Identification of common EV markers in plasma using high-resolution flow cytometry

Askeland, Anders; Botha, Jaco; Rasmussen, Rikke Wehner; Handberg, Aase

Published in:
Journal of Extracellular Vesicles

DOI (link to publication from Publisher):
10.1080/20013078.2019.1593587

Creative Commons License
CC BY-NC 4.0

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Identification of common EV markers in plasma using high-resolution flow cytometry

Anders Askeland, Jaco Botha, Rikke Wehner Rasmussen and Aase Handberg

Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark

Introduction: Recent advancements in flow cytometry (FCM) have led to the development of high-resolution FCMs dedicated to the analysis of small particles (hFCM). hFCM studies have predominantly focused on the analysis of EVs expressing phosphatidylserine (PS). PS is enriched in microvesicles (MVs), wherein it is involved in lipid rearrangements responsible for MV budding. While PS also is expressed on exosomes, it is unknown whether it can be used as a universal marker for smaller EVs. In this study, we attempted to characterize proteins enriched in smaller EVs (CD9, CD63, CD81 and ADAM 10) and the relative co-expression of PS with each of these markers.

Methods: FCM analysis was performed on an Apogee A60 Micro-PLUS. In brief, platelet-poor plasma (PPP) from healthy individuals was stained with lactadherin-FITC (PS+) and one of several EV surface markers enriched in smaller EVs. To evaluate the precise differences in PS and specific EV marker expression, the analysis was performed twice, (1) triggering on lactadherin and (2) each EV marker (CD9-PE, CD81-PE, CD63-PE, ADAM10-PE), separately. All antibodies were matched with appropriate isotope controls and centrifuged at 17,000 g for 10 min prior to antibody labelling. EVs were defined as lactadherin or EV surface marker positive events ≤1000 nm.

Results: Initial results indicate that CD9 is highly expressed on EVs and is not universally associated to PS. Triggering on PS revealed that 34.7% of all events were CD9 positive (CD9+|PS+). Conversely, triggering on CD9 resulted in a 2.1-fold increase in total events, where 17.0% of events were PS+ (CD9+|PS+). Inferring size from silica nanospheres, it appeared that populations containing CD9 (CD9+|PS+ and CD9+|PS-) were smaller (94.4–99.7% <180 nm) compared to populations that did not (PS+|CD9; 85.6% <180 nm & 95.2% <300 nm). Interestingly, we did not detect CD81, CD63 or ADAM10 on EVs. We hypothesize that this is due to a low abundance of these markers in PPP from healthy individuals.

Summary/Conclusion: Our findings demonstrate that hFCM can be used for the characterization of smaller EVs in PPP. Furthermore, we find that CD9+EVs do not universally express PS. From this point on, we plan to study enrichment of these EV phenotypes following a number of EV purification protocols, and determine whether EV isolation enable a more extensive characterization of smaller EVs.