
Aalborg Universitet

Schedulability Analysis of Distributed Multi-core Avionics Systems with UPPAAL

Han, Pujie; Zhai, Zhengjun; Nielsen, Brian; Nyman, Ulrik; Kristjansen, Martin

Published in:
Journal of Aerospace Information Systems

DOI (link to publication from Publisher):
10.2514/1.I010715

Creative Commons License
Unspecified

Publication date:
2019

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Han, P., Zhai, Z., Nielsen, B., Nyman, U., & Kristjansen, M. (2019). Schedulability Analysis of Distributed Multi-
core Avionics Systems with UPPAAL. Journal of Aerospace Information Systems, 16(11).
https://doi.org/10.2514/1.I010715

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: July 04, 2025

https://doi.org/10.2514/1.I010715
https://vbn.aau.dk/en/publications/cfa976bc-b0f4-4386-9067-3a9ec2dbfe52
https://doi.org/10.2514/1.I010715

Schedulability Analysis of Distributed Multi-core Avionics

Systems with UPPAAL

Pujie Han∗ and Zhengjun Zhai†

Northwestern Polytechnical University, Xi’an, 710072, China

Brian Nielsen‡, Ulrik Nyman§, and Martin Kristjansen¶

Aalborg University, Aalborg, 9220, Denmark

This paper presents an approach for schedulability analysis of Distributed Integrated

Modular Avionics (DIMA) systems that consist of spatially distributed ARINC-653 multi-core

modules connected by a unified Avionics Full Duplex Switched Ethernet (AFDX) network.

We model a multi-core DIMA system as a set of stopwatch automata in Uppaal to verify its

schedulability by model checking. However, direct verification is infeasible due to the large state

space. Therefore, we combine global analysis based on Statistical Model Checking (SMC) and

compositional analysis based on classical model checking, thereby mitigating the state space

explosion problem. Even though the nature of SMC testing cannot prove schedulability, the

model of a DIMA system first undergoes quick schedulability falsification using global SMC

analysis. Thereafter, we use a compositional approach to check each partition including its

communication environment individually. By using assume-guarantee reasoning, we ensure

that each real-time task meets the deadline and that communication constraints are also fulfilled

globally. The approach is finally applied to the schedulability analysis of a concrete multi-core

DIMA system.

I. Introduction

A
s the cost of avionics systems rapidly increases in the aviation industry, there is a growing trend towards providing

a more generalized airborne computation environment for Commercial Off-The-Shelf (COTS) products. The

architecture of Distributed Integrated Modular Avionics (DIMA) [1] is proposed for this purpose. It installs standardized

computer modules in spatially distributed locations [2] that are connected by a unified deterministic bus system [3]

such as an Avionics Full Duplex Switched Ethernet (AFDX) network [4]. To keep a balance between the performance

and the Size, Weight and Power (SWaP) consumption of avionics systems, COTS multi-core processors have been

∗Ph.D. Candidate, School of Computer Science and Engineering, West Youyi Road 127.
†Professor, School of Computer Science and Engineering, West Youyi Road 127.
‡Associate Professor, Department of Computer Science, Selma Lagerløfs Vej 300.
§Associate Professor, Department of Computer Science, Selma Lagerløfs Vej 300.
¶Ph.D. Student, Department of Computer Science, Selma Lagerløfs Vej 300.

widely applied to airborne computer modules, where avionics applications run in ARINC-653 [5] partitioned operating

systems.

Enabled by the continued improvement of semiconductor technology (Moore’s law), the current approach to

increasing the processor performance at low cost is mainly through the integration of multiple cores in a single

processor. This direction is driven by the so-called power-wall that prevents processors from being clocked at an

increased rate, and by the very high complexity of designing processors that continues to improve performance through

ever increasing levels of implicit instruction level parallelism.

However, multi-core processors also create new challenges at different levels. Applications must be designed

with explicit thread level parallelism, often leading to massively concurrent applications, which again makes it more

challenging to ensure correct behavior in terms of functionality, timing, and absence of concurrency bugs like race-

conditions and deadlocks. For safety- and time-critical avionics system, this specifically increase the challenge of

creating and mapping many application partitions (possibly with non-trivial inter- and intra-partition dependencies)

on multiple cores (or even networked processors), and being able to perform the required schedulability analysis

to guarantee correct timing. At the operating system level, challenges are providing new effective mechanisms for

predictable management, scheduling, synchronization, and partitioning of the underlying processing and memory

resources, such that schedulability and worst-case execution time analysis are feasible. At a hardware level, challenges

concern creating core-interconnects and memory bus systems to allow sufficiently fast data- and instruction transfer to

the multiple cores, and providing memory coherency across them and the different memory types found in multi-core

systems. As a further consequence, the development cost of safety critical systems is increased by the need for certifying

the safe operation of the system.

Multi-core hardware and distributed applications thus lead to increasingly complex systems whose schedulability

has been becoming difficult to validate. This paper addresses this challenge by proposing a new method and tool for

analyzing the schedulability of complex avionics systems.

A schedulable DIMA system should fulfil not only the temporal requirements of each real-time task on multiple

processor cores but also communication constraints among the distributed nodes. The development of model checking

based approaches has currently become an attractive topic for the schedulability analysis of complex real-time systems

due to the sufficient expressiveness of formal models. The techniques of classical model checking (MC) describe

schedulability as temporal logic properties and verify the properties via state space exploration. There have been

works using model-checking to analyze the temporal behavior of individual avionics modules in various formal models

such as Coloured Petri Nets (CPN) [6], preemptive Time Petri Nets (pTPN) [7], Linear Hybrid Automata (LHA) [8],

Timed Automata (TA) [9], and StopWatch Automata (SWA) [10]. Unfortunately, when being applied to a complete

avionics system, they suffer from an inevitable problem of state space explosion, which makes the exact model checking

practically infeasible.

2

Compositional approaches are widely adopted to alleviate the state space explosion problem. Some studies [11–13]

exploit the inherent isolation of temporal partitioning by analyzing each partition separately and concluding system

properties at a global level, but they ignore the behavior of the underlying network or the interactions among partitions.

Thus these methods are not applicable to DIMA environments in which multiple distributed ARINC-653 partitions

communicate through a shared network to perform an avionics function together.

Statistical Model Checking (SMC) [14] is also proposed as a promising technique that has the powerful facilities

of formal modeling as well as avoids the state space explosion of classical model checking. An SMC engine runs

and monitors a number of simulation processes in order to quickly estimate the statistical results of the satisfaction or

violation of certain properties. However, the SMC cannot provide any guarantee of schedulability but quick falsification

owing to its nature of statistical testing. Therefore, it is reasonable to apply both classical and statistical model checking

to the schedulability analysis of avionics systems.

In this paper, we present an approach to schedulability analysis of multi-core DIMA systems that are modeled as a

set of StopWatch Automata (SWA) in Uppaal. The approach combines compositional and global analysis by classical

and statistical model checking. The paper is a combination and extension of the two workshop papers [15] and [16].

The rest of the paper is organized as follows. Section II presents related work and contributions. Section III describes

the structure of DIMA systems, providing the modeling requirements for a DIMA system. The Uppaal models and

their schedulability analysis are presented in section IV. In section V we detail the compositional analysis approach.

In section VI we present a case study and its experimental results, and section VII discusses those same results along

with their applicability to related schedulability problems. Finally, section VIII concludes the paper.

II. Related Work and Contributions

The structure of DIMA systems has been fully discussed in [1–3, 17]. The current research into the schedulability

of DIMA systems focuses on two of their major constituent parts: ARINC-653 modules and the underlying AFDX

network.

A multitude of analytical methods [18–23] can be used to analyze the schedulability of ARINC-653 modules, which

belong to two-level hierarchical scheduling systems. However, the worst-case assumptions in these analytical methods

are more pessimistic than real situations. By contrast, the model checking based approaches are more expressive and

can be used to perform exact schedulability analyses on the basis of various formal models such as Coloured Petri Nets

(CPN) [6], preemptive Time Petri Nets (pTPN) [7], Linear Hybrid Automata (LHA) [8], Timed Automata (TA) [9],

and Stopwatch Automata [10].

The authors of [6] construct a CPN model to describe real-time task scheduling in a generic avionics mission

computer, deriving task response times from the model to determine the feasibility of five different scheduling

protocols. Nevertheless, the modeling method does not cover any ARINC-653 features and is only applicable to

3

federated avionics. In [24], the theory of pTPN is introduced to support exact schedulability analysis of two-level

hierarchical scheduling systems. This approach is extended in [11] with a concept of required interface that models

the environment of each application to enable compositional analysis of hierarchical scheduling systems encompassing

inter-application communications between periodic tasks. However, the communication latency of the underlying bus

system and the features of ARINC-653 ports are not taken into account. The authors of [12] employ the formalism of

LHA to model a hierarchical scheduling system where there is no communication among tasks. They adopt a dynamic

server algorithm, separating each server from the rest of the system, and thereby enabling component-based scheduling

analysis. This method is subsequently applied to a multi-core global scheduling system and extended with a weak

simulation in [25] to reduce the state space of complex models. The approaches of [26, 27] use TA to describe a

hierarchical scheduling system, while both of them are limited to periodic tasks isolated from each other. The formal

modeling of pTPN and the verification of SWA are combined in [28], which allows for inter-task communication

but no temporal partitioning mechanism. The authors of [13] introduce their compositional frameworks using SWA

for analyzing the schedulability of hierarchical scheduling systems. The modeling is covering concrete task actions

and intra-partition synchronization and therefore allows for more features of avionics systems, but the compositional

analysis does not support the communication among partitions. They also apply a similar modeling method to the

evaluation of multi-core platforms in [29, 30]. Obviously, all of the aforementioned approaches lack the capability to

model and analyze network communication in DIMA systems from a global viewpoint.

Up to now, several approaches have been introduced for calculating end-to-end delays in an AFDX network,

including a simulation approach [31, 32], response time analysis [33, 34], network calculus [35, 36], trajectory

approach [37], forward end-to-end delays analysis [38, 39] and model checking approach [40–42]. Although the model

checking approach can obtain more exact results than the rest that compute the upper bounds of worst-case end-to-end

delays, it is confronted with the state space explosion problem for realistic networks [41].

The objective of this paper is to help apply model checking to the schedulability analysis of a multi-core DIMA

system. From a global perspective of DIMA systems, we employ the combination of SMC and a compositional

approach to cope with the state space explosion problem of classical model checking. The main contributions of this

paper are summarized as follows:

• Comprehensive Modeling of multi-core DIMA systems that covers the features of two-level ARINC-653 compliant

multi-core schedulers, periodic/sporadic tasks, intra-partition synchronization, and inter-partition communica-

tions through an AFDX network.

• A method for global analysis using statistical model checking allows users to quickly falsify non-schedulable

configurations by SMC hypothesis testing, which can handle a complete system model and avoid an exhaustive

exploration of the state space.

• A method for compositional analysis using classical model checking verifies the model of each ARINC-653

4

partition including its environment individually and then assembles the local results together to derive conclusions

about the schedulability of an entire system. A compositional approach performs assume-guarantee reasoning [43]

to reduce the complexity of symbolic model-checking.

• An abstraction relation, timed selection simulation relation, which allows users to create a set of abstract models

that collectively describe the external behavior of a concrete model, thereby simplifying the abstraction in

assume-guarantee reasoning.

• A notion of message interfaces that decouples the communication dependencies between partitions. By compos-

ing any partition with its related message interfaces and verifying safety properties of the composition, we can

conclude that these properties are still preserved at the global level.

• Application of the approach to an avionics case study, thus validating the feasibility of the approach.

This paper is a combination and extension of the two workshop papers [15] and [16]. These previous papers each

focused on one aspect of the approach, namely the models [15] and compositionality [16].

On top of combining the two papers this journal paper also adds several completely new elements and joins it all

to a coherent approach:

• Multi-core aspects

• Section III with added description of the ARINC-653 multi-core modes

• Experiments using a symmetric multi-processor scheduler

• Detailed description of all Uppaal models

• New AFDX models that are able to describe a network topology, giving a more precise latency analysis for the

communication between nodes in the network

III. Avionics System Description

This section presents the structure and the main parts of a DIMA system. Thereafter, the two types of ARINC-653

multi-core systems are presented and described. Based on the structure of such systems and the multi-core aspects,

formal terms are defined in order to use the properties of a DIMA system in a schedulability analysis.

A. Distributed Integrated Modular Avionics System

In DIMA systems, a unified AFDX network connects standardized computer devices and thousands of peripherals

(sensors and actuators), which are linked by Remote Data Concentrators (RDC) to the AFDX network [3]. Fig. 1 shows

a simplified example of a DIMA system, where physically distributed DIMA core modules [5] execute application

tasks simultaneously to fulfill avionics functions cooperatively.

In the aviation industry, ARINC-653 series standards define a general-purpose APEX (APplication/EXecutive)

interface between the operating system and the application software, providing a space and time partitioning mechanism

5

for avionics applications [5]. Thus the tasks resident on each DIMA core module run in an ARINC-653 partitioned

operating system which realizes a two-level scheduling mechanism and achieves temporal isolation between ARINC-

653 partitions. In such a scheduling system, partitions are scheduled by a Time Division Multiplexing (TDM) global

scheduler and each partition also has its local scheduling policy based on preemptive Fixed Priority (FP) to manage

the internal tasks [5].

Core Module

RDC

AFDX Switch

AFDX Link

Link to Peripherals

Fig. 1 An example of a DIMA system

End System 1

Partition 4 Partition 5

�

Partition 1
Tasks

�

Partition 2
Tasks

�

Partition 3
Tasks

Partitioned OS

Port

End System 2 End System 3

Partitioned OS Partitioned OS

Port Port

Port PortPort Port

VL 1 VL 2 VL 3

Core Module 1

Core Module 2 Core Module 3

AFDX

Network

Fig. 2 A DIMA core system

The distributed nature of DIMA systems lead to frequent inter-partition communication not only within core

modules but also between them through the underlying AFDX network. According to the ARINC-653 standard [5],

all inter-partition communication is conducted using a message passing system. Messages originating from partitions

are only allowed to be communicated via an ARINC-653 port and transmitted through a logical channel from a single

source partition to one or more destination partitions. Each port and its logical channel are associated with one of the

modes of transfer: sampling mode or queuing mode. A sampling port can accommodate at most a single message

that remains in the buffer until it is either transmitted by the channel from a source port or overwritten by a new

message in a source or destination port. Moreover, a refresh period is defined as an attribute of each sampling port.

This attribute provides a correct arrival rate to determine the validity of received messages, regardless of the rate of

receiving requests from application tasks. In contrast, a queuing port, which only supports unicast connections, is

allowed to buffer multiple messages in a message queue with a fixed capacity. However, the operating system is not

responsible for handling overflow after the message queue is full. We consider three schedulability properties that a

system has to satisfy: task deadlines, refresh periods of sampling ports and non-overflow of queuing ports. These

properties are detailed in Section IV.B.

6

In this paper, we consider the DIMA core system as shown in Fig. 2 where an AFDX network connects all the

core modules through their End Systems (ES), each of which provides a hardware implementation of the AFDX

protocol stack [4]. ARINC-664 part 7 [4] prescribes that an AFDX ES should provide ARINC-653 port services for

the operating system. A message sent from a source port is expanded by the UDP and IP header at the UDP/IP layer

and then forwarded to a Virtual Link (VL), which defines a logical connection from one source ES to one or more

destination ESs. Unlike the Internet, routing in AFDX network is based on VLs instead of IP address. What is more,

ESs provide each VL with a dedicated maximum bandwidth to ensure an upper bound on end-to-end delay. The

message flows belonging to the same VL share the bandwidth. In transmitting between ESs, a scheduler regulates and

multiplexes the flows from different VLs. This single multiplex flow is sent across two independent switched networks

and both of them will arrive at the destination ES(s) under normal operation. The underlying network redundancy is

transparent to the upper protocols because of the function of redundancy management in each ES. Throughout this

paper, we assume that there is no unmasked fault in our AFDX network.

B. Implementation of ARINC-653 Multi-core systems

Although multi-core processors have been widely applied across various application domains, ARINC-653 series

standards did not cover the features of multi-core processors until the ARINC-653 Part 1 Supplement 4 (ARINC653P1-

4) was published in 2015. The leading software vendors of ARINC-653 compliant systems thus implement multi-core

aspects using different strategies. According to the level of parallelism, two types of software architecture are commonly

utilized to implement an ARINC-653 compliant system on multi-core platforms: Asymmetrical Multi-Processing

(AMP) and Symmetrical Multi-Processing (SMP) [44].

An AMP deployment enables inter-partition parallelism in one processor, where each core is managed by a

separate instance of an operating system that provides airborne software application with the ARINC-653 partitioning

mechanism [45]. In such a configuration, each partition is executed on a single core in parallel with the partitions

running on the other cores, and thus independent partition schedules are assigned to different cores [46]. Since the

operation of each partition is similar to that on a single core processor, the AMP architecture especially suits the

compatibility requirements for legacy applications.

However, ARINC653P1-4 did not define inter-partition parallelism within an operating system [5]. When applying

an AMP architecture, it requires more effort from the platform providers to handle the contention and co-operation of

individual operating systems on different cores. As shown in Fig. 3, the practical AMP implementation, such as the

VxWorks 653 Multi-core Edition developed by Wind River [47], introduce a hypervisor layer running across all the

cores, thereby ensuring robust partitioning on the operating system level and concerted access to shared resources of

the processor’s multiple cores.

By contrast, an SMP deployment realizes task parallelism inside one partition that is activated on all cores

7

Avionics Bus (AFDX, FC-AE, ARINC 429,...)

Multi-core Processor Hardware

Hypervisor

Core 0 Core 1 Core 2 Core 3

Schedule 0 Schedule 1 Schedule 2

ARINC653 OS ARINC653 OS ARINC653 OS Other OS

Partition 1

Partition 2

Task

Task

Partition 3

Partition 4

Partition 5

Partition 6

Partition 7

Partition 8

Partition 9

Task

Scheduling

Algorithm

Other OS

Partition 7

Partition 3

Partition 8

Partition 6Partition 4 Partition 5

Partition 9

Task Task Task... Task Task Task...

Partition 1 Partition 2

Task Task Task...

Core 0

Core 1

Core 2

Core 3

Time

Fig. 3 AMP architecture and its multi-core scheduling examples

Avionics Bus (AFDX, FC-AE, ARINC 429,...)

Multi-core Processor Hardware

ARINC 653 OS

Core 0 Core 1 Core 2 Core 3

Schedule

Partition 1

Task

Partition 2 Partition N

Task...
Task

Partition 1 Partition 2

Task

Partition N

...

...

...

...

Core 0

Core 1

Core 2

Core 3

Task Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Time

Fig. 4 SMP architecture and its multi-core scheduling examples

synchronously, which means the tasks belonging to a common partition can run in parallel on different cores. In

the SMP mode, as depicted in Fig. 4, all the cores are managed by a single instance of an operating system where

only one partition schedule is required. The SMP configuration applies to a substantial number of emerging airborne

software applications, such as radar, sonar and image processing, due to their inherent parallelism [48]. Nevertheless,

the versions earlier than ARINC653P1-4 did not consider such use of multi-core processors. The legacy applications

developed under these widely-used versions may depend on sequential execution and fail inside a parallel partition.

By adopting an SMP configuration, function suppliers can benefit from the use of multi-core processors to improve

the performance of specific airborne software applications, but have to put more effort into parallel programming

schedulability analysis.

The SMP architecture is compatible with ARINC653P1-4 in the scope of an operating system. There are two

attributes that control the mappings between partitions or tasks and processor cores in ARINC653P1-4. The fixed

attribute Assigned Processor Core(s) assigns a particular set of processor cores to a partition. Each task is further

associated with an attribute Processor Core Affinity, which specifies the processor core or cores the task can run on. A

8

Scheduling Layer

Task Layer

Communication Layer

Partiton Scheduler

P1 P2 P3 PnPartitions

Task

Schedulers
S1 S2 S3 Sn

��

��

Periodic Tasks Sporadic Tasks

UDP/IP

Messages

Scheduling

Processor
Core

AFDX
Hardware

ARINC653 Ports

� � ��

End Systems Switches

Virtual Links

Fig. 5 Layered structure of DIMA core systems

task can only be assigned an affinity for one of the processor cores allocated to the partition to which the task belongs.

Therefore, each processor core assigned to the partition will execute a different fixed set of tasks simultaneously [5].

C. Layered Model of an Avionics System

Fig. 5 shows a three-layer model of a DIMA core systems consisting of scheduling layer, task layer, and communi-

cation layer. The constituent elements are detailed as follows.

The scheduling layer comprises the hierarchical scheduling facilities of an ARINC-653 module. The multi-core

architecture AMP and SMP differ in the constitution of this scheduling layer.

• In an AMP configuration, each processor core has an independent TDM partition scheduler 〈Core,MF, Sch〉,

where Core is an identifier of the processor core, MF is a major time frame and Sch is a partition schedule. Since

partitions are scheduled on a fixed cyclic basis, the partition-scheduling behavior is periodically repeated every

MF [5]. Sch contains a set of partition windows, i.e. time slots, each of which is defined as 〈P,Off ,Dur〉 where

P identifies a partition, Off denotes the offset from the start of MF and Dur is the expected duration / budget.

Partitions are only activated within their corresponding partition windows [5].

The SMP configuration equips all the processor cores of a module with a common TDM partition scheduler

〈MF, Sch,Assi〉 where MF and Sch have the same definitions as those of the AMP partition scheduler. In addition,

the set Assi indicates the processor core(s) assigned to partitions. Its elements are defined as 〈P,Cores〉 where P

identifies a partition and Cores is a set of processor cores.

• The AMP configuration assigns each partition a preemptive FP task scheduler, which always selects the task with

the highest priority in the ready state within the partition to run.

9

The SMP task scheduler uses a partitioned preemptive FP scheduling policy [49]. When a partition is assigned

multiple processor cores, a set of tasks in the ready state may be selected based on both priority and core affinity

to run concurrently on the assigned processor cores [5].

All the application tasks executing avionics functions constitute the task layer. We consider a task as the smallest

scheduling unit, each of which can be executed concurrently with other tasks in the same partition. A task is indicated

by the tuple 〈I,Pmin,Pmax,O,J,D, C,R,L〉 where I is initial offset determining the first release point of the task,

Pmin and Pmax are the minimum period and the maximum period respectively, O is offset, J is jitter, D ≤ Pmin is the

deadline, C denotes processor core affinity, R denotes task priority, and L is a sequential list of abstract instructions.

In the task model, jobs of each task are scheduled repeatedly and a task releases the kth job (k ∈ N) in the time interval

[I + kPmin + O,I + kPmax + O + J]. Let tk be the time when the kth job is released. For any task in a partition Pi ,

we define the following two task types:

• A periodic task has the kth release time tk ∈ [I + kP + O,I + kP + O +J] where P = Pmin = Pmax < +∞ is

a fixed period.

• A sporadic task characterized by a minimum separation S = Pmin − J between consecutive jobs releases its

(k + 1)th job at tk+1 ∈ [tk + S,+∞), and its first release time t0 is in the interval [I + O,+∞).

An element of the sequential list L represents the operation of an abstract instruction 〈Cmd,Res, TBCET, TWCET〉. Cmd

is the type of abstract instructions belonging to the command set {Compute, Lock, Unlock, Delay, Send, Receive, End}.

Res is an identifier encoding one of the resources such as CPU, mutual exclusion locks, messages, and ports. TBCET

and TWCET are the execution time in the best and the worst case, respectively. In the command set, Compute represents

a general computation step, Lock and Unlock handle mutual exclusion locks, Delay allows the current task to stop

running for a certain time, Send and Receive are utilized in inter-partition communications, and End is the symbol of

job termination. Since the direct application of mutual exclusion locks can cause an unpredictable duration of priority

inversion, we adopt the priority ceiling protocol [50] to deal with intra-partition synchronization.

The communication layer interacts with the task layer through ARINC-653 ports and provides the services of

inter-partition communication between different modules. We focus on the transfer latency in the communication layer.

According to the structure of the AFDX protocol stack, the communication layer is further divided into an UDP/IP

layer and virtual links.

• The latency of delivery through the UDP/IP layer in each ES is commonly implementation dependent but can

be measured and bounded on an interval [Tumin, Tumax], which indicates the delay in forwarding a message from

an ARINC-653 port (Transmission) or an Ethernet frame from a VL (Reception) to its destination buffer.

• A virtual link is characterized as the tuple 〈Lmax, BAG, N, Conn〉 where Lmax is the maximum frame length

and BAG is the bandwidth allocation gap, i.e. the minimum interval between the first bits of two consecutive

frames [4]. Thus, the maximum available bandwidth of the VL is Lmax/BAG. N denotes the speed of the

10

physical link. Given a frame length L in bytes, the frame delay is (8 × L)/N , i.e. the time taken to deliver the

frame to a physical link [4]. Let H and W be the set of ESs and switches respectively. Conn ⊆ (H∪W)×(H∪W)

defines the set of VL’s physical links, representing a logical connection from one source ES to one or more

destination ESs. The ESs in a VL are connected by switches. In order to model the latency through a VL,

we consider the accumulated value of the technological latency (independent of traffic load) and configuration

latency (depending on configuration and traffic load) [4] along the logical path.

Additionally, two message patterns are provided for inter-partition messages between the task and communication

layer. Since message-sending actions and the release of their source tasks have similar temporal features, we define

two patterns of periodic and sporadic messages that are generated by periodic and sporadic tasks respectively. For any

message type msgk , we associate a time stamp tk
l
, l ∈ N, which is the accumulated time since the initial instant, with

each message-sending action. Time stamps tk
l

identify two message patterns:

• periodic messages with the time stamps tk
l
∈ [Ik

+ lPk
+ Ok,Ik

+ lPk
+ Ok

+ J k], and

• sporadic messages having the (l + 1)th time stamp tk
l+1 ∈ [tk

l
+ Pk − J k,+∞) after its first time stamp tk0 ∈

[Ik
+ Ok,+∞),

where Ik is initial offset, Pk is period, Ok is offset, and J k is jitter. By instantiating the parameters of a pattern, one

can describe the message-sending behavior of a specific task.

The above coupled elements represent the parallel components of a DIMA core system, which can be modeled as

a network of SWA. In the following sections, we use Ω to denote the set of SWA in system models.

IV. Modeling Framework

This sections is divided into four parts. The necessary preliminaries for this paper are presented followed by

an overview of the modelling framework. The framework presents what kind of TA templates are needed in order

to represent the behaviour of a DIMA system. Thereafter, the model-based analysis method is presented. Here it is

described how classical MC and SMC are combined in order to mitigate state space explosion. Lastly, the TA templates

in Uppaal are presented in detail.

A. Preliminaries

We present formal definitions including SWA with an input/output extension and its semantic object Timed I/O

Transition Systems (TIOTSs) [51].

Suppose that C is a finite set of clocks and V is a finite set of integer variables. A valuation u(x) with x ∈ C ∪ V

denotes a mapping from C to R≥0 and from V to N. Let LC(C,V) be the set of linear constraints. A guard g ∈ LC(C,V)

is a linear constraint which is defined as a finite conjunction of atomic formulae in the form of c ∼ n, c − c′ ∼ n or

v ∼ n with c, c′ ∈ C, v ∈ V, n ∈ N, and ∼∈ {<, ≤,=, ≥, >}. Given any valuation u, we change the values of clocks and

11

integer variables using an update operation r(u) ∈ 2R in the form of c = 0 or v = n where c ∈ C, v ∈ V and n ∈ N, and

R is the universal set of update operations. In addition, we define an action set Σ used for synchronization, an internal

action τ < Σ, and their universal set Στ = Σ ∪ {τ}.

Definition 1 (Stopwatch Automaton [10]) A stopwatch automaton is a tuple 〈Loc, l0,C,V, E, Σ, Inv, drv〉 where Loc

is a finite set of locations, l0 ∈ Loc is the initial location, C is a finite set of clocks, V is a finite set of integer variables,

E ⊆ Loc × LC(C,V) × Στ × 2R × Loc is a set of edges, Σ = I ⊕ O, I ∩ O = � is a finite set of actions divided into

inputs(I) and outputs(O), Inv is a mapping Loc → LC(C,V), and drv is a mapping Loc × C → {0, 1}.

From a syntactic viewpoint, SWA belongs to the class of TA extended with drv, which can prevent part of the

clocks called stopwatches from changing in specified locations semantically. We now shift the focus to the semantic

object TIOTS of SWA.

In a TIOTS, there are two types of transitions: delay and action transitions. We use the set D = {ǫ(d)|d ∈ R≥0} to

denote the delay, and refer to the 0-delay ǫ(0) as 0.

Definition 2 (Timed I/O Transition System) A timed I/O transition system is a tuple T = 〈S, s0, Σ,→〉 where S is an

infinite set of states, s0 is the initial state, Σ = I ⊕ O, I ∩ O = � is a finite set of actions divided into inputs(I) and

outputs(O), and →⊆ S × Στ ∪ D × S is a transition relation. s
a−→ s′ represents (s, a, s′) ∈→, which has the properties

of time determinism, time reflexivity, and time additivity [51].

For any SWA, a state is defined as a pair 〈l, u〉 where l is a location and u is a valuation over clocks and integer

variables. On the basis of TIOTSs, the operational semantics of SWA is defined as follows.

Definition 3 (Semantics of SWA) The operational semantics of a stopwatch automaton A = 〈Loc, l0,C,V, E, Σ, Inv,

drv〉 is a timed I/O transition system T A
= 〈S, s0, Σ,→〉 where S is the set of states of A, s0 = 〈l0, u0〉 is the initial state

of A, Σ is the same set of actions as A, and → is the transition relation defined by

• 〈l, u〉 a−→ 〈l ′, u′〉 iff ∃〈l, g, a, r, l ′〉 ∈ E (u |= g ∧ u′
= r(u) ∧ u′ |= Inv(l ′))

• 〈l, u〉 ǫ (d)−−−→ 〈l ′, u′〉 iff l = l ′ ∧ (∀v ∈ V u′(v) = u(v)) ∧ (∀c ∈ C (drv(l, c) = 0 ⇒ u′(c) = u(c))) ∧ (∀c ∈

C (drv(l, c) = 1 ⇒ u′(c) = u(c) + d)) ∧ u′ |= Inv(l ′).

For any transition s
a−→ s′, two symbols a? and a! denote the action a belonging to input I and output O respectively.

Given a ∈ Σ, s
a−→ iff ∃s′ ∈ S, s.t. s

a−→ s′.
τ−→

∗
or

0
==⇒ denotes the reflexive and transitive closure of

τ−→. s
ǫ (d)
===⇒ s′ iff

s
ǫ (d)−−−→ s′, or ∃s1, s2, . . . , sn ∈ S, s.t. s

α0−−→ s1
α1−−→ s2

α2−−→ · · · αn−1−−−→ sn
αn−−→ s′ and ∀i ∈ {0, . . . , n}, s.t. αi = τ or αi ∈ D

and d =
∑{di |αi = ǫ(di)}.

The definition of parallel composition ‖ of TIOTSs is similar to that in [51]. Given two TIOTSs Ti = 〈Si, si,0, Σi,→i

〉, i ∈ {1, 2}, they are compatible iff they satisfy the following conditions:

12

Communication
Layer

PartitionScheduler

AMPTaskScheduler / SMPTaskScheduler

enter_partition exit_partition

ready schedrelease stop

PeriodicTask / SporadicTask

UDPLayer

Vlink

EndSystem

pmsg

vl

SwitchPort

frame

frame

Port

Buffer

Buffer

Scheduling
Layer

Task Layer

Fig. 6 Uppaal modeling framework

• (Unique output) O1 ∩ O2 = �.

• (Nonblocking input) ∀s ∈ Si ∀a ∈ Ii s
a−→.

Note that the nonblocking input actions are realized as broadcast channels in Uppaal.

Definition 4 (Parallel Composition) Suppose two timed I/O transition systems T1 = 〈S1, s1,0, Σ1,→1〉 and T2 =

〈S2, s2,0, Σ2,→2〉 are compatible. The parallel composition T1 | |T2 is the timed I/O transition system 〈S, s0, Σ,→〉 where

S = S1 × S2, s0 = 〈s1,0, s2,0〉, Σ = I1 | |2 ⊕ O1 | |2, I1 | |2 = (I1 \ O2) ∪ (I2 \ O1), O1 | |2 = O1 ∪ O2, and → is the largest

relation generated by the following rules:

• INDEP-L:
s1

a−→ s′1 a ∈ {τ} ∪ Σ1 \ Σ2

〈s1, s2〉
a−→ 〈s′1, s2〉

INDEP-R:
s2

a−→ s′2 a ∈ {τ} ∪ Σ2 \ Σ1

〈s1, s2〉
a−→ 〈s1, s

′
2〉

• DELAY:
s1

ǫ (d)−−−→ s′1 s2
ǫ (d)−−−→ s′2 d ∈ R≥0

〈s1, s2〉
ǫ (d)−−−→ 〈s′1, s

′
2〉

• SYNC-IN:
s1

a−→ s′1 s2
a−→ s′2 a ∈ I1 | |2

〈s1, s2〉
a−→ 〈s′1, s

′
2〉

• SYNC-IO:
s1

a−→ s′1 s2
a−→ s′2 a ∈ (I1 ∩ O2) ∪ (O1 ∩ I2)

〈s1, s2〉
a−→ 〈s′1, s

′
2〉

For any SWA A1, A2 ∈ Ω, we define the composite model A = A1‖A2 iff their TIOTSs satisfy T A
= T A1 | |T A2 .

B. An Overview of the Modeling Framework

The modeling framework is organized as a set of Uppaal templates with a layered structure. Fig. 6 shows an

overview of these templates together with the channels between them.

13

The scheduling layer consists of three TA templates each responsible for a different scheduling concept: a

PartitionScheduler and the two task schedulers AMPTaskScheduler and SMPTaskScheduler. PartitionScheduler

provides the service of TDM scheduling for partitions. AMPTaskScheduler and SMPTaskScheduler implement the

task scheduling of a particular partition in AMP and SMP multi-core configuration, respectively. The model of

a task scheduler allocates processor time to the task layer only when the partition is active. Hence the model of

PartitionScheduler sends notification on the channels enter_partition and exit_partition to task schedulers

when entering and leaving its partition, respectively.

The task layer contains a set of task models which are instantiated from two SWA templates PeriodicTask and

SporadicTask. A task model describes an execution unit of airborne software. Since the tasks belonging to a partition

are scheduled by its task scheduler, we define four channels ready, release, sched and stop as a set of scheduling

commands to communicate between task templates and TaskScheduler. Moreover, the priority ceiling protocol is

implemented by mutexes in task models to deal with intra-partition synchronization.

The communication layer comprises four TA templates: UDPLayer, VLink, EndSystem and SwitchPort in ac-

cordance with the structure of AFDX protocol stack. They jointly calculate the end-to-end delay of inter-partition

communication through an AFDX network. When sending a message to an ARINC-653 port, the source task notifies

the model of UDPLayer via a channel pmsg. UDPLayer transfers messages from the task layer to their corresponding

VLs. In the link layer, two templates VLink and EndSystem model the latency of delivery through a transmitting ES.

VLink realizes a traffic shaping function and shapes the flow of a VL to send no more than one frame in each interval of

BAG. The EndSystem multiplexes the regulated flows coming from different VLs within a common end system. The

channel vl synchronizes the execution of UDPLayer and VLink. Along the logical path of a VL, SwitchPort calculates

the latency of queuing and forwarding frames at an output port of switches. The channel frame notifies the destination

end system or switch port of the arrival of a frame. Additionally, two types of shared variables Port and Buffer model

the counters of ARINC-653 ports and the queues at switches’ ports, respectively.

In this framework, we verify the three following schedulability properties of DIMA systems:

• All the tasks meet their deadlines in each partition.

• The refresh period of any sampling port is guaranteed.

• The overflow from any queuing ports is avoided.

C. Model-based Analysis Method

On the basis of the above models described in the next section, we present the procedure for our schedulability

analysis, which combines symbolic and statistical model checking. Fig. 7 shows the four steps in the procedure:

1) Scheduling configuration is encoded into the Uppaal model as constant structure arrays.

2) We perform hypothesis testing of SMC for the model to falsify non-schedulable configuration rapidly.

14

UPPAAL

classic

UPPAAL

SMC
Yes

No No / May not

Yes

TCTL Queries

Safety property

UPPAAL

Models

SMC Queries

Hypothesis testing

Scheduling

Configuration

1 2 3

4 Refining

Fig. 7 Procedure for schedulability analysis

3) If the model goes through the SMC test, its schedulability should be verified by symbolic model checking.

4) We refine the configuration that fails in steps 2) or 3) and restart with the new configuration in step 1).

When we apply symbolic model checking to the analysis of a DIMA system, the schedulability constraints are

expressed and verified as a safety property of SWA models. We add a set of error locations and a boolean variable

error with the initial value False to Uppaal templates for this purpose. Once the schedulability is violated, the

related model will transfer to one of the error locations and assign the value True to error immediately. Thus, the

schedulability is replaced with this safety property ϕ:

A[] not error, (1)

which belongs to a simplified subset of TCTL (Timed Computation Tree Logic) [14] used in Uppaal.

According to the size of state space, we choose either a global or compositional analysis. The system models with

small size can be handled by the global analysis where all the constituent elements of a complete system are instantiated

and checked directly. Nevertheless, most concrete systems have larger state space, thereby making the global analysis

infeasible. To reduce the state space in this case, we perform a compositional analysis which check each partition

including its environment individually. A set of message interface automata is built to model the environment for a

partition.

The schedulability can be obtained from the satisfaction of ϕ, i.e. the result “Yes” from Uppaal Classic in Fig. 7.

However, since the symbolic model checking of Uppaal for SWA introduces a slight over-approximation [10], we

cannot conclude non-schedulability from the other results “No” or “May not” with certainty. Therefore, we derive

non-schedulability from SMC testing rather than from the verification of ϕ.

Considering the scalability of SMC, we only use a global analysis in Uppaal SMC. The schedulability of a complete

15

Fig. 8 PartitionScheduler model

avionics system is described as following queries of hypothesis testing:

Pr[<= M](<> error) <= θ, (2)

where M is the time bound on the simulations and θ is a very low probability. Since Uppaal SMC approximates the

answer using simulation-based tests, we can falsify non-schedulable configuration (i.e. the SMC result “No” in Fig. 7)

rapidly by finding counter-examples but identify schedulable ones only with high probability (1 − θ) (i.e. the SMC

result “Yes” in Fig. 7). Hence, the configuration that goes through the SMC tests should be validated by symbolic

model checking to ensure the schedulability of the corresponding system.

D. UPPAAL Models

In this section we present the Uppaal templates used to perform the analysis. A zip file containing all the models

can be downloaded from http://people.cs.aau.dk/~ulrik/submissions/091437/models.zip. The section

is divided into three parts each representing a layer of the system as in Fig. 6. The parts then go into details of the

Uppaal templates used in that particular layer.

1. Scheduling Layer Models

PartitionScheduler template: In the scheduling layer, a partition is activated only during its partition windows within

every major time frame. We build a TA model PartitionScheduler(See Fig. 8) to provide the description of temporal

resources for a particular partition.

The template declarations in Uppaal support the execution of a PartitionScheduler model. The parameter pid

of PartitionScheduler is the identifier of its partition and the partition schedule is recorded in an array of structures

PartitionWindows. Each element in the array contains two integer fields offset and duration, where offset is the

start time of a partition window and duration denotes the duration of this window. By reading PartitionWindows

Table from the declarations, the functions winStart and winEnd with the same integer parameter wind return the

16

http://people.cs.aau.dk/~ulrik/submissions/091437/models.zip

Fig. 9 AMPTaskScheduler model

start time and the end time of the windth partition window, respectively. The integer constant MajorFrame stands for

the major time frame, and the clock x measures time within every MajorFrame. In the template, all the guards and

invariants use x to control the transitions between locations.

There are three locations in a PartitionSchedulermodel. The initial location Init represents a conditional control

structure that determines the next location at the start of a major time frame. If a partition window and the major time

frame start simultaneously, the model will move to the location InPartition. Otherwise, it will enter the location

OutOfPartition. Within a major time frame, the model keeps traveling between InPartition and OutOfPartition

according to whether or not the current time is in a partition window. For any time from the initial instant, if the

PartitionScheduler model of pid enters a new partition window, it will move to the location InPartition, and

notify the unique task scheduler model in pid through the output channel enter_partition. On the contrary, if

the PartitionScheduler leaves its current partition window, it will move to the location OutOfPartition, and send

notification to the task scheduler model through the output channel exit_partition.

AMPTaskScheduler template: For any partition in AMP configuration, there is a preemptive FP task scheduler that

runs on a particular processor core while the partition is active. The behavior of the task scheduler is depicted in the

TA template AMPTaskScheduler (See Fig. 9). Its partition is identified by the only template parameter pid.

The model of AMPTaskScheduler receives notification from the PartitionScheduler model through two channels

enter_partition and exit_partition, and uses the channels ready, release, sched and stop as scheduling com-

mands to manage the tasks in the partition pid. If there is a task becoming ready to run or relinquishing the processor,

the task model will send its AMPTaskScheduler model a ready or release command, respectively. AMPTaskScheduler

maintains a ready queue that keeps all the tasks ready and waiting to run, and always allocates the processor to the first

task with the highest priority in the ready queue. If a new task having a higher priority than any tasks in the ready

17

Table 1 Major locations in task scheduler

Location
Partition windows Ready tasks

Outside Inside 0 > 0

NoTask
√ √

Idle
√ √

WaitPartition
√ √

Occupied
√ √

queue is ready, AMPTaskScheduler will insert the task into the ready queue, interrupt the currently running task via the

channel stop and schedule the new selected task via the channel sched. The task identifier is delivered by the offset of

channel arrays in the synchronization between AMPTaskScheduler and the task layer.

The ready queue is implemented by the integer array rq which contains a sorted set of task identifiers in priority

order. The tasks with identical priority are served in order of readiness. The function rqLen returns the number of the

tasks in rq. We use the function enque to insert an identifier of a new task into the ready queue rq and reorder the

tasks in the queue. The function deque removes the first element from the ready queue. The first element in rq, i.e. the

currently running task, is returned from the function front and recorded in the integer variable running.

According to whether the current time is in the partition windows as well as to the number of the tasks in the ready

queue, we create four major locations listed in Table 1. These four locations cover all situations, where the model must

be at one of these locations for any time from the initial instant. In contrast, all the other locations of the template are

committed and utilized to realize conditional branches or atomic action sequences.

The template AMPTaskScheduler is an event-driven model. It always stays at one of the major locations and reacts

to a particular set of input channels, each of which represents a type of external event. The event-handling functionality

of those these four major locations is below:listed as follows.

• NoTask reacts to the set of input channels {enter_partition, ready}. At the location NoTask, the partition pid

is not active and the ready queue rq is empty. Entering the partition pid will lead AMPTaskScheduler to the

location Idle via the channel enter_partition. When a new task becomes ready, the scheduler will add the

task to the ready queue and move to the location WaitPartition.

• Idle reacts to the set {exit_partition, ready}. Although the partition pid is active at the location Idle, there

is no task being executed because of the empty ready queue rq. Leaving the partition leads to the input of

exit_partition, which makes the model return to the location NoTask. However, once a task is ready to run at

Idle, the model will insert the task into rq and then schedule the first task in rq via the output channel sched.

• WaitPartition reacts to the set {enter_partition, ready}. At the location WaitPartition, there is no task being

executed despite the existence of tasks being ready in rq, because for the time is out of the partition pid is inactive.

18

Fig. 10 SMPTaskScheduler model

Each of the tasks going to ready state must be recorded in rq. After entering the next partition window of pid,

the model schedules the first task in rq to run.

• Occupied reacts to the set {exit_partition, ready, release}. At the location Occupied, the time is in a partition

window of pid and there is at least one task in the ready queue rq. First, AMPTaskSchedulerwill react immediately

to the input channel exit_partition and stop the execution of tasks when leaving the current partition window.

Second, when a new task is ready, AMPTaskScheduler will handle the input action ready and thus add the task

to rq. After that, if the running task recorded in running is not the first element in rq returned from front, the

model will promptly emit the output stop[running]! and sched[front()]! to perform preemption. Third, when

the running task relinquishes the processor, AMPTaskScheduler will receive notification from the input channel

release and remove the task from rq. At the that moment, if the ready queue is not empty, the highest-priority

task will be rescheduled via the channel sched[front()].

SMPTaskScheduler template: For the SMP configuration, we need a second task scheduler that can manage a

multi-core partition. Consequently, SMPTaskScheduler must be able to manage multiple running tasks running on

different cores. The idea of this scheduler is very similar to the AMPTaskScheduler, but there are some elementary

differences between the two templates. The SMPTaskScheduler is shown in Fig. 10, and its main difference is that

the location Occupied contains a lot of behavior which was originally divined divided between several locations in

AMPTaskScheduler. This location’s outgoing edges each represent one of the following: (1) Schedule a task, (2) release

a task, (3) ready a task, (4) entering Idle if no active tasks exits, and (5) exit partition.

Scheduling a task is done as soon as possible since sched is defined as an urgent channel. Therefore, a synchro-

nization happens without delay if the guards evaluate to true. Part of the guard is to make sure that there is a task ready

19

for the core in question. The edge with release just removes the given task from the ready queue. For each core there

is a corresponding ready queue, such that all active tasks are grouped by their affinity. The queues are arranged by

decreasing priority such that the highest priority task is at the front. Whenever a task synchronize over ready, there

is a possibility that a task is preempted. We know the affinity of the new ready task, and we therefore know on which

core a preemption might occur. Since the tasks are grouped by affinity we just compare the running task with the front

of the given core’s ready queue. No preemption occurs if the front task is the same as the running task but is otherwise

preempted in order for the core to be free for the new task.

If there are no active tasks in any ready queue the location Idle is entered by the use of no_tasks. This urgent

channel is not used to synchronize with any other process but is a way to force the process to enter Idle when

possible. The last edge from Occupied uses the channel exit_partition. As there might be several active tasks, we

need to make sure that all tasks are preempted. In WindowExit all active tasks are preempted and only when that is

completed the process enters WaitPartition. The main locations in SMPTaskScheduler are in the end the same as in

AMPTaskScheduler which means that Table 1 applies for SMPTaskScheduler as well. Even the four major locations of

SMPTaskScheduler react to the same sets of channels as in AMPTaskScheduler, and it is therefore following the same

event-driven structure pattern.

2. Task Layer Models

We build two SWA templates PeriodicTask and SporadicTask in Uppaal. Both templates share the same skeleton,

so we take PeriodicTask as an example to sketch out the structure of a task model.

In the template, we define two normal clocks x and curTime and a stopwatch exeTime. The clock x measures the

delays prescribed by the task type to calculate the release points of the task. The clock curTime is used to determine

the start of the next task period and check if the deadline is missed. By contrast, the stopwatch exeTime measures

the processing time during the execution of an abstract instruction that describes concrete task behavior, and will thus

progresses only progress when the model is at the location Running.

Once the task is scheduled by TaskScheduler through the channel sched, it will start execution on the processor

and move from the location Ready to ReadOp. For any task in the system, a sequential list of abstract instructions is

implemented as the structure array op. By using an integer variable pc as a program counter, the task can fetch the next

abstract instruction from op[pc] at the location ReadOp (See Fig. 11∗).

According to the command in the abstract instruction currently read from op, the task model performs a conditional

branch and moves from the location ReadOp to one of the locations that represent different operations. Therefore, the

command set containing the following seven elements divides the rest of the template into seven corresponding parts.

• COMPUTE Command: If the model reads a COMPUTE command, it will (re)start the stopwatch exeTime and enter

∗Due to the large size, the complete template is presented in Appendix C.

20

Fig. 11 Main structure of a task model

the location Running, which means that the processor is being occupied by the task and executing a computation

instruction.

• LOCK Command: By reading a LOCK command, the task attempts to acquire the mutual exclusion lock that

is specified by the res field of the instruction. The availability of a mutual exclusion lock depends on the

priority ceiling protocol. If the lock is available, the task will acquire the lock and return to the location ReadOp

immediately. Otherwise, the task will block itself and wait for the lock at the location WaitResource.

• UNLOCK Command: When fetching an UNLOCK command from op, the task releases the lock in the instruction

and wakes up one of the tasks blocked on this lock. The woken task will leave the location WaitResource and

enter the location Ready to wait for the next scheduling command.

• DELAY Command: The instruction with a DELAY command makes a task suspended at the location WaitDelay

for a specified period of time. Thereafter, the task returns to Ready, waiting for its next scheduling command.

• SEND Command: The commands SEND and RECEIVE represent non-blocking message I/O operations among

different partitions. When the task reads a SEND command with a resource identifer op[pc].res, the corresponding

UDP/IP layer model will be notified of the message-sending operation through an output channel pmsg[msgid(

op[pc].res)]!, where the offset msgid(op[pc].res) returns the identifier of the message type.

• RECEIVE Command: According to the transfer mode of the source port, there are two ways of processing a

RECEIVE command. If the task receives a message from a queuing port, the model will call the function rcvMsg

that decreases the counter of the source port. By contrast, the counter of a sampling port does not be isn’t changed,

but the task checks the source port’s clock in the global clock array port_clock to ensure that the validity of

received messages is consistent with the required refresh period of the source port. The clock of a sampling port

is reset by the communication layer only when a new message arrives in the port.

• END Command: The command END denotes the accomplishment of the current job in this task period. The task

21

will relinquish the processor through the channel release and stay at the location WaitNextRelease until the

next period starts.

3. Communication Layer Models

The communication layer consists of four TA templates: UDPLayer receives message sending requests from the

task layer and transfers messages from ARINC-653 ports to their target VLs through the UDP/IP layer. VLink regulates

transmitted flows to ensure a BAG (bandwidth allocation gap) interval between two consecutive frames. EndSystem

using a First-In-First-Serve (FIFO) scheduler multiplexes the different flows coming from the VLink. SwitchPort

acting as the queue inside a switch output port, forwards frames according to a forwarding table. We first detail the

template VLink and then briefly describe the other three templates due to their similar skeleton.

VLink template We create one VLink instance per VL. Its unique template parameter vlid is the identifier of a VL.

The VLink models read their configuration from the array vlink, which contains a source port src, an array dst of

destination ports, a forwarding table ft, an identifier es of the VL’s transmitting ES, an integer field BAG that stands for

the bandwidth allocation gap [4], an integer field TxDelay denoting the frame delay [4], etc.

The total delay through a VL is divided into technological and configuration latency. Technological latency is

independent of traffic load, whereas configuration latency depends on system configuration and traffic load [4].

The technological latency is bounded on the interval [TechMin, TechMax] where TechMin and TechMax are declared

as two integer constants. A clock x measures the nondeterministic technological latency at a location TechDelay. The

configuration latency through a transmitting ES is divided into three parts: (1) the floating delay in waiting for the

interval of BAG, (2) the jitter within each BAG, and (3) a fixed frame delay. The first delay arises from the traffic

regulation of VLink. A clock t measures the first delay since the last output to EndSystem. The second jitter is caused

by the interference from other VLs in the same transmitting ES [4]. Hence the jitter will be calculated by the model of

EndSystem. The frame delay is finally added to cover the time taken to deliver a frame to the physical link.

As is depicted in Fig. 12, VLink obtains notification of packet-receiving on the input channel vl. At the initial

location Idle, VLink waits for the first packet to arrive at the source port. On receiving this first packet, the model

fetches it from the port and goes through the technological latency at the location TechDelay. Subsequently, the model

sends a new frame by entering the location Sending and resets the clock t to start the latency calculation for a new

BAG. Meanwhile, the VL identifier is added to the FIFO queue of the corresponding end system. Leaving the location

Sending means VLink has sent a regulated frame to EndSystem.

According to the number of packets in the source port, VLink may wait for the next BAG or the next incoming

packet after finishing a sending operation. First, if the model still has at least one packet in the source port to transmit,

it will start the next sending procedure by entering TechDelay again. Since there is at least a BAG interval between two

consecutive frames, VLink should wait for the start of the next BAG at location Regulation before entering Sending.

22

Fig. 12 VLink model

Fig. 13 UDP layer model

Fig. 14 End system model

Fig. 15 Switch port model

Second, if the source port is empty, the model will stay at Idle until the next incoming packet arrives.

The other templates As shown in Fig. 13-15, the other three templates share the a similar structure. All of them

have a Waiting location at which they wait for the next incoming packet from their upper layer. Once they are notified

via an input channel or an increment of shared variables, they will enter another “Transmission” location and transfer

the packet from the upper to the lower. The model returns to Waiting and repeats this process after finishing the transit

operation. In addtion, EndSystem and SwitchPort use an urgent channel frame to check their own FIFO buffers in

time. They choose destination buffer(s) on the basis of the forwarding table ft of VLs. The function enque adds the

VL identifer of a frame to the next buffer, while deque removes the front from the its own buffer.

V. Compositional Analysis

This section focuses on the compositional schedulability analysis, which verifies local properties of individual

partitions by symbolic model checking, infers that they still hold in the complete system, and finally deduces global

properties of the system.

We adopt the paradigm of assume-guarantee reasoning [43] to implement the compositional analysis. The basic

element of this paradigm is normally expressed as a triple 〈φ〉M 〈ϕ〉, where φ and ϕ are logic formulas and M is a

model. The triple is true if whenever M is a constituent of a system satisfying φ, the system is guaranteed to satisfy ϕ.

Consider the system consisting of two components M and M ′. A typical assume-guarantee rule is defined as

〈true〉M ′〈φ〉 〈φ〉M 〈ϕ〉
〈true〉M ‖M ′〈ϕ〉 (3)

23

where the environment M ′ of the component M guarantees the assumption φ of M . It concludes that the complete

system satisfies ϕ.

A classic way [52] to realize such a paradigm is to provide a preorder � on the finite-state models that captures the

notion of “more behaviors” and to use a logic whose semantics is consistent with the preorder. The preorder should

not only preserve satisfaction of the logic formulas but also hold in composition operations of models. For example, if

a formula is true for a model, it will also be true for any model that is smaller in the preorder. Additionally, satisfaction

of a formula corresponds to being smaller than a tableau model of the formula in the preorder. Hence assumptions can

be defined either as logic formulas or directly as finite-state models. Let A be the tableau of the assumption φ. The

above assume-guarantee rule can be expressed as

M ′ � A M ‖A |= ϕ
M ‖M ′ |= ϕ (4)

Considering the conciseness and convenience, we describe assumptions of each component as SWA models directly

and implement assume-guarantee reasoning as the rule of Eq. (4).

In this section, we first define a preorder, timed selection simulation relation on SWA models. On the basis of its

properties, we present the procedure for compositional analysis in the paradigm of assume-guarantee reasoning. A

simplified avionics system exemplifies the use of our compositional analysis.

A. Timed Selection Simulation

We propose a notion of timed selection simulation relation to support assume-guarantee reasoning. Compared

with some other abstraction relations like timed simulation [53] and timed ready simulation [54], timed selection

simulation only abstracts a selected subset of actions from the concrete model. Applying timed selection simulation

to the abstraction of a concrete system, one can pay attention to part of the system, individually model the behavior of

each component, and thereby obtain a composite abstract model rather than a monolithic one.

Considering the semantic object T A of an automaton A ∈ Ω, we denote the error states of T A by the set

E = {〈l, u〉|l ∈ Err} where Err is the error-location set of A. Thus, for any TIOTS T = 〈S, s0, Σ,→〉, its error states

are defined as a set E ⊆ S, and the following function g : S → {true, false} indicates whether a state s ∈ S has violated

schedulability properties:

g(s) =




true if s ∈ E

false if s < E .
(5)

Given two compatible TIOTSs Ti, i ∈ {1, 2} with the error-state set Ei , their composition T1‖T2 has the error-state set

ET1 ‖T2 = {〈s1, s2〉|s1 ∈ E1 ∨ s2 ∈ E2} and the function g(〈s1, s2〉) = g(s1) ∨ g(s2).

Based on the function g(s), the formal definition of timed selection simulation is given as follows.

24

Definition 5 (Timed Selection Simulation) Let T1 = 〈S1, s1,0, Σ1,→1〉 and T2 = 〈S2, s2,0, Σ2,→2〉 be two timed I/O

transition systems with Σ2 ⊆ Σ1. Let R be a relation from S1 to S2. We call R a timed selection simulation from T1 to

T2, written T1 � T2 via R, provided (s1,0, s2,0) ∈ R and for all (s1, s2) ∈ R, g(s1) = g(s2) and

1) if s1
a?−−→ s′1 for some s′1 ∈ S1, a ∈ Σ2, then ∃s′2 ∈ S2 such that s2

a?
==⇒ s′2 and (s′1, s

′
2) ∈ R

2) if s1
a!−→ s′1 for some s′1 ∈ S1, a ∈ Σ2, then ∃s′2 ∈ S2 such that s2

a!
==⇒ s′2 and (s′1, s′2) ∈ R

3) if s1
a−→ s′1 for some s′1 ∈ S1, a ∈ (Σ1 \ Σ2) ∪ {τ}, then ∃s′2 ∈ S2 such that s2

0
==⇒ s′2 and (s′1, s

′
2) ∈ R

4) if s1
ǫ (d)−−−→ s′1 for some s′1 ∈ S1, d > 0, then ∃s′2 ∈ S2 such that s2

ǫ (d)
===⇒ s′2 and (s′1, s

′
2) ∈ R.

Definition 6 (Timed Selection Simulation between SWA) Let Ai, i ∈ {1, 2} be stopwatch automata. We say that

A1 � A2, if and only if their corresponding timed I/O transition systems Ti satisfy T1 � T2.

We now give some necessary properties of timed selection simulation.

Theorem 1 (Preorder) Timed selection simulation � is a preorder.

For any automaton A ∈ Ω, by construction, the reachability of its error locations is equivalent to that of the

error states in the corresponding TIOTS T A. Hence the following theorem shows that timed selection simulation can

preserve the satisfaction of the safety properties in the form of Eq.(1).

Theorem 2 (Property preservation) Let Ti, i ∈ { 1, 2} be timed I/O transition systems and Ei be the set of error states

of Ti . Given a safety property ϕ : ∀¬reach(Ei) that any error states are not reachable, if T1 � T2 and T2 |= ϕ, then

T1 |= ϕ.

Theorem 3 (Abstraction compositionality) Let Ti, i ∈ {1, 2, 3} be timed I/O transition systems. If T1 � T2, T1 � T3,

and T2 and T3 are compatible, then T1 � T2‖T3.

Theorem 4 (Compositionality) Let Ti = 〈Si, si,0, Σi,→i〉, i ∈ {1, 2, 3, 4} be timed I/O transition systems. Suppose

T1‖T3 and T2‖T4 are the parallel compositions of compatible timed I/O transition systems. If (1) T1 � T2,T3 � T4, and

(2) O1 ∩ I4 ⊆ Σ2, I2 ∩ O3 ⊆ Σ4, then T1‖T3 � T2‖T4.

B. Procedure for Compositional Analysis

Our compositional analysis exemplifies the paradigm of assume-guarantee reasoning. Compared to the existing

assume-guarantee approaches, our approach is based on the timed selection simulation relation that has the novel

feature of abstraction compositionality. This property helps engineers generate the abstract model of a component

automatically by combining a set of simple message interface automata. When a partition Pi is checked independently,

these message interface automata describe the external behavior of the other partitions, serving as the assumptions of

Pi in assume-guarantee reasoning.

25

P1 P2 Pn

φ1

φ

…

…

System Model

Abstraction Assumption Abstraction Assumption Abstraction Assumption

φ2 φn

Message Interfaces

Decomposition

Deduction

Model checking Model checking Model checking

1

2

3

4

Fig. 16 Compositional analysis procedure

We apply the assume-guarantee rules like Eq. (4) to our compositional analysis, and describe the schedulability

goal as the safety property ϕ of Eq. (1). As shown in Fig. 16, our compositional analysis is comprised of the following

four steps:

1) Decomposition: The system is first decomposed into a set of communicating partitions modeled by TA and

SWA. The global property ϕ is also divided into several local properties, each of which belongs to one partition.

2) Construction of message interfaces: We define message interfaces as the assumption and abstraction of the

communication environment for each partition. In general, the templates of message interfaces should be built

manually by the engineers.

3) Model checking: The local properties under the assumptions and the abstraction relations are verified by model

checking.

4) Deduction: From the assume-guarantee rules, we finally derive the global property by combining all the local

results.

The procedure can be performed automatically except for the first construction of message interfaces. We assume

that a task never blocks while communicating with other partitions, which is commonly used in avionics systems [11, 22].

Otherwise a loop of communication dependency will cause circular reasoning, because the assumptions of a partition

might be based on its own state recursively.

1. Decomposition

We first instantiate the templates of the Uppaal modeling framework to construct the SWA model of a complete

avionics systemΛ. Given a template name Template, we define the set of its SWA instances in the system as {Template}

and the composition of all the elements in {Template} as [Template]. Let Φ(A) be the set of SWA instances for any

26

model A. Φ(Λ) contains nine disjoint sets, each of which corresponds to one template in the modeling framework:

Φ(Λ) =
{
{PartitionScheduler} ∪ {AMPTaskScheduler} ∪ {SMPTaskScheduler} ∪ {PeriodicTask}

∪ {SporadicTask} ∪ {UDPLayer} ∪ {VLink} ∪ {EndSystem} ∪ {SwitchPort}
}
.

(6)

Hence the system Λ is described as a composite SWA model

Λ =[PartitionScheduler]‖[AMPTaskScheduler]‖[SMPTaskScheduler]‖[PeriodicTask]

‖[SporadicTask]‖[UDPLayer]‖[VLink]‖[EndSystem]‖[SwitchPort].
(7)

Assume that there are n constituent partitions in a system. Let Pi, i ∈ {1, 2, . . . , n} be the SWA composite model

of the ith partition. We also refer to this partition as Pi if its meaning is not ambiguous. Pi consists of all the SWA

instances of the scheduling and task layer within the partition:

Pi = [PartitionScheduler]i ‖[AMPTaskScheduler]i ‖[SMPTaskScheduler]i ‖[PeriodicTask]i ‖[SporadicTask]i (8)

where the constituent models belong exclusively to Pi . Thus the scheduling and task layer of the system are divided

into n disjoint composite model of partitions Pi, i ∈ {1, 2, . . . , n}, and
⋂

i∈{1,2,...,n} Φ(Pi) = ∅.

By contrast, all the partitions share the same model F of the AFDX network facilities in the communication layer:

F = [UDPLayer]‖[VLink]‖[EndSystem]‖[SwitchPort] (9)

which cannot be decomposed like the above layers. However, when only considering the communication environment

of one partition Pi , we traverse the forwarding table ft of VLs and recursively extract models of the network facilities

that affect the message transmission to Pi directly or indirectly. In doing so, F is decomposed into n intersecting

composite model Fi, i ∈ {1, 2, . . . , n}:

Fi = [UDPLayer]i ‖[VLink]i ‖[EndSystem]i ‖[SwitchPort]i (10)

where it is possible that
⋂

i∈{1,2,...,n} Φ(Fi) , ∅. We define the composite model of the partition Pi with its network

facilities Fi as P∗
i
= Pi ‖Fi .

Let Erri be the error-location set of Pi . The safety property ϕi: A[] ¬(∨loc∈Erri
loc) denotes the schedulability

of Pi . The global property ϕ is therefore written as ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕn, and the goal of our schedulability analysis is

27

expressed as the verification problem:

Λ |= ϕ. (11)

Since the error-location set Erri is only allowed to be manipulated by Pi , the problem can be further divided into

n satisfaction relations:

P∗
i ‖ (

n

j=1, j,i
Pj) |= ϕi, i ∈ {1, 2, . . . , n}. (12)

When handling the property ϕi , we also write Pi instead of P∗
i

without ambiguity. These n subproblems are thus

written as

P1‖P2‖ · · · ‖Pn |= ϕi, i ∈ {1, 2, . . . , n}. (13)

In an ideal compositional way, we should check each partition model Pi independently for the corresponding local

property ϕi rather than the original verification problem with a larger system model. However, the communication

environment of Pi , which denotes the behavior that Pi receives messages from other partitions, may affect the

satisfaction of the schedulability property ϕi . Hence when performing the verification for partition Pi , one needs to

give the assumptions of its communication environment and verifies the local property ϕi under these assumptions.

2. Construction of message interfaces

A set of TA models is created to describe the message-sending behavior of a partition. Each of the TA is called

a message interface of this partition and associated with a particular message type. Suppose there are a number of

messages sent from partition Pj to another partition Pi and their corresponding message interfaces make up a composite

TA model Ai, j . When we analyze Pi in the compositional way, it should be safe for Ai, j to replace Pj . Hence, we say

that a message interface of Pj is an abstraction of Pj .

Our abstraction of the message delivery between a partition and its underlying network is modeled using the

synchronization between SWA models. An action of the synchronization represents a specific message types. Let

Σi = Ii ⊕ Oi be the action set of a composite model for any partition Pi . An action ak ∈ Ii(resp. ak ∈ Oi) denotes that

Pi receives(resp. sends) messages with the type msgk from(resp. to) other partition(s). The symbol j ⊲ i represents the

condition that there exists a partition Pj sending messages to Pi via an action set O j⇀i ⊆ Ii ∩ O j .

Definition 7 (Message Interface) Let Oi be the output action set of a stopwatch automaton Pi ∈ Ω. For any output

action ak ∈ Oi , the timed automaton Ak
i

with an action set Σk
i
= Ok

i
= {ak} is a message interface of Pi if and only if

there exists a timed selection simulation relation � on Ω such that

Pi � Ak
i . (14)

28

Fig. 17 Template of periodic message interface

We build message interfaces on the basis of the message patterns described in section III.C. Fig. 17 shows a template

of the message interface that sends messages periodically via the action array pmsg. Then we make an automatized

binary search for the interface’s parameters such as jitter in the template and meanwhile check the satisfaction of

timed selection simulation relation.

The message interfaces can serve as the assumptions of the communication environment of a partition. The

composition Ai, j of the message interfaces Ak
j

for all ak ∈ O j⇀i provides Pi with a “complete” abstraction of Pj , which

models the behavior of all the output actions from Pj to Pi . According to the abstraction compositionality (Theorem

3) of the preorder �, we have

Pj � Ai, j . (15)

Considering all the partitions except Pi in the system, we describe the communication environment of Pi as the

composite model

n
j=1, j,iAi, j .

3. Model checking

In the third step, the local property ϕi of Pi under assumption

n
j=1, j,iAi, j can be verified by model checking. We

denote these n subproblems by

Pi ‖ (

n

j=1, j,i
Ai, j) |= ϕi i ∈ {1, 2, . . . , n}. (16)

Normally, Ai, j in Eq.(16) has a much smaller model size than its corresponding partition model Pj in Eq.(13). Thus,

the compositional approach allows us to verify a simpler abstract partition model instead of a complex concrete system

model including the details about all the partitions.

In addition, we capture the computation time of each task as an interval between a best-case and worst-case

execution time. When analyzing the schedulability of a partition, the model-checker explores all scheduling decisions

that can be made in such an interval, and hence also examines possible cases of scheduling timing anomalies [55].

4. Deduction

We derive the global property ϕ by combining n local results in the last step. For any schedulable system, each

property ϕi should be concluded from the satisfaction of Eq.(16) under assumptions and all the abstraction relations

29

P1

Concrete Model

P2

P3

a1

a2

a3

P1

τ

τ

a1

a2

a3A
1

A
2

A
3

Abstract Model

2

3

2

Fig. 18 Abstraction relations in the example

of Eq.(15). According to the compositionality (Theorem 4) and property preservation (Theorem 2) of timed selection

simulation, we have the following assume-guarantee rule:

∧

{ j | j⊲i }
Pj � Ai, j

Pi ‖ (

n

j=1, j,i
Ai, j) |= ϕi

P1‖P2‖ · · · ‖Pn |= ϕi
(17)

Note that this assume-guarantee rule only provides a sufficient schedulability condition, for abstract message interfaces

might slightly over-approximate the external behavior of a partition.

C. An Example of Assume-guarantee Reasoning

A simplified DIMA system exemplifies the reasoning procedure. In this example, the system consists of three

partitions Pi, i ∈ {1, 2, 3}, each of which is able to communicate with other partitions directly via a set of messages.

We write the global property ϕ as the conjunction of three local properties ϕi of Pi . Accordingly, the goal of the

verification problem is to check

P1‖P2‖P3 |= ϕ1 ∧ ϕ2 ∧ ϕ3. (18)

From Eq.(13), this problem can be replaced with three subproblems:

P1‖P2‖P3 |= ϕi, i ∈ {1, 2, 3}. (19)

Without loss of generality, we take the verification of ϕ1 for example to show how the model-checking and deduction

30

are carried out in the following steps.

Assume that P2 sends P1 two types of messages, msg1 and msg2, via two actions a1 and a2 respectively, and P3

sends P1 only a msg3 with action a3. We create one message interface Ak
j
, j ∈ {2, 3}(like Eq.(14)) for each message

type msgk(k ∈ {1, 2, 3}) received by P1 in the system. The abstraction relations from Eq.(14) can be expressed as

P2 � A1
2, P2 � A2

2, P3 � A3
3. (20)

The dashed-line arrows in Fig. 18 depict these abstraction relations. From abstraction compositionality of the preorder

�, we can obtain

P2 � A1
2‖A2

2, P3 � A3
3. (21)

Then, from reflexivity and compositionality of the preorder �, the composite model of the system satisfies

P1‖P2‖P3 � P1‖A1
2‖A2

2‖A3
3. (22)

Note that when we apply the compositionality to checking a partition Pi , any output actions sent to Pi will never be

removed in abstraction relations (Eq.(21)), which satisfies the condition (2) of theorem 4.

With Eq.(22), we have from property preservation of the abstraction relation � that if

P1‖A1
2‖A2

2‖A3
3 |= ϕ1, then (23)

P1‖P2‖P3 |= ϕ1. (24)

Since Eq.(24) covering all three partitions in the system has a higher complexity than Eq.(23), the techniques of

model checking can be adopted to verify the simpler problem Eq.(23) instead of the original goal Eq.(24). The same

steps will be repeated for local properties ϕ2 and ϕ3.

Consequently, we conclude all the local results of (19) according to the reasoning process from Eq.(20) to Eq.(24).

When we analyze the partition P1 and its communication environment, the local result of Eq.(24) can be deduced from

Eq.(20) and Eq.(23) in the following assume-guarantee rule.

P2 � A1
2 ∧ P2 � A2

2 ∧ P3 � A3
3

P1‖A1
2‖A2

2‖A3
3 |= ϕ1

P1‖P2‖P3 |= ϕ1
(25)

The local results are then combined to constitute the global result of Eq.(18).

31

Note that this assume-guarantee rule only provides a sufficient schedulability condition. Actually, a false negative

result might be given conservatively even if the system configuration is schedulable. The conservativeness of our

compositional approach stems from two conditions of over-approximation:

• The first condition of false negatives is due to the slight over-approximation used in the SWA verification algorithm

inside the Uppaal verification engine[10]. This conservativeness is inevitable but can be mitigated by the step

of SMC falsification described in section IV.C. Therefore, a larger time bound M or a lower probability θ of the

Eq. 2 is likely to be adopted in this case.

• The second over-approximation is caused by the abstraction of message interface automata, for they might slightly

over-approximate the external behavior of partitions. In this paper, the message interfaces are designed as the

automaton shown in fig. 17 but not confined to it, which sends one message within a fixed period like a task. If the

assumption of message-sending behavior of tasks is not precise, the final message interface automata will occupy

more time to send a possibly submitted message than the task actually needs. In this case, the compositional

method might also return a false negative result. The degree of this conservativeness depends on engineers’

experience in practice.

VI. Case Study

This section demonstrates the schedulability analysis of an avionics system which combines the workload in [11]

and the AFDX configuration in [34].

As shown in Table 2, the workload is comprised of 5 partitions (P1 −P5), which then contains a total of 18 periodic

tasks and 4 sporadic tasks. The type of a task depends on its release interval. A periodic task has a deterministic

period, whereas the release time of a sporadic task is bounded by a minimum separation. The execution of a task

is characterized as a sequence of chunks. Each chunk has a lower and upper bound on execution time (modeled

as a non-deterministic choice), a set of potentially required resources and message-passing operations. There are 3

intra-partition locks, as shown in column mutex, and 4 inter-partition message types in the task set. The columns output

and input indicate transfer direction of messages. According to the operations and resources required by chunks, we

convert each chunk into a subsequence of the abstraction instruction sequence (Receive, Lock, Compute, Unlock, Send,

End) in the Uppaal task model.

Considering the inter-partition messages in the workload, we assign each message type (Msgi) with a correnspoding

unique VL (Vi). The messages of Msg1 and Msg2 are handled at the refresh period 50ms in sampling ports. Msg3 and

Msg4 are configured to operate in queuing ports, each of which can accommodate a maximum of one message. The

AFDX configuration in Table 3 is based on the case of [34]. The column Length indicates the length of a message sent

from an ARINC-653 partition. For any VL in the configuration, the columns BAG and Lmax denote its Bandwidth

Allocation Gap and Maximum packet Length, respectively. The source and destination partition(s) are given in the

32

Table 2 Workload of the avionics system [11, 22](Times in milliseconds)

No. Task Release Offset Jitter Deadline Priority
Execution Chunks

Time Mutex Output Input

P1

Tsk1
1

[25,25] 2 0 25 2
[0.8,1.3] - - -

[0.1,0.2] - - -

Tsk1
2

[50,50] 3 0 50 3 [0.2,0.4] - Msg1 -

Tsk1
3

[50,50] 3 0 50 4 [2.7,4.2] - - -

Tsk1
4

[50,50] 0 0 50 5 [0.1,0.2] Mux1
1 - -

Tsk1
5

[120,∞) 0 0 120 6
[0.6,0.9] - - -

[0.1,0.2] Mux1
1 - -

P2

Tsk2
1

[50,50] 0 0.5 50 2 [1.9,3.0] - - -

Tsk2
2

[50,50] 2 0 50 3 [0.7,1.1] - Msg2 -

Tsk2
3

[100,100] 0 0 100 4 [0.1,0.2] Mux2
1 - -

Tsk2
4

[100,∞) 10 0 100 5
[0.8,1.3] - - -

[0.2,0.3] Mux2
1 - -

P3

Tsk3
1

[25,25] 0 0.5 25 2 [0.5,0.8] - - Msg1

Tsk3
2

[50,50] 0 0 50 3 [0.7,1.1] - - Msg2

Tsk3
3

[50,50] 0 0 50 4 [1.0,1.6] - - Msg3

Tsk3
4

[100,∞) 11 0 100 5
[0.7,1.0] - - -

[0.1,0.3] - - -

P4

Tsk4
1

[25,25] 3 0.2 25 2 [0.7,1.2] - - -

Tsk4
2

[50,50] 5 0 50 3 [1.2,1.9] - Msg3 Msg1

Tsk4
3

[50,50] 25 0 50 4 [0.1,0.2] - - Msg4

Tsk4
4

[100,100] 11 0 100 5 [0.7,1.1] - - -

Tsk4
5

[200,200] 13 0 200 6 [3.7,5.8] - - -

P5

Tsk5
1

[50,50] 0 0.3 50 1 [0.7,1.1] - - Msg1

Tsk5
2

[50,50] 2 0 50 2 [1.2,1.9] - Msg4 Msg2

Tsk5
3

[200,200] 0 0 200 3
[0.4,0.6] - - -

[0.2,0.3] Mux5
1 - -

Tsk5
4

[200,∞) 14 0 200 4
[1.4,2.2] - - -

[0.1,0.2] Mux5
1 - -

columns Source and Destination, respectively.

Fig. 19 illustrates the distributed deployment of the workload. We consider 3 ARINC-653 modules connected by

an AFDX network, and allocate each partition to one of the modules. The module M1 accommodates P1 and P2, the

33

Table 3 AFDX configuration in the case study (Times in milliseconds and sizes in bytes)

Message Length VL BAG Lmax Source Destinations

Msg1 153 V1 8 200 P1 P3,P4,P5

Msg2 953 V2 16 1000 P2 P3,P5

Msg3 453 V3 32 500 P4 P3

Msg4 153 V4 32 200 P5 P4

module M2 executes P3 and P5, and the partition P4 is allocated to M3. There are 4 VLs V1-V4 connecting 3 ESs across

2 switches S1 and S2 in the AFDX network. The arrows above VLs’ names indicate the direction of message flow.

P1 P2

P3

P4

P5

ES1

M1

ES2

M2

ES3

M3

V1

V2

V3

V4

V1 V2 V3

V4

V1

V1 V2 V3

V4
S1 S2

P1 P2

P3

P4

P5

M1

M2

M3

0 5 10 15 20 25

Major Time Frame

Time / ms

Fig. 19 Distributed avionics deployment and partition schedules (Times in milliseconds)

A. Experiment 1 in AMP configuration

We first consider an AMP configuration that equips each of its processor cores with one partition. Although the

sample avionics workload[11, 22] is designed for single-core processor platforms, the AMP multi-core deployment

does not change the sequential execution of these legacy applications. We update the module M1 by installing a

dual-core processor instead, while single-core processors remain in the modules M2 and M3. Fig. 19 gives the partition

schedules, which fix a common major time frame MF at 25ms and allocate 5ms to each partition within every MF. All

the partition schedules are enabled at the same initial instant and their clocks are always synchronized. The scheduling

configuration keeps the temporal order of the partitions in [11]. Hence the partition schedules contain five disjoint

windows 〈P1, 0, 5〉, 〈P2, 5, 5〉, 〈P3, 10, 5〉, 〈P4, 15, 5〉, and 〈P5, 20, 5〉, where the second parameter is the offset from the

start of MF and last the duration.

After combining all the models of the system, we executed the schedulability analysis in Uppaal. We set the

timebound as M = 1.0 × 105 microseconds and the probability threshold as θ = 0.001 for Eq.(2). The experiment was

performed on the Uppaal 4.1.19 64-bit version and an Intel Core i5-4590 processor.

Results of the Analysis

The result (The AMP case in Table 4) shows that the above scheduling configuration fails the SMC test and thus is

non-schedulable. The following classical MC is not required but listed for comparison. We can explore the cause of

34

Table 4 Experiment results (Result), execution time (Time/seconds) and memory usage (Memory/MB)

Case Method Range Result Time Memory

AMP

SMC System No 5.99 50

MC

P1 Yes 7.26 171

P2 Yes 0.92 52

P3 May not 4.21 258

P4 Yes 0.28 33

P5 Yes 11.47 412

SMP

SMC System Yes 52.51 51

MC

P1 Yes 7.75 192

P2 Yes 1.11 50

P3 Yes 15.98 351

P4 Yes 0.29 33

P5 Yes 9.76 357

non-schedulability on the basis of counter-examples generated by Uppaal to help refine the system configuration.

Fig. 20 shows the Gantt chart of a counter-example, where the task Tsk3
2

in P3 violates the constraint of the

refresh period of Msg2. The top two lines “partition” and “tscheduler” represent two scheduling-layer models

PartitionScheduler and AMPTaskScheduler, respectively. For the line “partition”, color red denotes the time outside

P3 and green is inside P3. For “tscheduler”, color red denotes that there are no tasks, color green denotes idle and the

color blue denotes that the scheduler is occupied with a task. The next four lines from the top in Fig. 20 are task models,

where a line is painted in green whenever a task stays at Ready state and in blue at Running. The communication-layer

models correspond to the remaining lines of the Gantt chart. In these lines the transmitting of Msgk are represented by

the chart lines “msgk_snd”, “vlinkk_tx”, “esx”, and “switch_py”, which denote the message-delivery delays of Msgk

through an AFDX network.

������

Fig. 20 Gantt chart of a counter-example (Times in microseconds)

The counter-example illustrates that network latency increases the risk of breaching the schedulability constraints.

35

Let t be the elapsed time since the initial instant t0 = 0 shown in the Gantt chart. The first message of Msg2 was sent

by the message interface msg2_snd at t = 7.625ms, and reached the destination port at t = 8.088ms. When Tsk3
2

was

scheduled to read Msg2 at t = 60.000ms, the age of the first received message indicated the value 51.912ms that had

exceeded the refresh period. Thus, the copied message of Msg2 was not a valid data sample. Although msg2_snd sent

a new Msg2 message at t = 59.585ms, the message did not arrive at the destination port until t = 60.184ms due to

network latency.

B. Experiment 2 in SMP configuration

Considering the adverse effect of communication latency on schedulability, we adopt an SMP configuration instead

of AMP in the module M1, thereby making it possible to execute multiple tasks of the same partition simultaneously.

Both of the processor cores Core 0 and Core 1 are assigned to the partitions P1 and P2 in M1. The task set

{Tsk1
1
, Tsk1

3
, Tsk1

5
, Tsk2

2
, Tsk2

4
} has a processor core affinity Core 0, while the tasks in {Tsk1

2
, Tsk1

4
, Tsk2

1
, Tsk2

3
} are assigned

to an affinity for Core 1.

The schedulability analysis of the updated system was executed again. The result (The SMP case in Table 4) shows

that the SMP configuration goes through the global SMC test and compositional verification of classical MC. Thus,

the updated system finally achieves schedulability.

Moreover, the budgets of P1 and P2 can be further reduced in SMP configuration. We started an additional

schedulability analysis from the above partition schedules and decreased the budgets of P1 and P2 iteratively with a

step size 0.1ms. The schedulability verification was repeated until the system had been verified as unschedulable. The

refined partition schedules include five windows 〈P1, 0, 4.7〉, 〈P2, 5, 3.2〉, 〈P3, 10, 5〉, 〈P4, 15, 5〉, and 〈P5, 20, 5〉, which

spend the minimum budgets of P1 and P2.

Results of the Analysis

Table 4 shows the execution time and memory usage of the analysis tools in our two experiments. In compositional

analysis (MC in Table 4), partition P5 contains more instantiated models (18 processes) than the other four partitions.

As a result, model-checking runs slower and requires more memory than the others. Nevertheless, the compositional

analysis could be performed on ordinary personal computers within a very acceptable time.

Compared with the compositional way, global analysis based on the same Uppaal models would require 44

processes including all the 22 task models whose state space is much more complex than the others. This causes

Uppaal classic MC to run out of memory within a few minutes, and thus makes the global analysis using classical MC

infeasible. In contrast, SMC falsification testing can be quickly accomplished when we perform global analysis (SMC

in Table 4), offering effective state space reduction.

36

4 5 6 7 8
Number of tasks

0

50

100

150

200

Ti
m

e
/ s

ec
on

ds

15.98

84.1

220.5

4.14 4.9

Schedulable
Nonschedulable

(a) Time consumption

4 5 6 7 8
Number of tasks

0

500

1000

1500

2000

M
em

or
y

/ M
B

351

1031

2301

112 105

Schedulable
Nonschedulable

(b) Memory consumption

Fig. 21 Time and memory consumption in the performance experiment

C. Performance experiment

We argue that the main bottleneck of our method is the use of exact model-checking of the schedulability within a

single partition, where the state-space is expected to grow exponentially with the number of concurrent components

(e.g., tasks). To give an indication of this limit, this third experiment shows the performance and scalability of our

proposed method by scaling up the number of tasks in a partition, thus also scaling up the state-space that has to be

explored using model-checking as part of the compositional analysis. We keep the same configuration as experiment

2, but for each repetition we append one task from P5 to partition P3. Thus the compositional analysis was repeated

four times as follows in addition to that of the original task sets:

• Compositional analysis where P3 contains 5 tasks {Tsk3
1
, Tsk3

2
, Tsk3

3
, Tsk3

4
, Tsk5

1
}

• Compositional analysis where P3 contains 6 tasks {Tsk3
1
, Tsk3

2
, Tsk3

3
, Tsk3

4
, Tsk5

1
, Tsk5

2
}

• Compositional analysis where P3 contains 7 tasks {Tsk3
1
, Tsk3

2
, Tsk3

3
, Tsk3

4
, Tsk5

1
, Tsk5

2
, Tsk5

3
}

• Compositional analysis where P3 contains 8 tasks {Tsk3
1
, Tsk3

2
, Tsk3

3
, Tsk3

4
, Tsk5

1
, Tsk5

2
, Tsk5

3
, Tsk5

4
}

All the tasks moved from P5 to P3 keep their original properties such as priority. Since P3 and P5 share the same end

system, this migration does not affect the underlying network configuration.

As we scale up the size of the task set of P3, the resource consumption for the verification grows exponentially.

Results of the Analysis

Figure 21 depicts the time (Fig. 21(a)) and memory (Fig. 21(b)) consumption of verification for P3. Even though

we only show three points on this graph both time and memory consumption seem to follow an exponential growth. At

the beginning of the experiment, the verification of the original partition with 4 tasks is fast accomplished at a cost of

15.98s and 351MB, which can be satisfied easily by an ordinary personal computer. As we increase the number of tasks

37

within a partition, the consumption rises exponentially until this partition becomes non-schedulable. After P3 contains

more than 6 tasks, it turns non-schedulable and meanwhile its consumption will fall sharply. It is worth noticing that

when a given partition is non-schedulable this will be quickly reported, which is important in a development situation.

We also conducted two experiments with 7 and 8 tasks where we also extended the partition budget of P3 such that

the partition would still be schedulable. For 7 tasks the verification took 637 seconds and used 6 GB of memory. For 8

tasks the verification used the full 12 GB of memory of the system on which the experiments were performed and did

not complete.

As expected, the experiment reveals that the applicability of our compositional analysis largely depends on the

number of tasks in each partition. This problem of state-space explosion is exactly the problem which the compositional

verification technique is constructed to mitigate. Without the compositional method, model-based schedulability would

be limited to a single partition, whereas we are able to address multiple partitions in a potentially distributed multi-core

system.

On our ordinary personal computer†, the compositional method can effectively cope with a schedulable system

where there are up to 7 tasks in each partition. Moreover, we are able to handle a non-schedulable system with much

larger partitions because the safety property of schedulability can be falsified faster than it can be confirmed by model

checking.

VII. Discussion

In this section we will address the limitations of the analysis method outlined in this paper as well as discussing its

strengths.

Certain features of the ARINC standard are not included in the current modeling reported in this paper. This

includes:

• Hypervisor layer in Asymmetric Multi-Processing architecture, as described in Section III.

• Failure modes: (Section 2.4 Health Monitor in ARINC653P1-4[5])

• Vendor specific dynamic affinities: (Section 4.2.1 O/S Multicore Implementation Compliance in ARINC653P1-

4[5])

Based on our understanding of these features, we see no hindrance that all three of these aspects could be modeled

in our approach. We base this assessment on examples of which other types of systems that can be faithfully modeled

using timed automata. In fact, we already have an AMP version of our models. The other two features would add to

the complexity of the models, but we would not expect them to significantly add to the amount of time used by the

tools to perform the analyses. In order to evaluate the safety of a platform it would be very important to include the

failure modes of the system. Our method can easily handle having dynamic affinities where the individual task can

†MODEL: Lenovo Qitian M4500; CPU: Intel Core i5-4590@3.30GHz; MEM: 12GB RAM; OS: Ubuntu 16.04 LTS 64bit version.

38

be scheduled on a custom defined sub-set of cores. Adding these features to the modeling and analysis framework is

future work.

In the current modelling, we assume that the effect on execution time of the shared underlying hardware resources

such as private and shared caches, and busses are taken into account by the worst case execution time analysis.

One aspect that may need special attention if the modelling is to be extended with dynamic thread migration

between the cores is that execution time may change abruptly when a thread is migrated to a different core as the thread

might experience e.g. cold caches. It may not always be safe to assume that this situation can be absorbed in a WCET

number. It may be possible to handle this situation at the schedulability analysis level, in our case by adding an extra

amount of execution time when a task is migrated. However, this would need more details of the specific scheduling

and migration policies of the specific operating system.

Our framework allows for very detailed modelling of task behaviors, in turn enabling a very refined and less

conservative analysis under these specific assumptions. The detailed modelling is not mandated, so when the detailed

information is not available, more abstract (thus more conservative) task behavior models can be used.

Our analysis is exact in the sense that if the modelled assumptions and supplied parameteres hold, then so does

the computed outcome. If the assumptions are invalid, the results may also be invalid. Our main mechanism to

deal with this is the ability to widen the specified parameters such as lower and upper bounds on execution time

or message propagation delay. Similarly, it is possible to add more behaviors in the underlying scheduling system

as non-deterministic choices. The analysis would then be exact under these widened assumptions. This will likely

increase the computation time of the analysis as more behaviors need to be explored, and the results are also likely to

be more conservative. So in our approach we can let the engineer decide on the level of details in the analysis.

We finally remark, that our present evaluation is based on a single case study, and future work is to determine if

the successful results can be replicated on further cases. However, there are not many realistic (distributed, multi-core)

ARINC workloads published.

VIII. Conclusion

The design of advanced avionics systems must rise to the challenge of multi-core processors and distributed

architectures. We conclude that our Uppaal-based approach presented in this paper is applicable to schedulability

analysis of distributed avionics systems in both AMP and SMP multi-core configurations. We have also analyzed the

scalability of our approach. As demonstrated by the case-study, we conclude that our approach is able to handle a

realistic distributed multi-core system. The main limitation of scalability is the the number of tasks within a partition.

We do not view this as a serious defect as it is often possible to separate tasks into multiple partitions without affecting

the performance of the system.

The Uppaal modeling framework is able to cover ARINC-653 multi-core computation as well as the AFDX network

39

environment. The combination of global SMC analysis and compositional analysis alleviates the state space explosion

of classical model checking effectively. The case study shows better compatibility with legacy software in the AMP

configuration and better parallel acceleration of applications in the SMP configuration. As future work, we plan to

develop a model-based method of the automatic optimization of ARINC-653 scheduling systems, as well as conducting

more realistic case-studies.

40

Appendix

The appendix consists of three sections. Appendix A contains the abbreviations used. Appendix B details the

proofs of all the theorems in the paper. Appendix C presents the complete periodic task template in the Uppaal

modeling framework.

A. Abbreviations

Table 5 List of abbreviations

AFDX Avionics Full Duplex Switched Etherne pTPN preemptive Time Petri Nets

AMP Asymmetrical Multi-Processing RDC Remote Data Concentrators

BAG Bandwidth Allocation Gap SMC Statistical Model Checking

BCET Best Cast Execution Time SMP Symmetrical Multi-Processing

COTS Commercial-of-the-Shelf SWA Stopwatch Automata

CPN Colored Petri Nets TA Timed Automata

DIMA Distributed Integrated Modular Avion-
ics

TDM Time Division Multiplexing

ES End System TIOTS Timed I/O Transition Systems

FP Fixed Priority VL Virtual Link

LHA Linear Hybrid Automata WCET Worst Cast Execution Time

MC Model Checking

B. Theorem Proofs

Lemma 1 Let Ti = 〈Si, si,0, Σi,→i〉, i ∈ {1, 2} be two TIOTSs. Assume that R is a timed selection simulation from T1

to T2. Then for all (s1, s2) ∈ R,

1) if s1
a?
==⇒ s′1 for some s′1 ∈ S1, a ∈ Σ2, then there exists s′2 ∈ S2 such that s2

a?
==⇒ s′2 and (s′1, s

′
2) ∈ R

2) if s1
a!
==⇒ s′1 for some s′1 ∈ S1, a ∈ Σ2, then there exists s′2 ∈ S2 such that s2

a!
==⇒ s′2 and (s′1, s

′
2) ∈ R

3) if s1
a
==⇒ s′1 for some s′1 ∈ S1, a ∈ (Σ1 \ Σ2), then there exists s′2 ∈ S2 such that s2

0
==⇒ s′2 and (s′1, s

′
2) ∈ R

4) if s1
ǫ (d)
===⇒ s′1 for some s′1 ∈ S1, d ≥ 0, then there exists s′2 ∈ S2 such that s2

ǫ (d)
===⇒ s′2 and (s′1, s

′
2) ∈ R.

Proof 1 Consider T1, T2, s1, s2, and R in Lemma 1. From 3 of Definition 5 it is trivially the fact that if s1
τ−→

∗
s′1, s

′
1 ∈ S1

then s2
τ−→

∗
s′2 for some s′2 ∈ S2 such that (s′1, s

′
2) ∈ R. We denote this by (∗).

Suppose s1
a?
==⇒ s′1, s′1 ∈ S1, and a ∈ Σ2. Thus s1

τ−→
∗

s′′1
a?−−→ s′′′1

τ−→
∗

s′1 for some s′′1 , s
′′′
1 ∈ S1. From (∗) and

1 of Definition 5, we have that there exist s′2, s
′′
2 , s

′′′
2 ∈ S2 such that s2

τ−→
∗

s′′2
a?
==⇒ s′′′2

τ−→
∗

s′2, i.e. s2
a?
==⇒ s′2, where

(s′1, s
′
2),(s

′′
1 , s

′′
2),(s

′′′
1 , s

′′′
2) ∈ R. Hence 1 of Lemma 1 holds. Similarly 2 of Lemma 1 also holds.

Suppose s1
a
==⇒ s′1 for some s′1 ∈ S1, a ∈ (Σ1 \ Σ2). Then s1

τ−→
∗

s′′1
a−→ s′′′1

τ−→
∗

s′1 for some s′′1 , s
′′′
1 ∈ S1. From (∗)

and 3 of Definition 5, there exist s′2, s
′′
2 , s

′′′
2 ∈ S2 such that s2

τ−→
∗

s′′2
τ−→

∗
s′′′2

τ−→
∗

s′2 and (s′1, s
′
2),(s

′′
1 , s

′′
2),(s

′′′
1 , s

′′′
2) ∈ R.

Thus we have s2
0
==⇒ s′2 and 3 of Lemma 1 holds.

41

Finally, suppose s1
ǫ (d)
===⇒ s′1 for some s′1 ∈ S1, d ≥ 0. First, if d = 0 then 4 of Lemma 1 holds because it is identical

to (∗). Second, in the case of d > 0 we have s1
τ−→

∗
s1′
1

ǫ (d1)−−−−→ s1′′
1

τ−→
∗

s2′
1

ǫ (d2)−−−−→ s2′′
1

τ−→
∗
· · · τ−→

∗
sn′1

ǫ (dn)−−−−→ sn′′1 = s′1

where Σn
i=1di = d. From From (∗) and 4 of Definition 5, there exist s1′

2 , s
1′′
2 , s

2′
2 , s

2′′
2 , . . . , s

n′
2 , s

n′′
2 ∈ S2 such that

s2
τ−→

∗
s1′
2

ǫ (d1)
====⇒ s1′′

2
τ−→

∗
s2′
2

ǫ (d2)
====⇒ s2′′

2
τ−→

∗
· · · τ−→

∗
sn′2

ǫ (dn)
====⇒ sn′′2 = s′2 and (s1′

1 , s
1′
2), (s1′′

1 , s
1′′
2), (s2′

1 , s
2′
2), · · · ,

(sn′1 , s
n′
2), (sn′′1 , s

n′′
2) ∈ R. Hence we have s2

ǫ (d)
===⇒ s′2 and 4 of Lemma 1 holds.

Lemma 2 Let Ti = 〈Si, si,0, Σi,→i〉, i ∈ {1, 2} be two compatible TIOTSs. Assume that T1‖2 = 〈S1‖2, s1‖2,0, Σ1‖2,→1‖2

〉 = T1‖T2. Then for all 〈s1, s2〉 ∈ S1‖2,

1) if s1
a?
==⇒ s′1 and s2

a?
==⇒ s′2 for some s′1 ∈ S1, s′2 ∈ S2, a ∈ Σ1 ∩ Σ2, then there exists a ∈ Σ1‖2 such that

〈s1, s2〉
a?
==⇒ 〈s′1, s

′
2〉 in T1‖2

2) if s1
a!
==⇒ s′1 and s2

a?
==⇒ s′2, or if s1

a?
==⇒ s′1 and s2

a!
==⇒ s′2, for some s′1 ∈ S1, s′2 ∈ S2, a ∈ Σ1 ∩Σ2, then there exists

a ∈ Σ1‖2 such that 〈s1, s2〉
a!
==⇒ 〈s′1, s

′
2〉 in T1‖2

3) if s1
a
==⇒ s′1 and s2

0
==⇒ s′2, or if s1

0
==⇒ s′1 and s2

a
==⇒ s′2, for some s′1 ∈ S1, s′2 ∈ S2, a ∈ Σ1 ⊕ Σ2, then there exists

a ∈ Σ1‖2 such that 〈s1, s2〉
a
==⇒ 〈s′1, s′2〉 in T1‖2

4) if s1
ǫ (d)
===⇒ s′1 and s2

ǫ (d)
===⇒ s′2 for some s′1 ∈ S1, s′2 ∈ S2, d ≥ 0, then there exists 〈s1, s2〉

ǫ (d)
===⇒ 〈s′1, s

′
2〉 in T1‖2.

Proof 2 Consider T1, T2, s1 ∈ S1, s2 ∈ S2, and 〈s1, s2〉 ∈ S1‖2 in Lemma 2. From the rules “INDEP-L” and “INDEP-R”

it is trivially the fact that if s1
τ−→

∗
s′1 and s2

τ−→
∗

s′2 for some s′1 ∈ S1, s′2 ∈ S2 then 〈s1, s2〉
τ−→

∗
〈s′1, s

′
2〉. We denote this

by (∗∗).

Suppose s1
a?
==⇒ s′1 and s2

a?
==⇒ s′2 for some s′1 ∈ S1, s′2 ∈ S2, a ∈ Σ1 ∩ Σ2. Then there exist s′′1 , s′′′1 ∈ S1, s′′2 ,

s′′′2 ∈ S2 such that s1
τ−→

∗
s′′1

a?−−→ s′′′1
τ−→

∗
s′1 and s2

τ−→
∗

s′′2
a?−−→ s′′′2

τ−→
∗

s′2. From (∗∗) and the rule “SYNC-IN”, we have

〈s1, s2〉
τ−→

∗
〈s′′1 , s

′′
2 〉

a?−−→ 〈s′′′1 , s
′′′
2 〉 τ−→

∗
〈s′1, s

′
2〉. Hence 〈s1, s2〉

a?
==⇒ 〈s′1, s

′
2〉 and 1 of Lemma 2 holds.

Suppose s1
a!
==⇒ s′1 and s2

a?
==⇒ s′2 for some s′1 ∈ S1, s′2 ∈ S2, a ∈ Σ1 ∩ Σ2 ∩ Σb . Then there exist s′′1 , s′′′1 ∈ S1, s′′2 ,

s′′′2 ∈ S2 such that s1
τ−→

∗
s′′1

a!−→ s′′′1
τ−→

∗
s′1 and s2

τ−→
∗

s′′2
a?−−→ s′′′2

τ−→
∗

s′2. From (∗∗) and the rule “SYNC-IO”, we

have 〈s1, s2〉
τ−→

∗
〈s′′1 , s

′′
2 〉

a!−→ 〈s′′′1 , s
′′′
2 〉 τ−→

∗
〈s′1, s

′
2〉. Hence 〈s1, s2〉

a!
==⇒ 〈s′1, s

′
2〉. Symmetrically we also have the same

conclusion in the case of s1
a?
==⇒ s′1 and s2

a!
==⇒ s′2. Thus 2 of Lemma 2 holds.

Suppose s1
a
==⇒ s′1 and s2

0
==⇒ s′2 for some s′1 ∈ S1, s′2 ∈ S2, a ∈ Σ1 ⊕ Σ2. Then there exist s′′1 , s′′′1 ∈ S1,

s′′2 ∈ S2 such that s1
τ−→

∗
s′′1

a−→ s′′′1
τ−→

∗
s′1 and s2

τ−→
∗

s′′2
τ−→

∗
s′2. From (∗∗) and the rule “INDEP-L”, we have

〈s1, s2〉
τ−→

∗
〈s′′1 , s

′′
2 〉

a−→ 〈s′′′1 , s
′′
2 〉

τ−→
∗
〈s′1, s

′
2〉. Hence 〈s1, s2〉

a
==⇒ 〈s′1, s

′
2〉. Symmetrically we also have the same

conclusion in the case of s1
0
==⇒ s′1 and s2

a
==⇒ s′2. Thus 3 of Lemma 2 holds.

Suppose s1
ǫ (d)
===⇒ s′1 and s2

ǫ (d)
===⇒ s′2 for some s′1 ∈ S1, s′2 ∈ S2, d ≥ 0. From (∗∗) we have that 4 of Lemma 2 holds in

the case of d = 0. Consider the case of d ≥ 0. s1
ǫ (d)
===⇒ s′1 is equivalent to s1

τ−→
∗

s1′
1

ǫ (d1)−−−−→ s1′′
1

τ−→
∗

s2′
1

ǫ (d2)−−−−→ s2′′
1

τ−→
∗

· · · τ−→
∗

sn′1

ǫ (dn)−−−−→ sn′′1
τ−→

∗
s′1 where n ∈ N+, Σ

n
i=1di = d. We now prove 4 of Lemma 2 using mathematical induction.

42

Assume that s2
ǫ (d)
===⇒ s′2 contains a transition chain s2

τ−→
∗

s1′
2

ǫ (d′
1)−−−−→ s1′′

2
τ−→

∗
s2′
2

ǫ (d′
2)−−−−→ s2′′

2
τ−→

∗
· · · τ−→

∗
sm′
2

ǫ (d′
m)

−−−−→

sm′′
2

τ−→
∗

s′2 where m ∈ N+, Σ
m
i=1d ′

i
= d.

If n = 1 then s1
ǫ (d)
===⇒ s′1 will be equivalent to s1

τ−→
∗

s1′
1

ǫ (d)−−−→ s1′′
1

τ−→
∗

s′1. From time additivity of TIOTS,

there exist s2′
1 , s

3′
1 , . . . , s

m′
1 ∈ S1 such that s1

τ−→
∗

s1′
1

ǫ (d′
1)−−−−→ s2′

1

ǫ (d′
2)−−−−→ · · ·

ǫ (d′
m)

−−−−→ s1′′
1

τ−→
∗

s′1. By (∗∗) and the rule

“DELAY”, we have the transition chain 〈s1, s2〉
τ−→

∗
〈s1′

1 , s
1′
2 〉

ǫ (d′
1)−−−−→ 〈s2′

1 , s
1′′
2 〉 τ−→

∗
〈s2′

1 , s
2′
2 〉

ǫ (d′
2)−−−−→ 〈s3′

1 , s
2′′
2 〉 τ−→

∗
· · · τ−→

∗

〈sm′
1 , s

m′
2 〉

ǫ (d′
m)

−−−−→ 〈s1′′
1 , s

m′′
2 〉 τ−→

∗
〈s′1, s

′
2〉. Thus there exists 〈s1, s2〉

ǫ (d)
===⇒ 〈s′1, s

′
2〉 in T1‖2.

We assume that there exists 〈s1, s2〉
ǫ (d)
===⇒ 〈s′1, s

′
2〉 inT1‖2 if n = t, t ∈ N+. If n = t+1 then s1

ǫ (d)
===⇒ s′1 should contain a

transition chain s1
τ−→

∗
s1′
1

ǫ (d1)−−−−→ s1′′
1

τ−→
∗

s2′
1

ǫ (d2)−−−−→ s2′′
1

τ−→
∗
· · · τ−→

∗
st ′1

ǫ (dt)−−−−→ st ′′1

τ−→
∗

s
(t+1)′
1

ǫ (dt+1)−−−−−→ s
(t+1)′′
1

τ−→
∗

s′1. Let

d ′
= d − dt+1. From time additivity of TIOTS, there exists sr2 ∈ S2 such that s2

ǫ (d′)
====⇒ sr2

ǫ (dt+1)
=====⇒ s′2. By the assumption

in the case of n = t, we have that 〈s1, s2〉
ǫ (d′)
====⇒ 〈st ′′1 , s

r
2〉. Consider the transitions st ′′1

τ−→
∗

s
(t+1)′
1

ǫ (dt+1)−−−−−→ s
(t+1)′′
1

τ−→
∗

s′1

and sr2
ǫ (dt+1)
=====⇒ s′2. From the conclusion under the assumption n = 1, 〈st ′′1 , s

r
2〉

ǫ (dt+1)
=====⇒ 〈s′1, s

′
2〉 exists in T1‖2 and we

also have 〈s1, s2〉
ǫ (d)
===⇒ 〈s′1, s

′
2〉 in the case n = t + 1. Hence 4 of Lemma 2 holds.

Proof 3 (Proof of Theorem 1) A preorder should be reflexive and transitive. For any TIOTS T = 〈S, s0, Σ,→〉, the

binary relation R = {(s, s)|s ∈ S} trivially conforming to Definition 5 is a timed selection simulation from T to T , i.e.

T � T . Hence reflexivity holds.

We now show the transitivity of timed selection simulation. Consider any three TIOTSs Ti = 〈Si, si,0, Σi,→i〉,

i ∈ {1, 2, 3}. Assume that R1 is a timed selection simulation from T1 to T2 and R2 a timed selection simulation from T2

to T3. We prove that the new relation R = R1R2 is a timed selection simulation from T1 to T3.

From Definition 5 we have (s0,1, s0,2) ∈ R1 and (s0,2, s0,3) ∈ R2. Hence (s0,1, s0,3) ∈ R. For any (s1, s3) ∈ R, there

exists s2 ∈ S2 such that (s1, s2) ∈ R1 and (s2, s3) ∈ R2. By Definition 5, g(s1) = g(s2) and g(s2) = g(s3). Thus

g(s1) = g(s3). Consider the four conditions of Definition 5.

Suppose s1
a?−−→ s′1, s′1 ∈ S1, and a ∈ Σ3. Since T2 � T3, we have Σ3 ⊆ Σ2 and thus a ∈ Σ2. Since T1 � T2, there

exists s′2 ∈ S2 such that s2
a?
==⇒ s′2 and (s′1, s

′
2) ∈ R1. Since T2 � T3, by 1 of Lemma 1 there exists s′3 ∈ S3 such that

s3
a?
==⇒ s′3 and (s′2, s′3) ∈ R2. Thus (s′1, s′3) ∈ R and condition 1 of Definition 5 holds. Similarly condition 2 of Definition

5 also holds.

Suppose s1
a−→ s′1, s′1 ∈ S1, and a ∈ (Σ1 \ Σ3). If a ∈ Σ2, then s2

a
==⇒ s′2, s

′
2 ∈ S2 and (s′1, s

′
2) ∈ R1 for T1 � T2

and thus s3
0
==⇒ s′3, s

′
3 ∈ S3 and (s′2, s

′
3) ∈ R2 for T2 � T3. Hence (s′1, s

′
3) ∈ R in the case of a ∈ Σ2. If a < Σ2,

then s2
0
==⇒ s′2, s

′
2 ∈ S2 and (s′1, s

′
2) ∈ R1 for T1 � T2. From Lemma 1 and T2 � T3, we have s3

0
==⇒ s′3, s

′
3 ∈ S3 and

(s′2, s
′
3) ∈ R2. Thus (s′1, s

′
3) ∈ R in this case.

Suppose s1
ǫ (d)−−−→ s′1, s′1 ∈ S1, and d ≥ 0. From T1 � T2, s2

ǫ (d)
===⇒ s′2, s

′
2 ∈ S2 and (s′1, s

′
2) ∈ R1. From Lemma 1 and

T2 � T3, we have s3
ǫ (d)
===⇒ s′3, s

′
3 ∈ S3 and (s′2, s

′
3) ∈ R2. Thus (s′1, s

′
3) ∈ R and both condition 3 and 4 of Definition 5

hold.

43

Therefore, R is a timed selection simulation from T1 to T3, and transitivity of timed selection simulation holds.

Proof 4 (Proof of Theorem 2) Let Si be the state set of Ti . Let R be a timed selection simulation from T1 to T2. Note

that Ti |= ϕ iff for any reachable state si ∈ Si g(si) = false. We denote this by (∗).

From Definition 5 and T1 � T2 we have that for each reachable state s1 ∈ S1, there exists a reachable state s2 ∈ S2

such that (s1, s2) ∈ R and g(s1) = g(s2). Since T2 |= ϕ and (∗), g(s2) = false for each reachable state s2 ∈ S2. Thus

g(s1) = false for any reachable state s1 ∈ S1. From (∗), we have T1 |= ϕ.

Proof 5 (Proof of Theorem 3) Let Si be the state set of Ti . Assume that R1 and R2 are timed selection simulations

from T1 to T2 and from T1 to T3, respectively. Let R be a binary relation from S1 to S2 × S3 such that (s1, 〈s2, s3〉) ∈ R

iff (s1, s2) ∈ R1 and (s1, s3) ∈ R2 for any s1 ∈ S1, s2 ∈ S2, s3 ∈ S3. We now prove R is a timed selection simulation

relation.

Suppose si,0 is the initial state of Ti . By assumption we have (s1,0, s2,0) ∈ R1 and (s1,0, s3,0) ∈ R2. Thus

(s1,0, 〈s2,0, s3,0〉) ∈ R from the definition of R.

Whenever (s1, s2) ∈ R1 and (s1, s3) ∈ R2, g(s1) = g(s2) and g(s1) = g(s3) will hold. Hence, from the definition of

the function g, we have g(s1) = g(〈s2, s3〉) for any (s1, 〈s2, s3〉) ∈ R.

Let Σi be the action set of Ti . Let Ii and Oi be the input and output action set in Σi respectively. From Definition

4, for any compositional TIOTS T2‖T3 we have Σ2‖3 = I2‖3 ⊕ O2‖3, I2‖3 = (I2 \ O3) ∪ (I3 \ O2), and O2‖3 = O2 ∪ O3.

Since Σ2 ⊆ Σ1, Σ3 ⊆ Σ1 and T2 and T3 are compatible, we have

Σ2 ∪ Σ3

=(I2 ⊕ O2) ∪ (I3 ⊕ O3)

=[(I2 ∪ O2) \ (I2 ∩ O2)] ∪ [(I3 ∪ O3) \ (I3 ∩ O3)]

=(I2 ∪ O2 ∪ I3 ∪ O3) \ [(I3 ∩ O3) \ (I2 ∪ O2)] \ [(I2 ∩ O2) \ (I3 ∪ O3)]

⊆Σ1

(26)

44

Let I ′2 = I2 \ O3 and I ′3 = I3 \ O2.

Σ2‖3

=(I ′2 ∪ I ′3) ⊕ (O2 ∪ O3)

=(I ′2 ∪ O2 ∪ I ′3 ∪ O3) \ [(I ′2 ∪ I ′3) ∩ (O2 ∪ O3)]

=(I ′2 ∪ O2 ∪ I ′3 ∪ O3) \ (I ′2 ∩ O2) \ (I ′3 ∩ O3) \ (I ′2 ∩ O3) \ (I ′3 ∩ O2)

=(I2 ∪ O2 ∪ I3 ∪ O3) \ (I2 ∩ O2) \ (I3 ∩ O3)

⊆(I2 ∪ O2 ∪ I3 ∪ O3) \ [(I2 ∩ O2) \ (I3 ∪ O3)] \ [(I3 ∩ O3) \ (I2 ∪ O2)]

=Σ2 ∪ Σ3

(27)

Thus Σ2‖3 ⊆ Σ1.

Assume (s1, s2) ∈ R1 and (s1, s3) ∈ R2 for some s1 ∈ S1, s2 ∈ S2, s3 ∈ S3. Then (s1, 〈s2, s3〉) ∈ R. Consider each of

the conditions in Definition 5.

Suppose s1
a?−−→ s′1 for some a ∈ Σ2‖3. Thus a ∈ Σ2 ∪ Σ3. There are the following two cases:

Case 1: a ∈ Σ2 ∩ Σ3. By simulation definition we have s2
a?
==⇒ s′2 and s3

a?
==⇒ s′3 for some s′2 ∈ S2, s

′
3 ∈ S3 such

that (s′1, s
′
2) ∈ R1 and (s′1, s

′
3) ∈ R2. Hence (s′1, 〈s

′
2, s

′
3〉) ∈ R, and from 1 of Lemma 2 there exists 〈s2, s3〉

a?
==⇒ 〈s′2, s

′
3〉 in

T2‖T3.

Case 2: a ∈ Σ2 ⊕ Σ3. By simulation definition we have that s2
a?
==⇒ s′2 and s3

0
==⇒ s′3, or s2

0
==⇒ s′2 and s3

a?
==⇒ s′3, for

some s′2 ∈ S2, s
′
3 ∈ S3 such that (s′1, s

′
2) ∈ R1 and (s′1, s

′
3) ∈ R2. Hence (s′1, 〈s

′
2, s

′
3〉) ∈ R, and from 3 of Lemma 2 there

exists 〈s2, s3〉
a?
==⇒ 〈s′2, s

′
3〉 in T2‖T3.

Suppose s1
a!−→ s′1 for some a ∈ Σ2‖3. There are also two cases:

Case 1: a ∈ Σ2 ∩ Σ3. By simulation definition we have that s2
a!
==⇒ s′2 and s3

a?
==⇒ s′3, or s2

a?
==⇒ s′2 and s3

a!
==⇒ s′3, for

some s′2 ∈ S2, s
′
3 ∈ S3 such that (s′1, s

′
2) ∈ R1 and (s′1, s

′
3) ∈ R2. Hence (s′1, 〈s

′
2, s

′
3〉) ∈ R, and from 2 of Lemma 2 there

exists 〈s2, s3〉
a!
==⇒ 〈s′2, s

′
3〉 in T2‖T3.

Case 2: a ∈ Σ2 ⊕ Σ3. By simulation definition we have that s2
a!
==⇒ s′2 and s3

0
==⇒ s′3, or s2

0
==⇒ s′2 and s3

a!
==⇒ s′3, for

some s′2 ∈ S2, s
′
3 ∈ S3 such that (s′1, s′2) ∈ R1 and (s′1, s′3) ∈ R2. Hence (s′1, 〈s′2, s′3〉) ∈ R, and from 3 of Lemma 2 there

exists 〈s2, s3〉
a!
==⇒ 〈s′2, s

′
3〉 in T2‖T3.

Suppose s1
a−→ s′1 for some a ∈ Σ1 \ Σ2‖3. Since Σ2‖3 ⊆ (Σ2 ∪ Σ3) ⊆ Σ1, there are the following two cases:

Case 1: a ∈ Σ1 \ (Σ2 ∪ Σ3). Thus a ∈ Σ1 \ Σ2 and a ∈ Σ1 \ Σ3. By simulation definition we have that s2
0
==⇒ s′2

and s3
0
==⇒ s′3 for some s′2 ∈ S2, s

′
3 ∈ S3 such that (s′1, s

′
2) ∈ R1 and (s′1, s

′
3) ∈ R2. Hence (s′1, 〈s

′
2, s

′
3〉) ∈ R, and from 4 of

Lemma 2 there exists 〈s2, s3〉
0
==⇒ 〈s′2, s

′
3〉 in T2‖T3.

Case 2: a ∈ (Σ2 ∪ Σ3) \ Σ2‖3. We obtain (Σ2 ∪ Σ3) \ Σ2‖3 ⊆ (I2 ∩ O2) ∪ (I3 ∩ O3) from Eq. (27). Thus there is no

45

transition with the action a according to the definition of TIOTS. However, from T1 � T2,T1 � T3 we have that s2
a
==⇒ s′2

and s3
a
==⇒ s′3 for some s′2 ∈ S2, s

′
3 ∈ S3, which contradicts the fact that a ∈ (Σ2 ∪ Σ3) \ Σ2‖3. Hence such an action a

does not exist in this case.

Suppose s1
ǫ (d)−−−→ s′1 and d ≥ 0. By simulation definition we have that s2

ǫ (d)
===⇒ s′2 and s3

ǫ (d)
===⇒ s′3 for some

s′2 ∈ S2, s
′
3 ∈ S3 such that (s′1, s

′
2) ∈ R1 and (s′1, s

′
3) ∈ R2. Hence (s′1, 〈s

′
2, s

′
3〉) ∈ R, and from 4 of Lemma 2 there exists

〈s2, s3〉
ǫ (d)
===⇒ 〈s′2, s

′
3〉 in T2‖T3. All the conditions hold and thus T1 � T2‖T3.

Proof 6 (Proof of Theorem 4) Let Si be the state set of Ti . Assume that R1 and R2 are timed selection simulations from

T1 to T2 and from T3 to T4, respectively. Let R be a binary relation from S1×S3 to S2×S4 such that (〈s1, s3〉, 〈s2, s4〉) ∈ R

iff (s1, s2) ∈ R1 and (s3, s4) ∈ R2 for any s1 ∈ S1, s2 ∈ S2, s3 ∈ S3, s4 ∈ S4. We now prove R is a timed selection

simulation relation.

Suppose si,0 is the initial state of Ti . By assumption (1) we have (s1,0, s2,0) ∈ R1 and (s3,0, s4,0) ∈ R2. Thus

(〈s1,0, s3,0〉, 〈s2,0, s4,0〉) ∈ R from the definition of R.

Whenever (s1, s2) ∈ R1 and (s3, s4) ∈ R2, g(s1) = g(s2) and g(s3) = g(s4) will hold. Hence, from the definition of

the function g, we have g(〈s1, s3〉) = g(〈s2, s4〉) for any (〈s1, s3〉, 〈s2, s4〉) ∈ R.

Let Σi be the action set of Ti . Let Ii and Oi be the input and output action set in Σi respectively. From Definition 4,

for any compositional TIOTS Ti ‖Tj we have Σi ‖ j = Ii ‖ j ⊕ Oi ‖ j , Ii ‖ j = (Ii \ O j) ∪ (Ij \ Oi), and Oi ‖ j = Oi ∪ O j . Let

I ′
i
= Ii \O j and I ′

j
= Ij \Oi . By assumption (1) and Definition 5 we have Σ2 ⊆ Σ1 and Σ4 ⊆ Σ3. Then Σ2∪Σ4 ⊆ Σ1∪Σ3.

We now prove Σ2‖4 ⊆ Σ1‖3.

Assume for the sake of contradiction that there exists b ∈ Σ2‖4 but b < Σ1‖3.

Σ1‖3

=(I1 ∪ O1 ∪ I3 ∪ O3) \ (I1 ∩ O1) \ (I3 ∩ O3) by Eq. (27)

=(I1 ∪ O1 ∪ I3 ∪ O3) by Definition 2

⊆Σ1 ∪ Σ3 by Eq. (27)

=(I1 ∪ O1 ∪ I3 ∪ O3) \ [(I3 ∩ O3) \ (I1 ∪ O1)] \ [(I1 ∩ O1) \ (I3 ∪ O3)] by Eq. (26)

=(I1 ∪ O1 ∪ I3 ∪ O3) by Definition 2

(28)

Thus Σ1‖3 = Σ1 ∪ Σ3. Similarly, Σ2‖4 = Σ2 ∪ Σ4. From b ∈ Σ2‖4 and Σ2 ∪ Σ4 ⊆ Σ1 ∪ Σ3, we obtain b ∈ Σ1 ∪ Σ3,

which contradicts the assumption b < Σ1‖3. Thus b ∈ Σ2‖4 implies b ∈ Σ1‖3, and we have that Σ2‖4 ⊆ Σ1‖3.

Assume (s1, s2) ∈ R1 and (s3, s4) ∈ R2 for some s1 ∈ S1, s2 ∈ S2, s3 ∈ S3, s4 ∈ S4. Then (〈s1, s3〉, 〈s2, s4〉) ∈ R.

Consider each of the conditions in Definition 5.

Suppose 〈s1, s3〉
a?−−→ 〈s′1, s

′
3〉 for some a ∈ Σ2‖4. Thus a ∈ Σ2 ∪ Σ4. There are the following two cases:

46

Table 6 Transition Set 1

Premises No.
T1 T2 T3 T4

st1 Tr1 st ′1 st2 Tr2 st ′2 st3 Tr3 st ′3 st4 Tr4 st ′4

a ∈ Σ2 \ Σ4

1 s1
a?−−→ s′1 s2

a?
==⇒ s′2 s3

a!−→ s′3 s4
0
==⇒ s′4

2 s1
a!−→ s′1 s2

a!
==⇒ s′2 s3

a?−−→ s′3 s4
0
==⇒ s′4

3 s1
a!−→ s′1 s2

a!
==⇒ s′2 s3

0−→ s3 s4
0−→ s4

a ∈ Σ4 \ Σ2

4 s1
a?−−→ s′1 s2

0
==⇒ s′2 s3

a!−→ s′3 s4
a!
==⇒ s′4

5 s1
a!−→ s′1 s2

0
==⇒ s′2 s3

a?−−→ s′3 s4
a?
==⇒ s′4

6 s1
0−→ s1 s2

0−→ s2 s3
a!−→ s′3 s4

a!
==⇒ s′4

Case 1: a ∈ Σ2 ∩ Σ4. Since Σ2 ⊆ Σ1 and Σ4 ⊆ Σ3, a ∈ Σ1 ∩ Σ3. According to the rule “SYNC-IN”, s1
a?−−→ s′1 and

s3
a?−−→ s′3. By simulation definition we have s2

a?
==⇒ s′2 and s4

a?
==⇒ s′4 for some s′2 ∈ S2, s

′
4 ∈ S4 such that (s′1, s

′
2) ∈ R1

and (s′3, s
′
4) ∈ R2. Hence (〈s′1, s

′
3〉, 〈s

′
2, s

′
4〉) ∈ R, and from 1 of Lemma 2 there exists 〈s2, s4〉

a?
==⇒ 〈s′2, s

′
4〉 in T2‖T4.

Case 2: a ∈ Σ2 ⊕ Σ4. Without loss of generality, we assume that a ∈ Σ2 and a < Σ4. Since Σ2 ⊆ Σ1 and Σ4 ⊆ Σ3,

we have a ∈ Σ1 ∩ Σ3 or a ∈ Σ1 \ Σ3. If a ∈ Σ1 ∩ Σ3 then s1
a?−−→ s′1 and s3

a?−−→ s′3 according to the rule “SYNC-IN”.

By simulation definition we have that s2
a?
==⇒ s′2 and s4

0
==⇒ s′4 for some s′2 ∈ S2, s

′
4 ∈ S4 such that (s′1, s

′
2) ∈ R1 and

(s′3, s
′
4) ∈ R2. Hence (〈s′1, s

′
3〉, 〈s

′
2, s

′
4〉) ∈ R, and from 3 of Lemma 2 there exists 〈s2, s4〉

a?
==⇒ 〈s′2, s

′
4〉 in T2‖T4. Otherwise

a ∈ Σ1 \ Σ3 then s1
a?−−→ s′1 and s3 = s′3 according to the rule “INDEP-L”. From T1 � T2, we have s2

a?
==⇒ s′2 for some

s′2 ∈ S2 such that (s′1, s′2) ∈ R1. Hence (〈s′1, s3〉, 〈s′2, s4〉) ∈ R. From 3 of Lemma 2 there exists 〈s2, s4〉
a?
==⇒ 〈s′2, s4〉 in

T2‖T4.

Suppose 〈s1, s3〉
a!−→ 〈s′1, s

′
3〉 for some a ∈ Σ2‖4. There are also two cases:

Case 1: a ∈ Σ2 ∩ Σ4. Since Σ2 ⊆ Σ1 and Σ4 ⊆ Σ3, a ∈ Σ1 ∩ Σ3. According to the rule “SYNC-IO”, we have that

s1
a?−−→ s′1 and s3

a!−→ s′3, or s1
a!−→ s′1 and s3

a?−−→ s′3. By simulation definition we have s2
a?
==⇒ s′2, s4

a!
==⇒ s′4, or s2

a!
==⇒ s′2,

s4
a?
==⇒ s′4 respectively such that (s′1, s

′
2) ∈ R1 and (s′3, s

′
4) ∈ R2 for some s′2 ∈ S2, s

′
4 ∈ S4. Hence (〈s′1, s

′
3〉, 〈s

′
2, s

′
4〉) ∈ R,

and from 2 of Lemma 2 there exists 〈s2, s4〉
a!
==⇒ 〈s′2, s

′
4〉 in T2‖T4.

Case 2: a ∈ Σ2 ⊕ Σ4. Table 6 shows the possible transitions in T1 and T3. From the assumption that I2 ∩ O3 ⊆ Σ4

and O1 ∩ I4 ⊆ Σ2, there exist a ∈ Σ4 in No. 1 and a ∈ Σ2 in No. 5, which contradict their premises a ∈ Σ2 \ Σ4

and a ∈ Σ4 \ Σ2 respectively. Thus the cases of No. 1 and No. 5 will not exist. Consider the other cases in Table

6. By T1 � T2 and T3 � T4 we have that (st2,Tr2, st ′2) in →2 and (st4,Tr4, st ′4) in →4 for some st ′2 ∈ S2, st ′4 ∈ S4

such that (st ′1, st ′2) ∈ R1 and (st ′3, st ′4) ∈ R2. Hence (〈st ′1, st ′3〉, 〈st ′2, st ′4〉) ∈ R, and from 3 of Lemma 2 there exists

〈st2, st4〉
a!
==⇒ 〈st ′2, st ′4〉 in T2‖T4.

Suppose 〈s1, s3〉
a−→ 〈s′1, s

′
3〉 for some a ∈ Σ1‖3 \ Σ2‖4. Since Σ2‖4 = Σ2 ∪ Σ4, a ∈ Σ1‖3 \ (Σ2 ∪ Σ4). Table 7 shows

the possible transitions in T1 and T3. By T1 � T2 and T3 � T4 we have that (st2,Tr2, st ′2) in →2 and (st4,Tr4, st ′4) in →4

47

Table 7 Transition Set 2

Premises
T1 T2 T3 T4

st1 Tr1 st ′1 st2 Tr2 st ′2 st3 Tr3 st ′3 st4 Tr4 st ′4

a ∈ I1‖3

s1
a?−−→ s′1 s2

0
==⇒ s′2 s3

0−→ s3 s4
0−→ s4

s1
0−→ s1 s2

0−→ s2 s3
a?−−→ s′3 s4

0
==⇒ s′4

s1
a?−−→ s′1 s2

0
==⇒ s′2 s3

a?−−→ s′3 s4
0
==⇒ s′4

a ∈ O1‖3

s1
a!−→ s′1 s2

0
==⇒ s′2 s3

0−→ s3 s4
0−→ s4

s1
0−→ s1 s2

0−→ s2 s3
a!−→ s′3 s4

0
==⇒ s′4

s1
a?−−→ s′1 s2

0
==⇒ s′2 s3

a!−→ s′3 s4
0
==⇒ s′4

s1
a!−→ s′1 s2

0
==⇒ s′2 s3

a?−−→ s′3 s4
0
==⇒ s′4

Table 8 Transition Set 3

No.
T1 T2 T3 T4

st1 Tr1 st ′1 st2 Tr2 st ′2 st3 Tr3 st ′3 st4 Tr4 st ′4

1 s1
τ−→ s′1 s2

0
==⇒ s′2 s3

0−→ s3 s4
0−→ s4

2 s1
0−→ s1 s2

0−→ s2 s3
τ−→ s′3 s4

0
==⇒ s′4

for some st ′2 ∈ S2, st ′4 ∈ S4 such that (st ′1, st ′2) ∈ R1 and (st ′3, st ′4) ∈ R2. Hence (〈st ′1, st ′3〉, 〈st ′2, st ′4〉) ∈ R, and from 4 of

Lemma 2 there exists 〈st2, st4〉
0
==⇒ 〈st ′2, st ′4〉 in T2‖T4.

Suppose 〈s1, s3〉
τ−→ 〈s′1, s′3〉. Table 8 shows the possible transitions in T1 and T3. By T1 � T2 and T3 � T4 we have

that (st2,Tr2, st ′2) in →2 and (st4,Tr4, st ′4) in →4 for some st ′2 ∈ S2, st ′4 ∈ S4 such that (st ′1, st ′2) ∈ R1 and (st ′3, st ′4) ∈ R2.

Hence (〈st ′1, st ′3〉, 〈st ′2, st ′4〉) ∈ R, and from 4 of Lemma 2 there exists 〈st2, st4〉
0
==⇒ 〈st ′2, st ′4〉 in T2‖T4.

Suppose 〈s1, s3〉
ǫ (d)−−−→ 〈s′1, s′3〉 and d > 0. Thus s1

ǫ (d)−−−→ s′1 and s3
ǫ (d)−−−→ s′3. By simulation definition we have that

s2
ǫ (d)
===⇒ s′2 and s4

ǫ (d)
===⇒ s′4 for some s′2 ∈ S2, s

′
4 ∈ S4 such that (s′1, s

′
2) ∈ R1 and (s′3, s

′
4) ∈ R2. Hence (〈s′1, s

′
3〉, 〈s

′
2, s

′
4〉)

∈ R, and from 4 of Lemma 2 there exists 〈s2, s4〉
ǫ (d)
===⇒ 〈s′2, s

′
4〉 in T2‖T4. All the conditions hold and thus T1‖T3 � T2‖T4.

C. Periodic task template

Figure 22 depicts the complete PeriodicTask template in the Uppaal modeling framework.

For any periodic task in a partition Pi , its first release point is relative to the start of Pi’s first partition window in

the next partition period[5]. After starting from the initial location WaitInitialOffset, the model passes a series of

locations that share a common name format “WaitXXX” where the suffix “XXX” denotes a specific delay like offset.

For example, by defining the invariant x<=pprd()−initialOffset()%pprd() in which the function pprd returns the

partition period, the location WaitForPhase waits until the start of the next partition period after the initial offset of the

48

task. Similarly, the task stays at location WaitOffset for the offset time. These locations help a periodic task determine

its first release point when the task being ready to run joins the location Ready.

Thereafter, if the task is scheduled by TaskScheduler through the channel sched, it will start execution on the

processor and move to the location ReadOp. For any task in the system, the sequential list L of its abstract instructions

shown in section III.C is implemented by an array of structures op. By using an integer variable pc as a program

counter, the task can fetch the next abstract instruction from op[pc] at the location ReadOp.

According to the command in the abstract instruction currently read from op, the task model performs a conditional

branch and moves from the location ReadOp to one of the different locations that represent different operations.

Therefore, the command set containing seven elements divides the rest of the template into seven parts, which have

been described in section IV.D.2.

Funding Sources

This work was in part funded by Independent Research Fund Denmark under grant number DFF-7017-00348,

Compositional Verification of Real-time MULTI-CORE SAFETY Critical Systems.

References

[1] Wolfig, R., and Jakovljevic, M., “Distributed IMA and DO-297: Architectural, communication and certification attributes,”

2008 IEEE/AIAA 27th Digital Avionics Systems Conference, IEEE, 2008, pp. 1–E.

[2] Wang, G., and Gu, Q., “Research on distributed integrated modular avionics system architecture design and implementation,”

2013 IEEE/AIAA 32nd Digital Avionics Systems Conference (DASC), IEEE, 2013, pp. 7D6–1.

[3] Annighöfer, B., and Thielecke, F., A Systems Architecting Framework for Distributed Integrated Modular Avionics, Deutsche

Gesellschaft für Luft-und Raumfahrt-Lilienthal-Oberth eV, 2014.

[4] AEEC, “Aircraft Data Network, Part 7, Avionics Full-Duplex Switched Ethernet Network,” ARINC specification 664P7-1,

Aeronautical Radio Inc., Sep. 2009.

[5] AEEC, “Avionics Application Software Standard Interface: Part 1 - Required Services,” ARINC specification 653P1-4,

Aeronautical Radio Inc., Aug. 2015.

[6] Dodd, R., “Coloured petri net modelling of a generic avionics mission computer,” Tech. rep., DTIC Document, 2006.

[7] Bucci, G., Fedeli, A., Sassoli, L., and Vicario, E., “Modeling flexible real time systems with preemptive time Petri nets,”

Real-Time Systems, 2003. Proceedings. 15th Euromicro Conference on, IEEE, 2003, pp. 279–286.

[8] Alur, R., Courcoubetis, C., Henzinger, T. A., and Ho, P.-H., “Hybrid automata: An algorithmic approach to the specification

and verification of hybrid systems,” Hybrid systems, Springer, 1993, pp. 209–229.

49

Fig. 22 Periodic task template

50

[9] Alur, R., and Dill, D. L., “A theory of timed automata,” Theoretical computer science, Vol. 126, No. 2, 1994, pp. 183–235.

[10] Cassez, F., and Larsen, K., “The impressive power of stopwatches,” International Conference on Concurrency Theory, Springer,

2000, pp. 138–152.

[11] Carnevali, L., Pinzuti, A., and Vicario, E., “Compositional verification for hierarchical scheduling of real-time systems,” IEEE

Transactions on Software Engineering, Vol. 39, No. 5, 2013, pp. 638–657.

[12] Sun, Y., Lipari, G., Soulat, R., Fribourg, L., and Markey, N., “Component-based analysis of hierarchical scheduling using

linear hybrid automata,” 2014 IEEE 20th International Conference on Embedded and Real-Time Computing Systems and

Applications, IEEE, 2014, pp. 1–10.

[13] Boudjadar, J., Larsen, K. G., Kim, J. H., and Nyman, U., “Compositional schedulability analysis of an avionics system using

UPPAAL,” International Conference on Advanced Aspects of Software Engineering, 2014.

[14] David, A., Larsen, K. G., Legay, A., Mikučionis, M., and Poulsen, D. B., “Uppaal SMC tutorial,” STTT, Vol. 17, No. 4, 2015,

pp. 397–415. doi:10.1007/s10009-014-0361-y.

[15] Han, P., Zhai, Z., Nielsen, B., and Nyman, U., “A Modeling Framework for Schedulability Analysis of Distributed Avionics

Systems,” arXiv preprint arXiv:1803.11050, 2018.

[16] Han, P., Zhai, Z., Nielsen, B., and Nyman, U., “A Compositional Approach for Schedulability Analysis of Distributed Avionics

Systems,” arXiv preprint arXiv:1807.11570, 2018.

[17] Fuchsen, R., “IMA NextGen: A new technology for the Scarlett program,” IEEE Aerospace and Electronic Systems Magazine,

Vol. 25, No. 10, 2010, pp. 10–16.

[18] Mok, A. K., Feng, X., and Chen, D., “Resource partition for real-time systems,” Real-Time Technology and Applications

Symposium, 2001. Proceedings. Seventh IEEE, IEEE, 2001, pp. 75–84.

[19] Shin, I., and Lee, I., “Periodic resource model for compositional real-time guarantees,” Real-Time Systems Symposium, 2003.

RTSS 2003. 24th IEEE, IEEE, 2003, pp. 2–13.

[20] Shin, I., and Lee, I., “Compositional real-time scheduling framework,” Real-Time Systems Symposium, 2004. Proceedings.

25th IEEE International, IEEE, 2004, pp. 57–67.

[21] Easwaran, A., Anand, M., and Lee, I., “Compositional analysis framework using EDP resource models,” Real-Time Systems

Symposium, 2007. RTSS 2007. 28th IEEE International, IEEE, 2007, pp. 129–138.

[22] Easwaran, A., Lee, I., Sokolsky, O., and Vestal, S., “A compositional scheduling framework for digital avionics systems,”

2009 15th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, IEEE, 2009, pp.

371–380.

51

[23] Kim, J.-E., Abdelzaher, T., and Sha, L., “Schedulability bound for integrated modular avionics partitions,” Proceedings of the

2015 Design, Automation & Test in Europe Conference & Exhibition, EDA Consortium, 2015, pp. 37–42.

[24] Carnevali, L., Lipari, G., Pinzuti, A., and Vicario, E., “A formal approach to design and verification of two-level Hierarchical

Scheduling systems,” International Conference on Reliable Software Technologies, Springer, 2011, pp. 118–131.

[25] Sun, Y., and Lipari, G., “A pre-order relation for exact schedulability test of sporadic tasks on multiprocessor Global Fixed-

Priority scheduling,” Real-Time Systems, Vol. 52, No. 3, 2016, pp. 323–355.

[26] Åsberg, M., Pettersson, P., and Nolte, T., “Modelling, verification and synthesis of two-tier hierarchical fixed-priority preemp-

tive scheduling,” 2011 23rd Euromicro Conference on Real-Time Systems, IEEE, 2011, pp. 172–181.

[27] Fribourg, L., Soulat, R., Lesens, D., and Moro, P., “Robustness analysis for scheduling problems using the inverse method,”

2012 19th International Symposium on Temporal Representation and Reasoning, IEEE, 2012, pp. 73–80.

[28] Cicirelli, F., Furfaro, A., Nigro, L., and Pupo, F., “Development of a schedulability analysis framework based on PTPN and

Uppaal with stopwatches,” Proceedings of the 2012 IEEE/ACM 16th International Symposium on Distributed Simulation and

Real Time Applications, IEEE Computer Society, 2012, pp. 57–64.

[29] Boudjadar, J., David, A., Kim, J. H., Larsen, K. G., Nyman, U., and Skou, A., “Schedulability and energy efficiency for

multi-core hierarchical scheduling systems,” Embedded Real Time Systems and Software, 2014, pp. 1–4.

[30] Boudjadar, J., Kim, J. H., and Nadjm-Tehrani, S., “Performance-aware scheduling of multicore time-critical systems,” Formal

Methods and Models for System Design (MEMOCODE), 2016 ACM/IEEE International Conference on, IEEE, 2016, pp.

105–114.

[31] Scharbarg, J.-L., and Fraboul, C., “Simulation for end-to-end delays distribution on a switched ethernet,” 2007 IEEE Conference

on Emerging Technologies and Factory Automation (EFTA 2007), IEEE, 2007, pp. 1092–1099.

[32] Safwat, N. E.-D., Zekry, A., and Abouelatta, M., “Avionics Full-duplex switched Ethernet (AFDX): Modeling and simulation,”

Radio Science Conference (NRSC), 2015 32nd National, IEEE, 2015, pp. 286–296.

[33] Rivas, J. M., Gutiérrez, J. J., Palencia, J. C., et al., “Schedulability analysis and optimization of heterogeneous EDF and FP

distributed real-time systems,” 2011 23rd Euromicro Conference on Real-Time Systems, IEEE, 2011, pp. 195–204.

[34] Gutiérrez, J. J., Palencia, J. C., and Harbour, M. G., “Holistic schedulability analysis for multipacket messages in AFDX

networks,” Real-Time Systems, Vol. 50, No. 2, 2014.

[35] Le Boudec, J.-Y., and Thiran, P., Network calculus: a theory of deterministic queuing systems for the internet, Vol. 2050,

Springer Science & Business Media, 2001.

[36] Scharbarg, J.-L., Ridouard, F., and Fraboul, C., “A probabilistic analysis of end-to-end delays on an AFDX avionic network,”

IEEE transactions on industrial informatics, Vol. 5, No. 1, 2009, pp. 38–49.

52

[37] Bauer, H., Scharbarg, J.-L., and Fraboul, C., “Improving the worst-case delay analysis of an AFDX network using an optimized

trajectory approach,” IEEE Transactions on Industrial informatics, Vol. 6, No. 4, 2010, pp. 521–533.

[38] Kemayo, G., Ridouard, F., Bauer, H., and Richard, P., “A Forward end-to-end delays Analysis for packet switched networks,”

Proceedings of the 22nd International Conference on Real-Time Networks and Systems, ACM, 2014, p. 65.

[39] Kemayo, G., Benammar, N., Ridouard, F., Bauer, H., and Richard, P., “Improving AFDX end-to-end delays analysis,” 2015

IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA), IEEE, 2015, pp. 1–8.

[40] Adnan, M., Scharbarg, J.-L., Ermont, J., and Fraboul, C., “Model for worst case delay analysis of an AFDX network using

timed automata,” Emerging Technologies and Factory Automation (ETFA), 2010 IEEE Conference on, IEEE, 2010, pp. 1–4.

[41] Scharbarg, J.-L., and Fraboul, C., Methods and tools for the temporal analysis of avionic networks, INTECH Open Access

Publisher, 2010.

[42] Adnan, M., Scharbarg, J.-L., Ermont, J., and Fraboul, C., “An improved timed automata approach for computing exact worst-

case delays of AFDX sporadic flows,” Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies &

Factory Automation (ETFA 2012), IEEE, 2012, pp. 1–8.

[43] Grumberg, O., and Long, D., “Model checking and modular verification,” Toplas, Vol. 16, No. 3, 1994, pp. 843–871.

[44] FAA, “CAST-32A Multi-core Processors,” CAST Position Paper, 2016.

[45] Jean, X., Gatti, M., Berthon, G., and Fumey, M., “MULCORS-Use of Multicore Processors in airborne systems,” EASA, Tech.

Rep., 2012.

[46] Huyck, P., “ARINC 653 and multi-core microprocessors—Considerations and potential impacts,” 2012 IEEE/AIAA 31st

Digital Avionics Systems Conference (DASC), IEEE, 2012, pp. 1–16.

[47] MATTERS, W. I., and RIVER, I. R. O. W., “Certification of Avionics Applications on Multi-core Processors: Opportunities

and Challenges,” 2018.

[48] Parkinson, P. J., “Applying MILS to multicore avionics systems,” Proc. Int. Workshop Mils, Archit. Assurance Secur.

Syst.(HIPEAC), 2016, pp. 1–9.

[49] Ittershagen, P., Hartmann, P. A., Grüttner, K., and Rettberg, A., “Hierarchical real-time scheduling in the multi-core era -

An overview,” 16th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing

(ISORC 2013), 2013, pp. 1–10. doi:10.1109/ISORC.2013.6913241.

[50] Sha, L., Rajkumar, R., and Lehoczky, J. P., “Priority inheritance protocols: An approach to real-time synchronization,” IEEE

Transactions on computers, Vol. 39, No. 9, 1990, pp. 1175–1185.

[51] David, A., Larsen, K. G., Legay, A., Nyman, U., and Wasowski, A., “Timed I/O automata: a complete specification theory

for real-time systems,” Proceedings of the 13th ACM international conference on Hybrid systems: computation and control,

ACM, 2010, pp. 91–100.

53

[52] Berezin, S., Campos, S., and Clarke, E. M., “Compositional reasoning in model checking,” International Symposium on

Compositionality, Springer, 1997, pp. 81–102.

[53] Jensen, H. E., Larsen, K. G., and Skou, A., “Scaling up UPPAAL,” International Symposium on Formal Techniques in

Real-Time and Fault-Tolerant Systems, Springer, 2000, pp. 19–30.

[54] Jensen, H., “Abstraction-based verification of distributed systems,” Ph.D. thesis, Aalborg university, 1999.

[55] Reineke, J., Wachter, B., Thesing, S., Wilhelm, R., Polian, I., Eisinger, J., and Becker, B., “A definition and classification

of timing anomalies,” OASIcs-OpenAccess Series in Informatics, Vol. 4, Schloss Dagstuhl-Leibniz-Zentrum für Informatik,

2006.

54

