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Sustainable building design requires an interplay between multidisciplinary input 
and fulfilment of diverse criteria to align into one high-performing whole. BIM 
has already brought a profound change in that direction, by allowing execution of 
efficient collaborative workflows. However, design decision-making still relies 
heavily on rules of thumb and previous experiences, and not on sound evidence. 
To improve the design process and effectively build towards a sustainable future, 
we need to rely on the multiplicity of data available from our existing building 
stock. The objective of this research is, therefore, to transform existing data, 
discover new knowledge and inform future design decision-making in an 
evidence-based manner. This article looks specifically into this task by (1) 
outlining and distinguishing between the diverse building data sources and types, 
(2) indicating how the data can be analysed, (3) demonstrating how the 
discovered knowledge can be implemented in a semantic integration layer and (4) 
how it can be brought back to design professionals through the design aids they 
use. We, therefore, propose a performance-oriented design decision support 
system, relying on BIM, data mining and semantic data modelling, thereby 
allowing customised information retrieval according to a defined goal.  

Keywords: BIM, Sustainability, Building Design, Semantics, Data Mining, 
Pattern Recognition, Knowledge Discovery, Information Retrieval  

Introduction 

Sustainable building design requires an optimal interplay between diverse criteria, 
susceptible to both the fulfilment of strictly formulated requirements, as well as their 
interpretation, translation and implementation by the design team. Hence, a 
performance-oriented design process requires multidisciplinary input to align into one 
high-performing ‘whole’, simultaneously with that being done in the most efficient way. 
‘Whole’ as a concept, and the derived term ‘holism’, was defined by Smuts (1926) as ‘a 
unity of parts, which is so close and intense as to be more than the sum of its parts’. 
That means that all parts should function towards the whole, determine each other and 
eventually merge their individual characters, which makes the holistic character 



 
 

 

 

discoverable in the functions of both the parts and the whole. This concept is translated 
into whole building design by the implementation of the integrated design approach. 
Therefore, sustainable design requires a holistic approach, in which there are no 
individual parts constituting a design, only synergetic multidisciplinary inputs that 
contribute to the targeted overall performance of the whole.  

In that relation, Building Information Modelling (BIM) (Eastman et al., 2011; 
Sacks et al., 2018) has already brought a profound change to the Architecture, 
Engineering and Construction (AEC) industry by allowing much more efficient 
integrated workflows. Open data standards and protocols, including Information 
Delivery Manuals (IDMs), Model View Definitions (MVDs), Industry Foundation 
Classes (IFC), etc. (buildingSMART, 2016) have served as catalysts towards increased 
collaboration between stakeholders. This is crucial for obtaining efficiency gains and 
successful fulfilling of performance targets related to sustainability in the building 
design domain. By definition, BIM allows integration of multidisciplinary information 
within a single coordinated building model and empowers collaborative practices 
(Zanni et al., 2017).  

Furthermore, BIM practice strongly advises the use of a Common Data 
Environment (CDE) to manage information from all stakeholders. The CDE is defined 
as ‘a central repository where construction project information is housed. The contents 
of the CDE are not limited to assets created in a ‘BIM environment’ and it will 
therefore include documentation, graphical model and non-graphical assets.’ (British 
Standards Institute, 2013). In a CDE, distinct viewpoints on a building are brought 
together, thus providing the place where a holistic view is possible. That includes data 
that is often not captured directly in a BIM model (e.g. design briefs, point cloud data, 
etc.) (Fig. 1).  

                    

Figure 1. Use of a Common Data Environment in collaborative building design 

 As a result of the strong focus on BIM, BIM-based sustainable design has 
received major attention, and is a part of fundamental research within the construction 



 
 

 

 

industry (Cemesova et al., 2015; Lu et al., 2017; Wong & Zhou, 2015). A considerable 
research effort, aiming for the seamless integration of BIM and building performance 
assessment in the (early) design process has also taken place in the last decade (El-
Diraby et al., 2017; Ilhan & Yaman, 2016; Jalaei & Jrade, 2014; Liu et al., 2015; 
Schlueter & Thesseling, 2009; Shadram et al., 2016; Underwood & Isikdag, 2010; 
Yalcinkaya & Singh, 2015).  

Even though BIM offers possibilities for synergy with sustainable design, many 
of the decisions taken during the design process are based on rules of thumb and 
previous experiences (Heylighen et al., 2007), which are not directly applicable or are 
not based on sound evidence. Polanyi (1958) defines such rules of thumb and 
experiences as tacit knowledge, and indicates that it is hard to capture, formalize and 
make explicit because of its context-specific nature. The increase in experience leads to 
more complex rules of thumb, which evolve into design patterns (Alexander, 1977). 
These patterns are crucial in one’s understanding of what constitutes and satisfies the 
design context and heavily influence the design process.  

Nevertheless, knowledge discovered in data from past projects and buildings in 
operation can be combined with the tacit knowledge for informing future design 
decision-making. As a result, huge potential would arise in achieving building design in 
a sustainable, efficient and evidence-based manner. One of the main research objectives 
in this regard is to leverage the multiplicity of data sources and types, and thus pave the 
way to knowledge discovery for evidence-based processes in design and engineering 
practice. To advance towards achievement of this objective, this study aims to employ 
the latest advances in three main areas:  

(1) the full use of BIM as a means to reuse existing project data (e.g. through a CDE),  

(2) the deployment of Knowledge Discovery in Databases (KDD) (Fayyad, 1996) to 
discover hidden knowledge in operational building data and inform future building 
design decision-making, and   

(3) the reliance on semantic data modelling to represent the discovered knowledge in a 
semantically rich graph of data. 

 Despite not being the main focus, we hereby aim to also take into account the 
tacit knowledge and expertise used in design decision-making.  The main principle is to 
identify meaningful and relevant patterns from previous projects and buildings in 
operation, transform information, discover new knowledge and better predict outcomes. 
The discovered knowledge will provide the basis for a design decision support system 
(DDSS), which is performance- and data-informed, rather than just data-dependent.  
Decision support systems are regarded here as computer-based tools adapted to support 
and aid complex decision-making and problem solving (Arnott & Pervan, 2008; Shim et 
al., 2002). Research in this area typically highlights the importance of information 
technology in improving the efficiency and effectiveness of decision-makers (Alter, 
2004; Pearson & Shim, 1995). In the context of architectural design and engineering, 



 
 

 

 

research limits more specifically to DDSS targeting the end user (Timmermans, 2016). 
Many commercial tools (CAD tools, BIM tools, simulation, visualization and 
coordination tools, etc.) have also been widely adopted in practice. However, they are 
most often stand-alone applications that do not implement the concept of knowledge 
reuse. We therefore aim to bring those features together in a DDSS that enables both 
knowledge sharing and reuse.  

Methodological approach 

This research relies on an extensive literature review aiming to identify both 
seminal works and state of the art developments within multiple research areas. 
Included here are design thinking and theory, BIM, sustainable building design and 
performance assessment, data analysis and artificial intelligence in performance-
oriented architecture and civil engineering, as well as emerging technologies and 
computational approaches for improvement of design decision-making. We hereby also 
try to take into account design workflows in various settings. Based on this background 
research, we investigate the existing types of building data, their representations, 
formats, storage methods, and the way in which they can be handled by various 
algorithms, relative to variable goals of the knowledge discovery processes.  

Next, we devise a system architecture that aims to bring the knowledge 
discovered in the available data to the end user and thereby support decision-making in 
future performance-oriented design processes. This system relies on three main 
approaches targeting knowledge discovery, namely data mining, geometric feature 
matching and direct semantic queries. We investigate to what extent the results of 
geometric similarity matching and data mining can be represented in semantic graphs, 
thereby relying on earlier work (Petrova et al., 2018a, 2018b). The resulting framework 
would therefore be able to successfully combine these approaches in support of AEC 
domain specialists working towards improving the built environment. 

In this article, we first document key efforts for information exchange and data 
analysis in sustainable building design (Section 2). Section 3 proposes a system outline 
for holistic sustainable design relying on operational building data and project data 
repositories. Sections 4 and 5 summarize the proposed system, thereby indicating the 
main implementation methods, i.e. data mining, geometric feature matching and direct 
semantic queries. Finally, Section 6 presents a conclusion and outlines future work. 

Data Exchange and Analysis in Collaborative Sustainable Building Design 

Data-Driven and Experience-Based Design 

Sustainability is a multi-dimensional matter, aiming for equal balance between 
economic and social development, and environmental protection (United Nations, 
2010). From a collaborative perspective, Senciuc et al. (2015) define sustainable design 
as a complex system of elements linked by interdependencies and a process of 



 
 

 

 

managing numerous perspectives. Furthermore, Kocaturk (2017) underlines the 
important role that technology plays in transforming the understanding of sustainability 
as a concept in the built environment, by enabling design innovation at product, process 
and operational levels. Sonetti et al. (2018) further highlight the potential of artificial 
intelligence and ICT tools for human-centric regenerative design.  Building 
performance, on the other hand, besides being a criterion itself, is an outcome of a 
multidisciplinary set of multiple-criteria design decisions (Jalaei, et al., 2015). In that 
relation, the availability of data and the efficiency of its exchange are highly influential 
to both the design decision-making and its results. However, building design is 
characterized by fragmentation of processes and heterogeneity of actors, competencies 
and information sources. As a result, data is not readily available and not necessarily 
easily exchanged. As stated by Akin (2014), the information created and associated with 
the design must be available and applicable at all stages, without any losses, duplication 
of trivial processes or backtracking.  

According to Aksamija (2012), high-performance design requires “building 
performance predictions, use of simulations and modelling, research-based and data-
driven processes.” BIM can facilitate knowledge transfer and experience between 
ongoing projects, but it is also important to use the experience from previous projects to 
adopt a holistic standpoint (Goldman & Zarzycki, 2014). Thus, for the design intent and 
performance targets to be achieved, the building operation needs to inform the design, 
and both phases should not be considered separate or independent, but parts of a cause 
and effect relationship. Furthermore, Goldman & Zarzycki (2014) claim that much of 
the data initially required for modelling could be based on predictions relying on data 
from previous projects. That would require pairing substantial data collection with 
captured professional expertise. Yet, the result would be a refined outcome, where 
quantified knowledge and professional experience are used in decision-making in a 
dedicated and structured way. According to Isikdag (2015), such a future transformation 
needs a “focus on enabling an (i) integrated environment of (ii) distributed information 
which is always (iii) up to date and open for (iv) derivation of new information.” 
Goldman & Zarzycki (2014) further stipulate that a future data exchange network also 
has to be based on reuse of experience across designers, and requires knowledge to be 
modular and shareable. 

Basics of Data Analytics and Application of KDD in the AEC Industry 

Data analysis is becoming increasingly important for the built environment. Through 
the emergence of BIM, information as a concept has paved the way to changing the way 
professionals in the industry work. However, many questions still need to be answered 
with regards to what should be measured, how the information should be reported and 
stored, and most importantly, how it should be translated to knowledge and applied in 
practice. In that relation, Starkey & Garvin (2013) take a step back and highlight the 
variable, sometimes intertwining definitions of the terms data, information and 
knowledge from philosophical, semiotic and cybernetic points of view. From a 



 
 

 

 

knowledge management perspective, Thierauf (1999) defines data as “unstructured facts 
and figures that have the least impact”. Davenport & Prusak (2000) claim that, for data 
to become information, it needs to be contextualised, categorised, calculated and 
condensed, whereas knowledge implies know-how, meaning and understanding.    

This article adopts the term data in a foundational way, as the building blocks 
for information, which in turn allows purposeful pattern discovery in various datasets, 
by the use of dedicated analytical approaches. The obtained analytical results would 
further allow combinations in support of cognitive processes in design. More 
specifically, the term ‘data’ in the current context refers to various types and 
representations of digital data, generated and available throughout the entire building 
life cycle. That includes generated design documentation (design brief databases) 
graphical design data (BIM models, simulation models, numeric geometric data), and 
non-graphical data (semantic design data, numeric simulation output, monitored 
operational performance data from sensor networks), etc. In other words, we refer to 
digital building data types in representations useful for further computational analyses.  
We explicitly focus on digital data and its representations to reflect and comply with the 
BIM and CDE-based workflows. The article further highlights the potential impact that 
discovered applicable knowledge in digital data can have on the future built 
environment.  

From an analytical perspective, large volumes of data prove to be overwhelming 
when using traditional methods, which generate informative reports, but fail when it 
comes to analysis of their content (Soibelman & Kim, 2002). On the other hand, data 
mining, KDD and pattern recognition excel at the analysis of data and extraction of 
knowledge, and can facilitate an effective design space exploration.  

Hand et al. (2001) define data mining as “the analysis of large observational 
datasets to find unsuspected relationships and summarize the data in novel ways so that 
data owners can fully understand and make use of the data.” Additionally, Bishop 
(2006) states that ‘pattern recognition is concerned with the automatic discovery of 
regularities in data through the use of computer algorithms and with the use of these 
regularities to take actions such as classifying the data into different categories’. In that 
context, Piatetsky-Shapiro (1991) formulates knowledge as the end product of a data-
driven discovery, whereas KDD represents the overall process of the extraction of 
useful knowledge. Data mining is the step in that process which employs specific 
algorithms to discover useful and previously unknown patterns in the data. Fayyad et al. 
(1996) state that the essential purpose is to discover high-level knowledge in low-level 
data. Furthermore, they define five essential steps, which transform the available raw 
data into actionable knowledge and insights of immediate value to the end user (Fig. 2). 

 



 
 

 

 

                                       
 Figure 2. Knowledge Discovery in Databases (KDD) process, Fayyad et al. (1996) 

 
(1) Selection 

Data selection deals with the necessity to develop and understand the application 
domain, capture the relevant prior knowledge and identify the goal of the KDD 
process from an end-user perspective. Thereafter, a suitable target dataset or 
subset of variables should be chosen. 

 
(2) Pre-processing 

Pre-processing includes cleansing of the data in terms of handling of missing 
data fields, removal of duplicates, as well as fusion and resolution of conflicts 
due to the data originating from heterogeneous sources. Soibelman & Kim 
(2002) argue the significant importance of data preparation to the generation of 
high-quality knowledge through KDD. In addition, Cabena et al. (1998) point 
out that 60% of the time goes into data preparation, whereas the mining itself 
accounts for only 10% of the overall effort.  

 
(3) Transformation 

Transformation is concerned with reduction and projection of data with the 
purpose of finding useful features and representing the data according to the 
needs of the stated goal and the chosen algorithms. That includes finding 
invariant data representations and using dimensionality reduction methods to 
reduce the effective number of considered variables. 

 
(4) Data mining 

Data mining deals with matching the defined KDD goals with a particular 
method, e.g. classification, regression, or clustering. That includes the selection 
of algorithms and pattern extraction methods, as well as considerations 
concerning the end user’s capabilities for interpretation of the chosen model vs. 
the model’s predictive capabilities and accuracy. The actual data mining can 
then take place, i.e. searching for patterns in a particular representational form or 
set of representations, such as rule sets, trees, clusters, etc.  
 

(5) Interpretation / Evaluation 
The last step involves interpretation of the mined patterns and examination of 
their validity. That may include visualization of the discovered patterns and 



 
 

 

 

assessment of their usefulness. Of particular importance is acting on the 
discovered knowledge, e.g. documenting it, using it directly, or implementing it 
into another system for further use.  

Related Works 

Fayyad et al. (1996) define six widely accepted data mining categories, namely 
classification, clustering, association rule mining, regression, summarization and 
anomaly detection. Han et al. (2012) further detail each of these techniques and 
highlight their belonging to two main categories: predictive (supervised) and descriptive 
(unsupervised). Supervised techniques are powerful for predictive modelling and 
knowledge representations (regression or classification models). They describe the 
qualitative or quantitative relationships between the input and output variables, and rely 
on domain expertise and training data (a set of observations, for which both the input 
and output variables are given). Thus, discovery of novel knowledge with predictive 
techniques is therefore unlikely, because inputs and outputs are predefined.  

Unsupervised techniques (e.g. clustering, association rule mining, etc.), on the 
other hand, hold a significant potential in discovering the intrinsic structure, correlations 
and associations in data. Training data has no relation to the success of unsupervised 
analytics, as inputs and outputs are not predefined. In that relation, Han et al. (2012) 
state that the fundamental advantage of unsupervised methods lies within the ability to 
discover previously unknown and hidden knowledge in the given data. Unlike 
supervised approaches that adopt a backward approach by having a predefined target, 
unsupervised analytics are forward oriented, which gives the possibility of discovering 
interesting relationships and bringing out the value in the data (Fan et al., 2018).  

As a result of their potential, KDD and data mining approaches have received 
major attention in the AEC industry. We performed a literature review that identifies 
main areas of application in the context of sustainability and energy efficiency, both 
from predictive and descriptive perspectives. Predictive applications include building 
energy use and demand prediction (Ahmed et al., 2011; Wang & Srinivasan, 2017; 
Zhao & Magoulès, 2012), prediction of building occupancy and occupant behaviour 
(D’Oca & Hong, 2014; Zhao et al., 2014), and fault detection diagnostics for building 
systems (Cheng et al., 2016; Pena et al., 2016). Descriptive tasks, on the other hand, are 
concerned with framework development (D’Oca & Hong, 2015; Fan et al., 2015a, 
2015b; Park et al., 2016; Yu et al., 2013; Zhou et al., 2015), patterns in occupant 
behaviour (Capozzoli et al., 2017), building modelling and optimal control (Xiao & 
Fan, 2014), as well as discovering and understanding energy use patterns (Gaitani et al., 
2010; Miller et al., 2015; Wu and Clements-Croome, 2007). Other efforts include the 
use of data mining for high-performance building design based on classification models 
for sustainability certification evaluation (Jun & Cheng, 2017), use of BIM-based data 
mining approaches for improvement of facility management (Peng et al., 2017), use of 
semantic modelling, neural networks and data mining algorithms for building energy 
management (McGlinn et al., 2017), etc.  



 
 

 

 

However, the use of KDD and pattern recognition has been dedicated mostly to 
improvement of the building operation. Using discovered knowledge to improve future 
building design processes is an area that is rarely explored in detail. Efforts include 
pattern recognition in simulation data and extraction of information from BIM design 
log files (Yarmohammadi et al., 2016), use of data-driven approaches to design energy-
efficient buildings by mining of BIM data (Liu et al., 2015) and data mining for 
extracting and recommending architectural design concepts (Mirakhorli et al., 2015). 

Reuse of similarities for design decision support has also been recognised in 
design practice. This is prominent in case-based reasoning (CBR), which provides 
decision makers with a problem solving framework involving recalling and reusing 
previous knowledge and experience (Aamodt & Plaza, 1994). CBR approaches in 
design differ based on the method of their implementation (Elouti, 2009; Heylighen & 
Neuckermans, 2000; Richter et al., 2007). Example implementations in the context of 
sustainable architectural design can be found in (Sabri et al., 2017; Shen et al., 2017; 
Xiao et al., 2017).  

In addition, research targeting the creation of a “repository of knowledge” for 
decision support based on patterns in thermal simulation output has been significantly 
extended in de Souza & Tucker (2015), de Souza & Tucker (2016) and Tucker & de 
Souza (2016). All similarity retrieval efforts mentioned above occupy the same 
conceptual space and are of high relevance to this research. Yet, despite coming a step 
closer to realizing the targeted future process, they rely on patterns only in design and 
simulation data. Thus, we aim to contribute further by adopting the latest semantic 
technologies, adding operational data mining and geometry matching capacities, and 
taking into account BIM and CDE-based workflows in early design.  

The data analysis results coming from existing buildings and designs can rarely 
be linked to an early stage design using computational tools, mainly because the data 
representations do not match. This is not the case for tacit knowledge, which facilitates 
intuitive associations to any visual representation in an early design stage. A design 
professional would therefore tend to rely primarily on that knowledge instead of 
tangible performance data. In terms of data analysis, traditional approaches typically 
start from the available data and focus on retrieving the inherent insights. Decision-
makers then determine how these insights may help them. As a result, despite the 
importance of the KDD goal definition, the knowledge discovery is driven only to a 
limited extent by the needs of the decision-maker.  

Advanced analytical approaches start from the decision-makers and the 
identification of the most critical decisions, including the variability of their potential 
outcomes. As a result, the necessary insights to clarify those decisions can be identified, 
the type of information they may stem from, the data sources that could provide this 
information, and the knowledge to extract. Thus, a more user-oriented analysis is 
targeted, resulting in useful and practically applicable design decision support.  



 
 

 

 

Towards Holistic Sustainable Design Relying on Operational Building Data 

and BIM Data Repositories  

The ultimate objective of this research effort is to propose a DDSS that can bring 
forward a much more efficient sustainable building design process. More specifically, 
we aim to achieve informed decision-making by reusing existing BIM data repositories 
and operational building data. BIM data can include BIM models, simulation data, 
design briefs, etc.; operational data includes monitored data from existing buildings, i.e. 
sensor data, building use data, and so forth. The purpose is to integrate the DDSS in 
both the CDE as well as the individual end-user applications. That is found necessary, 
as the CDE hosts the information related to the building design process, and the end 
user applications host the individual decisions. 

Data and Knowledge with Potential Impact on Design Decision Support  

When implementing an advanced data analytics approach, there are several 
considerations, pertaining not only to the goals and criticality of the decisions, but also 
to the ability to generalize over the discovered patterns. Meaningful patterns are those 
that can be statistically justified, hence they should be based on the exploration of 
significant volumes of heterogeneous data. Furthermore, such an approach has highest 
impact when it can affect both the design process and the final product. In summary, the 
suggested approach works best in an environment that hosts simultaneously: 
● decisions with high impact and criticality, namely early-stage design decisions 

with high level of variability of outcome 
● specific performance criteria, concerning the practical implications of the 

decisions with regards to targeted building performance 
● data from a high number of reference buildings 
● data in big amounts and diversity 

Many of the critical early decisions and the related requirements and constraints 
are interdependent. These dependencies can be captured in diagrams, which give a full 
overview of the relevant decision-making criteria and relations. Predictive models can 
hereby contribute further, by quantifying the weights of the dependencies, the criticality 
of the decisions, the variability of outcomes and the potential impacts. Figure 3 shows 
the developed dependency diagram capturing the relevant decision-making criteria in 
high-performance design. The grey nodes with most dependencies highlight not only 
the criticality of the related decisions, but also the data that would be most relevant for 
goal-oriented analytics. AEC projects generate various kinds of data in different 
formats, however, not all data are equally useful to all pattern recognition techniques. 
The following sections categorize the diverse data types based on their origin. 



 
 

 

 

       

Figure 3. Criteria dependency in a typical sustainable design process 

Data Types and Hidden Knowledge at Building Operation Stage 

Operational building data is usually represented in a two-dimensional structured tabular 
way, with columns representing variables and rows storing the measurements at given 
time steps. Collected data usually includes time and date of measurement, energy 
consumption data (e.g. power consumption, cooling and heating loads, etc.), HVAC 
system operating conditions (temperature, flow rates, etc.), and environmental data (e.g. 
indoor and outdoor climate, humidity, solar radiation, etc.). These data types consist of 
parameters that are directly influencing building performance and are dynamically 
changing. Such data are a valuable input for data-driven simulations, HVAC system 
optimization and improvement of the building operation. Figure 4 represents the 
dynamic parameters and therefore operational data types typically collected from 
Building Management Systems (BMS).  



 
 

 

 

                                 
Figure 4. Dynamic parameters, based on taxonomy by Mantha et al. (2015)  

According to Han et al. (2015), the typical formats and the tabular representation 
of operational building data gives an opportunity for discovery of two main types of 
knowledge: cross-sectional (static) and temporal (dynamic). Cross-sectional knowledge 
can be discovered when treating each row as an independent observation. The 
discovered knowledge is static, as the temporal dependencies between the rows are 
ignored (the knowledge discovered mainly includes the concurrent relationships among 
the different variables). Static knowledge discovery is useful for the identification of 
interaction between system components, atypicality in operation, etc. Han et al. (2015) 
further state that, in contrast, temporal knowledge can be discovered by mining data 
along both axes of the two-dimensional table and is very useful for characterizing 
dynamics in building operations. The insights obtained can be used for developing 
dynamic solutions for optimal building control, fault detection and diagnosis. Capturing 
the temporal dependencies in the data are much more challenging, but give a possibility 
for discovering unsuspected patterns and their relationships.  

Data Types and Hidden Knowledge at Building Design Stage 

The knowledge discovered in design data is much more static, even when taking into 
account versioning possibilities. Data at the building design stage typically starts with a 
design brief and a design model. Crucial choices on building orientation, zoning, spatial 
arrangement, and building materials are made in the earliest design stages. This data 
typically responds to the requirements and constraints listed earlier in the dependency 
diagram in Fig. 3 and represents important static parameters defining the character of 
the building (Fig. 5). 



 
 

 

 

                                     
Figure 5. Static parameters, based on taxonomy by Mantha et al. (2015) 

 
A lot of hidden knowledge is also available in the simulation data. This data can inform 
the design according to the paths defined in the dependency diagram by giving an 
insight into the building performance. Yet, they are typically a lot more optimistic 
compared to the actual performance. Building geometry is also valuable, as it provides 
many of the inputs required for simulation and compliance checking.  

Data Type Definition from Analytical Perspective  

To achieve high success rate in terms of analytical evaluation, it is important to match 
the types of data with the most suitable analytical techniques. Different data types can 
be recognized, informing the choice of analytical techniques and the structure of the 
data to enable effective knowledge discovery and performance-oriented decision 
support. The list below presents a data type definition from an analytical perspective.  
 
● Semantic design data: semantic data describing design features, which include 

building elements, materials, object types, design brief data, etc. 
● Numeric geometric data: geometric data in a format optimized for geometric 

analysis. 
● Numeric sensor data: tabular sensor data with real-time data from supervisory 

control and data acquisition systems. 
● Numeric simulation data: data models containing simulation results. 

A Holistic Approach to a Data-Driven Sustainable Design System 

This section proposes a system architecture that combines the available data 
with data analytics in a sensible way for decision support. This analysis is put forward 
through Fig. 6, which shows the main approach and the overall flow of proposed 
activities.  



 
 

 

 

 
 

Figure 6. Proposed flow of data from existing buildings and project data repositories 
towards the diverse end-users 

 
The active design environment (left in Fig. 6) may include BIM authoring tools, 

parametric design tools, simulation tools, etc. Design professionals iterate through a 
number of proposals within their individual tools and with the rest of the team. While 
designing, project data is stored in the CDE as files being uploaded to a central server. 

In this study, DDSS systems are proposed both in the CDE and in the individual 
applications, where the DDSS in the CDE communicates to a project repository (Fig. 6). 
This repository collects the data available from previous projects and existing buildings, 
which comes from various heterogeneous sources. For example, BIM data captures the 
design, but typically comes in different representations, including a native 3D model, a 
neutral IFC data model, schedules, etc. Sensor data comes in different representations, 
depending on the system from which it originates. Storing local copies facilitates the 
execution of the data selection part of the KDD process defined by Fayyad et al. (1996) 
together with the maintaining of the original data. The selected data can then be 
cleansed and transformed, thus following steps 2 and 3 by Fayyad et al. (1996). After 
cleansing and transformation of the selected datasets, the results are stored in a project 
data repository, which hosts disparate data. While this allows diverse analysis 
techniques, integration across the data types will be needed.  

The following sections indicate how the different components of the proposed 
system can be set up. We focus specifically on how different approaches may be 
effectively combined to achieve useful design decision support. Section 4 deals with the 
part of the system architecture related to the active design environment, including the 
semantic integration of data, while Section 5 introduces the use of KDD for creating a 
project data repository. 



 
 

 

 

The Active Design Environment 

End-users approach decision-making in an iterative problem-solution oriented manner, 
in which they put forward solutions based on tacit knowledge. When it comes to the 
DDSS, an insight into the cognitive processes within design decision-making provides 
an invaluable input for system design. We therefore first consider the overall design 
thinking processes, after which we outline how this takes form in a BIM-based process 
that relies on a CDE with heterogeneous data. 

Design Thinking and Problem Solving as a part of Data-Driven Design 

The background knowledge of the decision-maker determines the course of the design 
process. With each design iteration, designers explore a problem/solution space, thereby 
going through a continuous co-evolution of problem and solution (Dorst & Cross, 
2001). As already indicated, the digital part of this process typically happens in a CDE, 
which stores the multidisciplinary design solutions as they come in sequentially. All 
actors go through a co-evolution process using their own tacit background knowledge 
and technology stack. The design requirements, typically captured in the design brief, 
drive the design decisions and follow the co-evolution of problem and solution. In the 
context of sustainable design, both the tacit definition for sustainable design and the 
solution responding to the particular requirements evolve throughout the design process. 
Ideally, the design team converges over time, under the influence of the design brief and 
the performance targets, both in the problem and solution spaces (Fig. 7). Convergence 
brings the team closer to a solution that fulfils the targets. The purpose is to avoid 
regress, e.g. widening of cycles at any given point in the evolution of the time 
dimension.  

 

 

Figure 7. Problem-Solution cycle in collaborative design 

In order to give tangible performance data a better role in the above process, the 
way in which decision-makers connect to their own background knowledge needs to be 
influenced. This can only be done by presenting the decision-maker useful alternatives 



 
 

 

 

(problem-solution space), which match the goal and build on the tacit experience in a 
structured way.  

Tools and Data Flows in the Active Design Environment 

Even if a CDE is used, data is typically kept in separate files. This makes an integrated 
view over the available information very difficult to achieve. More recent initiatives aim 
at making the data available in an integrated manner using web technologies. As the 
web is evolving into a web of data instead of a web of documents (Berners-Lee et al., 
2001), technology can be used to make the CDE web-compliant and data-oriented, as 
opposed to its current document-based nature. Such a system is much more attractive as 
(1) it makes project data available for semantic information retrieval and management, 
(2) it allows a larger diversity of data mining approaches, as data can be processed 
multiple times for different purposes while maintaining the same semantic identifiers, 
and (3) advanced semantic data mining techniques are within scope. Building a web-
based semantic CDE results in the design environment outlined in Fig. 8.  

 
Figure 8. Integration of datasets in a web-based CDE 

 
As the CDE has a web-based structure, applications and users are less occupied with 
manually storing files in an online server. Instead, the CDE is automatically filled with 
data using the HTTP protocol. By doing so, a lot more versioning and data logging can 
be achieved. Considering that data is gathered from multiple heterogeneous sources, the 
CDE would function optimally with a decentralized structure, which is most commonly 
realized using graph database approaches. Promising solutions in this regard for the 
AEC domain relate to deployment of linked data and semantic web technologies 
(Pauwels et al., 2017a). These technologies allow to build a decentralized web of 
semantic information, which serves perfectly for maintaining the backbone of a web-
based CDE, thereby allowing to link the diverse datasets together, while respecting their 
original data structures.  



 
 

 

 

Research has also shown that not all data can be efficiently maintained in a 
graph database or triple store (Pauwels et al., 2017b). We suggest that vast amounts of 
numeric data, such as geometric, simulation, and sensor data are therefore explicitly 
kept out of the semantic graph. Geometric data, such as 3D meshes, 2D drawings, point 
cloud data, etc., are ideally maintained in formats that can efficiently be parsed by 
geometric analysis algorithms. Sensor and simulation data are typically stored in tabular 
formats. Therefore, we propose a semantic integration layer (Fig. 8), which maintains 
the links between the individual datasets. The semantic integration layer is a thin and 
modular structure, capturing the key semantics of the different data sources in a 
decentralized manner, while referring to the original data sources that are kept in their 
optimized structures. The CDE can then be used to query the project data repository. 

Reusing BIM Project Data and Operational Building Data 

Matching queries from the CDE with the project data repository can occur in a number 
of ways, depending on how the data is stored. In this section, we look into the structure 
of the project data repository, and how pattern recognition and matching techniques can 
be applied to the data (direct queries, geometric feature matching, data mining). An 
overview diagram of the project data repository is given in Fig. 9.  

 

      
Figure 9. Overview of the project data repository 

Structure of the Project Data Repository 

Although a project data repository does not necessarily need to have the exact same 
structure as the CDE, it should be similarly well-structured. By maintaining this data 



 
 

 

 

structure, and not converting all data into linked data, for example, we aim to allow as 
many as possible feature matching and data mining algorithms. Indeed, it is possible to 
transform all data to a semantic format, and then to query this data directly (Ristoski & 
Paulheim, 2016). Yet, this would disallow many of the efficient data mining and 
geometry matching algorithms that can be used for retrieving knowledge. Instead, we 
propose to store the semantic, geometric, and operational data separately. These datasets 
are then interlinked through the semantic data integration layer, which aims to link the 
semantic data model of a building with its numeric forms.  

Clearly, the sole reliance on direct semantic information retrieval queries will be 
insufficient to give full feedback to an end user targeting a holistic performance-
oriented design. The semantic queries do not capture the diversity of conclusions and 
matches that can be gathered from data mining techniques. Furthermore, relying solely 
on data mining techniques will not provide the integrated view over the diverse datasets. 
The same applies to geometric data; one cannot rely only on geometric data to retrieve 
valuable knowledge from a project repository to inform a designer aiming at holistic 
sustainable design solutions. Therefore, the diverse data sources need to be available 
and dynamically linked to allow information retrieval and design decision support. 

To build a project data repository as proposed, a number of crucial steps need to 
be made. Data needs to be selected, cleansed and transformed so that it fits the project 
data repository. Furthermore, it is advisable to prepare separate local copies of the data 
in order not to intrude or violate data integrity at the source. In the selection process, it 
is possible to select only the data of relevance and place them on a local server (see step 
1 in Fig. 9). For the static data, such as a design model, design brief, and simulation 
data, a direct copy can be used. For the dynamic data, such as the operational data and 
sensor data, data streams need to be accessed continuously. By implementing this data 
selection process, not only is the data in scope, but the original data is also maintained 
secure. In a next stage, data can be cleansed and transformed (steps 2 and 3 in Fig. 9). 
These are highly necessary steps to allow data mining with accurate results. The main 
purpose of the data transformation step is to end up in the structured project data 
repository as outlined above.  

Recognizing Patterns from the Hive 

Data Mining for Temporal Knowledge Discovery in Operational Building Data 

Operational building data updates continuously with additional data points. The result is 
a data stream that gives an indication of the building operation (the heartbeat of the 
building). The dynamics in operation are usually very complex, due to changes in 
outdoor climate, indoor occupancy, systems utilization, etc., which rarely occur 
simultaneously. Discovering related temporal knowledge is of valuable importance to 
decision-making concerning building components, building automation and control 
systems, etc. Fan et al. (2015a) state that operational data is in essence multivariate time 
series data, where each observation is a vector of multiple measurements and control 



 
 

 

 

signals, and time intervals between subsequent observations are usually fixed. That 
means that using temporal knowledge discovery can help capture relationships between 
variables over a particular time period.    
 Various approaches have been developed for temporal knowledge discovery of 
patterns, e.g. events, clusters, motifs (frequent sequential patterns), discords (infrequent 
sequential patterns) and temporal association rules, but rarely in the context of 
operational building data. A framework developed by Fan et al. (2015a) demonstrates 
encouraging potential in temporal knowledge discovery for improvement of building 
operations and performance management.  

To inform design decision-making, it is important that the discovered patterns 
hold the potential to increase the confidence of the decisions, while still allowing 
creativity and variability of design space exploration. Considering the target data in this 
case and the goal for discovery of unsuspected patterns and relationships, unsupervised 
temporal knowledge mining should target motifs (and/or discords), as well as 
association rules (Fu, 2011). Motifs are by themselves valuable to temporal association 
rule mining and discord detection. We propose to use multivariate motif discovery as a 
first step (Vahdatpour et al., 2009), as it gives the possibility to discover both 
synchronous and asynchronous multivariate motifs consisting of univariate motifs or 
subsets of motifs. That is important, as in this context, motifs in operational building 
data do not necessarily start at the same time or have the same length. For example, 
turning the air conditioner on does not lead to an immediate change in indoor 
temperature due to the thermal mass (Fan et al., 2015a). Employing this method makes 
it possible to first discover univariate motifs and then use graph clustering approaches to 
identify multivariate motifs.  

In addition, association rule mining (ARM) can help discover associations 
between variables (Agrawal et al., 1993). ARM usually targets cross-sectional 
knowledge and temporal dependencies are neglected. Due to the complexity and 
dynamics of operational building data, the use of temporal association rule mining 
(TARM) would be more useful, because it provides not only an insight into the 
associations between the variables, but also their temporal dependencies (Fournier-
Viger et al., 2012). As a result, applying the above-mentioned techniques will allow 
decision-making support by identifying complex patterns over time, as well as the 
dependencies in their occurrence.  

Feature Matching in Geometric Data 

Geometric data can also be used for matching data in the CDE with data in the 
project data repository. Direct geometric pattern matching techniques can be 
implemented and used to return the most resembling results to a user. A number of 
geometry types and representations can be considered. One of the most commonly used 
is IFC, which is a neutral data model aiming to capture building semantics and object 
properties along with the full 3D geometry. IFC provides one of the most expressive 
neutral data models to describe building geometry in full semantic detail. A number of 



 
 

 

 

alternative open data models are available as well. One example is the geometry 
ontology defined by Perzylo et al. (2015). Furthermore, Well-Known Text (WKT)1 is a 
markup language that also allows specifying geometry with simple strings based on 
common agreement. Most WKT content refers to 2D geometry and is used for 
geospatial data, but it could also be used for representing 3D building geometry 
(Pauwels et al., 2017b). 

Most of the above geometric data models can be captured in the form of labelled 
graphs. Yet, geometric topology graphs are slightly different, as they typically focus on 
the nodes and edges representing lines, boundaries, and points. An example of such a 
geometric topology graph is given for a room with four walls in Fig. 10. 

       
Figure 10. Geometric topology graph, Strobbe et al. (2016) 

 
3D building data can also be represented using 3D mesh models. Yet, such data 

is semantically less defined and direct geometric feature matching techniques are less 
applicable. Point cloud data are also used to represent geometry, but, similarly to 3D 
mesh data, this data structure presents limited semantics. 

For semantically rich geometric models, graph matching techniques can be used. 
Several direct graph matching techniques are available, in particular in data-oriented or 
web-oriented contexts. SPARQL, CYPHER, and GraphQL are graph query languages 
used for graph matching in a CDE. This technique assumes the target data to be 
available in graphs, which can be the case for IFC, WKT, and geometric topology 
models, but not for the rest. 

Advanced geometric analysis algorithms can work with semantically unspecific 
data, such as point cloud data or 3D meshes, in order to make sense of the unstructured 
data and match them with the current geometric data in the CDE. Geometric analysis 
algorithms aim at parsing input geometry, including the unstructured mesh and point 
                                                
1 http://www.opengeospatial.org/standards/wkt-crs 



 
 

 

 

cloud data. These are typically hardcoded algorithms, able to evaluate geometry and 
distil specific characteristics. The extracted characteristics are typically semantic and 
can thus be captured in a semantic data structure. Examples here are the GeoSPARQL2 
and BimSPARQL (Zhang et al., 2018) query languages, the first aiming at geospatial 
data and the second aiming at building data. The query languages contain statements 
such as “within” and “above”, thus allowing to formulate geometric semantic queries.  

Direct Semantic Queries 

Another way to match data from a CDE to a project data repository is through 
direct semantic queries. Such queries can target the semantic integration layer, the 
semantic design model data and/or the semantic attributes that may be inferred from 
data mining or geometric feature recognition techniques. 

The modular ontology structure proposed by the W3C Linked Building Data 
(LBD) Community Group3 can serve to capture the considered semantics in an efficient 
way. This includes a number of ontologies, such as a Building Topology Ontology 
(BOT) (Rasmussen et al., 2017), a PRODUCT ontology, a PROPS ontology 
(properties), and an Ontology for Property Management (OPM). These ontologies allow 
to represent the building topology, product data, element properties and management of 
those properties. The OPM ontology is specifically useful, as it captures desired 
property values and whether they are achieved or not. Recent industry implementations 
further target the representation of design brief requirements in commercial graph 
databases, such as Neo4J, which is highly similar to the linked data approach. Hence, a 
semantically rich graph is possible based on OPM, BOT, PRODUCT, and PROPS 
ontologies.  

Using linked data technologies, links can be maintained with the operational and 
geometric data. Device data can be captured using SAREF4, home automation data can 
be represented using DogOnt (Bonino & Corno, 2008), and aggregate sensor data can 
be represented using SSN5 and/or SOSA6. However, these ontologies do not serve well 
in case all operational data are targeted. In such case, a tabular format is still a lot more 
effective. The mentioned ontologies can be used to capture static characteristics, such as 
averages, min-max values, features of interest, devices, etc. The results of the geometric 
analysis algorithms can be captured in semantic graphs. These are static semantic 
annotations added to the semantic graph. Full geometric matching is however best done 
using the original data in a non-semantic format. 

The semantic integration layer makes the connection with the non-semantic data 
possible, namely the reference source for operational data (web server address of 

                                                
2 http://www.opengeospatial.org/standards/geosparql  
3 https://www.w3.org/community/lbd/  
4 https://w3id.org/saref  
5 https://www.w3.org/TR/vocab-ssn/ 
6 https://www.w3.org/ns/sosa/ 
 



 
 

 

 

specific sensor node data) and geometric data (web server address of specific geometric 
data file). The integration layer connects the semantic, geometric and operational data, 
so that any system accessing the data can recognize the associations. 

Proposed System Architecture 

The proposed system architecture utilizes measured operational building data 
and project data, which then serve as an input for the discovery of useful knowledge by 
the use of selected goal-oriented pattern recognition algorithms. The top in Fig. 11 
represents the active design environment, which communicates with the project data 
repository (bottom in Fig. 11). This repository collects all reference data, linked 
together using the semantic integration layer, but also kept in their native formats. It is 
enriched using direct semantic queries, geometric feature matching, and data mining 
techniques, thereby allowing data-driven decision support for holistic performance-
oriented design.  

                                             

 
Figure 11. Proposed system architecture 



 
 

 

 

Conclusion 

This paper presents a framework for data-driven performance-oriented building design, 
relying on decision support from knowledge discovered in operational building data and 
project data repositories. The work identifies the relevant data types and combines three 
main approaches targeting knowledge discovery accordingly, namely data mining, 
geometric feature matching and direct semantic queries. The research identifies that the 
outcome of both the geometric similarity matching and the data mining can be 
represented in semantic graphs, which allows building a decision support system 
employing direct semantic queries. The combined approach allows semantic integration 
of heterogeneous datasets, their attributes and instances. The user-defined semantic 
queries allow customised information retrieval according to a defined goal.  
 One of the key challenges identified in this work is the implementation of a 
semantic integration layer, which combines data from various sources in a semantic 
graph, yet still allows to deploy data mining and geometric feature matching techniques. 
Although it is possible to include explicit results from these approaches in a graph 
(Petrova et al., 2018b), this might compromise the flexibility and modularity of the 
DDSS. By deploying the proposed web-based system architecture, we hope to 
overcome this challenge and make the data analysis and information retrieval user-
driven. Such approach aims to integrate, yet also preserve the multiplicity of data and 
algorithms, allowing to deploy them to the maximum of their capabilities, in support of 
holistic sustainable design. 

Future work needs to be done with regards to the testing and implementation of 
the proposed system in environments that can respond to the necessary requirements: 
design decisions with high impact and criticality, specific performance criteria, high 
number of reference buildings, and access to data in big amounts and diversity. 
Considering the diverse data analysis algorithms and web-based information retrieval 
approaches, the practical implementation needs to happen in an incremental and 
modular fashion, ideally involving a community knowledgeable in the architectural 
design, engineering and construction domains. This implementation process will 
indicate necessary changes in terms of performance, practical applicability, etc.  

More importantly, however, this implementation process needs to reflect and 
capture the direct value that can be obtained in each concrete stakeholder environment. 
Of critical importance in future research are the methods that are used to ‘match past 
and present’ (CDE and project data repository). This match has not been discussed here 
at length. Choosing which matching mechanism (data mining, direct semantic queries, 
geometric feature matching) is used when, is of critical importance for the functioning 
of the system and needs to be investigated in further detail.  

The proposed framework can be of significant importance for collaborative 
design teams aiming to improve the quality of the built environment in terms of 
sustainability, energy performance, indoor environmental quality, HVAC system 
design, etc. That includes a number of scenarios and contexts. This research effort 
targets the early design phase, where the decisions have the biggest impact on the future 



 
 

 

 

performance. Thus, matching needs to be done as early as possible in the design 
process. The early design phase is, however, also one of the most difficult phases to 
provide decision support, because of the very limited amount of specific information 
that is available at this stage. Data is usually limited to an overall site definition, a 
design brief, and a preliminary layout of spaces. Most designers initially work in a 3D 
modelling environment, performing mass studies and spatial design exploration. Little 
semantic information can be obtained in such tools in contrast to the detailed data that 
can be accessed in the repository. Most useful data in this regard would likely be the 
building type, design brief, and overall structural system. Such information can inform 
and trigger queries to the repository, returning similarity-based matches in terms of 
structure, topology, and/or design requirements. Yet, specific features of retrieved cases, 
such as system components, material properties, operational performance parameters, 
etc. would potentially be retrieved in a second phase, which will naturally stimulate the 
use of BIM and CDE environments. This would in turn enhance further interpretation 
and learning by the design professionals, simultaneous with the implementation of their 
domain expertise in the decision-making. The proposed framework will also need to 
support that initial phase and infer design semantics and characteristics from very 
limited data. Further investigations are therefore needed to identify the efficiency of the 
proposed system in the very early design stages.  

The devised framework can also be of direct relevance in the technical design 
phases, where many core decisions are already made, yet specific ones still need to be 
taken. Such environments rely heavily on digital models and tools, which once again 
reflects the positioning of the suggested framework in a BIM and CDE context. The 
above mentioned issues pertaining to availability of data in the early stages are 
generally not present here. This phase of the design process is strongly characterised by 
an abundance of data, both in terms of types and representations. As the proposed 
system aims to leverage exactly this multiplicity of data, it should fit in this part of the 
design and engineering process. As a result, the workflows characteristic to design 
practice at this stage would be preserved, apart from the additional presence of precise 
user-centred recommendations coming in through the BIM and CDE tools.  

Using tangible performance data to impact decision-making and prevent errors 
early in the design phase is increasingly important. Leveraging computational 
approaches to enhance sustainability-oriented practices, and following an evidence-
based path will empower knowledge sharing and reuse, and reduce knowledge 
vaporization and uncertainty in design decision-making.  
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