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ENGLISH SUMMARY 

Rainfall-runoff from urban pervious areas can contribute with significant quantities 

of runoff to urban drainage systems as these areas often constitute a relatively large 

part of the urban surfaces. This can have a large impact on the capacity of urban 

drainage systems and should therefore be implemented in the design process. 

However, the estimation of runoff from such areas is often uncertain with no empirical 

data to calibrate or validate pervious surface runoff models used in urban drainage 

modelling. Therefore, there is an urgent need for empirical datasets on the 

characteristics and variation of pervious surface runoff in urban hydrology. 

It is often assumed that pervious surface runoff occurs in the form of infiltration excess 

overland flow in urban areas. However, this have rarely been confirmed by empirical 

studies. Empirical studies of pervious surface runoff are typically carried out in rural 

or agricultural areas and therefore do not necessarily represent the hydrology of urban 

pervious areas. Field studies of pervious surface runoff in rural and agricultural areas 

are often carried out with physical rainfall simulators used to study the runoff 

characteristics on a limited scale by applying a specific amount of rainfall to a 

pervious surface.  Full-scale field experiments are also carried out although such 

studies seem to be rarer. Full-scale studies typically evaluate the runoff from entire 

catchments under natural hydrological conditions.  

This study includes both a designed physical rainfall simulator and a full-scale field 

station to study the runoff characteristics from an urban pervious catchment on both 

small and large scale.  The runoff characteristics of both experimental approaches are 

investigated in relation to rainfall types and soil-water properties such as soil water 

content and matric potential. Furthermore, it is investigated how traditional models in 

urban drainage engineering can simulate measured runoff compared to other 

alternative models. 

In the study, it was found that the designed rainfall simulator and full-scale field 

station observed very different runoff processes. The full-scale experiment primarily 

measured subsurface throughflow under high soil water content conditions during fall 

and winter. On the contrary, the rainfall simulator measured infiltration excess runoff 

though under significantly higher rainfall intensities than those measured under 

natural condition with the full-scale field station. Generally, it was found that 

subsurface throughflow were the dominant runoff process.  It was further found in the 

study, that alternative models such as a linear reservoir model and neural network 

models performed better in simulating measured runoff compared to traditional urban 

drainage models like the time-area and kinematic wave model.
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DANSK RESUME 

Ubefæstede overflader udgør typisk en stor andel af overfladerne i byen. Derfor kan 

regnbetinget overfladeafstrømning fra ubefæstede områder i byen potentielt bidrage 

med store mængder afstrømning til byens afløbssystemer. Dette kan have stor 

indflydelse på afløbssystemernes kapacitet, hvorfor denne type afstrømning også 

burde inddrages kvalitativt, når nye afløbssystemer projekteres. Kvantificering af 

overfladeafstrømning fra sådanne områder er dog forbundet med usikkerhed og som 

regel findes der ingen data til hverken kalibrering eller validering af de tilgængelige 

overfladeafstrømningsmodeller i afløbstekniske modeller. Af denne grund er der et 

presserende behov for empiriske dataset, der beskriver de karakteristika og den 

variation der findes i overfladeafstrømning fra ubefæstede områder i urban hydrologi. 

I afløbsteknisk sammenhæng antages det som regel, at overfladeafstrømning fra 

ubefæstede områder foregår i form af, at den ubefæstede overflades 

infiltrationskapacitet overskrides. Dette er dog sjældent påvist rent empirisk i urban 

sammenhæng, hvorimod sådanne empiriske undersøgelser ofte er foretaget i rurale 

områder og i landbrugsområder. Feltundersøgelser af afstrømning fra ubefæstede 

rurale områder og landbrugsområder bliver ofte udført med specialdesignede fysiske 

regnsimulatorer, der tilfører en afgrænset jordoverflade en specifik regnmængde 

inden for et givet tidsinterval. Fuldskalafeltundersøgelser udføres i mindre 

udstrækning til at studere de naturligt forekommende hydrologiske 

overfladeafstrømningsprocesser på oplandsskala. 

I dette projekt udvikles både en fysisk regnsimulator og et fuldskalafeltforsøg til at 

undersøge de afstrømningskarakteristika, der måtte være i et urbant ubefæstet område 

på både stor og lille skala. Disse afstrømningskarakteristika undersøges derefter i 

relation til andre parametre som regn og jordfysiske parametre, herunder jordens 

vandindhold og poretryk. Endeligt undersøges det, hvordan traditionelle modeller i 

afløbsteknisk sammenhæng præsterer sammenlignet med alternative modeller, der 

ofte anvendes til andre formål. 

Brugen af den udviklede regnsimulator og fuldskalafeltforsøget viser, at disse to 

eksperimentelle tilgange observerer forskellige afstrømningsprocesser. På fuld skala 

er overfladenær afstrømning i det øvre jordlag den dominerende afstrømningstype ved 

høje vandindhold i jorden. I modsætning til dette måler regnsimulatoren kun 

overfaldeafstrømning som følge af, at jordoverfladens infiltrationskapacitet 

overskrides. Det kræver dog væsentligt højere regnintensiteter at opnå denne type 

afstrømning i forhold til de intensiteter, der blev målt under naturlige forhold på fuld 

skala. Generelt set er overfladenær afstrømning i topjorden den hyppigst 

forekommende afstrømningstype i dette projekt. Det kan yderligere konkluderes, at 

alternative modeller som en lineær reservoirmodel og neurale netværk er bedre til at 

modellere afstrømning end tid-areal metoden og den kinematiske bølgemodel. 
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PREFACE 

This research has its offset in the wastewater industry of Denmark and is carried out 

in the industrial PhD-student arrangement funded by Innovation Fund Denmark. The 

project started in March 2016 and have finally been submitted for assessment to fulfil 

the PhD-degree in April 2019.  

The general goal of an industrial PhD-study is by scientific research to find solutions 

on current problems in the commercial sector in many different scientific directions. 

The specific goal of this industrial PhD-study is to investigate how big the problem of 

rainfall-runoff from urban pervious areas is and how this can be handled in the future 

to increase the design quality of urban drainage systems. During the study, the PhD-

student has been affiliated with both Aalborg University and the engineering 

consultancy firm EnviDan. Furthermore, the project has been carried out in close 

cooperation with the Danish water utility company Aarhus Water. This forms three 

important legs in this research project which are the scientific, product developing, 

and implementing legs.  

This thesis is based on three scientific papers denoted as Paper I, II, and III on page 

VI. Paper I is in press while Paper II and III are waiting for a decision from editors 

or reviewers. The papers can be found in the “Appendices” chapter in the back of this 

thesis. 

Research and development projects 
Two industrial research projects have been carried out simultaneously to this 

industrial PhD-study. These are ‘Monitoring of rainfall-runoff from urban pervious 
areas’ (in Danish: ‘Monitering af Overfladeafstrømning fra Grønne Områder’ 
(MOGO)) and ‘Monitoring of rainfall-runoff from urban pervious areas two’ (in 

Danish: ‘Monitering af Overfladeafstrømning fra Grønne Områder To’ (MOTO)).  

MOGO started in 2015 and ended in 2018 and were partially funded by ‘The 
Foundation for Development of Technology in the Danish Water Sector’ (VTUF). The 

project was carried out in a partnership between Aarhus Water, Aalborg University, 

and EnviDan. MOGO had the primary goal to physically identify and document 

rainfall-runoff from urban pervious areas with an experimental approach. MOGO has 

been the primary contributor of funds to experimental facilities in this PhD-study. 

MOTO started in 2018 and ends in 2020 and is partially funded by ‘The Development 
and Demonstration Program in the Danish Water Sector’ (VUDP). The project is 

carried out in a partnership between Aarhus Water, Aalborg University, and EnviDan. 

The primary goal of MOTO is to elaborate on the results obtained in MOGO and bring 

the results to a larger scale. Furthermore, MOTO works on optimising the developed 
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measurement facilities in MOGO to make these more available for broader use in the 

Danish water utility sector. 

Finally, a workgroup has been established in The Danish Committee of Wastewater 

(Spildevandskomitéen) which collect the knowledge on runoff from pervious surfaces 

and develop ideas on how to include this type of runoff in the design of urban drainage 

systems in the future. 
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CHAPTER 1. INTRODUCTION  

Urban drainage systems have a substantial role in the sanitation of the urban 

environment. Separation of wastewater and humans have resulted in a tremendous 

decline in fatal wastewater related diseases. In developed countries, wastewater is 

typically collected and transported in underground sewers and is completely separated 

from the surface. Transportation of wastewater typically occurs in either combined or 

separated sewer systems (Butler et al., 2004). Combined sewer systems collect and 

transports both wastewater and rainfall-runoff in the same pipes while separated sewer 

systems transport wastewater and rainfall-runoff in separate, non-connected, pipes. 

Generally, separate sewer systems have been the preferred sewer type for several 

decades. In this way, it is avoided that diluted wastewater reaches terrain during flood 

and the pollution from especially combined sewer overflow is minimised (Gromaire 

et al., 2001). 

During torrential rainfall, there is a risk that rainfall-runoff from urban areas will 

exceed the discharge capacity of either the combined or separated sewer systems. This 

could potentially result in flooding which poses a risk of either human contact with 

pathogenic wastewater or drowning incidents. Furthermore, flooding in the urban 

environment can do significant damage to buildings and objects or facilities of 

sentimental value. Therefore, the frequency of floods should be minimised. 

Specifically, in Danish urban drainage design practice, wastewater should not reach 

terrain more frequently than every fifth year for separated sewer systems and every 

tenth year for combined sewer systems (Spildevandskomitéen, 2005). 

To minimise the potential risk of loss of human life and material damage during 

flooding, urban drainage systems must be designed using the best available 

knowledge and consequently develop the knowledge on topics which are not fully 

understood. As flooding is the result of rainfall-runoff from the surrounding 

catchments of the urban drainage systems, the rainfall-runoff processes in the 

catchments are some of the most important factors in urban drainage design where 

uncertainty can and should be decreased. 

Rainfall-runoff is typically generated from impervious and pervious surfaces (Boyd 

et al., 1993; Boyd et al., 1994). Impervious surfaces are impermeable, and it is 

assumed that the infiltration capacity of these is zero. These surfaces are covered by 

different types of pavement, asphalt, buildings etc. Impervious surfaces discharge 

water to the drainage systems frequently and discharge is typically linearly correlated 

to rainfall quantities. Pervious areas discharge water because of rainfall less 

frequently. Pervious areas are typically covered by vegetation, soil, and gravel. In 

pervious areas infiltration can transport a significant amount of rainfall falling upon 

the surface and in that way drain the surface. Therefore, runoff from pervious surfaces 

only occur if the infiltration capacity of the underlaying soil is exceeded. Examples of 
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this is seen in Figure 1.1 where runoff from two different pervious surfaces discharges 

rainfall to impervious areas. 

   

The infiltrating property of pervious surfaces increases the complexity in terms of 

estimating runoff in an urban drainage context. Compared to impervious surfaces, 

infiltration results in a highly non-linear relationship between rainfall and runoff 

generation. Thereby, runoff from pervious surface is significantly harder to quantify. 

Additionally, runoff from pervious surfaces have a high spatial and temporal 

variation, as the potential infiltration of rainfall depends on many variables such as 

soil texture, current soil-water conditions, and surface vegetation. 

Compared to the high complexity of pervious surface runoff processes, studies on 

rainfall-runoff from pervious areas in the urban environment is limited in the scientific 

literature (Redfern et al., 2016). This often results in simplified approaches in 

quantifying this type of rainfall-runoff in an urban drainage engineering context. 

Recently though, this topic has gained increasing interest in the Danish water utility 

sector combined with an increased focus on extraneous water. The reason of this is 

situations where the percentage of runoff in the drainage systems is unlikely to be 

explained solely on rainfall precipitating on impervious surfaces. As the runoff 

coefficient in some areas is above one, this means that other sources (extraneous 

water) than rainfall on impervious surfaces must discharge water to the drainage 

systems. This is seen in some wastewater treatment plants where likely quantities of 

rainfall contribute with different quantities of runoff in different periods of time. 

For example, extraneous water is present at Viby Renseanlæg (Viby Wastewater 

Treatment Plant) in Aarhus, Denmark. This is seen in Figure 1.2 where fluctuations 

in the discharged runoff volume at the wastewater treatment plant relative to 

accumulated precipitation seems to be seasonally dependent. Generally, the baseflow 

is highest during winter and lowest during summer. The primary reason of this is most 

Figure 1.1. Rainfall related runoff from two pervious surfaces to impervious surfaces. Left: 
Runoff produced on an agricultural field flowing towards a nearby road. Right: Runoff 
produced from a recreational grass park in a residential area in Lystrup, Denmark. 
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probably infiltration into the pipes of the urban drainage network. The baseflow is 

represented by the lowest points along the graph in Figure 1.2. The baseflow is most 

probably high during fall and winter because of a higher soil water content in these 

seasons. This increases the water pressure on the outside of the pipes in the drainage 

network and forces soil-water through cracks in the pipe walls. Thereafter, infiltrated 

water in the pipes will eventually reach Viby Renseanlæg.  

On top of the baseflow, the inlet water volume relative to rainfall varies significantly. 

However, it is generally seen that peaks on the graph in Figure 1.2 becomes higher 

more frequently during fall and winter. Furthermore, peaks seem to extend over longer 

periods during fall and winter. Therefore, the water volume discharged to Viby 

Renseanlæg is higher during fall and winter compared to the summer period. This 

could indicate that runoff is occurring from sources that are not related to impervious 

surfaces, as runoff is not expected to vary significantly from the impervious areas in 

the catchment of Viby Renseanlæg if the general degree of imperviousness does not 

increase. 

 

Figure 1.2. Ten-day moving average of accumulated discharge to inlet of ‘Viby Waste Water 
Treatment Plant’ (Viby Renseanlæg) relative to accumulated rainfall measured at Viby 
Renseanlæg. 

High and long-term peaks during fall and winter cannot be explained solely on 

impervious runoff. Several sources could contribute to these periods of increased 

runoff. However, these are difficult to separate from a single hydrograph as presented 
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in Figure 1.2. The primary sources that increase runoff during fall and winter are most 

probably due to lower evapotranspiration in these seasons. These sources could be 

increased infiltration through pipe leaks due to high or full saturation of the soil, and 

runoff directly from pervious surfaces. 

In this study, the primary goal is to identify and isolate runoff from pervious surfaces. 

In this way, it is possible to assess the dynamics of pervious rainfall-runoff. Thus, the 

impact of this type of runoff in different runoff situations can be evaluated. Runoff 

from pervious areas can affect the urban drainage systems in different ways, whereas 

the general issues are: 

• Unexpected sudden runoff from pervious surfaces could cause the total 

runoff to the drainage systems to exceed the discharge capacity of the pipes. 

• Unexpected discharge to detention basins increases the time before these 

have been completely emptied of detained water. This could lower the 

storage capacity in the case of coupled rainfall events. 

• Runoff from pervious surfaces which contributes to the total inlet flow at 

wastewater treatment plants could deteriorate the treatment efficiency as 

concentrated wastewater is diluted. 

1.1. RAINFALL-RUNOFF MODELLING IN URBAN DRAINAGE  

Rainfall-runoff from pervious areas is the result of excess rainfall that cannot percolate 

into the underlying soil. This can be formulated by a continuity equation for simple 

urban drainage models as presented in equation (1) (Nielsen et al., 2019): 

 ���� = � − ���	
 − � (1) 

Where y [m] is the water level on the pervious surface, t [s] is time, P [m s-1] is rainfall 

intensity, Q [m3 s-1] is the runoff rate from the pervious surface, A [m2] is the surface 

area of the pervious area, and f [m s-1] is the infiltration rate.  

Generally, the equation expresses that if the rainfall intensity is higher than the 

infiltration capacity, rainfall will start to pond on the permeable area. This will 

increase the water level on the surface and thereby initialise runoff. However, the 

theory and physical processes are significantly more complex than presented in 

equation (1).  

The infiltration rate is dependent on numerous factors such as the soil texture 

(Groenendyk et al., 2015), the effective porosity i.e. the larger pores (macropores) in 

the soil (Beven and Germann, 1982; Poulsen et al., 1999), and soil compaction which 

can be severe in urban areas (Gregory, 2006). Furthermore, the infiltration rate is 

strictly correlated to the soil water content which varies in time (Campbell, 1974). 
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Additionally, different surface properties such as the density of grass (Pan and 

Shangguan, 2006) and the type of plant cover (Pan et al., 2006; Quinton et al., 1997) 

affects the quantity of runoff produced. In this regard, runoff generally reduces when 

the plant cover increases. Finally, the morphological properties of the surface have a 

different impact on produced runoff (Sharma, 1986). 

In urban drainage modelling, many of the above-mentioned factors that can affect 

runoff are not included for practical reasons. Instead, the estimation of runoff from 

pervious surfaces is often carried out based on simplified models. In the following, 

the most general theories on soil-water transport and modelling of infiltration and 

runoff processes are described. 

1.1.1. SOIL-WATER TRANSPORT MECHANISMS 

Rainfall-runoff from urban pervious surfaces is strictly related to the underlaying soil 

and its characteristics. Soils consist of three primary components as presented in 

Figure 1.3. These are (i) solids, usually constituted by clay, silt, sand, and gravel that 

have different particle sizes, (ii) water, which either sticks to the solids or is in a free 

flow phase in the soil pores, and (iii) an air component, which fills out space not filled 

by either solids or water (Brady, N.C., 1984). In addition, most soils also contain a 

Figure 1.3. The three components of the soil bulk. A soil typically consists of solids, water, and 
air. 
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small amount of organic matter. Organic matter does not take up much of the volume 

of the soil bulk, but it can have significant effects on the infiltration in the soil as 

organic matter can cause water repellency of the soil (de Jonge et al., 1999).  

The distribution of solid types is typically defined as the particle size distribution and 

is often used to classify the soil and its general properties whereas the USDA soil 

classification is one of the most widely used approaches (Ashman and Puri, 2013).  

The volume fraction of solids typically remains constant unless the soil is exposed to 

some sort of physical process such as compaction or mechanical movement of the 

soil. The volume fractions of water and air varies depending on prior rainfall and 

evapotranspiration from the soil. If the water fraction increases, the air fraction 

decreases. The volume fraction of water in the soil bulk is referred to as the soil 

volumetric water content and is one of the most applied and analysed parameters in 

this study which affect the hydraulic conductivity of the soil (Rose et al., 1965). 

The total volume of air and water in the soil bulk is referred to as the total porosity 

and is the maximum volume which can be filled with water. It is also within the total 

porosity that soil-water transport takes place. Soil-water transport in the pores is 

driven by the soil-water potential and gravity. The soil-water potential describes the 

negative pressure (suction) in soils under unsaturated conditions because of capillary 

and adsorptive forces. This is also referred to as the soil-water retention characteristics 

(Van Genuchten, 1980) and is largely dependent on the physical properties of the soil 

(Gupta and Larson, 1979).  

The capillary force in a soil is dependent on the diameter of the soil pores. Generally, 

smaller pore diameters, i.e. either pores in a highly compacted soil or a soil constituted 

by small particles (e.g. clay), tend to have a higher capillary force. The result of this 

is a higher negative pressure in these soils. On contrary, soils with larger pore 

diameters (sand and gravel) have a lower capillary force and thereby less negative 

pressure within them. Adsorption is the result of adsorptive forces between soil 

particles and water molecules, which makes water molecules stick to the soil particles. 

Furthermore, water molecules which sticks to the soil particles will attract additional 

water molecules because of dipolar intermolecular forces within them (Brady, N.C., 

1984). This results in a thin layer of water surrounding the soil particles.  

The result of the soil-water potential and the size of the negative pressure is that it 

forces water into the soil by suction. The soil-water potential is strongly correlated to 

the soil water content which is the volume fraction of water per soil volume unit. 

Gravitation is the second driver of water transport through the soil. As a soil becomes 

increasingly saturated, the soil-water potential becomes lower (i.e. the negative 

pressure in the soil decreases). At some level of soil water content, the gravitational 

pull will be as large as the negative pressure in the soil. This means that if the soil 
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water content reaches higher levels, gravitation will force water so move vertically in 

the soil as the negative pressure from capillary and adsorptive forces are no longer 

high enough to bind water in the soil bulk. Generally, when the gravitational force is 

as large as the soil-water potential, the remaining air-filled pore volume fraction is 

called the effective porosity. This porosity fraction represents the larger pores in the 

soil in which the primary water transport occurs under saturated conditions in the soil 

(Poulsen et al., 1999).  

The physics of soil-water transport is generally formulated in Richard’s equation 

which the most applied model for soil-water transport simulation. Richard’s equation 

is solved in numerical solution schemes (Celia et al., 1990; Van Dam and Feddes, 

2000) and describes the change in soil water content in a certain soil volume as a 

function of the soil-water potential and gravity-driven water transport in the soil.  

Generally, the lowest potential infiltration rates are found in clayey soils while the 

highest are found in sandy soils (Rawls et al., 1982). This generally means that the 

potential for infiltration is highest in areas with sandy soil. However, local soil 

physical properties could affect this such as the effective porosity which are well 

correlated with the saturated hydraulic conductivity, Ks (Poulsen et al., 1999). 

1.1.2. INFILTRATION MODELLING IN URBAN DRAINAGE 

Infiltration models used in urban drainage modelling are typically simplified models 

either empirically derived based on measurements or simplifications of Richard’s 

infiltration equation. Numerous infiltration models exist; however, two infiltration 

models have found wide application in urban drainage engineering. These are 

Horton’s infiltration equation and the Green-Ampt model (R. E. Horton, 1933; R. E. 

Horton, 1939; Green and Ampt, 1911). The general assumption of these infiltration 

models is that infiltration propagates vertically into the soil. Furthermore, all 

infiltration models describe that the infiltration rate decays as the soil becomes 

increasingly wet. 

Horton’s infiltration equation 
Horton’s infiltration equation is solely based on empirical observations and estimates 

the infiltration capacity of the surface as a function of time (R. E. Horton, 1939): 

 ���	 = �� + ��� − ��	���� (2) 

Where f [m s-1] is the infiltration rate, fc [m s-1] is the saturated infiltration capacity, f0 

[m s-1] is the initial infiltration capacity, and k [s-1] is the decay constant of infiltration.  

Equation (2) describes the infiltration capacity decreasing from an initial value, f0, to 

a final infiltration capacity, fc. The infiltration capacity decreases at the function of 

time and a decay constant, k. 
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The Green-Ampt infiltration model 
The Green-Ampt model is physically based and derived on a simplification of 

Richard’s equation. The Green-Ampt model presented in equation (3) assume that the 

soil is homogenous and that water movement into the soil occurs with a sharp wetting 

front (Green and Ampt, 1911; Mein and Larson, 1973):  

 ���	 = �� �1 + �� + ���� � (3) 

Where Ks [m s-1] is the saturated hydraulic conductivity, y0 [m H2O] is the water level 

of ponding water on the soil surface, ψwf [m H2O] is the soil-water potential at the 

wetting front, and Z [m H2O] is the distance from the soil surface to the wetting front.  

The Green-Ampt model assumes that the soil water potential at the wetting front is 

constant and that the wetted zone of depth Z is uniformly saturated (Kale and Sahoo, 

2011). The distance from the soil surface to the wetting front, Z, is calculated by (Mein 

and Larson, 1973): 

 � = �∆� (4) 

Where F [m] is the cumulative infiltration depth and ∆θ [m3 soil / m3 H2O] is the 

initial soil volumetric water content deficit, which is the difference between the 

saturated soil volumetric water content, θs [m3 soil / m3 H2O], and the initial soil 

volumetric water content θi [m3 soil / m3 H2O]. 

1.1.3. SURFACE RUNOFF MODELLING IN URBAN DRAINAGE 

Surface runoff models used in urban drainage varies from two-dimensional models to 

simplified empirical or semi empirical one-dimensional models. The general 

formulation of surface runoff is the physically based Saint-Venant equations for two-

dimensional flow (Tayfur et al., 1993). The numerical solution of the Saint-Venant 

equations is typically used for modelling of overland flow in commercial models such 

as MIKE 21 (DHI, 2017a). However, simplified overland flow models are often used 

to estimate the surface runoff in pipe flow models of urban drainage networks such as 

MIKE URBAN (DHI, 2017b). In this way, the computational effort needed is 

minimised. 

Kinematic wave model 
One widely applied model is the is the kinematic wave model for one-dimensional 

which is a simplification of the St. Venant equations (Butler et al., 2004). The 

kinematic wave model is based on the continuity equation in equation (1) and 

Manning’s formula for uniform flow in open channels presented in equation (5) 

(Munoz-Carpena et al., 1999). 
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 ���	 = � ���	!"#$% (5) 

Where B [m] is the width of the flow channel, M [m1/3 s-1] is Manning’s number, y 

[m] is the water level in the flow channel, and I [m m-1] is the slope of the surface of 

the flow channel. 

The kinematic wave model is derived by combining equation (1) and (5) as presented 

in the differential equation below: 

 ���� = � − � ���	!"#$%
 − � (6) 

The differential equation can be solved in a numerical solution scheme as seen in 

equation (7) using an explicit finite difference scheme: 

 �&'$ − �&∆� = �& − � �&!"#$%
 − �& 
(7) 

Where n [-] is the time discretisation and ∆t [s] is the time increment. 

Time-area model 
The time-area method is a fully empirical approach to surface runoff modelling where 

runoff is calculated as a function of time (Butler et al., 2004): 

 ���	 = (∆Ajinφ
N

n=1

 (8) 

Where in [m s-1] is the rainfall intensity, ∆Aj [m2] is the contributing area to runoff, φ 

[-] is the runoff coefficient, n is the time increment, and j is the increment of change 

in the runoff contributing area. 

Due to the simplicity of the time-area model, it is also the most frequently used model 

in Danish engineering practice for runoff estimation in pipe flow models such MIKE 

URBAN (DHI, 2017b). 

1.2. FIELD STUDIES FOR INVESTIGATION OF PERVIOUS 
SURFACE RUNOFF PROPERTIES 

Field studies are often carried out as very few data are available to evaluate the 

accuracy of applied models. Furthermore, some physical processes are hard to 

quantify and therefore field studies seem more practical in these cases. Field studies 
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on rainfall-runoff from pervious surfaces can be divided into two categories whereas 

the first is full scale field studies which study runoff on catchment sized scale. The 

second type of field study is physical rainfall simulator studies which are typically 

carried out on a few square meters. 

1.2.1. PHYSICAL RAINFALL SIMULATION 

The overall goal of a physical rainfall simulator is to produce an often very specific 

type of rainfall. By irrigating rainfall onto a limited surface area with a certain amount 

of rainfall, different physical processes can be studied. Some of the frequently studied 

parameters are processes like runoff generation, hydrophobicity of the surface, soil 

erosion, and nutrient transport (Burch et al., 1989; Arnaez et al., 2007; Sharpley, 

2003).  

Physical rainfall simulators have been designed for at large variety of purposes. 

However, most rainfall simulators have some common features. In general, portable 

rainfall simulator irrigates rainfall on the soil surface with either spraying nozzles or 

dripping (Bowyer-Bower and Burt, 1989). The use of spraying nozzle requires a 

pressurized system where the spraying nozzles are supplied with water by a pump. 

This method is widely used as it is relatively easy to apply because pressure is usually 

the only parameter to control. Furthermore, spraying nozzle simulators can also 

irrigate rainfall towards a larger surface area (Humphry, 2002; Benavides Solorio and 

MacDonald, 2001; Cerdà et al., 1997). Drop forming simulators are driven by 

gravitation where small perforations lets water pass and drip towards an area of 

interest (Clarke and Walsh, 2007).  

Portable rainfall simulators are typically used for field studies to investigate in-situ 

properties of a specific soil and soil surface. However, the techniques are also used in 

laboratories under more controlled conditions in terms of e.g. soil-water content and 

surface slope (Lora et al., 2016; Römkens et al., 2002).  

Rainfall simulators are typically designed towards optimal performance on specific 

performance parameters such as uniform distribution of raindrops and the kinetic 

energy of raindrops (Abudi et al., 2012; Christiansen, 1942; Gilley and Finkner, 1985; 

Iserloh et al., 2013; Van Dijk et al., 2002).  

Few attempts have been made to design portable rainfall simulators that can simulate 

a larger spectrum of rainfall intensity. The reason is, that most rainfall simulators are 

designed to produce one specific rainfall intensity. This can be problematic as this 

requires several simulators to evaluate e.g. runoff behaviour under different types of 

rainfall. Instead of using several simulators for different rainfall intensities, Miller 

(1987) investigated how solenoid valves could be implemented to generate control 

strategies the applied rainfall to produce different rainfall intensities with the same 

simulator. Miller (1987) showed that by opening and closing the solenoid valve at 
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different frequencies, it was possible to generate different rainfall intensities with the 

same simulator. The use of solenoid valves to control rainfall simulators was further 

studied by Paige (2004) who developed a computer-controlled system. In this way, 

Paige (2004) could change the intensity during simulation if needed, though through 

manual intervention. 

Most rainfall simulators are designed for studies in rural and agricultural areas and 

little focus have been brought to the urban environment on this topic. However, recent 

investigations by Yakubu and Yusop (2017) have studied rainfall simulators from 

other research fields and evaluated their adaptability for rainfall simulation on urban 

impervious surfaces. 

The general pitfall of rainfall simulators is that rainfall-runoff is measured on a 

relatively small scale. This can be a problem due to the heterogeneity of soil but also 

on how measurement results can be extrapolated to larger scales. Furthermore, the 

primary type of runoff that is studied with rainfall simulators are infiltration excess 

overland flow. This could lead to a misinterpretation of the hydrological behaviour in 

some catchments. 

1.2.2. FULL-SCALE EXPERIMENTS 

Full-scale experiments are carried out on varying catchment sizes and can be as large 

as several square kilometres. The advantage of full-scale experiments is that they 

evaluate the general hydrology of entire catchments, whereas rainfall simulators only 

measure the hydrological conditions on a very small sub-part of the respective 

catchments.  

Full-scale experiments are to a large degree dependent on natural meteorological and 

hydrological conditions, and do therefore also operate under some degree of 

randomness in terms of rainfall patterns, dry weather periods, antecedent soil water 

content etc. However, successful full-scale studies can supply important information 

on the hydrological behaviour of catchments and on how the current theoretical 

understanding should be translated in the field. 

Full-scale studies approach very different issues and only few focuses directly on 

surface runoff from pervious surfaces. Some studies investigate how measured soil 

water content in watersheds can be used to predict watershed runoff. For example, 

Jacobs et al. (2003) studied how remotely sensed soil water content in a watershed 

could be used to optimize runoff estimate. Additionally, Grayson (1997) investigated 

how spatial soil moisture patterns could be used to predict if soil-water is vertically 

infiltrating or whether horizontal water transport was present in the soil. 

Generally, full-scale studies focused directly on surface runoff types from pervious 

surfaces are very limited. Especially in urban drainage where such studies barely exist 
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(Redfern et al., 2016). However, some full-scale studies have been carried out in rural 

areas. Dunne and Black (1970a) and Dunne and Black (1970b) investigated runoff in 

an experimental watershed. They found that runoff primarily occurred from rainfall 

precipitating on saturated spots where rainfall could not infiltrate and therefore would 

run off the surface. Additionally, Dunne and Black (1970a) also found that subsurface 

throughflow was present. Dunne and Black (1970a) found no evidence of infiltration 

excess runoff as presented by R. E. Horton (1939). Kirkby and Chorley (1967) did 

similar findings that subsurface throughflow is the dominating runoff type. Kirkby 

and Chorley (1967) further concluded that infiltration excess runoff is just one end-

member of several runoff types. Pilgrim et al. (1978) found that that three types of 

runoff contributed to runoff in general. These were (i) infiltration excess overland 

flow, (ii) saturation excess overland flow, and (iii) subsurface throughflow. These are 

also the three surface runoff processes that are potential contributors to runoff during 

rainfall. Although these processes are primarily observed and documented in literature 

in rural areas, they could also all be potential contributors to runoff from urban 

pervious areas. The characteristics of these three runoff processes are briefly 

summarized below: 

(i) Infiltration excess overland flow is produced when the rainfall intensity 

exceeds the infiltration capacity of a permeable surface. The excess 

rainfall will thereby pond on the surface and eventually start to discharge 

from the surface. The infiltration capacity is often estimated based on 

the infiltration theory of R. E. Horton (1939) and Green and Ampt 

(1911). This type of runoff occurs on the soil surface. 

(ii) Saturation excess overland flow is produced if the soil beneath a surface 

is fully saturated as shown by Dunne and Black (1970a). In this way, 

there is practically no vertical infiltration and all rainfall will thereby 

pond on the surface and finally discharge. This is often seen if a ground 

water table temporarily reaches the soil surface.  

(iii) Subsurface throughflow is different from infiltration and saturation 

excess overland flow. This type of runoff occurs in the soil matrix by 

horizontal water transport. Horizontal water transport in the soil is 

initiated as the storage capacity of the soil is exceeded. Therefore, the 

soil water content must have exceeded some critical level as Kirkby and 

Chorley (1967) presented in their study. 

As studies indicate, rainfall-runoff, at least in rural areas seem to consist of different 

and separated processes. This could also be the case in urban pervious areas as the soil 

physics most probably will not vary much. Even at Horton’s experimental laboratory, 

infiltration excess overland flow does not seem to have been the only contributor to 

runoff as Horton’s overland flow theories could indicate. Beven (2004) conducted a 

review of Horton’s studies and found that there are indications that subsurface 

throughflow could have been a significant contributor to runoff in the Horton’s 

experiments. 
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1.3. RESEARCH QUESTIONS 

In current urban drainage design practice, runoff from pervious areas is often 

neglected or given little attention in terms of the quality of applied models. 

Furthermore, the approach to pervious surface runoff in urban drainage is highly 

focused on infiltration excess overland flow. However, this approach seems to be one-

sided according to experimental studies from rural areas. According to these studies, 

rainfall-runoff processes should be divided into three main categories which are (i) 

infiltration excess overland flow, (ii) saturation excess overland flow, and (iii) 

subsurface throughflow. The aim and scope of this study is to investigate if rainfall-

runoff processes in the urban landscape is like those of studies in rural areas and how 

rainfall-runoff can be monitored in the urban landscape. Additionally, it is the aim to 

find key parameters which are good indicators of surface runoff and how these can be 

implemented in current urban drainage modelling practice. This led to the following 

general research question with a set of associated sub-questions: 

What identifies an urban pervious area that have a 
high risk of producing rainfall-runoff? 

Sub-question I: How is rainfall-runoff from urban pervious areas physically 

quantified? 

Sub-question II: How frequently does urban pervious surface runoff occur? 

Sub-question III: How do physical rainfall simulators perform in estimating the risk 

of rainfall-runoff from urban pervious areas? 

Sub-question IV: What is the dominant rainfall-runoff processes from urban pervious 

areas? 

Sub-question V: What are the most important soil parameters in term of indicating 

rainfall-runoff from an urban pervious area? 

Sub-question VI: How do currently applied surface runoff models agree with 

measured surface runoff from an urban pervious area?  
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CHAPTER 2. METHODOLOGY 

This study is primarily based on empirical methods to observe and quantify rainfall-

runoff. In this way, through measurements, it is investigated if it is possible to evaluate 

and enhance current assumptions on rainfall-runoff from pervious surfaces in urban 

drainage engineering. Two experimental setups are developed and applied on the 

experimental catchment seen in Figure 2.1. Full-scale observations are used to 

evaluate currently applied models and their applicability to reproduce measured 

runoff. 

2.1. EXPERIMENTAL SITE 

The experimental site is located in Lystrup, Denmark. The surface is grass covered 

and is a recreational green area that can potentially discharge rainfall to a sidewalk 

and road downstream. The area is seen in Figure 2.2 and covers 4,300 m2. One of the 

experimental setups collects runoff from the entire area, while the other, a rainfall 

simulator-based study, measures runoff from one square meter areas at different 

locations on the hill. The hill has an average slope of 8.8 %. The topsoil in Lystrup is 

characterized as a sandy loam according to the USDA soil classification system 

Figure 2.1. Experimental location in Lystrup, Denmark. 
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(Ashman and Puri, 2013) and have a saturated hydraulic conductivity of 1.14 mm 

min-
 

1. Furthermore, the total and effective porosity in 10 cm of depth has been 

measured to 0.43 and 0.18 respectively with intact samples and retention box 

measurements as seen in Figure 2.3. Lastly, an organic matter content of 5.06 % was 

found in the topsoil.  

In approximately 46 cm of depth, a layer transition was found to a layer with a slightly 

higher silt and clay content, though still a sandy loam. The organic matter content in 

Figure 2.2. Overview of the experimental catchment in Lystrup, Denmark. Intercepting line 
drain and flow-meter indicated on the figure are used for full-scale experiments. *Approximate 
location of physical rainfall simulations. 
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this depth was 1.34 %. The experimental procedures to investigate the above-

mentioned soil properties are thoroughly explained in Paper I. 

Active rainfall-runoff from the experimental location have been visually observed 

several times during the field study. One occurrence is seen in Figure 2.4 where runoff 

is present. Rainfall is discharged from the grass covered area to the sidewalk and road 

and thereby to the drainage system although the surrounding impervious areas are 

completely dry. 

Figure 2.4. Active rainfall-runoff from the experimental location. Discharge occurs although 
the impervious surfaces are dry. 

Figure 2.3. Left: Retention box for analysis of intact samples. Right: Intact sample of soil with 
a live earthworm. 
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2.2. FULL-SCALE MONITORING OF RAINFALL-RUNOFF 

A full-scale monitoring system was established at the experimental site in June 2016. 

The monitoring system collects rainfall-runoff from the 4,300 m2 catchment under 

natural conditions. In this way, it is possible to observe how runoff responds under 

e.g. different levels of soil water content and different types of rainfall. This will 

provide a natural reference point to portable rainfall simulator studies which study 

rainfall-runoff on a limited area with artificial rainfall. 

The monitoring system consist of three primary parts which are (i) a runoff monitoring 

system to collect and measure the rainfall-runoff rate from the area, (ii) soil sensor 

clusters to observe the basic soil-water conditions both in active and inactive periods 

of runoff, and (iii) a rain gauge to continuously measure rainfall.  

2.2.1. RUNOFF MONITORING SYSTEM 

The runoff monitoring system collects runoff in a 51 meter long ACO hexaline line 

drain (ACO Nordic, 2014) that is typically used to drain driveways and similar paved 

surfaces. The line drain comes in one-meter pieces and is assembled on site as seen in 

Figure 2.5. All joints are sealed with a special adhesive to avoid leaks. The line drain 

is installed in a layer of concrete to stabilise and reinforce the line drain. In March 

2017, the line drain was re-established due to errors in the first installation which 

resulted in leakages. 

Collected runoff from the line drain is subsequently transported through two outlets 

seen in Figure 2.6 via pipes to a grit chamber. The grit chamber removes particles, 

leaves and other solids that can disturb runoff measurement. 

Figure 2.5. Assembling of line drain at the experimental area. 
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The flow rate of collected runoff is measured with a flow-meter with a calibrated Q-

h relation. The flow-meter is based on a V-notch weir as seen in Figure 2.7. In this 

way, it is possible to measure both small and high flow rates with a relatively good 

accuracy. The reason for this is that there are higher variations in the water level for 

small flows due to the smaller cross-sectional areas in the weir. 

 

Figure 2.6. Left: Outlet from line drain to the grit chamber. Right: Grit chamber. Two inlets 
are seen at the bottom of the picture and one outlet towards the flow-meter at the top. 

Figure 2.7. Flow-meter manhole with a V-notch weir. 
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The water level in the weir is measured every five minutes with two Campbell 

Scientific CS451 pressure transducers (Campbell Scientific, 2014). Data is stored on 

an YDOC ML-315ADS-Li data logger (YDOC, 2016) which uploads data to an ftp-

server continuously through a mobile broadband connection. As runoff is leaving the 

V-notch weir, the water is finally discharged to the drainage system. 

2.2.2. SOIL SENSOR CLUSTERS 

To investigate how the soil water respond to rainfall and how soil water content is 

related to runoff, three soil sensor clusters were established at the experimental 

location in Lystrup. Each soil sensor cluster was set up with four sensors each whereas 

the distribution of those is presented in Paper I.  

The sensors used in this study are matric potential sensors and soil volumetric water 

content sensors. The matric potential sensor used are Stevens TensioMark and 

Decagon MPS6 sensors (Stevens, 2014; Decagon Devices, 2015). The soil water 

content sensors applied are the time domain reflectometry sensors Decagon 5TE-

sensors and a Sentek SDI-12 Drill & Drop Probe (Decagon Devices, 2016; Sentek, 

2015; Topp et al., 1980). 

In Figure 2.8, parts of an established soil sensor cluster are seen. A vertically buried 

Ø200 pipe is used to contain a data logger that stores collected data. All equipment is 

buried to minimise attention gained from trespassers in the city. Sensors are wired 

through the pipe wall and the soil and is mounted with a few meters proximity from 

the pipe. Generally, sensors were installed in approximately 10 cm of depth to 

measure the soil-water properties close to the surface and to still avoid the dense root 

Figure 2.8. Parts of a soil sensor cluster. On the left, a vertically burried  Ø200 contains the 
data logger to collect all data from installed sensor. On the right, a mounted Decagon 5TE soil 
volumetric water content sensor is seen. 
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net of the grass. Measuring the soil-water content in the root net should be avoided as 

a relatively high soil water content can be present in the plant roots. Holes that were 

dug to install the sensors are afterwards filled with a slurry mix of the local soil and 

water.  

2.2.3. RAIN GAUGE 

Rainfall at the experimental location was initially measured on site (see Figure 2.9) 

with a triple headed rain gauge consisting of three ARG100 tipping bucket rain gauges 

measuring 0.2 mm tip-1 (Campbell Scientific, 2010). Three rain gauges are applied to 

increase measuring certainty and for error detection internally on the three rain 

gauges. 

 

In June 2017, the rain gauge was vandalised as seen in Figure 2.10 and therefore 

broken on its original location at the experimental site. Therefore, it was necessary to 

repair it and move it to a new location. The rain gauge was re-established on a private 

property 400 meters away from the experimental site as seen in Figure 2.9. 

 

Figure 2.9. Left: Original location of rain gauge on the experimental site. Right: New location 
of the rain gauge on a private property after vandalism. 

Figure 2.10. Broken rain gauge after vandlism in June 2017. 
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2.3. DESIGNING A PHYSICAL RAINFALL SIMULATOR 

Measuring rainfall-runoff on full-scale under natural conditions is time consuming 

and is also unpredictable in terms of results. Therefore, a portable physical rainfall 

simulator was developed to investigate the relationship between infiltration and runoff 

at the experimental site. In this way, it is possible to study runoff caused by predefined 

rainfall types, though on a smaller catchment. The rainfall simulator was developed 

to assess its potential use for parameterization and runoff estimation in urban drainage 

design. The designed rainfall simulator setup consists of two primary parts as 

illustrated in Figure 2.11(a)-(b). The first part is the actual rainfall simulator that is 

Figure 2.11. Field use of (a) the developed portable rainfall simulator and (b) the runoff 
collection system presented in Paper II (Nielsen et al., “Automated physical rainfall simulator 
for variable rainfall on urban green areas”, submitted). 
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dozing and sprinkling artificial rainfall on a pervious area of interest. The second part 

is the runoff collection system that measures produced runoff if the infiltration 

capacity of the pervious surface is exceeded by the simulated rainfall. The runoff 

collection system collects runoff from a limited area and continuously measures the 

runoff rate. 

2.3.1. RAINFALL SIMULATOR SPRINKLER 

The rainfall simulator in Figure 2.11(a) was designed to be able to produce a wide 

range of rainfall intensities with just one sprinkler and pump. This is similar to the 

studies by Miller (1987) and Paige (2004). However, in this study, the rainfall 

simulator is designed to be fully controlled by a microcomputer without any need for 

manual intervention if the rainfall intensity must be adjusted within an event.  

The developed rainfall simulator is supplied with water with a pump connected to a 

water tank as seen in Figure 2.11. While the pump runs on a constant rate, two 

solenoid valves are used to control the inflow to the sprinkler and thereby how much 

artificial rainfall is produced. As seen in Figure 2.12, the two solenoid valves consist 

of one inlet valve and one bypass valve. The inlet valve controls the amount of water 

that flows into the sprinkler. On contrary, the bypass valve bypasses water and leads 

it back towards the water tank when the inlet valve is closed. This is a necessary means 

for optimal operation of the valves as they need to be pressurised to remain closed. 

Figure 2.12. Components of the rainfall simulator sprinkler. 
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The rainfall simulator performance was tested in terms of the spatial distribution of 

rainfall on a one square meter measurement plot, the ability to replicate historical 

rainfall events, and the characteristics of raindrops compared to natural raindrops. It 

was found that the developed rainfall simulator has a good performance compared to 

other rainfall simulators in literature. Details on the developed control strategy and 

performance tests of the rainfall simulator are described in Paper II (Nielsen et al., 

“Automated physical rainfall simulator for variable rainfall on urban green areas”, 

submitted). 

2.3.2. RUNOFF COLLECTION SYSTEM 

Runoff that is eventually produced as the rainfall intensity of the rainfall simulator 

sprinkler exceeds the infiltration capacity of the soil, is collected in a runoff collection 

system. Runoff is collected from a one square meter area (1 × 1 m). The area is limited 

by a steel frame on three sides and a water collection trench on the downstream side 

collecting runoff as seen in Figure 2.13. Collected runoff is transported through pipes 

to a container used as a flow-meter. The water level in the container is monitored with 

a Campbell Scientific CS451 pressure transducer (Campbell Scientific, 2014). Change 

in volume over time is thereby translated to flow. If the runoff container becomes full 

during simulation, two 12V pumps are used to empty the container. The soil water 

content is measured simultaneously in the soil beneath the studied surface area by 

Figure 2.13. Designed runoff collection system to monitor produced runoff. 
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three Campbell Scientific CS655 soil volumetric water content sensors (Campbell 

Scientific, 2018). 

2.4. MODELLING OF RAINFALL-RUNOFF 

Traditional urban drainage models are evaluated and compared to three alternative 

models. These are the time-area and kinematic wave model which are typically 

applied in urban drainage, and regression models, a linear reservoir model, and neural 

network models which often have other areas of application. The models are described 

in detail in Paper III (Nielsen et al., “Modelling of subsurface throughflow in urban 

pervious areas”, submitted) and presented with a brief description below: 

• The time-area model is a fully empirical model frequently used in 

commercial urban drainage models for simulation of one-dimensional 

surface runoff. In general, this is the most widely applied surface runoff 

model by urban drainage engineers in Denmark for urban drainage network 

modelling. 

• The kinematic wave model is a semi-empirical model derived from the 

continuity equation and a hydrodynamic flow module. The kinematic wave 

model is typically available in commercial urban drainage models for 

simulation of one-dimensional flow from catchments. 

• The linear reservoir model is a semi-empirical model which is also based on 

the continuity equation. In this case, the hydrodynamic flow module 

expresses that runoff is linearly correlated to the water level in the reservoir. 

Linear reservoir models have many applications and are generally used in 

hydrologic systems where retention and storage of water occurs.  

• The regression-based models are fully empirical and assume that runoff is 

directly correlated to the soil water content. This is an approach that have 

been used to simulate runoff from subsurface throughflow to e.g. rivers. 

• Neural network models are mathematical models and are fully empirical 

without any physical terms included. The models utilize input data (in this 

case soil water content, matric potential, and rainfall) to quantify a given 

target value (in this case primarily the subsurface throughflow runoff rate). 

The applications of neural networks are potentially unlimited. However, it 

must be noted that neural network models do not explicitly reflect any 

physical meaning. 

The models are calibrated and evaluated based on measured data collected from the 

full-scale field station presented in Paper I. The models are compared based on three 

performance parameters which are the root mean square error, Nash-Sutcliffe 

efficiency, and empirical likelihood between modelled and measured data (Ritter and 

Muñoz-Carpena, 2013; Nash and Sutcliffe, 1970; K. Beven and Freer, 2001; Freer et 

al., 1996). 
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CHAPTER 3. RESEARCH OUTCOMES 

The research questions raised in this PhD-study is answered through an extensive field 

campaign applying both large- and small-scale experimental techniques to investigate 

the inherent rainfall-runoff processes in an urban pervious area situated in Lystrup, 

Denmark. The ability of traditional urban drainage runoff models to simulate rainfall-

runoff is compared to other alternatives found in literature. This have resulted in 

research outcomes of both scientific and commercial value. 

3.1. SCIENTIFIC OUTCOMES 

Rainfall-runoff was monitored from a 4,300 m2 catchment as presented in Paper I. 

The full-scale study agrees with other full-scale studies carried out in rural areas 

(Dunne and Black, 1970a; Dunne and Black, 1970b; Kirkby and Chorley, 1967) that 

subsurface throughflow and saturation excess overland flow seems to be the dominant 

runoff processes while infiltration excess runoff is completely absent. The field study 

found that subsurface throughflow occurs frequently during fall and winter, while no 

runoff was detected throughout summer. Furthermore, high soil water content 

conditions (above 0.34 m3 H2O / m3 soil) must be present for subsurface throughflow 

to occur. Finally, measured accumulated runoff was found to be linearly correlated to 

accumulated rainfall.  

The identification of subsurface throughflow as the primary contributor of runoff from 

a full-scale catchment is an important finding in this PhD-study and for Danish urban 

design practice as well. This contradicts the simplified assumptions of ideal soils as 

presented in Figure 3.1 that is often used in urban drainage engineering. The ideal soil 

Figure 3.1. The ideal soil and surface composition with homogenous soil structure, hydraulic 
conductivity, and surface slope. K1 is the hydraulic conductivity of the soil. 
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is homogenous and have identical soil-water properties with depth and it is generally 

assumed that infiltration propagates vertically. However, this is far from the case at 

the Lystrup catchment and making such assumptions for the area would be critical to 

the estimation of runoff production. 

Soil characterization of the Lystrup catchment carried out in Paper I shows that the 

soil becomes siltier with depth. In this way, the hydraulic conductivity is most 

probably lower in approximately 46 cm of depth. This could cause a barrier to vertical 

water transport if rainfall accumulated in the upper layer over some time exceeds the 

hydraulic conductivity of the lower layer. The result of this is a topsoil layer that acts 

as a reservoir that can store water until the storage capacity is exceeded. If the storage 

capacity is exceeded, soil-water will start to move freely in a horizontal direction as 

illustrated in Figure 3.2. Generally, the storage capacity seems to be exceeded at soil 

water contents above 0.34 m3 H2O / m3 soil. 

Horizontal water movement will start when accumulated water in the upper layer can 

no longer be detained by capillary and adsorptive forces (suctional forces) resulting 

in a gravitational pull on the water that is higher than the suctional forces. In this way, 

water is mobilised in the soil and water transport in the direction of the slope will start 

and be active until the soil water content falls to a level where the adsorptive and 

capillary forces can bind the accumulated water in the soil pores of the upper soil layer 

again. This scenario is possible if the storage capacity of the entire topsoil layer is 

exceeded. Such levels of saturation are seen during fall and winter in Lystrup where 

evapotranspiration is low, and the accumulated rainfall volume is relatively high 

resulting in subsurface throughflow. Subsurface throughflow and thereby urban 

pervious runoff was observed at least on a yearly basis at the Lystrup catchment. 

Figure 3.2. Non-homogeneus soil with changing hydraulic conductivity with depth. K1 and K2

are the hydraulic conductivities of the upper and lower soil layer respectively. 
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Besides subsurface throughflow as a primary runoff type on full scale, saturation 

excess runoff was observed as a secondary runoff process. Saturation excess runoff is 

mainly a derived effect of subsurface throughflow. The reason for this is that at the 

areas where subsurface throughflow exfiltrates from the soil onto the soil surface, 

there is a state of full saturation in the soil with no remaining infiltration capacity. The 

result of rainfall precipitating directly on these surfaces is an immediate runoff which 

result in some larger peak runoff rates during rainfall. Generally, saturation excess 

runoff resulted in the highest measured runoff rates. However, the runoff volume of 

saturation excess runoff is negligible compared to the runoff volume produced as a 

result of subsurface throughflow. 

Subsurface throughflow and saturation excess runoff only occurred during fall and 

winter. No runoff was naturally measured under dry soil-water conditions during 

summer. However, the designed physical rainfall simulator in Paper II found that it 

was possible to obtain very different runoff characteristics under low soil water 

content conditions during summer. Rainfall-runoff experiments conducted with the 

rainfall simulator in this period resulted in infiltration excess overland flow. However, 

to produce infiltration excess runoff with the rainfall simulator during summer, a 

significantly higher rainfall intensity was required than those naturally recorded at the 

field station in Paper I. The reason of this must be found in the seasonal variations of 

soil water content conditions and its impact on the water storage of the soil. 

During summer, the soil water content of the top soil layer is significantly lower which 

results in a higher potential water storage capacity of the soil.  This results in an excess 

storage capacity to store water where capillary and adsorptive forces can bind water 

in the soil pores as the suctional forces are stronger than the gravitational forces. This 

have a significant influence on the results of the rainfall simulation campaign carried 

out in Paper II.  

When simulating rainfall on a one square meter surface as illustrated in Figure 3.3 

under low soil water content conditions, there is plenty of storage capacity in the 

surrounding soil of the experimental area. In this way, when water has infiltrated 

further down than the steel frame that limits the measurement area of the rainfall 

simulator, water is transported into the surrounding soil by suctional forces. 

Therefore, water that has infiltrated into the soil is transported away from soil beneath 

the measurement area of the rainfall simulator. This combined with the fact that the 

area on which rainfall is irrigated with the rainfall simulator is much smaller than the 

catchment, the storage capacity of the soil in general is not likely to be exceeded in 

such an experiment because water can be stored in the surrounding dry soil. Therefore, 

as the storage capacity of the soil cannot become limiting to infiltration in this 

experiment, the only limiting factor will be the infiltration capacity of the soil surface. 

Therefore, it is only possible to measure the infiltration capacity of the surface with 

the designed physical rainfall simulator presented in Paper II. However, it can be 

very beneficial to be able to isolate infiltration excess runoff, as this most probably is 
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the deciding factor on the risk of runoff production during summer under low water 

content conditions as this is the season where high intensity cloudbursts most 

frequently occur in Denmark. Finally, by combining the methods of both the large- 

and small-scale experiments, it is possible to study the three primary runoff types 

which are subsurface throughflow, saturation excess runoff, and infiltration excess 

runoff. 

The applicability of traditional models to simulate pervious surface runoff were 

investigated and compared to alternative models in Paper III. The performance of the 

time-area and kinematic wave models were compared to a linear reservoir model, 

regression-based models, and neural network models. The models were optimised 

based on measured data from Paper I. Generally, it was found that the neural network 

models generated the best performing models. However, it was also found, that the 

significantly simpler kinematic wave and linear reservoir models produced reliable 

and stable results. The time-area model performed slightly worse while the regression 

models produced the worst model fits.  

The reason that the kinematic wave and linear reservoir models seem to perform well 

is because of their foundation in the continuity equation which contains a storage term 

(dy/dt). This term seems to simulate the storage of water in the upper soil layer and 

Figure 3.3. Rainfall simulation during summer where the soil water content is significantly 
lower than the saturated soil water content. K1 and K2 are the hydraulic conductivities of the 
upper and lower soil layer respectively. 
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seems to be a significant factor for precise modelling of the measured data from the 

full-scale field-station presented in Paper I. The importance of a storage term in the 

models was also seen in the neural network models. One neural network was 

optimised by including only data at current time to estimate the current runoff values. 

In the second neural network ‘historical’ data of up to 180 minutes behind current 

time was implemented in the optimisation of the network. These historical data 

contain previous values of soil water content. It was seen that the implementation of 

these data increased the performance of the neural network model compared to the 

utilising only current data values. The reason of this can be found in the historical 

data, as the neural network in this way have an estimate of the previous time steps 

water storage in the system. 

The use of the kinematic wave and linear reservoir models compared to the neural 

network models have different pros and cons. The most significant benefit of neural 

network models is their flexibility in terms of simulating the many variables that is 

present in a catchment and include these in a single model. These could be physical 

variables such as morphological and physical characteristics of the catchment in 

Lystrup. Furthermore, neural networks can also include variables that have not yet 

been discovered or considered as important to runoff production. The disadvantage of 

neural networks is that such variables are very likely to stay hidden in the neural 

network which can be unfortunate in terms of extrapolating results to larger scales and 

other catchments. Additionally, there is a risk of overoptimization using neural 

network models. This was investigated in Paper III which found that including a 

large number of neurons in the neural network compared to the number of input 

variables resulted in a larger divergence of optimisations compared to the use of fewer 

neurons. Furthermore, as neural networks rely heavily on data, they are typically 

trained for a specific and unique dataset. This means that neural networks most 

probably are not transferable to other locations than the measurement area in Lystrup. 

The advantage of physically based models such as the kinematic wave and linear 

reservoir model is their transferability to the physical reality at the experimental site 

in Lystrup. In this way, these models can be useful in terms of identifying the 

important factors affecting runoff production from such a location. Furthermore, the 

kinematic wave and linear reservoir models only have one calibration parameter 

which make them significantly easier to use. Generally, the kinematic wave and linear 

reservoir models are designed to simulate only one runoff process. In this way, they 

are not able to simulate e.g. saturation excess runoff as a secondary runoff process in 

a single model like the neural network models. 

3.2. COMMERCIAL OUTCOMES 

This PhD-study has resulted in some surprising observations which were not initially 

expected. These results can potentially have a large impact on urban drainage design 
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and how urban pervious area runoff should be considered in the future when drainage 

systems are designed. 

The presence of subsurface throughflow and saturation excess overland flow in 

Lystrup shows that infiltration excess runoff is not the only type of runoff which exists 

in urban areas. Therefore, future urban drainage models should include the possibility 

to include subsurface throughflow and saturation excess runoff on equal footing with 

infiltration excess runoff. Subsurface throughflow is an important aspect to include in 

future urban drainage design because it has the potential to increase runoff in longer 

periods during fall and winter and thereby occupy important capacity in the drainage 

systems. Modelling of subsurface throughflow could be carried out with the kinematic 

wave model which is often available in commercial models. However, a linear 

reservoir model and neural network model could be used with even higher accuracy 

although these models are not standard models in commercial modelling software. 

Measurement campaigns as carried out in this project should gain a wider application 

in the future as such data are powerful for urban drainage engineers to understand the 

urban hydrological systems. Measurement campaigns are useful for model calibration 

and could potentially replace some models. For example, rainfall simulator campaigns 

could replace infiltration excess models because the rainfall simulator gives a 

relatively accurate estimate of the infiltration capacity as a function of the soil 

volumetric water content. 

Currently, rainfall is practically the only hydrological parameter that is measured for 

use in urban drainage modelling. However, this study show that future work should 

be put into measuring the variation of soil hydrological properties such as the soil 

water content. This could aid in the understanding of the correlation between 

extraneous water and the soil water content. 

Measured relationships between physical properties such as soil characteristics, 

surface slope, and soil-water properties could be implemented in GIS software for 

mapping of critical areas which have a high potential of producing runoff. In this way, 

areas which should have special attention in terms of the risk of runoff production 

could easily be pointed out. 
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CHAPTER 4. CONCLUSIONS 

Five sub-question were raised to investigate what identifies rainfall-runoff from urban 

pervious areas and to assess how this corresponds to the current understanding of this 

topic. The sub-questions are answered below. 

Sub-question I: How is rainfall-runoff from urban pervious areas physically 

quantified? 

Rainfall-runoff from an urban pervious area in Lystrup, Denmark, 

can be physically quantified using both small- and large-scale 

experimental approaches. It was found that measured runoff on full-

scale in Paper I had different characteristics compared to small scale 

rainfall simulator experiments carried out in Paper II. The runoff 

collection system designed for the rainfall simulator in Paper II 

could potentially be installed for long-term field measurements of 

rainfall-runoff like the full-scale field station in Paper I.  

Sub-question II: How frequently does urban pervious surface runoff occur? 

The full-scale field station developed in Paper I show that a return 

period for rainfall-runoff of one year can be expected for the 

measurement area in Lystrup. 

Sub-question III: How do physical rainfall simulators perform in estimating the risk 

of rainfall-runoff from urban pervious areas?  

The developed rainfall simulator in Paper II is a time efficient 

method to collect qualitative data on rainfall-runoff relatively 

quickly. However, in this project, it was found that the rainfall 

simulator is primarily good for investigating infiltration excess runoff 

due to its small spatial scale. Therefore, it cannot be expected that 

rainfall simulation identifies all important runoff processes in a 

catchment. 

Sub-question IV: Which is the dominant rainfall-runoff processes from urban 

pervious areas? 

The established full-scale field station in Paper I shows that 

subsurface throughflow is the most dominant runoff process at the 

measurement area in Lystrup, occurring at least on a yearly basis. 

This also seems to be the case for saturation excess runoff, though 

active in significantly shorter timeframes. Infiltration excess runoff 
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were not present on full-scale but was observed with the developed 

physical rainfall simulations in Paper II. Physical rainfall 

simulations showed that infiltration excess runoff can only be 

produced under extreme rainfall intensities which were not recorded 

under natural conditions on full-scale within the time frame of this 

study. 

Sub-question V: What are the most important soil parameters in terms of indicating 

rainfall-runoff from an urban pervious area? 

It was found that the soil water content was the most correlated 

parameter to runoff. The full-scale field station developed in Paper I 

found that subsurface throughflow and saturation excess runoff only 

occurred if the soil volumetric water content was above 0.34 m3 H2O 

/ m3 soil. This is the point of saturation at the experimental location 

where soil can no longer retain water by suctional forces. The 

physical rainfall simulator study also found that the soil water content 

is a critical parameter in terms estimating the magnitude of infiltration 

and in this way the potential production of infiltration excess runoff. 

Sub-question VI: How do currently applied surface runoff models agree with 

measured surface runoff from an urban pervious area?  

Currently applied surface runoff models in urban drainage are not 

designed to simulate e.g. subsurface throughflow or saturation excess 

runoff which were the dominant processes measured on full-scale. On 

the contrary, these are designed to simulate the runoff characteristics 

of infiltration excess runoff. Therefore, currently applied models do 

not agree with the measured surface runoff in this study. In Paper 

III, it was found that the traditionally applied time-area and kinematic 

wave models could be calibrated and optimised to simulate 

subsurface throughflow with a reasonable performance. However, 

even better alternatives can potentially be found with linear reservoir 

and neural network models depending on the acceptable model 

complexity and data available for model calibration and optimisation. 

In conclusion, this study indicates that an urban pervious area that have a high risk of 

producing rainfall-runoff is identified by having a high soil water content during fall 

and winter whereas runoff is produced on a yearly basis. This is a typical scenario 

where subsurface throughflow and saturation excess runoff are the dominating runoff 

processes. The designed rainfall simulator revealed that the production of infiltration 

excess runoff requires extreme rainfall intensities which occur less frequently. The 

measured runoff processes of the pervious area in this study are best represented by 
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models which include water storage like the kinematic wave and linear reservoir 

model, or alternatively neural network models. 
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CHAPTER 5. FUTURE PERSPECTIVES 

This PhD-study has shown that measurements of rainfall-runoff from urban pervious 

areas are valuable in terms of quantification and identification of the present runoff 

processes. The field experiments revealed processes such as subsurface throughflow 

which were not initially thought of as a possible runoff type in an urban area in relation 

to current Danish modelling practice. However, the measurements carried out in this 

study practically only covers an infinitely small part of the potential parametric 

variation which can be expected on a national or global scale. Generally, this means 

that the runoff regimes must be expected to vary significantly both in quantity and 

runoff types in other geographical areas.  

Another important aspect that could have a large impact on urban pervious surface 

runoff is the projected climate changes. Climate changes will in some areas result in 

higher rainfall intensities during summer and increased accumulated rainfall volumes 

during winter (Intergovernmental Panel on Climate Change, 2015). These are two 

meteorological scenarios that will both increase the potential for runoff production. 

Increased rainfall intensities during summer means that the infiltration capacity of 

soils will be exceeded more frequently, while increased accumulated rainfall volumes 

will cause the storage capacity of soils to be exceeded more frequently.  

The potential large variation in variables that can affect runoff and future climate 

changes introduce a substantial uncertainty of what can be expected in the future of 

urban pervious surface runoff. Therefore, there is a need for more experimental trials 

to investigate urban pervious surface runoff under varied parametric conditions to 

increase the quality of urban drainage design in the future. 

To investigate the influence of pervious surface runoff in urban drainage systems 

further a new research and development project has already started by the end of 2018 

named ‘Monitoring of rainfall-runoff from urban pervious areas two’ (in Danish: 

‘Monitering af Overfladeafstrømning fra Grønne Områder To’ (MOTO)). The project 

applies the methods developed in this industrial PhD-study but have the general goal 

of quantifying the influence of pervious surface runoff on a larger scale by comparing 

measured runoff in smaller catchments, such as the experimental full-scale field 

station in Lystrup, to the inflow at the receiving wastewater treatment plants.  

Afterwards, it is the plan to scale the ideas and concepts gained from this PhD-study 

and the research and development projects MOGO and MOTO to a national Danish 

monitoring program for urban pervious surface runoff. This should result in a large 

research and development project which maps and indicates the risk of runoff from a 

wide variety of different surface and soil types. 
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This project has shown that soil-water properties are very important to the risk of 

runoff production from pervious surfaces. However, basic soil science is rarely 

included in the decision making in urban drainage models. Mapping of basic soil-

water properties and soil characteristics should be included in future urban drainage 

design as relatively simple parameters can bring valuable information on the risk of 

runoff. 

Finally, the results of this project clearly indicate that the return period of rainfalls do 

not stand alone in terms of deciding the risk of runoff from pervious areas. On the 

contrary, the risk of runoff is especially decided based on a combination of critical 

soil water content levels and the rainfall type. Therefore, future research projects 

should investigate how urban drainage systems could be designed based on the state 

of the entire hydrologic system and in that way use return periods for the entire 

hydrologic system for future decision making in urban drainage design.
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