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Abstract

It is commonly argued that observed long memory in time series variables can result

from cross-sectional aggregation of dynamic heterogenous micro units. In this paper we

demonstrate that the aggregation argument is consistent with a range of different long

memory definitions. A simulation study shows that the cross-section dimension needs to

be rather large to reflect the theoretical memory when using commonly used methods to

estimate the memory parameter, especially when the theoretical memory is not too high.

We show that the aggregated process will converge to a generalized fractional process in

the limit. The coefficients of the moving average representation of the series decay hy-

perbolically but they differ from the coefficients arising from inversion of the fractional

difference filter. It appears that the fractionally differenced series will have an autocorre-

lation function that still exhibits hyperbolic decay, but at a rate that ensures summability.

The fractionally differenced series is thus I(0) but standard ARFIMA modelling is invalid

when the long memory is caused by aggregation. It is shown that standard methods for

estimating and selecting ARFIMA specifications fail in properly fitting the dynamics of

the series.
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1 Introduction

Without specifically discussing long memory, the study of this concept in econometrics goes back

to Granger (1966) in his article about the spectral shape near the origin for economic time series

variables. He found that long-term fluctuations, if decomposed into frequency components, are

such that the amplitudes of the components decrease smoothly with decreasing period (Granger,

1966, p. 155). This certainly applies for non-stationary I(1) processes and more generally for the

class of fractionally integrated processes as demonstrated by Granger and Joyeux (1980). Such

processes have long lasting autocorrelations that decay hyperbolically instead of the standard

geometric decay characterizing ARMA processes.

This kind of behavior has led to several definitions of long memory. In this paper we consider

five definitions of long memory.

Definition. Let xt be a stationary time series with autocovariance function γx(k) and spectral

density function fx(λ), and let d ∈ (0, 1/2), then xt has long memory

(i) in the covariance sense if γx(k) ≈ Cxk
2d−1 as k →∞ with Cx a constant,

(ii) in the spectral sense if fx(λ) ≈ Cfλ
−2d as λ→ 0 with Cf a constant,

(iii) in the rate of the partial sum sense if Var(
∑T

t=1 xt) = Op(T
1+2d),

(iv) in the self-similar sense if m1−2dCov(x
(m)
t , x

(m)
t+k) ≈ Cmk

2d−1 as k,m→∞ where x
(m)
t =

1
m

(xtm−m+1 + · · ·+ xtm) with m ∈ N, m/k → 0, and Cm is a constant,

(v) in the weak convergence sense if Xn(ξ) = σ−1
n

∑bnξc
t=1 xt ⇒ BH(ξ), where σ2

n =

E[(
∑n

t=1 xt)
2], ξ ∈ [0, 1], BH(ξ) is a fractional Brownian motion, H = d + 1/2, and ⇒

denotes weak convergence on D[0, 1], the space of real-valued functions that are continuous

from the right with finite left limits.

Above, g(x) ≈ h(x) as x → x0 means that g(x)/h(x) converges to 1 as x tends to x0, Op(·)

denotes order in probability, and b·c denotes the integer value of its argument.

Definition (i) is concerned with the behavior of the autocorrelation function for long lags

and was one of the motivations behind the ARFIMA class of models due to Adenstedt (1974),
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Granger and Joyeux (1980), and Hosking (1981). Basically, they extended the ARMA model to

account for fractional differencing. That is, for a stationary fractional process

A(L)(1− L)dxt = B(L)εt, (1)

where εt is a white noise process, d ∈ (−1/2, 1/2), and A(L), B(L) are polynomials in the lag

operator with no common roots, all outside the unit circle. They used the standard binomial

expansion to decompose (1 − L)d in a series with coefficients πj = Γ(j + d)/(Γ(d)Γ(j + 1))

for j ∈ N. Using Stirling’s approximation it can be shown that these coefficients decay at a

hyperbolic rate (πj ≈ jd−1 as j →∞), which translates to slowly decaying autocorrelations.

Definition (ii) is the feature considered by Granger (1966) in his study of the typical spec-

tral shape for economic variables. The behavior of the spectrum near the origin is also used

in the construction of one of the most popular estimators for long memory due to Geweke

and Porter Hudak (1983) who proposed an estimation procedure based on semiparametric log

periodogram regression near the zero frequency.

Diebold and Inoue (2001) based their work on spurious long memory on definition (iii). They

showed that structural breaks or regime switching schemes can be confused with long memory

of the fractional type by focusing on the stochastic order of the variance of partial sums. Their

paper demonstrates that certain stochastic processes are long memory by one definition but not

necessarily by other definitions.

Definitions (iv) and (v) are largely based on the work of Mandelbrot and Van Ness (1968)

for fractals. They defined the self-similarity condition and showed that the fractional Brownian

motion in particular has this property. Basically, self-similarity implies that the degree of mem-

ory is constant for different levels of temporal aggregation. Weak convergence to a fractional

Brownian motion of an appropriately scaled partial sum is important for many parametric long

memory models, but the class of processes is broader than often being considered as we shall

later see.

It is well known that ARFIMA processes are long memory by definitions (i) through (iii),

and an analogous derivation as in the proof of Theorem 1 below shows that it is also long

memory in the self-similar sense, definition (iv). Moreover, a scaled partial sum of an ARFIMA
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process converges to fractional Brownian motion, see for instance Davydov (1970) and Davidson

and de Jong (2000). Thus, in the time series literature the ARFIMA model has become the

canonical specification for modeling long memory.

Even though the ARFIMA model seems to be an appropriate specification to study long

memory, the source underlying its dynamic features is still not clear. Physical (turbulence,

see for instance Kolmogorov (1941)), as well as psychological reasons (Pearson (1902) personal

equation), have been used to explain the presence of long memory. More recently, Parke (1999)

proposed the error-duration model which relies on a decomposition of the time series into the

sum of a sequence of shocks of stochastic magnitude and duration. He shows that if only a small

proportion of the errors survive for large periods of time then the resulting series shows long

memory in the covariance sense, definition (i). Nonetheless, given the nature in which the data

is collected, one of the main arguments often given in economics to why time series data seems

to have long memory features is due to cross-sectional aggregation. It is also commonplace to

see arguments for cross-sectional aggregation motivating the presence of fractional long memory

in real data.

Granger (1980), in line with the results of Robinson (1978) on random AR(1) models, showed

that cross-sectional aggregation of AR(1) processes with random coefficients could produce long

memory. Assuming a Beta distribution for the generation of cross-sectional AR(1) coefficients,

he showed that, as the cross-sectional dimension goes to infinity, the autocovariance function ex-

hibits a slow hyperbolic decay, rather than the standard geometric decay characterizing ARMA

processes. Thus, cross-sectional aggregation of dynamic micro units can produce long memory

in the covariance sense under certain conditions.

In this paper we focus on some features of the aggregation argument leading to long memory.

We address the particular specification considered by Granger because the Beta distribution is

a rather flexible specification that allows closed-form solutions but the analysis can be extended

to other aggregation schemes as well. Zaffaroni (2004) shows that Granger’s result applies to a

broader class of distributions to which the Beta distribution belongs. We demonstrate that this

aggregation scheme implies that the aggregated series is long memory using all the definitions

considered in this paper.
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Since the aggregation result is an asymptotic property we conduct a Monte Carlo simulation

study to quantify how aggregation can lead to long memory in finite samples. The theoretical

degree of memory of the aggregated series is tied to a particular parameter of the Beta distribu-

tion which affects the density mass around one. The simulations show that the cross-sectional

dimension has to be rather large for the theoretical degree of memory to apply, while the time

series dimension needs to be large to obtain a precise estimator. Finite samples of the series will

still exhibit long memory but the estimated memory parameter can be rather large compared

to its theoretical value, especially when the memory is only of moderate degree.

In the third part of the paper, we focus on the extent to which the memory implied by

aggregation can be removed by fractional differencing. In particular, we are interested in how

ARFIMA type of long memory models can be useful for practical model building for the class

of processes considered. It occurs that fractionally differencing the series, using the theoreti-

cal degree of memory, does remove the long memory of the process. The resulting series has

absolutely summable autocorrelations and thus it is I(0) by the definition of Davidson (2009).

However, the fractionally differenced series will still have autocorrelations that decay hyperbol-

ically and hence will decay slower than what an ARMA specification will be able to fit. This

feature is most dominant when the degree of memory is moderate as opposed to being close to

non-stationarity. Our findings have implications for the argument that is often given for esti-

mating ARFIMA models in applications, namely that the observed long memory of time series

can occur due to cross-sectional aggregation. A simulation study shows that fitted ARFIMA

models will generally be inadequate to fit the dynamics of the underlying process.

The paper is structured as follows. In section 2, the Granger aggregation scheme is presented

and the features of the aggregated series are examined using the different long memory definitions

that we consider. Section 3 presents the simulation study, and finally section 4 derives the

features of fractional differencing of cross-sectionally aggregated long memory processes. The

final section concludes.
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2 Long Memory and Cross-Sectional Aggregation

Consider the random AR(1) process given by:

xi,t = αixi,t−1 + εi,t, (2)

where εi,t is a white noise process independent of αi with E[ε2
i,t] = σ2

ε , ∀t ∈ Z and α2
i ∼ B(α; p, q)

with p, q > 1 and B(α; p, q) is the Beta distribution with density:

B(α; p, q) =
1

B(p, q)
αp−1(1− α)q−1 for α ∈ (0, 1), (3)

where B(·, ·) is the Beta function.

Robinson (1978) showed that the process given by (2) admits a variance-covariance stationary

solution. Furthermore, the unconditional autocorrelation function of this process shows hyper-

bolic decay. However, the process is not ergodic in the sense that random samples will depend

on the realization of αi.

Granger (1980) proposed1 to consider the cross-sectional aggregation of the series specified

in (2) which we here define as:

xt =
1√
N

N∑
i=1

xi,t, (4)

where {αi}ni=1 are i.i.d. independent of {εi,t}t∈Zi∈{1,2,··· ,N}.

Note that considering (4) instead of (2) solves the ergodicity violation by eliminating the

dependence of the autocorrelation function on the particular realization of the autoregressive

coefficient. Intuitively, if N is large enough, samples from (4) will have similar realizations of

{αi}Ni=1 and thus will have similar autocorrelation functions.

Granger showed that, as N →∞, the autocorrelations of xt decay at a hyperbolic rate and

hence generate long memory in the covariance sense according to definition (i) with parameter

d = 1 − q/2. Taking q ∈ (1, 2), the long memory generated falls in the stationary range,

1Granger (1980) also considered the case with dependence across the series and allowing for different variances
across the cross-sectional units. He demonstrated that as long as a possible common component across the micro
units has a memory smaller than q/2, then the aggregation results will remain unaltered. For ease of exposition,
we will thus focus on the scenario under independence and equal variances since generalizations will not affect
our general conclusion.
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d ∈ (0, 1/2). We will focus on this range for the rest of the analysis.

In Theorem 1, we extend the long memory result to definitions (ii) through (iv).

Theorem 1. Let xt be defined as in (4) then, as N →∞, xt has long memory with parameter

d = 1− q/2 in the sense of definitions (i) through (iv).

Proof: See appendix.

Theorem 1 shows that a cross-sectional aggregated series of infinitely many AR(1) processes

with squared autoregressive coefficients drawn from a Beta distribution has long memory with

long memory parameter d = 1 − q/2. Note that the parameters p, q are shape parameters of

the Beta distribution. In particular, q affects the density around one and thus the probability

of aggregating over near unit-root AR(1) processes. It appears that the value of p plays no

role for this result as N → ∞. As a consequence, Granger conjectured (and it was later

confirmed by Zaffaroni (2004)) that asymptotically the memory only depends on the behavior

of the distribution of the autoregressive coefficient near one. In Figure 1, we plot the beta

distribution (3) for p = 1.4 and different values of q. As can be seen, the closer q is to one,

the more density mass concentrates around one; which, as shown in Theorem 1, translates to a

larger degree of memory in the cross-sectionally aggregated series, xt.

Figure 1: The Beta distribution.

More generally, Zaffaroni (2004) showed that if the distribution of the autoregressive coeffi-
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cient, αi, belongs to a family of absolutely continuous distributions on [0, 1), depending upon a

real parameter b ∈ (−1,∞), with density

G(α; b) ∼ cb(1− α)b as α→ 1−,

where 0 < cb <∞, then the aggregated series, letting N →∞, will be long memory. Moreover,

the more dense the distribution of αi is around one, the greater the degree of long memory of

the aggregate. Both the Uniform and Beta distributions are members of this family of distribu-

tions. Thus, the specific parametric assumption regarding the distribution of the autoregressive

coefficient is not needed for the long memory result to apply, but as we will see below, the Beta

distribution allows us to obtain closed-form expressions for one of the main results in the pa-

per. Additionally, Zaffaroni (2004) extended the result for cross-sectional aggregation to general

ARMA processes of finite order without affecting the general conclusions.

Intuitively, the autocorrelations of the cross-sectional aggregated process can be seen as a

weighted average of the autocorrelations of the AR(1) processes, and, a higher proportion of

high-persistent processes translates into a higher persistence in the aggregated series and the

implied degree of memory.

In Theorem 1, we showed that cross-sectional aggregation satisfies long memory by definitions

(i) through (iv). We now argue that under the additional condition that εi,t is i.i.d., the scaled

partial sum of cross-sectional aggregated series converges weakly to fractional Brownian motion;

that is, it has long memory in the sense of definition (v).

ARFIMA processes are fractional differenced ARMA processes after adopting the (1−L)d

filter. The MA series resulting from inversion of the (1− L)d filter has hyperbolically decaying

coefficients of the form πj = Γ(j + d)/(Γ(d)Γ(j + 1)) for j ∈ N and this produces a series with

hyperbolic decaying autocovariances according to Stirling’s approximation Γ(j + d)/Γ(j + 1) ≈

jd−1 for large j. We can generalize this construction to series that still show hyperbolic decaying

coefficients, yet, the coefficients do not come from inversion of the fractional difference operator

as defined above. We call these processes generalized fractional processes (see Davidson and

de Jong (2000)).

We prove in Lemma 1 that under the stated conditions, the cross-sectional aggregated pro-
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cesses can be expressed as a generalized fractional process.

Lemma 1. Let xt be defined as in (4) and assume that εi,t is an i.i.d. process, then, as N →∞,

xt can be expressed as

xt =
∞∑
j=0

φjνt−j,

where νj ∼ N(0, σ2
ε) are independent and φj = (B(p+ j, q)/B(p, q))1/2 , ∀j ∈ N.

Proof: See appendix.

Lemma 1 relies on the fact that when N goes to infinity the Central Limit Theorem can be

applied. In this sense, it is in line with the work of Davidson and Sibbertsen (2005) who show that

cross-sectional aggregated non-linear processes of appropriate form have linear representations

in the sense of having MA(∞) representations. Note also that in Lemma 1 we could obtain a

similar result if εi,t is not i.i.d. but satisfies Lyapunov’s condition. Furthermore, the resulting

series inherits the uncorrelated property of εi,t and, given normality, they are independent.

By Stirling’s approximation the coefficients in the representation decay at a hyperbolic rate,

φj ≈ j−q/2 = jd−1 as j → ∞ with d = 1 − q/2, but φj are not associated with the fractional

differencing parameters, πj, defined above. Thus, cross-sectional aggregated processes are gen-

eralized fractional processes. In Section 4, we will detail the study of the relationship between

cross-sectional aggregated long memory processes and ARFIMA processes.

Theorem 2 is a consequence of Theorem 4.6 in Beran et al. (2013).

Theorem 2. Let xt be defined as in (4) and assume that εi,t is an i.i.d. process, then, as N →∞,

xt has long memory in the sense of definition (v) with parameter d = 1− q/2.

This result is in line with the findings of Zaffaroni (2004) when restricting the analysis to

the Beta distribution which allows us to find closed-form solutions for the variance terms. This

in turn translates into closed-form expressions for the coefficients of the generalized fractional

process. Given this, Theorem 2 also follows directly from the developments of Davydov (1970)

and Davidson and de Jong (2000).

In summary, Theorems 1 and 2 show that a cross-sectional aggregated series has long memory

by all the definitions considered. However, although the coefficients of the MA representation
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decay hyperbolically, they are different from those arising from inversion of a fractional difference

filter.

3 Finite Sample Study

In order to analyze the finite sample properties of Granger’s aggregation result, which holds

asymptotically, we conducted a Monte Carlo simulation experiment. Note that if we do not

consider enough AR(1) processes in the cross-sectional dimension, the resulting series may not

have long memory as predicted theoretically. Granger (1990) proposed a division between cross-

sectional aggregation in small scale, involving sums of a few time series variables, and large scale,

involving the sums of very many variables. In particular, Chambers (1998) shows that when the

number of variables is not large, the aggregation result cannot be obtained.

We generate xt as in (4) under different parametric settings along three dimensions: the

density of the autoregressive coefficient near one determined by the parameter q; the sample size

T ; and the cross-sectional dimension N .

The simulation proceeds as follows for R replications:

• Sample the N autoregressive coefficients from the density function, equation (3).

• Generate the individual AR(1) series of size T , equation (2), using the sampled coefficients,

with εi,t
i.i.d.∼ N(0, 1).

• Aggregate the individual series cross-sectionally according to equation (4).

• Estimate the long memory parameter by the GPH estimator of Geweke and Porter Hudak

(1983); the local Whittle estimator of Robinson (1995) and Künsch (1986), LW ; and the

(Quasi)Maximum Likelihood Estimator of Sowell (1992), QMLE.

Note that both the GPH and LW estimators do not depend on a full parametric specification

whereasQMLE assumes an ARFIMA specification. The importance of this will be made clearer

in Section 4 when discussing the relationship between ARFIMA processes and the processes

under study.
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Throughout, we use a bandwidth of T 0.5 when implementing the GPH and LW estimators

as it is standard practice in the literature. As it is well known, the bandwidth affects the bias-

precision trade-off. Results with different bandwidths are available upon request. Moreover,

for reasons of space we present simulations for p = 1.4 throughout so that the density for the

autoregressive coefficient takes the form shown in Figure 1. For robustness we have tried different

values of p, available upon request, with similar qualitative results despite minor quantitative

differences. Regarding the QML estimator, we select the ARFIMA specification using the

BIC-criterion given the results of Beran et al. (1998) on the validity of information criteria for

long memory processes.

To analyze the importance of the density around one on the aggregation result, we report in

Table 1 the results from the simulations for different values of q in (3) which is related to the

degree of long memory d = 1− q/2. As a reference point we also simulate FI(d) series using the

exact algorithm of Jensen and Nielsen (2014).

The table shows that for large degrees of memory, the estimates are close to their theoretical

values but rather distant when the memory is low. In general, all memory estimates are biased

upwards. Both the GPH and the LW estimators appear to provide rather similar estimates

whereas the QML estimator performs worst which is also seen by the relatively poor coverage

probabilities of this estimator. As we shall later see, the ARFIMA model is misspecified under

the given conditions. The conclusion is that the distribution of the autoregressive coefficient

at the disaggregated level plays a key role for N and T as large as 10,000.2 The simulations

suggest that using cross-sectional aggregation as a way to simulate long memory works poorly

when the memory index d is low. In contrast, Table 1 shows that when data is generated in

accordance with a fractionally integrated process with a comparable memory parameter, then

all estimators do an excellent job. In particular, MLE, which estimates a correctly specified

model in this case, is performing especially well as one might expect, and with an overall larger

coverage probability compared to the semi-parametric estimators.3

2Note that even though asymptotically we require both T,N → ∞, the cross-sectional and time dimensions
are not tied together. N →∞ is needed to determine the limiting memory degree and T →∞ is needed for the
estimator to be consistent.

3Simulations not reported here show that we need a cross-sectional dimension N and a sample size T of more
than 100, 000 to obtain results for the GPH and LW estimators that mimic those of data generated according
to a FI(d) process. This reflects that N needs to be large to reflect the theoretical memory. And T needs to be
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Table 1: Mean and standard deviation (in parenthesis) of the estimated long memory parameter
for cross-sectionally aggregated processes and FI(d) processes with T = N = 10, 000 based on
R = 10, 000 replications. In brackets the coverage probability at a 95% confidence level are
reported.

Theoretical Cross-sectional aggregated FI(d)

memory

d GPH LW QMLE GPH LW MLE

0.45 0.4935 0.4899 0.4746 0.4544 0.4497 0.4487

( 0.0722 ) ( 0.0595 ) ( 0.0353 ) ( 0.0706 ) ( 0.0576 ) ( 0.0073 )

[ 0.8756 ] [ 0.8384 ] [ 0.5083 ] [ 0.9217 ] [ 0.9227 ] [ 0.9296 ]

0.35 0.3928 0.3925 0.4202 0.3470 0.3489 0.3495

( 0.0707 ) ( 0.0577 ) ( 0.0689 ) ( 0.0723 ) ( 0.0567 ) ( 0.0079 )

[ 0.8482 ] [ 0.8335 ] [ 0.4055 ] [ 0.9316 ] [ 0.9019 ] [ 0.9386 ]

0.25 0.3204 0.3199 0.3622 0.2515 0.2502 0.2484

( 0.0731 ) ( 0.0578 ) ( 0.0719 ) ( 0.0703 ) ( 0.0521 ) ( 0.0080 )

[ 0.7483 ] [ 0.6866 ] [ 0.3262 ] [ 0.9277 ] [ 0.9346 ] [ 0.9326 ]

0.15 0.2625 0.2593 0.2943 0.1494 0.1415 0.1482

( 0.0737 ) ( 0.0628 ) ( 0.0867 ) ( 0.0740 ) ( 0.0585 ) ( 0.0077 )

[ 0.5632 ] [ 0.4163 ] [ 0.2243 ] [ 0.9118 ] [ 0.9068 ] [ 0.9495 ]

Note. The estimators considered are the semi-parametric estimator of Geweke and Porter Hudak (1983), GPH;
the local Whittle estimator of Robinson (1995) and Künsch (1986), LW ; and the (Quasi)Maximum Likelihood
Estimator of Sowell (1992), (Q)MLE; respectively. Note that for data generated according to a FI(d) process
the likelihood is correctly specified.

Moving on to analyze the importance of the cross-sectional dimension, we present in Figure

2 box-plots from simulations with a sample size of T = 10, 000 while varying the cross-sectional

dimension N . For ease of exposition we only present results for the four theoretical degrees of

long memory using the GPH estimator.

Figure 2 allows us to see how the long memory parameter evolves while increasing the cross-

sectional dimension. It further shows the dependence of the result on the shape of the Beta

distribution and the implied theoretical memory d. The larger the degree of memory (the denser

the Beta distribution around one) the better we can approximate the asymptotic result. For

small values of N the figures show that the median is below the theoretical value in all cases,

which is line with the result by Chambers (1998) on small scale aggregation. It can also be

seen that the memory parameter is generally imprecisely estimated when N is relatively small.

large for estimators to be precise and consistent.
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Figure 2: Box-plot of the GPH estimator for different levels of aggregation. T = 10, 000
observations and R = 10, 000 replications. In each box the central mark is the median, the
edges of the box are the 25th and 75th percentiles and the whiskers extend to the 95% coverage
assuming symmetry.

Moreover, the box-plots show that the cut-off between small and large scale aggregation varies

with the density of the autoregressive coefficients. In general, with a sample size of 10,000, for

larger degrees of memory, we need at least 250 AR(1) series so that the median of the simulations

is close to the theoretical values, while for smaller degrees of memory, as Table 1 showed, we

are still far away even with N = 10, 000 micro units. Moreover, estimation uncertainty is still

significant in all cases.

Finally, to study the interaction between the sample size and the cross-section dimension,
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Figure 3 presents the heat-maps of the mean of the GPH estimates in deviations from their

theoretical values (d̂ − d), while varying T and N . As noted previously, we need T → ∞ for

the estimator to be asymptotically valid and we need N → ∞ to ensure a degree of memory

in accordance with the theory. T,N → ∞ thus plays separate roles. To construct the figures,

R = 1, 000 replications were considered and again we consider four theoretical values of d ∈

{0.45, 0.35, 0.25, 0.15} corresponding to q ∈ {1.1, 1.3, 1.5, 1.7}.

Figure 3: Heat-map of the mean of (d̂− d) for the GPH estimator with R = 1000 replications,
T,N ∈ {50, 100, 250, 500, 750, 1000, 2500, 5000, 7500, 10000}.

The figure shows that for smaller sample sizes we are always overshooting the true long

memory parameter. This suggests that when working with a small sample size, the estimators

do not have enough information to discern the true nature of the process in terms of memory.

On the other hand, as the sample size T increases, more cross-sectional units are needed to

approximate the asymptotic result: the estimator is becoming more precise, but more cross-

sectional units are needed to eliminate the estimation bias centered around the true asymptotic
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memory. This quantifies the cut-off between small and large scale aggregation. The simulations

indicate that if we were to use aggregation as a way to simulate long memory, we need to increase

the cross-sectional dimension significantly, and the time dimension needs to be large as well for

the estimator to be sufficiently precise.

4 Cross-Sectional Aggregation and ARFIMA processes

Theorems 1 and 2 together with Lemma 1 show that cross-sectional aggregated processes share

key properties with ARFIMA processes. Both processes satisfy all of the definitions of long

memory considered in this paper and both have MA(∞) representations with hyperbolic decay-

ing coefficients.

These shared properties may explain why several authors have assumed that cross-sectional

aggregated processes are of the ARFIMA type. For instance, Balcilar (2004) and Gadea and

Mayoral (2006) refer to cross-sectional aggregation as a possible explanation behind long memory

found in inflation and fit ARFIMA models using parametric methods.

Granger (1980), in his original article, also noted that although aggregated series were not

ARFIMA, the ARFIMA specification could provide a good approximation.

Others have suggested that the long memory of the cross-sectional aggregated series can

be eliminated by fractional differencing. Diebold and Rudebusch (1989) allude to aggregation

as the origin of long memory in output. They estimate the long memory parameter by the

GPH method, fractionally difference the series, and subsequently estimate an ARMA model.

Kumar and Okimoto (2007) refer to aggregation as the motive behind long memory and use the

Shimotsu and Phillips (2005) estimator for the long memory parameter. This method relies on

fractional differencing.

Recall from (1) that an ARFIMA process is a fractionally differenced ARMA process. Thus,

if we were to take a d-th difference, (1− L)d, of an ARFIMA(a, d, b) process we would recover

the underlying ARMA(a, b) process. However, as Lemma 1 shows, the cross-sectional aggregated

process is a generalized fractional process. Thus, it may not appear from fractional differencing.

As a way to give an answer to this question, Theorem 3 presents the autocovariance function of

a fractionally differenced cross-sectionally aggregated process.
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Theorem 3. Let yt = (1−L)dxt where xt is defined as in (4) with N →∞ and γy(k) = E[ytyt−k]

∀k ∈ N. Then,

γy(k) =
γ∗(k)

B(p, q)

[
B(p, q − 1) (F1(k)− 1) +B(p+

1

2
, q − 1)F2(k)

]
,

where

γ∗(k) = σ2
ε

Γ(1 + 2d)

Γ(−d)Γ(1 + d)

Γ(−d− k)

Γ(1 + d− k)
,

is the autocovariance function of an I(−d) process with innovations with variance σ2
ε and

F1(k) := F

[{
1, p,

1− d+ k

2
,
−d+ k

2

}
,

{
p+ q − 1,

2 + d+ k

2
,
1 + d+ k

2

}
, 1

]
+

F

[{
1, p,

1− d− k
2

,
−d− k

2

}
,

{
p+ q − 1,

2 + d− k
2

,
1 + d− k

2

}
, 1

]
,

F2(k) :=
−d+ k

1 + d+ k
∗

F

[{
1, p+

1

2
,
1− d+ k

2
,
2− d+ k

2

}
,

{
p+ q − 1

2
,
2 + d+ k

2
,
3 + d+ k

2

}
, 1

]
+
−d− k

1 + d− k
∗

F

[{
1, p+

1

2
,
1− d− k

2
,
2− d− k

2

}
,

{
p+ q − 1

2
,
2 + d− k

2
,
3 + d− k

2

}
, 1

]
,

where F [·] is the generalized hypergeometric function.

Proof: See appendix.

Two main points can be drawn from Theorem 3.

First, looking at the resulting autocovariance function, after fractional differencing, we find

that it retains some memory even for large lags. In particular, it does not belong to the class of

autocovariance functions for linear ARMA processes. This has implications for modeling and

estimation. In particular, Maximum Likelihood estimators rely on the fact that the resulting

series after differencing is of the ARMA type.

Second, as the proof of Theorem 3 shows, we are calculating the autocovariance function of

cross-sectionally aggregated ARFIMA(1,−d, 0) series. Hence, the individual series are antiper-

sistent with parameter −d and the cross-sectionally aggregated AR processes are overdifferenced.
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The autocovariance function of the overdifferencing filter (1−L)d is given by γ∗(k) in Theorem

3 which is a negative function in k.

Figure 4 displays the shape of the autocorrelation function for the fractionally differenced

cross-sectionally aggregated process γy(k), the autocorrelation of the antipersistent component

γ∗(k), and its ratio τ(k) := γy(k)/γ∗(k).

Figure 4: Autocorrelation function for the fractionally differenced cross-sectionally aggregated
series γy(k), the I(−d) process γ∗(k) (left scale), and its ratio τ(k) (right scale). p = 1.4, q = 1.5
so that d = 0.25.

The following Corollary shows that the function τ(k) is a negative slowly varying function in

k and thus the autocovariance of the fractionally differenced cross-sectionally aggregated process

shows hyperbolic decay.

Corollary 1. As k → ∞, γy(k) ≈ τ(k)k−1−2d, where τ(k) is a slowly-varying function in the

sense that, for c > 0, limk→∞ τ(ck)/τ(k) = 1. Moreover, the autocorrelations are absolutely

summable, that is,
∑∞

i=0 |ρy(k)| =
∑∞

i=0 |γy(k)/γy(0)| <∞.

Proof: See appendix.

As demonstrated in Figure 4 and proved in Corollary 1, the autocovariance function γy(k)

decays at a hyperbolic rate similar to the rate for antipersistent processes. However, the sign

of the function is positive as opposed to antipersistent processes, which is a feature induced by

the cross-sectional aggregation. Despite the hyperbolic rate, the decay is still fast in the sense
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that the autocorrelations are summable and hence satisfy the condition for I(0) described by

Davidson (2009).

Note from the expression of γy(k) given in Theorem 3 that autocovariances for finite k

depend on both of the parameters p and q associated with the Beta distribution. The high

frequency dynamics are thus much more dependent upon the particular aggregation scheme

under consideration whereas the low frequency dynamics and long memory of the aggregated

process allows a much broader class of aggregation schemes. Figure 5 displays the autocorrelation

functions for p = 1.4 and q ∈ {1.2, 1.4, 1.6, 1.8}. Small values of q (and hence large memory)

result in relatively small autocorrelations for finite k. As q increases, and hence memory declines,

the fractionally differenced series tend to have rather significant autocorrelations for small as

well as for moderately large lags.4 This will clearly have a major impact on the properties of

estimated parametric models of the ARFIMA type which in general will be misspecified.

Figure 5: Autocorrelation functions for the fractionally differenced cross-sectionally aggregated
series, γy(k), for p = 1.4 and q ∈ {1.1, 1.3, 1.5, 1.7}.

For illustration and to get an idea about this misspecification problem, Figure 6 displays the

autocorrelation functions for the fractionally differenced cross-sectionally aggregated processes

(i.e., those in Figure 5) together with fitted short memory models. By (Quasi)Maximum Like-

4We also constructed graphs similar to Figure 5 while varying p. They show that the autocorrelations increase
in size as p increases.
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lihood we estimate both pure AR and ARMA processes for each degree of memory. We select

the number of lags using the Bayesian Information Criterion (BIC), see Beran et al. (1998), and

allow initially a maximum of 100 lags for the pure AR specification and a maximum of 4 lags

for either the AR and MA components of the ARFIMA specification.

Figure 6: Autocorrelation functions for the fractionally differenced cross-sectionally aggregated
series, γy(k), for p = 1.4 and q ∈ {1.1, 1.3, 1.5, 1.7}, and the average of fitted AR and ARMA
models estimated by QML.

For a sample of 1,000 fractionally differenced cross-sectionally aggregated series, the BIC

consistently selected either 3 or 4 lags for the pure AR, and typically an ARMA(2, 1) for the

ARMA alternative.

As the figure shows, the short memory models capture the first autocorrelations well, particu-

larly the ARMA specification. Nevertheless, for longer autocorrelations the fitted short memory

models start to diverge from the theoretical ones. Moreover, the discrepancy increases as the

theoretical long memory becomes smaller.

In Table 2 we compute the number of lags necessary for the autocorrelations to be below

certain values approaching zero. The table shows that the ARMA specification takes almost the

same number of lags to fall below 10−1, with the pure AR a close second. However, the table
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Table 2: Number of lags needed for the autocorrelation function to fall below the given threshold
value.

Memory ACF threshold value

d 10−1 10−2 10−3 10−4

0.45 Fitted AR 4 9 14 20

Fitted ARMA 4 14 27 48

Theoretical 5 22 87 331

0.35 Fitted AR 5 11 18 25

Fitted ARMA 6 19 39 60

Theoretical 6 32 143 > 500

0.25 Fitted AR 7 15 23 32

Fitted ARMA 8 27 62 102

Theoretical 9 51 258 > 500

0.15 Fitted AR 9 19 29 41

Fitted ARMA 12 38 91 108

Theoretical 13 88 > 500 > 500

shows that both short memory alternatives fall below 10−2 almost twice as fast as the theoretical

ones, and the divergence gets exacerbated from there. In the best setting, d = 0.45, it takes more

than 300 lags for the theoretical autocorrelations to fall below 10−4, while the short memory

alternatives fall below that value before 50 lags. This of course is not surprising given the

geometric rate of decline of the autocorrelation function for the AR and ARMA specifications.

5 Conclusions

In many empirical studies, long memory is modeled as ARFIMA processes and often the motiva-

tion used in this research relies on the Granger (1980) argument that cross-sectional aggregation

can lead to long memory. In this paper, we argue that both ARFIMA processes and long

memory processes generated according to Granger’s aggregation scheme satisfy a range of long

memory definitions. Despite these similarities, the two classes of processes have features that are

somewhat different. First of all, one should be aware that cross-sectional aggregation leading to

long memory is an asymptotic feature that applies for the cross-sectional dimension tending to

infinity. In finite samples and for moderate cross-sectional dimensions the observed memory of
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the series can be rather different from the theoretical memory. Moreover, the aggregation result

seems to be most apparent when the memory tends to be relatively high, and hence the distribu-

tion of the individual AR(1) micro units has concentrated mass near but strictly less than one.

Secondly, we have shown that when taking a fractional difference of a cross-sectionally aggre-

gated long memory process, then the resulting process is not an ARMA process. The fractionally

differenced process has autocorrelations that are summable and the process is I(0) according

to Davidson’s (2009) definition, but the autocorrelations still decay at a hyperbolic rate rather

than a geometric rate. Especially when the memory is moderate the autocorrelations are more

persistent than observed for ARMA processes. Granger (1980) noted that cross-sectional aggre-

gated long memory processes are likely to be well approximated as ARFIMA processes in most

cases. Our study shows that care should be taken regarding this common belief. In many cases,

ARFIMA specifications will not provide a satisfactory description of the short run dynamics

even though the long memory can be effectively removed by fractional differencing.

To derive closed-form expressions of our results, we assumed that the AR(1) coefficients

are sampled from a Beta distribution. Nonetheless, Zaffaroni (2004) showed that the qualitative

results apply to a broader class of distributions. Moreover, even though we considered a simplified

noise structure, it follows from Granger ’s (1980) analysis that our general results apply when

weak assumptions about the dependence across time and cross-sectional dimensions are allowed

for.
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A Appendix

Proof of Theorem 1

Let xt be defined as in (4).

To prove (i), note that xt has zero mean and thus its variance is given by

γx(0) = E[x2
t ] = E

( 1√
N

N∑
i=1

xi,t

)2
 =

1

N
E

( N∑
i=1

xi,t

)2


=
σ2
ε

N

N∑
i=1

E

[
1

1− α2
i

]
,

where the third equality follows from the independence assumption.

Note that ∀i ∈ {1, 2, · · · , N}, unconditionally,

E

[
1

1− α2
i

]
=

∫ 1

0

1

1− α2
B(α)dα =

∫ 1

0

xp−1(1− x)q−2

B(p, q)
dx =

B(p, q − 1)

B(p, q)
,

which shows that each series has long memory in the covariance sense.

As previously discussed, (2) is not ergodic in the sense that realizations depend on the draw

of αi. To solve the ergodicity violation we consider the cross-sectional aggregated series noting

that,

lim
N→∞

1

N

N∑
i=1

1

1− α2
i

=

∫ 1

0

1

1− α2
B(α)dα

regardless of the conditioning on the autoregressive coefficients.

As for the autocovariances, similar calculations show that

γx(k) = E[xtxt−k] =
σ2
ε

N

N∑
i=1

E

[
αki

1− α2
i

]
= σ2

ε

B(p+ k/2, q − 1)

B(p, q)
,

for k ∈ N, which, by Stirling’s approximation,

γx(k) = σ2
ε

B(p+ k/2, q − 1)

B(p, q)
= σ2

ε

Γ(q − 1)

B(p, q)

Γ(p+ k/2)

Γ(p+ q + k/2− 1)
≈ σ2

ε

Γ(q − 1)

B(p, q)
k1−q.
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So the aggregated series shows hyperbolic decaying autocovariances5 γx(k) ≈ Cxk
1−q and is long

memory in the covariance sense with parameter d = 1− q/2.

To prove (ii), note that given the autocorrelation function ρx(k) = γx(k)/γx(0) with γx(k), γx(0)

computed above, Theorem 1.3 in Beran et al. (2013) shows that the spectral density has a pole

at the origin.

To prove (iii),

V ar

(
T∑
t=1

xt

)
= E[(x1 + x2 + · · ·+ xT )2]

= E
[
x2

1 + · · ·+ x2
T + 2(x1x2 + · · ·+ xT−1xT )

]
= TE[x2

1] + 2E

[(
T∑
t=2

x1xt + · · ·+
T∑

t=T−1

x1xt

)]
= TE[x2

1] + 2 ((T − 1)E[x1x2] + · · ·+ E[x1xT ])

= Tγx(0) + 2 ((T − 1)γx(1) + · · ·+ γx(T − 1))

= Op(T
3−q) = Op(T

1+2d),

where in the last line we have used the asymptotic behavior for γx(·) calculated in (i).

Finally, to prove (iv), we need to analyze the series while considering temporal aggregation.

Let m ∈ N and define

x
(m)
i =

1

m
(xim−m+1 + · · ·+ xim),

for i = {1, 2, · · · }. That is, let x
(m)
i be a temporal aggregation of xt at level m. Then, note that

∀t ∈ N and for large k ∈ N

E[x
(m)
t x

(m)
t+k] =

1

m2
E[(xtm−m+1 + · · ·+ xtm)(x(t+k)m−m+1 + · · ·+ x(t+k)m)]

=
1

m2
E[xtm−m+1x(t+k)m−m+1 + · · ·+ xtm−m+1x(t+k)m + · · ·+ xtmx(t+k)m︸ ︷︷ ︸

m2 terms

]

=
1

m2

γx(km) + · · ·+ γx(km+m− 1) + · · · γx(km)︸ ︷︷ ︸
m2 terms

 .

5Note that the result relies upon calculating E
[

αk
i

1−α2
i

]
. The parametric assumption we make regarding the

Beta distribution allows us to obtain closed-form expression for these terms. If we relax the parametric assumption
and assume a broader class of distributions as in Zaffaroni (2004), we would obtain the same hyperbolic rate of
decay. The same argument applies for definitions (ii) through (iv).
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Factorizing terms and replacing γx(|j − i|) for its asymptotic behavior calculated in (i),

E[x
(m)
t x

(m)
t+k] =

1

m2
(γx(km−m+ 1) + · · ·+mγx(km) + · · ·+ γx(km+m− 1))

≈ Cx
m2

(
(km−m+ 1)1−q +m(km)1−q + · · ·+ (km+m− 1)1−q) ,

dividing both sides by k1−q,

1

k1−qE[x
(m)
t x

(m)
t+k] ≈

Cx
m2

(
m1−q + · · ·+mm1−q + · · ·+m1−q)

=
Cx
m2

(1 + · · ·+m+ · · ·+ 1)m1−q

=
Cx
m2

m2m1−q = Cxm
1−q,

where in the first line we used that m/k → 0 as k →∞.

Thus, with d = 1− q/2, m1−2dCov(x
(m)
t , x

(m)
t+k) ≈ Ck2d−1 as k,m→∞, m/k → 0.

Proofs of Lemma 1 and Theorem 2

Let xt be defined as in (4). Using the infinite series representation of each AR(1) process defined

as in (2) note that xt can be written as

xt =
∞∑
j=0

(
1√
N

N∑
i=1

αjiεi,t−j

)
.

Given the additional assumption on εi,t−j, the classical Central Limit Theorem holds sideways

and thus, ∀j ∈ N,

1√
N

N∑
i=1

αjiεi,t−j ∼ N(0, σ2
εB(p+ j, q)/B(p, q)),

We have used analogous derivations as in the proof above to obtain the variance terms. Note

in particular that, in contrast to the proofs of Zaffaroni (2004), the parametric assumption on

the distribution of the autoregressive coefficient allows us to obtain closed-form expressions for

these terms.
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The above suggests an infinite series representation for the aggregated process of the form

xt =
∞∑
j=0

φjνt−j,

where νj ∼ N(0, σ2
ε) and φj = (B(p+ j, q)/B(p, q))1/2 , ∀j ∈ N. Note that νj inherits the

white noise properties of εi,t−j. Moreover, given Stirling’s approximation, the coefficients show

a hyperbolic rate of decay with parameter d = 1− q/2, that is, φj ≈ j−q/2 = jd−1 as j →∞.

Once we have proved that the cross-sectional aggregated series can be expressed as a gen-

eralized fractional process, Theorem 2 is a direct consequence of Theorem 4.6 in Beran et al.

(2013).

Proof of Theorem 3 and Corollary 1

Let yt = (1− L)dxt where xt is defined as before, then

E[y2
t ] = E

[(
(1− L)dxt

)2
]

= E

((1− L)d
1√
N

N∑
i=1

xi,t

)2


= E

 1

N

(
N∑
i=1

(1− L)dxi,t

)2
 =

1

N
E

[
N∑
i=1

(
(1− L)dxi,t

)2

]
,

where the last equality is due to independence across units. Note that the term (1 − L)dxi,t

is an ARFIMA(1,−d,0); thus the variance of yt depends on the expected value of the AR(1)

coefficient of an ARFIMA(1,−d, 0) process.

Let γi(k) = E
[
(1− L)dxi,t(1− L)dxi,t−k

]
be the autocovariance function of (1−L)dxi,t. From

Sowell (1992) it follows that for k ∈ N

γi(k|αi) = γ∗(k)
1

1− α2
i

(F [{−d+ k, 1}, 1 + d+ k;αi] + F [{−d− k, 1}, 1 + d− k;αi]− 1) ,

where

γ∗(k) = σ2
ε

Γ(1 + 2d)

Γ(−d)Γ(1 + d)

Γ(−d− k)

Γ(1 + d− k)
,

is the autocovariance function of an I(−d) process with innovations with variance σ2
ε and F [·]
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is the hypergeometric function.

Thus,

γy(k) = E [γi(k|αi)]

= E

[
γ∗(k)

1− α2
i

(F [{−d+ k, 1}, 1 + d+ k;αi] + F [{−d− k, 1}, 1 + d− k;αi]− 1)

]
=

γ∗(k)

B(p, q)

[∫ 1

0

(1− x)q−2xp−1F [{−d+ k, 1}, 1 + d+ k;x
1
2 ]dx+∫ 1

0

(1− x)q−2xp−1F [{−d− k, 1}, 1 + d− k;x
1
2 ]dx−

∫ 1

0

(1− x)q−2xp−1dx

]
=

γ∗(k)

B(p, q)

[
B(p, q − 1) (F1(k)− 1) +B(p+

1

2
, q − 1)F2(k)

]
,

where

F1(k) := F

[{
1, p,

1− d+ k

2
,
−d+ k

2

}
,

{
p+ q − 1,

2 + d+ k

2
,
1 + d+ k

2

}
, 1

]
+

F

[{
1, p,

1− d− k
2

,
−d− k

2

}
,

{
p+ q − 1,

2 + d− k
2

,
1 + d− k

2

}
, 1

]
F2(k) :=

−d+ k

1 + d+ k
∗

F

[{
1, p+

1

2
,
1− d+ k

2
,
2− d+ k

2

}
,

{
p+ q − 1

2
,
2 + d+ k

2
,
3 + d+ k

2

}
, 1

]
+
−d− k

1 + d− k
∗

F

[{
1, p+

1

2
,
1− d− k

2
,
2− d− k

2

}
,

{
p+ q − 1

2
,
2 + d− k

2
,
3 + d− k

2

}
, 1

]
.

Note that in the calculations above we have used

∫ 1

0

F [{a, 1}, b;x
1
2 ]xp−1(1− x)q−2dx =

∫ 1

0

[
∞∑
i=0

(a)i
(b)i

x
i
2

]
xp−1(1− x)q−2dx

=
∞∑
i=0

[
(a)i
(b)i

∫ 1

0

xp−1+ i
2 (1− x)q−2dx

]
=

∞∑
i=0

[
(a)i
(b)i

B

(
p+

i

2
, q − 1

)]
.

Now,

∞∑
i=0

[
(a)i
(b)i

B

(
p+

i

2
, q − 1

)]
=

∞∑
i=0

[
(a)i
(b)i

Γ(p+ i
2
)Γ(q − 1)

Γ(p+ q − 1 + i
2
)

]
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= Γ(q − 1)
∞∑
i=0

[
(a)i
(b)i

Γ(p+ i
2
)

Γ(p+ q − 1 + i
2
)

]

= Γ(q − 1)

(
∞∑
i=0

[
(a)2i

(b)2i

Γ(p+ i)

Γ(p+ q − 1 + i)

]
+

∞∑
i=0

[
(a)2i+1

(b)2i+1

Γ(p+ 1
2

+ i)

Γ(p+ q − 1
2

+ i)

])

= Γ(q − 1)

(
Γ(p)

Γ(p+ q − 1)

∞∑
i=0

[
(a)2i

(b)2i

(p)i
(p+ q − 1)i

]
+

Γ(p+ 1
2
)

Γ(p+ q − 1
2
)

∞∑
i=0

[
(a)2i+1

(b)2i+1

(p+ 1
2
)i

(p+ q − 1
2
)i

])

= B (p, q − 1)
∞∑
i=0

[
(a)2i(p)i

(b)2i(p+ q − 1)i

]
+

B

(
p+

1

2
, q − 1

)
a

b

∞∑
i=0

[
(a+ 1)2i(p+ 1

2
)i

(b+ 1)2i(p+ q − 1
2
)i

]

= B (p, q − 1)
∞∑
i=0

[
(a

2
)i(

a+1
2

)i(p)i

( b
2
)i(

b+1
2

)i(p+ q − 1)i

]
+

B

(
p+

1

2
, q − 1

)
a

b

∞∑
i=0

[
(a+1

2
)i(

a+2
2

)i(p+ 1
2
)i

( b+1
2

)i(
b+2

2
)i(p+ q − 1

2
)i

]

= B (p, q − 1) f1 +B

(
p+

1

2
, q − 1

)
a

b
f2,

where

f1 = F

[{
1, p,

a

2
,
a+ 1

2

}
,

{
p+ q − 1,

b

2
,
b+ 1

2

}
, 1

]
,

f2 = F

[{
1, p+

1

2
,
a+ 1

2
,
a+ 2

2

}
,

{
p+ q − 1,

b+ 1

2
,
b+ 2

2

}
, 1

]
,

(z)i := Γ(z+i)
Γ(z)

is the Pochhammer symbol, and noting that (a)2i = (1
2
)−2i(a

2
)i(

a+1
2

)i, i ∈ N.

For the corollary note that γy(k) can be written as

γy(k) =
γ∗(k)

B(p, q)

[
−B(p, q − 1) +

∞∑
i=0

(
Γ(−d+ k + i)Γ(1 + d+ k)

Γ(−d+ k)Γ(1 + d+ k + i)

)
B(p+ i/2, q − 1)

+
∞∑
i=0

(
Γ(−d− k + i)Γ(1 + d− k)

Γ(−d− k)Γ(1 + d− k + i)

)
B(p+ i/2, q − 1)

]
.
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Let

τ(k) :=
1

B(p, q)

[
−B(p, q − 1) +

∞∑
i=0

(
Γ(−d+ k + i)Γ(1 + d+ k)

Γ(−d+ k)Γ(1 + d+ k + i)

)
B(p+ i/2, q − 1)

+
∞∑
i=0

(
Γ(−d− k + i)Γ(1 + d− k)

Γ(−d− k)Γ(1 + d− k + i)

)
B(p+ i/2, q − 1)

]
,

and note that, by Stirling’s approximation, for large k and c > 0, Γ(1 + d + ck)/Γ(−d + ck) ≈

(ck)1+2d, Γ(−d+ck+ i)Γ(1+d+ck+ i) ≈ (ck)−1−2d and analogous approximations for the terms

in the second series show that

τ(ck) ≈ 1

B(p, q)

[
−B(p, q − 1) + 2

∞∑
i=0

B(p+ i/2, q − 1)

]
.

This, in turn, shows that limk→∞ τ(ck)/τ(k) = 1.

Hence, for large k,

γy(k) = τ(k)γ∗(k) ≈ τ(k)k−1−2d,

where limk→∞ τ(ck)/τ(k) = 1.

Finally, note that
∑∞

i=0 |ρy(k)| =
∑∞

i=0 |γy(k)/γy(0)| ≈
∑∞

i=0 k
−1−2d = ζ(−1− 2d) where ζ(z)

is the Euler-Riemann zeta function which converges for z < 1.
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