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Abstract in English 

Infectious diseases are a major cause of morbidity and mortality worldwide. This problem is not as 

predominant in industrialized countries due to improved sanitation, food availability, health care 

systems and treatment strategies (including vaccines and antimicrobial therapy). Infections are, 

however, still problematic, not only to the infected patients, but to the society at large due to the 

socioeconomic costs. The continued problems caused by microorganisms despite the advent of 

antimicrobial treatments are both due to emergence of multi-resistant microorganisms, but also 

because microorganisms can employ a biofilm strategy. Biofilm formation is increasingly being 

linked to chronic infections, where the biofilm matrix enables the microorganisms to persist despite 

immune response and antimicrobial therapy. Further adding to the problems in handling infections is 

the realization that the culture-dependent methods employed for decades to identify the causative 

pathogens may have some insufficiencies. 

The purpose of this PhD study has been to evaluate if alternative methods to culture-dependent 

techniques could be used to investigate the microbial communities in infections and provide 

clinically relevant information within a short period of time. 

The usefulness of various alternative methods (including molecular methods and microcopy-based 

visualization) was evaluated based on testing of samples from patients suffering from selected acute 

and chronic infections. Acute infections were exemplified by necrotizing soft tissue infections 

(NSTIs), and chronic infections were exemplified by infections of the lungs and sinuses of cystic 

fibrosis (CF) patients, chronic venous leg ulcers and prosthetic joints. 

A general finding of this thesis was that molecular methods identified additional microorganisms 

compared to the findings by culture. It was, however, also found that various molecular methods 

might give different results, indicating that the further studies are warranted to determine the ultimate 

method for identification of microorganisms in clinical samples. 

In NSTIs the added value of using molecular methods were particularly found in the ability to 

identify microorganisms in samples obtained from patients where administration of antimicrobial 

agents might result in false-negative results by culture-dependent methods. Furthermore, since the 

disease is both fulminant and potentially lethal, the reduced turnaround time that can be obtained by 

some molecular methods might make the use of such methods highly relevant. 

Investigations of samples from CF patients in this PhD project have added to the knowledge of the 

infections that afflict this patient group. Lung infections are the primary cause of premature deaths of 

the patients and investigation of microbial communities indicated that a link existed between low 

microbial diversity and high pathogenicity, since end-stage patients were found to be infected by a 

single dominant pathogen. Non-end-stage patients were found to have polymicrobial lung infections; 

however, the biofilm aggregates in the lung airways were largely monomicrobial and spatially 

segregated. In the sinuses of CF patients molecular methods could identify a more diverse microbial 

community than culture, consisting both of CF pathogens, environmental species and anaerobes. The 

microorganisms in sinuses have been implicated in recurrent lung infections after successful 

antimicrobial eradication and establishment of lung infections in lung-transplanted CF patients. The 

ability to identify all microorganisms in the sinuses may therefore be clinically relevant, although the 

effect of the microbial diversity in the sinuses is presently not fully understood. 
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Molecular investigations of chronic venous leg ulcers indicated that the microbial communities in 

such wounds were highly diverse, and that the distribution of microorganisms within the wound 

varied, both in terms of community composition and abundance of individual species. This finding 

has implications on the appropriate sampling method of such wounds, since a single biopsy sample 

might not represent the entire microbial community. 

In suspected prosthetic joint infections it was found that although culture-dependent and molecular 

methods might give concordant results in some cases, the presence of biofilms on prosthesis surfaces 

might be the reason for cases where molecular methods could identify additional microorganisms. 

The study also indicated that the routine culture conditions used for examination of this infection 

type at clinical microbiology departments were insufficient since they did not allow for growth of 

fastidious microorganisms such as Propionibacterium acnes. 

In addition to the increased knowledge of the investigated infection types, the results of this PhD 

project have shown that molecular methods can be used to derive clinically relevant information that 

may improve outcome for infected patients. Furthermore, the results have contributed in convincing 

medical professional of the added value that can be obtained by using such methods. 

Future studies will hopefully lead to a definition of a method that can identify all microorganisms in 

a sample at a reasonable price and with a short turnaround time, and thus diminish the problem of 

different results obtained by different molecular methods. However, the ability to test antimicrobial 

susceptibility means that culture-dependent methods will not be completely abandoned, and the 

optimal method in a clinical microbiology setting might therefore be one that combines culture-

dependent antimicrobial susceptibility testing with molecular methods to achieve reliable results 

within a short period of time. Further studies are required to elucidate the function and effect of the 

diverse microbial communities in infections, which can hopefully be used to combat infections more 

efficiently in the future.  
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Dansk resume (abstract in Danish) 

Infektionssygdomme er en af de ledende årsager til sygdom og dødsfald på verdensplan. I 

industrialiserede lande er dette dog blevet mindsket, hvilket skyldes både øget hygiejne, 

tilgængelighed af mad samt forbedret ygehusvæsen og behandlings muligheder (heriblandt vacciner 

og antimikrobiel behandling). Til trods for dette er infektioner stadig problematiske, ikke kun for den 

syge patient, men også for samfundet som helhed grundet de samfundsøkonomiske omkostninger der 

er forbundet med infektioner. Trods udbredelsen af antimikrobiel behandling kan bekæmpelsen af 

infektioner være problematisk, hvilket både skyldes udvikling af multiresistente mikroorganismer, 

men også at mikroorganismer kan leve i benyttende biofilm. Dannelse af biofilm gør at 

mikroorganismer kan overleve både kroppens immunforsvar samt antimikrobiel behandling, og et 

stigende antal kroniske infektioner bliver i dag forbundet med biofilm dannelse. Yderligere må det 

erkendes at de dyrkningsbaserede metoder, som i årtier er blevet brugt til identifikation af 

sygdomsfremkaldende mikroorganismer, har en række problemer. 

Formålet med dette PhD projekt har derfor været at vurdere om andre metoder end dyrkningsbaseret 

identifikation kan bruges til at undersøge mikroorganismerne der indgår i infektioner, og give klinisk 

relevant information i løbet af kort tid. 

Nytteværdien af forskellige alternative metoder (herunder molekylære metoder samt 

mikroskopibaseret visualisering) blev vurderet på grundlag af forsøg udført på prøver fra patienter, 

som led af udvalgte akutte og kroniske infektioner. Nekrotiserende bløddelsinfektioner blev brugt 

som illustration af akutte infektioner, mens kroniske infektioner blev eksemplificeret af lunge- og 

bihule infektioner hos cystisk fibrose patienter, af kroniske venøse bensår samt af ledinfektioner i 

forbindelse med proteser. 

Dette PhD projekt har vist at molekylære metoder kan identificere yderligere mikroorganismer i 

forhold til dyrkningsbaserede metoder. Resultaterne indikerede imidlertid også at forskellige 

molekylære metoder kunne give forskellige resultater, hvilket er et tegn på at yderligere studier er 

nødvendige for at kunne definere den bedste metode til at identificere mikroorganismer i kliniske 

prøver.  

For nekrotiserende bløddelsinfektioner ligger merværdien ved brug af molekylære metoder især ved 

muligheden for at identificere mikroorganismer i prøver fra patienter hvor antimikrobiel behandling 

måske kan resultere i falsk-negative svar ved dyrkning. Derudover er muligheden for hurtigt at opnå 

svar ved brug af molekylære metoder yderst relevant for denne type infektioner, idet sygdommen er 

både fulminant og potentielt dødbringende. 

Undersøgelserne af cystisk fibrose patienter i dette PhD projekt har øget den nuværende viden om de 

infektioner, der kan forekomme i denne patient gruppe. Lungeinfektioner er den primære årsag til for 

tidlige dødsfald blandt patienterne. Ved at undersøge den mikrobielle sammensætning i lungerne 

fandtes en mulig forbindelse mellem lav mikrobiel diversitet og høj patogenicitet, da lungerne fra 

patienter med terminal lungeinfektion var domineret af en enkelt patogen art. Patienter med ikke-

terminal kronisk lungeinfektion var generelt inficerede med mange forskellige mikroorganismer. 

Selvom lungeinfektionerne overordnet set var polymikrobielle, var biofilm aggregaterne i luftvejene 

monomikrobielle og ikke i fysik kontakt med hinanden. I bihulerne hos cystisk fibrose patienter fandt 

molekylære metoder en mere forskelligartet sammensætning af mikroorganismer i forhold til de 

dyrkningsbaserede metoder. Denne diversitet blev udgjort både af bakterier der er kendte som 

sygdomsfremkaldende i cystisk fibrose, bakterier der stammer fra det omgivende miljø samt 
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anaerobe bakterier. Mikroorganismer i bihulerne har været associerede med de tilbagevendende 

lungeinfektioner, der forekommer hos cystisk fibrose patienter efter vellykket antimikrobiel 

bekæmpelse af lungeinfektioner, samt inficering af transplanterede lunger i cystisk fibrose patienter. 

Muligheden for at identificere alle mikroorganismer i bihulerne er derfor måske klinisk relevant, 

selvom funktionen af den mikrobielle diversitet i bihulerne endnu ikke er fult forstået. 

Molekylære undersøgelser af kroniske venøse bensår indikerede, at den mikrobielle sammensætning i 

disse sår er meget forskelligartet og at fordelingen af mikroorganismer indeni sårene varierede - både 

med hensyn til den mikrobielle sammensætning og hyppigheden af individuelle arter. Disse fund har 

direkte indflydelse på prøvetagningsproceduren for denne type sår, idet en enkelt biopsi prøve 

sandssynligvis ikke kan repræsentere hele det mikrobielle samfund i såret. 

I prøver fra patienter med mistænkt proteseinfektion blev det vist, at selvom resultaterne fra 

dyrkningsbaserede metoder og molekylære metoder kunne være overensstemmende, var de 

molekylære metoder til tider i stand til at identificere mikroorganismer som ikke blev fundet med de 

dyrkningsbaserede metoder. Dette kan skyldes dannelse af biofilm på protesens overfald. Studiet 

indikerede desuden også, at de vækstbetingelser der blev benyttet i kliniske rutine undersøgelser af 

denne type prøver, ikke var tilstrækkelige til at kunne detektere langsomt voksende bakterier, som for 

eksempel Propionibacterium acnes. 

Udover at bidrage til en øget viden om mikroorganismerne der findes i de udvalgte infektionstyper, 

har dette PhD projekt vist at molekylære metoder kan bruges til at opnå klinisk relevant information, 

som kan forbedre udfaldet for patienter. Desuden har projektet været med til at overbevise 

sundhedspersonale om den merværdi der kan opnås ved brug molekylære metoder. 

Fremtidige studier vil forhåbentlig medføre, at der kan defineres en metode til hurtig identifikation af 

alle mikroorganismer i en prøve, hvilket kan mindske problemet med at forskellige metoder giver 

forskellige resultater. Imidlertid vil dyrkningsbaserede teknikker ikke blive opgivet helt, da disse er 

de eneste som giver mulighed for at teste mikroorganismers modtagelighed overfor antimikrobiel 

behandling. Det er derfor muligt, at den optimale metode i klinisk mikrobiologi består af 

dyrkningsbaseret antimikrobiel modtagelighedstest i kombination med molekylære metoder for at 

opnå pålidelige resultater i løbet af kort tid. Yderligere studier er påkrævet for at opklare hvilken 

funktion og effekt de diverse mikrobielle fund har i infektioner, og denne viden kan forhåbentlig 

omsættes til en mere effektiv bekæmpelse af infektioner i fremtiden. 
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1 Human infections 

Infectious diseases are a major cause of morbidity and mortality worldwide (particularly in 

developing countries) and was estimated to be responsible for 26% of the deaths in the world in 2001 

(Pinheiro et al., 2010). This is largely due to the burden of infectious diseases in developing 

countries, whereas the problem has been greatly reduced in industrialized countries. This is attributed 

to many factors including improved sanitation, food availability and living conditions along with 

development of antimicrobial therapy and vaccines and improved health care systems (Pinheiro et 

al., 2010). The use of vaccines and antimicrobial therapy has led to a certain degree of control over 

acute infections; however, this approach has left the health care system with a new set of problems 

(Donlan and Costerton, 2002; Costerton et al., 2011). Some of the emerging major contributors to 

morbidity, mortality and increased healthcare costs are the ever increasing number of multi-resistant 

microorganisms, hospital acquired infections and chronic biofilm infections. In the United States it is 

estimated that 65 – 80 % of all human infectious diseases are caused by the biofilm phenotype, with 

up to 17 million new biofilm infections and 550,000 deaths each year (Potera, 1999; Donlan and 

Costerton, 2002; Wolcott and Dowd, 2011; Wolcott et al., 2012). The socioeconomic cost of 

infections is high, for instance hospital acquired infections alone have been estimated to amount to 

about 2 % of the Danish hospital costs (Pedersen and Kolmos, 2007).  

Although infections are a recurring problem, it is clear that presence of microorganisms do not lead 

to disease in the majority of cases. Humans are continuously in contact with microorganisms; in fact 

the total number of microorganisms in the human body is at least 10 times greater than the number of 

human cells (Highlander et al., 2011). Most of these microorganisms are commensals or 

opportunistic pathogens that only cause problems if the immune system is weakened or if they gain 

access to a normally sterile part of the body. Dedicated or primary pathogens are not a part of the 

normal human microbiota, and can cause disease in otherwise healthy persons, since they are highly 

specialized in gaining entry and surviving inside human hosts (Alberts et al., 2002). The body 

deploys a multitude of defense mechanisms to protect itself from microorganisms. These can be 

broadly divided into three categories: physical barriers preventing entry to the tissues, the innate 

immune system and the adaptive immune system. The physical barrier is comprised by strong 

barriers such as the skin, hair, and nails, and more vulnerable internal surfaces consisting of mucosal 

membranes. The barriers protect against infection by means of their physical and chemical properties 

and utilization of diverse flora of microorganisms densely populating the surface of some of the 

barriers (Alberts et al., 2002; Highlander et al., 2011; Ichinohe et al., 2011). If the barriers are 

breached, the various cells of the immune system are responsible for containment and eradication of 

infection. The overall effect of the innate immune system is to create a state of inflammation. Here 

vascular dilation results in leaks of blood plasma into the connective tissue, inviting white blood cells 

to move from the blood into the tissue to eradicate microorganisms. This also leads to destruction and 

remodeling of the tissues (Kimbrell and Beutler, 2001; Jensen and Moser, 2010). The adaptive 

immune response comes later than the innate immune response and is characterized by a higher 

degree of specificity. It recognizes species or even strain specific antigens, as opposed to the innate 

immune system that recognizes broad range molecular patterns (Moser and Jensen, 2010). 

Potential pathogens may enter the body by various routes including the internal barriers, through 

seeding from a reservoir or directly through a breach in the skin, for instance by bites or accidental or 

surgical trauma (Ala’Aldeen, 2007; Olsen and Musser, 2010; Hansen et al., 2012). After the 

pathogen has gained entry, it must establish a stable population which normally requires adhesion to 
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host cell surfaces or molecules (Figure 1). The adhesion leads to activation of complicated signaling 

pathways in both the microorganism and the host (Finlay and Cossart, 1997; Alberts et al., 2002; 

Anderson et al., 2006; Ala’Aldeen, 2007). The effect is a dramatic event where the immune system 

tries to clear the infection and the microorganism uses numerous mechanisms to evade eradication 

(Monack et al., 2004).  

Normal: The immune system combats microorganisms.

Acute infection: Microorganisms evade the immune system by several mechanisms including 

invasion of cells, production of capsule, toxins and virulence factors.

Chronic infection: Microorganisms evade the immune system by producing encasing matrix and 

pursuing biofilm mode of growth.

Normal: Often not enough damage to become symptomatic.

Acute infection: Microorganisms excrete virulence factors, toxins and proteases that directly 

damages tissue. Also, the immune system causes damage to the host.

Chronic infection: Biofilm-residing microorganisms have downregulated virulence, and damage is 

primarily caused by continued immune response.

Normal: Infection is cured by the immune system.

Acute infection: Infections are rapidly resolved either by clearance by the immune system or 

antimicrobial therapy or death of the host.

Chronic infection: Neither the immune system nor antimicrobial therapy can completely eradicate 

the infection, which can recur and persist for years. The entire biofilm must be completely removed  

to save patients.

Outcome

Damage

Interaction with the 

immune system

Adhesion to host cells

Gain entry to body

↓

↓

↓

↓

Microorganisms can enter the body through internal barriers, a breach in the skin or by seeding 

from a reservoir.

Adhesion to cell surfaces provides a base from which the microorganisms can proliferate. The 

interaction with host cells leads to activation of the immune system.

 
Figure 1: Overview of the stages of disease development after microorganisms have gained entry to the 

human body. 

There seems to be two fundamentally different types of infection: acute infections, which appear to 

be the result of microorganisms pursuing a planktonic phenotype, and chronic infections that persist 

in the host due to formation of biofilm (Figure 1) (Furukawa et al., 2006; Wolcott and Dowd, 2011). 

Biofilm formation is an ancient prokaryotic adaptation that allows microorganisms to survive in 

hostile environments (Costerton et al., 1999; Hall-Stoodley et al., 2004; Wolcott et al., 2012). 

Historically, studies of pathogenesis have focused on acute infections, but recently biofilm infections 

have been garnering much attention (Furukawa et al., 2006; Wolcott and Dowd, 2011). Acute 

infections are generally aggressive infections with vast tissue destruction, but of short duration due to 

a quick resolution either by clearance by the immune system or by death of the host (Furukawa et al., 

2006; Wolcott and Dowd, 2011). The microorganisms in chronic biofilm infections are generally 

confined to a particular location, contained by the host defenses, although dissemination occurs 

through detachment and shedding of planktonic cells and aggregates by various mechanisms (Parsek 

and Singh, 2003; Hall-Stoodley and Stoodley, 2005; Furukawa et al., 2006; Wolcott and Dowd, 

2011). Unlike acute infections the microorganisms in biofilms exhibit a slower growth rate, and 

chronic infections can persist for years (Donlan and Costerton, 2002). Many bacterial species that 

produce chronic infections can also cause acute invasive infections (Parsek and Singh, 2003). It 
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seems that microorganisms can choose whether to cause an acute infection, growing and spreading 

rapidly in the host, or adopting a chronic biofilm infection strategy (Furukawa et al., 2006).  

In acute infections the evasion of the immune system includes invasion of host cells, production of 

toxins, protective capsules, and virulence factors involved in inhibition of host-derived molecules and 

binding of phagocytic cells (Finlay and Cossart, 1997; Cunningham, 2000; Anderson et al., 2006; 

Barer, 2007; Fuchs et al., 2012). For chronic biofilm infections the evasion of the immune system is 

accomplished by the extracellular polymeric substance (EPS) matrix that encases a structured 

community of aggregated microorganisms (Figure 1) (Costerton et al., 1999; Parsek and Singh, 2003; 

Hall-Stoodley et al., 2004).  

The symptoms of infection are direct manifestations of both the immune response and damage of the 

involved tissue, and have to reach a certain level for the individual to become symptomatic. The 

damage done to the host may be inflicted directly from the pathogens or by the individuals own 

immune response (Figure 1) (Alberts et al., 2002; Ala’Aldeen, 2007). The microorganisms involved 

in acute infections can utilize a wide arsenal of virulence factors and toxins to directly induce damage 

to the host tissue or initiate apoptosis. The microorganisms can then feed on the host tissue by 

secreting proteases that digest the tissue (Finlay and Cossart, 1997; Wolcott and Dowd, 2011). The 

formation of biofilm seems to have an oppressive effect on expression of certain toxins, and the 

microorganisms involved in chronic infections show a moderated virulence (Parsek and Singh, 2003; 

Furukawa et al., 2006). The exact processes by which biofilm-associated microorganisms directly 

cause disease in the human host are poorly understood. Suggested mechanisms include detachment of 

cells or cell aggregates and production of some endotoxins (Donlan and Costerton, 2002). In many 

cases the damage that is inflicted on the patient stems from the individuals own immune defense due 

to an excessive or prolonged innate response (Ala’Aldeen, 2007).  

In most infections the adaptive immune system will eventually win the fight, and infection be 

cleared. Acute infections can often be cleared by a single course of treatment, after which it will not 

return. However, if the infection is not cleared, the continued presence of microorganisms will 

provoke a continued inflammation. In chronic infections the EPS matrix of the biofilm ensures that 

the microorganisms persist despite presence of inflammation, adaptive immune response, and even 

antimicrobial treatment (Monack et al., 2004). The microorganisms residing in biofilms have a 

dramatically lower susceptibility to antimicrobial agents compared to their planktonic counterparts. 

The mechanisms responsible for this are thought to be delayed or impaired penetration of some 

antimicrobial agents through the biofilm matrix or the different physiology and growth states that are 

displayed by the microorganisms in the biofilm (Donlan and Costerton, 2002; Wolcott and Dowd, 

2011). Even if most of the microorganisms in a biofilm are eradicated, the biofilm can be 

reconstituted in the exact same host niche, so that the infection reappears after successful 

antimicrobial therapy (Wolcott and Dowd, 2011). 

Correct identification of the microorganisms involved in infections and evaluation of their 

antimicrobial susceptibility is an important part of medicine to determine an optimal treatment 

strategy. The gold standard for identification of pathogens is largely based on routine culture-

dependent techniques performed at clinical microbiology departments. Determination of pathogenic 

microorganisms has been largely based on a set of criteria proposed by Robert Koch in 1890. Over 

the years these postulates have been reworded and extended, and can be summarized as: 1) the 

microorganism must be found regularly in diseased individuals (but not healthy individuals), 2) it can 

be isolated and grown in pure culture, 3) inoculation of the microorganism will cause disease in 
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healthy individuals (experimental animals) and the same organism must then be re-isolatable from 

the experimentally diseased individual (Highlander et al., 2011; Nelson et al., 2012). The use of pure 

cultures and phenotypic identification methods is often time consuming and most patients will 

therefore receive empirical antimicrobial treatment before the pathogens have been identified. It is 

possible that the administered treatment is sufficient, in which case the culture report from the 

clinical microbiology department is used for confirmation, but the report may also indicate that 

adjustment of the treatment is necessary (Slack, 2007; Turnidge et al., 2011). Although culture-

dependent methods are the gold standard in clinical microbiology, there are some technical 

limitations to the methods if antimicrobial treatment has been administered, if the microorganisms 

exist in a viable but non-culturable state, or if the in vitro conditions do not meet the requirements of 

the microorganisms (Amann et al., 1995; Vartoukian et al., 2010). Additionally, acute and chronic 

infections present different challenges to the diagnosis of pathogens by culture-dependent methods. 

For acute infections routine culture-dependent methods may often be able to identify the infecting 

microorganisms, however, the time required for this identification can be too slow compared to the 

progression of some diseases. For chronic infections caused by biofilms the use of culture-dependent 

methods may be difficult, and often leads to false-negative culture results. A consequence of Koch’s 

postulates has been an adaptation of a monomicrobial view of infections. However, biofilm 

infections are often polymicrobial, which means that the strategy of pathogen isolation and 

investigation of pure cultures may be counterintuitive and unable to clarify the complexity of biofilm 

infections (Burmølle et al., 2010; Nelson et al., 2012; Wolcott et al., 2012). Also, it can be difficult 

to prove that biofilm residing microorganisms and polymicrobial infections in general are etiological 

agents of disease according to Koch’s postulates, since interaction between different microorganisms 

is not taken into account in the postulates (Donlan and Costerton, 2002).  
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2 Objectives of the PhD project 

Based on the reported limitations of culture-dependent methods, the overall aim of this PhD project 

was to evaluate the possibility of using alternative molecular methods as supplement or replacement 

for culture-dependent methods in clinical microbiology. Since multiple molecular methods have been 

developed, this study has been focused on techniques that are commonly used within other fields of 

microbiology, and their ability to obtain clinically relevant information. To achieve this goal the 

specific aims were to: 

 compare the ability to detect and identify microorganisms within a short period of time by 

standard culture-dependent methods used at clinical microbiology departments with 

commonly used molecular methods. 

 use various molecular methods to obtain information on diversity, relative abundance and 

spatial distribution of microorganisms in selected human infections.  

The methods were tested on samples from acute infections as exemplified by necrotizing soft tissue 

infections (NSTIs) and chronic infections, as exemplified by infections of the lungs and sinuses of 

cystic fibrosis (CF) patients, chronic venous leg ulcers and prosthetic joint infections. Besides 

culture-dependent methods, the tested methods included sequencing (by Sanger and next generation 

sequencing), a pathogen detection platform (Ibis T5000 biosensor), quantitative PCR (qPCR) and 

fluorescence in situ hybridization (FISH). 
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3 Identification of microorganisms in disease 

In order to obtain a microbial diagnosis, suitable samples must be collected and submitted to 

appropriate tests. There are several elements to consider regarding acquisition and handling of 

samples (Box 1). It is important that several samples are collected from the infection site in order to 

obtain reliable results since it has been shown that several infections (particularly infections 

involving biofilms) exhibit a heterogeneous spatial distribution of microorganisms throughout the 

infection site (article III, V and VI) (Burmølle et al., 2010).  

 

The type of sample collected depends on the anatomic site of infection, which together with sample 

volume and accessibility of infected material influences the choice of collection method (Table 1). 

After samples have been collected, they are either processed on site or transported to an appropriate 

laboratory. Since it is possible that microorganisms may perish or be overgrown by other species 

during the transport, it is important that transport is rapid and that the viability of any pathogen is 

protected (Slack, 2007).  

Table 1: Common clinical samples used for diagnosis of pathogens in clinical microbiology. 

Infection Anatomic site Appropriate sample
 

Collection method 

Cystic fibrosis Lower respiratory tract Sputum 

Bronchoalveolar lavage fluids 

Endotracheal aspirates 

Expectoration 

Aspiration 

Aspiration 

Chronic venous leg ulcers Superficial wound Pus or irrigation fluid  

Purulence from beneath dermis 

Aspiration 

Swab, biopsy 

Necrotizing soft tissue infections Deep wound Blood culture
a 

Ulcer edge
a
 

Purulence from infection site 

Tissue from infection site 

Aspiration 

Needle aspiration 

Biopsy 

Biopsy 

Prosthetic joint infections Prosthesis Peri-implant tissue
b 

Synovial fluid
b
 

Biofilm from removed prosthesis 

Biopsy 

Aspiration 

Sonication 

Sinusitis Sinus Secretions from aspiration or 

wash 

Biopsy material 

Aspiration 

Biopsy 

Appropriate clinical samples based on (Baron and Thomson, 2011) except 
a
 (Stevens et al., 2005) and      

b 
(Della Valle et al., 2010). 

Samples for standard culture-dependent techniques should be kept in suitable transport media and 

treated directly after arrival at the laboratory. Samples for molecular methods are most often also 

kept in transport media for direct processing, but can also be frozen (Baron and Thomson, 2011). 

Freezing of samples might be done with or without a stabilization reagent, depending on the 

extraction protocol (for instance RNAlater® solution for RNA extraction). Samples for molecular 

Box 1. Sampling considerations 
Time considerations 

 Samples should be collected as soon as possible after onset of disease. 

 Samples for culture should be collected before antimicrobial treatment is initiated. 

Sample site 

 Samples must be collected to represent infection site avoiding microorganisms from the surrounding area. 

 Sampling of appropriate samples using suitable collection methods depends on infection (Table 1), but 

should be done using aseptic techniques and disinfection where possible. 

 Multiple samples should be collected from within the site of infection if possible.  

Transportation  

 Suitable transport conditions should be used, depending on the type of test to be performed. 
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methods need to be subjected to nucleic acid extraction prior to analysis. This is a critical pre-

analytic step for all molecular methods and may require some optimization since extraction methods 

that work for one pathogen in a particular sample type may not work for another pathogen or another 

sample type (Nolte and Caliendo, 2011).  

Overall, the range of different methods for identification of microorganisms consists of phenotypic 

identification, molecular identification and visualization methods. The methods can be group into 

those that require growth and subsequent isolation of pathogens into pure cultures, and methods 

where complex microbial communities can be directly analyzed without the necessity of obtaining 

monomicrobial cultures before analysis. Although the latter can be used to analyze both complex and 

monomicrobial communities, the use of some methods on pure culture isolates may be excessive 

compared to the information that can be obtained (Figure 2). 

Sample

Isolated 

pathogens
Biochemical tests

Antimicrobial susceptibility tests

MALDI-TOF mass spectrometry

Subtyping of species

Next generation sequencing

Genetic fingerprinting

Genetic microarray

QPCR

Sanger sequencing

 -  Cloning

 -  Direct sequencing

Ibis T5000 Biosensor

FISH

Microscopy

Colony morphology

Key

Phenotypic identification methods

Visualization methods

Molecular identification methods

Complex 

community

 
Figure 2: Overview of methods for identification of microorganisms in samples obtained from infected 

patients. The methods are either based on culture and isolation of pathogens or independent of pure 

culture isolation. The latter can also be applied to pure cultures, but this use of some of the methods 

may be excessive compared to the obtainable information. The methods are classified as either 

phenotypic, visualization or molecular methods according to the key. Subtyping of species is included in 

this overview although it is not strictly speaking an identification method. 

Culture-dependent methods have been the backbone of the approved diagnostic methods in the 

healthcare systems since the first use of culture media for recovery of bacteria from human disease 

sites (Atlas and Snyder, 2011). However, in other disciplines of microbiology such as study of 

microorganisms in natural and industrial ecosystems, the detection and identification of 

microorganism is now entirely based on methods targeting microbial RNA or DNA. A wide array of 

molecular methods have been developed (the most common are included in Figure 2), driven by a 

need for faster and more accurate methods with reduced hands-on-time (Barken et al., 2007; 

Costerton et al., 2011). Implementation of these methods in clinical microbiology has been slow and 

is still not complete. In the USA such methods are generally only approved by the Food and Drug 

Administration (FDA) for detection of a small number of pathogens that are difficult to culture 

(Costerton et al., 2011). One of the reasons for the continued use of culture-dependent methods as 

gold standard is the possibility of assessing antimicrobial susceptibility of isolates. 
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3.1 Methods based on culture and isolation of pathogens 

In clinical microbiology a number of classical tests are used for identification of medically important 

microorganisms. These are typically based on growth of microorganisms in a predetermined, 

artificial environment that is designed to mimic the conditions of the natural habitat of the 

microorganisms. Common culture media contains water, growth factors, and sources of carbon and 

nitrogen and may be liquid, semi-solid, or solid (Atlas and Snyder, 2011). Typically the tests used at 

clinical microbiology departments do not give a full identification of all isolated microorganisms; 

most laboratories use simple and incomplete methods of identification depending on the level of 

information required. Such shortcuts are taken to achieve timely reporting of relevant pathogens and 

the choice of analytical approaches is constrained by cost. For example, typing of microorganisms is 

not performed in the daily routine, but only used in special cases (Slack, 2007). 

3.1.1 Isolation of pathogens 

Individual microorganisms are isolated from complex samples by use of solid media, where the 

colonies can be distinguished from each other based on their properties (Figure 3). Inoculation of the 

media requires different techniques depending on the sample type; fluids may have to be centrifuged, 

swabs can be rolled directly onto plates, tissue and bone should be minced, and processing of 

prosthetic material may require sonication before inoculation (Baron and Thomson, 2011; Larsen et 

al., 2012). A wide variety of media are available, each with a specific use. Samples from sites that 

are normally sterile may be investigated with media designed for propagation of all possible 

microorganisms, while other media can be used to promote growth and identification of specific 

microorganisms while restricting growth of others (Atlas and Snyder, 2011). Based on the site of 

infection, suspected pathogens and the doctor’s requests, appropriate medium and incubation 

conditions are chosen. Samples for anaerobic culture have special growth conditions, and since these 

grow more slowly than aerobic and facultative microorganisms, at least five days of incubation is 

necessary before it can be reported as negative (Baron and Thomson, 2011). In cases such as 

Propionibacterium acnes, a longer incubation of up to two weeks may be necessary (article VI) 

(Larsen et al., 2012).  

 
Figure 3: Streaking of solid media plate enables isolation of distinct colonies that can be further 

investigated in order to obtain identification of pathogen, test antimicrobial susceptibility and determine 

the subtype of the species (if this is indicated). 

If more than one colony type is present, subcultures of each are made to ensure a pure culture of the 

unknown microorganisms for further characterization and identification (Atlas and Snyder, 2011). 

Also, the potential pathogens must be differentiated from members of the normal microbiota. This is 

largely based on recognition of usual contaminants and pathogens of the particular sample site 

according to Koch’s postulates. Identification of pathogens can be aided by correlating culture results 

with microscopy evaluations and the relative quantities of each isolate. However, in samples from 

presumably sterile anatomic sites potential pathogens occur in any quantity (Baron and Thomson, 

2011).  
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It may be possible to classify the microorganisms based on growth on specific selective media, 

nutrient requirements, colony morphology and odor (Atlas and Snyder, 2011; Petti et al., 2011). 

However, it is often necessary to perform additional tests to determine species identity and 

antimicrobial resistance patterns (Figure 2 and Figure 3).  

3.1.2 Biochemical tests 

Biochemical tests are performed to determine the biochemical profiles of isolated microorganisms, 

which can enable classification of the microorganisms. There are several biochemical tests available; 

overall they are all based on the interaction of the isolates with substrates. Generally, the reactivity of 

the tests is based on pH reaction, enzyme profile, antigen-antibody binding, carbon source utilization, 

or volatile and non-volatile acid detection, which can be detected by color change or 

chromatographic changes (Carpenter, 2011; Petti et al., 2011).  

Traditionally, the biochemical tests have been tube-based and the results of the tests were compared 

to charts of expected biochemical reactions. Due to the demand for faster methods, several manual 

testing kits and instrument based semi-automated or automated methods have been developed (Petti 

et al., 2011). Commonly used biochemical tests include catalase-, hemolysis-, indole- and oxidase 

tests among others (Atlas and Snyder, 2011). A specific type of biochemical tests is immunoassays, 

where antibodies are employed to detect specific molecules in the sample. There are several different 

types of immunoassays using different strategies to detect the binding of antibodies to their target 

molecules. One of the most commonly used techniques is enzyme-linked immunosorbent assay 

(ELISA). Here an enzyme will catalyze a substrate into a detectable (typically colored) product, and 

such assays has the advantage that they allow for automation of the process, and many platforms are 

available that can perform a wide repertoire of tests (Carpenter, 2011). 

3.1.3 MALDI-TOF mass spectrometry 

Mass spectrometry (MS) can been used to determine the chemical identity of materials by using 

ionization radiation to disrupt the sample material thus forming charged compounds that can be 

identified according to their mass-to-charge ratio. This principle can be used to identify 

microorganisms by using matrix-assisted laser desorption ionization-time of flight MS (MALDI-TOF 

MS), which is increasingly being implemented at clinical microbiology departments as an alternative 

to biochemical testing (van Veen et al., 2010; Nolte and Caliendo, 2011; Vandamme, 2011). The 

method can be used directly on intact whole cells (Holland et al., 1996; Krishnamurthy and Ross, 

1996), but cell wall disruption and protein extraction may be necessary in some cases to enrich 

proteins and peptides if whole-cell MALDI-TOF MS analysis is inconclusive (Sauer and Kliem, 

2010; van Veen et al., 2010). 

Identification by MALDI-TOF MS is based on the following characteristics: 1) spectral fingerprints 

vary between microorganisms, 2) among the compounds detected in the spectrum, some peaks 

(molecular masses) are specific to genus, species, and sometime to subspecies, 3) obtained spectra 

are reproducible as long as the bacteria are grown under the same conditions (Carbonnelle et al., 

2011). The procedure thus provides a unique mass spectral pattern for the microorganisms based on 

which the identity can be determined (Seng et al., 2009; Sauer and Kliem, 2010; Carbonnelle et al., 

2011). The patterns can be analyzed efficiently in high throughput using various algorithms 

(Freiwald and Sauer, 2009; Sauer and Kliem, 2010). 

MALDI-TOF MS is referred to as a molecular method in this thesis although it strictly speaking is a 

chemotaxonomic method, since microorganisms are classified based chemical markers. The method 
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requires that the investigated microorganisms are from pure cultures to ensure sufficient amounts of 

cells and because mixed mass spectra currently cannot be resolved (Freiwald and Sauer, 2009). 

3.1.4 Antimicrobial susceptibility tests 

Determination of antimicrobial susceptibilities of significant isolates is one of the principal functions 

of the clinical microbiology laboratory (Jorgensen and Ferraro, 2009; Turnidge et al., 2011). The 

main objective of susceptibility testing is to predict the outcome of treatment with an antimicrobial 

agent, and to guide clinicians in the selection of the most appropriate agent (Turnidge et al., 2011). 

There are several options with regard to methodology and selection of agents for susceptibility 

testing. The selection of agents depends on the likelihood of encountering resistant microorganisms, 

which agents are commonly prescribed by physicians, and in particular which species are being 

tested for susceptibility (Turnidge et al., 2011). There are several methodologies available; overall 

these can be categorized as disk diffusion and dilution methods. Disk diffusion methods are used to 

categorize microorganisms as susceptible, intermediate or resistant. The method uses commercially 

prepared filter paper disks impregnated with an antimicrobial agent at a specified concentration. The 

disks are applied to the surface of an agar plate inoculated with the microorganism, and after 

incubation the plates are evaluated to see if zones of growth inhibition appear around the disks. The 

zones are connected to the susceptibility of the microorganism and diffusion rate of the microbial 

agent through the medium (Jorgensen and Ferraro, 2009; Patel et al., 2011). Disk diffusion testing 

has an inherent flexibility in drug selection and is low in cost (Turnidge et al., 2011). Dilution 

methods (such as broth and agar dilution and antimicrobial gradient strips) are used to determine the 

minimum inhibitory concentration, which is the lowest concentration of microbial agent that will 

inhibit growth over a defined period of time. This is determined by exposing microorganisms to 

serial dilutions of the antimicrobial agent (Patel et al., 2011; Turnidge et al., 2011). Dilution methods 

have the advantage that they produce a quantitative result and may be useful in testing some 

anaerobic or fastidious microorganisms (Jorgensen and Ferraro, 2009; Turnidge et al., 2011). 

Furthermore, automated instruments have become available for susceptibility testing. Depending on 

the system these may have limited flexibility in agent selection and may not detect subtle resistance 

mechanisms, but can generate results faster than conventional methods (Turnidge et al., 2011).  

3.1.5 Subtyping of species 

In some cases identification of subtypes of microorganisms is desired, for instance, in 

epidemiological studies. Subtyping is not a method for microbial identification, but rather for 

differentiating bacterial isolates beyond the species level. A wide array of methods can be used to 

achieve this end, the choice of which depends on the intended application and the wanted level of 

differentiation. Commonly used methods include phenotypic-based methods (such as serotyping and 

phage typing), different types of genetic fingerprinting typically following PCR amplification of 

certain genes and gene sequencing. One of the first DNA sequence-based subtyping methods was 

multilocus sequence typing (MLST), which can be used for distinguishing and relating bacteria on 

the intra- and interspecies level (Gerner-Smidt et al., 2011). The method characterizes bacterial 

isolates based on the sequences of internal fragments (450-500 bp) of typically seven house-keeping 

genes scattered around the genome, referred to as loci (Maiden et al., 1998; Enright and Spratt, 

1999). For each locus, a sequence that varies in even a single nucleotide is assigned a distinct allele 

number, and the combination of the alleles of the seven loci constitutes the sequence type of each 

isolate. MLST ignores the total number of differences in the sequences of each allele, and sequences 
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are given different allele numbers whether they differ at a single nucleotide site or at many sites 

(Enright and Spratt, 1999). The use of multiple loci is essential to achieve the resolution required to 

provide meaningful relationships among strains (Maiden et al., 1998).  

One of the strengths of MLST is the availability of international databases on the internet containing 

data derived from thousands of isolates of the major pathogenic species. Since the method is based 

on sequencing the results can readily be compared to these databases (Maiden et al., 1998; Enright 

and Spratt, 1999; Gerner-Smidt et al., 2011). The use of housekeeping genes means that the found 

sequence types are stable over time, since these genes are typically under little selective pressure and 

the accumulation of changes therefore is relatively slow. This might, however, lead to limited 

discriminatory power, and more rapidly evolving genes may therefore be used instead. (Enright and 

Spratt, 1999; Gerner-Smidt et al., 2011).  

MLST is primarily used on isolates, however, recent work has indicated that the method potentially 

can be used directly on clinical samples (sputum from CF patients) (Drevinek et al., 2010). 

3.2 Methods that do not require isolation of pathogens 

Several methods exist that do not require growth of microorganisms and can be used to directly 

investigate complex samples, including microscopy and molecular methods.  

The development of the polymerase chain reaction (PCR) using two primers, thermostable 

polymerase and thermal cycling (Saiki et al., 1988) was a milestone in biotechnology and a profound 

advance within molecular diagnostics. The method allows for fast amplification of a nucleic acid 

target. PCR has many applications and several techniques have been developed for the analysis of the 

resulting amplification products (Box 2).  

 

One of the key molecules for identification of microorganisms is ribosomal RNA (rRNA) genes that 

have variable and conserved regions, which are utilized in broad-range phylogenetic analysis (Barken 

et al., 2007). The conserved region constitutes target sites for primers, while the variable regions 

form the basis for phylogenetic analysis, and the identification of microorganisms is thus based on 

ancestry (Amann et al., 1995; Coenye and Vandamme, 2003; Vandamme, 2011). Besides broad-

range molecular methods it is possible to use molecular methods that are target-specific. These do, 

however, require some degree of prior knowledge of infecting microorganisms, but may be faster to 

perform and have increased sensitivity (Maiwald, 2011). PCR-based methods are numerous and 

commonly used in many settings. However, these methods do not offer the opportunity to investigate 

the spatial distribution of microorganisms, which is possible by microscopy methods.  

Box 2. Analysis of PCR products 
Real time analysis 

 Fluorescence quantification PCR products are quantified in real time by addition of a fluorescence reporter to 

the amplification reaction. 

Post amplification handling 

 Fingerprinting PCR products are analyzed based on band pattern arisen from methods such as gel- or capillary 

electrophoresis. 

 Sequencing PCR products are analyzed based on the nucleic acid sequence. 

 Mass spectrometry Base composition of PCR products are inferred from precise mass determination. 

 Hybridization Presence of specific nucleic acid sequences is determined by target-probe hybridization. 
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3.2.1 Microscopy 

The microscope has played an important role in biology and medicine since the first description of 

microscopic life forms (Wiedbrauk, 2011). In clinical microbiology microscopic examination can be 

used to obtain different goals; 1) evaluate the quality of the sample, 2) observe presence of potential 

pathogens and 3) provide presumptive identity of potential pathogens (Baron and Thomson, 2011). 

Several types of microscopes have been developed; the most frequently used in the clinical setting is 

the compound light microscope. Other microscopes that are used in the clinical microbiology 

laboratory include dark-field microscopes, phase-contrast microscopes and fluorescence microscopes 

(Wiedbrauk, 2011). While dark-field and phase contrast microscopes can be used to directly observe 

microorganisms in clinical material, it is otherwise usually necessary to alter the sample to improve 

contrast and aid differentiation of microorganisms from sample material. This can be accomplished 

by adding positively charged color stains, which will bind to the negatively charged surface of most 

microorganisms. Examination of samples using stains is a rapid way to obtain a presumptive 

bacteriological diagnosis (Baron and Thomson, 2011). There are two basic types of stains: simple 

stains which color all objects in the same manner (allowing for enumeration of organisms and some 

determination of shape and size) and differential stains which are used to detect differences in 

structure among microorganisms. The most commonly used differential stain is the Gram stain (Atlas 

and Snyder, 2011). 

Gram stain 

The differential Gram staining procedure uses crystal violet and safranin stains. Gram positive cells 

will retain the crystal violet stain, whereas the stain can be washed away from Gram negative cells, 

which are subsequently stained by the safranin counter stain. The method thus enables classification 

of Gram positive and Gram negative bacteria based on differences in their cell wall structure. 

Identification of the Gram negative and Gram positive microorganisms is primarily based on 

morphology, and is a crude method that often needs to be confirmed by other methods (Atlas and 

Snyder, 2011). 

Microscopy of Gram-stained smears is the best routine method to distinguish between contaminants 

and microbes present at the infection site. The infection site should demonstrate many 

polymorphonuclear leucocytes and few squamous epithelial cells. Presence of squamous epithelial 

cells would suggest contamination with members of the normal microbiota (Baron and Thomson, 

2011; Bjarnsholt et al., 2011).  

3.2.2 FISH 

Since the first description FISH more than two decades ago (Giovannoni et al., 1988; DeLong et al., 

1989; Amann et al., 1990), the technique has become one of the most widely used approaches to 

study microorganisms directly in natural systems without prior cultivation and isolation. The 

principle of FISH is based on hybridization of fluorescently labeled oligonucleotide probes to 

ribosomal rRNA. A typical FISH protocol includes four steps; 1) fixation and permeabilization of the 

sample, 2) hybridization, 3) washing steps to remove unbound probes and 4) detection of cells that 

contained the target sequence and therefore retained the probe and became fluorescently labeled. The 

detection of fluorescently labeled cells is typically achieved by microscopy, and is possible due to the 

large number of ribosomes in active cells. The probes are relatively small (generally between 15 and 

30 nucleotides) which should enable them to cross permeabilized cell walls and access the binding 

site (Giovannoni et al., 1988). However, some cell types require additional treatment by enzymes or 
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chemicals to ensure sufficient permeabilization (Nielsen et al., 2009). Based on the composition of 

the probe it is possible to specifically target a narrow phylogenetic group or any other higher 

phylogenetic hierarchical group (Amann et al., 2001). Efficiency of probe binding depends on the 

hybridization and washing conditions and the three-dimensional structure of rRNA since not all 

sequences are equally accessible for the probes. Loop and hairpin formation as well as rRNA-protein 

interactions hinder hybridization, leading to differential sensitivity of oligonucleotide probes 

(Giovannoni et al., 1988; Moter and Göbel, 2000). 

Using FISH it is possible within a relatively short time to obtain knowledge of phylogenetic 

characteristics, microbial community structure and spatial and relative distribution of individual 

microorganisms in their natural habitat (Nielsen et al., 2009). However, the signal intensity of the 

hybridized probes can sometimes be below the detection limit. To resolve this several variations of 

the FISH protocol has been developed. These include use of helper oligonucleotide probes, signal 

amplification with reporter enzymes and peptide nucleic acid (PNA) probes (Kerstens et al., 1995; 

Nielsen, 1999; Fuchs et al., 2000). PNA probes have a non-charged peptide backbone to reduce 

electrostatic repulsion, which can otherwise impede binding. The use of PNA probes have been 

reported to allow stronger hybridization and the protocols for hybridization are much faster than for 

oligonucleotide probes (Egholm et al., 1993; Bjarnsholt et al., 2009; Thomsen et al., 2012). The 

reduced background fluorescence and hands-on time makes the use of PNA-FISH more suitable for 

investigation of clinical samples than conventional FISH. 

3.2.3 QPCR 

An increasing number of published clinical studies have shown the usefulness of qPCR for diagnosis 

of microbial pathogens. The increased use of qPCR is caused by the simple, sensitive and fast nature 

of the method (Espy et al., 2006; Barken et al., 2007; Wittwer and Kusukawa, 2011). Because 

amplification and analysis of PCR product occurs in the same step (real-time analysis) the risk of 

contamination is minimized and turnaround time improved (Espy et al., 2006; Nolte and Caliendo, 

2011; Wittwer and Kusukawa, 2011). The principle of qPCR is relatively simple; it is a PCR reaction 

with addition of fluorescence reporter (either intercalating fluorescent dyes that bind to double 

stranded DNA or specific probes labeled with fluorescent dyes) that can be measured using precision 

optics. The results can be used quantitatively based on the assumption that there is a linear 

relationship between quantity of input template and the amount of generated product and therefore 

signal, which is measured during the exponential phase of amplification. Based on this relationship 

qPCR measures how rapidly fluorescence signals exceed a threshold; the fewer cycles it takes to 

cross the threshold the higher the initial template concentration (Bustin, 2004; Nolte and Caliendo, 

2011).  

Although the results from qPCR can be quantitative, this term should be interpreted with caution, 

taking into account that the results are logarithmic and that variation of measurements changes with 

concentration (Bustin, 2004). At best a 0.5 log10 variance (corresponding to a threefold difference) is 

documented to exist between repeats of the same initial template concentration. This is important to 

bear in mind during evaluation of results, so that small differences do not take on assumed relevance 

(Wolk and Hayden, 2011).  

A number of FDA-approved and commercial qPCR assays for detection of viruses, bacteria, fungi, 

and parasites have become available. Viruses remain the most common target for qPCR in the 

clinical microbiology laboratory; however, the applicability of qPCR is much wider (Wolk and 
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Hayden, 2011). Packages of qPCR assays that enable screening of multiple microorganisms 

commonly found in specific diseases are focuses for development and commercialization.  

3.2.4 Genetic fingerprinting 

One of the most basic ways to verify PCR products or interpret polymorphic DNA fragments (such 

as those that arise from 16S rRNA PCR on complex samples), is the use of genetic fingerprinting 

(Bassam et al., 1992). Polymorphic DNA fragments may differ in length or sequence, which can be 

interpreted by simple procedures such as gel electrophoresis or capillary electrophoresis of 

fluorescently labeled fragments (van Belkum, 1994; Frye and Healy, 2011; Gerner-Smidt et al., 

2011). In this way a genetic fingerprint can be obtained, either directly on the DNA fragments or 

after treatment with enzymes (restriction length polymorphism, terminal-restriction fragment length 

polymorphism (T-RFLP) and amplified fragment length polymorphism) (Marzorati et al., 2008; 

Gerner-Smidt et al., 2011). Fingerprints are recorded as banding patterns which can be obtained by 

several gel-based electrophoresis methods, where the fragments are separated according to length 

(standard gel electrophoresis, pulse field gel electrophoresis) or sequence (denaturing gradient gel 

electrophoresis, temperature gradient gel electrophoresis) (van Belkum, 1994; Marzorati et al., 2008; 

Gerner-Smidt et al., 2011). 

For gel-based electrophoresis detection methods, interpretation of results is performed either visually 

or by using a gel documentation system to scan and record the gel images. (Frye and Healy, 2011). 

3.2.5 Sanger sequencing 

Determination of the nucleotide sequences of DNA molecules by the chain-termination method 

(named the Sanger sequencing method) has been one of the most influential innovations in biological 

research. The key principle of Sanger sequencing is the use of modified nucleotides; 

dideoxynucleotide triphosphates (ddNTPs). The method uses primers that anneal to single-stranded 

target DNA, and incorporate nucleotides by the aid of DNA polymerase. When a modified nucleotide 

is incorporated strand elongation cannot continue, so four reactions are made, each with a different 

ddNTP. The product will be four mixtures of partial sequences of varying length, which can then be 

separated according to size by gel electrophoresis according to the original method. Since the ddNTP 

are labeled (originally with radioisotopes) the pattern of products can be read, and the nucleotide 

sequence determined (Sanger et al., 1977). The method has been improved and streamlined by use of 

fluorescent labeling and capillary electrophoresis. This has enabled use of a single reaction with 4 

differently labeled ddNTPs, and changed the output format from a sequences ladder to fluorescent 

peak trace chromatograms (Nolte and Caliendo, 2011). Software translates these traces into DNA 

sequence, while also generating error probabilities for each base-call. After gradual improvement 

over the years Sanger sequencing can now achieve read-lengths of over 1000 bp, and per-base 

accuracies as high as 99.999% (Shendure and Ji, 2008). 

A condition for the Sanger sequencing method to work is that the target sequence is pure to avoid 

mixed chromatograms that are difficult to interpret. To obtain pure products fingerprinting 

techniques or cloning can be used before sequencing. Sanger sequencing has historically only been 

used directly on PCR products when it can be assumed that a sample contains a single species of 

microorganism (Maiwald, 2011). 
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Separation of PCR products by cloning 

Separation of nucleic acid fragments by cloning is a technique that can be used before sequencing of 

polymorphic DNA fragments. The so-called clone libraries are created by inserting the individual 

DNA fragments into cloning vectors, which are subsequently transformed into bacterial cells. Each 

of the resulting cells should contain one plasmid with a single DNA fragment. Following 

proliferation of the transformed cells, sufficient copies of the plasmids are produced for sequencing 

(Cohen et al., 1973).  

To obtain reliable results that represent the original sample an adequate number of clones should be 

sequenced. What constitutes “adequate” depends on the complexity of the sample since clone 

libraries have some biases towards low-abundance targets (Higuchi et al., 2011; Maiwald, 2011). 

Equations to estimate if the number of clones is adequate have been developed, such as Good’s 

coverage estimator and the Chao estimator. 

Construction and sequencing of clone libraries is labor intensive, time consuming and costly, and the 

method is therefore not appropriate for implementation at clinical microbiology departments. 

Methods to circumvent construction of clone libraries while still enabling sequencing of complex 

samples are therefore highly relevant to fully utilize the potential of sequencing. 

Direct sequencing of PCR products 

Identification of pure cultures based on 16S rRNA gene sequencing has been well established and in 

some cases implemented at clinical microbiology departments, but the ability to perform direct 

sequencing of selectively amplified molecular marker genes fragments from complex clinical 

samples is of increasing interest (Kommedal et al., 2008; Nolte and Caliendo, 2011).  

In an effort to apply Sanger sequencing directly to mixed microbial community, a web-based 

application has been developed by iSentio (Bergen, Norway) for interpretation of chromatograms of 

mixed PCR products from multiple species. The application is build on an algorithm that sort out the 

ambiguous signals from mixed chromatograms in order to identify the different contributing bacteria. 

The application only reports identities having a similarity that reaches an empirically set cutoff, and 

in cases where more than one species from the same genus are found, only the highest scoring 

species are reported. Using these constraints mixed chromatograms from polymicrobial samples 

containing up to three different species can be sequenced directly in a time efficient manner 

(Kommedal et al., 2008, 2009). 

3.2.6 Next generation sequencing 

Although the throughput of Sanger sequencing has been advanced by the development of capillary 

electrophoresis and algorithms to resolve complex chromatograms, the experience of sequencing the 

human genome showed that the method was not able to efficiently analyze complex diploid genomes 

at low cost (Lander et al., 2001; Wheeler et al., 2008; Higuchi et al., 2011). To resolve the issues of 

throughput, price and requirements of cloning that are inherent to the Sanger sequencing method, 

several next generation sequencing platforms have been developed that offer great improvements in 

terms of total sequence production and reduction of cost and time (Barken et al., 2007; Wheeler et 

al., 2008; Higuchi et al., 2011; Liu et al., 2012).  

Although there are differences in the strategies used by the different next generation sequencing 

platforms, their workflow are conceptually similar and differ from Sanger sequencing in a number of 

ways. They all feature clonal amplification of libraries that are prepared by in vitro ligation, which 
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obviate the need for laborious cloning of DNA library into bacteria. Also, the sequencing occurs by 

synthesis, meaning that the DNA sequence is determined by the addition of nucleotides to the 

complementary strand rather than the strategy of chain termination used in Sanger sequencing. 

Finally, the DNA templates are spatially segregated and sequenced simultaneously in a massively 

parallel manner, unlike Sanger sequencing that requires a physical separation step (e.g. transfer of 

individual templates to wells in a microtiter plate) (Shendure and Ji, 2008; Higuchi et al., 2011; Liu 

et al., 2012). 

There are several applications of next generation sequencing regardless of the platform, including 

mapping of structural rearrangements, epigenetics (by analysis of DNA methylation or 

immunoprecipitation followed by sequencing), transcriptome analysis and RNA sequencing 

(Shendure and Ji, 2008; Liu et al., 2012). In the context of microbial identification the most relevant 

application of next generation sequencing is amplicon sequencing and whole genome sequencing 

(Mardis, 2008; Liu et al., 2012). These applications have conceptually different approaches, and are 

either based on PCR amplification or fragmentation of DNA before sequencing (Figure 4).  

 
Figure 4: Conceptual differences between amplicon and genome sequencing. For amplicon sequencing 

PCR is used to amplify target region before next generation sequencing, while genome sequencing uses 

fragmentation of genomic DNA before next generation sequencing. If genomic DNA originates from a 

complex sample sequencing of all the genomes is referred to as metagenome sequencing. 

Compared to Sanger sequencing the read-length that can be obtained by next generation sequencing 

may be short. This can be problematic for assembly of sequences into full genomes after genome 

sequencing. However, the potential utility of short-read sequencing has been tremendously 

strengthened by the availability of whole genome assemblies for major model organisms, as these 

effectively provide a reference against which short reads can be mapped (Shendure and Ji, 2008). 

The short reads does, however, influence the ability to perform de novo assembly.  

The sequencing field is advancing rapidly, and evolution of next generation sequencing platforms has 

brought huge advancements in performance accuracy, applications, consumables, manpower 

requirement and obtainable read length (from 250 bp to 700 bp for the Roche 454 system, 35 bp to 75 

bp for the ABI SOLiD system and 36 bp to 150 bp for the Illumina system) (Shendure and Ji, 2008; 

Liu et al., 2012). Furthermore, new technologies are being developed, including compact sequencers 

and third generation sequencing platforms. Although no consensus definition of third generation 

sequencing has been established yet, two main characteristics have been described. These include an 

ability to perform sequencing with no prior PCR (single-molecule sequencing), and capture of signal 
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(either fluorescent or electric current) in real time instead of the strategy of “washing and scanning” 

used in next generation sequencing. These characteristics mean that sequencing analysis can be 

performed very rapidly but still in high throughput and that read lengths are greatly increased. Third 

generation platforms include the PacBio RS by Pacific Bioscience, and the Oxford Nanopore 

sequencer (Schadt et al., 2010; Liu et al., 2012). The compact sequencers (among others the Ion 

Torrent platform) sit between next generation sequencing and third generation sequencing since they 

require “washing and scanning”. The Ion Torrent performs sequencing by synthesis by measuring 

changes in pH due to release of hydrogen ions as part of the base incorporation process. This 

methodology dramatically accelerates the time to result and reduces costs but does not result in 

longer read lengths (Schadt et al., 2010). For clarity reasons the term NGS will be used to cover all 

these platforms throughout the rest of the thesis. 

3.2.7 Ibis T5000 biosensor 

In contrast to most other methods, the Ibis T5000 biosensor uses high-performance mass 

measurements to analyze nucleic acid sequences. The Ibis T5000 biosensor is based on a multilocus 

approach, and uses PCR to amplify broadly conserved regions, including ribosomal sequences and 

housekeeping genes, by use of “intelligent primers” (Hofstadler et al., 2005; Vandamme, 2011). The 

choice of primers follows a strategy of redundancy, and is made up by several broad-range and clade-

specific primers, so that one type of microorganism should be targeted by more than one primer set 

(Hofstadler et al., 2005). The PCR products that are in the 80–140 bp size range, are desalted and 

analyzed by electrospray ionization (ESI) MS. The resulting spectral signals are then processed to 

determine the accurate masses of both strands of all the PCR products. This allows sufficient 

accuracy to determine the base composition of each amplicon based on the discrete masses associated 

with different combinations of the four nucleotide bases. The base compositions from multiple 

primer pairs are used to “triangulate” the identity of the organisms present in the sample (Hofstadler 

et al., 2005; Ecker et al., 2006). The method is commercially available in the form of the Ibis T5000 

biosensor and Abbott PLEX-ID instruments (Ecker et al., 2006, 2008; Jacob et al., 2012). These 

instruments have several pre-prepared assays, in the form of 96 well plates, offering broad range 

identification of bacteria, fungus and virus, targeted identification of a specific microorganism or 

characterization of microorganisms based on subtyping and drug resistance determination (Ecker et 

al., 2006, 2008; Eshoo et al., 2009; Grant-Klein et al., 2010). The applicability of the instruments are 

wide and can be used both for identification and characterization of a broad range of pathogens and 

for molecular genotyping, by following the same general principle as MLST but detecting variation 

based on base composition and not sequence (Ecker et al., 2008, 2009; Hall et al., 2009; Gerner-

Smidt et al., 2011). 

 
Figure 5: Illustration of the principle of the Ibis T5000 biosensor, where PCR products are analyzed by 

mass spectrometry. The mass spectra that are obtained for the various primer sets are converted into a 

base count for each PCR strand, which forms the basis for determination of species identity by 

triangulating the results from multiple primer sets and comparing them to an integrated database. The 

picture was modified from (Ecker et al., 2006)  
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To analyze a sample, extracted nucleic acids are transferred into wells of the microtiter plate that 

each contains one or more primer pairs. The following PCR amplification produces a mixture of PCR 

products, representing the complexity of the original sample. The Ibis T5000 and Abott PLEX-ID 

contain robotics that handle the desalting of the samples in 96-well plate format and sampling into 

the ESI mass spectrometer, which leads to a minimized hands-on time. The software associated with 

the instruments identifies the microorganism by first determining the masses and associated base 

compositions from the mass spectrometry data, and then comparing the results across primer pairs 

(Ecker et al., 2006). To do this a key element of the system is utilized; a curated database that 

associates base counts with primer pairs for thousands of microorganisms (Ecker et al., 2006; Nolte 

and Caliendo, 2011).  

The Ibis T5000 biosensor has the potential of providing the relative amount of each of the detected 

microorganisms in a sample by use of an internal calibrant. This is a nucleic acid sequence that is 

similar to the primer target sites and is amplified during PCR of the sample. The generated calibrant 

amplicon has a deletion that uniquely distinguishes it from the amplicons that are produced from the 

sample. Since the concentration of the calibrant in each PCR is known, the calibrant can be used to 

obtain quantitative results, but also functions as an internal positive control (Ecker et al., 2008). 

3.2.8 Genetic microarrays  

The basic principle of genetic microarray is build upon hybridization experiments to screen for 

specific DNA sequences from a sample, performed in a small and highly parallel format. In a genetic 

microarray hundreds to thousands of nucleotide probes are bound to a solid surface, typically glass, 

in precise patterns. The sample nucleic acids can hybridize to these probes, and ultimately the array-

bound sample can be detected (Gerner-Smidt et al., 2011; Nolte and Caliendo, 2011). The target 

nucleic acid can be either RNA or DNA, and a variety of sample preparation methods exist for 

different array types. Common for the methods is either amplification of the target while tagging or 

incorporating biotinylated or fluoresceinated nucleotides, or staining of nucleic acids using 

fluorescence dyes (Southern, 2001; Nolte and Caliendo, 2011). In order for the target to bind to the 

probes the amplicons must be single stranded to ensure hybridization to the immobilized probes with 

complementary sequences (Southern, 2001). After hybridization of sample to the microarray, binding 

of targets can be detected, and the amount of hybridized sample can be quantified based on signal 

intensities (Barken et al., 2007). 

The genetic microarray platform has many types of applications depending on the probes attached to 

the surface. These include transcriptome analysis (e.g. comparison of mutants and wild-type strains, 

or strains under different growth conditions), analysis of gene expression, identification of single 

nucleotide mutations, detection of species specific sequences, virulence genes and genes encoding 

antimicrobial resistance, and discovery and characterization of pathogens (Barken et al., 2007; Nolte 

and Caliendo, 2011). Gene expression analysis by microarrays has been used to study several 

pathogens and been implemented for cases such as viral hepatitis infections (Miller and Tang, 2009). 

Furthermore, arrays have been described for the detection of some pathogenic prokaryotes, 

eukaryotes and viruses (Wang et al., 2002; Wilson et al., 2002). Despite these experiences and the 

advantage of high throughput analysis offered by the method, the genetic microarrays have so far had 

little direct impact on diagnostic microbiology (Barken et al., 2007; Miller and Tang, 2009).  
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4 Comparison of methods 

It is clear that many methods exist for detection, identification and subtyping of microbial species. 

No matter which method is used for investigation of microorganisms, the key to success or failure 

lies with proper transport conditions, storage conditions and general handling of the primary sample. 

Furthermore, the first steps taken during analysis are often pivotal for the outcome. The results from 

culture-dependent methods are dependent on the choice of nutrients and incubation conditions 

applied during the first inoculation of samples. Similarly, the results that can be obtained by the 

molecular methods depend on the choice of protocol for extraction of nucleic acids. The sensitivity of 

the molecular analyses is directly affected by the quality of nucleic acids used as input. To represent 

the true microbial community in a sample the extraction protocol must be unbiased and 

simultaneously remove inhibitors. Also, since the sensitivity is influence by the ratio between target 

and background nucleic acids, selective DNA extraction may be suitable for clinical samples that 

often contain nucleic acids from the host that can reach dominating concentrations (article III), 

which may interfere with PCR. Elimination of these unwanted nucleic acids (for instance by 

MolYsis™ pretreatment) may improve sensitivity (article VI) (Gebert et al., 2008), but it is possible 

that nucleic acids from some microorganisms are also eliminated (Horz et al., 2010).  

Another consideration for analysis by molecular methods is the possibility that extracted DNA 

originates from non-viable microorganisms, for instance, from cells that have been eradicated by 

antimicrobial treatment, which is not clinically relevant. To avoid analysis of these molecules it is 

possible to use RNA-based methods or pretreatments such as propidium monoazide photo-induced 

cross-linking of extracellular DNA and DNA in cells with compromised cell membranes (Nogva et 

al., 2003; Rudi et al., 2005). At present no ideal method for nucleic acid extraction has been found, 

and the optimal extraction protocol may vary depending on the sample type. Extraction issues mean 

that although the molecular methods have high analytical sensitivity, the sensitivity for detection of 

microorganisms within a sample may be reduced. Theoretically, culture has a higher sensitivity than 

molecular methods since only a single cell needs to be present to result in growth. However, the 

reality is that some microorganisms are not detected by the standard culture-dependent methods used 

at clinical microbiology departments. Lack of detection can be caused by exposure to antimicrobial 

agents, biofilm formation, entry into a viable but non-culturable state, slow growth rates, improper 

handling of anaerobes or requirement of as yet undiscovered growth conditions (often referred to as 

unculturable, although this term may be misleading and due to insufficient culture optimization) 

(Vartoukian et al., 2010).  

It is possible to investigate microorganisms directly in the sample by microscopy, which is not 

possible by culture-dependent methods or molecular methods. Direct investigation of sample material 

means that no concentration of targets occurs, and introduction of biases associated with these steps 

can thereby be avoided. However, microscopy-based methods have high detection limits.  

Besides the general issues that are connected with culture-dependent methods, microscopy and 

molecular methods, the individual methods have different advantages and limitations (Table 2) that 

influence which method might be more suitable to use for investigation of microorganisms in 

different settings and sample types. 

Table 2: Overview of the methods (Ecker et al., 2008; Seng et al., 2009; Frye and Healy, 2011; Miller, 

2011; Savelkoul and Peters, 2011; Liu et al., 2012)  
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4.1 The optimal method? 

The best method for identifying microorganisms should provide sensitive, universal, flexible and 

quantitative results even in complex samples within a short period of time, preferably with potential 

for automation. Based on these criteria, the phenotypic identification methods are not optimal, both 

due to lack of growth of some microorganisms, but also because the identification of microorganisms 

by these methods can be laborious, time-consuming and costly depending on the number of tests that 

must be performed (Table 2). Furthermore, phenotypic markers might show variability due to 

environmental cues such as the condition of the culture, subculture and storage (Sauer and Kliem, 

2010). The time and cost is to a large extend linked with biochemical testing, and the increasing 

implementation of MALDI-TOF MS as an alternative to these tests have been reported to reduce 

costs of bacterial identification by 68-89% and allow much faster identification of microorganisms 

(Seng et al., 2009; Gaillot et al., 2011). Although MALDI-TOF MS is mostly used for identification 

of isolates, it has been shown to be applicable to pellets from positive blood culture bottles (after 

lysis of erythrocytes); however, polymicrobial infections cannot be resolved (Prod’hom et al., 2010). 

Since culture-dependent methods are not optimal for identification of all microorganisms a definition 

of new gold standard method is required. However, the best method will vary depending on the goal 

of the investigation, and the best method in a research setting differs from the best method in a 

clinical laboratory, since the latter is restrained by time and cost consideration to a larger extend than 

research. Furthermore, in research it is important to investigate all microorganisms in samples while 

clinical microbiology is more focused on the treatment of the infections.  

4.1.1 From a research perspective  

Investigation of all microorganisms and their interactions in a complex sample can be obtained by a 

number of different methods. For identification of the microorganisms, sequencing (by Sanger 

sequencing and NGS) and subsequent comparison with reference sequences in databases is 

particularly relevant since these results are generally unambiguous. Despite the general agreement of 

the importance and applicability of sequencing, there is no universal consensus on the degree of 

sequences divergence permissible within a species or genus, and the cut-off value is variable and 

depends on the gene target and the microorganism. Sanger sequencing has the distinct disadvantage 

that pure targets are required, which necessitate use of either fingerprinting or clone library 

construction. While fingerprinting may have insufficient resolution, construction of clone libraries is 

very time consuming and labor intensive (Table 2). Although it might be possible to perform Sanger 

sequencing directly on DNA from a mixed microbial community by using the Ripseq algorithm to 

interpret mixed chromatograms, the number of species that can be resolved in a single sample is 

limited. Massively parallel amplicon sequencing by NGS platforms overcome these problems and the 

continued and rapid developments in this field have improved sequence quality, read-length, 

bioinformatic data analysis and reduced costs to a degree that makes the use of such methods very 

attractive compared to Sanger sequencing.  

Currently studies of microbial communities are primarily based on molecular marker genes. A typical 

target for bacterial identification is the 16S rRNA gene, whereas fungal identification does not have 

such a “gold standard gene”, though internal transcribed spacer regions and 28S rRNA genes have 

been shown to be useful for fungal identification (Petti et al., 2011). The use of a single marker 

molecule limits the ability to identify all microorganisms in a sample, since the different DNA 

sequences are competing for the same reagents during PCR. Therefore, species present in low 

concentrations are at risk of not being detected. Also, design of universal primers that targets all 
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bacteria is not possible (Baker et al., 2003). For instance, “universal” 16S rRNA primers designed for 

qPCR and frequently used in the literature, can underestimate the total number of bacteria present in 

a sample (article III). The ability to perform sequencing without prior PCR is therefore highly 

relevant in order to study the true microbial diversity in samples, and can be achieved by using NGS. 

Performing whole genome- and metagenome sequencing might offer insights into the potential 

properties of microorganisms in infections and yield information that is clinically relevant. The work 

that is required to translate the sequence information into clinically relevant information (and validate 

the findings) is at present too exhaustive to be applicable in clinical microbiology departments. As 

more microbial genomes and molecular marker genes are sequenced, the value of using microarrays 

to navigate microbial genomes in a high-throughput manner is increased. The value of the 

microarrays lies in the ability to screen multiple samples, and can be used complimentary to NGS 

applications. It is, however, possible that NGS will eventually out-compete microarrays. 

The use of microscopy-based methods can enable investigation of the actual microorganisms, rather 

than their genetic material, and thus be used to obtain relevant information (both in a research setting 

but also in a clinical setting). Using FISH specific microorganisms can be targeted and visualized, 

which can be helpful for detection of the specific target, for investigation of spatial distribution in 

clinical samples or observation of atypical morphotypes. FISH has the advantage that it offers 

increased specificity compared to microscopy with or without staining, where identification of 

microorganisms is based on morphology and chemical or physical properties (Table 2). 

4.1.2 From a clinical perspective  

One goal for clinical microbiology is the ability to screen for panels of probable pathogens, and many 

methods are available to achieve this, including FISH, qPCR and microarrays. FISH has the 

advantage of low cost and limited equipment requirements and can be the fastest way to detect 

microorganisms, although it may require experienced personnel to locate the microorganisms in the 

samples by microscopy. However, the limited sensitivity means that it is only suitable for some 

samples. QPCR may be performed faster than FISH and has a higher sensitivity. Compared to other 

PCR based methods, qPCR is less prone to contamination since there is no post-amplification 

handling, which contributes to the speed of the method. Furthermore, the results can be used 

quantitatively (Table 2). These advantages have meant that qPCR has become the main stay for 

diagnosis of viral infections. Both FISH and qPCR require assumptions to be made regarding the 

identity of pathogens. The choices of primers and probes dictate which microorganisms can be 

detected; and although multiplexing might possible, the capability for this is limited. The principle of 

microarrays is similar and microorganisms are detected by probe hybridization, but use of this 

method reduces the problem of assumption-based detection due to the high degree of multiplexing 

offered by the method (Table 2). Microarrays have been used directly on extracted nucleic acids, 

pooled PCR products from multiple universal genes and products from random PCR (Gerner-Smidt 

et al., 2011). The use of microarrays has been limited due to complexity of array design, and high 

price (both acquisition price and running price due to use of fluorescence staining of target nucleic 

acids). Compared to these methods, the Ibis T5000 biosensor has the advantage that the multilocus 

approach, detection redundancy and base composition determination makes it less dependent on 

assumptions to be made prior to analysis. Furthermore, the commercial available assays for microbial 

identification also include detection of some antimicrobial resistance genes, and the use of an internal 

calibrant makes it possible to obtain quantitative results. The relative novelty of the method does, 

however, mean that the price of this method is high, and validation of the approach is currently not 
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sufficient for implementation in clinical microbiology. Amplicon sequencing, particularly using 

compact NGS platforms, would similarly diminish the need for assumptions of pathogen identity to 

be made prior to analysis. The use of Ibis T5000 biosensor, microarrays and amplicon sequencing 

will allow for more complete analysis of microbial communities. This would offer a sense of 

confidence that the disease causing pathogens has been detected, and might also give an idea of the 

focus of infection that can be clinically relevant. 

Quantitative results are of interest in clinical microbiology, based on the assumption that abundance 

of species is indicative of importance and may be used to evaluate if an antimicrobial treatment has 

worked. Several methods can be used to obtain quantitative results, including FISH, qPCR, 

microarrays and reportedly amplicon sequencing. Generally, quantitative interpretation of data 

obtained after broad-range PCR is problematic due to biases in the PCR amplification, and internal 

calibrants are necessary to obtain reliable quantitative results. Case in point, the abundance of 

amplicon sequences is sometime reported as reflecting the relative abundance of species in a sample 

(Monchy et al., 2011), but comparison of quantitative results by amplicon sequencing, qPCR and the 

Ibis T5000 biosensor indicated that this is not true (article I). A consideration for the use of 

quantitative measurements as an indicator of importance is that, although organisms might be present 

in low numbers they may be highly active or pathogenic and thereby potentially important players in 

infection, indicating that evaluation based on presence in numbers should be done cautiously.  

Commonly used subtyping methods such as MLST and genetic fingerprinting might have insufficient 

resolution. Typing by whole genome sequencing or the Ibis T5000 biosensor offers both a higher 

resolution and can be done quickly, which is particularly important in epidemic outbreaks. Although 

microarrays can be designed for typing of species, their use is more suitable for screening for certain 

species types. Whole genome sequencing represents the ultimate typing method, and this use of NGS 

is readily applicable, but may be restrained to reference laboratories.   

Evaluation of the behavior of microorganisms in a clinical sample (e.g. observation of presence in 

biofilms) is of great importance in clinical microbiology since this can affect the treatment outcome. 

To this end microscopic visualization will continue to be relevant in clinical microbiology setting, 

and use of FISH might improve the results. Generally, the main focus of clinical microbiology is on 

the treatment of infections and therefore the optimal methods in this setting would be the ones that 

can measure if a treatment is functional. Currently, only culture-dependent methods allow for 

antimicrobial susceptibility testing, and although it might be possible to use molecular methods to 

detect antimicrobial resistance genes, this information may not be sufficient. It is quite possible that 

the optimal method would be a combination of culture-dependent antimicrobial susceptibility testing 

with molecular analysis to ensure rapid and sensitive reporting. The initial implementation of 

molecular methods in clinical microbiology has been targeted to specific samples or pathogens, since 

a large part of added value of the methods lies in the ability to analyze culture-negative samples, 

particularly those arisen from administration of antimicrobial treatment. 

The implementation of new methods into clinical microbiology requires extensive validation and 

optimization of robust standardized laboratory protocols, as exemplified by the current paradigm 

change from biochemical testing to chemotaxonomic-based identification (i.e. MALDI-TOF MS). 

This has been driven by the validation and optimization work that has been taking place since the 

1990s, along with development of software packages for data analysis and establishment of 

comprehensive databases (Kliem and Sauer, 2012). This indicates that it might still be several years 

before molecular methods are implemented in clinical microbiology departments.  
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5 Application of molecular methods  

Molecular methods have several applications within the clinical microbiology field, and several cases 

have been published where various molecular methods have been used on samples from different 

types of infections. In the following, the knowledge obtained by using molecular methods to study 

microbial communities in samples from patients with NSTIs, chronic wounds and CF is examined, as 

these types of infections were the central focus of this PhD study.  

5.1 Case: NSTIs 

The group of infections covered by the term NSTI is diverse and includes infections of the skin, 

subcutaneous tissue, fascia or muscle that are associated with necrotizing changes. NSTIs are rare but 

highly lethal infections, requiring rapid diagnosis and treatment (including antimicrobial therapy and 

aggressive surgical debridement) (Anaya and Dellinger, 2007). The gold standard for diagnosis of the 

microorganisms involved in NSTIs is standard culture-dependent methods, despite the rapid 

progression of the disease. Use of molecular methods for identification of microorganisms involved 

in NSTIs is limited in the literature, and the most frequent use of molecular methods is on isolates. 

The typical analyses are sequencing of 16S rRNA gene fragments to confirm finding of uncommon 

pathogens, or subtyping of species by MLST and/or PCR on virulence-, superantigen-, toxin- and 

adhesin genes followed by fingerprinting (Table 3). 

Table 3: Overview of cases where molecular methods have been used on isolates to either confirm 

findings by culture or for typing of species. 

Confirmation of culture by16S rRNA gene sequencing Typing of isolates 

Microorganism Reference Microorganism Reference 

Bacillus cereus (Lee et al., 2010) Klebsiella oxytoca (Oishi et al., 2008) 

Campylobacter rectus (Lam et al., 2011) Klebsiella pneumoniae (Gunnarsson et al., 2009) 

Klebsiella oxytoca (Oishi et al., 2008) Staphylococcus aureus (Miller et al., 2005; Morgan et 

al., 2007; Thuong et al., 2007; 

Changchien et al., 2011) 
Raoultella planticola (Kim et al., 2012) 

Shewanella algae (Myung et al., 2009) 

Sphingobacterium 

multivorum 

(Grimaldi et al., 2012) Streptococcus dysgalactiae 

subsp. equisimilis 

(Kittang et al., 2010) 

Streptococcus dysgalactiae 

subsp. equisimilis 

(Kittang et al., 2010; Nei 

et al., 2012) 

Streptococcus equi subsp. 

zooepidemicus 

(Korman et al., 2004) 

Streptococcus equi subsp. 

zooepidemicus 

(Korman et al., 2004) Streptococcus pneumoniae (Ballon-Landa et al., 2001) 

Streptococcus pyogenes (Demers et al., 1993; Kaul et 

al., 1997; Norrby-Teglund et 

al., 1998; Erdem et al., 2004; 

Hassell et al., 2004; Jing et al., 

2006; Meisal et al., 2008) 

Vibrio vulnificus (Muldrew et al., 2007) 

  

Besides the use of molecular methods for confirmation of culture-based findings and typing of 

isolates, a few studies exist where molecular methods have been used to directly identify 

microorganisms. These include 16S rRNA gene sequencing of isolates that could not be identified by 

conventional methods (Clarke et al., 2010; Bempt et al., 2011). A few studies used molecular 

methods on tissue, including PCR-based methods in cases that gave culture-negative results 

(Muldrew et al., 2005) or as a rapid method for detection of Streptococcus pyogenes (Louie et al., 

1998). Additionally, use of FISH has been reported in two cases; to identify microorganisms 

commonly involved in NSTI (Figure 6) (Trebesius et al., 2000) and to distinguish the more 

pathogenic S. pyogenes from non-group A streptococci (Sing et al., 2001).  
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Figure 6: FISH images of NSTI samples (Trebesius et al., 2000). A: The use of multiple probes means 

that binding of two or more different probes results in mixed colors. B: Patient 2 was found to have S. 

pyogenes (yellow, probes Strpyog-Cy3 and EUB338-FLUOS). C: Patient 3 was found to have 

Pseudomonas aeruginosa (yellow/orange, probes Pseaer-Cy3 and EUB338-FLUOS) and other bacteria 

(green), one with rod (green arrow) and one with a spherical morphology (white arrow). The scale bar 

represents 10 µm. 

By using a combination of PNA FISH and DAPI staining it can be possible to visualize both 

microorganisms and human cells in the infected tissue from NSTI patients (Figure 7) (article I). 

Only few bacteria could be detected in the infected areas and the observed bacteria were located in 

clusters. Conversely the amount of inflammatory cells was high. Observation of both inflammatory 

cells and coagulation indicates that the human hosts are combating the infections. 

The low abundances of bacteria have interesting possible explanations. It might indicate that the 

tissue destruction in large part may be caused by the host immune system. It may also be that the 

antimicrobial treatment administered to the patients before procurement of samples has rendered 

them metabolically inactive, and therefore difficult to detect by FISH. Another explanation might be 

that the pathogens have moved on from the destroyed area. It is, however, also possible that 

microorganisms were present but in concentrations below the detection limit. Further studies are 

needed to determine the cause of the observed low microbial abundance. 

A B

↓

↓

↓

↓

 
Figure 7: Visualization of samples using universal bacteria PNA FISH probe and DAPI staining (article 

I). Few microorganisms (bright red, indicated by white arrows) could be detected in the samples from 

two NSTI patients. A large amount of human host cells were observed (blue). Additionally, in the 

sample from patient 9B (frame A) coagulated blood could be observed (orange, indicated by red arrow), 

which was not observed in sample from patient 8A (frame B). The scalebars represent 15 µm. 
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Use of broad-range PCR based methods for detection of all microorganisms directly in NSTI samples 

has only been published in a single case study (Muldrew et al., 2005). To investigate the applicability 

of such methods for rapid identification of NSTI pathogens, total DNA from samples from 10 NSTI 

patients were investigated by direct rRNA gene Sanger sequencing, construction of near full-length 

16S rRNA gene clone libraries and the Ibis T5000 biosensor. The findings by molecular methods 

were compared with culture results obtained as a part of routine diagnostic of the patients (article I).  

Identification of microorganisms based on culture-dependent methods was confirmed by all the 

applied molecular methods in 35% of the investigated samples. For the remaining samples, molecular 

methods either found partial concordance of the results (molecular methods typically identified 

additional microorganisms) or gave discrepant results (due to negative culture reports) (Table 4). 

Table 4: Overview of the microorganisms found in 20 tissue samples obtained from 10 NSTI patients by 

culture-dependent methods and molecular methods (DS: direct Sanger sequencing, CL: clone libraries 

and Sanger sequencing and I: Ibis T5000 biosensor) (article I). 

Sample Culture Molecular methods  

Concordance of results 

1A Streptococcus pyogenes Streptococcus pyogenes
DS, CL, I

 

1B Streptococcus pyogenes Streptococcus pyogenes
DS, CL, I

 

1C Streptococcus pyogenes Streptococcus pyogenes
DS, CL, I

 

1D Streptococcus pyogenes  Streptococcus pyogenes
DS, CL, I

 

2A Streptococcus pyogenes Streptococcus pyogenes
DS, CL, I

 

2B Streptococcus pyogenes Streptococcus pyogenes
DS, CL, I

 

4A* Streptococcus sp. Streptococcus pyogenes
DS, I

, Streptococcus didelphis
I
  

8A* Streptococcus pneumoniae Streptococcus pneumoniae
 DS, I

 

8B* Streptococcus pneumoniae Streptococcus pneumoniae
 DS, I

 

9A Streptococcus pyogenes Streptococcus pyogenes
DS, CL, I 

9B Streptococcus pyogenes Streptococcus pyogenes
DS, CL, I

 

10A Negative Negative
DS, CL, I

 

10B Negative Negative
DS, CL, I

 

Partial concordance of results 

3A Acinetobacter baumanii  Acinetobacter baumanii
CL, I

, Streptococcus pyogenes
DS 

5A Clostridium paraputrificum, Bacteroides 

fragilis 

Clostridium paraputrificum
CL, I

, Bacteroides fragilis
I
, 

Streptococcus agalactiae
I
, Streptococcus pyogenes

DS
, 

Uncultured bacterium
CL

  

6A* Streptococcus pyogenes, Escherichia coli Streptococcus pyogenes
DS, I

, Escherichia coli
I
, Mycoplasma 

hominis
DS

, Bacteroides fragilis
I
, Staphylococcus epidermidis

I
, 

Staphylococcus hominis
I
, Cladosporium cladosporioides

I 

7A* Fungus Candida albicans
I
, Mycoplasma spp.

 DS, I
, Fusobacterium 

necrophorum
DS, I

 

Discordance of results 

4B Negative Streptococcus pyogenes
DS, CL, I

 

7B Negative Mycoplasma salivarium
DS, CL

, Mycoplasma spp.
 I
, 

Fusobacterium necrophorum
CL, I

 

8C* Negative Streptococcus pneumoniae
 DS, I

 

Samples marked with * were analyzed by 16S rRNA amplicon sequencing to evaluate the findings of the 

other methods. 

The findings in six samples were evaluated by amplicon sequencing of 16S rRNA gene fragments 

using the Roche 454 pyrosequencing platform (Figure 8). These samples were from all three groups 

of results (concordant, partial concordant and discordant). For four of the samples (patient 4A, 8A, 
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8B and 8C) the amplicon sequencing confirmed the findings by the other molecular methods. For the 

remaining two samples, amplicon sequencing revealed additional microorganisms (in patient 6A 

these were Peptoniphilus sp. and Porphyromonas sp., in patient 7A it was Prevotella sp. and Sharpea 

sp.). The findings of Candida albicans and Cladosporium cladosporioides by Ibis T5000 biosensor 

could not be confirmed, since these were not targeted by 16S rRNA gene based methods.  

 

 

 

 

 

 

  
Figure 8: The taxonomic groups identified by 16S rRNA amplicon sequencing. The stacked graph 

illustrates the relative abundance of each taxon (color coded according to the key). 

These results indicate that use of molecular methods may be valuable diagnostic tools for 

identification of microorganisms in NSTIs. 15% of the samples were found to be culture-negative 

although microorganisms could be identified with the molecular methods. Interestingly, all these 

samples originated from patients where other samples taken from different places in the infection 

sites resulted in identification of microorganism by culture. Furthermore, the molecular methods also 

identified microorganisms that were not registered in the culture reports for 20% of the samples, 

which together with the reduced turnaround time that can be obtained by some of the molecular 

methods may be relevant for the fulminant NSTIs. 

5.2 Case: Chronic wounds  

Chronic wounds are a major and ever increasing healthcare problem and a contributing factor in 

hundreds of thousands of annual deaths (Dowd et al., 2008; Sen et al., 2009). There are three major 

types of chronic wounds defined by the predisposing condition of the patient: venous leg ulcers, 

diabetic foot ulcers, and pressure ulcers (Dowd et al., 2008). The wound environment is ideal for 

microbial growth due to tissue necrosis which provides ample nutrients (Bowler et al., 2001).  

Some studies exist where the microbial findings by culture-dependent methods are compared with 

the findings by molecular methods, such as 16S rRNA gene analysis (by fingerprinting and Sanger 

sequencing, cloning and Sanger sequencing, and amplicon sequencing using NGS platforms) and Ibis 

T5000 biosensor. The studies showed that molecular methods detect a greater microbial diversity 

than culture no matter which molecular method was used (Figure 9). The larger diversity found by 

the molecular methods is both due to ability to detect microorganisms that are not found by culture, 

but also because the molecular methods were able to distinguish between different species or genera 

of microorganisms where culture-dependent methods might only be able to identify certain groups or 

families. The number of species found in the studies varied depending on the number of samples 

included in the studies, suggesting that the microbial flora of individual patients varied greatly.  

 

Phylum Identity

Bacteroidetes Porphyromonas  sp.

Prevotella baroniae

Prevotella tannerae

Bacteroides fragilis

Firmicutes Streptococcus pyogenes

Streptococcus pneumoniae

Peptoniphilus sp.

Fusobacteria Fusobacterium necrophorum

Tenericutes Sharpea  sp.

Tericutes Mycoplasma hominis

Mycoplasma  sp.
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Figure 9: Overview of studies where identification of microorganisms by culture-dependent methods is 

compared with various molecular methods. The number of species detected by each method is seen 

(color coded according to the key). Article V, (Hill et al., 2003), (Dowd et al., 2008) and (Tuttle et al., 

2011) are studies of chronic venous leg ulcers, while (Price et al., 2009) and (Frank et al., 2009) are 

studies of chronic wounds with various predisposing conditions. N= the number of wounds included in 

the studies. 

A factor contributing to the lower microbial diversity found by culture-dependent methods may be 

the formation of biofilms within chronic wounds, which is increasingly being appreciated as an 

important part of the pathogenesis. It is hypothesized that the wounds are kept chronic by the 

bacterial burden (Bjarnsholt et al., 2008; Martin et al., 2010). The first indications of presence of 

biofilm was obtained by PNA-FISH studies, where large microcolonies of microorganisms 

surrounded but not penetrated by human host cells (most likely polymorphonuclear neutrophilic 

leukocytes (PMNs)) were observed (Bjarnsholt et al., 2008) (article V). Further studies using 

alginate-specific immunostaining, showed that the microcolonies were imbedded in a self-produced 

alginate matrix (Kirketerp-Moller et al., 2008). Studies using FISH to investigate the distribution of 

microorganisms and host immune cells, have been published (Fazli et al., 2009, 2011), along with 

studies of competition between different species within in vitro biofilms (Malic et al., 2009; Pihl et 

al., 2010). These competition studies showed that Pseudomonas aeruginosa could outcompete other 

microorganisms, especially if the P. aeruginosa strains showed reduced expression of certain 

virulence factors, which has been linked with enhanced persistence in the chronic wound 

environment (Malic et al., 2009; Pihl et al., 2010).  

Physiological conditions can vary spatially within a wound and create diverse microenvironments 

that may support different microbial communities. For instance, the surface of a wound seems to 

support different microbial flora than the deeper wound layers (Fazli et al., 2009; Malic et al., 2009). 

Furthermore, studies investigating the spatial distribution of microorganisms within individual 

wounds using molecular methods have indicated that microbial flora also varies across the entire area 

of the wounds (article V) (Andersen et al., 2007; Wolcott et al., 2009; Price et al., 2011; Wolff et al., 

2011). These studies used sampling of small discrete locations within wounds, as illustrated in Figure 

10. 

Method
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Figure 10: Sampling procedure to investigate spatial localization of microorganisms by molecular 

methods. Picture obtained from (Cunningham et al., 2010), and edited to illustrate sampling procedure 

from article V. Samples used by Andersen et al. (2007), Wolcott et al. (2009) and Price et al. (2011) 

included center of the wound (C), and two opposing edges of the wound (e.g. position 3 and 9). 

In addition to showing different microbial flora at discrete sites inside wounds, it was shown that the 

relative abundance of individual microorganisms also varied at different sites in the individual 

wounds (article V) (Wolcott et al., 2009). The findings indicate how important appropriate sampling 

is to fully characterize the global wound ecology. However, an ideal sampling method has not been 

established yet and is a matter of continued debate. It has been suggested that swabs of wound 

surface are inaccurate. Culture-based investigations have shown that the yield of anaerobes in swabs 

are lower than that found by biopsies (Davies et al., 2007) and that anaerobes in the wound beds may 

be implicated in mediation of chronicity of the wounds (Wall et al., 2002; Stephens et al., 2003). A 

study using qPCR to investigate swabs and biopsies taken during the healing process showed that the 

number of microorganisms decreased in biopsy samples as the wounds healed, whereas no significant 

decrease could be found in swab samples, indicating that positive swabs may indicate just the 

presence of colonizing microorganisms (Gentili et al., 2012).  

The identity of microorganisms present in wounds and the effect on wound healing is difficult to 

assess. Studies comparing the microbial communities in healing and non-healing chronic venous leg 

ulcers have been performed using 16S rRNA fingerprinting and Sanger sequencing (Davies et al., 

2004) and 16S rRNA amplicon sequencing and the Ibis T5000 biosensor (Tuttle et al., 2011). 

Although both studies found differences in the incidence of specific microorganisms between the two 

patient groups, the findings in the two studies were not concordant. The evidence from the literature 

on various chronic wounds is that all wounds are colonized with microorganisms, and differentiating 

colonizers from invading microorganisms is difficult. Individual wounds have unique profiles of 

microorganisms, and the spatial distribution of the microorganisms within individual wounds is 

heterogeneous. This suggests that each wound has to be carefully evaluated, with sampling covering 

all of the wound area, and that no single pathogen is likely to be the causative agent of such 

infections. 
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5.3 Case: CF 

“Anyone who reviews the literature on cystic fibrosis and isn’t confused, is confused” 

-Dr. Efraim Racker, 1985  

CF is an intensively studied disease, which has increased the knowledge of the disease and resulted 

in an increase in life expectancy for CF patients. However, the immense literature on the subject can 

also tend to confuse the understanding of the infections that occur in CF patients. The genetic 

disorder that causes CF affects several organs. The most severe effect is on the lungs, and respiratory 

failure accounts for most premature deaths of CF patients (Quinton, 1999; Conese et al., 2003; 

Parsek and Singh, 2003). Nasal and sinus inflammation is a frequent condition in patients with CF 

and most CF patients are thought to have sinus infections (Gysin et al., 2000; Rasmussen et al., 

2012). However, since the symptoms of sinus infections are less problematic than the symptoms of 

lung infections, the reported incidences are relatively low (Mainz et al. 2009; Robertson et al. 2008) 

5.3.1 Lung infections 

The classical understanding of CF pathogens is concerned with a few microorganisms that dominate 

the culture findings. These belong to the Pseudomonas, Staphylococcus, Burkholderia and 

Haemophilus genera, while other microorganisms (including fungus, Gram negatives, 

Achromobacter, Streptococcus and Mycobacterium spp.) are less common findings (Figure 11). 

 
Figure 11: Bacterial genera recovered from CF sputum during 28 years of culture-dependent 

identification at the Southern Alberta Cystic Fibrosis Clinic (Alberta, Canada). The proportional 

abundance of each genus is depicted with solid circles (Sibley et al., 2011). 

The CF patients experience repeated lung infections that eventually develop into chronic infections. 

In the classical view of the development of disease, the key pathogens Staphylococcus aureus, 

Haemophilus influenzae and Streptococcus pneumoniae are considered mainly as causing recurring 

intermittent infections, whereas P. aeruginosa and members of the Burkholderia cepacia complex 

mainly are considered as causes of chronic infections (Høiby, 1982; Gilligan, 1991). It is now 

generally accepted that chronic infections of CF lungs persist due to formation of biofilms. The early 

indications of the involvement of biofilm was the isolation of mucoid strains of P. aeruginosa from 

CF patients (Doggett et al., 1964) and microscopy studies of CF lung tissue showing that the 

microorganisms reside in EPS-enclosed microcolonies within the airway lumen (Lam et al., 1980; 
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Worlitzsch et al., 2002). Since then, the biofilms produced in the lungs of CF, particularly by P. 

aeruginosa, have become one of the most intensively studied clinical biofilms (Costerton et al., 

1999). Findings by FISH suggest that the spatial distribution of P. aeruginosa within sputum depends 

on whether the strain was mucoid or non-mucoid. Aggregated P. aeruginosa cells appear to be 

mainly the mucoid type (Yang et al., 2008). These aggregated microorganisms are protected from the 

phagocytic action of PMNs, leaving the biofilm surrounded by PMNs, which has been shown for in 

vitro biofilms, and confirmed in lung tissue samples by FISH (Bjarnsholt et al., 2009). Establishment 

of biofilms and hence chronic infections may be delayed by administration of aggressive 

antimicrobial therapy, which can eradicate intermittent infections caused by planktonic pathogens. 

However, once a chronic infection has been established it cannot be eradicated (Høiby et al., 2005). 

Various molecular methods have been used to investigate the microorganisms involved in CF lung 

infections. Until 2003 molecular methods were primarily used on isolated microorganisms and aimed 

towards typing of pathogenic strains or detection and identification of specific microorganisms, 

typically isolates that were difficult to identify by phenotypic investigations. Molecular methods are 

still being used on isolates for typing of strains (e.g. Segonds et al., 2009; Grinwis et al., 2010; 

Mortensen et al., 2011; Nicoletti et al., 2011; Waters et al., 2012) and identification of 

microorganisms by methods such as MALDI-TOF MS (Degand et al., 2008; Fernández-Olmos et al., 

2012; Marko et al., 2012; Masoud-Landgraf et al., 2012) and 16S rRNA gene sequencing. 16S rRNA 

gene sequencing has been used in cases of misidentification of isolates or inconclusive culture 

reports. For instance, the phenotypic identification of Gram negative, oxidase-positive rods 

(including non-typical P. aeruginosa) and anaerobes carries a high risk of misidentification due to 

their marked phenotypic diversity (Qin et al., 2003; Wellinghausen et al., 2005; Tunney et al., 2008; 

Kidd et al., 2009; Field et al., 2010). Other cases where 16S rRNA gene analysis has proven useful 

are in the identification of unusual microorganisms such as Inquilinus sp. (Chiron et al., 2005), 

Herbaspirillum sp. (Spilker et al., 2008), Pandoraea sputorum (Pimentel and MacLeod, 2008), 

Segniliparus rugosus (Butler et al., 2007), Brevundimonas diminuta and Ochrobactrum anthropican 

(Menuet et al., 2008). 

Over the past decade, the use of molecular methods without prior isolation by culture, has led to the 

view that CF airways contain complex polymicrobial communities (Zemanick et al., 2011). The early 

studies of diversity in sputum samples relied on clone hybridization or genetic fingerprinting 

methods (van Belkum et al., 2000; Kolak et al., 2003; Rogers et al., 2003, 2004, 2006). Of the 

fingerprinting methods only T-RFLP is still frequently used today (Rogers et al., 2009; Spasenovski 

et al., 2009; Sibley et al., 2011; Stressmann et al., 2011, 2012), but most studies of the microbial 

community in CF lungs use sequencing of the 16S rRNA genes (by cloning and Sanger sequencing 

or amplicon sequencing) (Bittar et al., 2008; Armougom et al., 2009; Guss et al., 2011; Sibley et al., 

2011; Stressmann et al., 2011; van der Gast et al., 2011; Delhaes et al., 2012; Zhao et al., 2012). 

Although it is often stated in the literature that molecular methods identify more species than the 

classical CF pathogens found by culture-dependent methods, few studies directly compare findings 

by culture and molecular methods on samples from the same patients (Figure 12). 
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Figure 12: Comparison of studies where detection of species by culture is compared with various 

molecular methods targeting the 16S rRNA gene. The number of species detected by each method is 

seen (color coded according to the key). The studies by Kolak et al. (2003), Bittar et al. (2008), Guss et al. 

(2011) and Stressmann et al. (2012) were of CF sputum samples, while Article II was of tissue and 

sputum excised from explanted CF lungs. N= the number of samples included in the studies. 

Direct comparison of the results by culture and molecular methods clearly shows that the latter 

identified a larger number of microorganisms. It is, however, possible that this discrepancy can be 

minimized by using more extensive culture approaches (Sibley et al., 2011). Generally, the mean 

number of species per sputum sample is reported to be around 3 fungi (Delhaes et al., 2012) and 5-7 

bacteria (Harris et al., 2007; Bittar and Rolain, 2010; Rogers, Skelton, et al., 2010; Stressmann et al., 

2011; Delhaes et al., 2012). However, some studies have found a higher number of species using T-

RFLP (Sibley et al., 2008), microarrays (Klepac-Ceraj et al., 2010), and amplicon sequencing (Guss 

et al., 2011; Zhao et al., 2012).  

Routine culture-dependent detection of supposed CF pathogens is carried out on sputum and throat 

samples produced by the CF patients. Such secretions are nearly always contaminated by microbes 

from the pharynx and mouth, where aerobic, facultative, and anaerobic bacteria are part of the normal 

flora, but these contaminants are normally filtered from the culture results (Høiby and Frederiksen, 

2000). These types of samples are the most frequently used in the molecular studies of microbial 

communities involved in CF lung infections, and these results are typically not filtered to remove 

possible contaminants, which may explain some of the discrepancies in the results by the two types 

of methods (Goddard et al., 2012). Some authors claim that the potential contamination of sputum 

and throat samples is not significant (Rogers et al., 2006) or that contaminating saliva can be 

removed from the sputum sample by a series of washing steps (Rogers et al., 2006; Guss et al., 

2011). In a study comparing samples from explanted lungs with throat and sputum samples from the 

same patients before lung transplantation, differences in microbial communities were observed. The 

throat and sputum samples contained non-typical microorganisms, which were not found in the 

explanted lungs (Goddard et al., 2012). Likewise, a study using 16S rRNA gene amplicon 

sequencing to study the microbial diversity in chronic obstructive pulmonary disease of non-CF 

patients, indicated that sputum and throat samples were not representative of the lower bronchial 

mucosa flora (Cabrera-Rubio et al., 2012). Further indications of the problems connected with the 

use of sputum samples for investigation of lower airway infection is the finding of a heterogeneous 

distribution of microorganisms in different areas of the lungs, as determined by 16S rRNA gene 

amplicon sequencing of tissue from different areas of CF lungs (Goddard et al., 2012; Willner et al., 
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2012). Investigation of the microorganisms in sputum samples using PNA FISH, have additionally 

shown that the different microorganisms cluster together in distinct, largely monomicrobial 

aggregates (article III) (Figure 13). This further add to the spatial diversity found in the CF lungs, 

and since the monomicrobial aggregates were not found to be in direct physical contact with each 

other the biofilm infections may be monomicrobial despite the overall polymicrobial nature of the 

infection, which can have implications on treatment of CF lung infections.  

 
Figure 13: PNA FISH images of bacterial aggregates in expectorated sputum of non-end stage CF 

patients (article III). The aggregates within the sputum were largely monomicrobial and segregated 

from each other. A: S. aureus (red) and other bacterial species (green), B and C: P. aeruginosa (red), 

and other bacteria (green). 

Visualization of microorganisms in lung tissue have shown that microorganisms are found in 

biofilms in the conductive zone of the lungs, and only rarely in the respiratory zone (where they exist 

as planktonic cells that can be eradicated by the high number of professional phagocytes) (Bjarnsholt 

et al., 2009; Ulrich et al., 2010). The lack of microorganisms in the respiratory zone has been linked 

to the adoption of an aggressive, chronic suppressive antimicrobial treatment strategy, where the 

antimicrobial agents may be able to eradicate the planktonic cells (Bjarnsholt et al., 2009). Use of 

FISH is valuable for analysis of CF samples, since normal microscopy might not be informative for 

the biofilm residing microorganisms that are encountered in the CF lungs (Bjarnsholt et al., 2011). 

To distinguish common CF pathogens in the samples, several FISH probes have been developed 

(Hogardt et al., 2000; Wellinghausen et al., 2006; Brown and Govan, 2007).  

Many of the additional microorganisms identified by molecular methods are anaerobes or species 

that have not previously been isolated from CF sputum, making the list of microorganisms associated 

with lung infection of CF patients ever increasing (as reviewed elsewhere, e.g. Bittar and Rolain, 

2010). The different reports of microorganisms involved in CF lung infection may not be directly 

comparable due to several factors. Firstly, it has been reported that the type of CFTR mutations can 

affect the observed microbial community, due to different effects on the lung environment by 

different mutations (Cox et al., 2010; Klepac-Ceraj et al., 2010). Secondly, the microbial findings in 

different parts of the world may not be comparable due to differences in treatment regimes and 

exposure to different microbes. This has been suggested by differences in detection of P. aeruginosa 

and B. cepacia complex by culture in Toronto, Canada and Copenhagen, Denmark (Johansen et al., 

1998) and supported by investigation of bacterial communities in the lungs of American and British 

CF patients using molecular methods, where the majority of species were uniquely found in one 

geographical location (Stressmann et al., 2011).  

It has been suggested that certain abundant species are core to CF lung infections by adulthood (i.e. 

in chronic lung infections) (Stressmann et al., 2011; van der Gast et al., 2011). In the study by van 

der Gast and coworkers (2011) the core group primarily consisted of species from the oral flora, and 
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P. aeruginosa was the only traditional key CF pathogen assigned to this group, the remaining 

traditional CF pathogens were found to be a part of the satellite group. Although the finding of core 

species may have implications on our understanding of CF, any species present in the CF airways 

might be important. Interestingly, several studies have found a tendency of less complex microbial 

communities in the lung of older or deceased CF patients, which is correlated with deterioration of 

lung function (article II and III) (Cox et al., 2010; Klepac-Ceraj et al., 2010; van der Gast et al., 

2011; Goddard et al., 2012; Stressmann et al., 2012; Willner et al., 2012; Zhao et al., 2012). This 

loss of diversity indicates that remaining microorganisms were competitively dominant and 

extremely well suited to the conditions in the CF lungs due to selection during the course of long-

term infection and antimicrobial selection (Cox et al., 2010; Yang, Jelsbak, et al., 2011; Hogardt and 

Heesemann, 2012). Adaptation of pathogens to the CF lung environment has been studied for 

Burkholderia dolosa (Lieberman et al., 2011), Burkholderia cenocepacia (Madeira et al., 2011), S. 

aureus (Goerke and Wolz, 2004, 2010; McAdam et al., 2011), Stenotrophomonas maltophilia 

(Pompilio et al., 2011) and P. aeruginosa. The latter has been extensively studied, also by advanced 

methods such as genome sequencing (Smith et al., 2006; Yang, Jelsbak, et al., 2011; Rau et al., 

2012) and microarrays (Ernst et al., 2003; Huse et al., 2010; Rau et al., 2010; Warren et al., 2011; 

Yang, Jelsbak, et al., 2011; Yang, Rau, et al., 2011).  

Some concern has been raised whether the microorganisms found by molecular methods are active or 

if detection were due to extracellular DNA or dead cells. This is a concern for use of molecular 

methods in all types of samples, but particularly in the CF lungs, where the disease means that 

material is not cleared quickly (Rogers et al., 2008). Use of reverse transcription and T-RFLP has 

indicated that many of the identified microorganisms were metabolically active, although differences 

between detected microorganisms and metabolically active microorganisms were found (Rogers et 

al., 2005). The results of this study also indicated that although some microorganisms may be present 

in low numbers, they may be highly active, for instance members of the B. cepacia complex (Rogers 

et al., 2005, 2009). It is, however, possible that such methods impair detection of microorganisms 

that are present but fail to grow due to the intense immune response and antimicrobial therapy 

(Goddard et al., 2012). Using propidium monoazide pretreatment it has been shown that DNA from 

nonviable bacteria can influence the microbial flora detected by molecular methods (Rogers et al., 

2008; Rogers, Marsh, et al., 2010; Stressmann et al., 2012). 

Although the main focus of CF research has been on lung infections as a cause for the inflammation 

that results in respiratory failure, it is debated whether inflammation might also be is directly linked 

to the mutations that cause the disease (Machen, 2006; Ulrich et al., 2010).  

5.3.2 Sinus infections 

The microbiology of CF sinuses has primarily been investigated by culture-dependent methods, and 

the most frequently found microorganisms are known CF pathogens (Table 5). 

Studies where the microbial flora of sinuses and lungs (sputum and throat samples) have been 

compared have shown correlation in the identified microorganisms from these two distinct anatomic 

sites (Dosanjh et al., 2000; Holzmann et al., 2004; Roby et al., 2008; Mainz et al., 2009). In younger 

CF patients the correlation tendency is not as strong (Muhlebach et al., 2006; Bonestroo et al., 2010). 

A few pathogens are primarily recovered from only one habitat. From sinuses these include 

coagulase-negative staphylococci, Corynebacterium and Moraxella sp., whereas pathogens more 

frequently recovered from the lungs include fungus and S. maltophilia (Mainz et al., 2009). 
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Table 5: The microorganisms identified by culture in studies of CF sinuses (an x indicates that the 

microorganism was found in at least one case in the study). 
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The findings by Mainz et al., (2009) have been shortened to fit this table; however, the most frequently 

found microorganisms are included here. 

The finding of a correlation between microbial flora in sinuses and lungs indicates that cross 

infection between the upper and lower airway occurs. This has been supported by genetic typing of 

isolates (primarily P. aeruginosa but in some cases also S. aureus isolates) using pulsed field gel 

electrophoresis (Muhlebach et al., 2006; Johansen et al., 2012) and single nucleotide polymorphism 

microarrays (Mainz et al., 2009; Hansen et al., 2012), where genotypically identical isolates were 

found in the sinuses and lungs. The sinuses may act like a protective niche for the microorganisms. 

This is both because the sinuses do not have a PMN dominated inflammation like the lungs (probably 

due to differential immunoglobulin distributions (Johansen et al., 2012)), and the fact that many sinus 

microorganisms are not eradicated by antimicrobial therapy, although the isolates show susceptibility 

towards the antimicrobial agents (Shapiro et al., 1982; Hansen et al., 2012). Development of sinus 

infection early in life and findings of the same species in lung infections later in life suggest that the 

microorganisms migrate from the sinuses to the lower airways (Roby et al., 2008). Furthermore, a 

longitudinal study of genetic and phenotypic profiles (including colony morphology, motility, 

quorum sensing, biofilm formation and antimicrobial susceptibility) of P. aeruginosa isolates from 

sinuses and lungs of CF patients, suggests that the bacteria in the sinuses diversify and evolve into 

phenotypes that are well adapted to the CF lungs. These bacteria intermittently colonize the lungs and 

may ultimately cause chronic lung infection (Hansen et al., 2012). One of the adaptations that occur 

in the sinuses might be the ability to live under anaerobic conditions, since the microenvironments in 

the sinuses shown oxygen depletion due to mucous obstruction of sinuses (Aanaes et al., 2011). The 

left and right sinuses may have different oxygen tension values, which correlates to the finding of 
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different microbial flora (Aanaes et al., 2011) and distinct morphotype populations of strains in the 

two sinuses (Hansen et al., 2012). 

Presence of microorganisms in the sinuses may account for the recurrent lung infections after 

antimicrobial eradication and is a concern for lung transplant patients, since it is possible that the 

lung allograft become re-colonized with pathogens from the sinus reservoir. This has been supported 

by genotyping of isolates before and after lung transplantation which indicated that there is little or 

no difference in the microbial population (Walter et al., 1997). Sinus surgery combined with 

postoperative daily nasal washing may be a way to treat chronic sinus infections and avoid re-

colonization of the lung allografts (Holzmann et al., 2004; Vital et al., 2012), although some authors 

do not find an effect of such treatments (Leung et al., 2008; Osborn et al., 2011). Patients attending 

the Copenhagen CF center are offered sinus surgery to delay or prevent re-colonization of the 

transplanted lung within one year after transplantation.  

The literature contains no studies where the microbial flora of CF sinuses has been directly evaluated 

by broad range PCR-based methods. The findings in article IV indicate that the microbial 

complexity in samples obtained by sinus surgery may be much greater than suggested by culture-

dependent methods (Figure 14).  

 
Figure 14: Overview of the number of species found in the sinuses of 19 Danish CF patients (article IV). 

The microorganisms were either identified only by culture (blue), only in the 16S rRNA gene clone 

libraries (yellow) or by both methods (green). In one case (a) the finding by culture was probably 

misidentified (result was Bordetella bronchiseptica, which has high phenotypic affinity to A. xylosoxidans 

which was found in the clone library). 

Only in approximately half of the cases did culture and 16S rRNA clone libraries identify at least one 

common microorganism and generally the clone libraries identified a more diverse microbial 

community than culture. Although this may indicate that such molecular methods are more sensitive 

than culture-dependent methods, the culture reports did not include species that were deemed to be 

contaminants. Also, since the sample volume was greater for culture-dependent methods than 

molecular methods, it is possible that observed differences stem from variations in spatial 

distribution.  

Although no other studies have investigated the microbial flora of CF sinuses by broad-range PCR 

based methods, there are several studies where such methods have been applied to chronic sinusitis 

samples of non-CF patients. These studies have shown a greater microbial diversity and more 

frequent involvement of fungus and anaerobes by using methods such as specific (multiplex) PCR, 
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16S rRNA gene cloning with Sanger sequencing and the Roche 454 pyrosequencing platform 

compared with culture (Hendolin et al., 2000; Keech et al., 2000; Ramadan et al., 2002; Kalcioglu et 

al., 2003; Paju et al., 2003; Stephenson et al., 2010). Also, studies of non-CF patients were the first 

to show that chronic sinusitis may be caused by biofilm formation, which has implications the 

understanding of sinus infections in both non-CF and CF patients (Cryer et al., 2004; Perloff and 

Palmer, 2004; Ramadan et al., 2005; Sanclement et al., 2005; Sanderson et al., 2006). 
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6 Conclusions and perspectives 

The objective of this PhD project was to evaluate if alternative methods to culture-dependent 

techniques can give relevant information in a clinical setting, and be used as a supplement or 

replacement for culture-dependent methods. Identification by culture-dependent methods have well-

publicized difficulties for some microorganisms, for instance cells exhibiting the effects of 

antimicrobial therapy and might not be suitable for a number of microorganisms due to the limited 

number of conditions used for testing in clinical microbiology.  

Overall, the various alternative methods had different limitations and disadvantages, and their use 

depend on the subject matter of investigation.  

It is possible to quickly screen for pathogens by microarrays, qPCR and Ibis T5000 biosensor. FISH 

can also be used for this purpose, but it might be time consuming to locate microorganisms in clinical 

samples, especially if the abundance is low. The multiplexing capabilities of particularly microarrays 

and Ibis T5000 biosensor mitigate the inherent problem that only targeted species will be detected. A 

further advantage of the Ibis T5000 biosensor is that antimicrobial resistance genes can be detected 

and sequence variability can be analyzed.  

Sequencing of molecular marker genes and indeed entire genomes, allows for identification of 

microorganisms that may not be targeted by the standard culture-dependent methods. Sanger 

sequencing is increasingly outcompeted by NGS, in large part because the requirement of pure target 

DNA molecules makes Sanger sequencing too labor intensive. Furthermore, the ability to perform 

genome sequencing constitutes the ultimate typing method, and will surely take over for MLST and 

other similar subtyping methods in epidemiological studies. Continued developments and 

improvements of NGS platforms is associated with rapidly falling cost and turnaround time, and 

makes it plausible that deep amplicon sequencing and whole genome sequencing will be used in 

clinical microbiology laboratories in the near future.  

A problem of molecular methods is the requirement of unbiased nucleic acid extraction, which is 

currently not possible. This is not an issue using microscopy-based techniques, where the 

microorganisms can be observed directly within the clinical sample, though the detection limit is 

generally high. Microscopy can be used to obtain clinically relevant information and is for instance 

the only sure way to establish presence of biofilms. 

Molecular methods were found to add value to microbial analysis of all the infection types 

investigated in this thesis. 

For NSTIs it was possible to identify microorganisms despite administration of antimicrobial agents. 

Although positive culture results were confirmed by the molecular methods, additional species were 

generally also found, and uncommon findings were made. By using a broad spectrum of molecular 

methods, it was found that various methods might give differing results, and indicated that direct 

Sanger sequencing may be more inclined to fail in identifying the microorganisms that were truly 

present. The infected tissue from NSTI patients were found to contain few detectable metabolically 

active bacteria, but showed high amount of inflammatory cells and coagulated blood, indicating an 

active immune responses. The more rapid diagnosis that can obtainable by some of the used 

molecular methods is of clinical importance in fulminant infections such as NSTI (article I). 

For chronic CF lung infections the use of molecular methods on explanted lung tissue indicated the 

infections in end-stage patients were dominated by a single species and that culture analysis of 
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sputum samples could identify the dominant microorganisms. Comparison of the findings in 

transplanted end-stage patients with non-end-stage patients indicated a link between low microbial 

diversity and high pathogenicity. Spatial investigations of sputum from the chronically infected, but 

non-end-stage patients showed that although the lung infections were polymicrobial, the associated 

biofilm aggregates were monomicrobial and spatially segregated from other species (article II and 

III). The sinuses of CF patients are generally also infected, and the microorganisms residing in the 

sinuses have been implicated in the recurrent lung infections after successful antimicrobial treatment, 

and establishment of lung infections in lung-transplanted CF patients. By using molecular methods a 

large microbial diversity was found in the sinuses, which included common CF pathogens, 

environmental species and anaerobes. Comparatively the diversity found by culture-dependent 

methods was low. The microorganisms detected by the molecular methods were probably live cells 

(since DNA had been extracted using MolYsis pretreatment), but the clinical relevance of the diverse 

microbial communities in the sinuses is presently unclear (article IV). 

Using molecular methods to investigate the microbial communities in chronic venous leg ulcers 

further underlined the ability of the methods to identify a greater diversity than culture-dependent 

methods, but again indicated that different methods may give different results. Interestingly, by 

sampling different areas inside two wounds it was found that the microbial communities in these 

areas varied. Furthermore, it was shown that the abundance of individual species also varied in the 

different areas. This finding has direct implications on the sampling procedure used for such wounds, 

since a biopsy taken from a single location in the wound probably does not represent the true 

microbial community (article V). 

In an exploratory study of suspected prosthetic joint infections, approximately two thirds of the cases 

gave concordant results by culture-dependent and molecular methods. This was primarily caused by 

concordant negative results. In the remaining cases molecular analysis generally identified 

microorganisms that could not all be found by culture. One of the reasons for discrepancy was that 

incubation time was insufficient for growth of fastidious microorganisms such as P. acnes. 

Visualization of samples from prosthesis surface indicated that biofilm formation may be involved in 

prosthetic joint infections, which could influence the ability to detect microorganisms by culture-

dependent methods (article VI). 

This PhD project has shown that molecular methods can be used to derive information that is relevant 

in the clinical setting and may impact the outcome for patients. The findings have had a direct 

influence in the clinical setting, both by indicating that single biopsies from chronic wounds is not a 

suitable sampling method and culture-dependent analysis of prosthetic joint infections should be 

extended to allow for growth of for example P. acnes. The studies conducted in this PhD have also 

contributed in convincing medical professionals of the added value that can be gained by use of 

molecular methods. What has also become clear is that the various molecular methods can yield 

different results, and that further studies are needed in order to determine a universal method for 

identification of microorganisms in infections.  

For the time being the majority of microorganisms in the clinical microbiology departments will 

continue to be identified using culture-dependent methods, as these are readily available, often 

adequate and allows for antimicrobial susceptibility testing. The latter is a crucial point, and huge 

incentive to continue the use of culture-dependent methods. Although it is possible to predict 

potential for antimicrobial resistance based on presence of resistance genes, this might not be 

informative about the susceptibility of the microorganisms.  
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From a research standpoint the possibility of investigating the entire microbial community in depth is 

highly desirable in order to gain a complete understanding of the infections. For this purpose the 

potential of performing in-depth sequencing of the metagenomes is highly relevant, and will 

increasingly become available as the cost of massively parallel sequencing continues to decrease. 

However, from a clinical standpoint the focus is primarily on the treatment of infections, and it is 

therefore highly possible that the best method will ultimately be a combination of culture-dependent 

antimicrobial susceptibility testing and molecular analysis.  

While the focus of this PhD project has been on the ability of various methods to detect and identify 

the microorganisms in clinical samples, it is clear that the understanding of the role multifarious 

microbial communities in infections is lagging behind. The potential of performing metagenomic, 

metatranscriptomic and metaproteomic analysis might offer insights into the mechanisms that are 

involved in progression of disease and the interplay between microorganisms and the human host. It 

is possible that the future of clinical microbiology does not lie with identification of microbial 

species, but rather with identification and detection of particular traits, be it antimicrobial resistance 

or virulence profiles. 
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Abstract 

Necrotizing soft tissue infections (NSTIs) is a group of infections of all soft tissues involving necrosis of the 

afflicted tissue. NSTI is potentially life threatening due to major and rapid destruction of tissue and potential 

association of septic shock and organ effect or failure. The gold standard for identification of involved 

pathogens is culture; however molecular methods for identification of microorganisms may provide a more 

rapid result and be able to identify additional microorganisms that are not detected by culture. 

In this study, tissue samples (n=20) obtained after debridement of 10 NSTI patients were analyzed by standard 

culture, peptide nucleic acid (PNA) fluorescence in situ hybridization (FISH) and different molecular methods. 

The molecular methods included analysis of microbial diversity by 1) direct rRNA gene Sanger sequencing 2) 

construction of near full-length 16S rRNA gene clone libraries (or deep 454-based pyrosequencing) and 3) the 

Ibis T5000 biosensor. Furthermore, quantitative PCR (qPCR) was used to verify and determine the relative 

abundance of Streptococcus pyogenes in samples. 

For approximately half the samples it was possible to identify microorganisms by culture, although some 

samples did not result in growth presumable due to administration of antimicrobial therapy. The various 

molecular methods identified microorganisms in all samples, and frequently detected additional 

microorganisms compared to culture. Although the various molecular methods generally gave concordant 

results, our results seem to indicate that direct Sanger sequencing may misidentify or overlook 

microorganisms that can be detected by other molecular methods. 

Half of the patients were found to harbor S. pyogenes, but several atypical findings were also made including a 

monomicrobial infection by Acinetobacter baumannii and Streptococcus pneumoniae, and a polymicrobial 

infection by fungi, mycoplasma and Fusobacterium necrophorum. The faster turnaround time that is offered 

by some molecular methods makes their use attractive for identification of microorganisms, especially for 

fulminant life-threatening infections such as NSTI.  
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Introduction 

The spectrum of diseases referred to as soft tissue infections is diverse. Their common characteristic is that 

they involve infection of the skin, subcutaneous tissue, fascia or muscle (Bowler et al., 2001). The infections 

range from common superficial epidermal infections to potentially life threatening but rare cases of 

necrotizing soft tissue infections (NSTI) (Stevens et al., 2005). The incidence of NSTI has been estimated to 

be 4 cases per 100,000 person-years in the USA (Ellis Simonsen et al., 2006); thus, an average practitioner 

will only see one or two cases during their career (Anaya and Dellinger, 2007; Sarani et al., 2009), and may 

therefore not be sufficiently familiar with the disease to ensure a rapid diagnosis and appropriate treatment 

(Sarani et al., 2009). Treatment of NSTI involves immediate aggressive surgical debridement and 

administration of intravenous broad-spectrum antibiotics. Some centers also use systemic administration of 

non-specific immunoglobulin as well as hyperbaric oxygen treatment. Establishing the diagnosis can be a 

challenge in managing NSTI, because the early signs are non-specific and include local erythema and swelling 

with warmth and pain out of proportion to physical findings (Wong et al., 2003; Sarani et al., 2009). As the 

disease progress bullae filled with serous fluid are formed, and eventually large hemorrhagic bullae, skin 

necrosis, fluctuance, crepitus and sensory and motor deficits become apparent (Wong et al., 2003; Stevens et 

al., 2005). Despite many advances in the understanding of NSTI and great improvements in medical care, the 

mortality associated with NSTI remains high (Stevens et al., 2005; Sarani et al., 2009). Different mortality 

rates have been reported, but are generally in the range of 16-24% (Wong et al., 2003; Anaya and Dellinger, 

2007; Golger et al., 2007).  

The etiology of necrotizing fasciitis is variable and not fully understood. In some cases an antecedent 

penetrating injury is present (such as skin trauma, varicella, and burns) (Cunningham, 2000; Wong et al., 

2003; Olsen and Musser, 2010). The skin trauma may be caused by surgery or may even be caused by a trivial 

event such as an insect bite, scratch, or abrasion (Singh et al., 2002; Hasham et al., 2005). In many cases 

however, no identifiable cause can be found (Cunningham, 2000; Singh et al., 2002; Wong et al., 2003; 

Johansson et al., 2010; Olsen and Musser, 2010). In these cases it is hypothesized that necrotizing fasciitis 

may result from hematogeneous seeding from a reservoir in the oropharynx or other anatomic site (Kihiczak et 

al., 2006; Olsen and Musser, 2010). Most patients who develop necrotizing fasciitis have pre-existing 

conditions that render them susceptible to infection, including diabetes mellitus, advanced age, immune 

suppression, peripheral vascular disease, obesity, smoking, drug and alcohol misuse (Wong et al., 2003; 

Hasham et al., 2005; Anaya and Dellinger, 2007; Angoules et al., 2007; Sarani et al., 2009). The necrotizing 

changes associated with NSTI lead to devitalization of the infected tissue, which provides a suitable 

environment for further microbial growth, setting the stage for major and rapid destruction of tissue (Bowler et 

al., 2001; Stevens et al., 2005). Infection can spread as fast as 1 inch per hour with little overlying skin change 

(Sarani et al., 2009). It is hypothesized that rapid tissue destruction and severe pain associated with NSTI is 

caused by the interaction of microorganisms and their toxins with the human coagulation system, leading to 

hypercoagulation, vascular occlusion and microvascular thrombosis (Bryant, 2003). The resulting poor tissue 
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perfusion also has implications on the treatment strategy, since the antibiotic concentration at the infection site 

may be insufficient (Johansson et al., 2010).  

Historically NSTI has been classified into specific types based on anatomic location or microbial findings. 

Based on bacteriology, two types of infections have been defined. Type-I infections are polymicrobial 

synergistic infections (usually caused by non-group-A streptococci, aerobic organisms and anaerobic 

organisms) and usually occur in immunocompromised hosts. Type-II infections are usually caused by 

Streptococcus pyogenes alone or with staphylocci and tend to occur in patients with no underlying 

comorbidities. This type of infection might be associated with toxic shock syndrome (Sarani et al., 2009). A 

third type has been suggested, although it has not been universally agreed on, caused by marine vibrios, and is 

usually associated with exposure to seawater or marine animals (Wong et al., 2003; Sarani et al., 2009). 

However, it has been suggested that such classifications lead to undue complication of the issue. It is argued 

that the most important information to be established is presence of a necrotizing component, distinguishing 

NSTI from a milder condition such as cellulitis that should respond to antibiotics alone (Elliott et al., 1996; 

Singh et al., 2002; Hasham et al., 2005; Stevens et al., 2005; Anaya and Dellinger, 2007). On the other hand, 

the correct identification of the microorganisms involved has important implications on the antibiotic 

treatment since S. pyogenes or Clostridium perfringens need different treatment modalities (Kaul et al., 1997; 

Cawley et al., 1999; Stevens et al., 2005) than for example methicillin-resistant Staphylococcus aureus 

(Miller et al., 2005), or Streptococcus pneumoniae (Kwak et al., 2002). 

The microbial communities involved in NSTI have previously only been investigated by culture-dependent 

methods. It is, however, possible that additional microorganisms, which may not be detectable by standard 

cultural methods, are involved in the infections as recent studies of numerous infectious conditions using 

molecular diagnostics have revealed that many of what were once thought to be monomicrobial infections are 

in fact polymicrobial (Melton-Kreft et al., In Press; Hall-Stoodley et al., 2006; Ehrlich et al., 2010; Costerton 

et al., 2011; Stoodley, Ehrlich, et al., 2011). Presently, various molecular methods are available that may be 

able to identify additional microorganisms and offer a more rapid identification of microorganisms than 

routine cultural methods. Since the various NSTI-causing microorganisms may require different antibiotics, 

the initial empiric antimicrobial treatment may need to be subsequently modified to target the infecting 

microorganisms. Because of the rapid progression of the disease it is of paramount importance that the 

etiologic pathogens can be rapidly identified. In this study, we investigated several molecular methods for 

identification of microorganisms, including the Ibis T5000 biosensor, quantitative polymerase chain reaction 

(qPCR) and 16S rRNA gene analysis by direct sequencing, near full length 16S rRNA clone libraries and 454 

pyrosequencing. These findings were then compared to those of routine cultural methods.   
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Methods 

Patients and samples 

Samples in this study were obtained from NSTI patients by debridement of the infected area, performed at 

Rigshospitalet (Copenhagen, Denmark). A total of 20 samples from 10 patients were included (Table 1). The 

debrided tissue were immediately transported to the Department of Clinical Microbiology, Rigshospitalet 

(Copenhagen, Denmark), where each sample were divided into three subsamples for standard culture 

experiments, molecular analysis and PNA FISH experiments. The samples for molecular analysis and FISH 

experiments were transferred to tubes containing glycerol or ethanol respectively, and kept frozen until 

analysis. 

Culture 

All culture experiments were performed at the Department of Clinical Microbiology at Rigshospitalet. All 

biopsies were analyzed by Gram-staining, and culture. Both aerobic and anaerobic conditions were used. 

Biopsies were plated on brain heart infusion agar (BHIA, SSI, Copenhagen Denmark), coagulated agar, and 

5% horse blood agar (SSI) for culture in a 5% CO2 atmosphere. Aerobic conditions included plating on 

modified Conradi-Drigalski (“Blue plates”, SSI), in serum buillon, in thioglycollate media, on tellurite agar 

(SSI) in a normal atmosphere. 37 Colonies were further identified by use of Matrix-assisted laser desorption-

ionization time of flight mass specroscopy (MALDI-TOF MS), Bruker, Bremen, Germany). Resistance 

patterns were analyzed by disc diffusion test on blood agar (SSI) using Neosensitabs (Rosco Diagnostica, 

Taastrup, Denmark). 

DNA extraction 

DNA was extracted from samples as described previously (Stoodley, Conti, et al., 2011). Briefly, the tissue 

samples were cut into smaller pieces under sterile conditions. Approximately 1 mm
3
 of tissue was transferred 

to a microcentrifuge tube containing tissue lysis buffer (ATL, Qiagen) and 20 mg/mL
 
proteinase K (Qiagen). 

The sample was incubated at 55 °C until visual inspection indicated that lysis was achieved. 100µL 

Zirconia/Silica Beads mixture (50 µL of 0.1 mm diameter, Biospec, PN: 11079101z and 50 µL of 0.7 mm 

diameter, Biospec, PN:11079107zx) were added to the microcentrifuge tube and the sample was homogenized 

for 10 min at 25 Hz using a Qiagen Tissuelyser (Model MM300, cat# 85210). DNA from the lysed samples 

was extracted using the Qiagen DNeasy Tissue kit, according to the manufacturer’s protocol. The DNA was 

eluded in 200 µL AE buffer (10 mM Tris·Cl; 0.5 mM EDTA, pH 9.0). 

Direct rRNA gene Sanger sequencing 

PCR was performed with primers that targeted the first 500 bases of the bacterial 16S rRNA gene or the D2 

region of the fungal 28S rRNA gene. The resulting PCR products were sequenced using the MicroSeq® 500 

kit (Applied Biosystems, Carlsbad, California) according to the manufacturer’s guidelines. The resulting DNA 

sequences were compared to the sequence library included in the MicroSeq® ID analysis software. In cases 

where sequencing resulted in mixed chromatograms due to 16S rRNA gene products from multiple species, 

these chromatograms were analyzed using RipSeq Mixed at www.ripseq.com.  
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Construction and analysis of clone libraries 

Clone libraries were constructed for near full length 16S rRNA genes (E. coli position 26-1390) and sequences 

were obtained as described previously (Rudkjøbing et al., Unpublished; Xu et al., 2012). Briefly, PCR 

amplicons of near full-length 16S rRNA genes were cloned using the TOPO TA Cloning ® kit (Invitrogen) 

according to the manufacturer’s instructions. Plasmid purification and sequencing was performed by 

Macrogen Inc. (Korea) using M13F primer (and M13R primer in some cases). Manual refinement of 

sequences and construction of consensus sequences were done in CLC Main Workbench (CLC bio, Aarhus, 

Denmark). Sequences were checked for chimeras using the Mallard software package (Ashelford et al., 2006), 

aligned using SINA Web Aligner (Pruesse et al., 2007) and imported into the ARB software package (Ludwig 

et al., 2004) for taxonomic lineage assignment, using the non-redundant (NR) SSU Ref database from SILVA 

Release 106 as reference database. Operational taxonomic units (OTUs) were constructed across all patient 

samples for clones having a sequence similarity of more than 97% since these sequences are typically assigned 

to the same species. One clone from each OTU was sequenced with both M13F and M13R primers. The 

resulting consensus sequences and their closest relatives in the database were selected to construct 

phylogenetic trees using neighbor joining, maximum parsimony and maximum likelihood methods. The non-

redundant, near full-length 16S rRNA gene sequences, representing each OTU obtained in this study, were 

deposited in GenBank under the accession numbers (not yet submitted).  

454-pyrosequencing 

454-based pyrosequencing was performed largely as described previously (Mussmann et al., 2007). Briefly, 

bar-coded FLX-titanium amplicon pyrosequencing of the V2–V3 region of the 16S rRNA gene was performed 

using the 27F and 338R primers. The DNA fragments were amplified using Platinum Hi-Fi taq polymerase 

(Invitrogen) with 800 µM dNTP, 2 mM MgCl2 and 400 nM of each primer. To each reaction 5 µL of template 

DNA was added, and the volume was adjusted to 50 µL. The PCR incubation conditions were 94°C for 2 min 

followed by 30 cycles of 94 °C for 30 s, 55 °C for 30 s, and 68 °C for 60 s, with a  final extension at 72 °C for 

7 min. Tag-encoded FLX amplicon pyrosequencing analyses utilized the Roche 454 FLX instrument with 

titanium reagents and titanium procedures (Roche). 

Analysis of 16S rRNA gene amplicon sequences was performed using Quantitative Insights Into Microbial 

Ecology (QIIME v.1.3.0) pipeline (Caporaso et al., 2010). The sequencing data was processed initially with 

AmpliconNoise (Quince et al., 2011) to remove noise. Then the QIIME pipeline separates the sequences into 

individual specimen communities based on the unique 5’ barcode sequence and utilizes a suite of external 

programs to make taxonomic assignments and estimate phylogenetic diversity. These data were used to 

generate taxonomic summaries. The default settings in QIIME were employed for analysis, except that the 

sequences were grouped into operational taxonomic units using 99% sequence similarity for clustering; 

taxonomic assignments were done using Greengenes taxonomy (DeSantis et al., 2006).  
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Ibis T5000 assay  

An aliquot of each DNA extract was loaded into each of 16 wells of an Ibis 96-well BAC (bacteria, antibiotic 

resistance genes, candida) detection plates (Abbott Molecular) and processed as described previously (Tuttle 

et al., 2011). Briefly, PCR amplifications were carried out, and the resulting PCR products where then desalted 

in a 96-well format and sequentially electrosprayed into the TOF MS as described by the manufacturer. The 

spectral signals were processed to determine the mass of each strand of the PCR products, which in turn were 

used to derive the base compositions that were then compared to the Ibis database to obtain species level 

determinations for all microorganisms (Ecker et al., 2008). 

Quantitative PCR 

Quantification of S. pyogenes (Dawson et al., 2009) and 16S rRNA genes (Suzuki et al., 2000) was performed 

using hydrolysis probe chemistry. The S. pyogenes assay is commercially available from Biosearch 

Technologies (Novato, CA). For each sample duplicate 25 µL reactions were run, each containing: 12.5 µL 

Brilliant® qPCR Master mix (Agilent Technologies, Santa Clara, California), 25 µg BSA (Sigma-Aldrich, 

Brøndby, Denmark), appropriate concentration of primers and TaqMan® probes (S. pyogenes: 400 nM 

primers and 100 nM probe, 16S rRNA: 900 nM primers and 200 nM probe), 0.75 µM ROX reference dye 

(Agilent Technologies) and 2 µL of template DNA. Measurements were obtained by absolute quantification 

using genomic DNA isolated from S. pyogenes (DSM 20565) and P. aeruginosa (DSM 1253) for total bacteria 

quantification. The number of isolated genomes was calculated based on DNA concentration (Quant-iT™ 

dsDNA Assay Kit (Invitrogen)) and genome size estimated to be 1.8Mbp for S. pyogenes and 6.5 Mbp for P. 

aeruginosa (http://img.jgi.doe.gov/cgi-bin/pub/main.cgi). Dilution series of the genomic DNA covered a range 

of 10
6
-10

0
 genome copies. Reactions were run on an Mx3005P (Agilent Technologies) with the following 

program: 10 min at 95 °C, followed by 40 cycles of 30 s at 95 °C, 1 min at 60 °C. 

Analysis of quantitative data 

The number of gene copies measured by qPCR was converted to number of CFU per gram sample 

using C   g 
Cmeasured Cgenome ( total  used )

msample
  . Here Cmeasured is the number of copies measured and 

Cgenome is the number of gene copies in the genome of one CFU. The standard deviation of all measurements 

above the detection limit of the assays was calculated. For samples where more than one bacterium could be 

quantified, a two tailed T-test was used to provide a hypothesis test of the difference between population 

means. A statistical value of ≤ 0.05 was considered significant. 

Visualization of samples 

The samples were prepared for visualization by imbedding in paraffin, which was sectioned (4 μm) and 

mounted on microscope slides. Before staining or hybridization, the slides of five randomly selected samples 

(patient 4A, 6A, 8A, 8C and 9B) were deparaffinized by using 2x 5 min xylene, 2x 3 min 99.9% EtOH, 2x 

3min 96% EtOH, and washed 3x 3 min in sterile water. The de-paraffinized NSTI sections were analyzed by 

FISH using PNA probes (Stender, 2003). A mixture of fluorescein isothiocyanate (FITC)-labeled S. aureus-

specific PNA probe and Texas Red-labeled universal bacterium PNA probe both in hybridization solution 

http://img.jgi.doe.gov/cgi-bin/pub/main.cgi
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(AdvanDx, Inc., Woburn, MA) was added to each section
 
and hybridized in a PNA FISH Workstation at 55°C 

for 90 min covered by a lid (Bjarnsholt et al., 2009).The slides were washed for 30 min. at 55°C in Wash 

Solution (AdvanDx).
 
200 µl of DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) (Life technologies, 

Paisley, Scotland) was added and incubated in darkness for 15 minutes at RT. The sample was then washed 

twice with PBS. Once dry, 20 µl Prolong Gold (Life technologies) was added and a cover slip was added. To 

fix the coverslip, a small amount of clear nail polish was brushed on each side. The entire PNA FISH 

procedure required approx.
 
2.5 h. Slides were investigated using a LSM 710 confocal laser scanning 

microscope (Zeiss, Germany).  
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Results 

Identification of microorganisms by routine culture 

The findings by routine culture at the Department of Clinical Microbiology, Rigshospitalet (Copenhagen, 

Denmark), mostly revealed monomicrobial infections of the surgical samples (in 7 of the 10 patients) (Table 

2). These monomicrobial infections were primarily caused by streptococci (71% of the monomicrobial 

infections), specifically S. pyogenes, S. pneumoniae and non-hemolytic streptococci. The remaining 

monomicrobial culture findings were identified as Acinetobacter baumanii (patient 3) and fungal infection 

(patient 7). Furthermore, two patients were found to harbor more than one microorganism (patients 5 and 6), 

where Bacteroidees fragilis with Clostridium paraputrificum and S. pyogenes with Escherichia coli were 

found. One fourth of the samples investigated by culture did not result in growth of microorganisms. Three of 

these surgical samples originated from patients where other samples taken from the site of infection resulted in 

growth of microorganisms. The remaining culture-negative samples originated from a patient, where none of 

the samples resulted in growth of microorganisms (patient 10). 

Identification of microorganisms by molecular methods 

Generally, the molecular methods confirmed the cultural findings (Table 2). However, using the multiple 

molecular methods, microorganisms were found in all samples including those that were culture-negative, and 

in most culture-positive cases additional microorganisms were identified by the molecular methods (Table 3). 

Overall, the different molecular methods gave largely concordant results, although the results obtained for 

patient 10 was difficult to interpret since the various methods gave differing results. 16S rRNA clone libraries 

were not constructed for six of the samples, instead deep 454-based pyrosequencing of 16S rRNA gene was 

performed (Figure 1). For four of the samples (patients 4A, 8A, 8B and 8C) the deep sequencing confirmed 

the findings by the other molecular methods. For the remaining two samples, deep sequencing confirmed the 

other molecular diagnostics and also revealed additional microorganisms (in patient 6A these were 

Peptoniphilus sp. and Porphyromonas sp., in patient 7A Prevotella sp. and Sharpea sp. were additionally 

found). In two of the samples some of the findings detected by a single molecular method were not confirmed 

by the 454 pyrosequencing (in sample 4A this was Streptococcus didelphis detected by the Ibis T5000 

Biosensor, and in sample 6A it was staphylococci by the Ibis T5000 Biosensor and Mycoplasma hominis by 

direct Sanger sequencing). Of the used molecular methods only the Ibis T5000 biosensor could identify 

Candida albicans in sample 7B and Cladosporium cladosporioides in sample 6A, since this was the only 

method not entirely based on the bacterial 16S rRNA gene. 

Verification of findings by qPCR 

The findings of S. pyogenes by molecular methods could generally be confirmed by qPCR (Figure 2). Based 

on the measurements of bacterial 16S rRNA genes, S. pyogenes was the dominant microorganism in most of 

the samples, except 6A and 7B.   
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Visualization of samples 

Of the five randomly selected NSTI samples investigated by FISH and DAPI staining, only two were found to 

have detectable amounts of bacterial cells (Figure 3). The observed bacteria were located in clusters. 

Generally, the areas of tissue destruction were not found to contain detectable bacterial cells, but large 

amounts of inflammatory stained with DAPI. 
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Discussion 

NSTI is a serious, potentially lethal condition induced by microorganisms. The gold standard for identification 

of microorganisms involved in NSTI is culture and a number of studies have described microbiological 

findings during NSTI. However, newer molecular techniques may provide more rapid results with the added 

benefit of being able to provide additional information relating to the detection of unculturable organisms. 

Therefore, the present study was designed to investigate the potential of adding molecular diagnostics to 

cultural studies in the diagnosis of NSTI. For the majority (15 of 20: 75%) of samples included in this study, 

pathogens could be identified by culture (Table 2) with monomicrobial infections caused by S. pyogenes being 

the most frequently finding, although one patient (patient 6) was found to harbor additional microorganisms. 

The incidence of monomicrobial S. pyogenes NSTIs is higher in this study than reported elsewhere, with an 

accordingly decreased incidence of polymicrobial infections (Elliott et al., 2000; Wong et al., 2003; Levine 

and Manders, 2005; Sarani et al., 2009).  

For all samples three different molecular methods were used to identify microorganisms: 1) direct rRNA gene 

Sanger sequencing; 2) construction of 16S rRNA gene clone libraries and Sanger sequencing (or 454-based 

16S rRNA gene pyrosequencing in samples 4A, 6A, 7A, 8A, 8B and 8C); and 3) the Ibis T5000 Biosensor. 

Although all of the molecular methods generally provided concordant results, there were some cases where a 

microorganism was only detected by one of the three methods (Table 3). Only microorganisms found by at 

least two molecular methods were considered to be present in the sample, with the exception of fungal species 

which were only found by the Ibis T5000 biosensor, since these were not targeted by 16S rRNA gene based 

methods. For a single patient (patient 10) the various molecular methods gave discrepant or negative results. 

Since the confidences of the Ibis T5000 biosensor results were generally low (< 0.72) as was the number of 

genomes/well (data not shown) the results may be contaminants or background, which would correspond with 

the inability to construct clone libraries due to negative PCR. Discrepancies in results were most often caused 

by direct Sanger sequencing, which misidentified or missed the microorganisms that could be found by the 

other two molecular methods. Since the DNA molecules in the direct Sanger sequencing reactions are 

competing for the same reagents it is possible that microorganisms present in low quantities cannot be 

identified by this method. Furthermore the Ripseq algorithm used for interpretation of mixed chromatograms 

has only been validated in samples containing up to three different species (Kommedal et al., 2008), which 

may explain the less complex communities that are being found by direct Sanger sequencing. Although these 

considerations might explain some of the discrepant results, it does not explain the cases of misidentifications. 

The fact that all misidentifications by direct Sanger sequencing is identified as the same species (S. pyogenes) 

indicates that the results are based on contamination, potentially during the PCR setup in order for the DNA 

sequences from this species to outcompete the DNA from the microorganisms within the sample.  

By the molecular methods microorganisms could be identified in all samples (with the exception of samples 

from patient 10), including those where no growth was observed by culture. Overall, there were a total of 17 

samples where culture and molecular methods were in agreement, giving either concordant (13 samples) or 

partially concordant results (four samples). In the remaining cases the disagreement between culture and 
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molecular methods were caused by lack of growth, which was most likely caused by antibiotic therapy, since 

other samples taken from patients earlier in the course of disease did show growth of microorganisms (Table 

2). The partial concordance is caused by finding of a greater diversity by molecular methods compared to 

culture (Table 2 and 3), which is consistent with similar comparative studies of other clinical conditions 

evaluating microbial detection methods (Jacovides et al., In Press; Yun et al., Submitted for publication; 

Stoodley et al., 2008; Kathju et al., 2009; Gallo et al., 2011; Stoodley, Ehrlich, et al., 2011).  

An interesting aspect of the 454 pyrosequencing results is their reportedly quantitative nature. When the deep 

sequencing results for sample 6A are compared to the culture results, it is seen that culture only identified 

pathogens that were found in low abundance by 454 pyrosequencing; S. pyogenes and E. coli constituted >2% 

and >1% respectively of the total number of sequences. The Ibis T5000 Biosensor also has a capacity for 

generating quantitative results due to an internal calibration standard. According to the Ibis T5000 biosensor, 

S. pyogenes and E. coli constituted 42% and 30% respectively of the total number of genomes found per well, 

which is more than expected based on the culture results. By qPCR, the presence of S. pyogenes was 

quantified and related to the total number of bacteria in the sample (estimates of cell numbers based on 16S 

rRNA gene measurements). Based on these qPCR results S. pyogenes appear to be the dominant pathogen in 

the samples where the pathogen was found by other methods, except samples 6A and 7B, where the total 

number of bacteria seemed to exceed the number of S. pyogenes. In these samples were contained a larger 

number of different species, which supports the findings by qPCR. The high relative abundance of S. pyogenes 

in sample 6A, seems to be in agreement with the quantitative results by the Ibis T5000 Biosensor, but not the 

454 pyrosequencing data. An unexpected finding by qPCR was the presence of S. pyogenes in relatively high 

abundance in sample 7B, since the pathogen was not found in the sample by any other method. The use of 

qPCR furthermore seems to support our criteria of detection of bacteria by at least two methods, since S. 

pyogens could not be quantified in samples 3A, 5A, 10A and 10B where direct Sanger sequencing had 

indicated the presence of the pathogen (data not shown). 

Using FISH it was possible to detect bacteria in 2 out of 5 samples of debrided tissue from the NSTI patients. 

Interestingly, the areas of damaged tissue were found to contain large amounts of DAPI stained DNA. Based 

on the morphology this was likely inflammatory cells, which would be possible to determine in future studies 

using specific immunostaining. The general the lack of detection of bacterial cells but observation of high 

amounts of inflammatory cells may indicate that the tissue damage might in large part be mediated by the host 

immune system. However, it is also possible that lack of bacterial detection in the debrided tissue is due to 

successful antimicrobial treatment and that the vast majority of causative pathogens have rendered 

metabolically inactive prior to debridement of tissue. This seems plausible since the majority of patients in this 

study survived the NSTI. It is also possible that the microorganisms have moved on to other tissue areas after 

having destroyed the tissue that is investigated here. We cannot, however, preclude that pathogens were 

present in the tissue but not detected due problems during transport and storage of samples for FISH or 

because they were present in concentrations below the limit of detection for PNA FISH.  
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The polymicrobial findings in this study included Escherichia coli, streptococci and the anaerobes Bacteroides 

fragilis, Fusobacterium spp. and Clostridium spp. These findings correspond with bacteria previously reported 

to be present in polymicrobial NSTIs (Elliott et al., 2000; Kihiczak et al., 2006; Pandey et al., 2009). 

Furthermore, fungal NSTI due to Candida albicans have also been reported (Elliott et al., 2000; Wong et al., 

2003). The detection of Mycoplasma spp. in polymicrobial NSTI (patient 7 by all molecular methods), is to 

the best of our knowledge unique. However, animal studies have shown that ulcerative dermal necrosis can be 

induced in mice by Mycoplasma arthritidis (Cole et al., 1985). Mycoplasmas are associated with the mucosa 

and residing primarily in the respiratory tract and rarely penetrating the submucosa except in cases of 

immunosupression or instrumentation. The lack of cell wall makes the mycoplasmas very sensitive to 

environmental conditions and isolation of mycoplasmas is complicated due specific nutrient requirements and 

lack of a single optimal media formulation (Waites and Taylor-Robinson, 2011), which may explain why they 

have not been isolated in NSTI patients before. Interestingly, the localization of infection in patient 7 where 

mycoplasmas were detected was the neck, which corresponds with the association of mycoplasmas with the 

respiratory tract. It is possible that repeated surgical revision of the patient is the cause for the finding of 

mycoplasmas, and that they may not be playing an etiological role in the NSTI pathogenesis. 

Monomicrobial infections by other species such as A. baumannii (patient 3) and S. pneumoniae (patient 8) are 

unusual findings. However, A. baumanii is an emergent pathogen and has increasingly been recognized as a 

prevalent and significant nosocomial pathogen associated with sepsis, wound infections, and pneumonia 

(Charnot-Katsikas et al., 2009). A. baumannii and other Acinetobacter sp. have been described as participants 

in polymicrobial NSTIs (Anaya and Dellinger, 2007; Angoules et al., 2007; Guerrero et al., 2010) and several 

reports have identified A. baumanniias the sole agent in NSTIs. (Liu et al., 2005; Charnot-Katsikas et al., 

2009; Corradino et al., 2010; Sullivan et al., 2010). The increased prevalence of A. baumannii coupled with its 

increasing resistance to even the most-broad-spectrum antibiotics, means that NSTI infections caused by this 

pathogen may become an increasing problem (Charnot-Katsikas et al., 2009). S. pneumoniae is a common 

pathogen implicated in community-acquired pneumonia, sinusitis, otitis media and meningitis, which displays 

enormous heterogenetiy with respect to phenotype and pathogenicity (Forbes et al., 2008; Hall-Stoodley et al., 

2008). However, NSTI due to S. pneumoniae is rare and has primarily been reported in cases where patients 

were immunosuppressed or had other underlying conditions (Ballon-Landa et al., 2001; Frick and Cerny, 

2001; Kwak et al., 2002; Imhof et al., 2003; Dawar et al., 2008; Park et al., 2011), which does not correspond 

to the patient history in this case (Table 1). 

The realization that many pathogens can cause NSTIs, and that no specific combination of species are found in 

all cases means that clinicians should be prepared to treat any combination of microbial pathogens (Elliott et 

al., 2000; Anaya and Dellinger, 2007). Although appropriate antimicrobial treatment cannot cure NSTI, it can 

help during the acute phase of the infection (Anaya and Dellinger, 2007), which highlights the importance of 

rapid and comprehensive identification of the pathogens involved. 
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In conclusion, most of the microorganisms found in this study have previously been described in NSTIs. 

However, several atypical findings were made with the aid of the molecular diagnostis including 

monomicrobial infections by A. baumannii and S. pneumoniae and a polymicrobial infection including 

mycoplasma. The detection of mycoplasma was consistent across all samples from the affected patient and 

across the various molecular methods and therefore strongly suggests that the culture results represent false-

negatives. The culture reports from the Department of Clinical Microbiology only included microorganisms 

known as potential human pathogens, which may contribute to the finding of a larger microbial diversity by 

molecular methods. The fact that all microorganisms identified by culture were also identified by molecular 

methods indicates that these would be suitable alternatives for rapid identification of NSTI pathogens. The 

much faster turnaround time for the diagnostic molecular methods (Ibis and qPCR) makes the use of these 

methods attractive for pathogen identification in diseases that have rapid progression such as NSTI. However 

the use of molecular methods may increase the risk of identifying colonizers or contaminants to a higher 

degree. Based on the findings in this study, the Ibis T5000 biosensor appears to be the best of the molecular 

methods, but it has not yet been FDA approved for routine use in clinical practice. A problem with the 

molecular methods is that antimicrobial susceptibility testing cannot be performed, however the Ibis T5000 

biosensor has the ability to detect some resistance genes, and did in fact detect the mecA gene in sample 6A 

where staphylococci were identified (data not shown). Furthermore, if an organism is not cultured it can never 

be examined for antibiotic sensitivity, thus speciating molecular diagnostics that incorporate antimicrobial 

resistance gene determinants such as the Ibis T5000 are an attractive alternative to culture, particularly when a 

rapid answer is needed as in NSTIs.  
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Table 2: Microorganisms detected by routine culture methods in surgical and other (often previous) 

samples from NSTI patients. In many cases the findings by culture could be confirmed by the molecular 

methods (), or the molecular methods identified additional microorganisms (*). 

 Other samples Surgical samples 

Patient  Culture Sample Culture Molecular methods 

1 - A Streptococcus pyogenes  

  B Streptococcus pyogenes  

  C Streptococcus pyogenes  

  D Streptococcus pyogenes  

2 Streptococcus pyogenes (blood culture) A Streptococcus pyogenes  

  B Streptococcus pyogenes  

3 No growth A Acinetobacter baumannii 

(Gram positive cocci in 

chains by light microscopy) 

*
 

4 Streptococcus pyogenes and CNS (Gram 

negative rods by light microscopy) 

A Non-hemolytic streptococci  

 B No growth * 

5 - A Bacteroides fragilis, 

Clostridium paraputrificum 

* 

6 Streptococcus pyogenes, 

Staphylococcus aureus and 

Enterobacteriaceae 

A Streptococcus pyogenes, 

Escherichia coli 

* 

7 Fusobacterium necrophorum A Fungus * 

  B No growth * 

8 Streptococcus pneumoniae A Streptococcus pneumoniae  

  B Streptococcus pneumoniae  

  C No growth  * 

9 Streptococcus pyogenes A Streptococcus pyogenes  

  B Streptococcus pyogenes   

10 Staphylococcus aureus  A No growth  

 B No growth  

- Indicates that no previous samples were taken for culture. 

 



2
0

 

 T
a
b

le
 3

: 
O

v
er

v
ie

w
 o

f 
th

e 
su

rg
ic

a
l 

sa
m

p
le

s 
w

h
er

e 
fi

n
d

in
g

s 
b

y
 m

o
le

cu
la

r 
m

et
h

o
d

s 
d

if
fe

re
d

 f
ro

m
 c

u
lt

u
re

 r
es

u
lt

s.
 C

as
es

 w
h

er
e 

th
e 

m
ic

ro
o

rg
an

is
m

s 
w

er
e 

id
en

ti
fi

ed
 b

y
 c

u
lt

u
re

 a
re

 m
ar

k
ed

 b
y
 

. 

P
a

ti
en

t 
S

a
m

p
le

 
D

ir
e
ct

 S
a

n
g

er
 s

eq
u

en
ci

n
g

 
C

lo
n

e 
li

b
ra

r
ie

s 
a

n
d

 S
a

n
g

er
 s

eq
u

en
ci

n
g

 
Ib

is
 T

5
0

0
0

 B
io

se
n

so
r
 

3
 

A
 

(S
tr

ep
to

co
cc

u
s 

p
yo

g
en

es
) 

A
ci

n
et

o
b

a
ct

er
 b

a
u

m
a

n
n

ii
 

 
A

ci
n

et
o

b
a

ct
er

 b
a
u

m
a

n
n

ii
 

 

4
 

A
 

S
tr

ep
to

co
cc

u
s 

p
yo

g
en

e
s 


 
4

5
4

-p
y
ro

se
q

u
e
n
ci

n
g

 (
F

ig
u
re

 1
) 

S
tr

ep
to

co
cc

u
s 

p
yo

g
en

es
 

 

S
tr

ep
to

co
cc

u
s 

d
id

el
p
h

is
 

 

 
B

 
S

tr
ep

to
co

cc
u

s 
p

yo
g

en
es

  
S

tr
ep

to
co

cc
u

s 
p

yo
g

en
es

 
S

tr
ep

to
co

cc
u

s 
p

yo
g

en
es

 

5
 

A
 

(S
tr

ep
to

co
cc

u
s 

p
yo

g
en

es
) 

C
lo

st
ri

d
iu

m
 p

a
ra

p
u

tr
if

ic
u

m
 

 

U
n
c
u
lt

u
re

d
 b

ac
te

ri
u

m
 

C
lo

st
ri

d
iu

m
 p

a
ra

p
u

tr
if

ic
u

m
 

 

B
a

ct
er

o
id

es
 f

ra
g

il
is

 
 

(S
tr

ep
to

co
cc

u
s 

a
g

a
la

ct
ia

e
) 

6
 

A
 

S
tr

ep
to

co
cc

u
s 

p
yo

g
en

es
 

 

M
yc

o
p

la
sm

a
 h

o
m

in
is

 

4
5

4
-p

y
ro

se
q

u
e
n
ci

n
g

 (
F

ig
u
re

 1
) 

S
tr

ep
to

co
cc

u
s 

p
yo

g
en

es
 

 

E
sc

h
er

ic
h

ia
 c

o
li

 
 

B
a

ct
er

o
id

es
 f

ra
g

il
is

  

(S
ta

p
h

yl
o

co
cc

u
s 

h
o

m
in

is
) 

 

(S
ta

p
h

yl
o

co
cc

u
s 

ep
id

er
m

id
is

) 
 

(C
la

d
o

sp
o

ri
u

m
 c

la
d

o
sp

o
ri

o
id

es
) 

7
 

A
 

M
yc

o
p

la
sm

a
 s

p
p

. 

F
u

so
b

a
ct

er
iu

m
 n

ec
ro

p
h
o

ru
m

 

4
5

4
-p

y
ro

se
q

u
e
n
ci

n
g
 (

F
ig

u
re

 1
) 

M
yc

o
p

la
sm

a
 s

p
p

. 
 

F
u

so
b

a
ct

er
iu

m
 n

ec
ro

p
h
o

ru
m

 

C
a

n
d

id
a

 a
lb

ic
a

n
s 


 

 
B

 
M

yc
o

p
la

sm
a

 s
a

li
va

ri
u

m
 

M
yc

o
p

la
sm

a
 s

a
li

va
ri

u
m

 

F
u

so
b

a
ct

er
iu

m
 n

ec
ro

p
h
o

ru
m

 

M
yc

o
p

la
sm

a
 s

p
p

. 

F
u

so
b

a
ct

er
iu

m
 n

ec
ro

p
h
o

ru
m

 

8
 

A
 

S
tr

ep
to

co
cc

u
s 

p
n

eu
m

o
n

ia
e 


 
4

5
4

-p
y
ro

se
q

u
e
n
ci

n
g
 (

F
ig

u
re

 1
) 

S
tr

ep
to

co
cc

u
s 

p
n

eu
m

o
n

ia
e 


 

 
B

 
S

tr
ep

to
co

cc
u

s 
p

n
eu

m
o

n
ia

e 


 
4

5
4

-p
y
ro

se
q

u
e
n
ci

n
g
 (

F
ig

u
re

 1
) 

S
tr

ep
to

co
cc

u
s 

p
n

eu
m

o
n

ia
e 


 

 
C

 
S

tr
ep

to
co

cc
u

s 
p

n
eu

m
o

n
ia

e 
 

4
5

4
-p

y
ro

se
q

u
e
n
ci

n
g
 (

F
ig

u
re

 1
) 

S
tr

ep
to

co
cc

u
s 

p
n

eu
m

o
n

ia
e 

 

9
 

A
 

S
tr

ep
to

co
cc

u
s 

p
yo

g
en

es
 

S
tr

ep
to

co
cc

u
s 

p
yo

g
en

es
 

S
tr

ep
to

co
cc

u
s 

p
yo

g
en

es
 

 
B

 
S

tr
ep

to
co

cc
u

s 
p

yo
g

en
es

 
S

tr
ep

to
co

cc
u

s 
p

yo
g

en
es

 
S

tr
ep

to
co

cc
u

s 
p

yo
g

en
es

 

1
0
 

A
 

(S
tr

ep
to

co
cc

u
s 

p
yo

g
en

es
) 

N
o

 P
C

R
 

(S
tr

ep
to

co
cc

u
s 

p
n

eu
m

o
n

ia
e)

 

(C
lo

st
ri

d
iu

m
 s

ep
ti

cu
m

) 

 
B

 
(S

tr
ep

to
co

cc
u

s 
p

yo
g

en
es

) 
N

o
 P

C
R

 
(S

ta
p

h
yl

o
co

cc
u

s 
ca

p
it

is
/c

a
p

ra
e
) 

T
a
b

le
 3

 f
o
o
tn

o
te

: 
()

 i
n
d
ic

at
es

 t
h
at

 m
ic

ro
o

rg
an

is
m

 c
o

u
ld

 o
n

ly
 b

e 
fo

u
n

d
 b

y
 o

n
e 

m
o

le
cu

la
r 

m
et

h
o

d
 a

n
d

 n
o
t 

b
y
 c

u
lt

u
re

. 

 



21 

 

0% 

20% 

40% 

60% 

80% 

100% 

Patient 4A Patient 6A Patient 7A Patient 8A Patient 8B Patient 8C 

Phylum Identity

Bacteroidetes Porphyromonas  sp.

Prevotella baroniae

Prevotella tannerae

Bacteroides fragilis

Firmicutes Streptococcus pyogenes

Streptococcus pneumoniae

Peptoniphilus sp.

Fusobacteria Fusobacterium necrophorum

Tenericutes Sharpea  sp.

Tericutes Mycoplasma hominis

Mycoplasma  sp.

Key

Figures 

Figure 1: Taxa identified by pyrosequencing. The stacked graph illustrates the relative abundance of each 

taxon identified by pyrosequencing from the six samples (color coded according to the key).   
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Figure 2: Results by taqman qPCR for S. pyogenes (grey) and the 16S rRNA gene of all bacteria (black) given 

as CFU/mg sample.  
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Figure 3: Visualization of NSTI samples where microorganisms could be detected. Frame (A) show an 

overview of sample 9B, where DAPI stained nucleic acid (blue) and coagulated blood (orange, indicated by 

red arrow) can be seen in the tissue. The black areas in the tissue is fat cells (defined areas), but also areas of 

tissue destruction (green arrow). Frame (B) and (C) show 63x magnification of samples where bacterial cells 

could be detected by the universal bacterium PNA probe (scalebar represents 15 µm). Frame (B) shows 

sample 9B where bacterial cells could be detected (white arrow) among DAPI stained DNA and coagulated 

blood. Frame (C) show a large cluster of bacterial cell in sample 8A. 

 

 



 



 
 
 
 
 
 
 
 
 
Research paper 2 

Rudkjøbing, V.B., Thomsen, T.R., Alhede, M., Kragh, K.N., Nielsen, P.H., 

Johansen, U.R., Givskov, M., Høiby, N., Bjarnsholt, T. (2011). True Microbiota 

Involved in Chronic Lung Infection of Cystic Fibrosis Patients Found by 

Culturing and 16S rRNA Gene Analysis. Journal of Clinical Microbiology 49, 

4352-4355. 

 



 



JOURNAL OF CLINICAL MICROBIOLOGY, Dec. 2011, p. 4352–4355 Vol. 49, No. 12
0095-1137/11/$12.00 doi:10.1128/JCM.06092-11
Copyright © 2011, American Society for Microbiology. All Rights Reserved.

True Microbiota Involved in Chronic Lung Infection of Cystic Fibrosis
Patients Found by Culturing and 16S rRNA Gene Analysis�

Vibeke B. Rudkjøbing,1 Trine R. Thomsen,1,2 Morten Alhede,3 Kasper N. Kragh,3 Per H. Nielsen,1
Ulla R. Johansen,4 Michael Givskov,3 Niels Høiby,3,4 and Thomas Bjarnsholt3,4*

Department of Biotechnology, Chemistry, and Environmental Engineering, Faculty of Engineering and Science, Aalborg University,
Aalborg, Denmark1; The Danish Technological Institute, Life Science Division, Aarhus C, Denmark2; Department of

International Health, Immunology, and Microbiology, Faculty of Health Sciences, University of Copenhagen,
Copenhagen, Denmark3; and Department of Clinical Microbiology, Rigshospitalet,

University Hospital of Copenhagen, Copenhagen, Denmark4

Received 13 October 2011/Accepted 13 October 2011

Patients suffering from cystic fibrosis (CF) develop chronic lung infection. In this study, we investigated the
microorganisms present in transplanted CF lungs (n � 5) by standard culturing and 16S rRNA gene analysis.
A correspondence between culturing and the molecular methods was observed. In conclusion, standard
culturing seems reliable for the identification of the dominating pathogens.

Cystic fibrosis (CF) is the most common lethal autosomal
recessively inherited disorder of Caucasians. Although several
organs are affected, the most severe effect is observed in the
lungs, which is the major cause of deaths of patients (5). Here,
genetic alterations of the chloride channel in epithelial cells
lead to dehydration of the airway mucus, increasing its viscos-
ity. This means that the cilia are unable to transport the mucus
in which inhaled material and, importantly, bacteria are en-
trapped, enabling microorganisms to colonize and establish
infections within the mucus (9). In the early stages of CF,
intermittent colonizations occur, which can be treated with
antibiotics (10). Establishment of chronic infection occurs over
time and is characterized by the formation and establishment
of bacterial aggregates (the so-called biofilms) (1, 5). Forma-
tion of biofilm is problematic since not only does this afford
protection against the different components of the host de-
fense in the lungs but the bacteria also become extremely
tolerant to antibiotics (1, 4, 5). Most pathogenic bacteria are
easily diagnosed by standard culture-based techniques; how-
ever, many less well recognized bacteria can be difficult to
culture due to their growth requirements or being very slow
growing or not growing at all if the patient has been treated
with antibiotics. In these cases, the standard culture techniques
may fail to detect these bacteria and detect only the more
readily culturable bacteria (14). In the CF centers in Denmark,
an intensive antibiotic treatment strategy has been shown to
prolong the life expectancy of the CF patients (10). In recent
studies, the chronically infected lungs of CF patients have been
observed to harbor multiple species (19, 21). However, the
strict antibiotic strategy employed in Denmark has led to only
a small variety of microorganisms being found in the lungs of
CF patients, compared to what is found in other studies (8, 18,
23). In a previous study, we applied fluorescence in situ hybrid-

ization (FISH) using peptide nucleic acid (PNA) probes to
investigate the spatial distribution of Pseudomonas aeruginosa
in the lungs of end-stage Danish CF patients by using both
general and specific probes and found P. aeruginosa to be
present alone (1). The end stage is defined as the time when
the lungs are destroyed and the lung function is reduced to an
extent where lung transplantation is required for the patient to
survive (3).

In the present study, we investigated the true microbiota of
the end-stage CF lung by investigating fresh samples directly
from explanted lungs of Danish CF patients undergoing dou-
ble lung transplantations. This was to avoid possible contami-
nation by the patient’s oral and pharyngeal flora during expec-
toration of sputum, which is the typical type of sample
investigated in CF studies.

We included 34 lung tissue and mucopurulent pus/sputum
samples excised directly and sterilely from the lungs of five
Danish end-stage CF patients undergoing double lung trans-
plantation at Rigshospitalet (Copenhagen, Denmark). The
lungs were collected with the consent of the patients and in
accordance with the biomedical project protocol (KF-
01278432) approved by the Danish Council of Ethics. To in-
vestigate the microorganisms of the true microbiota present
within the lungs of the patients, both standard culturing and
16S rRNA gene analysis were performed. All culture experi-
ments were performed at the Department of Clinical Micro-
biology, Rigshospitalet (Copenhagen University Hospital,
Denmark), according to standard protocols (2). All samples
were incubated both aerobically and anaerobically. Aerobic
culturing was performed on blood agar, chocolate agar, and
eosin-methylene blue (EMB) agar with an incubation time of
up to 1 week. Anaerobic culturing was performed on blood
agar and chocolate agar, using an atmosphere of 7% CO2 and
7% H2 in N2 for up to 2 weeks.

Before extraction of DNA for 16S rRNA gene analysis,
samples were lysed by proteinase K (40 �l) and ATL buffer
(360 �l) from the DNeasy blood and tissue kit (Qiagen, Co-
penhagen, Denmark) for each 500 mg of tissue and incubated
overnight at 56°C. The samples were then centrifuged at 13,000

* Corresponding author. Mailing address: Department of Interna-
tional Health, Immunology and Microbiology, University of Copenha-
gen, DK-2100 Copenhagen, Denmark. Phone: 4535457774. Fax:
4535327853. E-mail: tbjarnsholt@sund.ku.dk.

� Published ahead of print on 19 October 2011.
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rpm for 1 min, and DNA was extracted using the FastDNA
Spin kit for soil (MP Biomedicals, Illkirch, France) according
to the manufacturer’s protocol (revision 6560-200-07DEC);
starting from step 6, DNA was eluted with 60 �l diethyl pyro-
carbonate (DEPC)-treated water. Nearly full-length 16S
rRNA genes were amplified as described in the literature (22),
using two different combinations of universal bacterial primers:
26F (5�-AGAGTTTGATCCTGGCTCAG-3�) with either
1390R (5�-GACGGGCGGTGTCTACAA-3�) or 1492R (5�-T
ACGGYTACCTTGTTACGACTT-3�) (15). The resulting 16S
rRNA gene fragments were pooled and purified using Nucleo-

spin Extract II columns (Macherey-Nagel, Düren, Germany).
The PCR products were cloned into a pCR4-TOPO vector,
transformed into One Shot Top 10 chemically competent Esch-
erichia coli cells (Invitrogen, Carlsbad, CA), and incubated
overnight at 37°C on LB agar plates containing 50 �g/ml
kanamycin and 50 �g/ml X-Gal (5-bromo-4-chloro-3-indolyl-
�-D-galactopyranoside). Either plasmids were purified using
the Illustra TempliPhi DNA amplification kit (GE Healthcare,
Brøndby, Denmark) and sequenced commercially by Macro-
gen (South Korea), or plasmid purification was performed by
Macrogen before sequencing. Sequences were obtained using

FIG. 1. Maximum likelihood tree of the sequences in the clone libraries with their closest relatives. The OTUs from the clone libraries from
the five patients are given with the numbers of sequences in parentheses. The out-group (consisting of 24 sequences of the Chloroflexi phylum) was
set as the root, not shown in the figure. The scale bar represents a 10% deviation of sequence. Asterisks indicate sequences where identification
by BLAST search gave different results. The identities of microorganisms found by culturing are highlighted by a box; these are also the clones
most often identified in the respective clone libraries.
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the M13F primer (5�-GTAAAACGACGGCCAGT-3�) and
checked for chimeric sequences with the program Bellerophon
(12), using the Huber-Hugenholtz correction and a window
size of 300 nucleotides. The BlastN function in the NCBI
database (http://blast.ncbi.nlm.nih.gov/Blast.cgi) was used for
initial identification of closest relatives with standard parame-
ter settings, except that the database was set to the nucleotide
collection (nr/nt).

Alignment of the sequences was performed using the SILVA
web aligner (17) with default settings and refined manually in
ARB (16). The sequences from the 34 clone libraries were
compiled into overall libraries for each of the 5 patients; within
these, the sequences were grouped into operational taxonomy
units (OTUs) if they had a sequence similarity of more than
97% (13). Representative clones for all OTUs were also se-
quenced using the M13R primer (5�-GCGGATAACAATTT
CACACAGG-3�) in order to obtain consensus sequences cov-
ering the entire length of the fragments. Consensus sequences
representing the different OTUs and their closest relatives in
the nonredundant SSU Ref database from SILVA release 104

were used for calculation of trees by distance matrix, parsi-
mony, and maximum likelihood approaches using default set-
tings in the ARB software but omitting hypervariable regions
of the gene. Twenty-four out-group sequences from the phy-
lum Chloroflexi were added to the tree calculations.

Culture analysis showed the presence of monospecies infec-
tion in the lungs of four patients, and two bacterial species
were found for the last patient (patient 4). No growth of an-
aerobic bacteria was observed. The isolated bacteria were P.
aeruginosa, Stenotrophomonas maltophilia, or Achromobacter
xylosoxidans (Table 1), and the same result was found on all
types of media used. The 5 patients expectorated sputum just
prior to their lung transplantation. The culture analysis of this
sputum revealed the exact same bacteria as those found by the
culture analysis from the explanted lungs (not shown). The
initial identification of clone library sequences (as determined
by BLAST search) showed that the organisms found by culture
analysis were present in high numbers in the clone libraries
(Table 1). The phylogenetic trees (neighbor joining, maximum
parsimony, and maximum likelihood) were constructed to vi-

TABLE 1. Overview of bacteria found in the explanted lung samples by culturing and 16S rRNA gene analysis

Patient Culturing
16S rRNA gene analysis

Species (BLAST)a OTU No.b

Patient 1 Achromobacter xylosoxidans Achromobacter xylosoxidans 1 115
Uncultured bacterium 2*c 3
Burkholderia fungorum 3 2
Uncultured bacterium 4* 2
Bacillus cereus 5 1
Uncultured Flavobacterium 6* 1
Uncultured bacterium 7* 1
Uncultured bacterium 8* 1
Uncultured bacterium 9* 1
Uncultured bacterium 10* 1

Patient 2 Pseudomonas aeruginosa Pseudomonas aeruginosa 1 118
Lactobacillus mucosae 2 1

Patient 3 Pseudomonas aeruginosa Pseudomonas aeruginosa 1 406
Uncultured Bacteroidetes bacterium 2 27
Stenotrophomonas maltophilia 3 11
Uncultured bacterium 4* 3
Uncultured bacterium 5* 2
Uncultured Saprospiraceae bacterium 6 1
Uncultured Bacteroidetes bacterium 7 1
Uncultured bacterium 8* 1
Uncultured bacterium 9* 1
Uncultured bacterium 10* 1

Patient 4 Pseudomonas aeruginosa Pseudomonas aeruginosa 1 191
Stenotrophomonas maltophilia Stenotrophomonas maltophilia 2 6

Uncultured bacterium 3 2
Uncultured betaproteobacterium 4 1
Uncultured betaproteobacterium 5* 1
Uncultured betaproteobacterium 6 1
Polaromonas sp. 7 1
Uncultured bacterium 8* 1
Uncultured bacterium 9 1

Patient 5 Achromobacter xylosoxidans Achromobacter xylosoxidans 1 440
Stenotrophomonas maltophilia 2 1

a The species found by 16S rRNA gene analysis is given by the closest relatives of the bacterial OTUs in clone libraries for the patients.
b The number of sequences that make up the OTUs.
c Asterisks indicate clones where the identification by BLAST differed from the identification made by phylogenetic analysis.
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sualize the phylogenetic relationship of the microorganisms
and showed congruent topology (the maximum likelihood tree
is shown in Fig. 1). The locations of the sequences in the tree
confirmed the result of the BLAST search and in several cases
gave identification of sequences that had been determined to
be uncultured bacteria by BLAST search, as indicated by as-
terisks in Table 1 and Fig. 1. This is due to the fact that, unlike
the BLAST tool at NCBI, only quality-checked sequences were
used in the ARB database used. Another factor is that, in
ARB, the secondary structure of the 16S rRNA gene was taken
into account. Some of the bacteria identified in the clone
libraries have previously been associated with cystic fibrosis,
such as Stenotrophomonas maltophilia (6, 7, 20), Burkholderia
fungorum (6, 19), and Streptococcus sp. (13), but the clinical
relevance of these bacteria and others found in small amounts
in the samples is unknown (2, 11). Compared to the results
obtained by culture analysis, the 16S rRNA gene analysis
showed a greater diversity of bacteria, with sequences distrib-
uted into 4 phyla: Proteobacteria, Bacteroidetes, Actinobacteria,
and Firmicutes. As the bacteria found by culturing were also
represented by the highest numbers of sequences in the clone
libraries, it is very likely that these bacteria were dominant in
the lung. We are currently investigating this thoroughly by
FISH and quantitative PCR.

The results presented here correlate with results that we
have previously published (1) that the end-stage CF lung har-
bors relatively few bacterial species that could be identified by
culturing. However, this might not represent the other levels of
chronic infection in the CF lungs. In fact, many of the non-
end-stage CF patients at the Copenhagen CF Clinic harbor
several species in their lungs, which should also be investigated
further.

Nucleotide sequence accession numbers. The nonredundant,
nearly full-length 16S rRNA gene sequences representing each
OTU obtained in this study were deposited in GenBank under
the accession numbers JN802672 to JN802704.
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Abstract

Patients suffering from cystic fibrosis (CF) develop chronic lung infections

because of highly viscous mucus, where bacteria can form biofilms. In this

study, we investigated the microorganisms present in the lungs of end-stage
and non-end-stage patients using standard culturing techniques and molecular

methods. Tissue and sputum samples (n = 34) from explanted lungs of five

end-stage patients were examined along with routine expectorates (n = 15)

from 13 patients with non-end-stage CF, representing earlier stages of chronic

lung infections. Previously, using peptide nucleic acid (PNA) fluorescence

in situ hybridization (FISH), we have shown that Pseudomonas aeruginosa was

the sole pathogen in end-stage CF lungs (Pediatr Pulmonol 2009, 44: 547). In

this study, this tendency was supported by the results of real-time PCR, con-

firming previous results obtained by standard culturing and 16S rRNA gene

analysis (J Clin Microbiol 2011, 49: 4352). Conversely, the non-end-stage
patients were found to harbor several species by culturing. PNA FISH con-

firmed heterogeneous microbiota and showed that the bacteria were located in

monospecies aggregates with no apparent physical interaction between the dif-

ferent microcolonies. In conclusion, standard culturing identifies the dominat-

ing pathogens, which seem to reside in monospecies microcolonies. The

possibility of signaling between the distinct microcolonies still has to be veri-

fied and elucidated.

Introduction

Cystic fibrosis (CF) is the most common lethal autosomal

recessively inherited disorder of Caucasians. The genetic

defect leads to a decrease in epithelial chloride secretion

and an increase in sodium absorption and as such affect

several organs. The most severe effect is on the lungs, where

the airway mucus becomes dehydrated, increasing its

viscosity. Normally, the mucus entraps bacteria and other

foreign material, which is then transported by cilia for

mechanical clearing, for example, by coughing. In patients

with CF, the cilia are unable to transport the highly viscous

mucus, making it a reservoir for inhaled bacteria (Boucher,

2004). The airway microbiology of patients with CF

changes over time; early in life, intermittent acute infec-

tions of many different bacteria occur, the most common

being Haemophilus influenzae, Staphylococcus aureus,

Streptococcus pneumonia, Pseudomonas aeruginosa, the

Burkholderia cepacia complex, and Stenotrophomonas

maltophilia. Of these pathogens, H. influenza, S. aureus,

and P. aeruginosa are predominant (Gilligan, 1991; Saiman,

2004). The viscous mucus enables microorganisms to

establish chronic infections characterized by the formation

and establishment of bacterial aggregates (the so-called bio-

film) (Costerton et al., 1999; Bjarnsholt et al., 2009). Up to

80% of young CF adults are chronically infected

with P. aeruginosa (Gillian, 1991; Bjarnsholt et al., 2009),

but other species, like Achromobacter xylosoxidans, are
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increasingly detected as a cause of chronic infections

(Rønne Hansen et al., 2006). The mucus of a chronically

infected patient contains an abundance of microcolonies,

alginate, and some planktonic bacteria, and a continuous

recruitment of polymorphonuclear neutrophils (PMNs)

occurs. Despite the abundance of PMNs, the bacteria per-

sist for decades, and the constant neutrophil-dominated

inflammation leads to lung tissue destruction and

reduced respiratory function in the patient (Bjarnsholt,

2009; Moser et al., 2009). At some point the lung function

is reduced to an extent where lung transplantation is

required in order for the patient to survive, this is called

the end-stage of the disease. Without transplantation, the

disease leads to premature deaths of the patients (Braun &
Merlo, 2011).

Formation of bacterial biofilms in the CF lung is prob-

lematic as the bacteria are protected from the host

immune system and become extremely tolerant to antibi-

otics, which explains why the chronic infections cannot

be eradicated (Costerton et al., 1999; Conese et al., 2003;

Bjarnsholt et al., 2009). The intermittent colonizations,

however, can be treated successfully with antibiotics. In

Denmark, an aggressive antibiotic treatment strategy has

been employed, and the onset of the chronic infection

has been postponed for decades, prolonging the life

expectancy of the patients (Høiby et al., 2005).

We have previously studied spatial distribution of

P. aeruginosa in the lungs of Danish patients with end-
stage CF using both general and specific peptide nucleic

acid (PNA) probes for fluorescence in situ hybridization

(FISH) (Bjarnsholt et al., 2009). Recently, we investigated

the true microbiota in the lungs of patients with end-
stage CF by examining fresh samples from explanted

lungs using culturing and 16S rRNA gene analysis, and

the results indicated that culturing could identify the

organisms that were dominant in the 16S rRNA gene

libraries (Rudkjøbing et al., 2011). In this study, we inves-

tigated whether P. aeruginosa in fact dominates in the

lungs of these patients by quantifying these by real-time

PCR. As in our previous PNA FISH studies, we also

investigated sputum samples from chronically infected

non-end-stage patients using culturing and PNA FISH to

compare different stages of chronic lung infection.

Materials and methods

Patients and samples

Samples included in this study were obtained from a

group of Danish patients with end-stage and non-end-
stage CF. Samples from five patients with end-stage CF

(34 lung tissue and mucupurulent pus/sputum samples

excised from explanted lungs), as described elsewhere

(Rudkjøbing et al., 2011), were investigated by real-time

PCR. Samples from 13 Danish patients with non-
end-stage CF (15 sputum samples) were obtained during

bacteriology examinations as part of the routine diagnos-

tics. These patients ranged from nonchronic infected to

chronic infected for up to 34 years with P. aeruginosa.

The samples were investigated using standard culturing

and also prepared for PNA FISH visualization by fixation

in PBS with 4% paraformaldehyde and imbedding in

paraffin, which was sectioned (4 μm) and mounted on

glass slides. The end-stage lungs were collected with the

acceptance of the patients and in accordance with the

biomedical project protocol (KF-01278432) approved by

the Danish scientific ethical board.

Culture experiments

All culture experiments were performed at the Depart-

ment of Clinical Microbiology, Rigshospitalet (Copenha-

gen, Denmark) according to standard protocols. All

samples were investigated using our routine CF media

and culture conditions, as described by (Bjarnsholt et al.,

2011). Sputum samples were not subjected to anaerobic

culture because of heavy growth of the normal anaerobic

flora from the mouth (Bjarnsholt et al., 2011).

DNA extraction efficiency – spiking experiment

DNA was extracted from the samples of patients with

end-stage CF, as described previously (Rudkjøbing et al.,

2011). The efficiency of this DNA extraction method was

evaluated by spiking known amounts of S. aureus (DSM

6148) cells to a lung tissue sample. Staphylococcus aureus

was chosen as model organism, as Gram-positive cells

often pose the biggest challenge to DNA extraction. The

tissue was digested by proteinase K solution (40 μL pro-

teinase K and 360 μL ATL buffer from DNeasy® Blood &
Tissue kit; Qiagen), followed by homogenization.

Degraded tissue was divided into five fractions, to which

five different amounts of S. aureus cells grown in LB

media were added (25 000, 7500, 1500, 300 cells, and 0).

Cell concentration was determined using a 4′,6-diamidino-
2-phenylindole (DAPI) solution (1 mg mL−1) for staining

cells filtrated onto a polycarbonate filter and inspected

under a Carl Zeiss Axioskop 2 Plus epifluorescence

microscope using a 100 times oil immersion lens. After

addition of cells, 20 μL proteinase K and 200 μL ATL

buffer were added to each sample and incubated for 2 h.

The samples were homogenized and divided into three

equally sized subsamples (only two subsamples for the

samples with highest and lowest concentration of added

cells), from which DNA was extracted according to (Rud-

kjøbing et al., 2011). The quantity of S. aureus cells was
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measured using real-time PCR, targeting the nuc gene of

S. aureus according to (Hein et al., 2001). Measurements

were taken in triplicate, and comparison of subsamples

with equal amounts of added cells was made (data not

shown).

Real-time PCR

The concentration of P. aeruginosa was determined by real-
time PCR, targeting oprL gene (Jaffe et al., 2001), and

hydrolysis probe-based real-time PCR, targeting the ecfX

gene (Anuj et al., 2009). Also, the total content of bacteria

was quantified using bacterial primer 341F and universal

primer 907R (Skovhus et al., 2004). Measurements were

obtained by absolute quantification using genomic DNA

isolated from P. aeruginosa (DSM 1253) and Escherichia

coli (DSM 30083) for total bacteria quantification. The

number of isolated genomes was calculated based on DNA

concentration (Quant-iT™ dsDNA Assay kit; Invitrogen)

and genome size estimated to be 6.5 Mbp (http://img.jgi.

doe.gov/cgi-bin/pub/main.cgi). Dilution series of the geno-

mic P. aeruginosa DNA covered a range of 106–10−2 gen-

ome copies and 107–100 genome copies for E. coli.

Triplicate 25 μL SYBR-based real-time PCR reactions

were run containing: 12.5 μL Brilliant® II SYBR® Green

REAL-TIME PCR Master mix (Stratagene), 1 μg μL−1

BSA (New England Biolabs), 400 nM of both forward

and reverse primer, 38 nM ROX reference dye (Strata-

gene), and 5 μL of sample, standard, or control. Reac-

tions were run on Mx3005P (Stratagene) with 10 min at

95 °C, 40 cycles of 30 s at 95 °C, 1 min at 60 °C, 1 min at

72 °C, and 15 s at 82 °C (data capture), and finally melt-

ing profile analysis (57–95 °C). For the general bacteria

assay, the program was 10 min at 95 °C, 40 cycles of 30 s

at 95 °C, 1 min at 56 °C, 30 s at 72 °C, and 20 s at 80 °C
(data capture), and finally melting profile analysis. For

the hydrolysis probe-based real-time PCR triplicate 25 μL,
reactions were run containing: 12.5 μL Brilliant® II

QPCR Master mix (Stratagene), 1 μg μL−1 BSA (New

England Biolabs), 1 μM of both primers, 200 nM hydro-

lysis probe, 38 nM ROX reference dye (Stratagene), and

5 μL of sample, standard, or control. The reactions were

run with 10 min at 95 °C, 50 cycles of 30 s at 95 °C, and
1 min at 60 °C (data capture). The gene measurements

were converted into a measure of DNA content, assuming

nucleotide base pair weight of 660 Da, that all bacteria in

the samples have the same genome size as P. aeruginosa

and contain the same number of 16S rRNA gene copies

in the genome (total of four).

The products of a selected number of experiments were

verified on a 2% agarose gel by gel electrophoresis. The

specificity of the assays targeting P. aeruginosa was con-

firmed by cloning amplicons into pCR®4–TOPO® plas-

mid, sequencing, and BLAST search (http://blast.ncbi.nlm.

nih.gov/Blast.cgi).

DNA quantification

DNA content of the lung samples from patients with

end-stage CF was quantified using the Picogreen assay

(Invitrogen). Briefly, standards of Lambda DNA (Invitro-

gen), ranging from 0 to 1000 pg μL−1, were prepared,

and 50 μL of the standards and of the diluted DNA sam-

ples were added to a black, solid 96-well microtiter plate

(Cayman). Fifty microlitres of Picogreen diluted accord-

ing to the manufacturer's instructions was added to the

plate. Fluorescence was measured using Infinite® M1000

plate reader (Tecan) with excitation of 480 nm, emission

of 524 nm, and a gain of 159.

Statistical analysis

The gene copy numbers measured by real-time PCR were

normalized to two factors, in order to estimate whether

the mean reported is the true mean, the relative expres-

sion was calculated along with the standard error of the

relative expression (Jacobs & Dinman, 2004). To compare

the number of genes quantified by the two real-time PCR

assays targeting P. aeruginosa, the paired samples t-test
was used on the mean values of triplicate measurements,

both normalized to DNA content and bacterial content in

PASW Statistics program (formerly SPSS Statistics). This

provided a hypothesis test of the difference between pop-

ulation means for pairs of samples, and a statistical value

of ≤ 0.05 was considered significant.

PNA FISH

Before staining or hybridization, the paraffin was

removed from the samples using 2× 5 min xylene,

2× 3 min 99.9% EtOH, 2× 3 min 96% EtOH and washed

3× 3 min in sterile water. The de-paraffinized sputum

sections were analyzed by FISH using PNA probes

(Stender, 2003). A mixture of Texas Red-labeled P. aeru-

ginosa-specific PNA probe and fluorescein isothiocyanate

(FITC)-labeled universal bacterium PNA probe or FITC-
labeled S. aureus-specific PNA probe and Texas Red-
labeled universal bacterium PNA probe both in hybridiza-

tion solution (AdvanDx, Inc., Woburn, MA) was added

to each section and hybridized in a PNA FISH Worksta-

tion at 55 °C for 90 min covered by a lid (Bjarnsholt et al.,

2009). The slides were washed for 30 min at 55 °C in

Wash Solution (AdvanDx). Vectashield mounting media

with DAPI (Vector laboratories, Burlingame, CA) were

applied, and a cover slip was added to each slide. The

entire PNA FISH procedure required approx. 2.5 h. Slides
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were investigated using a LSM 710 confocal laser scan-

ning microscope (Zeiss, Germany).

Results

Patients with end-stage CF

From previous investigations of the five end-stage patients,
it was found that P. aeruginosa was hardly detectable in

clone libraries constructed for two patients (patients 1 and

5), whereas they were dominant in three patients (patients

2–4). Generally, it was found that 1–2 bacteria dominated

the clone libraries, but the presence of other bacteria from

up to four different phyla could be identified (Rudkjøbing
et al., 2011). To determine whether the dominance in the

clone library was caused by dominance of the pathogen in

the sample or by an artifact in the construction of the

libraries, real-time PCR experiments were performed. Only

the results from samples with P. aeruginosa genes above

the limit of detection are shown. The samples from the

patients varied greatly in size, and therefore the gene mea-

surements were normalized before comparison. Measure-

ments were normalized both to the total bacterial content,

which was quantified by targeting their 16S rRNA genes

(Table 1) and to the total concentration of the extracted

DNA (Table 2). The two P. aeruginosa assays generally

gave differing results, with the assay targeting the ecfX

gene always measuring the highest number (as indicated

by the means given in Tables 1 and 2). A paired samples

t-test revealed that the difference in measurements by the

two assays was statistically significant. Normalization of

P. aeruginosa to the number of bacteria in samples gener-

ally showed that the number of P. aeruginosa cells (based

on measurements of both ecfX and oprL genes) was higher

than the number of bacterial cells (based on 16S rRNA

gene measurements) (Table 1). Although this is not realis-

tic (see Discussion), it indicates that P. aeruginosa is

highly abundant in the samples. The normalization of

P. aeruginosa and bacteria to the total DNA concentration

showed that these constituted only a small percentage of

the extracted DNA (Table 2). The abundance of P. aerugin-

osa was found to vary considerably between the patients

and also between the different samples from a single

patient, which is to be expected based on our previous

findings of a heterogeneous distribution of microcolonies.

Samples from patients 1 and 5 generally did not contain

quantifiable amounts of P. aeruginosa (not shown), which

corresponded to our previous results using 16S rRNA gene

analysis and culturing (Rudkjøbing et al., 2011). Only a

single sample from patient 1 contained P. aeruginosa genes

above the limit of detection, and the normalized results

show that P. aeruginosa constituted a very small percent-

age of all bacteria present (Table 1).

Non-end-stage patients

Culture analysis

The culture analysis of the non-end-stage sputum sam-

ples showed a variety of bacteria, ranging from 1 to 3

different CF-related microorganisms identified in each

sample. The organisms identified were as follows:

Mucoid and nonmucoid P. aeruginosa, H. influenzae,

S. aureus, S. maltophilia, B. cepacia, Candida species,

and Aspergillus species. Compared to culture analysis of

end-stage patients, this is a relatively large diversity

(Table 3).

Table 1. Real-time PCR measurements of the oprL and ecfX genes of

Pseudomonas aeruginosa in samples from patients with end-stage CF.

Measurements are normalized to the total number of bacteria, with

the standard error of the relative expression (as percentage of the

standard error values)

oprL ng per ng

DNA (%)

ecfX ng per ng

DNA (%)

End-stage patient 1

3 tissue 0.029 ± 18 0.608 ± 4

End-stage patient 2

1 tissue 256 ± 6 9300 ± 7

2 tissue 380 ± 8 –

3 tissue 130 ± 17 5940 ± 13

End-stage patient 3

1 sputum – –

2 sputum – –

3 sputum 1150 ± 7 3930 ± 8

4 sputum 2640 ± 11 11 000 ± 12

5 sputum 787 ± 7 2910 ± 9

1 tissue 1040 ± 6 2000 ± 7

2 tissue 3760 ± 10 9620 ± 9

3 tissue – –

4 tissue 504 ± 7 525 ± 15

5 tissue 174 ± 16 394 ± 8

End-stage patient 4

1 tissue 1160 ± 7 3050 ± 5

2 tissue 38.1 ± 30 58.0 ± 10

3 tissue 705 ± 4 617 ± 9

4 tissue 42.3 ± 6 113 ± 6

4 sputum – –

Mean 651 2600

Significance value* 0.011

‘–’ Indicates that data could not be given. For sample 2 tissue from

end-stage patient 2, this was caused by lack of DNA extract. For the

rest, it was not possible to normalize the measured P. aeruginosa

genes because the 16S rRNA assay could not detect the target gene.

*The significance value calculated by paired samples t-test is below

0.05, indicating that the difference between mean value observed for

the two assays targeting P. aeruginosa genes is statistical significant.

FEMS Immunol Med Microbiol 65 (2012) 236–244 ª 2011 Federation of European Microbiological Societies
Published by Blackwell Publishing Ltd. All rights reserved

Microorganisms in chronic lung infection in cystic fibrosis patients 239



FISH

To investigate the spatial distribution of species in

patients with CF chronically infected with more than one

species, we applied general and specific PNA FISH visual-

ization to sputum samples of patients with non-end-stage
CF (representative selection shown in Fig. 1). Examining

these spatial observations, we were not able to observe

any direct interaction between microcolonies of different

species. No mixing took place at least between P. aerugin-

osa (red) and other bacterial species (green) (Fig. 1a, c,

and d) or S. aureus (red) and other bacteria (green)

(Fig. 1b). We have previously described this segregation

of species for chronic infections (Burmølle et al., 2010).

Even though the lung infection status of the patients ran-

ged from nonchronic to 34 years of chronic, we could

not detect any difference in the spatial distribution of

biofilms and species.

Discussion

In the present study, we investigated the true microbiota

involved in different stages of chronic infection of CF

lungs. The normal type of sample investigated in CF studies

is sputum that has been expectorated by the patients, and

this is also the sample used in routine diagnostics where

standard culturing is employed. It is, however, possible that

these samples contain oral or oropharyngeal contamination

(Bjarnsholt et al., 2011), which may be particularly prob-

lematic in respect to culturing as it becomes difficult to dis-

tinguish pathogens from contaminating organisms. Some

authors claim that the potential contamination is not sig-

nificant (Rogers et al., 2006) or that contaminating saliva

can be removed from the sputum sample by a series of

washing steps (Rogers et al., 2006; Guss et al., 2011). To

avoid this disputed point, the samples included in this

study were either from explanted lungs (end-stage
patients), which were investigated by culture analysis and

PCR-based approaches, or expectorated sputum samples

(non-end-stage patients), which were investigated by cul-

ture analysis and FISH. The visualization by FISH makes it

possible to determine whether the bacteria are integrated in

the sample, which minimizes the risk of observing contam-

inating microorganisms. At present, only few publications

are available where direct sampling of lung tissue is used,

although this allows for a more specific characterization of

microbiota than other sampling methods (Rudkjøbing
et al., 2011; Willner et al., 2011).

The use of molecular methods for the identification of

bacteria has revealed that the complexity and microbial

diversity of many samples is greater than that found by

culturing. This is partly due to the fact that culturing

requires assumptions to be made regarding which species

will be present so that appropriate media can be used

(Rogers et al., 2006; Guss et al., 2011). In a previous

study, we compared culturing and 16S rRNA gene analy-

sis on samples from patients with end-stage CF. In all

cases, culture analysis identified the organism that was

the most frequently represented clone in the clone

libraries, but other bacteria in low abundance with

unknown clinical relevance were also found (Rudkjøbing
et al., 2011). The real-time PCR measurements confirmed

that P. aeruginosa (the clone most frequently found in

clone libraries from the three patients) was in fact the

dominant bacteria in the lungs and not due to an artifact

in the construction of the clone libraries (Table 1). The

finding of a few dominating bacteria (1 or 2) in the CF

Table 2. Real-time PCR measurements of the oprL and ecfX genes of

Pseudomonas aeruginosa and the 16S rRNA gene of Bacteria in

samples from patients with end-stage CF. Measurements are

normalized to the total mass of DNA extracted from samples, with

the standard error of the relative expression (as percentage of the

standard error values)

16S rRNA

ng per

ng DNA (%)

oprL

ng per

ng DNA (%)

ecfX

ng per ng

DNA (%)

End-stage patient 1

3 tissue 0.200 ± 4 0.00006 ± 17 0.001 ± 2

End-stage patient 2

1 tissue 0.006 ± 4 0.016 ± 4 0.580 ± 7

2 tissue 0.001 ± 4 0.002 ± 8 –

3 tissue 0.012 ± 7 0.016 ± 16 0.734 ± 11

End-stage patient 3

1 sputum ND 0.041 ± 11 0.090 ± 8

2 sputum ND 0.129 ± 9 1.171 ± 6

3 sputum 0.035 ± 7 0.406 ± 8 1.391 ± 9

4 sputum 0.024 ± 11 0.554 ± 3 2.306 ± 6

5 sputum 0.077 ± 7 0.422 ± 1 1.562 ± 5

1 tissue 0.001 ± 4 0.011 ± 6 0.021 ± 7

2 tissue 0.003 ± 9 0.101 ± 5 0.259 ± 4

3 tissue ND 0.005 ± 14 0.011 ± 15

4 tissue 0.060 ± 7 0.305 ± 5 0.317 ± 14

5 tissue 0.010 ± 7 0.018 ± 14 0.040 ± 4

End-stage patient 4

1 tissue 0.012 ± 5 0.137 ± 5 0.360 ± 2

2 tissue 0.018 ± 11 0.007 ± 29 0.010 ± 3

3 tissue 0.038 ± 4 0.266 ± 3 0.233 ± 9

4 tissue 0.027 ± 6 0.011 ± 4 0.030 ± 4

4 sputum ND 0.067 ± 46 0.368 ± 4

Mean 0.109 0.412

Significance value* 0.007

‘–’ Indicates that data could not be given because of lack of DNA

extract; ND indicates that the genes were not detected, because the

quantity was below the level of detection for the assay.

*The significance value calculated by paired samples t-test is below

0.05, indicating that the difference between mean value observed for

the two assays targeting P. aeruginosa genes is statistical significant.
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lung, which can be identified by culture analysis, corre-

lates with results we have previously published, where the

sole presence of P. aeruginosa in end-stage CF lungs was

found (Bjarnsholt et al., 2009). This is in contrast to most

other studies of diversity in CF, either performed on sam-

ples from ex-planted lungs (Willner et al., 2011) or expec-

torated sputum samples (Harrison, 2007; Worlitzsch

et al., 2009; Rogers et al., 2010; Stressmann et al., 2011).

The reason for this is probably the aggressive antibiotic

treatment administered in Denmark.

Table 3. Identification of microorganisms found in patients with end-stage and non-end-stage CF by culturing

Identified microorganisms

End-stage patient 1* Achromobacter xylosoxidans

End-stage patient 2* Pseudomonas aeruginosa

End-stage patient 3* P. aeruginosa

End-stage patient 4* P. aeruginosa Stenotrophomonas maltophilia

End-stage patient 5* A. xylosoxidans

Non-end-stage patient 1 P. aeruginosa Yeast

Non-end-stage patient 2 Staphylococcus aureus P. aeruginosa

Non-end-stage patient 3 P. aeruginosa Aspergillus sp. Yeast

Non-end-stage patient 4 P. aeruginosa

Non-end-stage patient 5 P. aeruginosa

Non-end-stage patient 6 S. aureus Burkholderia cepacia Yeast

Non-end-stage patient 7 P. aeruginosa Yeast

Non-end-stage patient 8 P. aeruginosa Yeast

Non-end-stage patient 9 S. aureus Haemophilus influenza Aspergillus sp.

Non-end-stage patient 10 P. aeruginosa

Non-end-stage patient 11 P. aeruginosa Yeast

Non-end-stage patient 12 S. aureus Haemophilus influenza Yeast

Non-end-stage patient 13 S. aureus S. maltophilia Aspergillus sp.

Non-end-stage patient 14 P. aeruginosa Yeast

Non-end-stage patient 15 P. aeruginosa S. aureus Yeast

*Data from Rudkjøbing et al. (2011).

(a) (b)

(c) (d)

Fig. 1. PNA FISH visualization of bacterial aggregates/biofilms in expectorated sputum of patients with non-end-stage CF. Frame (a), (c), and (d)

show Pseudomonas aeruginosa (red), and other bacterial species (green) and frame (b) show Staphylococcus aureus (red) and other bacteria

(green). As seen from the pictures, the biofilms of different species seem to be segregated from each other.
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The measurements of the two P. aeruginosa-specific
genes gave significantly different results, with the assay

targeting ecfX giving the highest numbers (Tables 1 and 2).

This could be caused by the use of different fluorescent

reporters in the assays or by the length of the amplicons

(ecfX amplicon was 64 bp, compared to 504 bp for oprL); a

smaller amplicon is preferable to ensure reliable amplifica-

tion. Further problems with the oprL assay have been dis-

cussed elsewhere (Anuj et al., 2009). The measurements

were normalized, both to the total number of bacterial cells

(based on number of 16S rRNA genes) and to the total

DNA content of the samples. It was found that P. aeruginosa

constituted more than 100% of all bacteria in all cases

except for two subsamples of patient 4 (Table 1). It is not

realistic, the reason probably being the general nature of

the 16S rRNA gene assay, because nucleotide mismatches

are allowed during primer design to target as many bacteria

as possible. The 907R primer has one mismatch in the 16S

rRNA gene of P. aeruginosa, so although the target

sequence is amplified, the efficiency may be insufficient to

provide correct quantification of P. aeruginosa 16S rRNA

genes. Also, it was not possible to quantify the 16S rRNA

genes in four samples (patient 3 subsamples sputum 1, spu-

tum 2, and tissue 3, and patient 4 subsample sputum 4)

(Table 2), although both P. aeruginosa-specific assays

showed that the number of P. aeruginosa was above the

limit of detection for the 16S rRNA gene assay. This indi-

cates that this 16S rRNA assay is not suitable for the task

and emphasizes the caution one should exercise when

examining these types of results. Therefore, the real-time

PCR measurements were normalized to the total DNA

content to give an impression of the heterogeneous distri-

bution of P. aeruginosa in the samples (Table 2). The low

percentage obtained by this normalization is because of the

large amount of DNA originating from host cells.

Molecular methods are strongly influenced by the DNA

extraction protocol. Despite this fact, generally, few publi-

cations exist where the extraction method is evaluated

before molecular methods are applied to CF-related sam-

ples. For CF sputum, one study exists, which is con-

ducted by Deschaght et al. (2009), where different

protocols were used to extract DNA from P. aeruginosa

and compared to culturing sensitivity. The extraction

protocol giving the best sensitivity included a proteinase

K pretreatment step with a sensitivity equal to that of cul-

turing (Deschaght et al., 2009). The extraction protocol

used in our study included proteinase K pretreatment.

We tested the efficiency of the selected extraction proce-

dure and found it to be appropriate for lung tissue sam-

ples when the target Gram-positive organism was present

in sufficient numbers (over 500 cells). However, the effi-

ciency of our protocol should be investigated with regard

to Gram-positive and Gram-negative bacteria and also

compared to other available DNA extraction protocols

before it can be recommended as a universal protocol for

lung tissue samples.

The low diversity found in Danish end-stage patients

does not represent the other levels of chronic infection in

the CF lungs. In fact, many of the patients with CF at the

Copenhagen CF Clinic harbor several species in their

lungs. The reports of the multispecies microbiota of the

CF lung (Rogers et al., 2010; Guss et al., 2011; Stressmann

et al., 2011) and other investigations of chronic infections

such as chronic wounds (Dowd et al., 2008) speculate that

an interaction occur between species, increasing the path-

ogenesis. In order for different species to interact, they

must reside within close proximity to each other. As seen

from the culturing (Table 3) and PNA FISH data from the

non-end-stage samples (Fig. 1), earlier in the chronic

infection, more species are often present. Depicted from

the PNA FISH observations, a direct interaction likely

does not take place, as we have previously discussed

(Burmølle et al., 2010). Whether a synergy exists between

the different species is difficult to determine at the present

time. The segregation of species is the same as has been

observed in chronic wounds (Bjarnsholt, 2008; Kirketerp-
Moller et al., 2008; Fazli et al., 2009), but very different

from the intestines and oral flora (Burmølle et al., 2010).

We believe that this is a general phenomenon of the

chronic infections we have studied and caused by the lack

of competition between the species. It is possible that the

bacteria signal to each other between the distinct micro-

colonies, a possibility we are currently testing in vitro. On

the other hand, the Danish patients with CF do not seem

to experience improvements in lung function going from

multispecies to a more monospecies infection. Factors

mediating an improvement or decline in lung function are

either eradication or shift of the dominating bacteria,

respectively, because of, at least in part, the intensive anti-

biotic treatment. A decline in lung function is observed

when the patient with CF experiences a downshift in

diversity, for instance when dominated by B. cepacia com-

plex (Hansen et al., 2010) or Pandoraea apista (Jørgensen
et al., 2003).

As the techniques for the identification of bacteria are

improved, our knowledge of the microorganisms present

during various diseases is expanded, and the challenge

becomes to identify whether the dominant bacterium alone

causes the pathology or the less abundant bacteria add to

this as well. To determine the role of these microorganisms

in a diverse community, we need to study these in the habi-

tat of interest (Koch, 1884; Bjarnsholt et al., 2011).

In conclusion, our results show that the microbial

diversity in Danish patients with CF is minimized by the

time of lung transplantation, compared to earlier stages

of chronic infection. Furthermore, even when multiple
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species were identified in CF sputum, no physical interac-

tion could be observed between the different species. The

results indicate that Danish patients with CF harbor more

homogenous microbiota than patients in other countries

because of administration of aggressive antibiotic treat-

ment and the fact that standard culturing identifies the

dominating pathogens.
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Abstract 

Cystic fibrosis (CF) is a genetic disease characterized by intermittent and chronic lung infections. Nearly all 

CF patients have bacteria in their sinuses, which may serve as reservoirs for lung colonizations. Culture often 

detects Pseudomonas aeruginosa, Staphylococcus aureus, Haemophilus influenzae, coagulase-negative 

staphylococci, Aspergillus sp. and other known CF-related microorganisms in the sinuses, but surprisingly few 

anaerobic bacteria are cultured.  

In this study, sinus samples from 19 CF patients were examined using routine culture methods and molecular 

methods performed on microbial DNA of intact cells including broad-range 16S rRNA gene clone libraries 

and species-specific quantitative polymerase chain reaction (qPCR). The objective was to study the bacterial 

diversity, and determine if anaerobes were present in the sinuses. 

In 63% of the cases, polymicrobial infections were found by culture. The molecular methods found a greater 

bacterial diversity and 84% of cases were found to be polymicrobial. Some of the microorganisms found only 

by molecular methods were anaerobic and facultative anaerobic bacteria. The greater diversity found by 

molecular methods may be due to growth of microorganisms in biofilms, which represents a challenge for 

identification of microorganisms by culture. However, contamination by the nasal flora during sample 

acquisition cannot be ruled out and may influence the additional bacteria detected by the molecular methods. 

Using qPCR it was found that P. aeruginosa and S. aureus were generally more abundant than the anaerobe 

Propionibacterium acnes. Tests based on RNA indicated that the selective DNA extraction protocol using 

Molzym’s MolYsis™ pretreatment had worked and that DNA originated from intact bacterial cells. Though 

CF pathogens were extraordinary found by molecular methods, the clinical relevance of the diverse microbial 

flora found by these methods needs to be further examined.  



3 

 

Introduction 

Cystic fibrosis (CF) is an autosomal recessively inherited disease characterized by abnormal transport of 

sodium and chloride across epithelial cells, leading to increased mucus viscosity and decreased mucociliary 

clearance. This makes the mucus more susceptible to infections [1,2]. The disease affects several organs, and 

the primary cause of the high mortality in CF is chronic lung infections [3,4].  

CF patients have thickened mucosa in the paranasal sinuses, decreased oxygen tension [5], and most of them 

are thought to have bacteria in their paranasal sinuses [6]. Culture-based methods have shown that sinus 

infections in CF patients most often are caused by Staphylococcus aureus and Pseudomonas aeruginosa, 

[3,7,8] with some reports of Haemophilus influenzae [3,8,9], α-hemolytic streptococci [7,8] and few reports of 

anaerobes (including Peptostreptococcus sp., Bacteroides oralis and Propionibacterium acnes) [8]. Cross 

infections between sinuses and lower airways are likely to occur in CF patients since a high correlation 

between sinus and sputum cultures has been found [2–4,10,11]. Recent studies using DNA-based techniques 

have shown that the sinuses serve as a reservoir for lung colonization and infection of the lower airways 

[2,12]. Since the sinuses have some physiological similarities with the lungs, such as similar mucous lining 

and defective ion channel [5,12], the bacteria in the sinuses can become pre-adapted to the conditions of the 

lungs [12,13]. This may account for the recurrent lung infections after antimicrobial eradication and is a 

concern for lung transplant patients, since it is possible that the lung become re-colonized with pathogens from 

the sinus reservoir [2]. 

Eradication of pathogenic microorganisms in CF sinuses may delay chronic lung infections, thus improving 

morbidity and prolonging lifespan [4,14,15]. We have investigated the microbial community in sinus samples 

obtained during extended image guided functional endoscopic sinus surgery (FESS) [6]. The experience at the 

Copenhagen CF center has been that samples from such surgeries do not result in growth of anaerobic 

microorganisms. No anaerobic species have been cultured from the sinuses during a two-year sampling period, 

and anaerobic culture has been stopped for this sample type due to cost considerations, which has also been 

suggested by other authors [16]. This is in contrast to the findings by others, where anaerobes could be found 

in up to 15 % of CF sinus cultures [8,9]. The lack of anaerobic microorganisms in the sinuses of CF patients at 

the Copenhagen CF center, raises the question whether the used culture methods identifies all the 

microorganisms present in the sinuses. Since microorganisms may reside in biofilms within the sinuses, 

culture methods may not be able to identify them. In this study, we compared the findings of routine culture 

methods to molecular methods including construction of broad-range 16S rRNA gene clone libraries and 

species-specific quantitative polymerase chain reaction (qPCR).   
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Methods 

Patients and treatment 

All patients included in this study have been followed at the Copenhagen CF Centre in Denmark by monthly 

visits to the outpatient clinic. A total of 19 patients undergoing sinus surgery at the Department of 

Otorhinolaryngology, Head and Neck Surgery and Audiology (Rigshospitalet, Copenhagen, Denmark) were 

included in the study, 10 females, 9 males (age 6–45 years, median 22 years).  

Patients were selected for surgery based on the following criteria: 1) Intermittent lung colonization with 

prolonged declining lung function, despite intensive antibiotic-chemotherapy and/or increasing antibodies 

against pathogenic Gram-negative bacteria. 2) Patients who had undergone lung transplantation within one 

year. 3) Patients with severe symptoms of chronic rhinosinusitis according to European Position Paper on 

Rhinosinusitis and Nasal Polyps (EPOS) guidelines [17]. 

Ethics 

The study was approved by the local ethics committee (H-A-2008-141). All patients gave informed consent; 

for patients <18 years
 
of age a consent was also obtained from their parents. 

Surgical procedure 

Surgery was performed as an extended FESS, comprising at least an anterior ethmoidectomy and a medial 

antrostomy enlarging the natural maxillary ostium, so the sinuses could be explored and cultured during and 

post surgery, as described previously [6]. Briefly, visible intramucosal abscess looking structures were 

resected along with swollen and inflamed tissue when accessible. The purpose of surgery was to create 

ventilation and drainage for the sinuses, allowing postoperative medical irrigations. No local disinfectants 

were used in the nose. Samples for culture and molecular investigations were obtained in parallel. Multiple 

samples were prioritized for culture containing nasal secretions, pus, mucosal tissue and polyps (if present). 

Samples from each anatomic location where mixed and one sample containing tissue and secretions was taken 

for molecular investigations. Samples for culture were divided into subsamples and were investigated 

immediately, while samples for molecular methods were stored in glycerol for subsequent DNA extraction. 

For four patients (patient 14, 15, 16 and 19), an additional subsample was stored in RNAlater® solution 

(Invitrogen, Carlsbad, California) for subsequent RNA extraction. Stored samples were kept at -80 °C. All 

molecular investigations were performed at the Life Science Division (Danish Technological Institute, Aarhus, 

Denmark) and the Department of Biotechnology, Chemistry, and Environmental Engineering (Aalborg 

University, Aalborg, Denmark). 

Culture experiments 

Samples for culture were investigated at the Department of Clinical Microbiology (Rigshospitalet, 

Copenhagen, Denmark). Investigations included Gram-stained smears along with aerobic cultures on a range 

of media: Sabouraud plate, 7% NaCl plate, B. cepacia plate containing Colistimethate sodium and 

Gentamicin, “blue plate” (modified Conradi Drigalski’s medium) selective for Gram-negative bacteria and 

non-selective media including 5% Danish blood agar and chocolate agar (State Serum Institute, Copenhagen, 
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Denmark). Isolated bacteria were identified as previously described [18]. Direct plating of tissue samples and 

pus on a 14 cm blood agar plate with discs containing anti-pseudomonas antibiotics was used for primary 

susceptibility testing (Rosco® Neosensitabs, Taastrup, Denmark). The culture reports included only 

microorganisms known as potential human pathogens. 

DNA extraction 

Genomic DNA (gDNA) from intact bacterial cells was extracted from all 19 samples using MolYsis Basic 

(Molzym, Bremen, Germany) followed by the FastDNA® SPIN Kit for Soil (MP Biomedicals, Illkirch, 

France) according to the manufacturers’ protocols. The gDNA was eluted in 75 µL DEPC-treated water. 

RNA extraction and cDNA synthesis 

RNA was extracted from samples from four patients (patient 14, 15, 16 and 19) using the RNeasy PLUS mini 

kit (Qiagen, Hilden, Germany) according to the manufacturer's guidelines. The optional DNase treatment step 

was included to minimize the amount of gDNA co-eluting with the RNA. To secure a cleaner product, the 

RNA extraction was repeated for each extract. The RNA concentration was measured using the NanoDrop 

1000 spectrophotometer (Thermo Fisher Scientific, Wilmington, Delaware), and complementary DNA 

(cDNA) was synthesized from 100 ng RNA using the SuperScriptTM III First Strand Synthesis System for 

RT-PCR (Invitrogen) with random hexamers according to the manufacturer's guidelines. Controls without 

reverse transcriptase were included to check for the presence of gDNA. 

Construction and analysis of clone libraries 

Clone libraries were constructed for the extracted gDNA and analyzed as described previosly [19]. Briefly, 

PCR amplicons of near full-length 16S rRNA genes were cloned using TOPO TA Cloning ® kit (Invitrogen) 

and DNA templates were prepared by rolling circle amplification with Illustra
TM

 TempliPhi Kit (GE 

Healthcare, Buckinghamshire, United Kingdom) according to the manufacturer’s instructions. Sequencing was 

performed by Macrogen Inc. (Korea) using M13F primer (and M13R primer in some cases). Manual 

refinement of sequences and construction of consensus sequences were done in CLC Main Workbench (CLC 

bio, Aarhus, Denmark). Sequences were checked for chimeras using the Mallard software package [20], 

aligned using SINA Web Aligner [21] and imported into the ARB software package [22] for taxonomic 

lineage assignment, using the non-redundant (NR) SSU Ref database from SILVA Release 106 as reference 

database. Operational taxonomic units (OTUs) were constructed across all patient samples for clones having a 

sequence similarity of more than 97% since these sequences are typically assigned to the same species [23]. 

One clone from each OTU was sequenced with both M13F and M13R primers. The resulting consensus 

sequences and their closest relatives in the database were selected to calculate phylogenetic trees using 

neighbor joining, maximum parsimony and maximum likelihood methods. The non-redundant, near full-

length 16S rRNA gene sequences, representing each OTU obtained in this study, were deposited in GenBank 

under the accession numbers JQ794610-JQ794658. The proportion of the population represented in the clone 

library was estimated by the coverage ratio                    . Here n1 is the number of OTUs 

containing only one sequence and N is the total number of sequences in the clone library [24].  
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Quantitative PCR 

Based on the findings in the clone libraries and by culture, a variety of qPCR assays were applied to the gDNA 

and cDNA obtained from the patient samples. The assays used hydrolysis probe chemistry and targeted P. 

aeruginosa, P. acnes and S. aureus (Table 1). For each sample triplicate 25 µL reactions were run, each 

containing: 12.5 µL Brilliant® qPCR Master mix (Agilent Technologies, Santa Clara, California), 25 µg BSA 

(Sigma-Aldrich, Brøndby, Denmark), appropriate concentration of primers and TaqMan® probes (Table 1), 

0.75 µM ROX reference dye (Agilent Technologies, Santa Clara, CA) and 2 µL of template DNA. The DNA 

standard was synthesized plasmids containing the respective target gene sequences (GenScript, Piscataway, 

New Jersey). The standard curve was prepared from serial dilution of plasmid (10
0
 to 10

7
 copies µL

-1
). 

Reactions were run on an Mx3005P (Agilent Technologies) with the following program: 10 min at 95°C, 

followed by 40 cycles of 30 s at 95°C, 30 sec at 60°C and 60 s at 72°C.  

Analysis of quantitative data 

The number of gene copies measured by qPCR on gDNA was converted to number of CFU per gram sample 

using C   g 
Cmeasured Cgenome ( total  used )

msample
  . Here Cmeasured is the number of copies measured and 

Cgenome is the number of gene copies in the genome of one CFU. The standard deviation of all measurements 

above the detection limit of the assays was calculated. For samples where more than one bacterium could be 

quantified, a two tailed T-test was used to provide a hypothesis test of the difference between population 

means. A statistical value of ≤ 0.05 was considered significant.  
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Results 

Molecular methods 

The 16S rRNA gene clone libraries constructed for all 19 patients showed a great diversity of microorganisms 

with clones grouped into 49 OTUs. All clone libraries had a coverage ratio above 90%, except for patient 5 

(86% coverage ratio), indicating that the majority of microorganisms in the samples was detected. Identity of 

the clones was determined based on their closest relatives in the SILVA NR SSU Ref database, release 106. 20 

of the found OTUs consisted of only 1-2 sequences found in the clone library of a single patient. The identity 

of the clones were either opportunistic human pathogens (Brevundimonas vesicularis, Brevibacterium 

frigoritolerans, Alcaligenes faecalis, Aerococcus viridians, Dermabacter hominis and Massilia sp.), 

environmental bacteria (Mesorhizobium plurifarium, Telmatospirillum siberiense, Alkalibacterium pelagium, 

Shimazuella kribbensis, Burkholderia tuberum, Burkholderia soli, Defluviicoccus sp., and Myxococcales sp.) 

or bacteria where the source could not be determined (6 different OTUs identified as uncultured bacteria). For 

clarity reasons these 20 OTUs were not included in the following analyses. The phylogenetic trees constructed 

from near full-length consensus sequences, representing each OTU, were considered to be robust, as congruent 

phylogenetic relationships were obtained by neighbor joining, maximum parsimony and maximum likelihood 

methods. Sequences were distributed into 6 phyla: Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes, 

Cyanobacteria and Acidobacteria. The last three phyla contained only one OTU each (OTU-26, OTU-13 and 

OTU-23 respectively). Maximum likelihood trees of the three major phyla are available as supporting 

information (Figure S1).  

The most frequently detected sequences across all clone libraries were identified as Cyanobacterium sp. (95 

clones in 9 patients), P. acnes (65 clones in 9 patients), Ralstonia sp. (57 clones in 9 patients), S. aureus (166 

clones in 6 patients), A. xylosoxidans (125 clones in 6 patients), P. aeruginosa (47 clones in 3 patients), 

Serratia marcescens (28 clones in 2 patients) and Streptococcus salivarius (35 clones in 2 patients) (Table 2). 

These 8 OTUs constituted 82% of all sequences. QPCR was performed to confirm presence of P. aeruginosa, 

P. acnes and S. aureus and determine the relative abundance of these pathogens in the samples (Table 3). For 

P. aeruginosa and S. aureus (except for patient 17), qPCR confirmed the findings in the clone libraries. For P. 

acnes, qPCR confirmed the clone libraries in only one of nine cases (patient 11). The quantitative 

measurements indicated that P. aeruginosa and Staphylococcus sp. were generally present in high numbers, 

whereas P. acnes was less abundant than other species in the same sample. For patient 2, 8 and 11 it was 

possible to quantify more than one bacterium, and the measurements obtained by the different assays were 

statistically significant (P value 0.01, 0.0004 and 0.01 respectively). Surprisingly, in three cases (patient 8, 11 

and 18) it was possible to detect P. aeruginosa by qPCR, although this species was not found in the clone 

libraries. To confirm that the molecular findings resulted from intact living bacteria and not from naked DNA 

residing in the samples (which was the rationale for using the MolYsis technology for DNA extraction) RNA 

was extracted from four samples (patient 14, 15, 16 and 19) and cDNA synthesized before qPCR. The results 

of qPCR on cDNA were in accordance with the measurements made on gDNA (data not shown), indicating 

that the applied extraction protocol, targeting only intact bacterial cells, was effective. 
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Comparison of culture and molecular methods 

The bacterial diversity revealed by culture was generally smaller than what was found by molecular methods: 

overall, eight different microorganisms were identified by culture methods (Table 2). Of all microorganisms 

identified in this study, only a small part could be identified by both culture and molecular-based methods, as 

illustrated in Figure 1 A and B. These microorganisms were P. aeruginosa, S. aureus, S. marcescens, A. 

xylosoxidans and coagulase-negative staphylococci (CNS) (Table 2 and 3). Although the methods had the 

ability to identify these microorganisms, culture results could not be confirmed by molecular methods in all 

cases or vice versa (Table 3); importantly, the CF pathogen A. xylosoxidans was not found by culture in two 

patients (patient 12 and 13), where molecular methods indicated the pathogen was present. Furthermore, for 

five patients, none of the microorganisms identified by culture was found by molecular methods, as illustrated 

in Figure 1 C and D. The molecular methods identified eight different anaerobic and facultative anaerobic 

bacteria (Table 2), which could not be found by culture due to lack of anaerobic testing. 
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Discussion 

The realization that cross-infections between sinuses and lower airways take place in CF patients has led to 

increased focus on eradication of pathogenic bacteria from the sinuses. FESS enables irrigation of the sinuses 

with antibiotics, which may hamper microbial colonization of the sinuses and thereby possibly reduce the 

incidence of lower airways infection. Correct identification of the involved microorganisms is important to 

target the microorganisms present in the sinuses. The literature regarding sinus flora in CF patients has 

primarily been based on culture methods. The microorganisms found by culture in this study (Table 2) 

generally corresponded to findings by other authors; P. aeruginosa and S. aureus [2,3,7–9], Aspergillus sp. 

[2,7], S. marcescens, Enterobacter aerogenes and CNS [2]. A. xylosoxidans is a recently recognized pathogen 

in CF and may as such be found in the sinuses [9]. The remaining cultured microorganism is Bordetella 

bronchiseptica, which is a respiratory tract pathogen of mammals [25]. However, this bacterium has a high 

phenotypic affinity to A. xylosoxidans [26] and has probably been misidentified based on the findings in the 

clone library (Table 2). By culture methods, a total of eight different microorganisms were found in 19 

patients, with a median value of two different microorganisms per patient. The incidence of polymicrobial 

infections was 63%, which is higher than reported elsewhere [3,8,9].  

The flora found in the sinuses by molecular methods was very diverse compared with that found by culture 

(Table 2). The clone libraries revealed that anaerobes and facultative anaerobes (OTU1-8) were present in the 

sinuses of Danish CF patients followed at the Copenhagen CF center, although lack of anaerobic growth over 

a two-year period had led to discontinuation of anaerobic culture of sinus samples. A reason for the lack of 

anaerobic detection may be that organisms such as P. acnes (which were identified in the sinuses of nine 

patients) may require >10 days’ incubation [27], or that species such as P. acnes are not reported since they 

are considered a part of the normal skin flora. Overall, the clones were grouped into 49 OTUs, with a median 

value of 5 OTUs per patient. The incidence of polymicrobial infections found by molecular methods was 84%. 

Of the 49 OTUs identified in the clone libraries, only five of the bacteria could be found by the used culture 

methods (Figure 1 A and B), these bacteria were: A. xylosoxidans, P. aeruginosa, S. aureus, S. marcescens and 

CNS (since some clinical strains of S. aureus may be atypical and have no production of coagulase [28], CNS 

were considered found in the clone libraries if S. aureus was identified). However, the two methods did not 

agree in all cases where these five bacteria were identified (Table 2). A. xylosoxidans was found in the clone 

libraries for two patients and S. aureus in one clone library, where culture could not confirm the findings. Both 

bacteria are known to be CF pathogens, and therefore the lack of detection by culture is serious. Conversely, 

there were several cases where the microorganisms detected by culture could not be confirmed in the clone 

libraries or by qPCR; for CNS, a total of eight cases, four cases of P. aeruginosa and two cases of A. 

xylosoxidans. For P. aeruginosa there were 3 additional cases where the bacterium could not be found in the 

clone library but was quantified by qPCR (Table 3). It is possible that the universal primers that were used 

during construction of the clone libraries have a low affinity to the target region in the P. aeruginosa genome 

or that the high G+C content in the genome (approximately 66% [29]) influenced the efficiency of 
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amplification. Generally, the so-called universal 16S rRNA primers are not truly universal since no primers of 

sufficient length can be designed to match all bacteria [30]. 

The clinical relevance of the diverse microbial flora detected in the clone libraries is unknown, and evaluation 

of the findings is a recurring issue for studies using similar molecular methods. It has been suggested that the 

mere presence of a bacterium does not necessarily mean that it contributes to the pathogenesis of an infection 

and, thus, may not merit treatment [31]. However, it has also been argued that high bacterial diversity 

promotes persistence of chronic infections [32]. Besides the bacteria described above, most of the OTUs 

consisting of many clones have previously been identified in the sinuses of CF patients. These included P. 

acnes [8], corynebacteria (in this study C. appendicis and C. simulans) [2,7], Ralstonia sp. [2], α-haemolytic 

streptococci (in this study Streptococcus salivarius) [2,8] and Stenotrophomonas maltophilia [2,3]. 

Furthermore, many of the microorganisms detected in this study are known CF pathogens (indicated by * in 

Table 2). Some of the identified microorganisms may be contaminants from the skin, which are liberated on 

squamous epithelial cells and inhaled through the nose which will indiscriminately be detected by molecular 

methods. There seemed to be no clear correlation between frequency of detection in clone libraries, number of 

bacteria (based on qPCR measurements) and identification by culture. By performing qPCR, the presence of 

P. aeruginosa, S. aureus and P. acnes was confirmed in some but not all cases, and their relative abundance in 

the samples could be determined. Although only one sample (patient 11) contained sufficient amounts of P. 

acnes genes for reliable quantification, a low level amplification just below the quantification limits was 

observed in samples where bacterium was found in the clone libraries. The results indicated that P. aeruginosa 

and S. aureus were more abundant than the anaerobic P. acnes.  

The finding of a larger microbial diversity by molecular methods compared to the findings by culture is 

common for this type of comparison. An explanation of this discrepancy is often that molecular methods 

cannot distinguish living and dead microorganisms, whereas culture only identifies living and dividing 

microorganisms. This should not be the case in this study, since the DNA extraction protocol was targeted 

DNA of intact microbial cells by inclusion of a MolYsis (Molzym, Bremen, Germany) pretreatment step that 

degrades human DNA as well as any naked bacterial DNA residing in the sample. Since qPCR on gDNA and 

cDNA gave comparable results for the four samples where RNA had been extracted, our results suggest that 

the DNA extraction protocol yielded DNA from active microorganisms.  

It has been proposed that chronic sinus infections are due to formation of biofilm [33]. The bacteria in the 

sinuses can be locally faced with nutrient limitations i.a. reduced airflow, lower oxygen tension and anoxic 

conditions [5], which may facilitate mucoid phenotypes and biofilm formation abilities [12]. Bacterial biofilm 

represents a challenge for culture methods, which are primarily suitable for planktonic microorganisms. It is 

now recognized that this phenotype represents only a minor aspect of the life cycle of microorganisms 

involved in chronic diseases. It is therefore highly probable that culture methods underestimate bacteria 

present in disease [31,32]. Biofilms have now been implicated in many infectious diseases and it has been well 

established that these exhibit a heterogeneous distribution of microorganisms, with a trend of monospecies 
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aggregates even though the infection overall is multispecies [31]. This may account for the discrepancy 

between findings by the different methods in this study, since it is possible that the one sample used for 

molecular methods from each patient does not represent the entire microbial community. Also, since the 

results from culture were based on several samples it is possible that these samples contain microorganisms 

that were not present in the one sample used for molecular methods. 

The clinical implication of the microbial flora found in the sinuses of CF patients is difficult to ascertain. 

Studies have been conducted where the isolates of normal sinus flora were identified [34], but to our 

knowledge no studies have compared the normal and CF sinus flora as determined by molecular methods. 

Such a comparison will be of interest to perform in future studies of the sinus flora in CF patients. 

Study limitations 

When obtaining samples from the sinuses, we cannot exclude that the samples were contaminated with flora 

from the air and anterior part of the nasal cavity, since the focus during the FESS operation was to avoid upper 

pharynx flora. This may account for presence of environmentally related microorganisms found using 

sensitive molecular methods. Further these microorganisms may not be included in the culture reports from 

the Department of Clinical Microbiology where only microorganisms known as potential human pathogens 

were reported.  

Furthermore, we cannot be certain that the samples for culture and the sample for molecular methods 

contained exactly the same bacterial species, since the sample volume for culture was larger than for 

molecular methods. A future study should include investigations by molecular methods on multiple samples in 

order to enable investigation of a possible heterogeneous distribution of the microorganisms. Also, different 

sample types (nasal secretion, mucosal tissue, polyps etc.) should be segregated in order to access which 

sample types has the highest yield of microbial diversity and quantity of different species.  
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Conclusion 

Of potentially great clinical importance is the detection of anaerobic bacteria, which were not cultured due to a 

discontinuation of anaerobic cultures for CF sinus samples. The anaerobic and facultative anaerobic bacteria 

may be relevant human pathogens, and calls into question the used diagnosis methods. Anaerobic and other 

microorganisms may reside in biofilms in the sinus, which could explain the lack of detection by culture. 

Another important finding involves A. xylosoxidans, a CF-related pathogen of great clinical relevance due to 

its ability to rapidly develop multi-drug resistance, spread from patient to patient and cause lung morbidity. 

Detection of the pathogen by culture and molecular methods gave discrepant findings and in two cases culture 

was not able to detect the bacterium (either due to lack of growth or misidentification). Such lacks of 

identification can have major implications for the patients e.g. delayed antibiotic therapy, decreased lung 

function and patient to patient spread. The findings in this study indicate that a combination of culture and 

molecular methods may improve diagnosis of sinus infections, since both methods have advantages and 

limitations. If bacteria are cultured, their antibiotic susceptibility can be easily investigated, but the bacterial 

flora may be underestimated. For molecular methods, the problem is that extraction of DNA/RNA may be 

insufficient. The ability of performing sensitive molecular-based detection of microorganisms has posed a 

great challenge of our understanding of pathogenesis of infection and the definitions of positive culture 

reports, which needs to be addressed before the full potential of the methods can be exploited. 
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Figures 

 

Figure 1: Venn diagrams of microbial findings. A: the number of microorganisms found only by molecular 

methods and B: the number of microorganisms found only by culture, five microorganisms could be found by 

both types of methods. C: The patients, where all the cultured microorganisms could be found by molecular 

methods, and D: patients, where none of the cultured microorganisms could be found by molecular methods. 

For seven patients some, but not all, of the cultured microorganisms could be confirmed by molecular 

methods. 
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Tables 

Table 1: Assays used for qPCR in this study. 

Target (gene)  Sequence (5’→3’) Conc. [nM] Ref. 

P. acnes (16S rRNA) F GCGTGAGTGACGGTAATGGG 500 [35] * 

P. acnes (16S rRNA) R TTCCGACGCGATCAACCA 500 [35] 

P. acnes (16S rRNA) TM FAM-CGCCCAATAAATCCGGACAACGCT-BHQ 200 [35]* 

P. aeruginosa (GyrB) F CCTGACCATCCGTCGCCACAAC 250 [36] 

P. aeruginosa (GyrB) R CGCAGCAGGATGCCGACGCC 250 [36] 

P. aeruginosa (GyrB) TM FAM-CCGTGGTGGTAGACCTGTTCCCAGACC-BHQ 200 [37] 

S. aureus (FemA) F TGCCTTTACAGATAGCATGCCA 1000 [38] 

S. aureus (FemA) R AGTAAGTAAGCAAGCTGCAATGACC 500 [38] 

S. aureus (FemA) TM FAM-TCATTTCACGCAAACTGTTGGCCACTATG-BHQ 200 [38] 

Table 1 footnote: * the sequence has been modified from that in the reference by removing the last two 

nucleotides in F primer and using the reverse complimentary sequence for the TM probe. 
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Table 3: Overview of patients with P. acnes, P. aeruginosa or staphylococci (both S. aureus and CNS). 

The microorganisms were found either by culture (marked C), in the clone libraries (marked M) or by qPCR 

(marked by number of CFU ± the standard deviation).   

 Previous findings CFU per gram sample 

Patient 1 P. acnes
M

 - 

 P. aeruginosa
C, M 

3.3*10^6 ±1% 

 CNS
C
 - 

Patient 2 P. aeruginosa
C, M

 1.3*10^6 ±6% 

 S. aureus
C, M

 and CNS
C
 2.1*10^7 ±15% 

Patient 3 P. acnes
M

 - 

Patient 4 P. aeruginosa
C
 - 

Patient 5 S. aureus
M

 and CNS
C
 4.5*10^7 ±21% 

Patient 6 CNS
C
 - 

Patient 7 P. aeruginosa
C, M

 1.5*10^7 ±7% 

Patient 8 P. aeruginosa
C
 1.8*10^6 ±3% 

 S. aureus
M

 and CNS
C
 1.1*10^4 ±4% 

Patient 9 S. aureus
C, M

 1.1*10^9 ±16% 

Patient 10 P. acnes
M

 - 

 CNS
C
 - 

Patient 11 P. acnes
M

 3100 ±7% 

 P. aeruginosa
C
 3.6*10^4 ±6% 

Patient 12 P. acnes
M

 - 

 CNS
C
 - 

Patient 13 P. acnes
M

 - 

 P. aeruginosa
C
 - 

 CNS
C
 - 

Patient 15 CNS
C
 - 

Patient 16 P. acnes
M

 - 

 P. aeruginosa
C
 - 

 CNS
C
 - 

Patient 17 P. acnes
M

 - 

 P. aeruginosa
C
 - 

 S. aureus
M

  - 

Patient 18 P. acnes
M

 - 

 P. aeruginosa
C
 8.3*10^4 ±20% 

 CNS
C
 - 

Patient 19 S. aureus
M

 and CNS
C
 1.2*10^5 ±7% 

Table 3 footnote: - denotes a qPCR result below the detection limit. 



Supporting information 

 

Figure S1: Maximum likelihood trees of the three major phyla found in sinuses of Danish CF patients. 

All trees were calculated with an outgroup consisting of 21 sequences from Thermotogae (not shown) and 

have a scale bar representing 10% estimated sequence deviation. The number in parenthesis indicates the 

number of clones belonging to the OUT and type strains are marked by T. In all 14 OTUs, corresponding to 

307 clones, were assigned to Proteobacteria (A), 6 OTUs, corresponding to 230 clones, were assigned to 

Firmicutes (B) and 6 OTUs, corresponding to 114 clones, were assigned to Actinobacteria (C). 
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ABSTRACT

The bacterial microbiota plays an important role in the prolonged healing of
chronic venous leg ulcers. The present study compared the bacterial diversity
within ulcer material from 14 skin graft operations of chronic venous leg ulcers
using culture-based methods and molecular biological methods, such as 16S
rRNA gene sequencing, fingerprinting, quantitative polymerase chain reaction,
and fluorescence in situ hybridization. Each wound contained an average of 5.4
species but the actual species varied between wounds. The diversity determined
by culture-based methods and the molecular biological methods was different.
All the wounds contained Staphylococcus aureus, whereas Pseudomonas aerugi-
nosa was in six out of 14 wounds. Molecular methods detected anaerobic patho-
gens in four ulcers that were not detected with anaerobic culture methods.
Quantitative polymerase chain reaction was used to compare the abundance of
S. aureus and P. aeruginosa at different locations in the ulcers and their numbers
varied greatly between samples taken at different locations in the same ulcer. This
should be considered when ulcers are investigated in routine clinical care. The
differences between the results obtained with culture-based and molecular-based
approaches demonstrate that the use of one approach alone is not able to identify
all of the bacteria present in the wounds.

Chronic venous leg ulcers (CVLU) are a debilitating and
often painful disease that affects approximately 1% of the
world’s population.1,2 Apart from the human conse-
quences, the treatment of wounds is expensive; in
Denmark alone, wound treatment has been estimated
to cost approximately two billion Danish kroner per
year (�US$360 million),2 and in the United Kingdom,
France, and Germany an estimated 1.5–2% of the annual
healthcare budget.3,4

The conditions leading to a CVLU are not fully under-
stood; however, the primary cause is most likely insuffi-
cient valvular function of the veins in the legs causing
increased hydrostatic pressure leading to edema of
the subcutaneous tissue, which predispose to ulceration.
This is linked to old age, obesity, height of the person, he-
reditary increased risk, number of births (more births
lead to increased risk) and occupations in which the
person is mainly standing. By removing edema with com-
pression therapy, most CVLU will heal, but a number of
ulcers will not despite effective treatment. In these cases, a
well-documented and effective treatment is surgical
debridement and split skin transplant.2 Other treatments
like topical negative pressure therapy have been found
useful. Maggot debridement therapy have also proved
promising, which involves having larvae from the fly
Lucilia sericata removing necrotic tissue and bacteria
from the wound, and in this way aiding the wound healing
process.5

One of the factors affecting the effectiveness of wound
healing therapies is the specific microorganisms that colo-
nize the CVLU.6 For example, the presence of Pseudomo-
nas aeruginosa can retard the healing of wounds due to
their ability to form biofilms.6 Many studies describe bio-
film as an important factor for the chronic behavior of
chronic wounds,6–10 and the spatial organization of these
biofilms in a wound might be complex due to, for example,
variations in environmental conditions and population
composition.11 Initial experiments by Bjarnsholt et al.6

showed that P. aeruginosa in CVLU were assembled in
microcolony-based structures unevenly distributed across
the wound surface, and this uneven distribution might lead
to insufficient sampling and wrong diagnosis.6

Until recently, the bacteria associated with CVLU have
only been examined by culture-dependent methods by tak-
ing a swab or biopsy from the wound and using it as inoc-
ulate for various bacterial cultures. The emergence of
molecular biology methods has illustrated that culture-
dependent methods often underestimate the bacteria pres-
ent, and especially ulcers with slow growing, fastidious, or
anaerobic microbes.9,12–14 Davies et al.15 found that 40%
of the organisms identified from CVLU by molecular bio-
logical methods could not be identified by culture-depen-
dent methods, although most were species that are
normally considered culturable.

The purpose of this study was to investigate the micro-
bial diversity of chronic ulcers with molecular biological
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Table 1. Summary of patient datan

Wound

Age of

patient Sex

Treatment of sample

before extraction Antibiotic treatment

Dressing at time

of sampling

Duration

of ulcer

Additional

information

A 85 Male DNA extracted from

the entire wound

None Nonsilver 12 months

B 76 Male DNA extracted from

the entire wound

None Nonsilver 6 months Diabetic

C 54 Male DNA extracted from

the entire wound

None Aquacell Ag Years

D 87 Female DNA extracted from

the entire wound

None Nonsilver 4 months

E 85 Female Wound was cut into

five parts and DNA

extracted separately

None Biatain AG 7 months

F 71 Female Wound was cut into

five parts and DNA

extracted separately

Sulfametizole due to

urinary tract infect

Biatain AG 5 months Diabetic

G 88 Female DNA was extracted

from six biopsies

across the wound

None Biatain AG 4 years

H 82 Male DNA was extracted

from six biopsies

across the wound

None Nonsilver 6 months Diabetic

I 81 Female DNA was extracted

from six biopsies

across the wound

Phenoxymethylpenicillin

until 2 months before

sampling

Nonsilver 4 years

J 78 Female DNA was extracted

from six biopsies

across the wound

Phenoxymethyl-penicillin Nonsilver 6 months

K 65 Male DNA was extracted

from four biopsies

across the wound

None Nonsilver 6 months Diabetic,

impetigo

L 85 Female DNA was extracted

from four biopsies

across the wound

None Biatain AG 7 months

M 69 Female DNA was extracted

from four biopsies

across the wound

None Nonsilver 6 months

N 46 Male DNA was extracted

from four biopsies

across the wound

None Nonsilver 3 years Sample from

Achilles

tendon

Average

age

75.2

nAll DNA extractions were done using a DNeasy Blood and tissue kit except for the samples from wound F and wound E (center),

which was extracted with an E.Z.N.A. Tissue DNA kit due to their greater size. Registered antibiotic treatment 3 months before

sampling is mentioned.
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methods and to compare these results with the conven-
tional culture-dependent techniques. Furthermore, the
spatial organization of bacteria in CVLU was examined.

MATERIALS AND METHODS

Patient population, sampling, and DNA extraction

The excision of biopsies and swabs of the wounds for
culture-dependent and -independent experiments was per-
formed by Copenhagen Wound Healing Center, Bispeb-
jerg Hospital (Copenhagen, Denmark). Samples were
obtained from patients diagnosed with chronic venous leg
wounds just before surgical debridement and split skin
transplant. In total, chronic wounds from 14 patients were
investigated (named as wound A–N). The patients’ age,
sex, antibiotic treatment, dressings at the time of sampling,
and additional information are described in Table 1. Pa-
tients with wound B, F, H, and Kwere also diagnosed with
diabetes mellitus.

All ulcers were chronic and nonhealing despite optimal
wound care and compression therapy. The duration of the
ulcers are shown in Table 1. The patients were not receiv-
ing antibiotic treatment during the three months before
sampling with three exceptions: Patient F was receiving
sulfonametizole at the time of sampling, and patients J and
I had received phenoxymethylpenicillin up until 3 days and
2 months before sampling, respectively. Five of the pa-
tients’ wounds had been dressed with a silver-releasing
dressing in the period before sampling (patient C, E, F, G,
and L). The samples were collected with the patients’ ac-
ceptance and in accordance with the biomedical project
protocol (KA-20051011) approved by the Danish scientific
ethical board.

On the day of surgery, the area surrounding the ulcer
was swabbed with chlorhexidine in 70% alcohol but the
surface of the ulcer was not disturbed. The excised wound
material from the patient was transferred to a sterile
Greiner tube and stored at �20 1C until DNA extraction.

Before DNA extraction, the frozen wounds were
thawed and cut to smaller pieces using sterile disposable
scalpels. The total DNA content of wound F and E was
extracted using an E.Z.N.A Tissue DNA kit (Omega Bio-
Tek, VWR, Herlev, Denmark). Other wounds were cut to
smaller pieces and were extracted using a DNeasy Blood
and Tissue kit from Qiagen (Hilden, Germany). Both kits
are based on proteinase K digestion for 2–4 hours.

Culture analysis

Identification of bacteria from the wounds by culturing
was performed by the Department of Clinical Microbiol-
ogy, Hvidovre Hospital, according to their standard pro-
tocols. Tissue samples were transported in sterile
containers and swabs were transported in Stuart medium.
Anaerobe culturing was performed on anaerobe plates
(Statens Serum Institute [SSI], Copenhagen, Denmark) in
a CO2 atmosphere at 37 1C for 2 and 4 days. Aerobe cul-
turing was performed on horse-blood agar (SSI) and Blue
plates (SSI) for 1 and 2 days, respectively.

16S rRNA gene amplification

The 16S rRNA genes were amplified by polymerase chain
reaction (PCR) using Taq DNA polymerase with primers
targeting conserved domains. The primers were 8F16 and
1390R17 and the samples were amplified according to
Thomsen et al.18 Negative controls including water and
PCR mix were included for every five samples and were
always negative indicating that there was no contamination
of the reagents. Stringent procedures were generally used to
avoid contamination, e.g., by using a PCR cabinet withUV
light and all DNA handling was carried out with aerosol
filter pipette tips to avoid cross contamination.

Cloning, sequencing, and phylogenetic studies

The amplified 16S rRNA gene products were purified with
a Qiaquick PCR purification kit (Qiagen), according to the
manufacturer’s instructions. Cloning was performed using
a TOPO TA Clonings kit (Invitrogen, Taastrup, Den-
mark) for sequencing. Plasmids were purified using a
Fastplasmid mini kit (Eppendorf, Horsholm, Denmark)
and purified plasmids were amplified usingM13 primers to
test for inserts with the correct length. The plasmids were
sequenced by Macrogen Inc. (Seoul, South Korea) using
the M13F primer. The closest relative of the clones were
identified by performing a BLAST search of the sequences
at http://www.ncbi.nlm.nih.gov/blast. At least one repre-
sentative clone from each species was additionally se-
quenced using the M13R primer, in order to obtain
consensus sequences covering the entire length of the
DNA fragments. Checks for chimeric sequences were con-
ducted using the program BELLEROPHON.19

The ARB software20 was used for the alignment of
imported sequences with the FastAligner tool, and align-
ments were subsequently refined manually and phyloge-
netic analysis was performed. Only unambiguously
aligned sequences were used for the calculation of trees
using distance matrix, parsimony, and maximum likeli-
hood approaches using default settings in the ARB
software. The Bacteria sequence conservation filter of the
ssu_jan04_corr_opt ARB database [available at http://
www.arb-home.de]) in addition was applied. Phylogenetic
trees were initially constructed using the consensus se-
quences representing the different groups of bacteria. Sub-
sequently, partial sequences were added to the existing
consensus trees by the ‘‘add species to existing tree’’ func-
tion in the ARB software. Priorly, a filter was carried out
to define which positions to be used in adding the partial
sequences (data not shown). Generally, the results ob-
tained by the NCBI Blast Search corresponded well to the
phylogenetic identifications. The coverage ratio (C) for
each of the clone libraries were calculated with C ¼ ð1�
ðn1 �N�1ÞÞ � 100% where n1 is the number of operational
taxonomic units (OTUs) containing only one sequence
and N is the total number of clones analyzed.21

Denaturant gradient gel electrophoresis (DGGE)
fingerprinting

Amplification of samples for DGGE was performed using
primers 341F-GC 22 and 907R.17 The PCR products were
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run on 8% polyacrylamide gels containing denaturant gra-
dients of 30–70%, in 1�TAE buffer at 100V overnight us-
ing the D-GENEt gel system (Biorad) and stained with
SYBR Gold (Invitrogen). The most intensive DGGE
bands were excised and prepared for sequencing. The
excised bands were reamplified with PCR, and the PCR
products were thereafter purified using a NucleoSpin
Extract II Machery Nagel and sequenced commercially
by Macrogen Inc.

Quantitative PCR (qPCR)

Pure culture DNA was extracted using a FastDNAs Spin
Kit for Soil (MP Biomedicals, LLC, Illkirch, France), ac-
cording to the manufacturer’s instructions. qPCR targeting
the nuc gene23 and oprL gene24 was used to measure the
amount of Staphylococcus aureus and P. aeruginosa, re-
spectively. For each determination, triplicates of 20mL re-
actions were run with each containing: 12.5mLBrilliants II
SYBRs Green qPCR Master mix (Stratagene, AH Diag-
nostics, Aarhus, Denmark), 25mg BSA, 10mM of each
primer, and 0.75mM reference dye and 5mL of template or
standard. Reactions were run on an Mx3005P (Stratagene)
for 10 minutes at 95 1C, 40 cycles of 30 seconds at 95 1C, 30
seconds at 62 1C (nuc)/ 62 1C (oprL), 60 seconds at 72 1C
and 15 seconds, and SYBR data capture at 80 1C (nuc)/
82 1C (oprL). For S. aureus, the specific product was sepa-
rated at 79 1C and forP. aeruginosa at 90 1C. The specificity
of the PCR reactions performed for each run was con-
firmed by the melting curve analysis and gel electrophore-
sis. Standard curves were prepared from serial dilutions of
S. aureus (DSM 6148) and P. aeruginosa (DSM 1253) ge-
nomic DNA (5�106–5�101) in AE buffer (Qiagen). The
limit of detection was 100 gene copies per PCR.

Fluorescence in situ hybridization (FISH)

After removal from the patient, the tissue sample was
transferred to 4% neutral formaldehyde buffer and em-
bedded in paraffin wax, cut into 4-mm–thick slides, and
stored at room temperature. Before the hybridization, the
paraffin was removed by xylene. The slides were treated
using a Histology FISH Accessory Kit from DAKO cyto-
mation according to the protocol. Hybridization was per-
formed by covering the slide with 20 mL of hybridization
buffer containing 0.9M NaCl, 0.02M Tris/HCl, 0.01%
SDS, and formamide, depending on the requirement of the
probes and probe mix (5 ng/mL). The probes used were an
EUB mix (EUB-338,25 EUB II-338,26 and EUB III-33826)
targeting most Bacteria; BET42a with GAM42a competi-
tor27 targeting most Betaproteobacteria; a mix of
LGC354b, LGC354A, and LGC354C28 targeting the
Firmicutes, and probe Sau29 targeting S. aureus. For more
information about the probes, consult probeBase.30

Lastly, the slides where treated with Vectashield hardset
mounting mediumwith DAPI (40,6-diamidino-2-phenylin-
dole). Unspecific binding was examined by applying Non-
EUB probes on a slide as described above. This revealed
sporadic nonspecific binding but only with little signal
intensity, and hence it was possible to use probes to
examine CVLU. PNA FISH was performed as described
previously.10

Nucleotide accession numbers

GenBank accession numbers for 16S rRNA gene consen-
sus sequences determined in this study are EU931393-
EU931450.

RESULTS

Culture analysis

Culture analysis of the 14 wounds (A–N) showed the pres-
ence of more than one species in all but one of the wounds
(Tables 2 and 3). Although a diversity of other bacteria
were isolated, S. aureus was detected in 13 wounds, P.
aeruginosa in six, Klebsiella oxytoca in three, and Enter-
ococcus sp. in three wounds. No obligate anaerobic species
were detected in any of the wounds.

DGGE fingerprinting

The results of DGGE fingerprinting are shown in Tables 2
and 3, indicated by an ‘‘S.’’ DGGE detected S. aureus in all
of the wounds except wound C, despite S. aureus being de-
tected by the culture methods. Wound E and F showed the
presence of additional uncultured bacteria. DGGE
showed that the wounds also contained a variety of anaer-
obic bacteria with multiple findings of species such as Fine-
goldia magna, Anaerococcus vaginalis, Peptoniphilus
asaccharolyticus, Peptoniphlus harei, and Peptostreptococ-
cus anaerobius, often with several of these species in the
same wound. P. aeruginosa was detected in only one
wound with DGGE fingerprinting despite its detection in
six wounds using the culture methods. An average of 3.2
species per wound were detected using DGGE fingerprint-
ing and 3.0 species per wound were detected using culture
methods. In combination, DGGE and culture identified
5.4 species per wound.

Clone library and sequence analysis

To elucidate the bacterial diversity in the samples, clone
libraries were constructed where the amplified 16S rRNA
genes were inserted into cloning vectors, thereby a separa-
tion of the different fragments and its subsequent sequenc-
ing were possible. The sequences from the two clone
libraries (clone library 1 from wounds A–F and clone li-
brary 2 from wounds G–N) were divided into OTUs using
a similarity level of > 97%. A total of 60 clones were
sequenced for clone library 1 and 94 clones for library 2.
Table 4 shows the name and accession number of the clos-
est relative for each OTU as identified by the phylogenetic
analysis.

Clone library 1 showed many S. aureus and some Alcali-
genes sp., Anaerococcus sp., Stenotrophomonas sp., Enter-
ococcus faecalis, and P. aeruginosa. Clone library 2 showed
a large amount of S. aureus and P. aeruginosa. Almost all
OTUs have a similarity of > 97% with their closest rela-
tives. Only OTU 9 (uncultured Anaerococcus) in clone li-
brary 1 and OTU 10 Helcococcus kunzii in clone library 2
had a smaller similarity than 97% indicating that these
OTUs had a lower phylogenetic resolution. The coverage
ratio for the clone library 1 was 87.7% and for clone li-
brary 2 was 93.5%.
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The consensus sequences in clone library 1 and 2 were
used to produce phylogenetic trees to determine the
detailed phylogenetic relationship of the 16S rRNA gene
of the clones. A neighbor joining tree, a maximum
parsimony tree, and a maximum likelihood tree all showed
congruent phylogenetic relationships, and the maximum
likelihood tree is shown in Figure 1. The locations on
the tree confirm the BLAST identification of the se-
quences. The sequences are distributed into five phyla:
Proteobacteria, Firmicutes, Bacteroidetes, Fusobacteria,
and Actinobacteria. Similar bacteria were identified in
the two clone libraries, although clone library 1 did not
detect any bacteria from the phylum Fusobacteria
and clone library 2 did not detect any Bacteriodetes. The
clone libraries were dominated by sequences related to
S. aureus and P. aeruginosa, but also contained many se-
quences from E. faecalis, Alcaligenes faecalis, and
Stenotrophomonas maltophilia.

All 110 partial 16S rRNA gene sequences obtained from
DGGE were added to the consensus maximum likelihood
tree (data not shown) to confirm the result of the BLAST
search. While the BLAST result was confirmed for most of
the sequences, the phylogenetic analysis showed that it was

not possible to distinguish the sequences identified as
different Alcaligenes and Ahcromobacter species and no
Peptoniphilus could be differentiated to more than the ge-
nus level. It also showed that the DGGE fingerprinting se-
quences most related to Fusobacterium equinum according
to the BLAST were located closer to Finegoldia gonidia-
formans on the tree. F. gonidiaformans was also found in
clone library 2.

Quantitative PCR

The abundance of S. aureus and P. aeruginosa was found
to vary considerably between the different wounds (Tables
2 and 3). While S. aureus could be detected by DGGE and
by culturing in most samples, they were only above the
limit of detection using the qPCR approach in four of the
14 ulcers investigated. P. aeruginosa could be quantified in
three of the ulcers investigated.

Spatial location

To determine whether the bacterial composition varied
throughout the wound, three wounds (D–F) were each

Table 2. A condensed overview of the bacteria found in wound A–F1

Species Clone lib. 1 A B C D E F

Staphylococcus aureus 1 S, C, 220 � 6% S, ND C, ND S, C S,C,n S,C,n

Pseudomonas aeruginosa 1 ND ND C, ND C,n C,n

Staphylococcus sp. 1 S S S,C S,C

Stenotrophomonas maltophilia 1 S

Alcaligenes sp. 1 S

Enterococcus sp. 1 C

Enterococcus faecalis 1 C S

Actinobaclulum schaalii 1 S

Helcococcus kunzii 1 S

Finegoldia magna 1 S

Staphylococcus cohnnii S

Corynebacterium amycolatum S

Achromobacter xylosoxidans S

Unidentified Gram-negative rod C

Proteus sp. C

Morganella morganii C

Klebsiella oxytoca C

Enterobacter cloacae C

Peptoniphilus sp. S

Uncultured Clostridia S

Uncultured Clostridia S

Uncultured Porphyromonas S

Uncultured Bacterium S

1Bacteria identified from wounds A–F using culture-based methods (C) and sequencing of DGGE bands (S). Quantitative PCR data

are presented for S. aureus and P. aeruginosa (copies/ng DNA � standard error of the mean, n53).
nThe spatial orientation of bacteria was examined in wound D, E, and F revealing a diverse microbiota in wound E and F. Data for

these two wounds are described in Table 5. Sequences also found in Clone library 1 are indicated with ‘‘1’’.

ND, not detected.
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divided in five parts and DNA was extracted from each of
them. Each part was separately examined by DGGE fin-
gerprinting and by subsequent sequencing of bands (Table
5). In wound D, only S. aureus could be detected by
DGGE fingerprinting and it was present in all examined
parts of the wound (data are not included in Table 5).
Wound E was dominated by the aerobe S. aureus, the
facultative aerobe E. faecalis, and the two anaerobes
Actinobaculum schaalii and F. magna, and wound F was
dominated by S. aureus and an uncultured Clostridia bac-
terium.

S. aureus and P. aeruginosa qPCR detected these species
in all parts of wound E and F, except in subsample 3 in

wound E (E3) (Table 5). The abundance of S. aureus and
P. aeruginosa was, however, found to vary significantly
depending on the location in the wound. This was partic-
ularly apparent for P. aeruginosa, which varied by three
orders of magnitude in the various samples from wound F.
Thus, not only the bacterial diversity but also the abun-
dance of organisms were found to vary throughout the
wound. To examine further the spatial organization of the
CVLU, thin histological slides of wound H and another
CVLU known to contain P. aeruginosa were produced and
examined with FISH and PNA-FISH (Figure 2). It was
found that the bacteria on the histological slides known to
contain P. aeruginosa were located very locally (areas of

Table 3. A condesed overview of the bacteria found in wounds G–Nn

Species

Clone

lib. 2

Wounds

G H I J K L M N

Staphylococcus aureus 1 S, C, ND S, C, 120� 14% S, C, 5600� 13% S, C, NT S, C, NT S, NT S, C, 100� 5% C, ND

Pseudomonas aeruginosa 1 C, 1400� 18% C, ND ND NT S, C, NT NT ND ND

Alcaligenes sp. 1 S

Proteus mirabillis 1 C

Alcaligenes faecalis 1 C

Enterococcus sp. 1 C

Coagulase negative

staphylococci

1 C C C

Staphylococcus epidermidis S

Peptoniphilus harei S S

Finegoldia magna S S S

Fusobacerium equinum S

Peptostreptococcus

anaerobius

S

Peptoniphilus asaccharolyticus S S S

Uncultured Clostridia S

Anaerococcus vaginalis S S

Peptostreptococcus micros S

Corynebacterium sp. S C

Brevibacterium casei S

Gram-negative rod C C

Morganella morganii C

Escherichia coli-like rod C

Hemolytic Streptococcus C C

Klebsiella-like rod C

Klebsiella oxytoca C

Bacillus sp. C

Enterobacter cloacae C

nBacteria identified from wounds G–N using culture-based methods (C) and sequencing of DGGE bands (S). Quantitative PCR data

are presented for S. aureus and P. aeruginosa (copies/ng DNA � standard error of the mean, n53). Sequences also found in Clone

library 2 are indicated with ‘‘1’’.

ND, not detected, NT, not tested.
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approximately 150mm) and nowhere else. This made it diffi-
cult to locate the area of infection if present. Wound H was
examined to see if the bacteria found with DGGE finger-
printing could be located. It was possible to find small pop-
ulations of S. aureus and Alcaligenes sp. using specific
probes, thus confirming their presence but no large area of
infection could be located.

DISCUSSION

There is an emerging body of evidence that bacteria play
an important role in the persistence of chronic wounds.
Using culture-based methods, the most frequently ob-
served bacteria in CVLUs are S. aureus, P. aeruginosa,
and E. faecalis, but the diversity is generally polymicrobial
and heterogeneous.31 To improve treatment of CVLUs, it
is necessary to identify whether the most frequently de-
tected bacteria are the critical causative agents or if other
bacteria may also contribute to wound persistence. The
choice of the analytical method, mode of sampling and the
compositional variety of the wounds all play an important

role in the results obtained from bacteriological studies.
Some studies have been conducted to identify the impor-
tant bacteria in wounds, however, the conclusions from
the studies differ. Stephens et al.8 focused on anaerobic
bacteria and concluded that anaerobic bacteria play an
important role in mediating the chronicity of CVLU.
Gjodsbol et al.32 in comparison suggested that P. aerugi-
nosa is most important, rather than anaerobes, as it is
P. aeruginosa that induces ulcer enlargement and delays
healing. In the present study, it was examined how molec-
ular methods could contribute to the characterization of
the bacteria in CVLUs. As has been reported previously,
the molecular biological methods uncovered a different
and more diverse microbiota than the culture-based meth-
ods. Bacteria were detected that had not previously been
identified from wounds but the potential virulence of these
bacteria and their impacts on wound healing needs further
investigation. Ultimately, the eventual significance of the
different wound bacteria requires the determination of
their pathogenesis and in order to do this, all of the bacte-
ria that are present must be identified. The differences

Table 4. Closest relatives of the bacterial OTUs in clone libraries

OTU Numbern Species (BLAST) Acc. number Similarity (%)

Clone library 1

1 [8/28] Staphylococcus aureus BX571856 97.1–100

2 [2/6] Alcaligenes sp. AY331576 99–100

3 [2/4] Anaerococcus sp. AM176522 99

4 [4/4] Stenotrophomonas sp. AM402950 99–100

5 [1/3] Uncultured Porphyromonas DQ130022 99–100

6 [2/3] Enterococcus faecalis DQ239694 99–100

7 [1/2] Pseudomonas aeruginosa EF064786 99–99.6

8 [1/1] Anaerococcus vaginalis AF542229 98

9 [0/1] Uncultured Anaerococcus DQ029049 95

10 [1/1] Enterobacter sp. EF088367 99

11 [1/1] Bacteroides tectus AB200228 99

12 [1/1] Actinobaculum schalli AF487680 98

13 [1/1] Helcococcus kunzii X69837 97

14 [1/1] Finegoldia magna AB109772 99

Total 57

Clone library 2

1 [7/46] Staphylococcus aureus DQ997837 98.8–99.9

2 [6/14] Pseudomonas sp. AY914070 98.7–99.0

3 [3/3] Uncultured bacterium EF511972 99.7–99.9

4 [1/3] Fusobacterium gonidoformans M58679 98.6–99.8

5 [2/2] Enterococcus faecalis DQ239694 99.8–100

6 [2/2] Acinetobacter junii AB101444 99.9

7 [1/2] Proteus mirabilis AF008582 98.6–99.8

8 [1/1] Actinobaculum schaalii AY957507 98.4

9 [1/1] Alcaligenes faecalis AY548384 97.2

10 [1/1] Helcococcus kunzii X69837 96.7

11 [1/1] Uncultured bacterium AM697030 98.2

12 [1/1] Uncultured Clostridia AY383733 99.7

Total 77
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Figure 1. Maximum likelihood (AxML) tree of consensus sequences (1364 nt compared) of consensus sequences from clone li-

brary 1 (CON#) and 2 (CONR#). The scale bar represents a 10% deviation of sequence.
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between the results obtained with the culture-based and
the molecular-based approaches demonstrate that the use
of one of the methods alone might miss potentially impor-
tant information about the bacteria present.

Comparison of culture and molecular biological

methods

All of the examined wounds contained a unique microbio-
ta. The DGGE fingerprinting and culture method identi-
fied an average of 3.1 and 3.0 bacterial species per wound,
respectively. Combined, 5.4 species were identified per
wound. In accordance with previous reports, e.g.,13 sepa-
rate bands were observed in some lanes in the DGGE gels
representing the same species. This may be due to more
than one type of active 16S rRNA genes in the same spe-
cies or the presence of different sub strains of the identified
microorganisms differing in only one or a few base pairs.
The presence of several species in the same wound compli-
cates the task of determining which bacteria are mainly in-
volved with infection. There might also be synergy
between some species, e.g., predisposing or additive
polymicrobial infections. For instance, species living
in immunocompromised pockets created by different
microorganisms are capable of killing leukocytes (like
P. aeruginosa6).

The results of the culture experiments showed the pres-
ence of 12 different species in the analyzed wounds com-
pared with 33 species found with molecular methods.
None of the species found using culture methods were an-
aerobic. DGGE fingerprinting showed the presence of

Table 5. A condensed overview of the spatial orientation of bacteria found in wounds E and Fn

Species Clone lib. 1

Wound parts

E, C E, 3 E, 6 E, 9 E, 12 F, C F, 3 F, 6 F, 9 F, 12

Pseudomonas

aeruginosa

510� 18% NT 760� 7% 47� 9% 280� 3% 920� 9% 300� 13% 8200� 8% 800� 10% 15� 5%

Staphylococcus aureus 1 S, 89� 11%B, NTB, 240 � 10% B, 310�
13%

S, 180� 8%S, 200� 2%S, 86� 8%B, 290� 8%B, 80� 5%B, 93� 12%

Staphylococcus sp. 1 S B B B S B B S S B

Enterococcus faecalis 1 S S S S

Enterococcus sp. S S

Actinobaculum schaalii 1 S B B B B

Helicococcus kunzii 1 S

Finegoldia magna 1 B B B B S

Peptoniphilus sp. B S

Uncultured Clostridia

bacterium

S

Uncultured Clostridia

bacterium

B S B B

Uncultured

Porphyromonas sp.

B B S

Uncultured bacterium S B B

Besides wound E and F, clone library 1 represented wounds A–D.
nThe spatial orientation of wounds E and F was examined by applying molecular methods on samples taken at the center (C), and at

approximately 3, 6, 9, and 12 o’clock around the wounds’ periphery. Bacteria were identified by sequencing DGGE bands (S) and

putatively identified by comparison of bands to the sequenced bands at the same position on the gel (B). Sequences also found in

Clone library 1 are indicated with ‘‘1’’. Quantitative PCR data are presented for S. aureus and P. aeruginosa (copies/ng DNA �
standard error of the mean, n53). []NT, not tested; PCR, polymerase chain reaction.

Figure 2. A PNA-FISH micrograph. The green color is a general

probe for all bacteria and the picture was counter stained with

DAPI, a DNA stain to visualize the localization of the host cells

(blue).
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anaerobic bacteria in wound G, H, I, M, and N. The an-
aerobic species are often overlooked by culture methods
because they require longer culture times and previously
lacked a valid identification scheme.8 Many of the bacteria
identified by DGGE fingerprinting have close relatives
identified previously by culture experiments, and are there-
fore likely themselves to be culturable to some degree.

Some of the observed differences between the results
obtained by the culture and the molecular methods could
be due to the inability to differentiate species on the culture
plates or that some specimens were collected as a biopsy
and others using a swab. The differences may also be at-
tributable to a fraction of the bacteria being dead or in a
viable but unculturable state. This can be caused by the use
of antibiotics15; however, only wound F was receiving an-
tibiotics and indeed this wound showed the presence of
only one species. The other two wounds, which had been
treated with antibiotics until a short time before the study,
both showed a diverse microbiota detected by culture
methods. Based on these findings, there is no evidence of
large amounts of residual genetic material from organisms
no longer colonizing the ulcer bed.

Cultivation techniques have some limitations, but the
molecular biological methods also have biases. These in-
clude amplification of naked DNA, unknown DNA recov-
ery yields from extraction, differential amplification due to
PCR primer bias, 16S rRNA copy number, and heteroge-
neity and co-migration of bands on DGGE fingerprinting.
Some of the biases associated with, e.g., the DGGE ap-
proach were compensated by using the cloning approach, in
which different primers were used with different specificities.

Diversity of CVLU bacteria

The clone library and DGGE analysis revealed a large di-
versity of bacteria of which some have not been associated
previously with wounds: Brevibacterium casei, Corynebac-
terium simulans, Corynebacterium amycolatum. A. schaalii,
P. harei, F. gonidiaformans, Bacteroides tectus, Achromo-
bacter xylosoxidans, A. faecalis, and some uncultured bac-
teria. B. casei has been identified as an opportunistic
pathogen in immunocompromised patients. The case re-
ports by Reinert et al.33 and Brazzola et al.34 are examples,
describing that B. casei needs a host with reduced immune
system in order to initiate infection. Two other bacteria
from phylum Actinobacteria (C. simulans and C. amy-
colatum) were also identified. The Corynebacteria are
known as an aerobe and ubiquitous on human skin and
are all opportunistic pathogens. C. amycolatum is fre-
quently isolated from clinical specimens and infected
wounds and it is resistant to most antibiotics35 whereas
C. simulans is a rare species found previously in blood and
bile samples.36 A. schaalii is a Gram-positive bacterium re-
sembling normal skin flora and it is often overlooked by
culture methods due to its slow growth in ambient air. Re-
cently A. schaalii has been found as a pathogen in 10 cases
of urinary infection.37 P. harei belongs to the anaerobic
Gram-positive family Peptostreptococcaceae, which is a
heterogeneous family of opportunistic pathogens coloniz-
ing the skin and the mucosal surfaces of humans.35H. kun-
zii has been isolated previously from human skin and from
diabetic foot wounds. It is mainly identified as a part of a
polymicrobial community38 but it has also been seen as the

sole pathogen in a foot abscess.39 The Fusobacteria are
Gram-negative anaerobes found in the human gastroin-
testinal tract. Here, they are a part of the polymicrobial
flora but they are also involved in a variety of different
diseases.40 The phylum Fusobacterium is often associated
with chronic wounds.41 F. gonidiaformans is a rare type of
Fusobacterium species isolated previously from infected
dog bites42 and from skin infections.43 In both surveys, the
F. gonidiaformans constituted a very small percentage of
the isolated bacteria. A. xylosoxidans and A. faecalis are
both aerobe Gram-negative Betaproteobacteria from the
Alcaligenaceae family. They are ubiquitous in the environ-
ment but rarely involved with human disease. They have
been isolated from blood cultures of various immunosup-
pressed patients44 and also appeared in a recent study of
chronic wounds by Dowd et al.12 The uncultured
Porphyromonas (DQ130022) was identified previously
from the forearm of a healthy human45 and the uncultured
bacterium (AY958901) was identified from the vaginal ep-
ithelium of a healthy woman.46

Phylogenetic analysis showed that the 33 different species
belonged to six phyla. Both in terms of the number of differ-
ent species and the number of identified clones, the Proteo-
bacteria and the Firmicutes (Clostridia) were the dominating
phyla. Gao et al.45 examined the skin flora of healthy fore-
arms in a large molecular biological study. They found that
the dominating phylumwas theActinobacteria, although the
Firmicutes and Proteobacteria were also present in high
numbers. Healthy skin seems to be the only human environ-
ment where Actinobacteria are dominating.45 In compari-
son, the inner mucosal surfaces of humans (e.g., colon and
oral cavity) are dominated by Firmicutes and Proteobacte-
ria.45 This difference is probably due to environmental
changes such as humidity and changes in pH value.

Eleven of the species were confirmed with both the
cloning approach and DGGE fingerprinting. There
was not a complete overlap between the findings of the
two molecular methods and a reason for this might be that
the DNA from the wounds was pooled before cloning on
basis of the intensities of the bands on a gel. Another ex-
planation might be that the primers used in the two meth-
ods had different affinity. Differences between the findings
of the applied methods were also seen by Dowd et al.12

This study also indicated the presence of a varied anaer-
obic flora dominated by F. magna and P. asaccharolyticus,
which were found in three wounds each. Table 3 (repre-
senting wound G,M, and N) also shows that the anaerobic
species were often located in the same wound. This sug-
gests that anaerobic pockets were present in the wound
and that there is a possible synergistic effect between them.
Stephens et al.8 tested the effects of P. vaginalis, F. magna,
and P. asaccharolyticus on cellular wound healing re-
sponses and found that they caused delayed reepitheliaza-
tion and defective extracellular matrix reorganization and
angiogenesis in vitro. These are all important steps in
wound healing. They also compared this with the effect of
P. aeruginosa and found that this had less detrimental
effect compared with the anaerobes.

Spatial orientation of bacteria in CVLU

The results from the DGGE approach investigating the
spatial orientation of the bacteria in three wounds
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illustrated that if only one biopsy from a wound was ana-
lyzed it would most likely not represent the bacterial com-
position of the entire wound. The qPCR results
demonstrated that the abundance of S. aureus and P.
aeruginosa also varied depending on the different locations
in the wound. The technique is rapid and has recently been
used to determinate Pseudomonas in a chronic wound
within few hours, enabling fast decisions on treatment.47

In addition, multiple biopsies from the same wound can
also indicate which species of bacteria are most important
for the infection as these are probably present in large
numbers all over the wound. Furthermore, it supports the
claim that the bacteria found in wounds are located in
niches, which covers their needs. Using FISH, we detected
bacteria in microcolonies also known as biofilms (Figure
2), which might explain how the bacteria survive inside the
wound bed. This correlates with the finding that in some
CVLU, P. aeruginosa live in large biofilms underneath the
wound surface.6 Antibacterial dressings, e.g., silver con-
taining dressings are likely to influence the bacterial flora
on the surface of the wounds. However, as the PNA-FISH
pictures show that the bacteria reside deep in the tissue, it
is not likely that bacteria will be influenced by the dress-
ings. Furthermore, all swabs were taken after thoroughly
surgical revision far away from local antimicrobial
dressings. This indicates that the diversity was probably
not influenced by the dressing, but by other factors such
as antibiotics and difference in skin flora. The FISH
technology increases the understanding of the pathology
of bacteria in chronic wounds and how it might impact
therapies.

This study compared the bacterial flora of different
types of wound material from 14 skin graft operations of
CVLU. Results from the culture methods were compared
with the results from the molecular biological methods,
which showed that the flora of the wounds varied, as did
the number of S. aureus and P. aeruginosa investigated
by qPCR. Each wound contained multiple species but
apart from that the methods detected rather different
floras. An average of 5.4 species were found in each
wound by the methods combined. All of the wounds
contained S. aureus but P. aeruginosa was also frequent.
The molecular biological methods detected a varied
anaerobic flora in four of the wounds and species not
found previously in CVLU were identified. All of these
were known pathogens. No anaerobes or new species
were detected with culture methods. It was also found
that the wound flora was different and that the number
of the pathogens S. aureus and P. aeruginosa varied,
depending on which location and depth of the wound
was examined. Three wounds were examined and they
showed that some species were present all over while
some were only present in parts of the wounds. This
emphasizes the need for multiple samplings when exam-
ining wounds, and swabs and biopsies each have specific
advantages as sampling technologies.

qPCR is a promising fast method for fast characteriza-
tion of the bacteria present in ulcers, and importantly
the running cost is comparable with the cultivation
techniques. The next important step is to elucidate the bac-
teria that contribute to the pathogenicity of these chronic
wounds. This information could be used to develop the
optimal sampling, identification, and treatment regimes.
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Abstract

Formation of biofilm is a prominent feature of prosthetic joint infections (PJIs)

and constitutes a challenge to current sampling procedures and culture prac-

tices. Molecular techniques have a potential for improving diagnosis of bio-

film-adapted, slow-growing and non-culturable bacteria. In this exploratory

study we investigated the bacterial diversity in specimens from 22 patients clin-

ically suspected of having PJIs. Bacteriological cultures were performed accord-

ing to standard practice. A total of 55 specimens from 25 procedures

(‘specimen sets’) were submitted to broad range 16S rRNA gene PCR, cloning,

sequencing and phylogenetic analysis. More than 40 bacterial taxa within six

phyla were identified in 14 specimen sets originating from 11 patients. Direct

observation of biofilm was made in selected specimens by fluorescence in situ

hydridization. 16S rRNA gene analysis and bacteriological cultures were con-

cordant for 15/25 specimen sets (60%; five positive, 10 negative); additional

taxa were detected in four sets by gene analysis, and discrepant results were

obtained for six sets, five of which were negative on culture. Polymicrobial

communities were revealed in 9/14 sets by gene analysis and 1/10 sets by cul-

ture (P < 0.05). Although our study was not conclusive, these findings are con-

sistent with a primary role of biofilm formation in PJIs.

Introduction

Joint replacement is one of the most common surgical

procedures in industrialized countries. In Denmark the

combined incidence of primary hip and knee arthropla-

sties was 280 per 100 000 inhabitants in 2008 (DHAR,

2011; DKAR, 2011). Revisions accounted for 40 addi-

tional operations per 100 000 inhabitants (DHAR, 2011;

DKAR, 2011). The main causes for revisions are aseptic

biomechanical failure and infection (Trampuz et al.,

2003). After primary arthroplasty the cumulative preva-

lence of infection is estimated to be 0.5–2% (Spangehl

et al., 1999; Zimmerli et al., 2004; Kurtz et al., 2008;

Pulido et al., 2008) and it is even higher after surgical

revision (Trampuz & Zimmerli, 2008). The burden

of morbidity and the economic costs associated with

prosthetic joint infections (PJIs) are significant (Hebert

et al., 1996; Lavernia et al., 2006). Both diagnosis and

treatment of PJI remain complex, which can to a large

extent be attributed to protected growth of bacteria in

biofilms (Trampuz et al., 2003; Trampuz & Widmer,

2006). The biofilm mode of growth renders bacteria resis-

tant to the host immune system and most antimicrobial

agents (Stewart & Costerton, 2001).

Culture techniques have been the mainstay for the

diagnosis of PJIs, with synovial fluid and surgical

periprosthetic soft tissue biopsies being the preferred

specimen types (Bauer et al., 2006). Nevertheless, culture-

based methods often fail to demonstrate bacterial agents

in patients with a high likelihood of PJI (Zimmerli et al.,

2004; Mikkelsen et al., 2006; Berbari et al., 2007; Tram-

puz et al., 2007). This has called for reconsideration of
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sampling and laboratory procedures. Biofilms on the sur-

face of the prosthesis may be important because this

niche can remain undetected when biopsies are taken from

periprosthetic tissues or the synovial membrane (Gomez &

Patel, 2011). Sonication has proved effective for dislodge-

ment of biofilms from removed prostheses or prosthetic

components (Trampuz et al., 2007) but even with these

precautions, biofilm bacteria may grow poorly on agar

plates (if at all), and some bacteria may be viable but non-

culturable (Zimmerli et al., 2004; Costerton, 2005).

To overcome these limitations, culture-independent

molecular methods have been introduced (Costerton,

2005; Fenollar et al., 2006; Vandercam et al., 2008). Still,

the number of published PJI studies using molecular

methods remains small. Complex bacterial communities

are a hallmark of biofilm infections and in this study we

have specifically addressed bacterial diversity in samples

from patients suspected of PJI. Broad range 16S rRNA

gene PCR, cloning, sequencing, phylogeny and quantita-

tive PCR (qPCR) were applied to different types of speci-

mens with the aim of helping to devise effective strategies

for the diagnosis of PJI.

Methods

This exploratory non-interventional study was conducted

within the framework of ‘PRIS’, a Danish multidisciplin-

ary project on prosthesis-related infection and pain. The

‘PRIS’ project was approved by the regional research eth-

ics committee for North Denmark (N-20110022).

Patients and sampling procedures

Specimens for bacterial DNA analysis were obtained in

parallel with specimens for bacteriological culture in 22

patients with suspected PJI during a planned diagnostic

procedure – a preoperative aspiration of synovial fluid

(n = 11), a surgical revision (n = 9) or both (n = 2).

Four patients had a hip prosthesis and 18 a knee prosthe-

sis. Except for the surgeon’s suspicion of infection, no

fixed criteria were set for inclusion of patients.

Sampling was carried out once in 20 patients and three

and two times in one patient each (nos 1 and 2, respec-

tively). Both patients had a preoperative aspiration of syno-

vial fluid and subsequent removal of the prosthesis within

10 days. Patient 1 had a previous specimen set obtained

during debridement with retention of the prosthesis

7 months earlier. The median time (interquartile range)

from implantation of the prosthesis to the diagnostic proce-

dure was 4.5 months (1–12 months); if more than one pro-

cedure was performed, the first defined the insertion period.

Periprosthetic surgical biopsies (approximately 0.15 cm3)

were taken under sterile conditions with separate instru-

ments and placed in sterile tubes (Greiner Bio-One, Ger-

many); biopsies for culture were stored in Stuart transport

medium (SSI Diagnostika, Denmark). Specimens from the

surface of the prosthesis (approximately 2–5 cm2) were

obtained with a flocked swab placed in Amies transport

medium (ESwab, Copan, Italy); the material was released

from the swab and the medium subsequently analyzed.

Prostheses or spacers removed during revision were placed

in sterile containers of the appropriate size. All specimens

were transported within a few hours to the laboratory at

ambient temperature.

DNA extraction

Biopsies of soft tissue or spongious bone were cut into

small pieces under sterile conditions. Removed prostheses

or spacers were either sampled with an ESwab or submitted

to sonication (42 kHz ± 6%, 10 min) in autoclaved MilliQ

water. Subsequently, the sonication fluid was centrifuged

(6000 g, 10 min) and the pellet was resuspended in

1–5 mL of diethylpyrocarbonate (DEPC)-treated water.

For one patient (no. 2B) both procedures were performed.

In two patients (nos 1B and 3) extraction of total DNA

was performed with DNeasy® Blood & Tissue kit (Qiagen,

Germany) according to the manufacturer’s protocol. For all

other patients, bacterial DNA was extracted with MolYsis

Basic (Molzym, Germany) followed by DNeasy® Blood &

Tissue kit according to the manufacturers’ protocols. Unlike

the DNeasy® Blood & Tissue kit, which resulted in a mix-

ture of eukaryotic and prokaryotic DNA, MolYsis Basic pre-

treatment enabled the selective preparation of prokaryotic

DNA from intact cells, significantly lowering the back-

ground in PCR analyses. Before extraction with MolYsis

Basic, 150 lL of DEPC-treated water were added to biop-

sies. Aliquots (200 lL) of synovial fluid, Amies transport

medium and sonication fluid were processed directly. DNA

was eluted in 200 lL of DEPC-treated water.

16S rRNA gene PCR amplification

The 16S rRNA gene was amplified in nearly full length

using universal bacterial primers 5′-AGAGTTTGATCCT
GGCTCA-3′ (26F) and 5′-GACGGGCGGTGTGTACAA-3′
(1390R) (Lane, 1991) according to Thomsen et al. (2001).

The amplified DNA was subjected to agarose gel electro-

phoresis. Stringent procedures were employed to prevent

contamination. Each reaction mixture excluding DNA

template was prepared in a BiocapTM (Erlab, France) with

UV light exposure for at least 10 min before each PCR

setup. DNA templates were added to the reaction mixtures

in a separate room, where post-PCR analysis was also car-

ried out. Negative and positive controls were included

within each batch of specimens. Positive controls
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contained the standard reaction mixture with DNA

extracted from an activated sludge sample, whereas

negative controls contained DEPC-treated water instead of

specimen.

Cloning and sequencing

After the 16S rRNA gene PCR products were confirmed to

be of the correct size by agarose gel electrophoresis, the

PCR products were purified with Nucleospin Extract II

columns (Machery-Nagel, Germany) according to the

manufacturer’s instructions. The PCR fragments were then

ligated into the pCT 4-TOPO-plasmid and transformed

into One Shot® TOP10 chemically competent Escherichia

coli as described in the TOPO TA Cloning® Kit for

Sequencing (Invitrogen) protocol. The transformed cells

were spread on Luria–Bertani agar containing 50 lg mL�1

kanamycin and 50 lg mL�1 X-gal (5-bromo-4-chloro-

3-indolyl-b-D-galactopyranoside) and incubated overnight

at 37 °C.
From each clone library, 24–48 colonies were randomly

selected and the plasmids were amplified using rolling

circle amplification with IllustraTM TempliPhi Kit (GE

Healthcare, UK) according to the manufacturer’s instruc-

tions. Presence of an insert of the correct size was analyzed

by PCR using M13 primers followed by agarose gel electro-

phoresis. The plasmids were sequenced by Macrogen Inc.

(South Korea) in both directions using the M13 primers.

Phylogenetic analysis

A consensus sequence was compiled by assembling the for-

ward and reverse sequences for each clone and trimming

vector sequences in CLC Main Workbench (CLC bio, Den-

mark). Sequences were checked for chimeras using the

MALLARD software package (Ashelford et al., 2006). The

BLASTN function was used for initial identification of the

closest relatives of the consensus sequences in the NCBI

database (http://www.ncbi.nlm.nih.gov/) with standard

parameters except that ‘Nucleotide collection’ was the cho-

sen database and ‘Entrez Query’ was limited to ‘Bacteria

[ORGN]’. Afterwards, the consensus sequences were aligned

using SINA Web Aligner (Pruesse et al., 2007) and imported

into the ARB software package (Ludwig et al., 2004) for taxo-

nomic lineage assignment using the non-redundant SSU

Ref database from SILVA Release 106 as reference database.

The sequences were assigned based on their position after

parsimony insertion into the database using a filter which

was defined by applying the SAI sequence ‘pos_var_ssuref:

bacteria’, using only sequences between E. coli nucleotides

27–1390, and omitting hypervariable portions of the rRNA

gene. The consensus sequences and their closest relatives in

the database were then selected to calculate phylogenetic

trees using neighbor-joining, maximum parsimony and

maximum likelihood methods.

Additionally, all clones having a 16S rRNA gene sequence

similarity of more than 97% with each other were grouped

into an operational taxonomic unit (OTU), roughly corre-

sponding to the bacterial species level (Juretschko et al.,

2002). Only representative sequences from each OTU were

selected to construct the phylogenetic trees. The coverage

ratio (C) for each of the clone libraries was calculated using

the equation Ccoverage = [1 � (Nsingletons·Ntotal
�1)]·100%,

where Nsingletons is the number of OTUs containing only

one sequence and Ntotal is the total number of 16S rRNA

gene clones analyzed (Juretschko et al., 2002).

The non-redundant, near full-length 16S rRNA gene

sequences representing each OTU obtained in this study

were deposited in GenBank under the accession numbers

JN584679–JN584724.

Quantitative PCR

Quantification of Propionibacterium acnes in specimens

positive by the 16S rRNA gene clone library approach

was done with qPCR according to Eishi et al. (2002). The

target sequence was a 131-bp portion of the P. acnes 16S

rRNA gene. The primers were PA-F (5′-GCGTGAGT
GACGGTAATGGGTA-3′) and PA-R (5′-TTCCGACGC
GATCAACCA-3′), and the TaqMan probe was PA-TAQ

(5′-AGCGTTGTCCGGATTTATTGGGCG-3′). Triplicate

25 lL qPCR reactions were run containing 5 lL of a

DNA specimen, 12.5 lL Brilliant® II QPCR Master Mix

(Stratagene), 38 nM ROX (Stratagene), 1 lg lL�1 bovine

serum albumin (Sigma, Germany), 100 nM of each pri-

mer and 40 nM of the probe (Eishi et al., 2002). Reac-

tions were run on an Mx3005P (Stratagene) with 5 min

at 95 °C, 50 cycles of 15 s at 95 °C and 1 min at 60 °C.
The DNA standard was synthesized plasmid containing the

131-bp target gene (GenScript). The standard curve was

prepared from serial dilution of the plasmid (2·100 ?
2·107 copies lL�1). In all, 0–11 copies of the P. acnes

target gene were detected in the controls without tem-

plate, and the lower detection limit of the assay was

therefore set to be 50 copies per reaction.

Fluorescence in situ hybridization (FISH)

Fluid samples (synovial fluid and Amies transport med-

ium) were fixed in ethanol (50% v/v) for detection of

Gram-positive bacteria (Roller et al., 1994) and parafor-

maldehyde (40 g L�1) for detection of Gram-negative

bacteria (Amann et al., 1990). The samples were analyzed

by FISH using a universal bacterial peptide nucleic acid

(PNA) probe according to the manufacturer’s instructions

(UNIBAC; AdvanDx, Inc., Woburn, MA). Visualization
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was carried out with a Zeiss LSM 510 confocal laser scan-

ning microscope (Carl Zeiss, Germany).

Bacterial culture

All bacteriological cultures were performed in the Depart-

ment of Clinical Microbiology, Aalborg Hospital. Synovial

fluid was centrifuged at approximately 1400 g and the

pellet was used for Gram stain and inoculation. Aerobic

culture was done on 5% horse blood agar and chocolate

agar at 35 °C in 5% CO2 (incubation period: 4 days);

anaerobic culture was done on 10% horse blood agar for

4 days, chocolate agar enforced with menadione and cys-

teine for 6 days, and in semisolid thioglycollate agar for

4 days (all media were from SSI Diagnostika).

Tissue biopsies were cut into smaller pieces and

imprints were made on the agar media listed above (for

further details see Kamme & Lindberg, 1981). Incubation

temperature and time were as described above. Interpre-

tive criteria were in accordance with Kamme & Lindberg

(1981). Culture from at least three biopsies of one or

more phenotypically identical bacteria was deemed to be

a significant finding; the number of colony forming units

was not a criterion in itself, as enrichment culture was

performed for each biopsy and contributed equally to the

result. Identification to species level or a provisional

group was done according to Murray et al. (2007). Coag-

ulase-negative staphylococci and coryneform rods were

identified with API Staph and API Coryne, respectively

(bioMérieux, France). Hemolytic streptococci were

grouped by agglutination for Lancefield antigens A, B, C

and G. If a good identification was not obtained, provi-

sional names were retained in the final report.

Data analysis

Any number of specimens obtained concurrently by either

joint aspiration or surgical revision was defined as the unit

of observation and was referred to as a ‘specimen set’

(n = 25).

Information on bacteriological cultures was retrieved

from the laboratory information system after completion of

molecular analyses whereby blinding was obtained de facto.

Differences in proportions were assessed by the Fisher

exact test (2-tailed) with P < 0.05 deemed to be statisti-

cally significant.

Results

16S rRNA gene analysis

A total of 55 specimens were available for 16S rRNA gene

analysis and PCR was positive for 25 specimens from 14

different sets and 11 patients (Table 1). Specimens of

synovial fluid were positive in two patients and intraoper-

ative specimens in 12. A clone library was constructed for

each positive specimen, giving 25 clone libraries and 666

consensus sequences of high sequence quality. A total of

41 OTUs were formed based on 16S rRNA gene sequence

similarity. Except for one bone specimen, all clone

libraries had a coverage ratio above 85%, indicating that

the majority of the microorganisms in the specimens were

detected (for more details, see Supporting Information,

Data S1).

The phylogenetic trees constructed from consensus

sequences were robust, as congruent phylogenetic rela-

tionships were obtained by neighbor-joining, maximum

parsimony and maximum likelihood methods. Sequences

were distributed into six phyla: Proteobacteria, Actinobac-

teria, Firmicutes, Bacteroidetes, Cyanobacteria and Fusobac-

teria, with the majority of the sequences belonging to the

first three phyla (Table 1). Maximum likelihood trees of

Proteobacteria, Firmicutes and Actinobacteria are shown in

Figs 1–3.
Table 1 shows that the most frequent species were

Staphylococcus epidermidis and P. acnes, each were

detected in six specimen sets. However, the majority of

the identified species were detected only in a single

patient. Multiple species were detected per specimen set

in nine patients. Of note, in four specimen sets (patients

4, 6, 8 and 11) some species were present in all PCR-

positive specimens, whereas other species were only

detected in some specimens. The presence of P. acnes was

confirmed by the specific Taqman qPCR assay in six of

nine specimens and in four of six patients (Table 2). Both

sonication and sampling by ESwab were applied to the

prosthesis from patient 2B yielding the same species,

namely S. epidermidis.

The polymicrobial communities comprised a broad

range of bacteria, some of which have rarely been

reported from clinical specimens, e.g. Wautersiella falsenii,

Dietzia cinnamea and Propioniferax innocua. Among the

OTUs there were 10 uncultured taxa, whose closest

known relatives were determined by phylogenetic analysis

(Figs 1–3).

Comparison of 16S rRNA gene analysis with

culture reports

Results obtained by 16S rRNA gene analysis and conven-

tional bacterial culture are summarized in Table 3.

Results were concordant in 15 of the 25 specimen sets

(five positive and 10 negative). In four cases the culture

report was corroborated by 16S rRNA gene analysis; how-

ever, the analysis revealed multiple additional species.

Results were discrepant for six specimen sets (gene analy-
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Rhodoferax antarcticus (T), GU233447
Rhodoferax sp. Asd M2A1, FM955857
Rhodoferax fermentans (T), D16211

OTU 3 (17)
uncultured Rhodoferax sp., HQ111149

Curvibacter gracilis (T), AB109889
Curvibacter lanceolatus, AB021390

uncultured Curvibacter sp., FJ572671
OTU 4 (5)

Rhizobacter fulvus (T), AB245356
uncultured Comamonadaceae bacterium, AM935634

uncultured bacterium, HM270718
OTU 5 (3)

uncultured beta proteobacterium, AJ422163
lt d B kh ld i EU071528uncultured Burkholderia sp., EU071528

OTU 7 (5)
Burkholderia fungorum (T), AF215705

Achromobacter xylosoxidans subsp. xylosoxidans, HM137034
Alcaligenes faecalis, FN433013
OTU 6 (1)

Bordetella avium (T), AF177666
beta proteobacterium HTCC525, AY584575

OTU 8 (4)
Oxalobacteraceae bacterium Gu-R-25, AB545759
Undibacterium pigrum (T) AM397630Undibacterium pigrum (T), AM397630

Aminomonas aminovorus, AY027801
Methylobacillus flagellatus, DM169692
Methylobacillus sp. Lap, GU937478
OTU 9 (2)

Methylobacillus pratensis (T), AY298905
uncultured Neisseria sp., FJ191689
OTU 10 (1)

Neisseria meningitidis, FJ932762
Neisseria subflava (T), AJ239291
Neisseria flavescens (T), L06168

Stenotrophomonas maltophilia (T), X95923
OTU 11 (2)
Escherichia coli, FJ463818

OTU 1 (1)
Escherichia fergusonii ATCC 35469 (T), CU928158
Escherichia coli, AY319393

Pseudomonas mediterranea (T), AF386080
OTU 2 (3)
Pseudomonas sp. LD11 partial 16S rRNA gene, AM913885

Sphingomonas sp. MBHLY-1, HM243762
OTU 12 (4)OTU 12 (4)
Sphingomonas yanoikuyae (T), D13728

0.10

Outgroup Streptococcus (4)

Fig. 1. Maximum likelihood tree of Proteobacteria. Twelve OTUs, corresponding to 48 clones (consensus sequences), were assigned to

Proteobacteria. For simplicity, only representative sequences from each OTU were used in tree calculation. The outgroup consists of four

sequences from streptococci. The scale bar represents 10% estimated sequence deviation. The number in parentheses indicates the number of

clones belonging to the OTU. Type strains are marked by (T).
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sis positive and culture negative for five and the reverse

result for one).

In general, the culture reports fell short of the precise

species diagnoses obtained by 16S rRNA gene analysis.

Accordingly, only six species or provisional groups were

identified by conventional phenotypic methods as

compared with 45 species by gene analysis. Nonetheless,

S. epidermidis was the most common species using either

culture or the molecular approach.

The gene analysis revealed a mixed bacterial flora in

more positive specimen sets (9/14; 64%) compared with

conventional culture (1/10; 10%); the difference was sta-

tistically significant (Fisher exact test, 2-tailed, P = 0.013).

Findings in three patients pointed to a heterogeneous

distribution of bacteria (Table 1). Thus, in patient 8,

Staphylococcus aureus was cultured from periprosthetic

biopsies and confirmed by molecular analysis. Neverthe-

less, three additional species were detected in the speci-

men from a prosthesis and from a bone biopsy. A

mixed flora was found by 16S rRNA gene analysis in

patients 1B and 5, in either Amies transport medium

(ESwab from the prosthesis) or a bone biopsy, whereas

a tissue biopsy was negative in both. Nonetheless,

culture of periprosthetic biopsies revealed a single spe-

cies in both cases.

Fluorescence in situ hybridization

PNA-FISH was performed with a universal bacterial

probe on nine selected specimens that were 16S rRNA

gene PCR-positive (from patients 4, 5, 8 and 9, respec-

tively). Both single cells and microcolonies/biofilms were

visualized. Figure 4 features a large microcolony of coc-

coid bacteria sampled with the flocked swab from the

surface of the prosthesis (patient 8). The observation cor-

related with the finding of S. aureus by 16S rRNA gene

analysis and culture.

Discussion

In this study of patients with suspected PJI, notably

higher bacterial diversity was detected by broad range 16S

Streptococcus thermophilus CNRZ1066, CP000024
OTU 36 (3)
Streptococcus salivarius subsp Salivarius (T) AY188352Streptococcus subsp. (T), 
Streptococcus salivarius subsp. thermophilus, HQ293117

Streptococcus sanguinis (T), DQ303192
OTU 35 (1)

Streptococcus mitis (T), AF003929
OTU 35 (1)
Streptococcus agalactiae (T), AB023574
OTU 38 (14)
Streptococcus dysgalactiae subsp. equisimilis (T), DQ232540
OTU 37 (107)

Lactobacillus curvatus (T), AJ621550
Lactobacillus graminis (T) AJ621551illus (T), 
Lactobacillus sakei subsp. Carnosus (T), AY204889
uncultured bacterium, HM272366
OTU 39 (1)
Staphylococcus aureus subsp. anaerobius (T), D83355
OTU 41 (144)
Staphylococcus aureus, DQ997837
Staphylococcus epidermidis (T), D83363
OTU 40 (153)
Staphylococcus hominis, EU071623
Staphylococcus hominis subsp. Novobiosepticus (T), AB233326
OTU 40 (1)OTU (1)

uncultured bacterium, HM276014
Staphylococcus caprae (T), Y12593
OTU 40 (1)

Outgroup Proteobacteria (13)

0.10

Fig. 2. Maximum likelihood tree of Firmicutes. Seven OTUs, corresponding to 426 clones (consensus sequences), were assigned to Firmicutes.

For simplicity, only representative sequences from each OTU were used in tree calculation. The outgroup consists of 13 sequences from

Proteobacteria. The scale bar represents 10% estimated sequence deviation. The number in parentheses indicates the number of clones

belonging to the OTU. Type strains are marked by (T).
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rRNA gene analysis than with conventional bacteriological

culture. Still, there was a fair agreement between results

obtained by culture and molecular analysis (Table 3). It is

noteworthy that 10 sets of specimens concurred in being

negative in both diagnostic setups.

Figures 1–3 highlight the many exotic bacteria detected

in this study. The various Proteobacteria have an acknowl-

edged environmental distribution and occur regularly in

clinical specimens, although their clinical significance is

often doubtful (Murray et al., 2007). The flavobacterium

Corynebacterium tuberculostearicum, AJ438051
OTU 19 (1)
Corynebacterium tuberculostearicum (T), X84247
Corynebacterium tuberculostearicum (T), AJ438050
OTU 19 (16)
Corynebacterium tuberculostearicum, AJ438049
Corynebacterium accolens ATCC 49725 (T), ACGD01000048
OTU 19 (4)

Corynebacterium durum (T), Z97069
OTU 24 (2)

Corynebacterium pseudodiphtheriticum (T), AJ439343
OTU 23 (1)

Corynebacterium aurimucosum (T), AY536426
OTU 20 (2)( )

Corynebacterium lipophiloflavum DSM 44291 (T), ACHJ01000075
OTU 22 (1)

Corynebacterium sp. 25850 16S ribosomal RNA gene, AY581881
OTU 25 (7)
Corynebacterium jeikeium (T), U87823

Corynebacterium amycolatum (T), X84244
OTU 21 (35)
Corynebacterium sp. 'Smarlab BioMol-2301292’ , AY230773
Dietzia cinnamea (T), FJ468339
OTU 26 (1)

Dietzia sp. SK79, EU417672
Dietzia maris AM990540, 
Rothia mucilaginosa 16S ribosomal RNA gene, DQ409140 
OTU 32 (1)
Rothia mucilaginosa (T), X87758
Rothia sp. oral taxon 188 16S ribosomal RNA gene, GU470892
OTU 33 (1)

Rothia aeria (T), AB071952
Gram-positive bacterium Wuba45, AF336354
Kocuria palustris (T), Y16263
OTU 34 (1)
Micrococcus luteus 16S rRNA gene, isolate CV31., AJ717367
OTU 31 (8)

Micrococcus luteus NCTC 2665 (T) CP001628,  
Micrococcus sp. kera1, HM204502

Propionibacterium avidum (T), AJ003055
OTU 29 (3) 
Uncultured Propionibacterium sp. clone PmeaMucG8, EU249977 

Propionibacterium acnes (T), AB042288
OTU 27 (93)

Propionibacterium granulosum (T), AJ003057
OTU 28 (1)

Propioniferax innocua (T), AF227165
OTU 30 (1)

Outgroup Proteobacteria (13)

0.10

Fig. 3. Maximum likelihood tree of Actinobacteria. Sixteen OTUs, corresponding to 179 clones (consensus sequences), were assigned to

Actinobacteria. For simplicity, only representative sequences from each OTU were used in tree calculation. The outgroup consists of 13 sequences

from Proteobacteria. The scale bar represents 10% estimated sequence deviation. The number in parentheses indicates the number of clones

belonging to the OTU. Type strains are marked by (T).
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W. falsenii was first described in 2006 and multiple clini-

cal isolates, including blood isolates, were included in the

first publication (Kampfer et al., 2006). The actinobacteri-

al genus Dietzia is very similar to Rhodococcus and may

be an emerging pathogen with a role in PJI (Pidoux

et al., 2001; Koerner et al., 2009). Propioniferax (formerly

Propionibacterium) innocua is a member of the skin flora

in humans and has not yet, to our knowledge, been

assigned a pathogenic role (Yokota et al., 1994). It should

not be precluded that exotic bacteria may have been a

regular presence in clinical samples and have now become

detectable with new techniques. Studies of intravenous

catheters and wounds point in that direction (Larsen

et al., 2008; Thomsen et al., 2010). A better understand-

ing of the pathogenic potentials of these less described

bacteria in a polymicrobial biofilm is essential for man-

agement of such infections, and currently different theo-

ries exist in the literature. Burmølle et al. (2010)

suggested that the presence of a bacterium does not nec-

essarily imply that it contributes to the pathogenesis of

the infection, and requires treatment. However, different

microorganisms may act synergistically in a polymicrobial

infection (Brogden et al., 2005) and some authors advo-

cate that bacterial diversity in itself promotes the persis-

tence of chronic infections (Ehrlich et al., 2005) and

increased pathogenicity, e.g. in wounds (Bowler, 2003).

The total number of different bacterial species present,

rather than some particular species, was found to corre-

late positively with impaired wound healing (Edwards &

Harding, 2004). Further studies are warranted to deter-

mine the function, interaction and clinical implications of

the exotic bacteria as well as the polymicrobial flora

detected by 16S rRNA gene analysis. However, circum-

stances strongly suggest that they are part of a complex

biofilm community that is not sampled and/or cultured

properly with conventional methods. Most likely the spe-

cific growth requirements of these bacteria are not met by

standard culture conditions and overgrowth by other

pathogens may be an additional problem. It was not pos-

sible to assess the significance of each identified species in

the current study. To fulfil that aim, systematic applica-

tion of broad range molecular techniques is required in

patients suspected of PJI.

PNA-FISH was applied to selected specimens to obtain

visual support for the organization of bacteria into bio-

films, but the current results should be regarded as preli-

minary. It was clear, however, that some bacteria were

present in microcolonies or pieces of biofilms.

This study was conceived as an exploratory study and

the molecular work-up of specimens was more extensive

than would be practical for routine diagnosis. The use of

clone libraries would probably be too cumbersome for

clinical use but it was pivotal for the demonstration of

bacterial diversity in this study. Even without a firm basis

for clinical interpretation, our study provides useful guid-

ance for handling of specimens from orthopedic implants.

The use of the MolYsis DNA extraction kit made it safe to

conclude that the preparations of DNA originated from

intact and viable bacteria (Horz et al., 2008; Handschur

et al., 2009). The first preparatory step comprised lysis of

human cells while leaving bacterial cells unaffected, and

the following DNase treatment degraded human DNA as

well as DNA from dead microorganisms. This approach

mitigates the impact of high amounts of human DNA and

PCR inhibitors, which have previously been found to

impede studies of, for example, synovial fluid (van der

Heijden et al., 1999). Moreover, the origin of DNA from

viable bacteria should make the results of 16S rRNA gene

analysis directly comparable with culture reports.

The intraoperative sampling from the metal surface of

the prosthesis or spacer with a flocked swab was an

option when the prosthesis was retained, but the proce-

dure was also applicable in the molecular laboratory as an

alternative to sonication. An experimental study with bio-

film formed by Gram-positive bacteria on metal discs has

previously shown that sampling by scraping is less effec-

tive compared with sonication (Bjerkan et al., 2009). The

flocked swab merits consideration especially for intraop-

erative use, because it is easy to handle and bacteria are

eluted quantitatively to the medium (Van Horn et al.,

2008). However, sonication should be considered the best

option for in vitro use (Bjerkan et al., 2009).

In this study, P. acnes was detected in six patients by

16S rRNA gene analysis but was not isolated by culture

Table 2. Quantification of Propionibacterium acnes by Taqman qPCR

in specimens found positive by the 16S rRNA gene clone library

approach

Sample

Average ± STD

(copies lL�1 DNA extract)

Patient 3

Periprosthetic biopsy –

Patient 4

Bone 23 ± 3

Periprosthetic biopsy 34 ± 8

Flocked swab (prosthesis) 28 ± 6

Patient 5

Flocked swab (prosthesis) 65 ± 22

Patient 9

Periprosthetic biopsy 16 ± 4

Patient 10

Sonication fluid (prosthesis) 111 ± 39

Patient 11

Sonication fluid (prosthesis) –

Bone –

– indicates that P. acnes was not detected in the sample or the num-

ber was below the detection limit of the assay.
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from any of the specimen sets, which may be due to a

relatively short incubation period for anaerobic media (4

and 6 days, respectively) (Lutz et al., 2005). As the qPCR

method can facilitate detection of pathogens within

hours, the P. acnes-specific qPCR assay was chosen to test

the feasibility of this method for PJI diagnosis. The dis-

crepant results obtained for P. acnes with clone libraries

and Taqman qPCR assay are most likely due to a lower

sensitivity of the qPCR assay, but unfortunately contami-

nation during broad range 16S rRNA gene PCR cannot

be precluded.

Currently, there are few studies with broad range 16S

rRNA gene analysis that allow a direct comparison with

our results. Vandercam et al. (2008) analyzed biopsies,

swabs or aspirates from 34 patients suspected of PJI and

found one patient with a polymicrobial flora comprising

two species. Fenollar et al. (2006) analyzed bone or joint

specimens from 525 patients, 155 of whom had either a

hip or knee prosthesis. A total of 121 specimens were

positive by either PCR or culture. Although results were

not analyzed separately for prosthetic implants, it is inter-

esting that a subset of specimens had a polymicrobial

flora (with two to eight bacteria). The bacterial spectrum

was wide and included approximately 20 exotic bacteria,

most of which were anaerobes.

There are a number of important limitations to our

study. A number of potential sources for contamination

with microbial DNA exist despite the precautions taken

when handling and processing the clinical specimens. The

number of patients was small and no fixed criteria were

Table 3. Overview of results obtained by culture-based methods and 16S rRNA gene analysis

Patient no. Culture 16S rRNA gene analysis

Concordance of positive results

1A Staphylococcus epidermidis Staphylococcus epidermidis

1C Staphylococcus epidermidis Staphylococcus epidermidis

2B Staphylococcus epidermidis Staphylococcus epidermidis

6 Hemolytic streptococcus group B,

coagulase-negative staphylococcus,

coryneform rods

Streptococcus agalactiae, Staphylococcus epidermidis, Corynebacterium amycolatum,

Corynebacterium aurimucosum, Corynebacterium sp.

7 Hemolytic streptococcus group G Streptococcus dysgalactiae ssp. equisimilis

Partial concordance of positive results

1B Coryneform rods Uncultured Curvibacter sp., Corynebacterium tuberculostearicum, Propioniferax innocua,

Staphylococcus aureus, Kocuria sp., Escherichia coli

2A Staphylococcus epidermidis Staphylococcus epidermidis, uncultured Burkholderia sp., Pseudomonas sp., uncultured

Lactobacillus

5 Staphylococcus epidermidis Staphylococcus epidermidis, Micrococcus luteus, Streptococcus dysgalactiae ssp.

equisimilis, Corynebacterium pseudodiphthericum, Corynebacterium accolens,

Corynebacterium durum, Rothia mucilaginosa, uncultured Burkholderia sp., uncultured

Cyanobacterium, Prevotella sp., Fusobacterium nucleatum, Propionibacterium acnes

8 Staphylococcus aureus Staphylococcus aureus, Streptococcus mitis, Rothia sp., Pseudomonas sp., uncultured

Bergeyella sp.

Concordance of negative results

12–21 Negative Negative

Discordance of results: PCR positive and culture negative results

3 Negative Staphylococcus caprae, Micrococcus luteus, Dietzia cinnamea, Corynebacterium

lipophiloflavum, uncultured Curvibacter sp., Streptococcus salivarius, Propionibacterium

acnes

4 Negative Streptococcus dysgalactiae ssp. equisimilis, Streptococcus sanguinis, Sphingomonas sp.,

uncultured Burkholderia sp., Neisseria sp., Alcaligenes faecalis/Achromobacter

xylosoxidans ssp. xylosoxidans, Propionibacterium acnes, Propionibacterium granulosum

9 Negative Staphylococcus hominis, Corynebacterium accolens, Corynebacterium durum,

Corynebacterium tuberculostearicum, Sphingomonas sp., Stenotrophomonas maltophilia,

uncultured Methylobacillus sp., Propionibacterium acnes, Propionibacterium avidum

10 Negative Propionibacterium acnes

11 Negative Uncultured Rhodoferax sp., Wautersiella falsenii, uncultured Betaproteobacteria,

uncultured Bacteroidetes, Propionibacterium acnes

Discordance of results: PCR negative and culture positive results

22 Coagulase-negative staphylococcus Negative
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set for inclusion except the suspicion of PJI. Culture

methods may not have been optimal with regard to dura-

tion of incubation of anaerobic media. Likewise, the phe-

notypic speciation of bacteria was not as precise as that

obtainable by 16S rRNA gene analysis. The flocked swabs

used intraoperatively were not submitted for culture

because they were not part of the diagnostic routine.

While each culture report for surgical biopsies was based

on five specimens (Kamme & Lindberg, 1981; Mikkelsen

et al., 2006), most 16S rRNA gene analyses were carried

out on one specimen per anatomic site. Even with the

best precautions contamination can occur, and the find-

ing of bacterial species that have not previously been

associated with PJI should be interpreted with caution.

The inference concerning biofilm formation in the PJIs

studied was indirect, and the visualization of bacteria by

PNA-FISH and confocal microscopy was carried out with

selected specimens only. These limitations not withstand-

ing, our study strongly suggests that 16S rRNA gene anal-

ysis can detect a more diverse bacterial flora than

conventional culture methods. However, 16S rRNA gene

analysis combined with cloning as carried out this study

is labor-intensive and time-consuming and therefore not

applicable for routine diagnosis.

Considering these results, the location and composition

of biofilms in PJIs should be addressed more directly in

future studies. This can be done by new intraoperative

sampling strategies and the use of newer and faster

molecular techniques such as direct 16S rRNA gene

sequencing combined with the use of the software RIPSEQ

(Kommedal et al., 2009) or the IBIS T5000 Biosensor

System (Costerton et al., 2011).
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Overview of coverage ratio of each clone library  

The coverage ratio of each clone library (25 in total) is given in the table. The numbers are given with the number 

of analysed clones followed by coverage ratio in brackets. The 16S rRNA gene PCR negative samples are 

indicated as “-“, while the samples unavailable for analysis are indicated by “N/A”. Generally 24-48 clones were 

selected from each clone library. However, several clone libraries have less than 24 clones,. This was either due to 

a low sequence quality of the clones or fewer than 24 colonies formed in the clone library. For patient no. 1B, only 

1 good sequence was obtained from synovial fluid, and the coverage ratio of the bone sample was only 76% based 

on 21 sequences. Attempts to make new clone libraries from these two samples failed due to difficulty in 

obtaining new 16S rRNA gene PCR products (samples from patient no. 1B were not extracted with MolYsis 

Basic). All the remaining clone libraries had coverage ratio above 85%, indicating that the majority of the 

microorganisms in the samples were detected.   

Patient 

no. 

Bone Periprosthelic 

biopsy 

Synovial fluid Flocked swab 

(prosthesis) 

Sonication fluid: 

Prosthesis or  

spacer  

Flocked swab 

(spacer) 

1A N/A N/A 25 (100%) N/A N/A N/A 

1B 21 (76%) - 1 (100%) - N/A N/A 

1C - - - 27 (100%) N/A N/A 

2A N/A N/A 40 (98%) N/A N/A N/A 

2B - - - 34 (100%) 17 (100%) N/A 

3 - 22 (91%) - - N/A - 

4 29 (90%) 9 (89%) 13 (100%) 19 (89%) N/A N/A 

5 - - - 39 (85%) N/A - 

6 - 27 (96%) - N/A 42 (100%) N/A 

7 - - - - N/A 45(100%) 

8 20 (85%) 26 (100%) 30 (100%) 33 (100%) N/A 40 (100%) 

9 - 42 (93%) - N/A N/A - 

10 - - - N/A 22 (100%) N/A 

11 31 (100%) - - N/A 13 (92%) N/A 

 




