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The VIX, the Variance Premium, and Expected Returns*
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Abstract: Existing studies find conflicting estimates of the risk-return relation. We show that the
trade-off parameter is inconsistently estimated when VIX measures risk. The inconsistency
arises from a misspecified, unbalanced, and endogenous return regression. These problems
are eliminated if risk is captured by the variance premium instead. Yet, the variance premium
is unobserved. Accordingly, we propose a GMM estimator that produces consistent estimates
without observing the variance premium. Using this method, we find a positive risk-return
trade-off and long-run return predictability. Our approach outperforms commonly used risk-
return estimation methods, and reveals a significant link between the variance premium and

economic uncertainty.
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1 Introduction

The risk-return trade-off is a central concept in modern finance theory'. Yet, there is, at best, only
weak empirical evidence on the positive risk premium implied by the risk-return trade off?. This
lack of convincing evidence lead the popular press to question this central tenet of modern finance?.
Our paper first shows a problem in the existing empirical studies that result in conflicting evidence,
then provides an econometric solution to this problem, and finally presents empirical evidence of
positive risk premium implied by the risk-return trade-off with the estimation problem resolved.
The Chicago Board Options Exchange (CBOE) volatility index, VIX, measures the implied
market volatility of the U.S. stock market over the next month. Often implied volatility or variance
is viewed as a measure for time-varying economic uncertainty or the aggregate risk level (see
e.g. Bloom, 2009 and Bali and Peng, 2006). If risk or uncertainty were indeed captured by the
implied variance, the mainstream risk-return trade-off theory would suggest that (at fixed levels
of risk aversion) a higher level of implied variance corresponded to higher expected excess returns.
Alternatively, implied market variance and in particular the VIX is commonly referred to as the
“investor fear gauge” (Whaley, 2000), and may thus be viewed as a popular indicator of aggregate
risk aversion (Bekaert et al., 2013). In this case the risk-return trade-off theory would again suggest
a positive relation between implied variance and expected excess returns, at fixed levels of risk.
Recently, implied market variance and with it VIX have fallen on hard times, in the sense that
empirical studies strongly challenge their role as variables that help gauge the risk-return trade-off.
Given the lack of consensus, new theories have been brought forward suggesting that it is rather
the variance premium (VP) that is positively related to the market risk premium. VP is the wedge

between risk-neutral and objective expectations of future integrated market variance. Structural

!See e.g. Shim and Siegel (2008) for a textbook reference.

For instance, Pastor, Sinha, and Swaminathan (JF 2008), Lundblad (JFE 2007), Ludvigson and Ng (JFE 2007),
Guo and Whitelaw (JF 2006), Bali and Peng (JAE 2006), Ghysels, Santa-Clara, and Valkanov (JFE 2005), Goyal
and Santa-Clara (JF 2003), Scruggs and Glabadanidis (JFQA 2003), Harrison and Zhang (REStat 1999), Scruggs
(JF 1998), Chan, Karolyi, and Stulz (JFE 1992), and Harvey (JFE 1989) uncover a positive risk-return trade-off.
In contrast, the latter trade-off is found to be negative in e.g. Brandt and Kang (JFE 2004), Whitelaw (JF 1994,
RFS 2000), Glosten, Jagannathan, and Runkle (JF 1993), Nelson (ECTA 1991), Breen, Glosten, and Jagannathan
(JF 1989), Turner, Startz, and Nelson (JFE 1989), and Campbell (JFE 1987). We discuss the conflicting existing
evidence in more detail below.

3See e.g. the press article by John Authers in the Financial Times titled “Risk-return relationship has been
upended” (2014), available at
http://www.ft.com/cms/s/0/bc78d710-6371-11e4-9a79-00144feabdc0.html#axzz4DetL1gMt.


http://www.ft.com/cms/s/0/bc78d710-6371-11e4-9a79-00144feabdc0.html#axzz4DetL1gMt

models of Drechsler and Yaron (2011) and Bollerslev et al. (2012) show that VP is linked to economic
uncertainty and that the latter commands a non-negligible equity risk premium. Conversely, the
model of Bekaert and Engstrom (2010) shows that VP is an indicator of aggregate risk aversion
and hence is positively related to the equity premium. Financial market data strongly support the
suggested relation.

In this study, we contribute to the literature in three respects. Motivated by recent theories and
empirical facts, we set up a stylized data generating process (DGP) in which the variance premium
is the variable that truly drives conditionally expected future excess returns. Even though our
empirical analysis reveals a stronger relation between VP and economic uncertainty compared to
the link between VP and risk aversion, this is inconsequential for the development of the econometric
results in the study. For the most part of the paper we will therefore refer to VP simply as risk.
We show that empirical analyses where VIX is used to evaluate the risk-return trade-off result in
a misspecified, unbalanced, and endogenous regression. The return regression is unbalanced since
the right-hand side variable (VIX) exhibits autocorrelation patterns that are too strong to line
up with the erratic almost noise-type behavior of returns on the left-hand side. The regression is
endogenous since VIX is an imperfect predictor of the equity premium. In particular, VIX measures
risk with a sizable and persistent error, which leads to the errors-in-variables problem. The new
result that we provide in this paper demonstrates that even in this very “unfavorable” regression
specification, the researcher can still use standard techniques of statistical inference to test for the
significance of a risk-return trade-off. Intuitively speaking, this approach works since under the null
hypothesis of no trade-off the problems of unbalancedness and endogeneity disappear. However,
the ordinary least squares (OLS) estimator of the trade-off parameter is inconsistent, meaning that
the VIX cannot be used to gauge the magnitude of the risk-return trade-off. The first part of our
paper formalizes this intuition with the necessary mathematical proofs.

An obvious solution to avoid the errors-in-variables problem above would be to rely on VP as
a predictor instead of VIX and to estimate the trade-off by OLS. Yet VP, that is the difference
between the risk-neutral and the physical expectation of future integrated variance, is inherently

latent. The first term, the implied market variance, is observable for the U.S. market by the



squared VIX if the return variance is integrated over 30 days. The second term, the objective
expectation of the integrated market variance, cannot be observed, however. Measuring it firstly
requires an estimate for the integrated variance. Secondly, a probabilistic model for the dynamics
of integrated variances of asset returns needs to be assumed and estimated. This is the crux of
the literature on VP and risk-return modeling. To emphasize its importance Bekaert and Hoerova
(2014) dedicate an entire research article to the issue, analyzing an abundance of “state-of-the-art”
dynamic variance models. Thus, while many scholars agree on the importance of measuring VP to
gauge risk, a consensus on modeling the objective expectation of the integrated market variance

is largely absent from the literature?

. The model uncertainty as well as the estimation error in
the resulting estimate for the unobserved VP will directly affect the estimation of the risk-return
trade-off parameter, likely biasing the results both in sample as well as out of sample. To avoid
these consequences, our second contribution is to suggest a generalized method of moments (GMM)
estimator that consistently estimates the relation between VP and the equity premium, without
observing VP itself. To the best of our knowledge, we are the first to show that the risk-return
trade-off parameter can be estimated without the necessity of observing, measuring, or estimating
risk itself. The proposed GMM estimation approach allows for standard statistical inference on
the parameters, and we further develop methods to establish the validity and the relevance of the
instruments.

Our third contribution is empirical. Using data on the S&P 500 we demonstrate that there is
ample empirical support for the DGP assumed here. Relying on the proposed GMM estimation
technique, we then find evidence for a positive significant risk-return trade-off relation. To that
end we identify two valid and relevant instruments that are closely related to the ex-post variance

risk premium of Bollerslev et al. (2009) and the jump component of the stock price process. The

uncovered risk-return trade-off is of sizable magnitude. We find that for a unit increase in risk

“Bali and Peng (2006) and Todorov (2010) rely on an ARMA specification as the econometric model for variance
prediction; Bollerslev et al. (2013) rely on a co-fractional VAR model; Bollerslev et al. (2009), Du and Kapadia
(2012), Bollerslev et al. (2014), Camponovo et al. (2012), Kelly and Jiang (2014), and Vilkov and Xiao (2013) use the
realized variance over the past month as a proxy for the forward conditional expectation; Bollerslev et al. (2012) and
Bollerslev et al. (2014) consider the HAR-RV model of Corsi (2009); Han and Zhou (2011), Bali and Zhou (2016),
Bekaert et al. (2013), Drechsler and Yaron (2011), and Bekaert and Engstrom (2010) predict realized variances with
the past month’s realized variance and implied variance; Bekaert and Hoerova (2014) examine many different variance
predictors, including lagged implied variances, lagged jumps, and lagged returns.



investors demand an increase in the equity premium of 2% annually. This number is seven times
larger than the corresponding inconsistent OLS estimate. We continue to demonstrate that there is
significantly positive excess return predictability in VP at different horizons, from one day to half a
year. Even though VP remains latent throughout our study we confirm that return predictability
in VP is maximized at a four-months investment horizon, which is in line with studies that estimate
VP?. We show that our estimation technique leads to stronger predictability of excess returns over
these horizons relative to models that estimate the objective expectation of the integrated market
variance and hence VP, both in sample as well as out of sample. We argue that the main reason
for this improvement is that the GMM approach avoids the estimation error in the estimate for VP
that traditional OLS approaches produce. Lastly, we inspect the degree of correlation between the
latent VP measure uncovered here and popular indicators for both, economic uncertainty and risk
aversion. OQur empirical results tend to favor the models that relate VP to economic uncertainty,
in the sense that all empirical correlations are positive and of considerable magnitude. In contrast,
the correlation results between VP and risk aversion do not unanimously point in one direction.
We view our paper in the context of empirical analyses of a risk-return trade-off on aggregate
stock markets. There is a large stream of literature that relies on the VIX as a risk measure and then
produces estimates of the trade-off parameter. These existing empirical studies of the trade-off have
largely produced relationships of either signs and magnitudes, however. For instance, Bali and Peng
(2006) relate the lagged VIX to the S&P 500 cash index and to CRSP value-weighted excess returns
and find a positive trade-off parameter at a daily horizon. Similarly, Bollerslev and Zhou (2006)
rely on the VIX to predict S&P 500 returns and find a positive risk-return trade-off parameter at
a monthly horizon, Bollerslev et al. (2009) find the same result at monthly and quarterly horizons,
Eraker and Wang (2015) have a positive estimate for horizons from half a year up to two years,
and Bekaert and Hoerova (2014) discover the same at quarterly and annual horizons. In contrast,
negative signs were estimated e.g. by Eraker and Wang (2015) and Bekaert and Hoerova (2014) at
a monthly horizon, by Vilkov and Xiao (2013) at weekly, monthly, and annual horizons, and by
Bollerslev et al. (2009) at an annual horizon. Our paper provides one possible explanation for this

mixed evidence that the empirical literature has produced to date, by providing a formal argument

®See e.g. Bollerslev et al. (2009) and Bollerslev et al. (2014).



that the underlying return regressions may be problematic and can lead to inconsistent estimates.

Our paper also ties in with the literature on return predictability that is driven by VP. There are
numerous empirical studies that find the positive relation between VP and the expected (excess)
returns to hold. Among many others, the positive relation is found to hold in the data by Bollerslev
et al. (2013), Han and Zhou (2011), Bollerslev et al. (2009), Drechsler and Yaron (2011), Du and
Kapadia (2012), Eraker and Wang (2015), Bali and Zhou (2016), Camponovo et al. (2012), Kelly
and Jiang (2014), Vilkov and Xiao (2013), Bollerslev et al. (2014), and Bekaert and Hoerova (2014).
The common factor in all these studies is that the unobserved VP is replaced by an estimate or
proxy. Our work differs from the standard methodology in the literature by keeping VP unobserved.
We can still estimate the risk-return trade-off parameter by the GMM approach that we suggest. In
the empirical analysis we then show that this method is preferable as it produces larger risk-return
estimates and stronger predictability.

Finally, our paper is related to the literature on return predictions with persistent regressors,
where the latter in our case is the VIX. Such predictive regressions are known to suffer from biased
OLS slope estimates (see e.g. Stambaugh, 1986, 1999) and/or nonstandard statistical inference on
the parameters (see e.g. Maynard and Phillips, 2001). To deal with the second problem, based
on the work of for instance Campbell and Yogo (2006), Cavanagh et al. (1995), and Stock (1991)
researchers have relied on confidence intervals computed using Bonferroni bounds. Predictability
tests relying on this methodology are known to be conservative. Instead, in this paper we show that
standard inference remains valid even in the presence of a persistent regressor with long-memory
dynamics. To tackle the first problem of biased estimates, several econometric methods for bias
correction have been proposed, for example by Kothari and Shanken (1997) and Lewellen (2004).
If the regressor possesses long memory, another popular solution is to filter the series to remove the
persistence, which has been advocated by e.g. Maynard et al. (2013) and Christensen and Nielsen
(2007). The GMM approach that we suggest here is an innovative alternative to filtering that
eliminates the persistence without requiring exact knowledge of the strength of serial dependence.
Intuitively, our method works because the multiplication of the persistent regressor, VIX, with a

less persistent instrument destroys the long memory in the series.



The plan for the rest of the article is as follows. Section 2 introduces the DGP and provides a
description of the data underlying our empirical investigations, pointing out the support in the data
for the assumed DGP. Section 3 discusses OLS risk-return trade-off regressions, where VIX is used
as a predictor. Section 4 details the risk-return relation that can be uncovered by GMM estimation
with a latent risk factor. In Section 5 we investigate the relevance and validity of our identified
instruments. These results, in turn, motivate our analysis of the long-run relation between risk and
return presented in Section 6. Section 6 also discusses the comparative advantages of our approach
relative to the status quo of the literature. Section 7 empirically analyses the relation between

latent VP and economic uncertainty and risk aversion. Section 8 concludes.

2 DGP and Initial Data Statistics

We propose a simple framework for the DGP of excess returns and risk that incorporates many
well-known empirical properties of the data. We let the variance premium VP, t =1,2,...,T, be
an I(0) process and assume that it is not observed by the researcher. The conditional expectation of
the integrated market variance taken under the objective probability measure Ef (IV444r), where
the horizon 7 equals 30 days, is also a latent process but strongly persistent, I(d). Conversely the
conditional expectation of the integrated market variance taken under the equivalent martingale
measure E? (IVityr) = VIX % is observable for the U.S. market. Since the latter is the sum of VP,
and El'(IV ;. ,) this implies that the observed VIX? is I(d). Excess returns on financial markets
rt(e) are generated as an I(0) predictive function of VP, with prediction coefficient § and level «,

such that E (rt(i)l\It) = a + BVP;. I; is the information set of the informed investor at time t.

Equations (1)-(4) detail the assumed DGP.

VP = $(L)e (1)

VIX? = VP, +EF(IViyyr) (2)

rO = a+BVP 4 &4 (3)
Ef(IVigr) = (1-L) "n, (4)



where 0 < d < 1/2. A vector consisting of noise processes e, &, 7, and additional shocks vy, ¢, for
k=1,2,...,K, is vector independently and identically distributed (i.i.d.) with mean zero and a
diagonal variance matrix with elements o2, ag, 0727, and agk. We assume that ¢(L) = > 70, ¢;L*
with > ilés| < oo and ¢(1) # 0. The variance of VP; is 03p = 02 7%, ¢7. The variance of
ES (IV4esr) s 0% = 02D(1 — 2d)/(D(L — d))2.

The DGP (1)-(4) incorporates many stylized empirical facts as well as theoretical results. Ex-
pected excess returns are time-varying and are positively related to risk if § > 0, which is in
line with empirical findings as well as new theoretical underpinnings (see references in Section 1).
Consistent with empirical regularities of observed excess returns, rge) is generated as a stationary
I(0) process that exhibits some short-memory dynamics but the impact of shocks decays quickly.
In contrast, the conditional variance series VIX f and Ef (IV4¢44,) are strongly persistent, an of-
ten observed property of financial data. The volatility index and nonparametric realized variance
measures empirically exhibit strong temporal dependence (see e.g. Bollerslev et al., 2012, and ref-
erences therein), but also when estimating conditional variances with (G)ARCH-type models, the
ARCH coefficient or the sum of the ARCH and the GARCH term are typically found to be close
to one (for a summary, see e.g. Bollerslev et al., 1992). We describe the persistence in the variance
series as stationary long memory, or I(d) with d € [0,1/2). It is well documented in the literature
that fractionally integrated models with d € (0,1/2) fit the dynamics of both, observed as well
as model-implied conditional variances, very well (see, among others, Ding et al., 1993, Baillie
et al., 1996, Andersen and Bollerslev, 1997, Comte and Renault, 1998, Bollerslev et al., 2013).
Finally, the difference between our two variance series, VP4, is I(0). It possesses less memory than
its two components, suggesting that the two variance series fractionally cointegrate as found by
e.g. Christensen and Nielsen (2006) and Bandi and Perron (2006).

Our data support the proposed DGP. In particular, we focus on the S&P 500 stock market
index. We consider daily data for the period from February 3, 2000 until June 30, 2014, resulting
in a large number of T' = 3622 observations that is particularly convenient for this study. We rely on

the volatility index, VIXcgog,¢, to measure the expected integrated volatility over the next month

under the equivalent martingale measure. We obtain the series VIXcgog¢, which is quoted on the



CBOE, from the WRDS database. We transform the data series into maturity-scaled variance units
by
30 9

VIX? = %VIXCBOE,# (5)

Now VIX? is in line with E?(I Vii4r), where 7 corresponds to 30 calendar days. We further obtain
two variance measures that contain information about the integrated variance. Our first measure
is the realized return variance, RV, computed on the basis of intradaily observations spaced into
5-minute intervals and subsampled at a 1-minute frequency. Under certain regularity conditions,
RVgy,: converges to the daily quadratic variation of returns, as shown by Andersen et al. (2001),
Barndorff-Nielsen and Shephard (2002), and Meddahi (2002). If there are jumps in prices, the
daily quadratic variation is the sum of IV ;11 and daily jumps. Our second measure is the bipower
variation, BVyy ¢, of Barndorff-Nielsen and Shephard (2004), which converges to the integrated
variance of returns IV ;11. The series RVgy, ¢, and BVgy ¢, as well as daily prices on the S&P 500,
PP and P{"**)| are obtained from the Oxford-Man Institute’s “Realised Library”5.

Whereas VIX t2 is related to the return variation over the next month, the raw series RVg,,; and

BVg;,; measure daily variation. To align the three measures, we modify the latter two as follows.

22 B P(ogen) T 2

RV, = Z RVpp ¢4 X 100 +{ In ]j(jij; X 100} (6)
i=1 L t+i |
22 r P(op‘en) T 2

BV, = Y [BVaweri x 100+ |In ff(jlgg x100p | . (7)
i=1 L t+i |

The two series thus contain information about the unobserved IV;;,,. Finally, we measure r(e)

t+1
as daily annualized continuously compounded excess returns (measured in percentages)
252
(close)
() _ s (1)
Tt+1 =100 x In <Pt(close)> Ty (8)

We obtain the daily 3-month T-Bill rate from the FRED database” and convert it into annualized
(f)

continuously compounded rates r,

S Available at http://realized.oxford-man.ox.ac.uk/.
" Available at https://research.stlouisfed.org/fred2/series/DTB3
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Our DGP (1)-(4) implies that rt(e) is a short-memory I(0) process whereas VIX? is a long-
memory I(d) process. Table 1 shows summary statistics for our data. For annualized daily excess
returns we find that the autocorrelation estimates are very close to zero, suggesting that there is
very little persistence in the series. Conversely, for VIX? we find that the first three autocorrelation
estimates are very close to 1. Even after 22 trading days the serial correlation is still very strong,
such that roughly 75% of a shock’s impact remains. If physical expectations are taken under the
rational information set, it follows that the temporal dependence of the realized IV 1, proxies in
(6)-(7) give us an indication of the unknown dynamics of Ef (IV,;,). Autocorrelation estimates
for RV; and BV, in Table 1 are very similar to the estimates for VIX?, suggesting that the variance
series share similar persistent dynamics. For further evidence of the apparently distinct dynamics
of the three variance series from stock returns see also Figure 1, where we plot the autocorrelations
of the four processes. Whereas shocks to daily returns die out immediately, shocks to RV, BV,
and VIX f are highly persistent. As opposed to the I(0) excess return process, it takes many lags
to revert the effect of a shock to the variance.

We estimate the respective fractional integration order, d;, i = {RV, BV, VIX,r}, of the four
series, RV, BV, VIX t27 and r,ge) , jointly for efficiency. It is common to rely on semiparametric
techniques for the estimation of d;. The exact local Whittle (EW) due to Shimotsu and Phillips
(2005) is particularly attractive, since it is consistent and asymptotically normally distributed for
any value of d;. Nielsen and Shimotsu (2007) derive a multivariate version of the EW, which we
apply for the joint estimation of dgy, dgv, dyrx, and d,8.

Table 2 summarizes our results. The realized variance and the bipower variation are integrated
of the order 1(0.32). At a 5% significance level, we reject that d; = 0 and d; = 1 for both series,
yet we fail to reject that d; = 0.5. The point estimate for the memory of the variance index, VIX?,
is somewhat higher, dy;x = 0.40. According to the t-test of Nielsen and Shimotsu (2007) for the
equality of d;, we cannot reject that the three variance series are integrated of the same order,
however. Excess returns are integrated of the approximate order zero, and we fail to reject d; = 0,

but reject d; = 0.5 and d; = 1.

8The consistency and asymptotic properties of the EW estimator rely on the knowledge of the true mean of the
data generating process. As this value is not known in practical applications, we modify the EW to account for this
uncertainty, relying on the two-step feasible EW estimator of Shimotsu (2010).



One shortcoming of the approach above is that the EW is not explicitly robust to the presence
of additive perturbations, which are present in three variance processes, RV, BVy, and VIX ?,

under the assumed DGP. That is

VIX? =EF(IViy,) +VPy
RV, — EtP(IVt,HT) + (jumpst,tJrT + expectations error(R)>

BV, — Ef(IVt7t+T) + expectations error®) |

I(d) Process Additive Perturbations

In addition, with the EW estimation we did not restrict the integration orders of RV, BV}, and
VIX? to be the same, which they must be if the perturbations are integrated of an order < d.
We adopt the trivariate version of the modified EW estimator of Sun and Phillips (2004) (TEW)
for the vector Xy = [RV;, BV, VIX?]'. Implementation and estimation details are in Appendix
A. We find that dp =0.39. The exact asymptotic properties of the TEW are unknown, yet Sun
and Phillips (2004) conjecture that the distribution of d is normal and that standard errors are
bound between [0.12,0.16]. The estimated fractional order of E(IVy,,) is different from zero
and statistically indistinguishable from the non-robust estimates in Table 2. Our data thus lend

support to the proposed DGP.

3 Estimating the Risk-Return Trade-Off by OLS

In the framework (1)-(4) the coefficient 5 has precisely the interpretation of a risk-return trade-off
coefficient. Given the aforementioned discrepancies in both the sign and the magnitude of the
corresponding estimate, it will be our main interest to consistently estimate 8. The coefficient also
captures short-run predictability of excess returns if it exists. A consistent estimator therefore will
allow us to evaluate whether the variance premium indeed commands a positive equity premium
and whether returns are predictable. Further, our aim is to be able to conduct valid statistical
inference on the parameters of (3).

Evaluating the relation between risk and return, the correct specification to estimate would be

to regress 7“15-?1 on VP;. Yet, VP, is not observed by the researcher, but VIX ,52 is not latent. It is

10



common to assume that the econometrician’s information set A; satisfies A; C Z; (see e.g. Nagel,
2013). Whereas the fully informed investor may know VP, we assume that the researcher only

observes VIX?. The latter will be inclined to evaluate the following regression
r = a+bVIX? + erpn, (9)

which is unbalanced since the integration orders of the regressor and the regressand differ (Baner-
jee et al., 1993). The empirical work on the risk-return trade-off, as well as most of the existing
theoretical contribution on the econometric properties of predictive regressions in general, impose
the assumption that the true predictor VP; and the observable predictor VIX % are the same or
perfectly correlated. A very different idea is considered by Ferson et al. (2003) and Deng (2014).
They demonstrate the risk of spurious inference in predictive regressions, where the expected (de-
meaned) return is assumed to be independent of the predictor. In our case that would make 3 VP;
independent of VIX ? . Note that both setups can be viewed as extremes of our DGP, where the
first scenario arises if 0727 = 0, and the second scenario occurs if 8 = 0 and/or 02 = 0. Instead of
imposing these extreme setups, we consider the predictor in our model to be imperfect. Similarly
to Pastor and Stambaugh (2009) and Binsbergen and Koijen (2010) we assume that the observed
variable VIX? contains relevant information about the expected return, but it is imperfectly cor-
related with the latter, which strictly speaking leaves regression (9) misspecified. Besides being
misspecified and unbalanced, the econometrician’s model (9) is endogenous. The regression resid-
uals of (9) are composed of two elements, that is e;11 = —BEf(IVt,HT) + &t+1. Thus, e;4q will be
naturally correlated with the observed variance measure VIX? with Cov(esy 1, VIX?) = —B0o%,.
The results from the empirical literature on the risk-return trade-off using the observable risk
measure VIX? are largely inconclusive to date (see reference in Section 1). Analyses in the field
typically evaluate a predictive regression such as (9) by OLS. Theorem 1 below aids our under-

standing of the likely causes of finding a risk-return trade-off of either sign and magnitude. Define

11



two matrices X and y of size (T'— 1) x 2 and (7' — 1) x 1 respectively by

1 1 o1
X = (10)
VIX? VIX3 ... VIX3
/
y = <r§e) rée) réf) > . (11)

Theorem 1 summarizes our results for both hypotheses, the presence and absence of return pre-
dictability from VP;. A proof of Theorem 1 can be found in Appendix C. Small sample simulations

supporting all of our results can be found in the online appendix to this paper.

Theorem 1. Let VP, VIXZ, r,g ), and EF (IV;41.) be generated by (1)-(4). Estimate Regression
(9) by OLS, resulting in

bors = (@, IS)' = (X'X)7" (Xy). (12)

Let B denote convergence in probability, and B convergence in distribution. As T — oo:

1. If =0
- P 1/25 D Ug
a— T b—>N 07ﬁ
oypt+0p
T2, B & th B N(0,1).
O¢

ta = a/+/Var(a) and t, = b/\/Var(b) denote the t-statistics associated with & and b, re-
spectively, and N(-,-) is the normal distribution. In addition, it holds that s? L O'g, where

=(T-3)7! Zthz é? is the variance of the OLS residuals.

2. IfB+£0
2
05 a b5 g VP
oyp T 0p
T-1/24 o 712 B BU%/P
2 g ourh | ’ ) 172
o+ J2P+UP> (5 UVPUP+U§(UVP+UP))

g ag
where s2 5 0 + BQM.
oVptop
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The first part of Theorem 1 summarizes the case in which there is no risk-return trade-off, i.e. 5 = 0.
In this situation, the OLS slope estimate b correctly converges to zero and to a normal distribution

at the usual rate T—1/2

. More importantly, under the premise that there is a risk premium in the
market, the second part of Theorem 1 shows that OLS produces an inconsistent estimate for .
In finite sample simulations the estimate b is of either sign and value, which is in line with the
findings in empirical studies that use VIX? as a predictor. Asymptotically, the OLS slope estimate
b is biased towards zero, implying that in large samples the researcher would underestimate the
implied predictive power from VP; on rt(i)l. We view this inconsistency of the OLS estimator for
[ as one possible explanation for the widely different estimates that existing finite-sample studies
of (9) have produce to date.

Given the unbalancedness and endogeneity issues in (9) it may not be too surprising to the
reader that the OLS estimator for g is inconsistent. The asymptotic bias of the estimator towards
zero is in line with e.g. Maynard and Phillips (2001). What is truly new and largely different from
the extant literature on return predictions with persistent regressors is the finding that standard
statistical inference can be carried out. In particular, Theorem 1 shows that the t-statistic asso-
ciated with b converges asymptotically to a standard normal limiting distribution that is free of
nuisance parameters under the null hypothesis that 5 = 0. In small sample simulations we find
that the size of a simple t-test on the parameter 8 is always very close to the nominal size of 5%.
Under the alternative hypothesis, the t-statistic ¢, diverges asymptotically at rate T'/2. Simula-
tions suggest that a t-test generally has very good power in finite samples. The implication of these
results is that one can draw valid statistical inference on the significance of 8. Thus, even in the
unbalanced, misspecified, and endogenous regression framework considered here, the t-statistic can
be considered a useful tool to draw inference on the significance of the predictability of rij_)l from
the latent VPy.

The empirical evidence in our data indeed lends support to the unbalancedness of Regression
(9). The t-tests for Hy : dj = d; in Table 2 indicate that we reject the hypothesis that variance

series and returns are integrated of the same order. Nevertheless, it is common to predicting

tomorrow’s excess returns with today’s VIX ? by OLS. Table 3 outlines the results from estimating
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(9) by OLS with our dataset®. The estimated risk-return trade-off parameter is small and positive,
equal to 0.27. The estimate is statistically different from zero. Since we know from Theorem
1 that valid inference can be carried out, we conclude that the latent variance premium VP,
which is one of the components of the observed VIX ?, significantly predicts returns. The estimated
coefficient is rather small, however, and we deduce from Theorem 1 that the estimate is inconsistent
and asymptotically biased towards zero. The researcher could be tempted to make the erroneous
conclusion that the estimate b = 0.27 implies that an increase in yesterday’s perceived risk by
one standard deviation leads to an increase of tomorrow’s annualized excess return expectations
of 12.68%. To put these numbers into perspective, an increase in the VIX % of one standard
deviation equal to 47.36 corresponds to a very large increase, for instance more than doubling the
average of what the econometrician may perceive as risk, or leaping from the median VIX ,52 to the
88th quantile. The resulting (inconsistently) estimated effect on returns would then seem rather
moderate, corresponding only to an increase from the 50th to the 53rd quantile of the empirical

return distribution.

4 Estimating the Risk-Return Trade-Off by GMM

The risk-return trade-off parameter cannot be estimated by an OLS regression of (9). A possible
solution could be to make VP, observable, i.e. replacing it by an estimate VPy, as is commonly done
in the literature*. Yet, the model uncertainty and estimation error in VP, would directly impact the
OLS estimator b, implying that the estimation of the risk-return trade-off with this approach would
be prone to error. Instead, we suggest to resolve the problems of the OLS regression by relying on
a GMM approach. Assume that the researcher has access to a valid and relevant I(0) instrument,
i.e. a variable that is strongly correlated with VP, but not with the variance Ef (IVi44r) and the

innovation &1, Theorem 2 summarizes the asymptotic properties of the GMM estimates of (9).

Theorem 2. Let VP, VIXZ, rt(e), and EX(IV41r) be generated by (1)-(4). Assume there exist

90ur DGP assumes that VP, Ef(IVt,HT), and hence also VIX? have a mean of zero. Henceforth we therefore
consider all variables, except the excess return series, in deviation of their sample averages.

10An instrument that is neither correlated with Ef(th,HT) nor with &1 will by definition also be unrelated to
the error term of the unbalanced regression (9), ei41.
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K instruments

Gkt =prVPe+uky, k=1,2,... K, (13)
where py, # 0 Vk. Define ,
1 1 1
Q= g1 912 ... q1,7-1 . (14)
g1 49K2 --- 4K T-1

Estimate Regression (9) by GMM using qi; as instruments. The GMM estimate is given by
- A 1 -1 -1
born = (2, 0) = (X'Q[QQ]'@X)  (XQ[Qq]'QYy). (15)

Then, as T — oo:

1. IfB=0
2(.2 K i
i lo =41
. g( VP 2k=1 5% )
0t a T2 B A | o, - ”p’;
4
Typ 2ik=1 07
T2, B2 t, B N(0,1),
O¢
where s> £> 02.
2 IFB£0
a8 a b2 I5}
1/2
4 K pp
OYp Dkl o3
712, B a o TV L) U;k = ,
(ag + ﬁzal%) (Ug + 520%> <U%/P D k=1 é + 1)

2 B 9 2 2
where s —>O'£—|—B op.

Theorem 2 shows that in the absence of a risk-return trade-off, the GMM estimate b converges

to a normal distribution with zero mean at the standard rate 7-/2. More importantly, Theorem
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2 demonstrates that GMM estimation results in a consistent estimator for 5. In finite sample
simulations the average relative bias, I;/ B, is very small, bound between 1 and 1.05 across the set
of chosen parameter values. Intuitively, the GMM approach to estimation works since firstly the
use of a relevant but exogenous instrument resolves the endogeneity issue. Secondly, in computing
the GMM method we multiply the I(d) regressor innovation with an 7(0) instrument. Lemma 1 in
Appendix B shows that this multiplication destroys the long memory and the resulting process has
standard short-memory dynamics. Hence, under the maintained assumption that the DGP follows
(1)-(4), the predictive power of the latent variable VP; on r,ge) can be correctly estimated if the
researcher finds a relevant and valid 1(0) instrument as in (13). The proof of Theorem 2 can be
found in Appendix D.

Theorem 2 further implies that the statistical significance of 5 can be correctly inferred from a
simple t-test. Under the null hypothesis that Hy : 8 = 0 the t-statistic of the GMM estimate i), ty,
converges to a standard normal distribution. Simulations under the null hypothesis that Hy : 8 =0
show that the size of the test is close to the nominal level of 5%, albeit marginally undersized for
very small T. The statistic ¢, diverges at rate T2 under H; : 8 # 0. The finite sample power
of the t-test is very close to 100% across the scenarios that we consider in the simulations. The
researcher will thus be very likely to detect predictability and hence the risk-return trade-off if it
is present.

Inspired by the results in Theorem 2, we identify a set of I(0) instruments for GMM estimation
in our data. To that end we partly rely on the realized measures RV and BV;. To avoid problems
that could arise in the successive estimation due to a look-ahead bias, we shift the two variance
series backwards such that they capture the quadratic variance and the integrated variance over
the past month, respectively. Denote the shifted series by RV, and BV,.

The existing literature provides substantial evidence that there is a linear long-run relation
between RV; and VIX? that is I(0). For instance, Bandi and Perron (2006) and Christensen and
Nielsen (2006) find evidence of fractional cointegration between the two series. Furthermore, if the
cointegrating vector is equal to [—1, 1), then the resulting cointegrating series corresponds to the

monthly ex-post realized variance risk premium, VRP;, as defined by Bollerslev et al. (2009)*!. The

"Note that VRP; is different from the true latent variance premium VP, in (1)-(4), unless d = 1 and RV, =
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latter argue that VRP; may be viewed as bet on pure volatility; as such it is reasonable to expect
that the measure is closely linked to risk VP;. Bollerslev et al. (2009) and Bollerslev et al. (2013)
also present evidence that VRP; can predict aggregate market returns, which is further motivation
for considering the measure to be a relevant instrument in our framework.

Besides the cointegrating relation between RV, and VIX f, we expect there to be a long-run
relation between RV, and BV, as both series capture the monthly integrated variance of stock
returns over the past month. Following the arguments in Barndorff-Nielsen and Shephard (2004),
Andersen et al. (2007), and Huang and Tauchen (2005), the cointegrating relation between RV and
BV, represents the contribution of price jumps to the variance, if the cointegrating vector is equal
to [1, —1)'. For instance, Andersen et al. (2007) find that the jump component exhibits a much
lower degree of persistence than the two series RV, and B~Vt, providing evidence for a fractional
cointegration relation. Jumps are closely related to VPy; for instance Bollerslev and Todorov (2011)
demonstrate the the variance premium can be decomposed into a diffusive part and a discontinuous
(jump) element. We thus anticipate jumps to be a relevant instrument for risk.

We investigate the potential cointegration relation by a restricted version of the co-fractional

vector autoregressive model of Johansen (2008, 2009) and Johansen and Nielsen (2012), given by

8%, =g [or (1- A7) %) + YAt (1- A7) X+ (16

i=1
where X; = [RV;, BV, VIX?'. We rely on model (16) because it allows us to identify a coin-
tegration relation between the variables, while at the same time explicitly accounting for possible
dynamics at higher frequencies, which may be present due to the overlapping nature of RV, and
BV 12, Given the identification problems of the model (see Carlini and Santucci de Magistris,
2013), we initially fix the cointegration rank r = 2 and estimate (16) by restricted maximum like-

lihood. Subsequently, we test for cointegration. For d = 0.38 (SE(d)=0.03) and n = 3 we find the

IV tyr.
2The Matlab code for the maximum-likelihood estimation of the parameters of model (16) has been provided by
Nielsen and Morin (2012).
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two instruments

qi, - 1 —-1.07 0 | .
Ml o, = X,. (17)

a2 —1.07 01

qt

If we estimate a restricted version of our benchmark co-fractional model, where 6(; ;) = —1 and
0(1,2) = —1, we obtain a LR statistic of 19.99. This implies that we reject the restriction and the
parameters 0 are very precisely estimated. While statistically different, numerically go; is very
close to the ex-post realized variance risk premium VRP; of Bollerslev et al. (2009). Similarly, ¢; +
differs only very marginally from the pure jump contribution, i.e. the squared jump sizes over the
past month. More precisely, ¢1 + ~ 21211 ;.V:tf“ @Z’t{iﬂ,j? where vy ; is the size of the jth jump on
day t, and N; denotes the total number of jumps in a day.

Table 3 lists the outcomes of the GMM estimation of Regression (9), using g1, and g2 from
(17) as instruments. If we predict Tt(j_)l by VIX? using the two identified instruments and GMM
estimation, we obtain a statistically significant slope estimate of b = 1.93. This estimate is more
than seven times larger than the corresponding inconsistent OLS estimate. Hence, we find strong
evidence that there is an unobservable risk component, VP;, contained in the VIX ? series that
positively predicts future daily stock returns, and that risk-return trade-off thus is positive.

We find that for a unit increase in risk investors demand an increase in the equity premium
of approximately 2% annually. Putting this number into perspective, the value b=1.93 implies
that a large increase in yesterday’s VIX? of one standard deviation (=47.36), that is solely caused
by an increase in VP; by the same amount, implies a 91.37% increase in tomorrow’s annualized
predicted excess returns. That is, the equity premium almost doubles in reaction to such large
changes in risk. The estimated effect on excess returns corresponds to a leap from the median to
the 68th quantile of the return distribution, or it is equivalent to a return increase of 4.47 times
the annualized standard deviation of excess returns. Our results lend strong support to the new
theories of risk-return trade-off in that the variance premium captures risk and this risk is priced

in aggregate markets resulting in sizable equity premiums.
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5 Robustness

The results in the previous section depend on the adequacy of the assumptions made in the DGP.
We review these assumptions here, and present several robustness checks.

For the findings to hold, it is necessary that the instruments g ; are not irrelevant. To see this,
let gi+ = v+ in Theorem 2 and estimate Regression (9) by GMM using gy ; as instruments. Then,
as T — 00, b = O,(1). From small sample simulations we infer that estimating (9) by GMM with
an irrelevant instrument leads to an inconsistent and inefficient estimator of the risk-return trade-
off parameter. To avoid such an outcome, we suggest a simple testing procedure. Assume that
the researcher has identified a candidate instrument. Recall that the instrument follows the DGP
given in (13), qx+ = pr VPt + vy As VP, is unobserved the researcher cannot simply regress the
instrument on VP; to conduct inference on the value of p; and thus on the instrument relevance.
Instead, g can be regressed on the observed VIX % by OLS, however. By Theorem 1 it holds that
the slope coefficient of this regression is an inconsistent estimate of py, yet valid statistical inference
using a t-test can be carried out. Thus, relying on a simple OLS t-test the researcher can infer
whether the instrument is statistically irrelevant.

Applying this approach to the two instruments identified in Section 4, we find no reason for
concern. Regressing ¢1; on VIX f, the corresponding t-statistic, ¢;,, is equal to 4.49. The jump
instrument is thus a relevant instrument. Carrying out the same analysis for g2 ¢, we find the respec-
tive value for ¢5, to be equal to 26.56, suggesting that also the variance risk premium instrument
is strongly relevant.

Besides being relevant, the instruments gj; further need to be valid. For an instrument to be
valid, it may not be correlated with the residuals of the GMM regression of Equation (9), e;41. This
implies that it may neither correlate with Ef (IV4¢447) nor with &44. In simulations we generate
an instrument with innovations vy ; = %kEf(IVt7t+T) + pt, where gy is an i.i.d. sequence. If kj # 0,
this instrument is invalid as it violates the former assumption. We find that relying on such an
invalid instrument leads to the same outcome as when estimating Regression (9) by simple OLS,
i.e. standard inference is valid, but the risk-return trade-off parameter estimator is inconsistent.

Alternatively, consider an instrument that violates the latter assumption, i.e. it is linearly related
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to unexpected returns &11. In practice, using such an invalid instrument should be avoided at
all costs. From our simulations we conclude that the size of a t-test on the significance of the
risk-return trade-off coefficient is approximately 100%. The power of the test is also close to 100%
in most instances, yet in extreme cases it may drop down to as low as 31.42%. The estimation of
(9) by GMM further is strongly inconsistent.

A common approach to test for the validity of an instrument is to rely on Sargan’s [J test

(Sargan, 1958). Corollary 1 summarizes the asymptotic behavior of the J test for our DGP (1)-

(4).

Corollary 1. Let VP;, VIX?, rge), and Ef (IV41) be generated by (1)-(4). Assume there exist

K instruments, generated by (13). Estimate the following second-stage regression by OLS
e =Qw+v, (18)

where € is the vector of regression residuals from estimating Equation (9) by GMM. w is a (K +1)

OLS coefficient vector and v is a vector of innovations. Compute the uncentered R? of Regression

<>
<

(18) as R =1 —

. Define a test statistic for the validity of the instruments as

(e}
o

J =TR:. (19)

Then, as T — oo:

K-—1
T 537 ),

j=1
where X?(l) are K — 1 independent x?(1) distributed random variables. The weights \; are the
eigenvalues of the (K x K) matrix AYVZMAY? | which are defined in Appendiz E in Equations

(E6) and (E13), respectively.

A proof of Corollary 1 can be found in Appendix E. The corollary shows that even though the true
predictor VP; is not observable, we can still test whether g, ; is a valid instrument. The statistical
inference on the [J-statistic can be based on simulated p-values, following the approach suggested

in Jagannathan and Wang (1996).
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For the two instruments that we identified for our data set in Section 4, the implied J-statistic
in Table 3 is equal to 1.85. The corresponding simulated p—value is 0.44. We thus strongly fail to
reject the null hypothesis and conclude that the jump instrument and the variance risk premium
instrument are valid.

The adequacy of the proposed GMM approach further hinges on the assumption that the
instruments are I(0). In practice, it is fairly straightforward for the researcher to verify this
condition. For example, the integration order of the instruments can be estimated by relying on
the semiparametric approaches in Section 2 (see Shimotsu and Phillips, 2005 or Sun and Phillips,
2004); based on these estimates the null hypothesis that d = 0 can be evaluated. Alternatively,
one can rely on hypothesis tests such as e.g. the KPSS test (Kwiatkowski et al., 1992). Since we
identified our instruments in Section 4 by the co-fractional model, we can rely on a third alternative
here. Johansen (2008) states that model (16) has a solution and ¢; = 'X; ~ I(0) if the following
conditions are satisfied. Firstly, the cointegration rank r needs to be smaller than 3. The value of
the likelihood-ratio (LR) statistic of Johansen and Nielsen (2012) that provides a test for Hyp : r < 2
against r < 3 is equal to 2.76; thus we fail to reject the null hypothesis. Secondly, it must hold that
l¢' (Isx3 — > iy T3) 01| # 0. In our estimation this value is equal to -1.57, i.e. different from zero.
Thirdly, the roots ¢ of the characteristic polynomial |(1 — ¢)I3x3 — ¢f'c — (1 —¢) > '] = 0
must be either equal to one or lie outside a complex disk C;. Figure 2 shows that all roots fulfill
this final condition. Hence, ¢; are are integrated of order zero.

Our DGP further presumes that the variance premium is the only predictor of excess returns.
This may be a rather stylized representation, since the extant literature suggest that other factors,
such as e.g. the dividend-price ratio or the cay factor (see Lettau and Ludvigson, 2001) offer some
return predictability. If there are such omitted factors, they are part of the error term &1 in
(3). As a result, {41 may be serially correlated. Our derivations in Appendix F show that as
long as &1 remains independent of VP, and admits a linear representation with one-summable
coefficients, our GMM estimation results continue to hold. The estimator for the risk-return trade-
off is consistent, and standard inference can be carried out. Only the standard errors need to be

adjusted to allow for serially correlation. Table 3 reports the robust HAC standard errors for our
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data. The risk-return trade-off remains significant.

Alternatively, it is perceivable that the potentially omitted variables in &4 are correlated with
VP;. In this situation, the reported GMM estimates may be biased. Thus, we need to confirm
that &.41 is not correlated with VP,. Note that the J-test from Corollary 1 may be viewed as a
test of the joint null hypothesis that VP; is orthogonal to Ef (IV4t47), that VP, is orthogonal to
unexpected returns &1, that vy is orthogonal to Ef([VttJﬁ), and that vy is orthogonal to §41,
which we fail to reject for our data with a p—value of 0.44. Appendix F shows that the results of
the J—test continue to hold, even if &1 is not i.i.d. We may thus conclude that there seems to
be no evidence in the data that potential omitted variables affect our results.

Finally, our DGP suggests that the observed predictor, VIX ?, is a fractionally integrated process
I(d). In Section 2 we present evidence for our data set that suggests that both, VIX ? as well as
EP(IVy4y,), are indeed I(d) processes. Of course, these are empirical findings and thus possibly
prone to a small statistical error. As a thought experiment, assume that instead of being I(d), the
variance process is autoregressive with roots very close to the value of one. Such a process may
have a similar autocorrelation structure as the one presented in Figure 1(iii), but it leaves VIX?
an I(0) process. Yet, even if this were the case, all econometric results from Theorems 1 and 2 and
Corollary 1 would be robust to this. Our findings are based on the assumption that 0 < d < 1/2,

thus including the I(0) representation for VIX?.

6 Long-Horizon Return Predictability

If the relation between excess returns and the lagged variance premium in Equation (3) holds for
daily data, as our results so far suggest, we would expect it to hold also for longer horizon returns.
That is, we can assume

T’Sr)h =ap+ By VPt + iin (20)

We find consistent estimates for parameters of this long-run relation by estimating the regression

rgi)h =ap+by VIX ? +egyp, by our proposed GMM approach, relying on the instruments ¢; ; and g2 ¢
in (17). We measure cumulative returns 'rii)h by %Z?:l ngi)w where rii)z are the log excess returns

defined in (8). Given the overlapping nature of the cumulative returns, inference will be based on
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Hansen and Hodrick standard errors as is commonly done in the literature (see e.g. Campbell et al.,
1997).

Figure 3(i) plots the estimated prediction coefficient b,. The estimate shows a steady decline
from the initial value of 1.93 as the horizon h increases. For all horizons of up to 126 days, i.e. six
months, the coefficient remains statistically different from zero at a significance level of 5%. For
horizons one month (h = 21), three months, and six months, respectively, we find 6h:0.57, 0.42,
and 0.31. These numbers are qualitatively very similar to Bollerslev et al. (2009), albeit somewhat
larger for h = 21. Thus, for a unit increase in today’s risk V Py, the investors demand an immediate
increase in tomorrow’s equity premium of roughly 2%, but the effect of the same increase on the
equity premium a month later is only 30% of this number; three months later it is merely 22%,
and six months from now only 16% of the initial increase. We conclude that long-run excess return
expectations are not strongly impacted by shocks to VPy, but still significantly so.

We further empirically investigate relation (20) in relatively tranquil periods compared to tur-
bulent times. To that end, we include a dummy variable in the GMM regression to capture the
Financial Crisis from February 27, 2007 to March 2, 2009'3. First we look at the estimated risk-
return trade-off parameter in ‘normal’ periods, where most likely overall market risk is lower.
Compared to the entire sample period, the estimated coefficient drops significantly initially, but it
decays slower over horizons, as Figure 3(ii) shows. The estimated effect remains small and statis-
tically significant for all horizons from one day to six months. A possible interpretation of these
findings is that markets are generally less nervous during ‘normal’ times. The investors do not
demand an immediate high compensation in tomorrow’s returns for higher levels of risk, but such
a shock does lead investors of all horizons up to half a year to require a modest increase in the
equity premium. Conversely, as Figure 3(iii) shows, in crisis periods investors react in the opposite
way. Short-term estimates Bh are very large and significant up to the horizon of roughly one month.
That is, for the same increase in risk as during ‘normal’ periods, the immediately required equity

premium in turbulent times is much larger, for instance equal to 3.54 for the next day. The effect

132007/02/27 is the start of the official crisis timeline of the Federal Reserve Bank of St. Louis FED
(https://wuw.stlouisfed.org/financial-crisis/full-timeline) corresponding to the Freddie Mac Press Re-
lease. 2009/03/02 corresponds to the U.S. Treasury’s and Federal Reserve Board’s announcement to participate in
the AIG restructuring plan; one day later the two launched the TALF program; seven days later the S&P 500 closed
at the low point of 676.53.
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tapers off relatively quickly, however, becoming insignificant for horizons longer than one month
and shorter than approximately 3.5 months. In the long run for h > 75, the effect is very small but
significant.

The implied predictability of excess returns at different horizons h is equal to

72

52

R2 — hAUVP’ (21)

h &2
r,h

where 6f’h is the sample variance of cumulative returns and &%/P is the sample variance of the
variance premium. As VP is latent, the sample variance cannot be computed. Nevertheless, we
can gauge how predictability evolves over different horizons for hypothetical values of 6’%,13. Figure
4 summarizes the behavior. Independently of the true value of &%,P, we find that predictability
increases (not entirely monotonically) from horizons of one day to h = 82 days and decreases
thereafter, showing a hump-shaped pattern. This initial increase in predictive power is also found
by for instance Drechsler and Yaron (2011) for the first three months. Interestingly, we find that
for any value of the 63,5, the predictability is maximized at almost exactly four months. This is in
line with the findings for the U.S. market in Bollerslev et al. (2009). The evidence is also in line
with the international evidence provided by Bollerslev et al. (2014) who find that R? is maximized
at a four-month horizon for many of the global markets. We conclude that the variance premium
is a good predictor for the equity premium at short and intermediate horizons; for long-horizon

returns its predictive power decays.

6.1 Comparative Predictability

Much empirical work has been dedicated to the analysis of the return predictability implied by VP,
(see references in Section 1). To the best of our knowledge the methodology of previous work differs
substantially from the methods proposed in this paper. It is common in the literature to firstly
find an estimate for the integrated variance IV 4 (or the quadratic variation); realized measures
such as RV; and BV} are particularly popular. Secondly, a model for the dynamics of IV, is
specified and successively estimated, producing estimates for the latent Ef (IVi¢t47). An estimate

for the variance premium is then obtained by subtracting the estimate for Ef (IVi4qr) from VIX %
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Finally, this estimated variance premium, VPy, is used as a lagged predictor in a return regression,
typically estimated by OLS. Naturally, it is to be expected that the estimation error and the model
uncertainty inherent in VP, will impact the OLS estimate for the risk-return trade-off. Relying on
the proposed GMM approach instead, we can avoid this problem.

We compare our estimation approach to the ones common in the literature. One of the most
popular models for variance dynamics is the martingale model, which has first been employed by
Bollerslev et al. (2009). In this case the latent E (IV;,,) is simply replaced by RV;. This model
has been criticized since the dynamics of RV; do not seem to resemble martingales. Instead, the
HAR-RV model of Corsi (2009) has been found to fit the realized variance dynamics particularly
well. It is an autoregressive model of the order 22 for daily realized variance measures with restric-
tions on the parameters. For our data, we estimate the HAR-RV for the one-day realized variance
measures (including the overnight return), and form expectations for the variance over the next
month from this model and the estimated parameters. Drechsler and Yaron (2011) among others
follow a different approach, suggesting that realized monthly variances can be described as linear
functions of the previous month’s variance and VIX % We replicate this approach with our data,
estimating the regression R~Vt+22 =y + 7 VIX f + 72R~Vt + usy92 and forming corresponding ex-
pectations. Given that long-memory models seem to fit the variance dynamics well, we lastly also
estimate an ARFIMA model for the realized series. Again, we estimate the model for the one-day
realized variance and bipower variation, and successively form expectations for the variance over
the next month. The information criteria (BIC and AIC) both support a pure fractional noise
specification, ARFIMA(0,0.39,0) for daily realized variances and ARFIMA(0,0.38,0) for the daily
bipower variation.

Having generated an array of different estimates for Ef (IVit4s), we construct the estimated
variance premium VP, and estimate a predictive return regression by OLS. Assuming that the
sample variance of the true latent VP, is approximately equal to the sample variance of the estimate
VPt, i.e. Gyp = 0p, Wwe can compute a relative R? measure as

2 72 A2 a2 72
RP Rh,GMM bh,GMMUVP/Ur,h - bh,GMM
h pr— = ~ .

~

R2 b2 52 /52 B2 (22)
h,OLS h,0LS? ‘;P/Ur,h h,OLS
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The measure RPj is plotted in Figure 5 for different horizons h. The proposed GMM estimation
approach outperforms the competing models in the sense that it implies a stronger return pre-
dictability in sample. At almost all horizons the ARFIMA models imply the lowest comparative
R?, resulting in a maximum RP;, = 39.19 at the horizon of roughly three months. Somewhat more
predictability is implied when variance expectations are derived from the Drechsler and Yaron
(2011) regression, but still substantially less than the GMM method. The HAR-RV model for
most horizons performs better than the two previous approaches, nevertheless still producing RPj,
measures that vary from 1.48 to 12.06. Overall, relying on the BV, measure relative to the RV,
measure for return variances results in a lower predictive power. Investigating the statistical sig-
nificance of the slope estimate Z;h7o s, we confirm that none of these models produce an estimate
VP, that significantly predicts returns at a 5% level, apart from the initial one to seven days.
The only OLS approach that has a predictive power that comes close to the GMM method,
especially in the long run of approximately half a year, is when VP, is the result of a martingale
model for realized variances. Nevertheless, the GMM method still produces a 38% increase in the
fit relative to the martingale model for RV; at a short horizon of h = 8, and a 23% increase at
the four month horizon (h = 82). The martingale models are also the only competing models that
result in a statistically significant slope estimate for all horizons from one to 126 days. This is an
interesting finding given the criticism that the model does not represent variance dynamics well.
Yet, the martingale is the only model that produces a proxy for EX' (1 Vit4-) without estimation.
We conclude therefore that model uncertainty does not impact the discovery of predictability much.
On the other hand, the estimation error that is contained in all of the other competing models seems

to impact predictability regressions rather severely.

6.2 Out-of-Sample Predictability

Our results so far suggest that our GMM approach produces more precise estimates for the risk-
return trade-off parameter 3, resulting in a better in-sample fit relative to the traditional approaches
from the literature. We have shown that these estimates do not require observations on risk VP;.
However, to generate out-of-sample (OOS) forecasts for future excess returns, we need an observable

measure for VP;. We compute cumulative return forecasts as f% )S +n = an+bp VP, where Tig is
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the number of in-sample observations. Estimates a; and by, are obtained by in-sample cumulative
return GMM regression on VIX ? , relying only on data up to Tyg. VPTIS is the variance premium
proxy resulting from one of the models described in Section 6.1. Obviously, our ‘clean’ estimate
for the risk-return trade-off parameter then scales not only the true latent variance premium VP,
but also the estimation and model error inherent in the proxy VP;.

For the first h—step ahead prediction, we consider the trough of the Financial Crisis on 2009/03/02
as the end of the in-sample period. The remaining OOS forecasts are produced with a rolling-
window approach. We first evaluate the OOS predictions in terms of efficiency, that is we analyze
the trade-off between the bias in the level of the forecast and the uncertainty in the forecast, which
we measure by the root mean squared error (RMSE). For the majority of the 126 horizons, the
lowest RMSE is achieved when VPTIS = VIX %I = B~VTIS. The RMSE ranges anywhere from
17.65 for h =1 to 1.49 for h = 126, continuously decreasing as h increases. To put these numbers
into perspective, we contrast these findings to the RMSE from a historical mean model as in Welch
and Goyal (2008). We always achieve a higher efficiency; the reduction in RMSE relative to the
historical mean model is between 1% and 8.5%, where the lowest gain is at A = 1 and the largest
at 81 days, which again corresponds to a horizon of roughly four months.

We compare these forecasts, where VPTIS = VIX %I P B~VTI ¢, to return predictions from the
traditional OLS approach. More precisely, we produce a competing set of OOS forecasts, where
the estimates aj, and by, are obtained by in-sample OLS estimation, replacing VP; by a proxy VP;.
Figure 6 shows that the suggested GMM approach leads to a forecasting efficiency gain at almost
all horizons. The gain relative to all OLS models is again maximized at a horizon of four months.
At h = 81 days our approach leads to a reduction in RMSE of 11% relative to the OLS model
with VP, resulting from the Drechsler and Yaron (2011) model for BV;. Just like in the in-sample
analysis, the only serious competitors from the OLS models are the martingale models. For few
intermediate and the very long horizons, we find a very small improvement in RMSE from the
latter two models. Investigating this further, we find that for these horizons the OLS models result
in a lower average forecast error, but higher forecast uncertainty.

As a last step we analyze how much OOS predictability the models imply. That is, how
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much variation does the forecast produce relative to the variation of cumulative returns? Figure

)/ Var(rgw6 ) ). We observe that the models where

7 plots the OOS R-squared, R2005 = Va"(f(T T5+h

€)

1s+h
the risk-return trade-off parameter is estimated by in-sample GMM produce more volatility in
the forecasts, which is necessary to match the variation in realized cumulative returns. For most
horizons, the maximal forecast variation is implied when VP, follows from the ARFIMA models and
£ is estimated by GMM; this is closely followed by the HAR-RV and GMM estimation. Thus, on the
one hand models that presumably fit the dynamics of realized variances best, generate estimates for
VP, that best match the variation in returns. On the other hand, these ARFIMA models for V P,
combined with in-sample OLS estimation of 5 have the worst OOS fit. Hence, in the OLS framework
the large predictor volatility, which is needed to produce sufficient variation in the forecast, at the
same time harms the in-sample estimation of the risk-return trade-off parameter severely. This can
also be seen by looking at the martingale models. With GMM in-sample estimation they produce
rather little forecast variation, meaning that VP, is not volatile enough. Yet, the small variation
in VP, leads to the relatively most accurate OLS estimates of 8. As before, we conclude that

the estimation error strongly biases the OLS estimation of the risk-return trade-off, and that the

proposed GMM estimation approach can help alleviate these shortcomings.

7 Risk Aversion or Economic Uncertainty

Up to this point, we simply refereed to VP as risk. As mentioned in Section 1, there are disagreeing
views in the literature on whether the variance premium captures economic uncertainty or risk
aversion. The models of Drechsler and Yaron (2011) and Bollerslev et al. (2012) are cast in the long-
run risk-type framework pioneered Bansal and Yaron (2004). They imply that VP; is intrinsically
related to economic uncertainty. Representative agents with recursive utility are assumed to have
a strong preference for an early resolution of uncertainty and thus dislike increases in time-varying
economic uncertainty. These two assumptions are necessary to produce a positive time-varying
variance premium. In contrast, within an external-habit type framework established by Campbell
and Cochrane (1999), Bekaert and Engstrom (2010) show that VP, is linked to aggregate risk

aversion. More precisely, they model consumption growth as being driven by good and bad shocks
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and an increase in the relative importance of the former (latter) shocks decreases (increases) the
risk aversion. This time-varying importance of different shocks is also what generates the positive
time-varying variance premium. In a similar spirit, Bekaert and Hoerova (2016) assume that the
stock-return distribution has three different states: good, bad, and crash. In their model, an
increase in risk aversion implies a higher weight on the crash state, which in turn leads to an
increase in the variance premium. We contribute to the discussion by linking our latent measure
for VP, to popular indicators from both fields, economic uncertainty and risk aversion.

As VP, is a latent variable in our study, computing a correlation between the variance premium
and various measures of either risk aversion or economic uncertainty is not straightforward. Yet,
based on our previously reported econometric results, we can define the following pseudo correlation
measure. Let z; be a time series that is stationary with an integration order d < 1/2 and zero mean
E(z) = 0. If 2 is not correlated with the innovations of the instruments, Uk, We can compute a

pseudo correlation measure as

PCorr(VPy,2) = <0 1>T”2 (X'Q(Q'Q)'Q'X) ' X'Q(Q'Q)'Q'z (zz) /*

1
——Corr(VPy, z), (23)
ovp

where z is the (7" x 1) vector of elements z;. We can consistently estimate the scaled correlation
between latent VP; and z;. The scaling factor is the inverse standard deviation of VP;. The
correlation is bounded between -1 and 1; hence we know that asymptotically the measure is bounded
within [-1/oyp,1/oyp]. Since the sign of oyp is always positive, the pseudo correlation has the
same sign as the correlation itself in large samples, which helps us in interpreting the estimate. The
measure does not depend on the measurement units of z; in the limit; we can thus compare the
pseudo correlation across different economic and financial series. Under the null hypothesis that VP,
and z; are unrelated, it further holds that the pseudo correlation converges to a normal distribution
with zero mean at the standard rate 7-1/2. The proof follows easily from the derivations in

Appendix D and Lemma 1. Yet, the asymptotic variance depends on unknown nuisance parameters,

1411 practice, we subtract the time-series average from all measures z, that we consider.
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which is why we conduct inference based on bootstrap confidence intervals.

As a point of reference, we first compute P/Co\rr( VP4, z), where z; are all the commonly used
estimates for VP, that we discussed in the previous section. Table 4 reports the findings. All
pseudo correlations are positive and strongly statistically significant. We find the highest correlation
estimate of 5.13x 1072 for P/Co\rr( VP, VPt) if VP, results from the martingale model for the realized
variance, that is when Ef (IV4447) is merely replaced by RV,. Given our previous findings and
the fact that one of our instruments is closely related to this estimate for VP, this result is not
surprising. In what follows, we refer to this value as the benchmark correlation. The lowest pseudo
correlation of 2.86 x 1072 is found if EX'(IV;4.,) is replaced by the ARFIMA model for BV.

We now turn to popular indicator series for economic uncertainty. A measure that is designed
to capture the uncertainty in overall economic activity is proposed by Bali and Zhou (2016). It is
the conditional variance of the Chicago Fed National Activity Index, CVopnar. Positive (negative)
values of the index signify that the U.S. economy is growing at a faster (slower) rate relative to
its historical trend. As in Bekaert and Hoerova (2016), we compute the conditional variance as
a GARCH(1,1) prediction of the index. The pseudo correlation between CVopyar and VP is
1.74 x 10~2. While it positively correlates with the latent variance premium, we cannot reject that
the correlation is statistically insignificant, however. Whereas CVopnar is based on one underlying
economic indicator, the macroeconomic uncertainty series MUS®, where i = {1, 3,12} months,
of Jurado et al. (2015) merge the information of 132 i-period conditional volatilities of mostly
macroeconomic indicators. We find PCorr( VP, MUS®) = 1.49 x 1072, 1.46 x 102, and 1.33 x
102 for conditional variances over the next one month, three months, and one year respectively.
The correlations are positive, of considerable magnitude relative to the benchmark correlation,
and statistically significant. The fact that the correlation is strongest for the one-month series is
to be expected, since our variance premium is the difference between risk neutral and objective
expectations of integrated variance over the next 30 days. Bekaert et al. (2013) define a further
uncertainty measure, UC, by isolating the objective conditional variance component from the VIX.
Thus, this measure is specifically related to the uncertainty in financial markets. As before, we

find a fairly high positive correlation between this measure of economic uncertainty and VP,
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with P/C\orr(VPt, UC) = 2.82 x 1072, The estimate is statistically different from zero. Finally,
economic uncertainty may also be closely related to uncertainty about economic policy. The US
Economic Policy Uncertainty News-Based Index, FPU, computed by Baker, Bloom, and Davis is
based on newspaper archives from Access World New’s NewsBank service. The newspapers range
from large national papers such as USA Today to small local newspapers across the U.S. We find
a statistically significant positive pseudo correlation of 1.45 x 1072, In contrast to EPU, which
focuses on overall economic policy uncertainty, the Equity Market-related Economic Uncertainty
Index, EM EUI, computed by the same authors, is based on news pertaining to equity markets.
The pseudo correlation between VP; and EMFEUI is 1.37 x 1072 and it is strongly statistically
significant. We conclude that we find considerable evidence that the latent measure VP; positively
covaries with economic uncertainty. All pseudo correlations are positive and of sizable magnitude
relative to the benchmark correlation, amounting to 26% to 55% of the benchmark correlation.
All measures of economic uncertainty, with the one exception of CVopnar, have a statistically
significant correlation with VP;.

Next we look at common indicators for aggregate risk aversion. From Bekaert et al. (2013) we
rely on their risk aversion series, RA, which is the difference between VIX and their uncertainty
component UC. The result is rather disappointing. The pseudo correlation is of substantial magni-
tude, equal to —2.46 x 1072, but it has the wrong sign and it is statistically insignificant. The RA
series is monthly and ends in August 2010. Interestingly, if we compute the benchmark correlation
for this first part of the sample at the same monthly frequency, we also find a negative pseudo
correlation. This shows that our latent VP; does not simply replicate the information contained
in VP; from the martingale model for RV ;. Froot and O’Connell (2003) compute the State Street
Investor Confidence Index, SSICCON F'3. It is a measure of investors’ risk tolerance or sentiment
and it is based on the theory that increased (decreased) holdings of risky assets in international
markets signal a higher (lower) risk appetite. If VP, represents risk aversion, we expect its pseudo
correlation with SSICCONF to be negative. The estimate in Table 4 is indeed negative, but
its value of —3.70 x 1073 is very small relative to the benchmark value and it is not statistically

different from zero. The Credit Suisse Risk Appetite Index, CSRAI, the Standard Chartered Risk

5For an overview of some of these indices, see also Illing and Aaron (2005).
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Appetite Index, SCGRRAI, and the Westpac US Risk Aversion Index, W PFSI, which employs
the IMF methodology to identify risk aversion, are all examples of practitioners’ indices for risk
aversion computed by aggregating information from financial markets, such as e.g. bank-sector beta
and the TED spread. The pseudo correlations with these three series are 7.11 x 1074, 1.95 x 1073,
—1.70 x 1073, respectively. Thus, each correlation has the wrong sign, is very small relative to
the benchmark, and is statistically insignificant. The Westpac Risk Aversion Index, WPRAI, is
another indicator that takes a global perspective based inter alia on movements in major currency
exchange rate markets and bond spreads in emerging economies. Here we find the expected positive
significant pseudo correlation of 8.70 x 1073. Note however that the estimate is decidedly small,
amounting to only 17% of the benchmark correlation. The Global Risk Aversion Indicator from
the European Central Bank, RAFEC B, combines the information from five currently available risk
aversion indicators by computing the first principal component. The pseudo correlation between
this encompassing measure of risk aversion and VP; is positive, strongly statistically significant,
and of reasonable magnitude equal to 1.97 x 1072, Finally, financial market stress has been linked
to the concept of risk aversion. In periods of stress, such as e.g. the recent Financial Crisis, we tend
to observe an increased demand for safe securities. This can be interpreted as a sign that investors
are less tolerant towards risk. Increased risk aversion has also been described as the transmission
mechanism of financial stress (see e.g. Kumar and Persaud, 2002). When correlating VP, with the
Global Financial Stress Index from Bank of America Merrill Lynch, GFSI, we find the expected
positive estimate that is significant and with a value of 1.66 x 10~2 of notable magnitude relative to
the benchmark. Another indicator for financial stress with a more U.S.-based focus is the St. Louis
Fed Financial Stress Index, ST LFSI, which is the aggregate of seven interest rate series, six yield
spreads, and five other indicators. We find a significantly positive, albeit rather small pseudo cor-
relation of 9.45 x 1073. Interpreting the latter two pseudo correlations as evidence in favor of the
hypothesis that VP, captures risk aversion is not without controversy, however. While linked to
risk aversion, financial stress can also be viewed as an indicator of economic uncertainty, or even
Knightian uncertainty, as argued among others by Bekaert and Hoerova (2016). To summarize, we

do not find strong convincing evidence that our latent VP; captures risk aversion. Most correla-
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tion estimates are either very small, statistically insignificant, have the wrong sign, or z; is not an
irrefutable measure of risk aversion. The only exception to this rule is the correlation between VP,
and RAECB.

Our inference based on the pseudo correlation measure in (23) relies on the assumption that
2z is integrated of an order d < 1/2. Whereas we find no convincing evidence that the economic-
uncertainty indices have an integration order greater than or equal to 0.5, the outcomes for some
of the risk-aversion series are less clear. In particular, CSRAI, WPFSI, and STLFSI seem to
have a d > 1/2. For robustness, we also compute @( VP, A%2) and @(VPt,Azt) for
these measures'®. The estimates hardly change and their values remain very small relative to

the benchmark pseudo correlation. This robustness exercise therefore does not alter our general

conclusion that VP; seems to be related to economic uncertainty, yet not necessarily to risk aversion.

8 Concluding Remarks

This paper presents a novel stylized DGP that accounts for many theoretical and empirical features
of the risk-return trade-off literature, such as for instance the persistence in the observed risk
measure VIX and the stationary noise-type behavior of excess aggregate market returns. Assuming
that the researcher estimates a misspecified, unbalanced, and endogenous predictive regression to
gauge the risk-return trade-off empirically, where the regressor is an imperfect measure of the true
risk measure VP, we show that OLS estimation results in an inconsistent estimator for the trade-off
parameter. Nevertheless, standard statistical inference based on t-tests remains valid. To avoid
the problem of obtaining an inconsistent estimate for the trade-off coefficient, we propose an GMM
estimation method. If the econometrician has access to a valid and relevant 7(0) instrument, GMM
estimation results in a consistent estimate for the parameter and standard statistical inference on
predictability can be carried out.

We apply the methods outlined in this paper to the investigation of the risk-return trade-off
and predictability of daily excess returns on the S&P 500 stock market. Relying on a fractional

cointegration analysis, we provide one suggestion of how I(0) instruments can be identified. We find

16For the sake of conciseness, we omit the robustness results here, but they are available from the authors upon
request.
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evidence of significant return predictability and a positive risk-return trade-off, using the suggested
GMM approach. Our approach to isolate the return predictability contained in VP by GMM
outperforms traditional methods, both in sample as well as out of sample. In particular, we show
that GMM estimation is preferable to the traditional OLS methods that specify an estimate for the
latent risk VP, as it is less prone to be impacted by model uncertainty and estimation error. Finally,
we use the techniques developed in the paper to define a correlation estimator that measures the
degree of dependence between latent VP and popular indicators for economic uncertainty and risk
aversion. Our results lend support to the hypothesis that the variance premium is closely linked to
economic uncertainty.

While we specifically focus on the estimation of the risk-return trade-off parameter, the theo-
retical developments in this article apply more generally to the prediction literature with persistent
imperfect regressors. As such, we believe that we are the first to show that the persistent en-
dogenous predictor problem, where the predictor has long-memory I(d) dynamics, can be readily
solved by identifying instruments that only possess short memory, 7(0). In particular, whenever
the observed predictor may be viewed as the sum of a latent I(0) signal and a latent I(d) noise, we

can rely on the GMM estimation method proposed.
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Appendix

A TEW Estimation

Let X; = [RV,, BV, VIX?]'. Each element of X, is (asymptotically) the sum of the I(d) process
Ef (IV¢+4-) and a perturbation. We adopt the trivariate version of the modified EW estimator of
Sun and Phillips (2004) (TEW) to find the fractional integration order dp of Ef (IV;4,). The
underlying assumption of the TEW estimation approach in our setup is that the spectral density
of Xy at frequency A\ is given by

fx(\) ~DGD' + H as A — 0+, (A1)

where D = (diag[A\~¢, A~9, A~9)), and G is a positive semidefinite matrix given by gII, where

IT is a (3 x 3) matrix of ones and scalar g > 0, such that f,(A\) ~ gas A\ = 0+. His a (3 x 3)
positive definite matrix that approximates the spectral density of the perturbations as we approach
frequency zero. The perturbations may be correlated across the series.

We estimate the parameters of (Al) by maximum likelihood. From Sun and Phillips (2004) and
the application of Sylvester’s Determinant Theorem and the fundamental Lemma in Miller (1981),
we obtain estimates by minimizing the negative log-likelihood given by

1 _ _
%tr(DjH 1hjh;H 1DjIAd(X)(/\j))}'

1 — _ _
%Z{ln\m +In(1+ hH " hy) + tr(DyH ' DijIaacx)(A))) — T

j=1

(A2)

The (3 x 1) vector h; is given by h; = [\/g)\j—d, \/§)\j_d, \/g)\j—d]’, m is the size of the spectral
window, ¢; = tr(GD;H ' D;), and Ina(x)(A;) is the periodogram of the filtered series X.

B Useful Lemma

Lemma 1 will prove useful for the derivations of the results in this paper.

Lemma 1. Let a; and b; be two independent processes given by a; = ¢(L)e; and by = (1 — L)%y,
where ¢(L) = S 000 Lt with S :0qi|ds| < oo, ¢(1) # 0 and (1 — L) = S50, v Lt with ; =
L(i+d)/(T(d)T(i+1)),0<d <} and e ~ i.i.d.(0,02), ny ~ i.i.d.(0,073).

Define Z; = asby; then, T2 L 2,/5 =t N(0,1) where 63 := var[T~V23.L | 2] — &2 as
T — oo.

Proof: Let a;, by and Z; be as above and let F; be the o-algebra generated by {e¢, n, e¢—1, Nt—1, - - }-
Note that, given independence, Z; is a stationary ergodic process and that {Z;, F;} is an adapted

stochastic sequence with E[Z?] = E[a?b7] = 0202 < oo where 02 = E[a?], o7 = E[b7].

The lemma follows from Theorem 5.16 in White (2002), where we prove directly that

3 (E[E[ZolF_n]?]) ' < oo.

m=1
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First note that

(S o (S (£

i=m

Thus,

o ) oo ) 1/2 o o 1/2
Z (E [E[ZO‘-F—7YL]2:|)1/2 = Z (O’?O’% Z ¢i2 Z ’Y,’2> S <O’§O’g Z ¢i2>

m=1 m=1

oo 3 (i |¢i|> - (im) <.

m=1 =0

IN

Note in particular that Lemma 1 proves that multiplying the long-memory process by an I(0)

process reduces the order of convergence to the one of a short-memory process.

C Proof of Theorem 1

Throughout the appendices, we rely on the same notation as in the main text. Let (-) denote an
estimator and introduce the following additional notation for Appendix C, D, and E

4 VIX?
2t E (IVyir)
e a (T — 1) x 1 vector given by [es, €3 ..., er]
%) the ith unit vector
boLs laoLs, bors]’ and b = [a, 8]’
n a normally distributed random vector or scalar
p a K x 1 vector given by [p1, p2 ..., px]
3 a K x K diagonal matrix, where the diagonal elements are equal to ng
T, The autocovariance matrix at lag j.

To derive the asymptotic behavior of the estimators aprg and I;OLS, along with the associated
t-statistics, it is necessary to obtain the limit expression of the sums that define them. These are
summarized in Table C1, along with their respective convergence rates. All of the convergence
rates (see the underbraced expressions) can be found in Tsay and Chung (2000) or Hayashi (2000)
except for the normalization ratios of Y VPz and Y & 112, which follow from Lemma 1.

We start by showing the convergence results for some linear combinations. First we consider

T-1 Y a ]>_1
Yre yaf

the asymptotic properties of (%X’ X)L,

P DN AR SN S |
phm(TX X) = (phm TX X) = phmT
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Sy = ZVPt+ Z»Z’t
SN—— SN—~—

0p(T1/2)  Op(T+1/2)

S a? = ZVP?—FZZ?—F?ZVPtZt
—_—— N ———
Op(T) Op(T) Op(T1/2)
D ert = —BX 2+ Z§t+1
—_——
Op(T1/2)
> et = BEY A+ 6 28 bz
—— —_———
Op(T) O, (T1/2)
Y Tiert1 = -BY 2 -8 VPtZt+Z€t+1Zt+Z§t+1 VP,
————
OP(T1/2)

Table C1: Expressions for sums in Theorem 1.

-1
1 0
oiptod

Next, we focus on the dynamics of %e’ e. Note that

B 10
0 oYp+op

o1 1 1
plim fe/e = plim T Z €§+1 = plim T Z (»32%2 + ft2+1 - 255t+12t) = 520123 + 0? (C2)

Finally, we show the asymptotic behavior of %X’ e.

l}(/e _ l Z €t+1 _ —,B% Z Z¢ + % Z ft+1 (CS)
T T | Y xiei —5%22}2—5%2VPtZt'F%Z&HZt-F%Z&H VP,
If 3 # 0, it follows that plim %X’e = [0, —B0o%]". Conversely, if 8 =0, we find that
Iy 1 77z 2 e _ 1 77z 2 e . (1)
T /2 T11/2 PR RIS T2 T11/2 Y&z + ﬁ S &1 VP

The expression (C4) involves the random variables &1 and &4+1(VP; + z;), both of which are
strictly stationary and ergodic and fulfill the conditions outlined in Lemma 1. The term thus has a
zero mean and a constant variance. Hence, by the Central Limit Theorem (CLT) in Lemma 1 the
term converges in distribution to

N o,irjz

j=—o0

o2 0
§ C5
: (C5)

o¢(oVp +0p) ]

at rate T1/2.
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C.1 Asymptotic Properties of the OLS Estimator
Note that borg —b = (%X’X)_1 %X’e. Using the results above we find that if 3 # 0

b S 0 _|° C6
oLs=b=> | o por | T _ﬁgg,ﬁa;, ; (C6)

Pl 2
oyptop

A P > P 2 .
and therefore aprs — o and bprs — 6020‘1’02 . Conversely, if 8 =0 we find
vPTop e

. 1 -1 pl1 0 o 0
1/2 —
T/(bOLSb)(TX’X> wx'eﬁlo L ]an(O,[O (,i . (C7)
IvpTIp

2 2
ovptop

C.2 Asymptotic Properties of the Estimator of the Error Variance

Note that s? = ﬁé’é = ﬁe’e - ﬁe’X (%X’X)_1 +X'e. Using the results above we find that

if B0
10 0 2
82 E) ﬂ20—123 + Ug - [07 _60—123} [ 0 1 ‘| [ 2 ‘| = Ug + 520—12:’0_2 U‘ng (08)
o2 ptol —Bop VP P

Conversely, if 5 = 0 we find that s> Lt ag.

C.3 Asymptotic Properties of the ¢-statistics

Note that the t-statistic for a test of either hypothesis Hy : a = 0 or Hp : 5 = 0 can be written as
(%X’X)_ll,(i))_lﬂ. Using the results above we find that if § # 0

N 1
L) = tpPors (s 1e(;)
2 12 10 1\
T=Y2plimt, = a<02+ﬂ2012320w)2> [1, 0] 1
oypt+0op 0 240 0
= = (C9)
2 2 —1/2 1 0 0 —1/2
T2 plimty, = fo (2+ R — ) 0,1
pimty = A\t ) P e 2 ||
2
ﬁUVP (C].O)

\oR(oYp +0B) + Boboty

Conversely, if 8 = 0 we find that t, 2o /+/o?, which readily follows from (C9) above. For ¢, we

find that

A 1 L 14D o 1 1 _
ty = TY2, (bors —b) (2] (= X'X) o) 2 B N (0, I 1) = N(0,1) (C11
b (2)( oLs —b)( (2)(T ) (2)) U%/P +0_}23 ag(o_%/P +0123) (0,1) ( )
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D Proof of Theorem 2

As for the proof of Theorem 1 in Appendix C, it is necessary to obtain the limit expression of the

sums that appear in the definitions of the GMM estimates and the associated t-ratios. Most of

these expressions are summarized in Table C1. The remaining sums can be found in Table D2.

Z k.t
Z q;f,z
Z qk,tqj,t

Z €t+14k,t

Z%&Qk,t

pr >, VP + ka,t
——
0,(T1/2)
p: > VP? 4+ E ’Ui,t +2 p; Z VP ¢
——
Op(T) 0, (T1/2)
prps 3 VP + pe 3 VPwje + 0 0 VP ke + ) Uk st
—_———
Op(T1/2)
—Bpre Y. VPizi + pr > &1 VP — B Z ZtUk,t + thﬂvk,t
—_—— ———
OP(T1/2) OP<T1/2)
e S VPE 4+ 3 VPwrt + pi O, VPize + 3 2kt

Table D2: Expressions for sums in Theorem 2 with j # k; k=1,--- , K.

We start by showing the convergence results for some linear combinations. First we consider the

asymptotic properties of (%Q’Q)*l.

T-1 X aqg Do a2 SR/
. . , Sqie D4ty Y@zt o 2 QadK
plirn(TQ'Q)_1 = (plim TQIQ)_l = | plim T DGt 2. G2tqit D q%,t e DL Q2tqK
L Doakt Do qKaqie Do qKtd2t oo D qi,t

|

10

0 pployp+3,

-1

-1

1 0
0 x-!_cE=lee’= 1 | (D1)
v 14+02,p'5,!
vpP 2y P

where the last step follows by the Sherman-Morrison Identity. Next, we focus on the dynamics of

+Q'X. Note that

T-1 Z Tt
1 1 D@t 2T Lo
plim TQ/X = plim 7 E g2t Z P22t | = l 0 o2op ] ) (D2)

| DKt Do 4K T ]

Finally, we show the asymptotic behavior of %Q’ e.
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. . D1t —BF Yz + 7 2 a1
TQ’e =7 Yarierr1 | = | —Br X aeaz T2 @l | (D3)
L D AK i1 ] L —5% YAk + % > ar et |

If B # 0, it follows that plim %Q’ e = 0. Conversely, if 5 =0, we find that

77z 2 Eel 77z 2 et
. . ﬁ >qribitt . ﬁ > p1VP&y1 + ﬁ > v1€ita
?Q'e = 773 Tim @21 | = F73 717z 2 P2 VP + 7imm D v24e41 (D4)
i ﬁ >k .ty | i ﬁ Y pr VP& + ﬁ S vk i1 ]

The expression (D4) involves the random variables &1 and &41(px VP + vg ), both of which
are strictly stationary and ergodic and fulfill the conditions outlined in Lemma 1. The term thus
has a zero mean and a constant variance. Hence, by the CLT in Lemma 1 the term converges in
distribution to

> 1 0
N o, L =o? D5
go:o TR0 pplotp+ 3, (b5)

at rate T2,

D.1 Asymptotic Properties of the GMM Estimator

Note that bgarar —b = (%X’Q(%Q’Q)_l%Q/X)_l +X'Q(7Q'Q)'+Q’e. Using the results above
we find that if 8 # 0

-1

5 Pl 1 0O Lo 10
beym —b — 21 o%Erlpp'ss? (D6)
(Lo bt Lo 5 [0 0,

;9 1 _ U%/PEEIPP/EJI = 1+O_%/Pp/2;1p = y
0 p Tvp 0 EU 140202, p 0 0 clp'=5lp 0 0

and therefore agpsps £ o and bamm L% 8. Conversely, if 8 =0 we find

o1
T1/2

-1

1 0
0 potp

-1
T bows - v) = (FXQFQQTFAX) X QFAQ Qe

5 10
0 potp

10
0 »1_ oE.lee’s, !
v 140,05, tp
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1+02,p'S,'p clpp'Sylp 1+02,p'S,'p
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D.2 Asymptotic Properties of the Estimator of the Error Variance

Note that s = Tl_gé’é = ﬁe’e — ﬁe’X(BGMM —b) — (bgamm — b)’ﬁX’e + (baarar —
b)’ﬁX’X(bGMM — D). Using the results above and in Appendix C we find that if 5 # 0

825(520%+o§)—<[07 —5&]{8])—([0, 0][250% >+<[0, O][; o lgD

= %0} +of (D8)

Conversely, if 5 = 0 we find that s> L O'g.

D.3 Asymptotic Properties of the t-statistics
Note that the ¢-statistic can be written as t(;) = L,(i)BGMM(Sz%L/(Z.) (#X'Q(7Q'Q)! %Q’X)_lL(i))_l/g
for a test of either hypothesis Hy : « = 0 or Hy : § = 0. Using the results above we find that if

B#0

_ 10 1 o
T2, 5o (02 + 822) 211, 0 == Y
) € P
~1/2

_ 10 0
_ 1/2
T 1/2tb £> B (Ug —+ ﬂ20.123) / <[0, 1] [ 0 1+U%/PP,2;1P ‘| [ ])

U“L/pplzglp

P 1/2
— ﬂ OypP 24, P - . (DIO)
(0 + B20p) (1 + oy pp' 2, p)

Conversely, if 8 =0 we find that t;, 2 a / Ug, which readily follows from (D9) above. For ¢, we
find that

1/2
. 1 1 1 _ 1/s D obop' St p
ty = TY?,, (b — )% (=X'Q(=Q QX)) 12 3 n VPE v
b (2) (b —b)( (2)(T Q(TQ Q) 7Q )" ) 21+ oBpp' S, Tp)
4 /2—1 1 2 /2—1
~ N0, JVP,z) U/pfl of +4UVP/P710 P =N(0,1) (D11)
Ug(1+0vpp 2,p) oypP' Y, p
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E Proof of Corollary 1

For convenience introduce the following additional notation for Appendix E

/
q = a K x1 vector given by {Z a1t qu}t, cey Zqut}

>ai, Squeder - D QadK.

Qi .43 c Q2K
B = a K x K matrix given by | ) ! ) .

DA DL AR 492t - - Zq%{i
S = B-qd/(T-1)

Vi

Zq? = a K x 1 vector given by {Z q1,6%¢, quﬂgajt, e Zq;{,txt]
!
Zq? = a K X 1 vector given by [Z q1,t€¢+1, ZQQ,tet_A'_l, R ZqK7tet+1}

'y](-aXb) = The autocovariance of a series a; x b; at lagj.

Recall that the test statistic in Corollary 1 is given by J = T(1—v'v/é&'é), where & =y — Xbausur
and v = & — Q. Note that we can re-write the J—statistic as follows

J=T e—v'v _ ¢Q(Q'Q)'Q'e _ e'QL [I _L'Q'X (X/QLL/Q/X)71 X/QL} L'Qe

é'e ee T—3 o T—-3 o
T TS TS

where L is a (K + 1) x (K + 1) matrix such that LL’ = (Q'Q)~!. Since it holds that

(E1)

T—-1 q

-1 1 1 rq—1 1 -1
_ 7t 7zdSTa —759'S
(QlQ) 1 — B —_ [ T—-1 (T 1)2 T—-1 ] ,

1 —1 —1

we can write L as

L= (T—11)1/2 —rd'STY?
0 871/2

Hence, J in (E1) is the squared form of a linear combination of a (K + 1) x 1 vector and a
(K +1) x (K + 1) symmetric and idempotent matrix. We note that

1 Zﬂit
vex—| oo O Tol Y| (-1 a7 | )
— 758 72q s/ qa Yat 0 SV2(-2%fq+ Y qt)

Using (E2), we can re-write the idempotent and symmetric matrix in the definition of J in (E1)
as follows

0 0/
s (-Fars @) (- Faesa)s 2 L (B3)
(-rtars@)s (-Fars @)

I-L'QX(X'QLL'QX) ' X'QL = o1
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Next we need to find the probability limit of the matrix I — L'Q'X (X’QLL'Q’X) ' X'QL. To
that end, note that it holds that

1 1
plim TS = plim TB — plim qd = oY ppp + .. (E4)

_
(T —1)
Thus, we find the following probability limit I — L'Q’X (X’QLL/Q'X) ' X'QL
L g plim

1 , 1 - 1
WL/Q/X phm <1_‘_1X/QLL/Q/X) phrn mX’QL

T 011 0 1 o
— 1 - —1/2 1+oi,p'2]" -1/2
0 (o%ppp' +30)” Tpotp | [0 TS [ [0 otpp (0hpee +20)

g0 p (E5)
— —1/2 1402, o' 1 -1/2 |
0 I (o%ppp' +2.) " pr L gl (0% ppp + B0 /
where we have used result (D6) above. Note that the lower-right submatrix
“12 1+ 03,02 p ~1/2
M=1-(o%ppp +£,) 2 p—t L =0 L2 ppl +38,) 7Y (E6)
pPE,p
in (E5) is a symmetric and idempotent matrix of size K x K. It therefore holds that
—12 140302 p ~1/2
rank(M) = tr(M) = tr(I) — tr ((U%/PPP/ +3,) / P#d (oVppp +X0) /
1+03p,p'S)'p 0 0 -1
=K (S (otep +30) o) =K - (1)

The second part of the proof shows that (L'Q’e)/+/(1 — 3/T)s? converges to a normal distribution.
Note that

L/Qle _ (T—i)l/Q O/ Zet-‘rl _ W E€t+1 -
—ﬁsfl/zq S-1/2 Zq? —(%8)71/2@1/2(1%28&1+(%S)71/2T11/2Zq?
(E8)

Only the lower-right K x K submatrix of I-L'Q’X (X'QLL/Q'X) ' X'QL is non-zero, as Eq. (E3)
demonstrates. Thus the first scalar element of the vector in (E8), > e;y1/v/T — 1, cancels out from

J in (E1). We focus on the bottom K elements of the vector in (E8). The first part of the sum

converges to zero; that is —(%S)*l/zﬁqﬁ eyl £ 0. The second part has an asymptotic

normal distribution by the CLT in Lemma 1. That is

j=—o00

1 D = z
mzq? Ve (O,pp’,BQ Z VJ(VPX )_|_pp/a'%/PO'§ + f%o%x:, +O’§EU) ; (E9)

and hence it follows that
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1._ 1 D ~1/2
(75) 1/2WZ ¢ = (o3 ppp +30) (E10)
-1/ P 1/2
NN( (02 + B203) 1+ B2 (oY ppp + 0) pp2z VP2 (0% ppp +2,) /)~
Finally, from Section D it follows that /(1 — 3/T) 25 2+o )1/ 2 for any value of 3. Hence,
the bottom K elements of the vector (L'Q’e)/+/(1 —3/T) T 32 converge to the normal distribution
1 —1/2 = 2 —-1/2
A N 10,1+ 2722»32 (U%/PPP/ + Ev) / PP/QZ’Y](‘VPX ) (U%/PPP/ + Ev) / . (E11)
o + B%0% pt
J then is asymptotically distributed as follows
D
J = n'Mn, (E12)

where n has a K —variate normal distribution with asymptotic variance matrix
1 -1/ VPxz 1/2
A_I+Wﬁ (6% ppp +3,) prZ P (0% ppp' +3,) (E13)

Let m be the K-dimensional random vector of standard normal distribution. Then n = (AY?)'m
It follows that
J 3 m'AY2MAY? m. (E14)

Recall that M has rank K — 1 as shown above. The matrix AY/2MAY? is symmetric and positive
definite, and hence also has rank K — 1. Following the arguments in Jagannathan and Wang (1996)
we know that AY2MAY? has K —1 positive eigenvalues, A1, A2, ..., Ax_1. There exists a diagonal
(K x K) matrix A = diag(A1, A2, ..., Akx—1,0), and an orthogonal matrix J, such that we can write

AYPMAY? = J'AJ. (E15)

Finally, let 0 = Jm. Then o is standard normally distributed and hence it follows that

K-1
T B oho= 3" Nd(), (E16)
j=1

where X?(l) are K — 1 independent x2(1) distributed random variables.

The asymptotic distribution of 7 is unknown, but we can simulated p-values as suggested by
Jagannathan and Wang (1996) once the eigenvalues A; are estimated. To that end, we require a
consistent estimator of A/2MA'/?. Above, we show that the lower right (K x K) submatrix of
I-L'Q'X (X'QLL'Q'X) ! X'QL is consistent for M. An estimate for AY/2 is the upper triangular
matrix following from a Cholesky decomposition of S%(%S)*l/ 2@(%5’ )~
estimator of size (K x K) for the asymptotic variance in (E9).

, where €2 is a consistent
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We can compute €2 as the lower right (K x K) submatrix of the usual HAC estimator, i.e. of
the (K + 1) x (K + 1) estimator = ijr:iTn (%) T'j, where & is the kernel and n(T) is the

bandwidth. We define the autocovariance estimates f‘j as

1
qi,t

=
I

[1 Q-5 - QK,t—j}étJrlétJrlfj- (E17)

Nl =

qK.t

Following the previous derivations above, it is then straightforward to show that the long-run

variance in (E9) can simply be consistently estimated from the kernel estimator Q, assuming that

E(qk,tqrt—jrivi—j) exists.

F Allowing &, to be serially correlated

In this section we relax one of the assumptions of the DGP, and let § = ¢ (L)u, where gy is i.i.d.
with mean zero and constant variance. Let the coefficients of the moving average filter, ¢;, be
one-summable.

It is clear that this modification does not affect the representation of plim(%Q’ Q) ! and plim %Q’ X

in (D1) and (D2). If B # 0, it further continues to hold that +Q’e £ 0’, and hence bgasy —b - 0.
Yet, if 5 =0, we find that
> ; (F1)

0o (€) ’
L Qeln <o [ S O
) 0 (
~ D
T1/2 (bGMM _ b) SIN|o, 0 PE ,Y<EXVP)+U§ . (F2)

00 vpP
T1/2 pp' ij_oo ,ij>< ) + ngv
which implies that

eV

)
A consistent estimator for the asymptotic variance in (F2) is given by H=

T (1o N1 N e (o N e N (e N L)
(TXQ<TQQ> TQX> TXQ(TQQ) Q<TQQ> TQX<TXQ(TQQ) TQX> :
(F3)

A~

where € is the consistent HAC estimator in Appendix E. Replace the t-statistic in Appendix

D.3 for the slope by the robust t-statistic: ¢ = T1/2L’26GMM(L’(2)fIL(2))*1/2. Then, under the null
hypothesis that 5 = 0, this robust statistic converges to a standard normal distribution. Note that
if further continues to holds that s2 £ 520% + ag.

The serial correlation in & affects only the asymptotic variance of ﬁZ(Té in the derivation
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of the large-sample behavior of the J —statistic in Appendix E. In particular, (E9) becomes

1 0o B 0o
T1/2Zq? B)N <ngp/ﬂ2 Z 'YJ(VPX )+pp/ ,Y‘EVPXE) +520-1232v+0—?2v) , (F4)

j=—o0 j==—o00

for which €2 remains a consistent estimator. The asymptotic distribution of 7 continues to be the

sum of K — 1 weighted x?(1) variables.
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Tables

Table 1: Summary Statistics

The table reports summary statistics of the three variance series, excess returns on the S&P
500, and the instruments (from Febuary 3, 2000 to May 28, 2014). All variance series are in

squared percentage form and scaled by maturity.

The statistics for excess returns are annual-

ized percentages. qi; denotes the jump instrument and qo s is the variance risk premium instrument.

Summary Statistics

Autocorrelation

Average Std. Dev. 1 2 3 22
r® 0.2447 20.4558 -0.0770 10.0547 0.0233 0.0328
RV, 25.1492 40.4750 0.9972 0.9920 0.9849 0.6989
BV, 22.7706 37.8044 0.9971 0.9918 0.9844 0.6917
VIX? 43.7903 47.3600 0.9697 0.9481 0.9337 0.7473
s 0.7000 1.5949 0.9742 0.9505 0.9194 0.3404
G2t 16.6596 20.4266 0.8378 0.7153 0.6320 0.0888
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Table 2: Long-Memory Estimates

The upper panel of the table reports estimates of d using the multivariate EW estimator
of Nielsen and Shimotsu (2007) for Y; = [RV,, BV, VIXZ r
spectral window is set to m = T93%; the choice is based on a graphical analysis of the
slope of the log periodograms as suggested by Beran (1994). t4—g, t4—0.5, and t4—1 denote
the respective t-statistics of element i of Y; given by 21/m(d; —d). The lower panel of the

table summarizes the t-statistics corresponding to the null hypothesis d; = d; for i # j.

Nielsen and Shimotsu (2007) define the t-statistic as

where #;; = = 3" real {I(\;)} and I()\;) is the periodogram of a (4 x 1) vector with
elements AdiYm at frequency N\;. h(T) is a tuning parameter, which we set equal to

(In(T))" 3. The resulting statistic tq,=a; should be compared to critical values from a

ld,=d; =

standard normal distribution.

The size of the

Estimates for d

RV, BV, VIX? i
d 0.3234 0.3170 0.3961 0.1107
t4—o 2.5872 2.5359 3.1684 0.8854
taos -1.4128 -1.4641 -0.8316 -3.1146
tg—1 -5.4128 -5.4641 -4.8316 -7.1146

ta,=d, statistics with h(T) = 0.0721

RV, BV, VIX2 i)
RV, - 0.3134 -0.9900 2.1295
BV, - -1.0559 2.0591
VIX? 2.3276
r© -
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Table 3: OLS and GMM Estimation Results

The table summarizes the estimation results when the misspecified unbalanced and
endogenous regression (9) is evaluated by OLS and GMM, respectively. SE denotes
the usual standard error of the estimates that is not robust to heteroskedasticity or
serial correlation. HAC-SE reports standard errors based on HAC covariance estimation
using a Bartlett kernel that are robust to serial correlation and heteroskedastictiy. J is
Sargan’s statistic from Corollary 1. The corresponding p-value is obtained from 200,000

simulations of independent x?(1) variables multiplied by the eigenvalue estimate 5.513.

OLS Regression of (9) GMM Regressions of (9)
a 0.3520 0.3544
SE(a) 5.3775 5.5338
HAC-SE(a) 6.6770 19.2892
b 0.2678 1.9292
SE(b) 0.1137 0.2883
HAC-SE(b) 0.0960 0.8894
J-statistic 1.8536
p-value(J) 0.4380
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Table 4: Pseudo Correlation Measure

The table reports the pseudo correlation between z; and latent VP, as defined in Equation (23).
For z;, we first consider several estimates for the variance premium VPt, which are discussed in
Section 6.1. Next, we let z; denote a number of commonly used indicators for economic uncertainty
and risk aversion, all of which are described in Section 7. The latter data is obtained from the
following sources:

- EMFEUI: from https://fred.stlouisfed.org/series/WLEMUINDXD

- EPU: “EPUCNUSD Index” from Bloomberg

- CVernar: GARCH(1,1) prediction on “CFNAI” from https://fred.stlouisfed.org/series/CFNAI
- UC: “uc’-series from http://mariehoerova.net/

- MUS™: “Macro Uncertainty Series” (h = {1,3,12}) from http://www.columbia.edu/~sn2294/pub.html
- STLFSI: from https://fred.stlouisfed.org/series/STLFSI

- GFSI: “GFSI Index” (BofA Merrill Lynch GFSI) from Bloomberg

- SSICCONF: “SSICCONF Index ”from Bloomberg

- RAECB: from http://sdu.ecb.europa.eu/quickview.do?SERIES_KEY=280.RDF.D.U2.Z0Z.4F .EC.U2_GRAI.HST
- CSRAI: “RAIIHRVU Index” (“CS Risk Appetite HOLT Relative Value USD Index”) from Bloomberg
- SCGRRAI: “SCGRRAI Index ”from Bloomberg

- WPRAI: “WRAIRISK Index” from Bloomberg

- WPFSI: “WRAISTRS Index” from Bloomberg

- RA: “ra”-series from http://mariehoerova.net/

For all risk-aversion and economic-uncertainty series we merge the series with our daily data set
by finding our date that is closest to the date stamp in the respective series. MUS (@) are the only
series where an exact date stamp is missing; we match it with the observation in our daily data
set that is closest to the 15th day of a month. We report 95% confidence intervals in brackets,
obtained from 9999 block-bootstrap samples (the length of a block corresponds roughly to half a
year for all series). To bootstrap the VIX-series, we first filter the series by d= 0.3961, then create
the bootstrap sample, and then apply the inverse filter to the new series. *** ** * gignify that

the pseudo correlation is different from zero at a 1%, 5%, and 10% significance level, respectively.

2 P/Ca'( VPy, z) T Start End
Different Estimates VP; (see Section 6.1)

VP,;: Martingale for RV 0.0513 *** 3622 2/3/2000 6/30/2014
[0.0356, 0.1452]

VP,: Martingale for BV 0.0496 **+* 3622 2/3/2000 6/30/2014
[0.0298, 0.1430]

VP;: HAR-RV for RV 0.0343 *+* 3621 2/3/2000 6/27/2014
0.0210,  0.1148]

VP;: HAR-RV for BV 0.0325 *** 3621 2/3/2000 6/27/2014
[0.0184, 0.1081]

VP;: Drechsler & Yaron for RV 0.0345 *+* 3622 2/3/2000 6/30/2014
[0.0234, 0.1160]

VP,: Drechsler & Yaron for BV 0.0328 *#* 3622 2/3/2000 6/30/2014
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VP;: ARFIMA for RV

VP,;: ARFIMA for BV

Different Popular Measures for Economic Uncertainty

Table 4 — continued from previous page

(0.0218,  0.1122]
0.0206 ***
(0.0189,  0.1037]
0.0286 ***
(0.0171,  0.1048]

3621 2/3/2000

3621 2/3/2000

EMEUI

EPU

CVornar

uc

MUS®

MUS®)

MUS(12)

STLFSI

GFSI

SSICCONF

RAECB

CSRAI

SCGRRAI

WPRAI

WPFSI

0.0137 ***
0.0048,  0.0498]
0.0145 **
(0.0004,  0.0464]
0.0174
[-0.0318,  0.0638]
0.0282 *
[-0.0039,  0.0866]
0.0149 **
(0.0020,  0.0610]
0.0146 **
[0.0018,  0.0564]
0.0133 *
[-0.0009,  0.0551]

3622 2/3/2000

3622 2/3/2000

174 2/3/2000

128 2/3/2000

173 2/15/2000

173 2/15/2000

173 2/15/2000

Different Popular Measures for Risk Aversion

0.0095 **
(0.0035,  0.0407]
0.0166 **
[0.0054,  0.0695]
-0.0037
[-0.0401,  0.0281]
0.0197 *¥*
(0.0094,  0.0727]
0.0007
[-0.0175,  0.0174]
0.0020
[-0.0179,  0.0222]
0.0087 *¥*
[0.0052,  0.0375]
-0.0017
[-0.0174,  0.0138]

96

752 2,/4/2000
3622 2/3/2000
174 2/3/2000
3622 2/3/2000
3491 2/3/2000
2933 11/1/2002
3502 2/3/2000

3502 2/3/2000

6/27/2014

6/27/2014

6/30/2014
6/30/2014
6/30/2014
8/31/2010
6/16/2014
6/16/2014

6,/16,/2014

6/27/2014
6/30/2014
6/30/2014
6/30/2014
6/30/2014
6/30/2014
6/30/2014

6/30/2014



RA
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-0.0246 128
[-0.0672,  0.1869]

2/3/2000

8/31/2010
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Figure 1: ACF estimates for the three variance series and returns - The figure plots
the estimates of the autocorrelation of the realized variance, RV, the bipower variation, BV, the
volatility index, VIX?, and daily close to close excess log returns on the the S&P 500, rge). The
x-axis measures lags in daily units.
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Figure 2: Roots of the characteristic polynomial of the co-fractional VAR - The figure
plots the roots of the characteristic equation |(1 — ¢)I3x3 — ¢f'c — (1 —¢) Y_r, Tic*| = 0, indicated

by the black stars. The red line is the image of the complex disk Cg, for d = 0.3775. For 0’ X; to
be 1(0), all roots must be equal to one or lie outside the disk.

98



Horizon h

(i) by - Entire Sample Period (2/3/2000-6/30/2014)

Horizon h

(ii) b - ‘Normal’ Periods (2/3/2000-2/26/2007 & 3/3/2009-6/30/2014)

4

Horizon h

(iii) by, - Financial Crisis (2/27/2007-3/2,/2009)

Figure 3: Estimated risk-return trade-off parameter - The figure plots the estimated risk-
return trade-off parameter by, over different horizons measured in days. We estimate the unbalanced
misspecified and endogeneous predictive regression for cumulative returns by GMM, using the
instruments g;. The dashed lines represent 95% confidence intervals.
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Figure 4: Predictive R? - The figure plots the implied predictability of the GMM regression over
different horizons h. The R? changes with different hypothetical values considered for the sample
standard deviation of the latent variance premium, & yp.
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Figure 5: Relative Predictability RP), - The figure plots the relative predictive R%, RP),
for different models. The numerator of the ratio is the squared slope estimate from the GMM
regression. The denominator is the squared slope estimate from an OLS regression, where the
latent VP, is replaced by different estimates. The y-axis has a logarithmic scale.
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Figure 6: Percentage Difference in Out-of-Sample Forecasting Efficiency - The figure
plots the percentage difference in OOS forecasting efficiency for different forecasting horizons.
RMSEgasas is the root mean squared error resulting from predictions using the proposed GMM
approach and replacing the unknown Ef (IVit4r) by BV, in the forecast. RMSE(p g is the same
measure for forecasts from the OLS predictions using different estimates for the unobserved VP;.
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Figure 7: Out-of-Sample R-squared, R%OS - The figure plots the OOS R-squared, R2OOS =

Var(f%

)
s+h

)/Var(r'?

Trs+h

). The solid lines refer to forecasts that use the proposed GMM approach

for in-sample estimation; the out-of-sample prediction is made by multiplying the slope estimate by
different estimates for VP;. The dashed lines refer to forecasts that use the standard OLS approach
for in-sample estimation; the out-of-sample prediction is made by multiplying the slope estimate
by different estimates for VPy.
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