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Abstract 

Under the concept of "Industry 4.0", production processes will be pushed to be increasingly interconnected, 
information based on a real time basis and, necessarily, much more efficient. In this context, capacity optimization 
goes beyond the traditional aim of capacity maximization, contributing also for organization’s profitability and value. 
Indeed, lean management and continuous improvement approaches suggest capacity optimization instead of 
maximization. The study of capacity optimization and costing models is an important research topic that deserves 
contributions from both the practical and theoretical perspectives. This paper presents and discusses a mathematical 
model for capacity management based on different costing models (ABC and TDABC). A generic model has been 
developed and it was used to analyze idle capacity and to design strategies towards the maximization of organization’s 
value. The trade-off capacity maximization vs operational efficiency is highlighted and it is shown that capacity 
optimization might hide operational inefficiency.  
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the Manufacturing Engineering Society International Conference 
2017. 
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1. Introduction 

The cost of idle capacity is a fundamental information for companies and their management of extreme importance 
in modern production systems. In general, it is defined as unused capacity or production potential and can be measured 
in several ways: tons of production, available hours of manufacturing, etc. The management of the idle capacity 
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Abstract

The quality of robotic laser welded parts is related to the joint location, the trajectory of the laser focal point and the process 
parameters. By performing in-process monitoring, it is possible to acquire sufficient process knowledge for post-inspection to 
evaluate the geometrical weld quality. The existing solutions for such systems operate along linear welds. This paper contributes 
with a quality inspection system for robot laser welding, that can handle double-curved geometries. The data acquisition system 
includes a CMOS camera, which is mounted such that it looks through the laser optics, external LED illumination and matching 
optical filters. During the process, the area around the moving laser focal point is captured, resulting in a sequence of images. The 
trajectory of the focal point is determined by estimating the 2D displacement field between each image using template matching 
and subsequently filtering the data through a Kalman filter to improve the accuracy and robustness of the system. The joint location 
is determined by applying a Canny edge detector and a standard Hough transform within a specified region of interest. As this 
paper deals with double-curved geometries, the region of interest is moved in relation to the laser trajectory, such that it always 
contains the visible part of the joint, that is closest to the focal point. The developed post-inspection system evaluates the quality 
of the weld by comparing the estimated trajectory relative to the determined location of the joint. The performance of the proposed 
quality inspection system was validated empirically on 18 samples. The tests showed promising results, as the system was able to 
accurately detect changes in the welding trajectory relative to the location of the joint with an accuracy of ± 0.2 mm.
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1. Introduction 

High-power fiber laser welding is becoming increasingly popular in the mass-production industry for joining both 
ferrite and non-ferrite sheet metal plates due to its ability to produce a high-intensity heat source, that can be precisely 
focused onto a small area. This enables the possibility of producing keyhole welds at high speeds, while limiting the 
heat affected zone. A consequence of this is, however, strict tolerances to joint alignment and lateral positioning of 
the laser focal point to ensure structural integrity and fatigue life of the weld, especially in autogenous laser welding 
processes. In automated production set-ups, where the laser welding optics are manipulated by using a six-axis robot, 
the need for process monitoring and trajectory tracking is further emphasized. This is mainly due to positional 
inaccuracies in the robot’s repeatability, especially along (complex) 3D welding trajectories at high speeds. [1, 2]

In the recent past, the topic of joint monitoring, seam tracking and online control of the laser welding process has 
been highly researched. Most published papers within this field of study have utilized a monitoring system containing 
similar key elements, which include an image sensor, a narrow band-pass filter, a powerful light source with a specific 
wavelength and in some cases a neutral density filter. [1, 3, 4].  

M. de Graff, et al. [5] and W. Cieszyński, et al. [6] all used the aforementioned approach, coupled with common 
image processing techniques such as BLOB analysis and edge detection to analyze the laser welding process. With 
this type of monitoring system, they respectively succeeded in mapping and monitoring 3D butt joints, tracking the 
laser focal point and online correction of joint misalignment. R.-K. Zäh, et al. [7] and S. M. Portnov, et al. [8] proposed 
an alternative approach for monitoring of the laser welding process, utilizing a photo detector to detect emitted light 
from the process. These monitoring systems made it possible to set up a mathematical model of the laser welding 
process to improve control of deep penetration welds. In order to improve robustness of the laser welding vison-based
monitoring systems, M. Nilsen, et al. [9] implemented a Kalman filter to estimate the joint gap, where the image 
processing had failed. This method turned out to improve robustness of the monitoring system and also reduced 
computation time, compared to other approaches. X. Gao, et al. [2] improved the robustness even further by combining 
a Kalman filter with a radial basis function neural network to account for dynamic colored noise, thereby improving 
the estimation capabilities of the Kalman filter. 

2. Methodology

This paper deals with the challenge of acquiring a sufficient amount of robust process data for post inspection of 
laser welds, that have been performed along curved three-dimensional trajectories, as illustrated in Fig. 1. (a). More 
specifically, autogenous robotic laser welding of pre-worked thin stainless-steel metal plates. The aim is to detect
changes in the welding trajectory in relation to the joint position, with the purpose of ensuring a stable and acceptable 
weld quality. The failure mode illustrated in Fig. 1. (b), is a result of short- and long-term process disturbances. Short 
term disturbances are defined as Gaussian noise, such as misplacement of the sub-components, while long term 
process disturbances are defined as time-dependent noise, e.g. temperature shifts or tool wear.

(a) (b)

Fig. 1. (a) The green line indicates the curved three-dimensional welding trajectory of interest in the global coordinate system of the robot.; (b) 
The failure mode is defined as a misalignment in the welding trajectory in relation to the position the joint. The position of the joint is defined as 

the middle point between the top and the bottom plate.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.promfg.2019.08.008&domain=pdf


	 Anders Mikkelstrup  et al. / Procedia Manufacturing 36 (2019) 50–57� 51

Available online at www.sciencedirect.com

ScienceDirect
Procedia Manufacturing 00 (2019) 000–000

www.elsevier.com/locate/procedia

2351-9789 © 2019 The Author(s). Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 17th Nordic Laser Material Processing Conference.

17th Nordic Laser Material Processing Conference (NOLAMP17), 27 – 29 August 2019

Quality Inspection System for Robotic Laser Welding of Double-
Curved Geometries

Anders Mikkelstrupa,*, Mathias Thomsena, Kristoffer Stampea, Benny Endelta, Jens 
Bollb, Ewa Kristiansena, Morten Kristiansena

a Aalborg University, Department of Materials and Production, 9220 Aalborg, Denmark
b Grundfos A/S, 8850 Bjerringbro, Denmark

Abstract

The quality of robotic laser welded parts is related to the joint location, the trajectory of the laser focal point and the process 
parameters. By performing in-process monitoring, it is possible to acquire sufficient process knowledge for post-inspection to 
evaluate the geometrical weld quality. The existing solutions for such systems operate along linear welds. This paper contributes 
with a quality inspection system for robot laser welding, that can handle double-curved geometries. The data acquisition system 
includes a CMOS camera, which is mounted such that it looks through the laser optics, external LED illumination and matching 
optical filters. During the process, the area around the moving laser focal point is captured, resulting in a sequence of images. The 
trajectory of the focal point is determined by estimating the 2D displacement field between each image using template matching 
and subsequently filtering the data through a Kalman filter to improve the accuracy and robustness of the system. The joint location 
is determined by applying a Canny edge detector and a standard Hough transform within a specified region of interest. As this 
paper deals with double-curved geometries, the region of interest is moved in relation to the laser trajectory, such that it always 
contains the visible part of the joint, that is closest to the focal point. The developed post-inspection system evaluates the quality 
of the weld by comparing the estimated trajectory relative to the determined location of the joint. The performance of the proposed 
quality inspection system was validated empirically on 18 samples. The tests showed promising results, as the system was able to 
accurately detect changes in the welding trajectory relative to the location of the joint with an accuracy of ± 0.2 mm.

© 2019 The Author(s). Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 17th Nordic Laser Material Processing Conference.

Keywords: Laser welding; Quality inspection; Image processing; Welding trajectory; Vision system

* Corresponding author. Tel.: +45 41 56 71 00.
E-mail address: afm@m-tech.aau.dk

Available online at www.sciencedirect.com

ScienceDirect
Procedia Manufacturing 00 (2019) 000–000

www.elsevier.com/locate/procedia

2351-9789 © 2019 The Author(s). Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 17th Nordic Laser Material Processing Conference.

17th Nordic Laser Material Processing Conference (NOLAMP17), 27 – 29 August 2019

Quality Inspection System for Robotic Laser Welding of Double-
Curved Geometries

Anders Mikkelstrupa,*, Mathias Thomsena, Kristoffer Stampea, Benny Endelta, Jens 
Bollb, Ewa Kristiansena, Morten Kristiansena

a Aalborg University, Department of Materials and Production, 9220 Aalborg, Denmark
b Grundfos A/S, 8850 Bjerringbro, Denmark

Abstract

The quality of robotic laser welded parts is related to the joint location, the trajectory of the laser focal point and the process 
parameters. By performing in-process monitoring, it is possible to acquire sufficient process knowledge for post-inspection to 
evaluate the geometrical weld quality. The existing solutions for such systems operate along linear welds. This paper contributes 
with a quality inspection system for robot laser welding, that can handle double-curved geometries. The data acquisition system 
includes a CMOS camera, which is mounted such that it looks through the laser optics, external LED illumination and matching 
optical filters. During the process, the area around the moving laser focal point is captured, resulting in a sequence of images. The 
trajectory of the focal point is determined by estimating the 2D displacement field between each image using template matching 
and subsequently filtering the data through a Kalman filter to improve the accuracy and robustness of the system. The joint location 
is determined by applying a Canny edge detector and a standard Hough transform within a specified region of interest. As this 
paper deals with double-curved geometries, the region of interest is moved in relation to the laser trajectory, such that it always 
contains the visible part of the joint, that is closest to the focal point. The developed post-inspection system evaluates the quality 
of the weld by comparing the estimated trajectory relative to the determined location of the joint. The performance of the proposed 
quality inspection system was validated empirically on 18 samples. The tests showed promising results, as the system was able to 
accurately detect changes in the welding trajectory relative to the location of the joint with an accuracy of ± 0.2 mm.

© 2019 The Author(s). Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 17th Nordic Laser Material Processing Conference.

Keywords: Laser welding; Quality inspection; Image processing; Welding trajectory; Vision system

* Corresponding author. Tel.: +45 41 56 71 00.
E-mail address: afm@m-tech.aau.dk

2 Anders Mikkelstrup et al./ Procedia Manufacturing 00 (2019) 000–000
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High-power fiber laser welding is becoming increasingly popular in the mass-production industry for joining both 
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heat affected zone. A consequence of this is, however, strict tolerances to joint alignment and lateral positioning of 
the laser focal point to ensure structural integrity and fatigue life of the weld, especially in autogenous laser welding 
processes. In automated production set-ups, where the laser welding optics are manipulated by using a six-axis robot, 
the need for process monitoring and trajectory tracking is further emphasized. This is mainly due to positional 
inaccuracies in the robot’s repeatability, especially along (complex) 3D welding trajectories at high speeds. [1, 2]

In the recent past, the topic of joint monitoring, seam tracking and online control of the laser welding process has 
been highly researched. Most published papers within this field of study have utilized a monitoring system containing 
similar key elements, which include an image sensor, a narrow band-pass filter, a powerful light source with a specific 
wavelength and in some cases a neutral density filter. [1, 3, 4].  

M. de Graff, et al. [5] and W. Cieszyński, et al. [6] all used the aforementioned approach, coupled with common 
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from the process. These monitoring systems made it possible to set up a mathematical model of the laser welding 
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processing had failed. This method turned out to improve robustness of the monitoring system and also reduced 
computation time, compared to other approaches. X. Gao, et al. [2] improved the robustness even further by combining 
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the estimation capabilities of the Kalman filter. 

2. Methodology
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laser welds, that have been performed along curved three-dimensional trajectories, as illustrated in Fig. 1. (a). More 
specifically, autogenous robotic laser welding of pre-worked thin stainless-steel metal plates. The aim is to detect
changes in the welding trajectory in relation to the joint position, with the purpose of ensuring a stable and acceptable 
weld quality. The failure mode illustrated in Fig. 1. (b), is a result of short- and long-term process disturbances. Short 
term disturbances are defined as Gaussian noise, such as misplacement of the sub-components, while long term 
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(a) (b)

Fig. 1. (a) The green line indicates the curved three-dimensional welding trajectory of interest in the global coordinate system of the robot.; (b) 
The failure mode is defined as a misalignment in the welding trajectory in relation to the position the joint. The position of the joint is defined as 

the middle point between the top and the bottom plate.
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The approach is based on an image sequence, captured with a CMOS camera through the laser optics during 
welding. The monitoring system proposed in this paper applies a combination of a Canny edge detector and a standard 
Hough transform to determine the joint position. Template matching is used to estimate the displacement field between 
subsequent image frames for computing the welding trajectory. To improve the prediction capability, precision and 
overall robustness of the estimations, a Kalman filter combined with a radial basis function, neural network, onwards 
referred to as a neural network, is incorporated into the monitoring system. 

Validation of the monitoring system is done by comparing the welding trajectory and joint position from the 
monitoring system to a series of forward kinematic estimations of the welding trajectory. The quality inspection 
system should be able to detect shifts in the process, such as a varying joint position and an incorrect welding trajectory 
within a precision of ± 0.2 mm. This is based on the tolerances for joint alignment and lateral positioning of the laser 
focal point, required to obtain a sufficient weld quality for the material thickness. However, it should be noted, that a 
change in the position of the laser focal point in the axial direction (Zc direction) of the laser is not considered to be 
within the scope of this paper.

3. Experimental set-up

The experimental set-up consists of a solid-state laser, a TruDisk 4001 by manufacturer Trumpf with a 200 μm
LLK-D fiber delivery system. It is connected to a Permanova WT04 ST optics with a motorized twin spot unit, that is 
mounted on a KUKA KR 30 HA 6D robot. The robot is a high accuracy model from KUKA AG with a repeatability 
of ± 0.05 mm. The weld of interest in this paper is a double-curved T-joint configuration, illustrated in Fig. 2. (a),
consisting of two 4301 austenitic stainless-steel plates with a thickness of respectively 2 mm and 1.5 mm for the 
bottom and top plate of the T-joint. To minimize heat induced distortions, the plates have been clamped during the 
welding operation. The weld is performed at a desired speed of 100 mm/s with no filler material and shielding gas, 
following the curved three-dimensional trajectory, illustrated in Fig. 1. (a).

(a) (b)

Fig. 2. (a) Presentation of offset in the standard welding trajectory; (b) Permanova WT04 ST optics with LED light source.

The experimental results were obtained by performing 24 consecutive welds to limit the amount of long-term 
process disturbances through two different tests scenarios. An overview of the different tests is presented in Table 1.

Table 1. Experimental test overview. All tests are conducted with the same laser spot size, collimation, test set-up and narrow-
band-pass filter.

Test Total welds Welding speed Average laser power Offset Collimation lens 
focal length

Focus lens 
focal length

1-3 18 100 mm/s 3100 W No 180 mm 300 mm

4 6 100 mm/s 3100 W Yes 180 mm 300 mm

4 Anders Mikkelstrup et al./ Procedia Manufacturing 00 (2019) 000–000

The first three tests will be defined as standard weld and are performed to establish a reference for the performance 
of the monitoring system and to investigate the variance between identical samples. Subsequently, Test 4 is performed 
with a 1 mm offset in the Xr direction of the standard welding trajectory, as illustrated in Fig. 2. (a), in order to 
determine the detection capabilities of the monitoring system.

The optics presented in Fig. 2. (b) houses a built-in image acquisition system that includes a Basler acA645-100gm 
CMOS camera, mounted so its perspective is co-axial with the laser beam. This is illustrated in Fig. 2. (b). The camera 
has a frame rate of 100 fps and a resolution of 658 × 492 pixel in 8-bit grey scale. At the focus point, this results in a 
spatial resolution of 25 × 25 pixel/mm2 minimize in-plane rotation and tilt of the camera, the pitch and roll are kept 
constant along the welding trajectory as illustrated in Fig. 1. (b). The image processing and the related operations are 
performed in MATLAB 2016b using an Intel Core i7-6700HQ CPU in combination with 16 GB of memory and a 
Radeon Pro 450 GPU.

An external light source has been mounted at the end of the Permanova optics, as illustrated in Fig. 2. (b). This is 
based on the monitoring system described in M. Nilsen, et al. [9]. By synchronising the trigger of the LED light to the 
exposure time of the camera, it has been possible to run a higher current through the LED light, thus increasing the 
light intensity in shorts bursts. In addition, matching optical filters consisting of a narrow band pass filter and a neutral-
density filter have been mounted in front of the camera lens. 

4. Signal processing

The signal processing deals with image processing of the camera signal to estimate the welding trajectory and joint 
position. In the following sections, n defines the total number of frames captured during the welding operation, while 
k defines the current frame, counted from the beginning of the captured welding operation. 

4.1. Determining joint position using Canny detector and Hough lines 

With the purpose of having some reference to indicate if the weld has been performed within the requirements, the
joint position matrix ( ) [ ( ), ( )]c ck x k y k=J must be established. This is done through a six-step approach, 

illustrated in Fig. 3.

Fig. 3. Camera view with illustration of the steps for determining the joint position of the welding operation. The green Hough lines of step 4 
indicate the lines with gradients within the limits, while the gradient of the red line exceeds the limits and is hence considered as noise. As an 

additional processing step, the joint position matrix J(k) is fitted with a 4th degree polynomial to minimize noise and predict missing data points. 
The above steps are iterated k = k + 1 to the next frame until k = n. [10, 11]
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with a 1 mm offset in the Xr direction of the standard welding trajectory, as illustrated in Fig. 2. (a), in order to 
determine the detection capabilities of the monitoring system.

The optics presented in Fig. 2. (b) houses a built-in image acquisition system that includes a Basler acA645-100gm 
CMOS camera, mounted so its perspective is co-axial with the laser beam. This is illustrated in Fig. 2. (b). The camera 
has a frame rate of 100 fps and a resolution of 658 × 492 pixel in 8-bit grey scale. At the focus point, this results in a 
spatial resolution of 25 × 25 pixel/mm2 minimize in-plane rotation and tilt of the camera, the pitch and roll are kept 
constant along the welding trajectory as illustrated in Fig. 1. (b). The image processing and the related operations are 
performed in MATLAB 2016b using an Intel Core i7-6700HQ CPU in combination with 16 GB of memory and a 
Radeon Pro 450 GPU.

An external light source has been mounted at the end of the Permanova optics, as illustrated in Fig. 2. (b). This is 
based on the monitoring system described in M. Nilsen, et al. [9]. By synchronising the trigger of the LED light to the 
exposure time of the camera, it has been possible to run a higher current through the LED light, thus increasing the 
light intensity in shorts bursts. In addition, matching optical filters consisting of a narrow band pass filter and a neutral-
density filter have been mounted in front of the camera lens. 

4. Signal processing

The signal processing deals with image processing of the camera signal to estimate the welding trajectory and joint 
position. In the following sections, n defines the total number of frames captured during the welding operation, while 
k defines the current frame, counted from the beginning of the captured welding operation. 

4.1. Determining joint position using Canny detector and Hough lines 

With the purpose of having some reference to indicate if the weld has been performed within the requirements, the
joint position matrix ( ) [ ( ), ( )]c ck x k y k=J must be established. This is done through a six-step approach, 

illustrated in Fig. 3.

Fig. 3. Camera view with illustration of the steps for determining the joint position of the welding operation. The green Hough lines of step 4 
indicate the lines with gradients within the limits, while the gradient of the red line exceeds the limits and is hence considered as noise. As an 

additional processing step, the joint position matrix J(k) is fitted with a 4th degree polynomial to minimize noise and predict missing data points. 
The above steps are iterated k = k + 1 to the next frame until k = n. [10, 11]
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4.2. Estimation of welding trajectory using normalized cross-correlation template matching

Let ∆xc and ∆yc describe the camera’s displacement field between subsequent video frames in respectively the Xc

and Yc direction in relation to the camera’s moving coordinate system. The camera’s displacement field is measured 
by selecting a region around the joint in frame k, similar to the procedure of step 2 in Fig. 3. The displacement of the 
region from frame k to k + 1 is then determined by performing normalized cross-correlation template matching 
between the two frames. The region around the joint is selected, as it is distinct and contains high intensity gradients, 
which are normally easier to track. As there is no in-plane rotation in the video frames, normalized cross-correlation 
template matching has proven to be more computationally efficient and robust to image noise, compared to more 
advanced feature matching methods, such as SURF, proposed by H. Bay, et al. [12]. 

The points defining the estimated welding trajectory I(k), can be estimated by summing up the displacement field
for the previous frames of k, as stated by (1), where ( ) [ ( ), ( )]c ck x k y k= ∆ ∆U is the displacement matrix.

(1)

4.3. Kalman filter for displacement field estimates

The displacement matrix ( ) [ ( ),  ( )]c ck x k y k= ∆ ∆U contains excessive noise primarily due to light disturbances 
from the laser beam. As a result, two separate discrete-time Kalman filters, one for Xc displacement ∆xc and one for 
Yc displacement ∆yc is implemented. The two Kalman filters employ almost identical dynamic models to estimate the 
displacements, only differing in whether they make use of the values belonging to Xc or Yc. (2) presents the state 
system equation for ∆xc. The state variables for the process model is chosen as the displacement field at sample k
(∆xc,1), the change in the displacement from k − 1 to k (∆xc,2) and the displacement at k – 1 (∆xc,3).
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Where wx(k) describes the system dynamic noise for ∆xc. φ and Γ being respectively the state transformations 
matrix and the noise drive matrix. The sampling rate ∆t is determined by the frame rate of the camera, thus making 
∆t = 0.01 s for this application. The Kalman filters are implemented under the assumption that the weld is performed 
with a constant speed, and that the camera has a constant distance and angle to the surface of the component. The 
measurement equation then becomes:
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In the traditional Kalman filter, the best estimation of the state vector X(k) relies on conditional variance 
information, which requires that the system dynamic noise wx(k) and sensor measurement noise V(k) are random 
uncorrelated Gaussian white noise models with zero mean and variances Q and R. However, according to X. Gao et 
al. [2], the w(k) and V(k) of the welding process is colored instead of white. X. Gao, et al. [2] proposes to solve this 
challenge by driving Gaussian white noise through a shaping filter and introducing three associated coefficients λ, α 
and β. The coefficients λ, α and β and variances Q and R are used to tune the performance of the shaping filter and 
have been determined by a trial-and-error approach and are stated in Table 2.
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Table 2. Coefficients λ, α and β and variances Q and R for the Kalman filters

Q R λ α β

Xc 10 [10-3, 0; 0, 10-3] 0.3 0.1 0.1

Yc 50 [10-3, 0; 0, 10-3] 0.3 0.1 0.1

In order to incorporate the colored noise into the Kalman filter, the approach of this paper applies the method 
proposed by X. Gao, et al. [2]. Hence incorporating the state system equation for ∆xc, stated by (2), the corresponding 
state system equation for ∆yc and the coefficients of Table 2. This will not be further outlined in this paper. The output 
of the Kalman filter is the corrected displacement matrix ( ) [ ( ), ( )]c ck x k y k= ∆ ∆U   that can be applied to determine the 
estimated welding trajectory, as by (1). cx∆ and cy∆ being respectively the corrected values of ∆xc and ∆yc.

4.4. Radial basis neural network displacement field prediction

The purpose of the neural network is to act as a more accurate predictor for the Kalman filter, where the image 
processing is not able to determine the displacement field. The evaluation criteria are defined as the gradient between 
the displacement field U(k) and the corrected displacement field , which must not exceed a specified threshold 
ρ. 

(4)

A standard three-layer radial basis function neural network is applied due to its generalization ability, stability and 
shorter training times, compared to many other neural networks. The input to the neural network is a 1 × n vector G(k) 
containing the frame numbers for the current video. The output is the predicted displacement matrix U*(k), 
which is used instead of in cases, when ρ is exceeded. Training of the neural network follows the orthogonal 
least squares algorithm, which is employed as a forward regression method used to determine suitable radial basis 
function centers, as proposed by S. Chen, et al. [13]. The neural network is trained using as the target and G(k) 
as the input for the 12 most recent welds.

5. Validation and results

5.1. Geometrical coordinate transformations for system validation

Through a forward kinematic analysis, the KUKA software is able to estimate the position and hence trajectory of 
the laser focal point during the welding operation and will be used as a reference for comparison. As the image 
processing estimates the welding trajectory by calculating the trajectory based on the displacement field between 
subsequent frames from a moving camera, the trajectory is defined in relation to the coordinate system of each 
individual camera frame. The trajectory from the robot coordinate system is transformed to the moving image 
coordinate system by rotating the focal point coordinates from the trace analysis in the negative direction and in the 
opposite order of the angle-set convention, Z-Y-X Euler angles as RZYX. Transforming the image coordinates (Xc, Yc,
Zc) to the global coordinate system (Xr, Yr, Zr) of the robot is done using the same approach, however, in the original 
order of the angle-set as RXYZ.

5.2. Performance evaluation

By using the estimated welding trajectory, I(k) from the monitoring system, the position of the laser focal point 
can be compared to the joint position J(k) in the preceding frames. Fig. 4. (a) illustrates an image, where the visible 
area of the joint of each frame has been combined to form one single image by applying the corrected displacement 
matrix . In addition, the estimated joint positions of J(k) have been plotted in the image for comparison. As 
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Let ∆xc and ∆yc describe the camera’s displacement field between subsequent video frames in respectively the Xc

and Yc direction in relation to the camera’s moving coordinate system. The camera’s displacement field is measured 
by selecting a region around the joint in frame k, similar to the procedure of step 2 in Fig. 3. The displacement of the 
region from frame k to k + 1 is then determined by performing normalized cross-correlation template matching 
between the two frames. The region around the joint is selected, as it is distinct and contains high intensity gradients, 
which are normally easier to track. As there is no in-plane rotation in the video frames, normalized cross-correlation 
template matching has proven to be more computationally efficient and robust to image noise, compared to more 
advanced feature matching methods, such as SURF, proposed by H. Bay, et al. [12]. 

The points defining the estimated welding trajectory I(k), can be estimated by summing up the displacement field
for the previous frames of k, as stated by (1), where ( ) [ ( ), ( )]c ck x k y k= ∆ ∆U is the displacement matrix.
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from the laser beam. As a result, two separate discrete-time Kalman filters, one for Xc displacement ∆xc and one for 
Yc displacement ∆yc is implemented. The two Kalman filters employ almost identical dynamic models to estimate the 
displacements, only differing in whether they make use of the values belonging to Xc or Yc. (2) presents the state 
system equation for ∆xc. The state variables for the process model is chosen as the displacement field at sample k
(∆xc,1), the change in the displacement from k − 1 to k (∆xc,2) and the displacement at k – 1 (∆xc,3).
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Where wx(k) describes the system dynamic noise for ∆xc. φ and Γ being respectively the state transformations 
matrix and the noise drive matrix. The sampling rate ∆t is determined by the frame rate of the camera, thus making 
∆t = 0.01 s for this application. The Kalman filters are implemented under the assumption that the weld is performed 
with a constant speed, and that the camera has a constant distance and angle to the surface of the component. The 
measurement equation then becomes:
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In the traditional Kalman filter, the best estimation of the state vector X(k) relies on conditional variance 
information, which requires that the system dynamic noise wx(k) and sensor measurement noise V(k) are random 
uncorrelated Gaussian white noise models with zero mean and variances Q and R. However, according to X. Gao et 
al. [2], the w(k) and V(k) of the welding process is colored instead of white. X. Gao, et al. [2] proposes to solve this 
challenge by driving Gaussian white noise through a shaping filter and introducing three associated coefficients λ, α 
and β. The coefficients λ, α and β and variances Q and R are used to tune the performance of the shaping filter and 
have been determined by a trial-and-error approach and are stated in Table 2.
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In order to incorporate the colored noise into the Kalman filter, the approach of this paper applies the method 
proposed by X. Gao, et al. [2]. Hence incorporating the state system equation for ∆xc, stated by (2), the corresponding 
state system equation for ∆yc and the coefficients of Table 2. This will not be further outlined in this paper. The output 
of the Kalman filter is the corrected displacement matrix ( ) [ ( ), ( )]c ck x k y k= ∆ ∆U   that can be applied to determine the 
estimated welding trajectory, as by (1). cx∆ and cy∆ being respectively the corrected values of ∆xc and ∆yc.

4.4. Radial basis neural network displacement field prediction

The purpose of the neural network is to act as a more accurate predictor for the Kalman filter, where the image 
processing is not able to determine the displacement field. The evaluation criteria are defined as the gradient between 
the displacement field U(k) and the corrected displacement field , which must not exceed a specified threshold 
ρ. 

(4)

A standard three-layer radial basis function neural network is applied due to its generalization ability, stability and 
shorter training times, compared to many other neural networks. The input to the neural network is a 1 × n vector G(k) 
containing the frame numbers for the current video. The output is the predicted displacement matrix U*(k), 
which is used instead of in cases, when ρ is exceeded. Training of the neural network follows the orthogonal 
least squares algorithm, which is employed as a forward regression method used to determine suitable radial basis 
function centers, as proposed by S. Chen, et al. [13]. The neural network is trained using as the target and G(k) 
as the input for the 12 most recent welds.

5. Validation and results

5.1. Geometrical coordinate transformations for system validation

Through a forward kinematic analysis, the KUKA software is able to estimate the position and hence trajectory of 
the laser focal point during the welding operation and will be used as a reference for comparison. As the image 
processing estimates the welding trajectory by calculating the trajectory based on the displacement field between 
subsequent frames from a moving camera, the trajectory is defined in relation to the coordinate system of each 
individual camera frame. The trajectory from the robot coordinate system is transformed to the moving image 
coordinate system by rotating the focal point coordinates from the trace analysis in the negative direction and in the 
opposite order of the angle-set convention, Z-Y-X Euler angles as RZYX. Transforming the image coordinates (Xc, Yc,
Zc) to the global coordinate system (Xr, Yr, Zr) of the robot is done using the same approach, however, in the original 
order of the angle-set as RXYZ.

5.2. Performance evaluation

By using the estimated welding trajectory, I(k) from the monitoring system, the position of the laser focal point 
can be compared to the joint position J(k) in the preceding frames. Fig. 4. (a) illustrates an image, where the visible 
area of the joint of each frame has been combined to form one single image by applying the corrected displacement 
matrix . In addition, the estimated joint positions of J(k) have been plotted in the image for comparison. As 
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illustrated in Fig. 3., it is essential to note, that due to the large number of saturated pixels, it is not possible to directly 
compare the deviation between the laser focus point and joint in the same frame.

(a) (b)

Fig. 4. (a) Visual comparison of the estimated welding trajectory and joint position in each frame of a standard weld. (b) Radial deviation of 
welding trajectories I(k) from the standard welds of Test 3 versus the offset welds of Test 4, compared to estimated joint positions J(k).

Fib. 4. (b) shows a comparison of six standard welding trajectories, in this case Test 3 of Table 1, and six offset 
trajectories from Test 4, all compared to their respective estimated joint position. The differences in the radial 
deviations of between the welding trajectories I(k), compared to estimated joint positions J(k), give an indication of 
the precision of the estimated welding trajectories and furthermore evaluates the system’s ability to precisely detect 
process disturbances. The maximum deviation σ is 0.17 mm, which occurred on Test 3, as illustrated in Fig. 4. (b).
By computing the deviation between the estimated joint positions J(k) of six welds, it is possible to evaluate the 
precision and robustness of the joint locater. Fig. 5. (a) shows the difference in the Yc coordinate of the joint positions 
for all frames from the videos of Test 3. The Xc coordinate of the joint is fixed in all frames and is therefore not 
considered. The joint positions are compared to a reference, that has been determined by a neural network. In this 
case, it is roughly a weighted average of all the joint positions. The results show, that the maximum deviation σ is 
within the requirements of ± 0.2 mm. 

The deviation between the trajectory and the joint position in the Yc direction of both the standard and the 1 mm 
offset weld is transformed into the global robot coordinate system. The results are illustrated in Fig. 5. (b).

a) b)

Fig. 5. (a) Deviation in the joint position J(k) of six welds compared to a neural network reference.; (b) Comparison of estimated standard
trajectory I(k) versus estimated offset trajectory transformed into the global coordinate system of the robot.

The results indicate, that the mean offset ξ is approximately 0.95 mm in the Xr direction, which corresponds to the 
actual offset of 1 mm between the standard and offset weld. In addition, the results indicate a slight offset in both the 
Yr and Zr direction, which is likely a consequence of image noise and inaccurate synchronizing of the data from the 
forward kinematic analysis of the robot and the data from the quality inspection system. 
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The total cost time of the monitoring system, i.e. estimating joint position and welding trajectory for n = 106 frames, 
excluding loading of video and plotting is 3.05 s. For comparison, the welding operation elapses 1.16 s pr. weld.

6. Conclusion

This paper proposed a monitoring system to deal with the challenges of acquiring a sufficient amount of robust 
process data for post inspection of autogenous laser welds, that have been performed along curved three- dimensional 
trajectories. The monitoring system, purely rely on template matching for determining the frame displacement field 
showed promising results, however, it suffered from instabilities. To improve the system, it was extended to include 
a Kalman filter in combination with a radial basis function neural network to account for non-linear uncertainties in 
the Kalman filter. Based on the results presented in the previous section, when estimating the welding trajectory 
relative to the joint position, the monitoring system had a maximum deviation σ within the requirement of ± 0.2 mm
between individual welds with a total cost time of 3.05 s. In addition, it was able to detect a mean offset ξ in the 
welding trajectory of 1 mm within an accuracy of ± 0.05 mm. The system should however be tested under a more 
extensive set of different scenarios to better evaluate the robustness and to further validate the monitoring system.

Replacing the implemented method for locating the joint with a convolution neural network could improve the 
accuracy, however at the expensive of an increased cost time in the form of network training. Implementation on a 
convolution neural network was investigated for this paper, but due to inadequate amount of training data, it was not 
possible to produce a detector, that outperformed the method. Another interesting aspect to investigate further is the 
possibility of measuring the displacement of the weld trajectory along the Zc direction, the axial direction of the laser,
by applying the principles behind stereo vision to estimate the depth parameter in the video.
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