curved and non-plana. Jelamination fronts.

a) /.’o/ ":/7

XT ;@d/ """
steel block XSM ,;IZ;”:::' R otole) 7e1010)

N\ N\ N

L%t

/. ‘ : éliding
v TV K 7 ‘ fixture

Unidire tional - ypidirectional ®® ®® LIXT

u,= prescribed Teflon irsert  "RP CFRP plate w=1.=0 :
displacement reintoccements e
u,=u,=0
b) 140 u=0
A - - u,=u,=0
83 ¥
/ v B - B /

4 ) [ - % 7
X, symm é - e -

& | , 0 s ) i

u=r escribed
dig jacer ent

Figure 10: a) Ske .ch of t™e partially reinforced ELS specimen [39], consisting of a CFRP plate with an initial
delamination cat ted by a Teflon insert and two CFRP reinforcements bonded to the upper and lower faces.
The grey-shadowed. ~re- cepresents the Teflon insert. The blue-shadowed area is the part of the mid-surface
represented "ua figur~s 11, 12 and 13. b) Simplified model for FE simulation and dimensions (units in mm).
The 1w ‘ace is modeled using user-defined cohesive elements which incorporate the formula-
tion present. 1 in [10, 11], enhanced with the GDD criterion presented in [39] and the CZ J-integral

formulation described in Appendix A. The undeformed cohesive elements are 0.27 mm wide, 0.23

mm long and have zero thickness. To reduce the computational resources required, only one half of
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Interface properties

Gre = Grie = Grr1e: mode-independent fracture toughness 2 N/mm
Tlo = TIIo = TIIIo: mode-independent interlaminar strength ~ °~ MPa
K: penalty stiffness 05 2T /mm?3

Table 5: Fracture properties of the interface used in the simulation s udy .. “he ELS specimen.

the specimen is modeled by exploiting Xs-symmetry. The elastic prope. ‘ies of the laminate and the
fracture properties of the interface are listed in Tables 1 and ¥ res,._..vely. Note that, as a simple
way to check the CZ J-integral implementation, the fracture 1. .ghne s is set to be mode-independent
(Ge = Gre = Grre = Grrre = 2 N/mm) to ensure a coustant o value (J = G.) during static crack
propagation. Thus, the sum of the three mode-decompo. 1 CZ J-integrals in Equation (15) must be
constant and equal to 2 N/mm at every integration . ~tour, regardless of the loading mode. In the
following figures, only the blue-shadowed area of v e .nid-surface in Figure 10 is represented.

The historical evolution of the 0.5-valued ene "¢y “ased damage isoline is plotted in Figure 11.a. The
energy-based damage, D¢, distribution is prc ~cted onto the deformed mid-surface (cf. Figure 11.c)
for a prescribed end displacement of ~/.; ~m. Note that a large fracture process zone is developed
(the maximum length of the CZ i35 app. ~x' nately 20 mm). The GDD distribution within the CZ is
represented in Figure 12. As mi ~t’)ned i Appendix A, the CZ J-integral can be evaluated at any
point within the CZ and, th re. ve, infinite integration paths can be tracked. For illustrative purposes,
only a few selected inte rat »n paths are plotted on top of the GDD distribution. Note that the

Yiot jgplines
gC

trajectory of the inte ration ~aths is established according to the GDD. Thus, since the
are not parallel, the ..’ >gra 1on paths are curved lines throughout the CZ.

The total J- ralue is valuated at each of the 30,000 integration points forming the CZ. The result is
represented .n Fignre 13.a. The step length *h* used is 0.3 mm (1.3 times the element length), where

the superscr,, + *

~.eans before the projection on the cohesive interface mid-surface (see Appendix A
for furth = .escription of *h¥). Note that the J-distribution is constant and equal to the fracture

toughness, which, during static propagation and for any mode mixity, amounts to 2 N/mm. The total

J-value computed is equal to the fracture toughness at all the integration points within the cohesive
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Figure 11: a) Historical evolution of tu. 9.5-val 1ed energy-based damage isoline extracted at the integration
points. b) Reaction force vs prescri’ ed disp. - ement curve with the current loading state highlighted in red.
¢) Energy-damage projected onto * 1e d rormred mid-surface at the current loading stated marked in (b).

zone with a maximum erro. . 2.7% (cf. Figure 13.a). By reducing *h¥, more accurate results may
be obtained. However, “or s ich a large CZ, the computational cost increases significantly with the
number of segments i . whic.. *he integration paths are discretized.

The decompositic. Hf th 2 CZ J-integral into modes, computed according to Equation (15), is also
represented in ‘igure 13. The mode IT and III components of the CZ J-integral are predominant,
while mode . slightly appears at a small region close to the specimen’s edge (cf. Figure 13.b). The
contribution - ths J-value of the tangent quantities to the mid-surface is decomposed into modes IT and
IIT accorc ' | to the GDD. The bonded reinforcements cause the loading state to be uneven throughout
the specimen’s width, leading to a curved crack, so that the GDD amounts to 60° with respect to the

X1 at the zones with the highest delamination front curvature. Due to the test configuration, the
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Figure 12: Growth driving direction (GDD) distribution along the cow sive zone and a few selected integration
paths (black solid lines) plotted on top of it.The current loaa.. ~ state is marked in Figure 11.b.

maximum interlaminar shear stress is applied in ti. global X;-direction. For straight cracks where
the GDD is aligned with the X;i-direction, the s, =a1 - .. ponent would be pure mode II. However, in
the studied case with a curved delamination t...* th maximum contribution of the external loading
to the mode IIT CZ J-integral is at the rey.~n w..~ e the GDD differs most from the X;-direction (cf.

Figures 13.c and 13.d).
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Figure 13: Distribution of a) Jiotai/Ge (Where Jiotar = Jr + Jrr + Jrrr and Ge=2 N/mm),
Jrrr within the cohesive zone at current loading state marked in Figure 11.b.
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7. Conclusions

A novel methodology for calculating the mode-decomposed J-integrals ‘n th. ~-dimensional delam-
ination simulation using a cohesive zone model approach is presented. he methodology incorporates
the growth driving direction criterion, recently developed by the authors, . track the integration paths
and to determine the local directions of mode I, IT and IIT compc wents. " he generality of the formu-
lation makes it applicable to curved fronts with non-planar d lam’ . “ion interfaces and large fracture
process zones. The application of the described methodolog, resu .. in curved integration paths.

The calculation of the J-integral is based on dividing the ¢ :lamination interface into elemental
thickness slices so that the J-value of each slice is »»i~~ The curvature of such slices is defined
according to the growth driving direction. Since **~ orowt.. driving direction is mesh independent, the
definition of the slices is not affected by the r ~sh s =.

By applying the formulation presented here,  global measure of the energy release rate in three-
dimensional structures modeled using a cohesive »one model approach can be obtained. To the authors
knowledge, this has not been prev ously a 'dressed. Furthermore, the energy release rate can be
decomposed into mode I, IT and (II - ompounents. The decomposition of the shear component of the
energy release rate into modr IT an T [, to date, has only been addressed under the assumption of
elastic fracture mechanics. In aac *ion, the new formulation enables a global measure of the mode
mixity to be obtained, -erc ming the limitation of the current 3D cohesive zone model formulations
where the mode mi~ .ty i only obtained at integration point level in terms of opening displacements.

The limitaticr . of the presented formulation are related to the use of cohesive zone models, and
therefore, the c1 <k is < onfined to propagate within the interface between layers. The possibility of
crack migr. ting to 'nother interface is not accounted for.

Bes’ '-~ the immediate applications of the formulation, the authors believe that more applications
will be unc vered in future research. The CZ J-integral presented here is a decisive contribution to
fracture mechanics-based procedures in a cohesive zone model framework, which will allow the design of

lighter and more reliable structures. In addition, a direct application of the CZ J-integral formulation
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is its implementation in combination with existing fatigue simulation methods formui.'ed in a CZM
approach that rely on mode-dependent Paris law’ like expressions. Thus, the mo .e-decomposed CZ J-
integral formulation developed becomes a new solution for extracting moae-dec. mposed energy release

rates of real complex three-dimensional structures.

8. Acknowledgements

This work has been partially funded by the Spanish Geernment Ministerio de Economia y Com-

petitividad) under contract TRA2015-71491-R, co-finar ~d by tl » European Social Fund.

Appendix A. Discretization with the FE meu. ~d

Using Equation (15), the mode-decomposed CZ -integrals, which may vary for every slice, can be
evaluated everywhere within the CZ. Moreover, .ny point within the CZ belongs to a single slice, i.e.
to a single integration path. The integration pa.. s are defined according to the local GDD. Therefore,
one can randomly select any locatior of the “Z and, by means of the GDD, identify the tangent to the
integration pathline at that point 1 order .o move, either forward or backward, along the integration
path. The mode-decomposed CZ . *nt' grals corresponding to such slice are obtained when the path
is tracked in its entirety.

The procedure for t} > evr .uation of the mode-decomposed CZ J-integral of Equation (15) is shown
in Figure A.15 and ¢ sscr'bed 1 the following. Consider a point, P¥, belonging to the CZ. In order to
assess the mode-d~~om}, ~ d CZ J-integrals at the slice which the point P* belongs to, the numerical
integration of E uation (14) is performed along the integration path, defined as tangent to the local
GDD direc ion anc limited by vanishing stress conditions at both ends (cf. Figure 3). In the general
case, the initia: point P¥ is not located at one end of the integration path, i.e. point P* is located in
the middle »f the CZ. In this case, the path will be tracked from P* in the GDD (Loop 1 in Figure
A.15) and in the opposite direction to the GDD (Loop 2 in Figure A.15). In other words, in the

positive GDD until vanishing elastic stress is reached (point 2 in Figure 3), while in the negative GDD
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until the intersection with the 1-valued energy-based damage isoline, where the cohe. ve stress also

equals zero (point 1 in Figure 3). The condition for vanishing cohesive stre.. ~s - zads:

i < tol (A1)

where p is the norm of the cohesive stresses and tol is a user-defir ~d thre hold close to zero.

To move along the integration path, the following procedt ‘e is .py ied. Starting from P, the next
point along the integration path is established by moving in . straight line a *hF-length step further
in the local GDD, which is tangent to the cohesive interta ~ m° {-surface, S,op, at P¥. Then, a new

x M1

point, *P**! in the space is found. Nevertheless, v uut necessarily placed on the mid-surface,
Seon- This becomes evident when S, is highl. . - nlanar (cf. Figure A.14). Thus, the real next

point constituting the integration path, P** _ is fo nd by projecting *P**1 on S, in the normal

x3-direction of point P*.

Figure A.14: Po' 1t P is a point on the integration path of a curved cohesive interface, S.on. The following
point on the inte_ration sath, P*T! is found by projecting point *P**! along the normal direction to the
interface at p~~ & F . - oint *P**! is at an *h distance from P* in the tangential GDD.

94,
ox

=, are evaluated at every point P* along the integration

The ‘ntegranas in Equation (15), o;; and
path. o;; & < the components of the cohesive stress tensor expressed according to the local Cartesian

coordinate system. On the other hand, the derivative of the displacement jumps, d;, with respect to

the local Cartesian coordinate aligned with the GDD, z;, is addressed in the following. X, is the

29



O©CoO~NOUIAWNER

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

Cartesian reference system, z; is the local Cartesian coordinate system and R,. is the . ansformation
tensor which relates the global to the local coordinate system. The derivat. » o’ the rotation matrix,
R;j, with respect to the coordinate x; can be approximated to zero by ~ssun.™g that the curvature
of the interface within the integration subinterval is small. This is ac. ‘ev_d by setting an *h*-length
step similar to the element length. Moreover, its derivation wc ald inc ease the complexity of the
formulation without a substantial improvement in the accura-, of v... solution. Thus, by assuming

that the derivative of R;; with respect to z1 can be omitted, v..c der’ sative gg"l reads:

09; O
- =R;;—— ., A2
axl *J 01 G ( )
where M;, is the transformation matrix that : ..'~ the global displacement jump with the nodal

global displacement, @,,. The size of @Q,, is . .> nuw her of degrees of freedom of the element (in the
case of 8-noded cohesive elements, m = " .2\ The derivative of the transformation matrix, M;,,,

with respect to the local coordinate, x, is obtained by applying the chain rule:

O L OMjp, 0N
_ A.
0x1 e 011 (A-3)

The first partial derivat've -~ the right hand side of Equation (A.3) is the variation of the trans-
formation matrix, Mj,, wit. the isoparametric coordinates of the cohesive element formulation, 1,

(a=1,2):

OMjm {_aNjk aNjk] (A4)

where Njj, s the sl ape function matrix and the subscript £ runs from 1 to the number of degrees of
freedon .., ~~tively, of the top and bottom surface of the cohesive element. In the case of an 8-noded
element, k= 1...12. In [10, 11], the material coordinates and the displacement fields are interpolated

within the domain of the interface element using isoparametric bilinear shape functions:
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1 1
L1:§(1*771)(1*772)§ L2:§(1+7I1)(1*-.‘\
X . (A.5)
Ly =5 Q+m)A+m);  Li=5@0-m) L1+ p
organized in Njj as follows:
Ly O 0 Ly O 0 L3 O J u 0 0
Nijg=1|0 L, 0 0 Ly 0 0 Ly > 0 Ls 0 (A.6)

where the local isoparametric coordinates, 17; and 72, 1. ~ge from -1 to 1 over the element domain.
The derivatives g%‘f are the inverse of the der: o 1ves of the local coordinate, x1, with respect to

the isoparametric coordinates, 7, defined as:

ory _ AN

e ETE S (CE+ 0y +Qf +Qy) (A7)

where C} and C,j' are the global coor linates of the nodes at the lower and upper surfaces, and @, and

Q; are the nodal displaceme .ts, rela.’ /e to the global coordinates, of the lower and upper surfaces.
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Figure A.15: Flow chart of the calculation of the CZ J-integrals at a given point within the cohesive zone
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