Three-level PN cell for multilevel converters

S. Bęczkowski1* S. Munk-Nielsen1

1 Department of Energy Technology, Aalborg University, Pontoppidanstræde 111, 9220 Aalborg, Denmark
*E-mail: sbe@et.aau.dk

Abstract:
Multilevel converters rely on plurality of DC capacitors switched in specific patterns to obtain the necessary output voltage level. MMC, FLC and NPC converters require complex control to balance the capacitors’ voltages. CHB converters require plurality of isolated DC sources to energize the capacitors. This paper presents a three-level PN cell that modulates the common-mode voltage between the output and input port while simultaneously mirroring the input DC voltage on the output port. Cell’s capacitor voltage is naturally balanced and a three-phase multilevel converter requires only one DC power source. The output voltage of a multilevel converter can be higher than the input DC voltage. As a consequence a single low voltage DC power source can directly interface a three phase MV grid.

1 Introduction

Medium and high voltage power electronics is commonly used in industrial applications such as power transmission, oil and gas, traction, marine propulsion and process industries [1–4]. All these industries operate power converters in the MVA power range. For a long time the designs were limited by the breakdown voltage levels of available semiconductors, a situation that is slowly changing due to recent availability of high blocking voltage devices [5]. Multilevel level topologies (e.g. NPC, FC and CHB) were introduced to increase the system voltage level while still using the LV semiconductors and to increase the number of possible voltage levels thus making the output voltage more closely resemble sinusoidal waveform [6]. This, in turn, means the output filter could be made smaller promising a smaller total system form factor. Despite these benefits, these topologies never reached substantial market penetration.

The situation changed with the introduction of modular multilevel converters (MMC) [7]. Their modular nature allows a high number of output voltage levels and provides redundancy at a cost of a complex control [8, 9]. Most of the multilevel topologies rely on plurality of DC sources switched in a specific way to obtain a desired output voltage. NPC and CHB topologies require isolated or stacked DC voltage sources which are not easily obtainable. FC and MMC topologies generate the required voltage sources by charging DC capacitors to a required voltage level and rearranging their connection to achieve the desired output voltage.

The inherent problem in this approach is that the capacitors require complex strategies to keep them charged at a desired DC voltage level [10–13]. Charging/discharging pattern is typically limited by modulation requirements therefore the required capacitance value is strongly tied to the output current magnitude and frequency. Low line frequency (50/60Hz) and high current magnitudes required in the applications where these converters are typically used require very high capacitance values [14].

Fig. 1: Proposed symbol for a converter cell and its simplified electrical model. Input and output ports are DC ports, output voltage has the same magnitude as input voltage. The converter modulates the common mode voltage u_{AC}.

In this paper we present a three-level converter PN cell with inherent capacitor voltage balancing mechanism. Its topology is closely related to cascaded H-bridge converter and also switched capacitor converters which are most often used for LV high integration scale.

$$u_{AC} = m U_{DC} \sin(\omega t)$$

(1)

Fig. 1 shows a simplified electrical model of the proposed converter as well as proposed cell symbol. The converter cell modulates the common mode voltage between output and input port (eq. 1) while preserving the DC voltage magnitude between the two ports.

Because the DC voltage applied to the input is reflected on the output port, the converter can be easily daisy-chained, as shown in fig. 2, where $U_{DC} = U_{DC1} = U_{DC2}$ (this is a simplification, full explanation follows in section 2.4). Each cell contains a capacitor for energy storage across the output port of the cell. The capacitor cell voltage is naturally balanced to the cell input voltage thus complex capacitor voltage balancing schemes are not necessary.

The converter output voltage is the sum of common mode voltages u_{ACn} generated by individual converter cells. For a converter with two daisy-chained cells the output voltage is

$$u_{out} = u_{AC1} + u_{AC2}$$

(2)

and has $2n + 1$ discrete levels, where n is the number of daisy-chained converter cells.

A key observation from eq. 1 and eq. 2 is that the output voltage can have a higher magnitude than the input DC voltage and can be increased even further by adding more converter cells. This may allow e.g. a LV DC generator interface a MV grid without a step-up transformer.

$$u_{out} = n \cdot m U_{DC} \sin(\omega t)$$

(3)

Fig. 2: Block diagram of a single-phase five-level converter composed of two three-level modules.
Finally, because the DC voltage is preserved throughout the converter chain, there is a possibility of placing a classical two-level half-bridge at the end of the chain, as in fig. 3. This increases the number of output voltage levels to \(2n + 2\) by adding only two transistors.

The aforementioned properties: ease of daisy-chaining the converter cells, natural cell capacitor voltage balancing and ability to connect a LV DC source directly to a MV grid are key properties of the presented PN converter cell and multilevel converters based on it.

One important application of this topology is in MV drives. In an industrial MV CHB drive converter the power is delivered to the cells using a multiple output transformer as in fig. 4a [15]. In this embodiment the secondary windings of the transformer are phase shifted to maximise the input power quality. One disadvantage of this approach is that the transformer is relatively large and complex. The transformer needs to be redesigned if different power level or number of cells are used. Moreover, each power cell needs a rectifier on the transformer input port.

In a PN cell based converter (fig. 4b) the power is sourced from a single DC source and distributed to the cells using daisy-chaining. The single DC power source can be implemented using any standard LV topology and the power level can be easily adjusted by paralleling. The converter can be easily interfaced to existing DC microgrids, e.g. in marine applications where a low or medium voltage DC grid distributes power to propulsion and individual thrusters.

Another possible application of the presented PN cell based converters is in wind power converters where the LV generator can be directly connected to a MV collection grid removing the need for bulky LV cables and transformer thus lowering the total weight of the structure. Similarly, the converter can be used in PV applications where it can interface a string of PV panels to the AC grid.

The main objective of this paper is to introduce the PN converter cell to the reader and to give insight into design opportunities and challenges when designing multilevel converters using this cell. Section 2 describes the topology and switching states of the proposed cell. It also presents an average model that is then used to investigate basic dynamic behaviour of the cell capacitor voltage. Next, we use two topology case studies to investigate which operating conditions are best suited for the design and which should be avoided. Finally, we present a derived simplified topology that minimise the number of transistors needed in a converter cell. In section 3 we discuss issues of scalability. We present experimental work used that was done to demonstrate the concept of the PN converter cell in section 4. Afterwards, in section 5, we present related work that was used as an inspiration for this paper.

2 Multilevel converter cell

2.1 Converter cell topology

The proposed power cell is derived from a cascaded H-bridge topology [15]. In the CHB topology, individual cells are daisy chained in a string as shown in fig. 5a. The energy in the cell is typically sourced from an isolated AC source, such as a transformer, and rectified in the cell. Each cell requires an isolated power source therefore a single input multiple output transformer is typically used.

In contrast, the PN-cell based topology does not require isolated power sources. The power is transferred from one cell to the next by additional transistors joining the adjacent cells as shown in fig. 5b.
The multilevel power converter contains a high number of transistors. The converter cell is comprised of eight switches. The switches connecting the primary (AB) and secondary (KL) DC sides operate effectively as four quadrant switches \(Q_1 = Q_6 \) and \(Q_2 = Q_5 \). Switches on the DC ports operate complementarily, therefore \(Q_1 = Q_2 \) and \(Q_3 = Q_4 \) which reduces the number of independent switches to four. Fig. 7 and Table 1 summarises the switching states of the converter cell. During the zero state, the cell capacitor is connected to the cell input terminal, equalising the \(u_{AB} \) and \(u_{KL} \) voltages.

Table 1

<table>
<thead>
<tr>
<th>State</th>
<th>(u_{AB})</th>
<th>(Q_1 = Q_2)</th>
<th>(Q_3 = Q_4)</th>
<th>(Q_5 = Q_6)</th>
<th>(Q_7 = Q_8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>N</td>
<td>(-u_{KL})</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The converter cell is comprised of eight switches. The switches connecting the primary (AB) and secondary (KL) DC sides operate effectively as four quadrant switches \(Q_1 = Q_6 \) and \(Q_2 = Q_5 \). Switches on the DC ports operate complementarily, therefore \(Q_1 = Q_2 \) and \(Q_3 = Q_4 \) which reduces the number of independent switches to four. Fig. 7 and Table 1 summarises the switching states of the converter cell. During the zero state, the cell capacitor is connected to the cell input terminal, equalising the \(u_{AB} \) and \(u_{KL} \) voltages.

Table 1

<table>
<thead>
<tr>
<th>State</th>
<th>(u_{AB})</th>
<th>(Q_1 = Q_2)</th>
<th>(Q_3 = Q_4)</th>
<th>(Q_5 = Q_6)</th>
<th>(Q_7 = Q_8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>N</td>
<td>(-u_{KL})</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Average model

A multilevel power converter contains a high number of transistors which typically leads to substantial simulation times. In order to speed up the simulations, an average model of the converter cell can be used. The model will also aid in explanation of the dynamics inside a converter chain built from plurality of the presented cells.

Following Table 1, the converter cell can be represented as three different equivalent circuits, as seen in Fig. 8. Transistor resistances are bundled into effective resistances \(R_P, R_N, R_{OH} \) and \(R_{OL} \). The value of zero state resistances depends on the specific zero state used in the modulator, \(d_P = t_P/t_{SW} \), \(d_0 = t_0/t_{SW} \) and \(d_N = t_N/t_{SW} \) where \(d_P + d_0 + d_N = 1 \). \(u_{KL} \) is the voltage across the cell capacitor.

Fig. 8: Equivalent converter cell circuits for positive, zero and negative switching states (P, 0 and N respectively).

For \(u_{AB} \) and \(u_{KL} \), the state equations can be written as:

For \(d_P \):

\[
C \frac{du_{KL}}{dt} = \begin{cases}
-\frac{u_{AB} - u_{KL}}{R_{OL}} & \text{for } d_P \\
-\frac{u_{KL}}{R_{OL} + R_{OH}} & \text{for } d_0 \\
-\frac{u_{KL}}{R_{OL}} & \text{for } d_N
\end{cases}
\]

For \(u_{AB} \) and \(u_{KL} \), the state equations can be written as:

For \(d_P \):

\[
u_{AB} = \begin{cases}
u_{AB} - R_P(i_K + i_L) & \text{for } d_P \\
\frac{R_{OH}(u_{AB} - u_{KL}(i_K + i_L))}{R_{OH} + R_{OL}} & \text{for } d_0 \\
\frac{u_{AB} - u_{KL}(i_K + i_L)}{R_{OH}} & \text{for } d_N
\end{cases}
\]

For \(i_A \) and \(i_B \), the state equations can be written as:

For \(d_P \):

\[
i_A = \begin{cases}
i_K + i_L & \text{for } d_P \\
\frac{u_{AB} - u_{KL}(i_K + i_L)}{R_{OH} + R_{OL}} & \text{for } d_0 \\
0 & \text{for } d_N
\end{cases}
\]

For \(d_N \):

\[
i_B = \begin{cases}
i_K + i_L & \text{for } d_P \\
\frac{u_{KL} - u_{AB} + R_{OH}(i_K + i_L)}{R_{OH} + R_{OL}} & \text{for } d_0 \\
0 & \text{for } d_N
\end{cases}
\]

All of the equations have been implemented in LTSpice [17]. To verify the average model, we tested it against a switching model of the converter cell in two circuit configurations. More important, these configurations also demonstrate the basic dynamic phenomena and behaviour of the converter cells.
2.4 Converter cell dynamics

We chose two converter circuit topologies to present the basic dynamic properties of the multilevel converter cell. The first circuit is a single cell (three level converter). This shows an operation where there is no current on the K terminal of the cell. The second topology is a four level converter, as shown in fig. 3, where a two level converter is daisy chained after a three level cell. This shows an operation where the 3L cell is not the last element in the chain converter.

To make the cases comparable an AC current source with phase offset with respect to cell output voltage is used. This kind of load represents a RL load and it keeps the current value constant, irrespective of the applied voltage. The input voltage to the converter chain is kept at 400V for both cases. Triangle carrier based PWM with open loop control is used throughout this subsection.

2.4.1 Three level converter: a single converter cell is driving an RL load connected between the 1 and 8 terminals.

The most important observation from fig. 9 is that the capacitor voltages are the zero state resistances. The capacitor voltages variations are the zero state resistances.

Converter cell capacitor’s current and voltage at different levels of zero state resistances can be seen in fig. 10. The capacitor charging current is limited only by these resistances. Decreasing the resistances lowers the average voltage swings of the capacitor voltage but increases the peak current in the cell as in fig. 11. The zero state resistances are determined only by the choice of the semiconductors therefore the choice should be done with typical operating range in mind. It is the desired resistance value that drives the selection of the semiconductors.

There are several practical limits to the value of these resistances. On the low end the resistance values are limited by conductivity of available semiconductors and peak charging currents that may cause EMC issues. Practically, there is no need for decreasing the resistances below the value at which a capacitor is charged within the t0–t1 period. For an RC circuit, after a charging time of three to five τ the circuit is considered fully charged.

\[
R_{0H} + R_{0L} > \frac{f_{sw}}{k(1-m_{max})C}, \text{ where } k \in [3, 5] \tag{12}
\]

From the top, resistance values are limited by the need to charge the cell capacitors to the voltage that is as close to the input port voltage as possible. Bigger resistance values will however decrease the peak to mean ratio of the charging current lowering the stress on the cell capacitors and transistors used in the charging zero state.

The AC component of the cell capacitor voltage impacts the cell output uLB voltage (eq. 7). If the magnitude of this low frequency ripple is much smaller than the DC component in uKG it can be treated as a disturbance in the control circuit. As the frequency of this AC component is the same as the output voltage the converter control algorithm can control this disturbance. However, it must be noted that the control algorithm will need to increase the modulation index m in order to increase the uLB voltage. Increased modulation index lowers the time in the charging zero state of the cell. Therefore, there exists a limit to the compensation range.

2.4.2 Four level converter: a two level half-bridge is daisy chained to the KL port of a three level converter cell as in fig. 3.
To analyse the impact of the load on the oscillations of the cell capacitor voltage two simulations were performed and their results are shown in fig. 13. The magnitude of the load current was held constant and the phase offset of the current to output voltage was adjusted from 0 to 90 degrees emulating a pure resistive to pure inductive loads, respectively. For purely resistive loads the cell capacitor is discharged in both halfcycles of the output voltage. For purely inductive loads the power fluctuates between cell capacitors and load causing positive and negative capacitor voltage swings.

Equation 5 predicts that at high modulation index values, when \(d_0 \) time is small, the capacitor current is mostly dependent on the load current. In fig. 14 we can observe the impact of modulation index on capacitor voltage with two different loads: purely resistive and purely inductive. For purely resistive loads the cell capacitor is discharged in both halfcycles of output voltage. For purely inductive loads, the power fluctuates between cell capacitors and load causing positive and negative capacitor voltage swings.

Figure 12 shows basic waveforms relating to the three level cell. Contrary to the previous circuit the voltage on the cell capacitor behaves similarly in both the positive and negative output voltage halfcycles. The three available switching states from table 1 can be seen as circuit configurations in fig. 16. Removal of \(Q_7 \) and \(Q_8 \) switches can be fixed to zero while maintaining the required common-mode voltage states. The remaining states are depicted in table 2.

Table 2: Simplified switching states from table 1 with \(S_7 = S_8 = 0 \).

<table>
<thead>
<tr>
<th>State</th>
<th>(u_{AB})</th>
<th>(Q_1 = Q_2)</th>
<th>(Q_3 = Q_4)</th>
<th>(Q_5 = Q_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>N</td>
<td>(-u_{KL})</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

The original cell structure containing eight transistors (fig. 6), is therefore simplified to use only six transistors, as shown in fig. 15.

The three available switching states from table 2 can be seen as circuit configurations in fig. 16. Removal of \(Q_7 \) and \(Q_8 \) forces \(Q_2 \) and \(Q_4 \) transistors to conduct the output capacitor charging current, changing the current stress and loss distribution, compared to the cell with eight transistors. Functionally this modified topology is exactly the same as original one and all average model equations are valid.

Fig. 12: Sample waveforms four level converter. Average model waveforms (solid line) superimposed on instantaneous waveforms.

Fig. 13: Impact of load current variation on cell capacitor voltage fluctuations.

Fig. 14: Impact of modulation index on cell capacitor voltage fluctuations in case of purely resistive load (left) and purely inductive load (right); \(I_{load} = 16A \) for both cases.

Fig. 15: Schematic diagram of a simplified converter cell.
Assuming output power is S blocks delivering 2 structure needs to be designed. The latter solution is practical as only one cell be therefore either designed to reflect the different current ratings to reflect the changing input power rating. Individual blocks must the chain, the block input current varies linearly throughout the chain second block. As the S is of blocks serialised in the chain, the power delivered to the last block uates the same S is n voltage equal to n voltage magnitude is preserved throughout U_{DC} deviations from a true DC value, as shown in the previous section. These deviations will impact the converter output voltage (eq. 7) if not compensated by the control system.

Analysing equation 5 we can see that the cell capacitor voltage is dependent on many parameters, namely U_{AB}, resistances in the cell and output port currents i_K and i_L. Dependence on the input port voltage U_{AB} causes capacitor voltage swings to propagate throughout the converter chain. The analysis of voltage on individual cell capacitors in a multilevel converter becomes a very complex task.

One simplification can come from equations 4, 8 and 10. Notice that i_K and i_L cell currents depend on sum of cell output port currents $i_K + i_L$. As the cells are daisy chained the sum of output port currents is therefore always equal to the load current i_{OUT}.

In any case the voltage variations of capacitors across the converter chain are dependent on the position in the chain. Because the capacitor voltage of one cell is the input voltage to the next cell the cell voltage variations are going to accumulate across the chain. This limits the length of the converter chain.

4 Experimental demonstration

To demonstrate the functionality of the proposed converter cell a low voltage, non-optimised prototype was created (fig. 18). A two-cell chain was powered by a $200\, V$ DC power supply. Cell capacitances were $C_1 = 220\, \mu F$ and $C_2 = 110\, \mu F$ to simulate the effect of paralleling of two PN cells in the first block of the converter chain, as shown in fig. 17. A modulation index of 0.68 was used for both cells

The minimum DC input voltage is a function of maximum modulation index, number of daisy chained cells and output voltage level.

$$U_{DC(min)} = \frac{\sqrt{2} \cdot m_{max} \cdot U_{out}}{n}$$ (14)

With modulation limit set to $m_{max} = 1/\sqrt{2}$ the minimum DC voltage is $U_{DC(min)} = 2/n \cdot U_{out}$ which is a good rule of thumb when designing a multilevel converter with these cells.

As the current rating in the chain scales linearly, and cells in the chain can be paralleled to achieve the necessary current rating, the current rating is then defined by the last cell that needs to draw $S_{out}/(n \cdot U_{DC})$ current.

A full chain composed of n converter blocks requires $n(n + 1)/2$ converter cells. Number of the required cells is a triangular number of blocks in the chain.

3.2 Capacitor cell voltages

Ideally, the input DC voltage would propagate through the converter chain without any alterations. This is however not true because output current discharges the capacitor and there is limited time in a switching period where the capacitors can be recharged. This causes deviations from a true DC value, as shown in the previous section. These deviations will impact the converter output voltage (eq. 7) if not compensated by the control system.

Assuming output power is S_{out} and each converter chain block generates the same U_{ACn} voltage equal to u_{out}/n, where n is the number of blocks serialised in the chain, the power delivered to the last block is S_{out}/n while the power delivered to first converter block is equal to S_{out}.

In case of a five level converter with two daisy-chained cells (as in fig. 18), the first chain block must be rated to double the power of the second block. As the DC voltage magnitude is preserved throughout the chain, the block input current varies linearly throughout the chain to reflect the changing input power rating. Individual blocks must be therefore either designed to reflect the different current ratings or can use paralleled converter cells (as in fig. 17) to achieve the desired current rating. The latter solution is practical as only one cell structure needs to be designed.

Consider a system where $S_{out} = U_{out} \cdot I_{out}$ with n daisy chained blocks delivering $2n + 1$ voltage levels.

$$U_{out(pk)} = \sqrt{2} \cdot U_{out} = n \cdot U_{AC(pk)} = n \cdot m_{max} \cdot U_{DC}$$ (13)
400V
200V
0V
400V
200V
0V

Fig. 19: Key converter waveforms when operating with resistive load ($z = 58Ω/1.9Ω$). Solid lines represent the demodulated waveforms:
\(a)\) measured output current and voltage;
\(b)\) measured cell capacitor voltages;
\(c)\) simulated cell capacitor voltages.

and PWM carriers were shifted by $\pi/4$. SCT3080, SCT3011 and SCT2030 were used as Q_1/Q_3, Q_2/Q_4 and Q_5/Q_6 respectively. A 20kHz switching frequency was used for the demonstrator. Two experiments were performed: one with resistive load ($R = 58Ω$, $L = 6mH → z = 58Ω/1.9Ω$) shown in fig. 19; second with inductive load ($R = 20Ω$, $L = 180mH → z = 60Ω/70°$) shown in fig. 20. The loads were chosen to yield a similar output current magnitude but at different phase angle.

Results are consistent with the analysis in the previous chapters and closely follow simulated waveforms [17]. As predicted, converter running with inductive load experiences smaller capacitor voltage variation.

5 Related work

As mentioned before in section 2.1, the PN-cell converter is closely related to the CHB topology which is a well known in the high-power industries [15]. The PN cell topology is interestingly also related to low voltage charge pump topologies.

Charge pump converters are a subset of DC/DC converters that use charge stored in capacitors for power conversion. Their key benefit is that they do not utilise magnetic components which can often be bulky. Because of this they are applicable in low power highly integrated circuits. A common application is e.g. level shifting for RS232 communication or generating negative voltage rails. Traditionally they operate with fixed output/input voltage ratio. Charge pump converters can also operate in power application e.g. boost converters increasing the input voltage of the source [18].

A subset of charge pump converters family are DC/DC converters that modulate the common mode voltage. During zero common mode voltage state they typically short the cell capacitor to the input voltage thus keeping the DC voltage on the capacitor constant.

He et al. [19] proposed an inverter built by connecting a half-bridge converter to the output of a N-cell. The N-cell can modulate the common mode output (with two states: zero and negative common mode voltage) while providing a DC voltage on the output port. The output voltage from this cell is then modulated by a 2t half-bridge.

Perreault et al. [20] proposed to daisy chain the N-cells to achieve a high voltage conversion ratio between input and output of a converter. With an added active rectifier on the input they created a transformerless AC/DC high input voltage to low output.

Zou et al. [21] presented a full cell switched-capacitor structure where the common mode can have three possible voltage magnitudes (positive, zero and negative). This functionality is inherited by the converter cell presented in this paper as the main principle of operation is identical. The difference lies in implementation of the cell. The presented PN cell merges a P- and N-cell in a single structure. Similar approach is shown also by Vaheedi et al. where additional crossover switches are added to increase the number of possible cell levels [22]. In both implementations some of the transistors used in the cell exhibit double the voltage rating of the cell capacitor. In our implementation all transistors are rated only to the cell capacitor voltage.

6 Conclusions

A novel multilevel converter cell is presented that connects a P- and N-cells together yielding a structure capable of generating a three level common-mode voltage and passes a DC voltage between its input and output ports. The DC voltage pass-through allows for an easy daisy chaining of the mentioned cells, generating a multilevel converter structure.

Compared to traditional multilevel converters, with complex control strategies employed to balance the voltages on cell capacitors, the PN converter cell has an intrinsic voltage balancing mechanism. The k-th cell capacitor is charged by shorting it to the $k − 1$ cell capacitor. Charging current is limited by the cell switch resistances. The natural voltage balancing scheme has limits, one of the most important one is that it works only during the zero state of the cell thus limiting the maximum modulation index one can use in the converter. Another limitation is that high peak currents are needed to quickly charge the cell capacitance. In practice handling high magnitude peak currents can be expensive because of necessary semiconductor ratings and complex EMC design. By limiting the peak currents we are left with
voltage ripple on capacitor cells that need to be compensated in the control algorithm.

Compared to CHB topology the PN cell based converters do not require a complex one-off transformer to supply the power to individual cells. This makes the system more modular as the power delivery can be done using any industry standard DC topology. This also allows this topology to be used with DC sources such as PV to interface them to the grid.

The PN cell based converter is well suited to reactive power applications, such as STATCOM systems. Cell capacitor charging is done during the zero switching state (d_0). On the other hand capacitor discharging is the highest during the peak of the chain output current. When handling reactive power the peak converter output current is time-aligned to low cell output voltage when the d_0 is the highest. Due to this alignment cell capacitors experience much lower voltage deviations from nominal than in active power applications.

7 References

