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Abstract 

Aims 

Emerging evidence shows, that distal symmetric peripheral neuropathy (DSPN) also involves 

alterations in the central nervous system. Hence, the aims were to investigate brain metabolites in 

white matter of adults with diabetes and DSPN, and to compare any cerebral disparities with 

peripheral nerve characteristics.  

Methods 

In type 1 diabetes, brain metabolites of 47 adults with confirmed DSPN, were compared with 28 

matched healthy controls using proton magnetic resonance spectroscopy (H-MRS) in the parietal 

region including the sensorimotor fiber tracts.  

Results 

Adults with diabetes had 9.3% lower ratio of N-acetylaspartate/creatine (NAA/cre) in comparison 

to healthy (p<0.001). Lower NAA/cre was associated with lower sural (p=0.01) and tibial (p=0.04) 

nerve amplitudes, longer diabetes duration (p=0.03) and higher age (p=0.03). In addition, NAA/cre 

was significantly lower in the subgroup with proliferative retinopathy as compared to the subgroup 

with non-proliferative retinopathy (p=0.02).  

Conclusions 

The association to peripheral nerve dysfunction, indicates concomitant presence of DSPN and 

central neuropathies, supporting the increasing recognition of diabetic neuropathy being, at least 

partly, a disease leading to polyneuropathy. Decreased NAA, is a potential promising biomarker of 

central neuronal dysfunction or loss, and thus may be useful to measure progression of neuropathy 

in diabetes or other neurodegenerative diseases.  
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1. Introduction 

Type 1 diabetes is associated with microvascular complications, which leads to distal symmetric 

peripheral neuropathy (DSPN) in up to 50% of the cases
1
. DSPN affects quality of life and 

increases morbidity and mortality considerably, but the pathophysiological processes are not fully 

elucidated 
2
. The traditional concept is that DSPN predominantly affects the peripheral (somatic and 

autonomic) nervous system. However, accumulating evidence indicates that diabetes concomitantly 

involves alterations in the central nervous system (CNS)
1,3–6

. Hence, it is plausible that poor 

glycemic control and disease duration may cause concomitantly systemic neuronal damage, which 

also involve neurons in the CNS
1
. Hitherto, magnetic resonance imaging (MRI) and magnetic 

resonance spectroscopy (MRS) have provided valuable insights into changes in the CNS. 

Especially, cognitive and functional impairment
7,8

, structural changes
9,10

, and altered cerebral 

metabolism
11–14

 have been shown.  

      In type 1 diabetes, the CNS alterations occur diffusely throughout the brain
15

 and occurrence of 

white matter alterations have been shown in type 1 diabetes
16,17

. As the white matter rich parietal 

region also involves major sensorimotor fiber tracts, it is of special interest to investigate metabolic 

alterations in this region and its relation to peripheral neuropathy changes. Previously, proton MRS 

in white matter parietal region of adults with diabetes have been investigated
16,18

. To address 

whether alterations in white matter occur concomitantly with peripheral neuronal damage, we used 

MRS, which is a non-invasive method to estimate brain metabolites. Associations to DSPN have 

previously been demonstrated in thalamus
14

. We focused on N-acetylaspartate (NAA), which is a 

recognized marker of neuronal functionality and density; creatine (cre), which is involved in 

neuronal energy metabolism; glutamate (glu), which is a neurotransmitter, myo-inositol (mI), which 

is a glial marker and choline containing compounds, which are associated to membrane turnover
19

, 

and thus present potential indicators or biomarkers of neurodegeneration.  
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       We hypothesized that adults with type 1 diabetes and confirmed DSPN, would have abnormal 

brain metabolite concentrations in the white matter parietal region and that these alterations were 

associated to severity of the DSPN. Specifically, we aimed to 1) identify differences in NAA/cre as 

the primary outcome, 2) explore other brain metabolite concentrations between adults with type 1 

diabetes and confirmed DSPN and healthy controls and 3) to explore the association between 

metabolite concentrations, clinical characteristics and neurophysiological assessments of peripheral 

nerve function.  
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2. Material and methods 

2.1. Study population 

Forty-eight adults with type 1 diabetes and confirmed DSPN and 28 healthy controls were included 

in this study.  

      Data from adults with diabetes were collected as baseline data in a double-blind randomized 

controlled trial where the neuroprotective effects of liraglutide for treatment of diabetes neuropathy 

were investigated (EUDRA CT 2013-004375-12). Subjects were recruited at the Department of 

Endocrinology, Aalborg University Hospital, Denmark. Subjects were only included in the study if 

they had confirmed DSPN according to the Toronto Diabetic Neuropathy Expert Group
20

, based on 

a neurophysiological assessment of nerve conduction velocity and amplitudes of the larger axons 

from the extremities, conducted and interpreted by a specialist at the Department of Clinical 

Neurophysiology, Aalborg University Hospital, Denmark. Photographs of the right retina were used 

to assess severity of diabetic retinopathy and were graded by a specialist at the Department of 

Ophthalmology, Aalborg University Hospital, Denmark. MRI scans were carried out at Department 

of Radiology, Aalborg University Hospital, Denmark not longer than 1 month apart from the 

neurophysiological testing. Inclusion criteria were age over 18 years, verified diagnosis of type 1 

diabetes for a minimum of 2 years (HbA1c≥48mmol/mol (≥6.5%)), stable treatment, confirmed 

DSPN as outlined above, and body mass index (BMI) equal or above 22 kg/m
2
.    

      An established dataset (N-20090008 approved by The North Denmark Region Committee on 

Health Research Ethics) of healthy controls obtained from Department of Radiology, Aalborg 

University Hospital, Denmark were age-matched to the dataset in diabetes. All controls were 

clinically screened to confirm a healthy status without any relevant CNS related diseases, 

medication or diabetes. 
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     Approval form the local ethics committee was obtained and all participants gave written, 

informed consent and were free to withdraw from the study at any time. 

 

2.2. Magnetic Resonance Spectroscopy 

We used a 3T GE scanner (GE Signa HDxt, General Electric, Milwaukee, WI, USA) with a 

standard eight-channel head coil. The head was fixed using foam pads. Single voxel PRESS (Point 

RESolved Spectroscopy) MRS were acquired (TR/TE = 2,000/30 ms). The scan time was 5 minutes 

and total number of scans was 128. The voxel of interest (VOI) was positioned in the parietal cortex 

(15 x 15 x 50 mm) contralateral to the side of the dominant hand. The VOI was positioned on a high 

resolution axial T1-weighted structural scan and placed to cover as much white matter as possible, 

see example in Figure 1. To monitor potential scanner drift, PRESS MRS was acquired from a 

phantom on each day. Axial FLAIR and 3D T2-weighted structural scans were evaluated by a 

radiologist for the presence of white matter hyperintensities (WMH) and other relevant pathology. 

Post-processing analyses were performed in LCModel (Version 6.3)
21

. Water scaling and eddy-

current correction were applied and metabolites were fitted in the chemical shift range 0.1-4.0 ppm. 

Cre, NAA, glu, mI, GPC (glycerophosphocholine), NAA/cre, glu/cre, mI/cre and GPC/cre were 

analyzed. Metabolite concentrations are often expressed as ratios as partial volume effects can be 

avoided. Cre is frequently used as the reference and assumed to be constant. However, alterations 

can be observed for instance in pathological conditions
22

. Thus, we included both concentrations 

and ratios. All metabolites had sufficient quality with Cramér-Rao bounds <20%. 

 

2.3. Neurophysiological measurements 
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To determine the severity of peripheral neuronal function of the extremities, amplitude and nerve 

conduction velocity measurements from an eletroneurography test performed on the sural nerve 

(sensory), the tibial nerve (motor), median nerve (motor) and radial nerve (sensory) were used. 

Nerve action potentials were recorded antidromic using surface electrodes. Skin temperature was 

maintained above 32°C during testing. In case of an unmeasurable value, the value prior to lowest 

detected value was assigned.   

 

2.4. Statistical analysis 

All statistical analyses were performed in IBM SPSS Statistics (IBM Corp. Released 2016. IBM 

SPSS Statistics for Windows, Version 24.0. Armonk, NY: IBM Corp.). Differences between 

healthy and diabetes were assessed using appropriate independent-sample t test or chi-squared test. 

The primary outcome was NAA/cre. Furthermore, brain metabolites and clinical measures of 

neuropathy are reported. Data are presented as mean ± standard deviation and p<0.05 was 

considered significant. To compensate for the multiple testing of metabolite levels a Bonferroni 

correction was used and p<0.006 was considered significant for comparisons of metabolite levels. 

Pearson’s correlations were calculated to explore the association between significant metabolite 

changes, clinical characteristics and nerve conduction measurements.  
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3. Results 

3.1. Demographics and data 

47/48 adults with diabetes (38 men, mean age 50.0±8.5 years) and 28 healthy controls (17 men, 

mean age 49.9±11.9 years) underwent the MRI scan. One subject suffered from claustrophobia and 

did not undergo MRI. Baseline demographics are provided in Table 1 (some parameters have 

previously been published in a paper focusing on gastrointestinal transit
23

). The control group was 

age (p=0.98) and gender (p=0.08) matched, however a significant difference in BMI (p<0.001) was 

observed. Due to high Cramér-Rao (>46%), glu, mI and GPC measurements were not measurable 

for one adult with diabetes and the GPC measurement was not measurable for one healthy controls. 

Sural nerve amplitude and nerve conduction velocity were measurable for 30 adults with diabetes 

(18 values were assigned to 0.79µV and 31.0m/s, respectively) and tibial nerve amplitude and nerve 

conduction velocity were measurable for 41 and 43 adults with diabetes, respectively (7 values were 

assigned to 0.19mV and 5 values were assigned to 20.0m/s). For radial nerve amplitude and nerve 

conduction velocity 2 values were not measurable and thus assigned to 1.19µV and 39.0m/s, 

respectively. Three subjects in the diabetes group had amputations at the toe level and MRS was 

obtained ipsilateral to the side of amputations. No large WMH were observed within the MRS 

voxels. There was no difference in the number of WMHs between adults with diabetes and healthy 

controls (diabetes: no WMH: 70.2%, 1-5 WMH: 19.1%, >5 WMH: 10.6%; controls: no WMH: 

64.3%, 1-5 WMH: 25.0%, >5 WMH: 10.7%, p=0.83) No other relevant pathology was observed in 

the spectroscopy voxels. 
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3.2. Magnetic Resonance Spectroscopy 

Metabolite concentrations are provided in Table 1. Adults with diabetes had in average 9.3% lower 

levels of NAA/cre as compared to healthy controls (p<0.001). No significant differences between 

other metabolites were shown (all p>0.01). No scanner drift was observed on MRS phantom scans. 

No significant difference was found in signal-to-noise ratio between spectra from the diabetes and 

control groups (22.6±5.3 and 21.0±6.3, respectively (p=0.23)).   

 

 

3.3. Metabolic correlations to neurophysiological assessments and clinical characteristics 

There was a positive association between NAA/cre and sural nerve amplitude (r=0.36, p=0.01) and 

tibial nerve amplitude (r=0.30, p=0.04) (Figure 2). No associations were found for sural (r=0.20, 

p=0.18) or tibial (r=-0.01, p=0.95) nerve conduction velocities or for median nerve amplitude 

(r=0.06, p=0.69), conduction velocity (r=0.003, p=0.99), radial nerve amplitude (r=0.12, p=0.43) 

and conduction velocity (r=0.03, p=0.84). Furthermore, there was a negative association between 

NAA/cre and diabetes duration (r=-0.31, p=0.03) and age (r=-0.32, p=0.03). No association was 

found between NAA/cre and BMI (r=0.80, p=0.59). Thus, lower NAA/cre levels were associated 

with lower sural and tibial nerve amplitudes, longer diabetes duration and higher age. Additionally, 

the NAA/cre levels were lowest in the group of adults with type 1 diabetes and DSPN and 

proliferative retinopathy (1.39±0.14) as compared to adults with type 1 diabetes, DSPN and non-

proliferative retinopathy (1.49±0.14) (p=0.02). Figure 3 illustrates the NAA/cre levels in the two 

diabetes groups and in healthy controls.  
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4. Discussion 

This study investigated involvement of the CNS in adults with type 1 diabetes and confirmed 

DSPN. The study showed alterations in brain metabolites in white matter rich parietal regions 

evident as lower levels of NAA/cre in the diabetes group. Lower NAA/cre levels were associated 

with lower nerve amplitudes of the lower extremities, and with proliferative retinopathy. This 

altogether supports the increased recognition of diabetic neuropathy being, at least partly, a disease 

that also affects the central nervous system.  

      NAA is one of the most abundant brain metabolites, mainly synthesized from acetyl-CoA and 

aspartate and NAA is believed to be a marker of neuronal functionality and density
22,24

. Cre is 

involved in neuronal energy metabolism
19

. We demonstrated lower NAA/cre levels in adults with 

type 1 diabetes and confirmed DSPN. The data supports previous findings, where decreased levels 

of NAA/cre have been identified in thalamus in adults with type 1 diabetes
14

, and in pons and left 

posterior parietal white matter in children with poorly glycemic control
25

. Furthermore, a similar 

reduction in NAA was reported in the dorsolateral prefrontal cortex in adults with type 1 and type 2 

diabetes and neuropathy
12

. In addition reduction in NAA has been shown in the occipital and 

parieto-occipital lobe in adults with type 1 diabetes during a hyperglycemic clamp
26

. Lower levels 

of NAA in the thalamus has also been reported in non-diabetic patients with neuropathic pain
27

, 

indicating that similar metabolic changes could be induced by both diabetic nerve damage and 

neuropathic pain mechanisms. Thus, our results may support that the pathomechanisms underlying 

neuropathy, despite origin, includes neurodegeneration caused by e.g. oxidiative stress. Three 

subjects in the diabetes group had amputations at the toe level. Amputations could potentially lower 

levels of NAA which has been reported in upper limb amputees contralateral to the missing hand 

together with unaltered ipsilateral NAA levels
28

. MRS in our study was acquired ipsilateral to the 
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side of amputations. Furthermore, potentially decreased NAA/cre may also reflect more severe 

neuropathy, as amputations can result from diabetes neuropathy
29

. 

      Previously Zhang et al, showed that alterations of the sensory nerve amplitudes was the most 

sensitive and reliable predictor of DSPN
30

. We demonstrated an association between NAA/cre and 

sural (sensory) and tibial (motor) nerve amplitudes, interpreted as an association between the 

severity of peripheral nerve damage (lower nerve amplitudes) and the degree of loss of central 

neuronal functionality/density (lower NAA/cre). No correlations were found to nerve conduction 

velocities, which may indicate axonal loss rather than demyelination of the peripheral nerves to be 

associated to CNS alterations. Moreover, the associations were only demonstrated for the lower 

extremities, implying the longest nerve fibers to be most affected. On the other hand, measurements 

from the upper extremities could be more affected by other conditions such as carpal tunnel 

syndrome or traumatic nerve damage. Thus, the association between NAA/cre and lower nerve 

amplitudes of the lower extremities implies primarily an axonal loss and that the pathogenesis of 

loss of density and function from sensory and motor nerves are not limited to the periphery, but 

supports the emerging recognition of diabetic neuropathy being, at least partly, a disease that affects 

the entire nervous system. A similar finding has been demonstrated in the thalamus
14

, indicating an 

affection of both the thalamic relay station and cortical projections of sensory fibers. Additionally, 

the lower levels of NAA/cre were associated to age and diabetes duration. There was a significant 

difference in BMI between the two groups, however no association was found to NAA/cre. Finally, 

as retinopathy is a marker of general microangiopathy and advanced retinopathy is associated to 

structural changes in the brain
31,32

 and to microbleeds
33

, we explored the levels of NAA/cre in the 

groups of subjects with non-proliferative and proliferative retinopathy. NAA/cre was significant 

lower in the group with proliferative retinopathy. This has also been shown in type 2 diabetes
34

 and 

supports that NAA is a relevant neuronal marker of the diabetic brain. The result of NAA/cre being 
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associated to peripheral nerve dysfunction supports a shared pathogenesis in the periphery and 

brain, sustaining that central neuronal dysfunction or loss also occur concomitantly. These findings, 

however, cannot distinguish whether central findings are a consequence of altered upstream 

activation or peripheral symptoms are caused by altered central processing. No difference in 

numbers of WMH was present between the diabetes group and healthy controls, which imply the 

NAA changes observed at likely related to neuropathic process and not microvascular 

complications. In order to definitively conclude whether changes are due to diabetes itself or to 

diabetic neuropathy, a diabetes group without neuropathy could be included in future studies. 

Finally, subgrouping diabetic neuropathy into painful and nonpainful neuropathy may explain the 

mechanisms involved even further. More research is needed to establish these causalities. 

      We observed a trend to higher levels of cre in the group with diabetes as compared to healthy 

controls, however not reaching statistical significance. A similar trend was also observed by Manga 

et al., who reported an increase of 3% in white matter rich parieto-occipital region in adults with 

type 1 diabetes
26

. Increased levels of cre are thought to reflect impaired mitochondrial bioenergetics 

and reduced oxidative phosphorylation
22

, and a slight increase in cre could speculatively be related 

to enhanced oxidative stress, systemic neurodegeneration or general metabolic alteration in energy 

demanding metabolism due to diabetes. Even though the voxel of interest was carefully selected to 

avoid partial volume effect, another explanation could be that the parietal voxel in general 

contained less white matter compared to the healthy controls due to brain atrophy, enlarged 

ventricles or small infarcts which are more frequent in diabetes. The concentration of cre is higher 

in gray matter than white matter
35,36

 which potentially also can explain slightly higher levels of cre. 

However, bias from partial volume effect would systematically affect all metabolite concentrations. 

In order to further elucidate the relationship between concentrations of cre and oxidative stress 

studies simultaneously assessing cre and mitochondrial function need to be conducted. 
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5. Conclusions 

In conclusion, neuronal metabolic alterations in the central nervous system were observed in type 1 

diabetes. NAA/cre levels were associated to peripheral neuropathy severity, grade of retinopathy 

and disease duration indicating that the parietal white matter is also involved in diabetes 

neuropathy. Thus, MRS can be useful to increase our understanding of the involvement of CNS in 

diabetic neuropathy and potentially be implemented as a tool for diagnosing and classifying diabetic 

neuropathy. Together with knowledge of structural and functional alterations of the brain, the 

central mechanisms involved in diabetic neuropathy may be better understood. This may support 

the development of preventative and therapeutic management of diabetes complications. Taken 

together, decreased NAA, is a potential promising biomarker of central neuronal dysfunction or 

loss, and thus may be useful to measure progression of neuropathy in diabetes or other 

neurodegenerative diseases. 
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Tables 

Table 1 - Overview of demographical data, clinical data and metabolite concentrations. 

 Adults with type 1 

diabetes and DSPN  

n=48  

Healthy  

controls 

n=28 

p value 

Sex (M/F) 38/10 17/11 0.08 

Age (years) 50.0 ± 8.5 49.9 ± 11.9 0.98 

BMI (kg/m2) 28.3 ± 4.4 24.9 ± 2.6 <0.001* 

Weight (kg) 90.0 ± 16.0 79.1 ± 12.9 0.003* 

Handedness (L/R) 7/41 4/24  0.97 

Duration of diabetes (years) 32.2 ± 9.5   

HbA1C (mmol/mol) 65.8 ± 10.2   

HbA1C (%) 8.2 ± 0.9   

Non-proliferative DR, n (%) 33 (69)   

Proliferative DR, n (%) 15 (31)   

Sural amplitude (µV) 2.6 ± 2.3   

Sural velocity (m/s) 38.2 ± 7.3   

Tibial amplitude (mV) 2.6 ± 2.3   

Tibial velocity (m/s) 37.3 ± 8.9   

Median amplitude (mV) 8.2 ± 2.2   

Median velocity (m/s) 49.7 ± 4.9   

Radial amplitude (µV) 14.0 ± 7.9   

Radial velocity (m/s) 54.6 ± 7.6   

Magnetic resonance 

spectroscopy  

 

n=47 

 

n=28 

 

   Cre (mM) 5.82 ± 0.41 5.55 ± 0.52 0.02 

   NAA (mM) 8.46 ± 0.72 8.85 ± 0.57 0.02 

   Glu (mM) 4.91 ± 0.69
a
 4.79 ± 0.99 0.52 

   mI (mM) 4.80 ± 0.78
a
 4.82 ± 1.21 0.94 

   GPC (mM) 2.01 ± 0.33
a
 
 

1.91 ± 0.42
b
 
 

0.13 

   NAA/cre 1.46 ± 0.15 1.61 ± 0.21 <0.001** 

   Glu/cre 0.84 ± 0.12
a
  0.87 ± 0.18 0.53 

   mI/cre 0.82 ± 0.13
a
  0.87 ± 0.21 0.26 

   GPC/cre 0.35 ± 0.06
a 

0.34 ± 0.07
b
 
 

0.49 

Notes: Data are expressed as mean ± standard deviations unless otherwise stated.
 
* indicates 

significant findings, ** indicates significant findings (Bonferroni correction), 
a
 n=46, 

b
 n=27.  

Abbreviations: DSPN: diabetes symmetric peripheral neuropathy; DR: diabetes retinopathy M: 

males; F: females; BMI: body mass index; L: left; R: right; cre: creatine; NAA: N-acetylaspartate; 

glu: glutamate; mI: myo-inositol; GPC: glycerophosphocholine. 
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Figure legends 

Figure 1: The position of the voxel of interest in the parietal cortex (15 x 15 x 50 mm). 

Figure 2: The association between NAA/cre and sural (r=0.36, p=0.01) (a) and tibial (r=0.30, 

p=0.04) (b) nerve amplitudes. 

Figure 3: The NAA/cre levels (mean and standard deviation) for healthy controls (n=28), adults 

with diabetes, confirmed DSPN and non-proliferative retinopathy (NPDR) (n=32) and adults with 

diabetes, confirmed DSPN and proliferative retinopathy (PDR) (n=15).    
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