
Aalborg Universitet

Java for Cost Effective Embedded Real-Time Software

Korsholm, Stephan

Publication date:
2012

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Korsholm, S. (2012). Java for Cost Effective Embedded Real-Time Software. Department of Computer Science,
Aalborg University.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: July 04, 2025

https://vbn.aau.dk/en/publications/01723a5d-4fb8-4b48-b836-2a4c03144331

Java for Cost Effective
Embedded Real-Time Software

Stephan E. Korsholm

Ph.D. Dissertation, August 2012

Abstract

This thesis presents the analysis, design and implementation of the Hardware
near Virtual Machine (HVM) - a Java virtual machine for embedded devices.
The HVM supports the execution of Java programs on low-end embedded hard-
ware environments with as little as a few kB of RAM and 32 kB of ROM.
The HVM is based on a Java-to-C translation mechanism and it produces self-
contained, strict ANSI-C code that has been specially crafted to allow it to
be embedded into existing C based build and execution environments; environ-
ments which may be based on non standard C compilers and libraries. The
HVM does not require a POSIX-like OS, nor does it require a C runtime library
to be present for the target. The main distinguishing feature of the HVM is
to support the stepwise addition of Java into an existing C based build and
execution environment for low-end embedded systems. This will allow for the
gradual introduction of the Java language, tools and methods into a existing
C based development environment. Through program specialization, based on
a static whole-program analysis, the application is shrinked to only include a
conservative approximation of actual dependencies, thus keeping down the size
of the resulting Java based software components.

The Safety-Critical Java specification (SCJ), Level 0 and 1, has been imple-
mented for the HVM, which includes preemptive task scheduling. The HVM
supports well known concepts for device level programming, such as Hardware
Objects and 1st level interrupt handling, and it adds some new ones such as
native variables. The HVM is integrated with Eclipse.

The work presented here is documented in 5 conference papers, 1 journal
article, and 1 extended abstract, which are all included as part of this thesis. A
summary of these papers is given in a separate Section.

2

Contents

1 Introduction 6
1.1 Motivation . 7
1.2 Contribution . 10
1.3 Delimitation . 12

2 An Industrial Case: KT4585 13
2.1 RTOS . 14
2.2 CPU and Memory . 15
2.3 Device I/O . 18
2.4 Interrupts . 19
2.5 C Runtime . 19
2.6 Application Code . 20
2.7 Programming Environment . 20

3 Requirements Analysis - The Industrial Case 21
3.1 Programming Environment Requirements 22
3.2 Software Integration Requirements 23
3.3 Hardware Integration Requirements 23
3.4 Performance Requirements . 24
3.5 Requirements for Embedded Java 25

4 Requirements Analysis - State-of-the-art 28
4.1 Java execution styles . 28

4.1.1 Interpretation . 28
4.1.2 AOT Compilation . 29
4.1.3 JIT Compilation . 31

4.2 Execution Styles for Embedded Platforms 32
4.3 State-of-the-art Environments . 33

4.3.1 JamVM . 33
4.3.2 CACAO . 34
4.3.3 GCJ . 34
4.3.4 FijiVM . 35
4.3.5 KESO . 37
4.3.6 JamaicaVM . 37

4.4 Opportunities for Embedded Java 38

5 The HVM - Design 40
5.1 HVM Demonstration . 40
5.2 Methods . 43

5.2.1 Intelligent Class Linking 43
5.2.2 Self-contained Source Code Generation 46
5.2.3 ROM/RAM aware . 47
5.2.4 Hybrid Execution Style 47
5.2.5 Easy Activation . 48

3

5.2.6 Code efficiency . 49
5.2.7 Code efficiency - Producer-Consumer Analysis 51
5.2.8 Code efficiency - Devirtualization 52
5.2.9 Code efficiency - Other Optimizations 53
5.2.10 Hardware Objects . 53
5.2.11 1st Level Interrupt Handling 53
5.2.12 API Independence . 54
5.2.13 Native Variables . 54

5.3 Results . 55
5.3.1 Integrating With an RTOS 55
5.3.2 Full SCJ application . 57

6 The HVM - Implementation 60

7 HVM Evaluation 62
7.1 Method . 62

7.1.1 Benchmark execution - High-end Platforms 64
7.1.2 Benchmark execution - Low-end Platforms 64

7.2 Results . 65
7.3 Discussion . 66

8 Summary and Contributions 68
8.1 The Java Legacy Interface - JTRES 2007 68
8.2 Hardware Objects for Java - ISORC 2008 68
8.3 Interrupt Handlers in Java - ISORC 2008 68
8.4 A Hardware Abstraction Layer in Java - TECS Journal 2011 . . 68
8.5 Flash Memory in Embedded Java Programs - JTRES 2011 . . . 69
8.6 Towards a Real-Time, WCET Analysable JVM Running in 256

kB of Flash Memory - Nordic Workshop on Programming Theory
2011 . 69

8.7 Safety-Critical Java for Low-End Embedded Platforms - JTRES
2012 . 69

9 Future Work 70
9.1 Tool Support . 70

9.1.1 Debugging . 70
9.2 Large Scale Industrial Experiments 70
9.3 HVM optimizations . 71
9.4 HVM Optimizations Correctness 72
9.5 Java Level GC . 72
9.6 Merging HVM with KESO, FijiVM and others 72
9.7 HVM in Educational Settings . 73
9.8 HVM for .NET . 73

10 Conclusion 74

4

11 Acknowledgement 75

5

1 Introduction

Successful companies within the technology industry constantly monitor and
optimize the work processes of their production. ”Lean manufacturing” is one
well known example of a production practice that constantly optimizes work
processes in order to increase earnings.

Similarly for the development of software intensive products: new efforts
are continually undertaken to increase the productivity and quality of software
development.

This thesis presents technical solutions that may increase the usability and
attractiveness of the Java programming language as a programming language
for embedded software development. The principle aim of this effort is to offer
tools that will increase productivity and quality of software development for
embedded platforms.

The experimental work is embodied in the HVM (Hardware near Virtual
Machine). The HVM is a lean Java virtual machine for low-end embedded
devices. It is a Java-to-C compiler but it also supports interpretation. The
main distinguishing feature of the HVM is its ability to translate a single piece
of Java code into a self contained unit of ANSI-C compatible C code that can
be included in an existing build environment without adding any additional
dependencies. The raison d’être of the HVM is to support the stepwise addition
of Java into an existing C based build and execution environment for low-end
embedded systems. Other important features of the HVM are,

• Intelligent class linking. A static analysis of the Java source base is per-
formed. This computes a conservative estimate of the set of classes and
methods that may be executed in a run of the program. Only this set is
translated into C and included in the final executable

• Executes on the bare metal (no POSIX-like OS required). The generated
source code is completely self contained and can be compiled and run
without the presence of an OS or C runtime library

• Hybrid execution style. Individual methods (or all methods) can be
marked for compilation into C or interpretation only. Control can flow
from interpreted code into compiled code and vice versa. Java excep-
tions are supported and can be thrown across interpretation/compilation
boundaries

• 1st level interrupt handling. The generated code is reentrant and can
be interrupted at any point to allow for the immediate handling of an
interrupt in Java space

• Hardware object support. Hardware objects according to [57] are sup-
ported.

• Native variable support. Native variables as described in Section 5.2.13
are supported

6

• Extreme portability. Generated code does not utilize compiler or run-
time specific features and can be compiled by most cross compilers for
embedded systems e.g. GCC or the IAR C Compiler from Nohau [44]

• The HVM supports the SCJ specification [65] Level 0 and 1. It does not
support garbage collection but relies on the SCJ scoped memory model
for memory management. The HVM can execute the miniCDj benchmark
from [52].

The design and implementation of the HVM is described in detail in Section 5.

1.1 Motivation

The Java programming language, a safe and well structured high level, object
oriented development language has, since the mid 90’s, been successfully ap-
plied on desktop and server platforms to cope with the increasing complexity
of software systems. Empirical research has shown that this shift from previous
languages and environments - mostly C - to a high-level language like Java sig-
nificantly increases the productivity of the average software developer [48, 55].

There are many reasons why the use of Java, as opposed to C, will increase
productivity. Some important reasons are:

• Java expresses important object oriented concepts, such as encapsulation
and modularization, through simple language constructs. High level lan-
guages in general invite, through their design, the developer to write soft-
ware that is amenable to reuse and easy to maintain and extend

• The way Java manages and accesses memory prevents a number of com-
mon mistakes that are easier to make in C

• But equally important as the language itself, Java, and other high-level
object oriented languages, are usually accompanied by a range of open-
source, efficient development tools such as Eclipse. Eclipse supports a
wide range of tools and frameworks that may help the software developer
to develop better software, by using e.g. Unit testing and UML modeling.

Yet, the advantages of, and experiences from, high level programming lan-
guages and object oriented design principles and best practices, as they have
been used on the desktop and server platforms, have so far not found widespread
use on the embedded platforms used in industrial settings. Even today the C,
C++ and assembly languages are in total by far the most predominant lan-
guages ([56], page 27) when programming small resource constrained devices
to control e.g. machinery in a production line or sensors and actuators in the
automotive industry. Some of the main reasons are:

• Not incremental. Java environments tend to require the inclusion of a
significant amount of functionality even when this functionality is not
used by a given program. E.g. running a HelloWorld type of application

7

using a standard Java execution environment requires the loading of many
hundreds of classes. As a result the embedded programmer will often
find that adding a small piece of Java functionality requires the use of a
disproportionate amount of memory resources (both RAM and ROM). It is
natural to expect that when you add a piece of Java software to an existing
code base you pay for what you actually use, but no more than that. If a
Java environment lives up to this expectation, it is incremental, otherwise
it is monolithic. Until now almost all embedded Java environments lean
strongly towards being monolithic

• Not integratable. Integration with existing RTOS build and execution
environments written in C is difficult, since Java environments tend to
be based on a closed world assumption: the JVM is the main execution
controller and only limited amounts of C are used for specific purposes.
The contrary is the case for companies contemplating the use of Java: the
existing RTOS execution environment is the main execution controller.
Additionally, Java software modules cannot dictate build procedures but
rather have to be added to the existing build and execution environment.
Also, the Java language shields the programmer from the lower levels
of the software and hardware stack. Direct access to e.g. memory and
device registers, and direct access to data in the underlying RTOS (usually
written in C) is not part of the language itself and makes it difficult to
integrate Java with a particular hardware environment. This is especially
troublesome for embedded systems, that usually tend to communicate
with and control hardware to a much greater extent than non-embedded
environments

• Not efficient. Embedded software developers expect that functionality
written in Java will execute as fast, or almost as fast as C, and they
will expect that the size required to store Java objects in memory is ap-
proximately the same as the size required to store them using legacy lan-
guages. Recently embedded Java environments has proven their efficiency,
but until now concerns about efficiency have been important to embedded
developers contemplating the use of Java for embedded systems.

C environments are better at managing dependencies and they offer a larger
degree of incrementality than Java environments. The baseline offset in terms of
program memory of simple C functionality is very small. C can directly access
memory and device registers and C can easily be integrated, in an incremental
manner, with any build and execution environment. C compilers have developed
over many years and produce efficient code for a large range of platforms, both
in terms of execution speed and memory requirements. C is the standard for
any other execution environment in terms of efficiency. So C has been a natural
choice of language for embedded software engineers, since C, to a higher degree
than higher level languages, enables the engineer to control, in detail, the use
of the limited memory- and computational resources available.

8

An underlying assumption of this thesis is that high level languages like
Java are better programming languages than low level languages in terms of
programmer efficiency and in terms of software quality in general. This claim
is supported by research for desktop and server platforms [48, 55] and it is
an assumption here that it holds true for embedded platforms as well. As
the following sections will show, the latter problem with lack of efficiency of
embedded Java has been solved already - and today’s state-of-the-art embedded
Java environments execute almost as efficiently as C - but the former two issues
concerning incrementality and integratability remains open issues making the
utilization of Java difficult for low-end embedded systems.

So how can the drawbacks of higher level languages be eliminated while
keeping their advantages? If this problem can be solved, the architectural power
of object oriented environments can be used at the level of embedded systems
development. If the embedded systems engineer can be empowered through
the use of object oriented methods and best practices to conquer the growing
complexity of embedded systems, while maintaining the ability to control the
hardware in detail, the industry as such will be able to develop software faster
and to increase the quality of the software.

The Problem

Let us go back in time a couple of decades and consider a company that has
done most of its embedded development in assembler, but now seeks to use the
higher level programming language C for some parts of new functionality. They
would expect the following:

• Incrementality. If they add a certain limited set of functionality in C they
would expect to pay a cost, in terms of memory requirements, proportional
to the functionality added - in other words, they will expect to pay for
what they use, but not more than that

• Integratability. They should not have to change to a new build environ-
ment or build strategy. It should be possible to add C software artifacts
to their current build environment. Also, they should not have to change
their RTOS or scheduling policy. New code produced in C should be
able to be executed by the existing execution environment and be easily
integratable with existing assembler code

• Efficiency. In terms of execution time, they may accept a limited degra-
dation for C code, but not by an order of magnitude.

These assumptions hold for the C programming language and the tool chains
supporting it. Now consider the same company today exploring the options of
using the even higher level language Java for writing new software components.
They will find that no existing Java environment will be able to meet all of the
above expectations.

9

1.2 Contribution

The main contribution of this work is the HVM. It is an efficient, integratable
and incremental execution environment for low-end embedded systems. The
HVM can execute the example code shown in Figure 1 (compiled against e.g.
the latest JDK1.7) on a low-end embedded platform with 256 kB Flash and just
a few kB of RAM.

ArrayList<String> list = new ArrayList<String>();

list.add("foo");

list.add("horse");

list.add("fish");

list.add("London");

list.add("Jack");

Object[] array = list.toArray();

Arrays.sort(array);

Figure 1: HVM Example

The HVM compiler is implemented as an Eclipse plugin but may also run from
the command line. Figure 2 shows how the Java-to-C compilation can be acti-
vated from inside Eclipse. An additional view, entitled ’Icecap tools dependency
extent’ below, shows the user all the dependencies that will be translated to C.

10

Figure 2: HVM Environment in Eclipse

Static methods implemented in Java and translated to C can easily be called
from existing C code, thus supporting the seamless integration between C and
Java. Since Java is translated into C, a high level of efficiency is achieved, on
some platforms within 30% of native C.

Yet, this is just one step forward. There is still the important task of making
the ensemble applicable to hard real-time safety critical embedded systems. In
the course of its short life time the HVM has already been extended with tools
to start this work:

• SCJ (Safety-Critical Java) profile. To support the SCJ, features have
been added to the HVM to support preemptive task scheduling, scoped
memory allocation and a real-time clock. On top of these features the
SCJ Level 0 and 1 specification has been implemented and is available as
part of the HVM distribution

• WCET (Worst Case Execution Time) analysis. In their thesis work and
paper [23] the authors present the tool TetaJ that statically determine
the WCET of Java programs executed on the HVM. TetaJ is based on
a model checking approach and integrates with the UPPAAL [2] model
checking tool.

In their paper [8] the authors lay out a vision for a complete environment com-
prised by a set of tools for supporting the development and execution of hard

11

real-time safety critical embedded Java. The HVM is a candidate for a virtual
machine executing the resulting Java byte code on a variety of embedded plat-
forms. Additional to WCET analysis - which has already been implemented for
the HVM - the authors also advocate the development of tools for (1) Confor-
mance checking, (2) Exception analysis, (3) Memory analysis and (4) Schedu-
lability analysis. Using the WALA [1] and UPPAAL [2] framework the authors
have developed tools for (1), (3) and (4). As will be discussed further in Sec-
tion 9, it is an important priority to continue work with integrating these tools
with the HVM and the HVM Eclipse plugin.

Section 2 examines in more detail how embedded software engineers work
with existing legacy C environments today and from this industrial case, Sec-
tion 3 extracts a list of requirements that environments for embedded Java
should seek to fulfill to support the incremental addition of Java software into a
C based build and execution environment. Section 4 examines current execution
environments for embedded Java and evaluate to which extent they support in-
crementality, integratability and efficiency. This overview of the current state
of the art will show that current environments have come far in terms of effi-
ciency and have even just made the first advances in terms of incrementality,
but in terms of integratability there is a gap between the current state of the
art and the requirements put up in Section 3.5. To close this gap Section 5, 6
and 7 introduces the HVM. The HVM builds on the ideas of existing embedded
environments (mostly the FijiVM[50] and the KESO VM[21]) and adds a novel
set of features mainly focused on integratability.

The HVM itself incarnates a body of contributions described in 5 conference
papers, 1 journal article, and 1 extended abstract. These papers are included
as appendices to this thesis and summarized in Section 8.

1.3 Delimitation

The challenges related to using Java in existing C based build and execution
environments increase as the target platforms become smaller and smaller. Some
of the reasons are,

• As the amount of computational and memory resources decrease on smaller
and smaller devices, the requirement that Java environments are incremen-
tal and efficient becomes more and more important

• Because of the great diversity of low-end embedded devices compared to
e.g. desktop environments, the nature of the build environments differ a
great deal as well. The chance that the build environment used by a par-
ticular engineering company follows some commonly used standard is low.
Build environments are often non-standard and have evolved over time and
become very particular for the company in question. So integratability is
even more important for low-end embedded systems.

Figure 3 illustrates an overview of computational platforms ranging from
server platforms down to low-end embedded systems. The focus here is on low-

12

end embedded systems. In many cases the results could be applied on high-end
embedded systems as well, but it is the low-end embedded platforms that can
benefit the most from incremental, integratable and efficient Java environments.

Figure 3: Platforms

The industrial case introduced in the following section is a prototypical ex-
ample of a low-end embedded system: limited computational resources, non-
standard build environment and a large amount of existing C software control-
ling the execution of the embedded software functionality.

2 An Industrial Case: KT4585

This section looks more closely at the KIRK DECT Application Module [54]
from Polycom [53], also called the KT4585. This module can be used to wire-
lessly transmit voice and data using the DECT protocol. The device can be
found in a range of DECT based mobile phones and in other communication
solutions. It has the following features,

• 40 Mhz, 16 bit RISC architecture

• 8 kB RAM, 768 kB ROM

• External DSP (Digital Signal Processor) for voice encoding

• External dedicated instruction processor (DIP) for controlling a radio re-
ceiver/transmitter

• Microphone and speaker devices

13

• Low power battery driver.

The KT4585 can be programmed in C/Assembler and comes with a C based
development platform and a small non-preemptive event driven RTOS. The
RTOS is described in more detail as part of [37]. The bulk of the delivered
software implements the DECT protocol stack, but an important part controls
the DSP and DIP through low level device register access and interrupt handling.

The KT4585 is a rather complicated setup, making it a well suited case for
finding the methods used by engineers when programming resource constrained,
real-time, control and monitor software. An overview of the KT4585 architec-
ture is illustrated in Figure 4.

Figure 4: Simplified Architecture of the KT4585

2.1 RTOS

Polycom has developed a C based framework for programming the KT4585.
This framework is based on an event-driven programming model. As observed in
[26, 20], event-driven programming is a popular model for writing small embed-
ded systems. Figure 5 illustrates the scheduling model applied on the KT4585.

The OS loop retrieves an event from the head of an event queue and dis-
patches the event to its handler. The handler is implemented as a C function
and can be registered with the OS through a simple API. The events are dis-
patched in a first-come first-served order and cannot be given priorities. It is
the responsibility of the software developer to handle events in a timely fash-
ion, in order to allow other events to be handled. No tools or methods exist

14

Application

DECT protocol

MAC Layer

Layered architecture

Event dispatcher

Event handlers

Events

getEvent

putEvent

HW

Figure 5: Event Driven Scheduling

to ensure that this rule is observed. A hardware watchdog timer will reset the
device if an event handler gets stuck. Events can be inserted into the queue
from other event handlers, but they can also be inserted into the queue from
inside interrupt handlers. An example of this is shown below in Section 2.4.

2.2 CPU and Memory

The KT4585 main processor is the CR16c [59] from National [58]. It is a 16 bit
RISC architecture with a 24 bit pointer size and on the KT4585 it is equipped
with 8 kB of RAM and 768 kB of ROM which are accessed using the same in-
structions (Von Neumann architecture). Program code is placed in ROM. Static
data can be read from ROM during runtime without any additional overhead.
Writing to ROM at runtime is possible but difficult and usually avoided. This
means that all dynamic data have to be kept in RAM.

It is programmed using a GCC cross compiler ported by Dialog Semicon-
ductor [17] or the IAR C compiler from Nohau [44].

The DSP and DIP are external processors and they are programmed from
the main C application by loading arrays of machine code into proper address
spaces. The DIP controller runs a small hard real-time software program (512
words of instructions) that open and close the radio device at exactly the right
time to adhere to the DECT frame structure. Programming the DIP software is
an error prone task. As a consequence, it is seldomly changed. An assembler for
the DIP instruction set do exist, but the DIP program can also be hand coded.
The DIP program is stored in program memory as a C array of bytes. During

15

start up of the main C application, the DIP instructions are loaded from program
memory and stored in a particular memory mapped address space at which
the DIP program must be located. The DIP is continuously reprogrammed at
runtime to open or close DECT connections. Apart from the DIP program,
the DIP behavior is also controlled through a set of configuration parameters.
These parameters are stored in EEPROM and retrieved and loaded into some
DIP control registers at start up. The parameters are needed to fine tune the
behavior of the radio electronics, a tuning made during production for each
individual device.

The DIP issues interrupts to the main processor at various points in time to
signal the reception or transmission of data over the radio. These data are read
by the DIP and stored in a portion of RAM that is shared between the DIP and
the main processor.

Figure 6: KT4585 Memory Map

The relevant portion of the KT4585 memory map is listed in Figure 6: the
area termed Shared RAM for CR16Cplus, Gen2DSP and DIP is the only area
where both the DIP and the main processor have access. The main purpose of
this area is to hold the data buffers for data being received or transmitted over
the wireless link. The main program maps this area to some data structures and
reads/writes the areas through pointers to these data structures. Here follows
some simplified code illustrating this,

16

typedef struct {

... BYTE CRCresult; ...

} RxStatusType;

typedef struct {

... RxStatusType RxStatus; ...

} PPBearerRxDataType;

typedef struct {

...

PPBearerTxDataType BearerTxData[NOOFBEARERS_PP/2];

PPBearerRxDataType BearerRxData[NOOFBEARERS_PP];

...

} BmcDataPPBankType;

#pragma dataseg=BMCDATARAM

extern BmcDataPPBankType BmcDataRam;

#pragma dataseg=default

...

if ((BmcDataRam.BearerRxData[0].RxStatus.CRCresult & (1 << 6)) == 0) {

restartDIP();

}

...

Now, if the BmcDataRam variable is located at the correct address in memory
(0x10000 according to Figure 6), and the DIP is programmed to place data into
memory according to the definitions of the types above, then the data being
received can be accessed from the main processor as is illustrated. The way in
C to force the BmcDataRam variable to be located at a particular address is to
annotate the source code at the declaration of the variable with compiler direc-
tives (the #pragma dataseg=BMCDATARAM above). The syntax of these directives
vary from compiler to compiler. Then an option is given to the linker to make it
place the segment in question at a particular address. For the IAR compiler from
Nohau the option for the above will be -Z(DATA)BMCDATARAM=10000-108ff. Al-
ternatively a linker script can be updated with this information.

The main program will also have to be able to program the DIP as illustrated
below,

unsigned char* address = (unsigned char*) 0x10001da;
*address++ = 0x01;
address++ = 0x63; / U_VINT 01 */

This code stores the U VINT 01 instruction - which makes the DIP signal an
interrupt to the CPU - at address 0x10001da in the DIP sequencer RAM area.
From the memory map in Figure 6 it is seen that this is 0x1da bytes into the
memory area used for the DIP program.

17

2.3 Device I/O

Memory mapped device registers are used to control the DIP and DSP, e.g. the
DIP is controlled through the DIP CTRL REG register which is located at address
0xFF6006 (see Figure 7)1.

Figure 7: The DIP control register

Starting the DIP after the DIP code has been loaded is accomplished in C
through code like this,

#define DIP_CTRL_REG *((volatile unsigned short*)0xFF6006)

static void restartDIP(void) {
DIP_CTRL_REG |= URST;
DIP_CTRL_REG &= ~URST;

}

In general memory mapped device registers are used to control the behavior
of all attached peripherals and electronic components that are controllable from
the CPU program.

1The data sheet for the KT4585 describing the DIP CTRL REG and other device registers are
not available for public download, so the reference to the document cannot be given here.

18

2.4 Interrupts

On the KT4585 interrupts are mostly used to facilitate the communication be-
tween the external DIP processor and the CPU. When the DIP is receiving a
frame of wireless data, these data are placed in a buffer that is located in a
memory space that is shared between the DIP and CPU. When the last bit of
data has been received the DIP issues an interrupt to the CPU. When an inter-
rupt occurs, the current event handler or the OS loop will get interrupted and
control is automatically transferred to an interrupt handler. The synchroniza-
tion between the interrupt handler and the event dispatcher is done by disabling
interrupts during critical sections of code. Because of the frame structure of the
DECT protocol, the CPU now has 5 ms to empty the buffer before it is overwrit-
ten by the next frame. The interrupt handler for the DIP interrupt empties the
buffer and signals an event in the RTOS so the upper layers of the software can
handle the interrupt in a soft real-time context. A simplified interrupt handler
is shown below,

__interrupt static void dipInterruptHandler(void) {

PutInterruptMail(DATAREADY);
... put data in mail ...
DeliverInterruptMail(DIPCONTROLLERTASK);

RESET_INT_PENDING_REG |= DIP_INT_PEND;
}

When an interrupt occurs, the hardware looks up the interrupt handler in
the interrupt vector. The location of the interrupt vector in memory can be
programmed through the use of special purpose instructions, and the content of
the interrupt vector - which handlers to execute in the case of interrupts - can
be set by writing a function pointer to appropriate locations in memory. Then
the handler gets called. The declaration of the above handler is annotated
with the interrupt annotation. This signals to the IAR C compiler that
the function is an interrupt handler. Such entry and exit code stubs will be
automatically generated by the compiler to save and restore the interrupted
context to the stack. On the KT4585 all interrupt handlers have to reset the
interrupt explicitly (as is done above). Failure to do so will cause the interrupt
to be reentered immediately.

2.5 C Runtime

The C runtime contains software features required during start up and execution
of the main program. A subset of these features are,

• Start up. After the boot loader has loaded the program, an entry point
defined by the user gets called. This is usually called start or similar.
This entry point does an absolute minimal set up of the software. On

19

the KT4585 it sets up the stack and initializes the interrupt vector table.
Then it calls main - the C entry function

• Memory management. The C runtime environment may implement the
malloc and free functions used to allocate and deallocate data

• Advanced arithmetic. If the micro controller does not natively support
multiplication or division through arithmetic machine instructions, the C
runtime may implement such functionality as ordinary functions.

The GCC and IAR C compilers come with a pre-built C runtime environment
implementing all of the above, and more. It is possible to create applications
that do not use the pre-built C runtime environment. Then the linker has to
place the code in appropriate places to ensure that the correct entry point gets
called at boot time.

2.6 Application Code

The actual software developed will consist of some abstract layers that do not
communicate directly with the hardware. E.g. the upper layers of the DECT
protocol stack are soft real-time software components that process events from
the lower layers. But it also accesses features directly from the C runtime
(arithmetic functionality and memory management) and it occasionally accesses
the hardware directly through device registers. The soft real-time part of the
software that does not access the C runtime, nor the hardware, makes up the
by far largest portion of the framework in terms of lines-of-code.

2.7 Programming Environment

The hardware outlined above is programmed using the IAR Embedded Work-
bench [45]. The software configuration management is supported by the setup
of ’projects’ that groups and manages source code. The build procedure is auto-
matically executed by the workbench based on the source code placement in the
project structure. The IAR Embedded Workbench is a commercially available
product that has been developed over many years and support a wide range
of embedded targets. Apart from the software configuration management, the
workbench also allows for the editing of source code, and finally it is also a
configuration tool, that configures the compiler, linker, and debugger to gener-
ate code with certain capabilities. Figure 8 shows a screen shot from the IAR
Embedded Workbench. For each category a large amount of options can be set,
that may have a significant impact on how the program will eventually behave
when it is executed.

The workbench is also used to download and start the executable and to run
the debugger. All configurations set by the user are saved in a XML file. For the
KT4585 an Eclipse plugin exists that can read and parse the XML configuration
file. Based on this the Eclipse plugin is able to invoke the GCC cross compiler
for the CR16c. The Eclipse plugin only supports a limited set of options.

20

Figure 8: Options for the IAR Compiler, Linker and Debugger

3 Requirements Analysis - The Industrial Case

This section is an analysis of the industrial case described in Section 2. The
outcome is a list of requirements that can reasonably be put on a Java execu-
tion environment for embedded systems such as the KT4585. Next Section 4
examines the current state of the art, comparing it with these requirements.

The industrial case described above will differ in its details from other cases
on many points, because of the great diversity of embedded environments on
the market, but it is assumed that the following statements hold for a significant
number of low-end embedded development environments,

1. A C/Assembler cross-compiler tool-chain, either commercial (e.g. the IAR
compiler from Nohau) or open-source (e.g. GCC), is used to produce
executables for the embedded target

2. An IDE, similar to IAR Embedded Workbench or Eclipse with proper
plugins, is used for software configuration management and to configure
and call the compiler, linker and debugger

3. A standalone tool or the IDE from above is used to download the exe-
cutable to the target

21

4. A simple RTOS exists for the target. No assumptions are made regarding
what scheduling mechanism is used. Applications may also run bare bone,
directly on the hardware

5. A significant amount of C code exists, possibly build on top of the RTOS
above.

6. Hardware and I/O are controlled through direct access to device registers

7. Control over placement of data in memory is required

8. Interrupt handling (1st level) is required

9. An existing C runtime supports the initial start-up of the device and may
support memory management and higher level arithmetic functionality.

Also, as stated earlier, focus here is on low-end embedded environments
were memory and computational resources are limited. This means that size
and efficiency of generated code are of interest. From these observations and
from the industrial case, a list of features is extracted; features that the embed-
ded developer will expect to be supported in his embedded Java development
environment. The features are grouped under the following headlines,

1. Programming Environment

2. Software Integration

3. Hardware Integration

4. Performance.

3.1 Programming Environment Requirements

An existing embedded developer will be reluctant to abandon his currently used
tool-chain. In many cases the compiler, linker, and debugger he uses, is adapted
to the target in question and may even contain special purpose changes in func-
tionality made by the tool-chain vendor or developer himself. The configuration
of the tool-chain in terms of settings of options and optimizations will also be
hard to change. The build procedure as supported by the IDE is also hard
to change. Embedded programming is notoriously difficult, and switching to a
different kind of software configuration management and build procedure will
most likely be a task that developers will seek to avoid. The IDE itself, on the
other hand, as used for editing of source code may not be of equal importance.
The Eclipse environment with proper plugins (e.g. CDT, a C/C++ develop-
ment plugin) is in many cases just as efficient, or even better, at manipulating
C source code as any commercially available product. Assuming the validity of
these observations a Java environment may benefit from satisfying the following
programming environment requirements,

22

• It should be possible to compile the Java artifacts using existing, possibly
non-standard, C compiler tool-chains

• The Java artifacts must be easily integratable into an existing build envi-
ronment, the nature of which cannot be made any assumptions.

3.2 Software Integration Requirements

Only in the rare case, where a fresh software development project is started, and
it is not based on any existing software, one can avoid integrating with legacy
software. In, by far, the most common case an existing C runtime, RTOS,
and software stack are present and those software components must be able to
continue to function after introducing Java into the scenario. This leads to the
formulation of the following software integration requirements,

• It should be possible to express Java functionality as an RTOS concept
and schedule the execution of Java functionality by the RTOS scheduler

• Java functionality should not rely on any additional functionality than
what is available in the existing C runtime environment

• Java functionality should be able to exchange data with existing legacy
software components written in C.

3.3 Hardware Integration Requirements

Changing the hardware to accommodate the requirements of a new development
environment will rarely be desirable in existing engineering scenarios. In many
cases the existing hardware platform is chosen because of certain properties
such as item price, power consumption, robustness to certain physical environ-
ments, other electronic attributes (e.g. resilience towards radiation and static
discharges), physical size and integratability into an existing electronic compo-
nent. So even though an alternative hardware execution platform for Java may
exist, it is unlikely that engineers will change such an important hardware com-
ponent. Hence it follows that it is desirable to support the following hardware
integration requirements,

• The Java software components should be able to run on common off-the-
shelf industrial hardware. This includes at least 8, 16 and 32 bit platforms

• It should be possible to access device registers and I/O from Java

• It should be possible to place Java software components in certain memory
areas specified by the hardware

• It should be possible from inside Java software to handle interrupts gen-
erated by hardware

• Java software should be able to directly access memory types such as
EEPROM, FLASH and RAM.

23

3.4 Performance Requirements

When an embedded developer e.g. adds a new task written in C to a set of
existing tasks scheduled by an RTOS, he will expect to see the code size increase
corresponding to how much C code he is adding. Similarly, if he is adding a task
written in Java, he would expect to see the code-size increase almost linearly in
relation to the amount of functionality added.

If the code manipulates byte entities, he would expect to see machine in-
structions being generated that are suited for byte manipulation; on the other
hand, if the code being added manipulates long word entities (32 bit), he would
expect to see code being generated that either utilizes long word instructions or
combines byte instructions to handle the long word manipulation. On low-end
embedded hardware the data width most efficiently supported by the machine
instruction set is usually 8 or 16 bit. 32 bit (or larger) operations are sup-
ported by combining 8 or 16 bit operations. It has a major impact on code size
end execution efficiency how successful the compiler are in choosing the right
instructions for the right data type.

If the code being added allocates a certain amount of bytes in dynamic mem-
ory, it is expected that only this amount of bytes, perhaps plus some minimal
amount of bookkeeping space, is required. In relation to execution efficiency
he will expect that code written in Java will run almost as efficiently as C.
Maybe he can accept that Java runs a little slower since he knows that Java
performs some useful checks that he should have done in C (but forgot). These
observations suggest the following performance requirements,

• Linear code size increase. When adding a Java software component, code
size will grow corresponding to the functionality added

• Operation size awareness. If an operation performed by software can be
inferred as or is declared as being a byte operation, byte operation machine
instructions should be used to perform it. In general the most suited data
width should be used for performing data manipulations

• Efficient dynamic data handling. The size of Java data objects should be
close to the size of the actual data being stored. Just as close as the size
of C structs are to the size of data saved in them

• RAM/ROM awareness. A C compiler will be careful to place static data
(e.g. program code and constants) in ROM and only use RAM for truly
dynamic data. The same should hold true for Java software artifacts - code
and static data should be placed in ROM, whereas only truly dynamic Java
objects are placed in RAM

• Execution efficiency. Performing a calculation or operation in Java should
be on par with performing the same operation in C.

24

3.5 Requirements for Embedded Java

Java, as a high-level language, offer some interesting features that are not as
easily supported in C: the Java language is a safe language and common mis-
takes made in C, such as pointer errors, endian confusion, dangling references,
unexpected packing of structs, unclear semantics of arithmetic operations and
operators and macro confusion, to mention some important ones, all these types
of errors are impossible to make in Java. Additionally, on the host platform a
wide range of open source and efficient set of tools exist to (1) analyze Java code
and highlight potential problems, (2) use UML for modeling, or (3) do WCET
and schedulability analysis. It will be acceptable to pay a certain price for these
features, and a limited price in terms of slightly higher space requirements or
slightly lower performance may be acceptable for non-crucial software compo-
nents. But there are some areas where it will be difficult for the embedded
developer to compromise,

• Programming Environment Requirements. Java must be integratable into
the existing programming environment. Java artifacts (e.g. the VM) must
be compilable by existing compilers and it must be possible to add these
artifacts to an existing build procedure

• Software Integration Requirement. Java software components must be
able to run in the context of an existing RTOS and legacy C software
platform

• Hardware Integration Requirement. Java software components must be
able to access and control hardware, and must be able to live on the
current hardware platform

• Performance Requirements. Performance of Java software components
must be on par with C in terms of space requirements and execution
efficiency.

Another way of illustrating the requirements put up for Java environments,
is that it should be possible to integrate Java into the existing build and ex-
ecution environment used by Polycom on the KT4585. Section 2.1 described
how software is scheduled on the KT4585. A natural approach to adding Java
functionality into such a scenario would be to implement a new handler in Java.
Figure 9 illustrates this.

25

RTOS
dispatcher
loop

Setup arguments
 taskID
 eventID
Call VM
Retrieve result

C proxy task

Java tasks

Java
dispatcher

Figure 9: Example Integration

A new handler written in C is registered with the RTOS. The purpose of
this handler is solely to delegate any events sent to it to the Java dispatcher.
The Java dispatcher is a static method written in Java receiving a handler ID
and an event ID. Its purpose is to look up the receiving handler (also written
in Java) and call its handle method supplying it the event ID. This process
proceeds through the following steps,

• Call setup. Let us assume for simplicity that the event value is a single
byte. In that case the single byte is placed on top of the Java stack.
Additionally, the ID of the handler is placed on the Java stack as well

• Call VM. Now the C proxy calls the Java dispatcher. It is assumed that
the dispatcher is located in a static class. Thus it is possible to call the VM
without any context on top of the Java stack apart from the handler ID and
event ID. When returning from this call, the Java software components
have handled the event in the Java realm

• Retrieve result. It may be possible for Java functionality to send back an
indication whether the event was handled successfully or not. If this is
supported, the result will be on the stack and can be popped from there.

Let us further more assume that the Java dispatcher and Java handlers are
written in pure Java code and do not call any native methods.

• In an incremental Java environment the size of the added code would
be some reasonable proportion of the functionality implemented in Java.

26

Actually, most engineers would expect the size to be of almost equal size
to what would be added, had the Java handlers been written in C

• In an integratable Java environment, if the Java dispatcher and Java han-
dlers are AOT (Ahead-of-Time) compiled into C (see Section 4.1.2), it
should be straightforward to include the generated C files in the existing
build and build them together with other handlers written in C. It should
not require a particular build environment using a particular compiler,
nor require the linking against any further libraries or dependencies, or
the inclusion of various up until now unused header files.

• In an efficient Java environment the number of clock cycles required by
Java to handle the event should be of nearly the same number of clock
cycles had the Java handlers been written in C.

To be attractive to the part of industry that utilizes C for programming low-
end embedded environments, an embedded Java environment should support
the writing of a simple handler like above, compiling and integrating it into the
existing build environment, without adding any dependencies.

If this is not possible out-of-the-box, the mentioned portion of the engineer-
ing industry will be reluctant to adopt embedded Java technologies.

The following section will describe the current state-of-the-art for embedded
Java and look at to which extent the requirements laid out here are satisfied.

27

4 Requirements Analysis - State-of-the-art

This section gives an overview of the state-of-the-art of embedded Java en-
vironments. The main purpose of the section is to describe the ways that a
language like Java can be executed, in sufficient depth to make an informed de-
cision about which ways are the most promising for low-end embedded systems.
The secondary purpose of the section is to describe a representative selection
of existing embedded environments for Java, to show that embedded Java envi-
ronments have come very far in terms of efficiency, but there is an opportunity
for improving the current state-of-the-art when it comes to incrementality and
integratability. Once these opportunities have been identified the HVM is in-
troduced in the next section to demonstrate how this gap can be closed.

4.1 Java execution styles

Executing any programming language, e.g. Pascal, SML, C, C++, Java, or
C#, can be done in multiple ways. Important execution styles are Ahead-Of-
Time (AOT) compilation (or simply compilation), Just-In-Time (JIT) compi-
lation or interpretation [18]. Hybrids exist as well, such as Dynamic-Adaptive-
Compilation (DAC), which employs all three styles in the same execution en-
vironment. Some languages are most often executed using one particular style,
e.g. C is usually compiled using an AOT compiler, and Java and C# are usu-
ally compiled using a JIT or DAC compilation strategy. The various execution
strategies applies to all languages, and choosing the right one depends on the
scenario in which the language is used. The following describes in more detail
those properties of each execution style that are important to take into account
when deciding on how to execute Java for low-end embedded devices.

4.1.1 Interpretation

In the beginning Java was interpreted, as stated in this quote [18]:

The Java virtual machine (JVM) can be implemented in software
as an instruction set simulator. The JVM dynamically interprets
each byte code into platform-specific machine instructions in an in-
terpreter loop.

But interpretation has been around long before the advent of Java. In-
terpretation can be traced back to 1966 and later the Pascal-P compiler from
1973 [69]. E.g. the Amsterdam Compiler KIT (ACK) [64] translates Pascal and
other supported languages into an intermediate byte code format for a simple
stack based virtual machine called EM (Encoding Machine). EM byte codes can
be interpreted by the ACK interpreter, or further compiled into object code for
a particular target. The Amsterdam Compiler KIT was used in a commercial
setting by Danish company DSE [19] in 1983-2000.

28

When utilizing interpretation for execution of Java on low-end embedded
platforms, the code size of the Java byte codes, as compared to the code size of
a similar program translated into native code, becomes important.

There seems to be some debate if stack based byte codes such as Java byte
codes requires less space than a native CISC instruction set. In [41] the authors
claim a code size reduction of 16%-38% when using byte codes similar to Java
byte codes as compared to native codes. On the other hand in [14] the authors
conduct a similar measurement for .NET and conclude that no significant code
size reduction can be measured.

Byte code compression has been the focus of a large amount of scientific
works for many years (e.g. [13]), and it seems to be an underlying assumption
that byte codes require a significantly smaller code size than native codes, but
the final proof of this claim remains to be seen. A natural way to prove this
claim would be to implement a convincing benchmark in hand coded C and in
Java and compare the code size of each using two similarly mature execution
environments: an AOT based execution environment for the C implementation
and a interpreter based execution environment for the Java implementation.
Recently the CDj and CDc benchmarks has appeared [36] and conducting this
experiment using those benchmarks is an obvious choice for further research.

Section 7 include measurements for a simple implementation of the quicksort
function in both Java and C that shows that the byte code version require
approx 40% less space than the version compiled into native code for a low-end
embedded RISC architecture.

In terms of execution speed it is an established fact that interpretation is
significantly slower than AOT. Work in [22] estimates that interpreted VMs are
a factor of 2-10 times slower than native code compilers. This factor can become
even larger for non-optimized interpreters. The JamVM [34], which is a highly
optimized Java interpreter for high-end embedded and desktop environments,
claim to achieve average execution speeds of approximately 3 times slower than
native code compilers, but measurements presented later in Section 7 indicates
that this number is closer to 6 times slower than native code compilers.

Stated in general terms the following observations are made

1. Interpreted Java is significantly slower than hand coded AOT compiled C

2. Interpreted Java requires less space than hand coded AOT compiled C

4.1.2 AOT Compilation

A well known example of an AOT compilation based execution environment is
the GCC compiler tool chain for the C programing language, first released by its
author Richard M. Stallman in march 1987 [68]. GCC translates C source code
into native code for a large range of platforms of many sizes and flavors [27].
AOT compilation techniques are probably one of the best explored fields within
computer science, and AOT compilers apply the following and many more types
of optimizations [3]

29

• Dead code elimination. Only those parts of the code base that may be
reached in an execution of the program are included in the executable

• Function inlining. To speed up function calling the compiler may inline a
function body at one or several call sites

• Data flow analysis. To use the most efficient machine instructions, AOT
compilers will make a conservative estimate on the smallest data size re-
quired for a data operation

• Register allocation of actual parameters. For suitable target platforms
parameters to function calls may be placed in registers to limit memory
access at function calling

• Register allocation of data values. To avoid memory access, values are
allocated in registers.

Today C compilers make an excellent job of producing efficient code for
low-end embedded systems, and a wide range of configuration switches can
be applied to optimize code for e.g. size or efficiency. GCC is open source
but several commercially available C compilers (e.g. the IAR C compiler from
Nohau [44]) exist as well, improving over the excellent performance of GCC on
certain specific targets.

In 1996 Per Bothner started the GCJ project [9] which is an AOT compiler
for the Java language and GCJ has been fully integrated and supported as a
GCC language since GCC version 3.0. GCJ builds on GCC and compiles Java
source code into native machine code. Compiling an object oriented language
using AOT compilation techniques goes back to Simula’67 and was further per-
fected in the Beta programming language [40]. Even though object oriented
languages contain language constructs such as virtuallity of both methods and
types, the field of AOT compiling object oriented languages is well understood.

Traditional AOT compilers compile the source language into assembler code
for the target platform. An alternative and interesting flavor of AOT compila-
tion of Java is to compile Java byte codes into C - in effect using the C language
as an intermediate language. This technique has been utilized by environments
such as the JamaicaVM from aicas [4], IBM WebSphere Real-time VM [24],
PERC [43], FijiVM [50] and KESO [21]. The generated C code can then be
compiled into native code using GCC or a similar cross compiler. Using this
strategy, the FijiVM achieves execution speeds of approx. 30% slower than
that of C for the CDj benchmark. This result does not imply that Java-to-C
compiled code can in general be executed with an efficiency loss of only 30%.
Still the CDj benchmark is a non-trivial benchmark - Section 5.3.2 shows that
it requires the compilation of approx. 600 methods - and the results reported
for the FijiVM indicates that AOT compilation of byte codes into C may be a
feasible technique for many scenarios. Comparable results for other Java-to-C
capable VMs measuring efficiency for the CDj benchmark has not been found,
so no indication of FijiVM performance can be given on this basis. Section 7
will compare a subset of the above VMs using other benchmarks.

30

Work comparing the code size of AOT compiled Java with AOT compiled
C is lacking. Because of this lack of empirical data it is assumed that there is a
correlation between code size and performance and that the code size of AOT
compiled Java is close to the code size of AOT compiled C. This assumption is
supported by measurements presented in Section 7. These observations lead to,

1. AOT compiled Java can be almost as fast as AOT compiled C

2. The code size of AOT compiled Java is almost the same as AOT compiled
C.

4.1.3 JIT Compilation

Just-in-time compilation is a technique of spreading the compilation of a pro-
gram out over time, interleaving code compilation with code execution as stated
in the fllowing quote [12]:

Unlike traditional batch compilers, our compiler is invoked on a per-
method basis when a method is first invoked, this technique of dy-
namic translation. . . . Our compiler generates machine code from
the byte code object, and caches the compiled code for use the next
time this method is invoked.

It follows that just as the interpreter has to be executing on the target alongside
the program being interpreted, in a similar manner the JIT compiler has to be
executing on the target interleaved with the program itself. The idea of JIT
compilation has been explored long before the advent of Java. Smalltalk and
Self environments are based on JIT compilation, and many important advances
in JIT compilation techniques were made in those environments [12, 16].

When running alongside the program, a JIT compiler can take into account
how the program is actually being executed and optimize the most used execu-
tion path. An example from the realm of object oriented languages is generating
code for virtual method dispatch. At a truly virtual call site an AOT compiler
cannot accurately infer which method is going to be called, since it can, and will
be, different target methods from one call to another. A JIT compiler on the
other hand can gather statistics and discover which method is usually called,
and optimize the call to handle this scenario efficiently. This idea is called a
Polymorphic Inline Cache and was put forward by [33] and is one example of
where JIT compilers can do better than AOT compilers.

The HP project Dynamo [7] takes a stream of AOT generated machine in-
structions and optimizes them at runtime by taking into account optimization
opportunities revealing themselves when the program is executed. Dynamo
achieves considerable speedups on most benchmarks, in some cases more than
20%.

The Dynamo project shows that even after a capable AOT compiler has gen-
erated fully optimized code, a JIT compilation strategy will be able to improve
further on performance.

31

In their paper [35] the authors conduct very detailed measurements compar-
ing a Java-to-C AOT compiler against a selection of other Java environments
(not necessarily embedded), and they find that for their AOT compiler imple-
mentation, Java code executes approximately 40% slower than when executed
using the best JIT compiler (HotSpot).

For Java environments supporting dynamic class loading, a JIT compilation
strategy is especially useful, since a JIT compiler is immune to dynamic code
changes in the sense that previously generated code can just be discarded and
new code generated on the fly.

JIT compilers exist for high-end embedded systems as well as desktop and
server platforms. The CACAO JIT [39] is a well know example for embedded
systems, achieving impressive execution speeds for embedded Java programs
(from 1 – 1.6 times slower than C). JIT compilers tend to require a significant
amount of dynamic memory, and even though the CACAO JIT can run on
systems with as little as 1MB of dynamic memory [10], on low-end embedded
systems with e.g. 4 kB of dynamic memory JIT compilation becomes imprac-
tical. This is mainly due to the fact that generated code will quickly fill up the
limited amount of available RAM on low-end embedded devices. Thus gener-
ated code has to be stored in flash, which is difficult, but not impossible, to do
at runtime. To conclude,

• JIT compilation can be at least as fast as AOT compilation, in some cases
faster

• JIT compilation requires extra dynamic memory as compared to e.g. in-
terpretation or AOT.

4.2 Execution Styles for Embedded Platforms

For high-end embedded systems JIT compilation is a very attractive execution
strategy. Firstly, it is efficient. Section 7 presents detailed measurements that
substantiate the claim by the CACAO authors that Java can be executed approx
1-2 times slower than C. Secondly, it supports dynamic class loading since the
invalidation of existing code as a consequence of loading new code is simply
a matter of recompiling the code. For low-end embedded systems though, a
JIT compiler has yet to emerge that runs with as little as the few kB of RAM
that is customary on low-end embedded devices. Because of the proliferation
of low-end embedded systems, portability becomes an issue as well. The code
generator of the JIT compiler needs to be ported to every new target device
that is to be supported.

The AOT compilation strategy is very attractive for both low and high-end
embedded platforms. It too is very efficient. Section 7 will show that some
AOT environments are even faster than claimed above and execute faster than
C on some benchmarks. AOT compilation does not require additional RAM
since code generation is done ahead of execution time on a host platform. It
may require more ROM memory compared to C. On low-end embedded systems

32

the amount of ROM is usually a lot larger than RAM, so for many scenarios
AOT compilation may be useful. Especially byte code-to-C AOT compilation
is interesting for low-end embedded devices. This way of compiling Java is very
portable. It borrows its portability from C as this language is supported on most
low-end embedded systems. So Java-to-C compilers are very portable if they do
not rely on unportable external libraries. Contrary to JIT environments, envi-
ronments supporting only AOT compilation will have a hard time supporting
dynamic class loading at runtime, which may be a significant drawback in some
scenarios. But for low-end embedded devices dynamic class loading may not be
desirable, and will be hard to support, since the classes loaded will have to be
placed in ROM, and it is very difficult and usually avoided writing to ROM at
runtime.

Interpretation uses the smallest amount of RAM and ROM of all execution
styles, but it is an order of magnitude slower than native C. In some scenarios
this may be acceptable, but in others it will not. Interpreters are just as portable
as Java-to-C AOT compilers if the interpreter is written in portable C code and
does not rely on unportable external libraries. Interpreters will be able to handle
dynamic class loading just as easy as JIT compilers, still facing the additional
challenge of how to store the loaded classes into ROM at runtime.

Until a JIT compiler appears that can run with just a few kBs of RAM,
interpretation and AOT compilation are the only options for low-end embedded
systems. Because of these reasons an environment supporting both AOT com-
pilation (for efficiency) and interpretation (for its low memory requirements and
dynamic nature) will be an attractive architecture. The HVM, later described
in Section 5, supports such a hybrid execution style where parts (or all) of the
code can be AOT compiled for efficiency and the rest can be interpreted in order
to save on ROM storage.

4.3 State-of-the-art Environments

A large number of environments for embedded Java exist and they utilize both
JIT, AOT and interpretation. Representative examples of embedded Java en-
vironments spanning all three execution styles are described below. With the
exception of KESO and HVM, none of these environments are able to run on
low-end embedded systems without changes. Detailed measurements of the ex-
ecution efficiency of the example environments are presented in Section 7.

4.3.1 JamVM

The JamVM [34] is famed for being the most efficient Java interpreter. The
size of the interpreter is approximately 200 kB ROM. It supports the full Java
specification (including JNI) and has been ported to quite a number of plat-
forms. JamVM is written in C and applies a large range of optimizations. One
of these are so called labeled gotos supported by the GCC compiler. This fea-
ture allows the use of labels as values [28] and can improve the execution time
of the VM interpreter loop significantly. JamVM is built using the configure,

33

make, make install GNU build style known from Linux and UNIX build en-
vironments. Most other compilers (e.g. the IAR compiler from Nohau used in
many industrial settings) do not support labeled gotos. Neither is the JamVM
build procedure supported in many low-end embedded build environments. Fi-
nally, because of the size of the JamVM executable, the JamVM is not suitable
for low-end embedded systems as is. It may be possible to port it to a partic-
ular low-end embedded target by disabling unwanted features and making an
adapted build environment for the specific target. It would be interesting to
attempt a port of the JamVM to the KT4585 environment described in Sec-
tion 2. If such a port would be successful, the JamVM would be an attractive
execution engine for this environment, and it would pave the way for porting it
on other low-end embedded environments as well. The JamVM uses the GNU
Classpath Java class library [29]. The size of this is approx 8 MB and in its
default configuration the JamVM loads classes as required from this archive
during runtime. To make this work on a low-end embedded system, a tool for
generating a library archive only containing the classes used, and a facility for
loading this from ROM instead of a file system would have to be developed.
In any case the JamVM remains the benchmark for interpreters because of its
unsurpassed efficiency on high-end embedded and desktop systems.

4.3.2 CACAO

The CACAO JIT [39] is a free and open source implementation fully compliant
with the Java Virtual Machine Specification. It supports i386, x86 64, Alpha,
ARM, MIPS 32/64, PowerPC 32/64 and S390 target platforms. It runs with
as little as approx. 1 MB of RAM memory. It uses GNU Classpath [29] or
OpenJDK [46] as Java runtime library. It runs naturally in a Linux-like OS
environment with sufficient packages installed to build the JIT itself and the
class library of choice. While a selection of features of the CACAO JIT can be
disabled to reduce memory requirements, it is not designed for low-end embed-
ded systems such as the KT4585 described in Section 2, and it is not obvious
that it would be possible to build the CACAO JIT and required libraries for
that target. Additionally a port of the code generation engine for the CR16c
RISC architecture would be required. The main issue though, with JIT compil-
ers in general for low-end embedded systems, is the runtime dynamic memory
requirements.

4.3.3 GCJ

GCJ is an AOT compiler that translates Java byte codes, as they appear inside
the class file, into native code for a particular target. GCJ is built on GCC
and building Java programs is done in a very similar manner as when building
C programs. Figure 10 illustrates the build architecture. First the Java source
code is compiled into class file format. Then the GCJ compiler is used to
generate native code. Since GCC supports cross compilation for a very large
range of embedded targets and since GCJ builds on GCC, Java programs can

34

be cross compiled into native code for many different targets. In short, GCJ
reuses or builds on the portability already present in GCC.

Figure 10: GCJ architecture

Still GCJ programs cannot directly run in a low-end embedded environment
such as the KT4585 described in Section 2. The reason is that GCJ requires the
library libgcj and this library is intended to be a complete J2SE implementa-
tion based on GNU Classpath making it too big for low-end embedded devices
(several MBs). To solve this issue the micro-libgcj [30] project started, but
has since been discontinued. The GCJ compiler itself (excluding the runtime
environment) builds readily for low-end embedded targets. To make GCJ avail-
able - including the runtime environment - on low-end embedded devices an
incremental version of libgcj with the same footprint as libgcc would be really
attractive. Such a version does not exist and it is not currently possible to
produce sufficiently small executables using GCJ to allow them to run on low-
end embedded systems such as the KT4585. Additionally to compiling Java
directly into native code, the GCJ runtime environment features an embedded
interpreter. Thus GCJ supports a hybrid execution environment featuring both
interpretation and static compilation. GCJ is based on some very interesting
design principles (1) GCJs extreme portability (inherited from GCC) allows it
to run all targets where GCC is supported and (2) GCJ supports a hybrid ex-
ecution style of both AOT compilation and interpretation. The last challenge
remaining before GCJ can really be applied to low-end embedded devices is to
get rid of its dependency to the monolithic libgcj runtime library.

4.3.4 FijiVM

The FijiVM [50] is a AOT compiler that translates Java byte codes into C. This
is a different strategy than GCJ which translates straight into native code. The
generated C code then has to undergo an extra step of compilation from C into
native code for the target in question. In practice this strategy gives a very high

35

degree of portability since C compilers most likely exist for any given embedded
target. It offers a higher degree of flexibility, as opposed to the strategy chosen
by GCJ, since the choice of which C compiler to use can be made by the user.
In the case of FijiVM however, GCC is the preferred compiler, but it should
be possible, perhaps with some changes, to use other compilers than GCC. The
architecture is depicted in Figure 11.

Figure 11: FijiVM architecture

It is tempting to think that using C as an intermediate stage before gener-
ating native code might incur some overhead or might make it difficult to per-
form certain types of optimizations applicable to the actual target. In practice
though, FijiVM proves by example that the outcome of the entire compilation
process can be very efficient native code. Section 7 shows that FijiVM outper-
forms all other execution strategies (including JIT) and on average produces
the best code for all examined execution platforms. The declared contribution
by the FijiVM is its real-time capabilities and the FijiVM includes a real-time
garbage collector [49] and efficient support for threading and locking. The effi-
ciency of the generated C code is another important contribution and measure-
ments show that, on benchmarks presented in Section 7, the FijiVM is the most
efficient Java execution environment for embedded systems.

The target platforms for the FijiVM are high-end embedded systems, and
a 32 or 64 bit POSIX compliant OS is required. In their default configuration
FijiVM executables are linked against libgcc, librt and libpthread and they
require approx. 600 kB RAM and 1 MB of ROM. In their work [50] the authors
state that the Fiji runtime is approx. 200 kB which must be the lower bound
for ROM requirements of FijiVM executables. The FijiVM was not designed
for low-end embedded systems, but there is no reason why the code-generation
part of Fiji cannot be used to generate very efficient code for low-end embedded

36

targets. An interesting and very useful option for research would be to separate
the FijiVM code generation module from the rest of the infrastructure and use
this for generating standalone, non-monolithic, efficient executables for low-end
embedded targets.

4.3.5 KESO

The KESO JVM [21] is an AOT Java-to-C compiler with the same overall
architecture as FijiVM described in Section 4.3.4. While KESO does include a
garbage collector, neither the GC nor the environment as such have a claimed
real-time behavior as is the case with the FijiVM. The main contribution of
KESO is its ability to run on low-end embedded environments such as the
KT4585, an ability no other Java environments offer (apart from the HVM
introduced later in Section 5). The KESO AOT compiler applies a number of
optimization techniques to achieve very efficient execution speeds - almost as
efficient as hand coded C. KESO is the first JVM for low-end embedded systems
that supports incrementality for Java applications: you only “pay” for what
you use. The price to pay for this incrementality is the lack of dynamic class
loading and the lack of full Java support, as only a limited Java JDK - specific
to KESO (the KESO core libraries) - is available to the programmer. Additional
contributions of KESO are the concepts of isolated execution domains and its
use of the OSEK/VDX operating system [31] - a well known RTOS used mostly
in the automotive industry.

KESO comes very far in meeting the goals as it is both incremental and
efficient. By adding just a few more features to support integratability, the
KESO JVM would be a very interesting candidate for use on environments such
as the KT4585.

4.3.6 JamaicaVM

The JamaicaVM from aicas [4] is a commercially available Java VM for real-
time Java systems development2. The focus of the JamaicaVM is to ensure hard
real-time execution guarantees, including real-time GC [61], while maintaining
completeness and efficiency. The JamaicaVM supports interpretation as well
as selective compilation of classes directly into C. Development is supported in
Eclipse through the Jamaica Eclipse Plug-in. It also supports ’Smart Linking’.
This is a technique based on first completing an initial run of the application
during which profile information is extracted. This profile information can be
used to select which methods should be compiled and which methods should
be interpreted. Also it can help to remove unused code and data from the
executable. Since compiled code takes up more program memory space than
interpreted code, the JamaicaVM tools help to configure the application in such
a way that a good performance is achieved but at a reasonable cost in terms of

2More information about the JamaicaVM can be found in the user manual which is available
for download from their website after registration

37

executable size. The programmer can explicitly force the JamaicaVM to always
compile selected methods.

Apart from the builder and execution engine itself, a range of analysis tools
exists as well: The JamaicaVM ThreadMonitor to monitor the real-time behav-
ior of applications, and VeriFlux: a static analysis tool to prove the absence of
potential faults such as null pointer exceptions or deadlocks. The target plat-
forms supported by the JamaicaVM are in the realm of high-end platforms.
The VM itself occupies approximately 1 MB of ROM. Applications are linked
against the OpenJDK Java class libraries. RAM requirements are in the range
of a few MBs and upwards depending on the application.

4.4 Opportunities for Embedded Java

Section 3.5 described a simple scenario in which a single task is written in
Java and integrated with an existing build and execution environment (the
KT4585 described in Section 2). This section examines to which extent the
environments listed above support this scenario. This identifies the gap between
what the current state-of-the-art offers and what embedded software engineers
accustomed to working in a C based programing environment expect.

• JamVM. Requires the addition of the source of the JamVM itself which is
built using a build environment different than the one used by the KT4585
developers. Also the size of the VM (200 kB) is impractical

• CACAO. Requires the addition of the JIT itself which has further de-
pendencies to POSIX and other libraries. The size of the JIT and other
requirements makes it non incremental and impractical to include in the
KT4585 build end execution environment

• GCJ. Requires the linking against libgcj which is too large for low-end
embedded systems. Even if it was not, most embedded engineers would
not like to add additional libraries they did not implement themselves or
know in detail

• FijiVM. Requires a POSIX-like OS (uses librt, libpthread and others)

• KESO. Includes additional OSEK header files. However, the core part
of the C code produced by KESO from the Java source does not rely on
OSEK, so this dependency is mostly artificial. KESO does a very good
job at only translating code that is actually run. KESO is incremental
and does not even require libc in most cases. Currently KESO generates
C code into a variable set of files with variable names. This makes it hard
to include these files into an existing build environment, but the core part
of the C files generated is standard ANSI C and could be compiled by any
compiler. In short it should be possible without too much work to make
a version of KESO that could support the above integration scenario

38

• JamaicaVM. The target platforms of the JamaicaVM are in the range
of high-end systems, but the completeness and tool support of the Ja-
maicaVM is far better than the non-commercial versions. It would be very
interesting to explore further if a completely compiled Jamaica applica-
tion, built using ’smart linking’, can be linked to an executable without
including the interpreter, and if this will bring the size of the applica-
tion down into the range of low-end embedded systems. ’Smart linking’
is based on an initial profiling run of the application and how to do this
on low-end embedded systems is a challange. An interesting idea to ex-
plore is to execute the profile run of the application on a host system in a
simulated environment.

• Others. All other JVMs have requirements that make them non integrat-
able and non incremental. The most common cause is the requirement of
a POSIX like execution environment and the insistence on being fully Java
compliant which as a result requires the linking against a large number of
external libraries.

Section 7 will show that embedded Java can be almost as efficient as C, both
in terms of speed and code size. But an important opportunity for embedded
Java is to acknowledge the nature of existing C based environments and enable
the easy integration of Java into such environments. In other words, to be able to
support the scenario described in Section 3.5 out-of-the-box while maintaining
efficiency. To show that this is possible, the HVM has been implemented. The
HVM is similar to KESO but makes it possible to support easy integration with
existing C based execution environments. The remaining part of the thesis will
describe the use, design and implementation of the HVM and measure some key
performance indicators of the environment and compare these to C and other
existing embedded Java environments.

39

5 The HVM - Design

The HVM is a Java execution environment for low-end embedded devices, such
as the KT4585. It is the platform for and outcome of the experimental work
done during this thesis. Work was begun in the autumn of 2010. The main
goal of the HVM project is to be able to support the integration scenario from
Section 3.5 on the KT4585.

Before describing the design and methods used in the implementation of the
HVM, the outcome of the requirements analysis of Section 3.5 is translated into
these measurable design goals for the HVM,

1. It must be able to execute with a few kBs of RAM and less than 256 kB
ROM

2. It must be integratable with the KT4585 build and execution environment,
i.e. it must be compilable together with existing C source for the KT4585
and it must be possible to schedule Java code alongside existing C code
using the KT4585 RTOS

3. Java code should execute nearly as efficiently as C

4. It should be possible to control hardware directly from Java

5. It should be possible to handle 1st level interrupts in Java

6. It should be possible to use any Java API, and not tie Java into some
particular API

7. Java code should be able to easily read and write data in the C layer

8. It should be easy and straightforward to program Java for the KT4585
and translate it into a format suitable for compilation and download.

The following Section 5.1 will give a brief demonstration of how the HVM is
used seen from a programmers perspective. After this use scenario, Section 5.2
describes the methods used in the implementation of the HVM to achieve the
design goals.

5.1 HVM Demonstration

The example code in Figure 12 is used below to give a demonstration of how
the HVM works from the programmers perspective.
This small program inserts 5 words into an ArrayList, sorts them and then
checks that they are sorted. If the test method returns true, an error occurred.
The HVM is able to compile this test program into C code and eventually run
it successfully on the KT4585 platform or even smaller (8 bit) platforms. The
HVM build environment is implemented in Java as an Eclipse plugin, and the
user experience is best if Eclipse is used. Eclipse is a very common IDE for
Java and other kinds of software development. The HVM build environment

40

package test.icecapvm.minitests;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.Iterator;

import devices.Console;

public class TestArrayList {

public static void main(String[] args) {

boolean failed = test(args);

if (failed)

}

public static boolean test(String[] args) {

ArrayList<String> list = new ArrayList<String>();

list.add("hello");

list.add("to");

list.add("you");

list.add("Stephan");

list.add("Korsholm");

Object[] array = list.toArray();

Arrays.sort(array);

list = new ArrayList<String>();

for (int i = 0; i < array.length; i++) {

list.add((String) array[i]);

}

if (array.length == 5) {

Iterator<String> sortedNames = list.iterator();

String previous = null;

String next;

while (sortedNames.hasNext()) {

next = sortedNames.next();

if (previous != null) {

if (previous.compareTo(next) > 0) {

return true;

}

}

Console.println(next);

previous = next;

}

return false;

}

return true;

}

}

Figure 12: HVM Example

can also be executed from the command line without the use of Eclipse. To
compile and run it using Eclipse, the user must make a new standard Java
project. It is not required to make a special kind of ’embedded’ Java project -
a standard Java project is sufficient. This will most likely add a dependency to
the JDK currently applied by the user, this could be the standard JDK from
SUN, OpenJDK, GNU Classpath or some other vendor specific JDK. All that
the HVM requires for the above to work is that the java.util.ArrayList and
other classes used in the above program are available. Figure 13 illustrates how
the user can activate the HVM build environment to compile the above program.

41

Figure 13: Use Scenario

By right clicking on the main method of the program the user can activate
the HVM builder from a popup menu. The result will be that the Java program
is translated in to a C program which is placed in an output folder chosen by the
user. This C code is written in strict ANSI C and is completely self contained,
making it possible for the user to include in any existing build environment he
may be using for his particular embedded platform. How exactly the code will
eventually get called and executed is the topic of a later Section.

After the Java-to-C code generation has been completed the next step for
the user is to activate his usual C build environment for his embedded target,
and eventually download the resulting application to the target.

This cycle of (1) Editing Java code, (2) Activating the HVM Java-to-C
translation, (3) Activate native build environment and finally (4) Download
and run application on target, will now be the everyday software development
cycle of the user.

In many cases Eclipse will also be the preferred development environment
for developing C code for the target - this is in fact the case for some Polycom
developers working with the KT4585 - in which case all source code, both Java
and C, will be available to the user in the same IDE.

An important part of the Eclipse integration is the view, entitled Icecap
tools dependency extent. Figure 14 zooms in on this view and shows parts of all
dependencies of the example application listed in Figure 12.

42

Figure 14: Browsing dependencies

The view lists that a total of 36 classes have been translated into C. Not
all methods available in the source of these classes are translated, but only
those that may be used by the application. In the above example the class
java.lang.AbstractStringBuilder has been expanded to show the 4 methods
that are included in the set of dependencies. Also visible in the view is the
output folder where the generated C source is placed. All methods under
AbstractStringBuilder are marked with the blue color. This indicates that
the programmer has marked these methods for compilation (“Toggle Compila-
tion”). Unmarked methods will be interpreted.

5.2 Methods

This section describes the most important methods used to meet the design goals
for the HVM. The main part of the HVM is the Java-to-C compiler and this is
also the part containing the most complexity and functionality. In summation
most methods presented below are standard methods from within the realm of
compiler construction and program analysis.

5.2.1 Intelligent Class Linking

One of the most important features of the HVM is its ability to find the depen-
dencies of a given application and thus perform the act of program specialization
and optimize used libraries and profiles for a given application.

To perform this analysis the HVM makes one major simplification which is
to preclude the use of dynamic class loading. In other words the HVM is only
able to handle statically configured applications that does not rely on dynamic

43

class loading. This restriction of normal Java functionality is also made by the
KESO and FijiVM environments.

Starting from the main entry point of the program, the HVM build envi-
ronment performs a static whole program analysis and calculates a conservative
estimate of all classes and methods that may be entered at runtime. This set of
classes and methods called the dependency extent. Calculating a safe but good
approximation to the dependency extent allows the HVM to keep the size of the
resulting application down so that the 1st primary requirement is fulfilled.

The dependency extent of the example program in Figure 12 is comprised
of 36 classes and 90 methods. Apart from the test method itself, programmed
by the user, the rest of the methods in the dependency extent originates from
the Java JDK, e.g. the used methods in java.util.ArrayList and from the
Arrays.sort method and its dependencies. To calculate the dependency extent,
the HVM build tools scans the byte code starting from the main entry point
and follows all possible paths from there. Two interesting cases highlight how
this works (1) a standard control flow branch case, illustrated in Figure 15 and
(2) a method call control flow case, illustrated in Figure 16.

if (condition)

{

if-part....

} else {

else-part

}

Figure 15: If branch

When an if-branch is encountered, the analysis proceeds through both the condi-
tion (which might be an elaborate expression), through the if-part and through
the else-part. All code encountered by following these 3 possible flows through
the program is added to the dependency extent. A careful static value analysis
to determine if both the if-part and the else-part can indeed be entered at run
time is not performed currently by the HVM tools. This method is straight
forward and clearly a safe conservative estimate of the dependency extent stem-
ming from if-branches.

A a = getA();

a.foo();

Figure 16: Invoke branch

Opposed to the flow of control inherent in if-statements as above, predicting the
flow of control for a method invocation is not straight forward. The reason is
because of the virtuallity of method invocations in Java. In Figure 16 it is not
statically possible to determine which foo-method gets called, and thus where
the flow of control might proceed. The reason is that the method foo is a virtual

44

method and may be implemented in several subclasses of A and it is unknown
from just looking at the call site what the runtime type of the object a may be.
The method the HVM applies to solve this problem is to keep track of which
possible subclasses of A may have been instantiated up until the call of foo. If
it is possible to know which subclasses of A may have been instantiated earlier,
the possible set of methods that may get called at this call site is known and
analysis can proceed by adding all of them to the dependency extent and visit
them recursively. It is crucial now to observe that following these new paths
might lead us to discover that new subclasses of A could be instantiated. In that
case, and if the flow of control ever returned to the above call site, the analysis
for that call site must be done again. This may in turn lead to even more
subclasses of A being added to the dependency extent. The HVM dependency
analysis marks for each virtual call site the list of classes that may have been
instantiated prior to execution of the call site. If analysis reencounters the same
call site, the current list of instantiated classes is compared to the list in effect
at the last visit to this call site. If the lists are equal the analysis terminates, if
new classes have been added the analysis is redone.

Following this method the analysis arrives at a conservative estimate of the
possible targets of the virtual call. This method will indeed terminate because
of the following arguments: The set of classes in the dependency extent is not
infinite. Each time the analysis arrives at the call site it will either have added
at least one class to the list of instantiated classes or no new classes has been
added. If no new classes have been added, the analysis is done and the analysis
of this call site terminates. If one or more new classes have been added the
analysis is repeated, but new classes cannot be added indefinitely since the set
of possible classes to instantiate is not infinite.

The method described here is an incarnation of the Abstract Interpretation
method described in e.g. [42] chapter 1.5. For each virtual call site the set of
traces is collected. This is intuitively the ways that program flow may reach the
call site. For each of the collected traces there will be a finite number of classes
that may have been instantiated. The total number of all classes instantiated
along all possible traces is the set of possible types for a in the example from
Figure 16. Static type inference of method calls for object-oriented languages is
a well known field and described in e.g. [51]. The method can also be viewed as
an instance of the k-CFA algorithm as described in [60]. The way the control
flow at virtual method call sites is handled, is actually what is called a variable-
type analysis introduced by [62].

Even though the above method is correct in producing a safe conservative
estimate and also terminates it may not be a practical method. The time com-
plexity for k-CFA is EXPTIME [67], but in practice it is possible to calculate
the dependency extent of large non-trivial programs, which the above exam-
ple in Figure 12 also indicates. Even so, when utilizing library code like e.g.
java.util.ArrayList the developer commonly encounters dependency leaks.
As an example consider the Java HelloWorld program from Figure 17.
Analyzing this program using the method applied by the HVM will result in
a dependency leak. The reason is that use of the System class involves the

45

class HelloWorld {

public static void main(String[] args)

{

System.out.println("HelloWorld!");

}

}

Figure 17: HelloWorld Dependency Leak

analysis of the class initializers in class System, and using the standard JDK
from Sun or any of the other vendors this in turn requires the initialization of
’the rest of the world’ to put it in popular terms. The HVM tools will actually
run and attempt to collect the dependency extent, but will eventually give up.
For the Java JDK 1.6 the java.util.* does not leak and can be successfully
analyzed by the HVM tools.

In a low-end embedded scenario, such as the KT4585, dependency leaks are
not an issue. If it were possible to calculate the dependency extent of the System
class it would be of such a magnitude that compiling it for a low-end embedded
target would be impractical.

5.2.2 Self-contained Source Code Generation

Another important feature of the HVM is its independence of external libraries.
This is crucial to keeping the size of the application down to a level were it
can be deployed on low-end embedded devices, and it is crucial for supporting
integration into an existing build environment.

An example of were dependencies may seep into the HVM is in the handling
of the long arithmetic. The long data type may not be implemented in the C
runtime for e.g. 8 or 16 bit architectures - e.g. the IAR compiler runtime for the
KT4585 does not support long arithmetic. To get around this problem the HVM
implements long arithmetic internally to support the long byte codes. The
float and double data types exhibit the same problem, but internal support
for these data types have not been added yet. So for float and double a
compromise has been made and these data types are only supported if they are
supported by the underlying C runtime.

In most cases the code produced by the HVM can be compiled and linked
without the presence of a C runtime library (-nostdlib). If the C programmer
is using float and double already these will be supported by his existing C
runtime and he will also be able to use them in Java space. The embedded
interpreter, also part of the HVM, has this property as well: no linking against
other libraries are required.

Java exceptions are supported and implemented internally in the HVM. It
would be tempting to use the setjmp and longjmp functionality available in
some C runtimes but this has not been done as it would go against the prin-
ciple of not adding dependencies that may not be supported by a given build
environment. Exceptions can be thrown and caught in both AOT compiled and

46

interpreted code and flow across the boundaries of these execution types. The
cost for full support of Java exceptions is approx 25% in terms of execution time.
This is a significant cost, and for that reason it would be desireable to allow
the developer to selectively exclude exception support from the HVM. On some
low-end embedded systems, e.g. where all I/O is handled through hardware
objects and 1st level interrupt handlers, the occurence of an exception may be a
fatal error from which there is no graceful recovery. Excluding exceptions from
released code, in such scenarios, while maintaining them during development
for debugging purposes might be a desirable feature. Still, the HVM supports
exceptions, and they can be used in scenarios where they are desired.

The HVM does not use malloc or free. Instead all data are allocated
statically, including the Java heap. Dynamic data, both Java data originating
from using the new keyword, and runtime allocations made by the HVM internals
- required in some special cases - are allocated in the heap.

These are some examples of how the design principle of not including any
external dependencies has been followed in the HVM. As a result the C code pro-
duced by the HVM can be further compiled by any cross compiler and included
in all build environments. Not adding any dependencies is perhaps the most
important attribute of the HVM when it comes to supporting integratability.

In short, if the HVM is able to calculate the dependency extent of a given
application, there is a very good chance that the source code can be compiled
into an application sufficiently small to deploy to a target such as the KT4585.

5.2.3 ROM/RAM aware

To reduce the RAM requirement to a minimum, the HVM is careful to place
static data in ROM. As a result the only data placed in RAM is static class
variables and the heap. The size of the heap can be configured at compile time.
If no data is allocated during a program run, then no heap is required. Still
a small amount of RAM is needed for the Java stack and some internal HVM
bookkeeping.

Java objects are packed according to their field variables. Additionally to
actual object content, the HVM adds a 16 bit hidden field to allocated objects.
10 bits of this field is a reference to the type (class) of the object, the remaining
6 bits are reserved for future use. As a result the HVM does not support the
use of more that 1024 classes in any given application.

5.2.4 Hybrid Execution Style

The HVM includes an embedded interpreter, and the software developer can
inside Eclipse mark which methods should be interpreted and which methods
should be compiled into C. As mentioned in Section 4.1.1 there is some debate if
the space required to store byte codes is less than space required to store natively
generated code, in the general case. In the case of the HVM, byte codes take up
approximately 50% less space than AOT generated code. For this reason the
option to execute selected methods using interpretation has been added. The

47

developer can select a limited amount of methods for AOT compilation and keep
the rest as interpreted. This way ROM space requirements can be reduced.

The interpreter is dynamically adapted to which byte codes are actually
being marked for interpretation. This means that interpreter functionality for
byte codes that are not used, is not included in the application. In many cases
only a limited subset of all byte codes are used, so this feature can potentially
save a significant amount of ROM space. E.g. many programs for low-end
embedded devices does not utilize the long data type - for such programs those
parts of the HVM that implements long arithmetic are not included in the
executable.

The way to achieve this selective exclusion of unused functionality is for the
static analyzer to record which byte codes are part of the dependency extent
and which of those have been marked for interpretation. This knowledge is
expressed as a set of compiler flags that are either defined or not defined, e.g.
the following excerpt from the HVM interpreter illustrates this,

#if defined(LMUL_OPCODE_USED)

case LMUL_OPCODE: {

unsigned char topInc = handleLMUL(sp, code);

sp -= 4;

if (topInc == 0) {

initializeException(sp,

JAVA_LANG_ARITHMETICEXCEPTION,

JAVA_LANG_ARITHMETICEXCEPTION_INIT_);

sp++;

code = ATHROW_OPCODE;

break;

}

sp += topInc;

method_code++;

}

continue;

#endif

Whether or not the flag LMUL OPCODE USED is defined, is stored in an auto gen-
erated file produced by the HVM dependency analyzer. Additionally the same
selective exclusion of the handleLMUL function is in effect.

The methods described up until now all contribute to the HVM adhering to
the 1st primary requirement. Now follows a describtion of which methods are
applied to support integratability.

5.2.5 Easy Activation

The HVM main entry point can be called directly from existing C code:

initVM();

excep =

enterMethodInterpreter(&methods[mainMethodIndex], mainMethodJavaStack);

48

The function initVM is part of the HVM infrastructure and must be called just
once before control flow enters Java space. The function enterMethodInterpreter
activates Java code. In the above scenario the main method of the Java code will
be called. The enterMethodInterpreter function will determine if the method
being activated is AOT compiled or interpreted and start execution accordingly.
The methods array and the mainMethodIndex variable is auto generated by the
HVM. The mainMethodJavaStack has to be allocated by the user and supplied
as the stack to use for Java code. This allows existing C code to call the HVM
in an easy way at any time and it is e.g. utilized to support the addition of
Java event handlers to a legacy RTOS and to handle 1st level interrupts, both
of which are described in Section 7 below. The absence of new dependencies
and the ability to enter Java space easily from existing C code makes it straight-
forward to compile a simple piece of Java code and include it in an existing C
based application.

5.2.6 Code efficiency

The efficiency by which the AOT generated C code can be executed hinges on
a range of optimizations performed by the HVM AOT compiler. The following
section highlights three of the most important optimizations made in the HVM:
stack to variable allocation, producer-consumer analysis and devirtualization.

The JVM is stack based, which means that all values, both method param-
eters, method local variables and intermediate values are kept on the stack. A
straight forward implementation of the individual byte codes will give rise to
frequent stack access to push and pop values from the stack. This memory
access to simulate the stack as it evolves is resource consuming, thus most JVM
implementations seek to simulate stack behavior in some other manner than
actually accessing the stack. The HVM attacks this challenge by mapping each
stack cell to a C variable. Rather than reading from/writing to the actual stack
cell in memory, the HVM AOT compiler generates C code that caches each
stack cell in a C variable. For short stack sizes the resulting code is of a nature
where the C compiler can store the variables in registers, thus avoiding costly
memory accesses. Still, for stacks sufficiently large where most stack cells are
accessed within a short span of code the C compiler will have to use the C stack
for variables as it runs out registers. To illustrate this technique the following
is an example of a simple sequence of byte codes performing an addition,

ICONST_1

ISTORE_0

ICONST_2

ISTORE_1

ILOAD_0

ILOAD_1

IADD

ISTORE_0

These byte codes access two local variables and two stack cells. In the HVM
both local variables and stack cells used for computation are kept on the same

49

stack. Just before the execution of the IADD opcode the stack will look like
depicted in Figure 18.

Figure 18: Stack example

By mapping each stack cell to a local variable, the HVM will generate the
following code for the above byte code sequence:

LV2 = 1;

LV0 = LV2;

LV2 = 2;

LV1 = LV2;

LV2 = LV0;

LV3 = LV1;

LV3 = LV2 + LV3;

LV0 = LV3;

First, even though the JVM is a stack based architecture no stack access takes
place in the above. This is very important for efficiency, since memory access
is very expensive and requires a long sequence of native instructions, especially
on 8 and 16 bit architectures. Secondly it seems inefficient to use so many
variables for such a simple calculation, but fortunately the C compiler that
eventually translates this into machine code will be able to optimize this into a
very efficient format.

An alternative way to avoid the frequent stack access inherent in a stack
based VM like the JVM is to translate the Java byte code into SSA format
(Static Single Assignment) format [15]. This is done by the SOOT frame-
work [66]. The code generated by the HVM is not in pure SSA format, but
it is a sequence of assignments and simple calculations that do not access the
Java stack directly. The HVM then leaves the optimization of the resulting
statements to the C compiler - an optimization which all C compilers do well,
and which e.g. GCC has evolved to perfection over many years of optimization.

How the stack cells should be allocated to C variables is decided by a method
local static analysis of the byte code. At joining paths the stack-to-variable
mapping is merged in cases where this is possible, or in some cases flushed to
the actual stack if no simple merge can be done. If a joining path has a very
different mapping than the joined path, it may be required to flush some or all
cached variables to the actual stack and reload them according to the path into

50

which execution is joined. The way this is handled in the HVM is ad hoc and
can most likely be improved.

At entry into an exception handler the stack-to-variable mapping is com-
pletely flushed. This may make jumps to exception handlers ineffective.

5.2.7 Code efficiency - Producer-Consumer Analysis

Mapping stack cells to C variables as above lowers the number of stack access
during method execution. Still the question remains which data types to use
for the C variables. The Java stack is 32 bit wide, but in many cases it is
possible to infer a more narrow data type, e.g. short or byte for a given stack
cell. Performing this optimization is crucial for 8 or 16 bit architectures, since
32 bit data manipulation requires a large amount of instructions on a 16 bit
architecture, and even larger amount on a 8 bit architecture. The better one
can choose the proper data type for a data manipulation the smaller the resulting
code will be (saving on ROM) and the more efficient the resulting application
will be able to execute.

When accessing local variables and formal parameters it is straight forward
to narrow the type according to the declared type of the variables. When
loading actual parameters for method calls the same method can be applied:
when loading a value onto the stack that is going to be passed to a method, the
proper data type can be found by looking at the signature of the method.

These observations have given rise to an analysis performed by the HVM that
termed Producer-Consumer Analysis. The purpose of the analysis is for each
byte code to infer the most appropriate data types for stack cells manipulated
by the byte code. Consider the final ISTORE 0 byte code from the example in
Section 5.2.6. This byte code is storing the result into local variable number 0.
If the size of the local variable 0 is known to be 1 byte, then it is not necessarry
to store all 4 bytes into LV0. Also there is no need to perform a full 32 bit
addition when implementing the IADD functionality.

The following description of the details of producer-consumer analysis is
based on these observations,

1. Java byte codes are either producing stack cells (e.g. ICONST 0), consum-
ing stack cells (e.g. ISTORE 0), both consuming and producing stack cells
(e.g. IADD), or not producing nor consuming stack cells (e.g. GOTO)

2. No matter along which program trace execution arrives at a byte code,
the height of the Java stack is always the same.

3. A stack cell may have been produced by many byte codes, but it is only
going to be consumed by one byte code.

Observation (1) above is obvious by looking at the Java spec for all byte codes.
Observation (2) is a structural constraint on JVM code as defined by the JVM
specification. Observation (3) is not obvious, but the HVM has so far not
come across programs where this is not the case. Should it turn out that (3)

51

does not hold, it is possible with limited effort to support it in the producer-
consumer analysis. The reason for it not being supported is purely practical: no
benchmark or program has exhibited this behavior so far. Producer-consumer
analysis as implemented in the HVM is a method local analysis and is not
carried over across method invocations. For each byte code it calculates all
possible traces that lead up to the execution of the byte code. Along each trace
it collects all byte codes that may have produced the stack cell(s) on the stack
before executing the byte code. The set of traces are calculated using a form of
abstract interpretation in the same manner as calculating the dependency extent
described in Section 5.2.1, but in this incarnation the handling of method calls
is simple, since traces are not calculated across method call boundaries.

The result of the producer-consumer analysis is that each byte code is anno-
tated with a data structure describing all producers and consumers of all stack
cells present on the stack before execution of this byte code. This information
is used by the Java-to-C compiler to use the most narrow data type for all data
manipulation.

If the Java software developer uses appropriate data types like byte and
short whereever possible it will have a significant impact on code size and
efficiency on 8 and 16 bit architectures. On 32 bit architectures the effect will
not be as significant.

Producer-consumer analysis is not a constant propagation analysis. In the
simple example from Section 5.2.6, producer-consumer analysis will be able to
allow us to use the byte data type for storing the result of the addition into
local variable 0 only if it can see that the data type of LV0 is byte. A constant
propagation analysis would furthermore be able to gain knowledge of the data
range of values from looking at actual values placed on the stack. The HVM
does not use constant propagation analysis.

5.2.8 Code efficiency - Devirtualization

A useful side effect from calculating the dependency extent as described in Sec-
tion 5.2.1 is that for each method call site a list of possible classes implementing
the callee is calculated. A special case is, if this list contains one member only.
In that case the method call is not really virtual but can be substituted for a di-
rect call. This will allow the Java-to-C compiler to generate a call directly to the
C function generated from the callee. This type of call is significantly more effi-
cient than going through a virtual dispatch table, and additionally it will allow
the C compiler to perform inlining of the call. In the HVM the invokevirtual
Java byte code is substituted for the invokespecial Java byte code at call
sites that are deemed non-virtual. This will in turn make the Java-to-C com-
piler generate a direct method call when translating the invokespecial byte
code.

The effects of devirtualization have been thoroughly examined in [21] and
[35].

52

5.2.9 Code efficiency - Other Optimizations

The HVM applies a number of other standard optimizations,

• Null pointer checks. Checks for pointers being null can be avoided if it can
be statically determined that the pointer cannot be null. E.g. the this
pointer in non-static methods cannot be null, as this would have caused a
null pointer exception when the method was called

• Parameter passing. Non-virtual methods are translated into C functions
and formal parameters for the method are translated into correspond-
ing formal parameters for the C function. When calling an interpreted
method from a compiled method, this cannot be done. Instead the actual
parameters have to be placed in the stack

• Return values and exceptions. The HVM supports Java exceptions. A con-
sequence of this is that methods must, apart from returning their return
value (if not void), also return an indication of if an exception occurred.
In the HVM the exception state is packed together with the return value.
If the resulting data type becomes wider that 32 bit the return value is
placed on the stack.

5.2.10 Hardware Objects

Hardware Objects according to [57] are supported in the HVM, both for inter-
preted and compiled methods. Hardware Objects is a facility for accessing raw
memory from Java space, but it’s often used to control IO devices through ac-
cess to device registers of the underlying micro controller. On many embedded
targets (e.g. the ATMega2560 from Atmel) the access to device registers has to
take place using special purpose machine instructions, a read or write through a
load/store instruction will not have the desired effect. For this reason the HVM
cannot make an implementation of hardware objects that simply accesses mem-
ory using standard C idioms. The HVM delegates the actual access to native C
functions implemented in a thin hardware specific interface layer. The function
for writing a bit to IO has the following signature,

void writeBitToIO(int32 address,

unsigned short offset,

unsigned char bit);

An implementation of this function now has to be given for each target. When
access to fields of Hardware Objects is done from Java space, the interpreter
or Java-to-C compiler will make sure that appropriate functions are called. If
enabling inlining in the C compiler, the function will be inlined and executed
very efficiently.

5.2.11 1st Level Interrupt Handling

1st level interrupt handling as described in [38] is a facility for handling hardware
interrupts in Java space when they occur and not at a later point in time. The

53

HVM has been designed to be interruptable almost anywhere, and in the rare
cases where it is not, interrupts are disabled around critical regions. Combined
with the facility for entering Java space easily, as described in Section 5.2.5,
the ISR written in C or assembler can be very thin and simply call Java space
directly to handle the interrupt.

5.2.12 API Independence

The HVM does not put any requirements on the JDK used in Java programs.
When creating a new embedded Java project using e.g. Eclipse, the software
developer can build upon a JDK of his own choice. When the HVM computes
the dependency extent of an application, byte codes are loaded using the BCEL
API [5], and it makes no difference if one or the other JDK is used. The HVM
will simply load any byte code it encounters and translate it into C.

5.2.13 Native Variables

The main purpose of the HVM is to support the stepwise addition of Java soft-
ware components into an existing C based environment. It follows that the
ability to read C data from Java space and vice versa becomes very important.
Traditionally this is supported in Java through native methods, alternatively
through Hardware Objects. The HVM adds a third option termed native vari-
ables. The basic idea is to map static Java class variables to C variables and have
the Java-to-C compiler produce code that reads and writes to the corresponding
C variable instead of the class variable as would be the usual case. This map-
ping can be controlled by the developer through the IcecapCVar annotation,
the definition included here:

public @interface IcecapCVar {

String expression() default "";

String requiredIncludes() default "";

}

As an example of its use, consider the global C variable uint32 systemTick;
part of the KT4585 programmers framework. This variable is continuously
updated by the KT4585 RTOS every 10 ms and used to measure system time.
Using native variables this counter can be accessed directly from Java space in
the following manner:

54

public class XXX {

@IcecapCVar(expression ="systemTick",

requiredIncludes = "extern uint32 systemTick;")

static int tick;

public void test()

{

if (tick % 100 == 0)

{

...

}

}

}

The optional expression attribute defines to which C expression the static vari-
able is mapped and the optional requiredIncludes attribute allows the devel-
oper to add includes or external declarations required to compile the expression.
Native variables can only be accessed from compiled code.

5.3 Results

This section contains two example programs that illustrate the results of apply-
ing the methods described above. The first example is a very simple example
showing how the integration scenario described in Section 3.5 can be achieved,
the other example is a more elaborate example that illustrates how the HVM
scales to large applications.

5.3.1 Integrating With an RTOS

In this example a new task written in Java is added to an existing schedule of
the KT4585. In its default configuration the KT4585 runs 17 tasks written in
C, each implementing various parts of the DECT protocol stack. The purpose
of the new Java task is to control the DIP (see Section 2.2) by stopping or
starting it. The DIP is stopped on the KT4585 by clearing a particular bit in a
device register at address 0xFF6006, and it is started by setting the same bit.
Figure 19 shows the full implementation of our Java RTOS task.
Actual control of the DIP is achieved through the use of the DIP CTRL REG
hardware object. To be able to send events to this task from the other tasks
implemented in C, a proxy task is registered with the RTOS. In the KT4585
this is accomplished using the following piece of C code:

DIPCONTROLLERTASK = OSRegisterTask(dipControllerProxy);

55

public class DIPController {

public static final byte STARTDIP = 0x10;

public static final byte STOPDIP = 0x11;

public static final byte INITTASK = (byte) 0x99;

public static final short URST = 0x0080;

private static class Port extends HWObject {

public short data;

public Port(int address) {

super(address);

}

}

private static Port DIP_CTRL_REG;

@IcecapCompileMe

static boolean handleEvent(byte primitive) {

boolean handled = true;

switch (primitive) {

case INITTASK:

DIP_CTRL_REG = new Port(0xFF6006); break;

case STARTDIP:

DIP_CTRL_REG.data |= URST; break;

case STOPDIP:

DIP_CTRL_REG.data &= ~URST; break;

default:

handled = false;

}

return handled;

}

}

Figure 19: RTOS task written in Java

And the content of the C proxy task is:

static uint32 stack[10];

void dipControllerProxy(MailType *mail) {

stack[0] = mail->Primitive;

main_DIPController_handleEvent(stack);

}

The function main DIPController handleEvent has been automatically gener-
ated by the HVM, and it contains C code that implements the functionality of
the handleEvent method from Figure 19. The HVM generates a handful of C
files - always with the same names - and if these files are added to the existing
build environment, adding a new task written in Java to the existing schedule

56

of the KT4585 has been accomplished.

• After this setup has been done, all future work with extending the behavior
of the Java task can take place entirely in Java

• The C source generated from the Java task is completely self contained
and does not add any further dependencies to the application

• The Java task needs a heap. This is included in the auto generated C files.
The size of the heap can be set by the developer.

This example illustrates how the HVM supports the design goal of integratabil-
ity. How well it behaves in terms of efficiency is the topic of Section 7.

5.3.2 Full SCJ application

This section illustrates the maturity level of the HVM by showing how it can run
the miniCDj benchmark from [52]. This benchmark is built on top of the SCJ
profile. The HVM supports the SCJ profile Level 0 and level 1 [63]. The SCJ
profile offers a scoped memory model and preemptive scheduling mechanism.
The HVM implements these features almost entirely in Java using Hardware
Objects, native variables and 1st level interrupt handling. The implementation
is described in detail in a paper accepted for the JTRES’12 conference. The
paper has been included in the Appendix.

The HVM can fully analyze, compile and run the miniCDj benchmark on
32 and 64 bit Intel platforms, but the benchmark requires a backing store of at
least 300 kB, so it will not be able to run on a low-end embedded system. Still
it will compile for a low-end embedded system and show how well the HVM
program specialization can keep the ROM foot print down.

To demonstrate RAM requirements, a simple SCJ Level 1 application con-
sisting of 1 mission and 3 periodic handlers scheduled by a priority scheduler, is
run. This application can run with a backing store of approx 8 kB thus allowing
us to deploy it on the KT4585.

After some minor adjustments the miniCDj benchmark compiles against
the javax.safetycritical package from the HVM SCJ implementation. As
JDK the OpenJDK 1.6.0 class libraries has been used in this evaluation. After
the HVM program specialization has optimized the application a total of 151
classes and 614 methods are included in the final binary. These classes are
divided between the packages as described in Figure 20.

Since the KT4585 C-runtime does not support float and double - two
data types used heavily by the miniCDj benchmark - the generated C code was
compiled for a similar platform with float support: the AVR ATMega2560
platform from Atmel. This is a 8 bit architecture with 8 kB of RAM and 256
kB of flash. The code was compiled using the avr-gcc compiler tool chain [6] .

The resulting ROM requirements are listed in Figure 21. Results are listed
for a mostly interpreted and for a compilation only configuration.

57

Classes Methods
java.lang.* 46 171
java.util.* 10 42

javax.safetycritical.* 46 185
minicdj.* 49 216

Total 151 614

Figure 20: Program specialization results

ROM
Mostly interpreted 94682
Compilation only 282166

Compiling the miniCDj benchmark for an 8 bit low-end device (ATMega2560).

Using the HVM and the avr-gcc compiler tool-chain. Numbers in bytes.

Figure 21: HVM-SCJ ROM requirements

Using the mostly interpreted configuration the ROM meets the goal with a
large margin and is well below the 256 kB available on the ATMega2560. Using
the compilation only configuration the resulting application is approximately
276 kB and no longer fits onto the ATMega2560.

The reason for the difference in ROM size between the compilation and
interpretation configuration is, that C code generated by the HVM Java-to-C
compiler requires more code space than the original Java byte codes. Whether
this is a general rule cannot be inferred from the above, and if the HVM Java-to-
C compiler was able to produce tighter code the difference would diminish. But
this experiment has an interesting side-effect and shows, that in the particular
case of the HVM, the hybrid execution style supports the running of programs
on low-end embedded devices, that would otherwise not fit on the device.

The work reported in [52] shows results from running the miniCDj bench-
mark on the OVM, but it does not report a resulting ROM size. It does state
however that the benchmark is run on a target with 8MB flash PROM and
64MB of PC133 SDRAM - a much larger platform than the ATMega2560.

In the simple SCJ application with 1 mission and 3 handlers the RAM us-
age can be divided into the parts shown in Figure 22. The stack sizes and the
required sizes for the SCJ memory areas were found by carefully recording al-
locations and stack heights in an experimental setup on a PC host platform.
The results from compiling the application for the KT4585 using the gcc cross
compiler for the CR16c micro-controller (this benchmark does not utilize float
or double) is shown below,

The results show that a total of approx 10 kB RAM are required. The ROM
size of the application is approx 35 kB. These numbers allows us to run SCJ
applications on low-end embedded systems such as the KT4585.

58

SCJ related bytes
’Main’ stack 1024

Mission sequencer stack 1024
Scheduler stack 1024
Idle task stack 256

3xHandler stack 1024
Immortal memory 757
Mission memory 1042

3xHandler memory 3x64 = 192
HVM infrastructure

Various 959
Class fields 557

Total 9715

Figure 22: HVM-SCJ RAM requirements

59

6 The HVM - Implementation

The HVM Java-to-C compiler is implemented in Java. It can be deployed as
an Eclipse plugin or it can run as a standalone Java application. When run as
an Eclipse plugin the developer can select from inside the Eclipse workbench,
which method is going to be the main entry point of the compilation. The
calculated dependency extent is displayed in a tree view inside Eclipse, allowing
the developer to browse the dependency extent and click on various elements to
see them in the Eclipse Java code viewer. When run from the command line,
input to the process is given manually to the compiler.

An overview of the compilation process is depicted in Figure 23.

Converter

EntryPoint

Read byte codes

Convert
dependencies

Flow graphs for all methods

For each method

Producer-consumer analysis

Stack references analysis

Patch byte codes

Emit C code

Compiler

Figure 23: Compilation sequence overview

The entry point - e.g. the main method or the handleEvent method of a task - is
the input to the process. The HVM converter will read the byte codes from the
entry point and convert each byte code into a node in the control flow graph of
the method. These nodes will in following visits of this graph be annotated with
information used by the compilation process. While constructing the control
flow graph, required dependencies are put on a stack of work items and will give
rise to further methods being loaded, until the full dependency extent of the
main entry point has been loaded. The details of identifying the dependency
extent is explained in Section 5.2.1.

After all methods have been converted into flow graphs, each flow graph
is visited several times performing various analysis on the graph. Each analy-

60

sis will annotate the byte codes with information pertaining to the particular
analysis. E.g. the producer-consumer analysis annotates each byte code with
a representation of which other byte codes have produced cells on the stack as
the stack looks upon entry into this byte code.

Various information from the constant pool of the class file containing the
method code is inlined into the byte code, extending and rearranging the byte
code. Other changes to the byte code are done as well to make interpretation
and compilation easier in the following phases.

After all methods have been annotated, the Java-to-C compiler visits the
flow graph one final time to produce the final C code that is the outcome of the
compilation.

If a method is marked for interpretation, the byte codes of the method are
translated into a C array of unsigned char values.

The produced code, together with the interpreter and other utilities imple-
mented in C, are copied by the HVM plugin into a previously specified location
and can now be included in the existing build environment for a particular
platform.

61

7 HVM Evaluation

Section 5.3.1 demonstrated how the HVM can be used to add Java software
components into an existing C based execution and development platform. Ad-
ditionally Section 5.3.2 demonstrated the scalability of the HVM to large SCJ
applications.

This Section shows measurements comparing the execution efficiency of the
HVM to other similar environments. Even though the HVM can be used to
program Java for embedded systems it is also very important to engineers that
the efficiency by which Java can run is close to the efficiency they are accustomed
to for their current C environments.
For high-end embedded platforms results already exists regarding execution
speeds of Java programs compared to the same program written in C. In their
paper [49] the authors show that their Java-to-C AOT compiler achieves a
throughput to within 40% of C code on a high-end embedded platform. This
claim is thoroughly substantiated with detailed and elaborate measurements
using the CDj and CDc benchmarks[36].

Since the memory requirements of the CDj and CDc benchmarks (see Sec-
tion 5.3.2) prevents us from running them on low-end embedded systems, this
thesis introduces a small range of additional benchmarks. The idea behind these
benchmarks are the same as from CDj/CDc: To compare a program written in
Java with the same program written in C.

7.1 Method

The 4 benchmark programs are written in both Java and C. The guiding prin-
ciples of the programs are,

• Small. The benchmarks are small. They don’t require much ROM nor
RAM memory to run. The reason why this principle has been followed is
that it increases the probability that they will run on a particular low-end
embedded platform

• Self-contained. The benchmarks are self-contained, in that they do not
require external Java nor C libraries to run. They don’t even require
the java.util.* packages. The reason is that most embedded JVMs
offer their own JDKs of varying completeness, and not relying on any
particular Java API will increase the chance of the benchmark running
out-of-the-box on any given execution environment

• Non-configurable. The benchmarks are finished and ready to run as is.
There is no need to configure the benchmarks or prepare them for execu-
tion on a particular platform. They are ready to run as is. This will make
it easier to accurately compare the outcome from running the benchmarks
on other platforms, and allow other JVM vendors to compare their results

62

• Simple. The behavior of each benchmark is simple to understand by a
quick scrutinizing of the source code. This makes it easier to understand
the outcome of running the benchmark and to asses the result.

The benchmark suite of only 4 benchmarks is not complete and the quality
and relevance of the suite will grow as new benchmarks are added. The guiding
principles of the benchmarks are very important, especially the principle of being
self-contained, since this is a principle most important for being successful at
running a benchmark on a new embedded platform.

The current benchmarks are:

1. Quicksort. The TestQuicksort benchmark creates an array of 20 inte-
gers initialized with values from 0 to 20 in reverse order. Then a simple
implementation of the quicksort method sorts the numbers in place. This
benchmark applies recursion and frequent access to arrays

2. TestTrie. The TestTrie benchmark implements a tree like structure of
characters - similar to a hash table - and inserts a small number of words
into the structure. This benchmark is focusing on traversing tree like
structures by following references

3. TestDeterminant. The TestDeterminant benchmark models the concept
of vectors and matrices using the Java concepts of classes and arrays.
Then the Cramer formula for calculating the determinant of a given 3x3
matrix is applied

4. TestWordReader. The TestWordReader benchmark randomly generates
17 words and inserts them into a sorted list of words, checking the list
before each insert to see if it is not there already. Only non duplicates are
inserted.

The nature of these benchmarks are not exhausting all aspects of the Java
language, but they still reveal interesting information about the efficiency of
any given JVM for embedded systems. The purpose of the benchmarks are to
reveal how efficiently Java can be executed in terms of clock cycles as compared
to C and how much code space and RAM are required. The benchmarks are
not intended to test garbage collection, and non of the benchmarks require
a functioning GC to run. Nor do they give any information about the real-
time behavior of the system under test. To test GC efficiency and/or real-time
behavior of a given JVM the CDj/CDc benchmarks are available.

In Section 7.2 compares the results from running these benchmarks on GCC,
FijiVM, KESO, HVM, GCJ, JamVM, CACAO and HotSpot. This will give us
valuable information about the efficiency with which these environments can
execute Java code as compared to each other and as compared to C based
execution environments.

63

7.1.1 Benchmark execution - High-end Platforms

Since only three of the tested execution environments (GCC, KESO and HVM)
are capable of running these benchmarks on low-end embedded systems, they
were first run on a 32 bit Linux PC. On this platform all JVMs under test
could execute the benchmarks. The number of instructions required to run the
benchmarks was measured using the Performance Application Programming
Interface (PAPI) [11, 47]. The reason for measuring the instruction count and
not the number of clock cycles is that the instruction count is a deterministic
value for the benchmarks, but the clock cycle count is not on advanced proces-
sors. This first run of all the benchmarks on a 32 bit Linux PC will not by it self
give us the desired results for low-end embedded platforms, but it will allow us
to compare the JVMs under test against each other and against C on high-end
platforms. To achieve the desired results for low-end embedded platforms the
benchmarks will be run on a particular low-end embedded environment as well
using GCC, HVM and KESO. This will give the desired results for these two
JVMs, but compared with the results for high-end environments one can make
statements about what could have been expected had it been possible to run all
JVMs on a low-end embedded environment.

For all execution environments the native instruction count was measured
by calling the PAPI API before and after each test run. The tests was run
several times until the measured value stabilized - this was important for the
JIT compilers especially, but also for the other environments. E.g. calling
malloc for the first time takes more time that calling malloc on subsequent
runs. All in all the measurements reported are for hot runs of the benchmarks.

7.1.2 Benchmark execution - Low-end Platforms

To obtain a result for low-end embedded platforms the benchmarks was run
using GCC, HVM and KESO on a ATMega2560 AVR micro-controller. This
is an 8 bit micro-controller with 8 kB of RAM and 256 kB ROM. On this
simple platform there is a linear, deterministic correspondence between num-
ber of instructions executed and clock cycles. The AVR Studio 4 simulator
was used to run the benchmarks and accurately measured the clock cycles re-
quired to execute each benchmark. Figure 24 shows an example of running the
TestQuicksort benchmark using GCC. To produce the executable the avr-gcc
cross compiler (configured to optimize for size) was used.

64

Figure 24: AVR Studio 4

In this test run the clock cycles spent to get to the for-loop was measured (in this
case 125 clock cycles), and this number was subtracted from the time taken to
perform the benchmark. Then the test was run 20 times, in this case yielding a
clock cycle count of 107131. GCC takes (107131 - 125) / 20 = 5350 clock cycles
to perform the benchmark.

To obtain similar results for KESO, the C source produced by the KESO
Java-to-C compiler was compiled using the avr-gcc cross compiler. An AVR
Studio 4 project was created to enable the measurement of clock cycles as above.
Again the start up time was measured and each benchmark run a number of
times to arrive at an average time taken for KESO to execute the benchmark.
Similarly for HVM. All projects configured to optimize for size.

These measurements are directly relevant for low-end embedded platforms
and allow us to validate how the HVM compares to GCC and KESO. Since
these three environments also appear in the high-end platform measurements,
where they can be related to results from the other environments, they offer a
chance in Section 7.3 to predict how these other high-end environments would
have performed had they been able to run on the ATMega2560.

7.2 Results

The measurements performed using the PAPI API on a 32 bit Linux PC plat-
form are listed in Figure 25 and 26.

The instruction count taken for the C version to execute is defined as 100.
The instruction count taken for the other environments is listed relatively to C
above. E.g. the HVM uses 36% more instructions to execute the Trie benchmark

65

C KESO FijiVM HVM GCJ

Quicksort 100 101 136 111 172
Trie 100 93 54 136 245

Determinant 100 59 37 96 171
WordReader 100 251 218 177 328

Total 100 126 111 130 229

Figure 25: Instruction Count Comparison - Part 1

C JamVM HVMi CACAO HotSpot

Quicksort 100 697 4761 147 156
Trie 100 772 1982 294 234

Determinant 100 544 1664 294 48
WordReader 100 975 4979 263 142

Total 100 747 3346 250 145

Figure 26: Instruction Count Comparison - Part 2

than native C.
The results from comparing HVM and KESO on the ATMega2560 are listed

in Figure 27.

C KESO HVM

Quicksort 100 108 130
Trie 100 223 486

Determinant 100 190 408
WordReader 100 331 362

Total 100 213 347

Figure 27: Cycle count comparison

This is an accurate cycle count comparison for KESO and HVM.

7.3 Discussion

The most interesting results are contained in Figure 27. This whows that for
the benchmarks tested,KESO is approximately 2 times slower than C and the
HVM is approximately 3 times slower than C.

There are several observations that should be taken into account when con-
sidering the above experiment:

• KESO supports GC, the HVM does not but relies on SCJ memory man-
agement. Even though GC is not in effect above, the KESO VM probably

66

pays a price in terms of execution efficiency for the presence of GC

• The HVM supports Java exceptions, KESO does not. Very rudimentary
experiments not shown here indicate that the cost of exception support is
an approx 25% decrease in performance for the HVM

• Scrutinizing the C code produced by KESO shows that the Java type
short is used in places where this is not correct. E.g. code had to be
manually fixed for the WordReader benchmark to reintroduce the correct
data type int in various places. Using short where int is required might
be reasonable in several cases, and this will have a significant impact on
performance, especially on 8 bit platforms as the ATMega2560.

The following substantiated observations for low-end embedded platforms
can be made,

• Java-to-C compilers are a little slower than native C, but not by an order
of magnitude. It is likely that they can be approximately half as fast as
native C

• KESO is faster than HVM. The HVM achieves a throughput of approx
50% that of KESO.

67

8 Summary and Contributions

Apart from this thesis, and the HVM itself as a complete software product, the
research performed during the thesis period has been documented in 5 confer-
ence papers, 1 journal article and 1 extended abstract. This Section gives a brief
introduction to each paper and puts it in context of the HVM. All the papers
are included in full in the appendix.

8.1 The Java Legacy Interface - JTRES 2007

In 2007 I used an existing VM (called SimpleRTJ) to support the execution of
Java software components on the KT4585 embedded device. In the role of main
author of this paper I describe how the SimpleRTJ VM was changed to allow
for executing Java tasks alongside existing C tasks. An important outcome of
this was a proof-of-concept that it was actually possible to execute Java on the
KT4585 while keeping existing legacy software running. The experiment also
identified some short comings - most importantly the chosen VM being an in-
terpretation only VM, it was too slow for most practical purposes. Additionally
intelligent class linking was not supported thus making it hard to scale to larger
Java APIs.

8.2 Hardware Objects for Java - ISORC 2008

Since it was now possible to run Java in and by itself on the KT4585, I quickly
recognized the need for being able to interact with hardware in a more elegant
manner than through native methods. Based on an idea called Hardware Objects
by Martin Schoeberl - the main author of this paper - I implemented this feature
in the SimpleRTJ and through this experiment contributed to the evaluation
of the Hardware Object concept. Hardware Objects later became an important
feature of the HVM used in e.g. the SCJ implementation, and in general the
preferred way for the HVM to interact with hardware from Java space.

8.3 Interrupt Handlers in Java - ISORC 2008

Another important feature used when programming embedded devices is the
ability to handle interrupts as they occur. In the role of main author of this
paper I describe how interrupts can be handled directly in Java space, in the
context of the actual interrupt and not at some later point. I implemented the
idea in the SimpleRTJ VM and demonstrated how Hardware Objects together
with 1st level interrupt handling allows for writing device drives in pure Java.

8.4 A Hardware Abstraction Layer in Java - TECS Jour-
nal 2011

In the role of co-author a contribution was made to the evaluation section of
this journal paper. The paper described how a modern, type-safe programming

68

language like Java can be used to write devices drivers for embedded systems.
The examples of implementing the concept of Hardware Objects and 1st level
interrupt handling for the SimpleRTJ, as described above, played a significant
role in the evaluation section of this Journal paper. Additionally I implemented
the concepts on a new VM (KaffeVM).

At this point in time it was clear that Java can indeed be made to run on
low-end embedded devices, can be integrated with existing C code, and can
be used to to program hardware. It was also clear that existing VMs - e.g.
SimpleRTJ and KaffeVM, was not suitable for devices like the KT4585. The
main reasons were lack of efficiency and the monolithic nature of the VMs. At
this point in time I decided to start the work with implementing the HVM.

8.5 Flash Memory in Embedded Java Programs - JTRES
2011

The first paper coming out of this effort was about how to support host initial-
ized static data in Java. This concept of static/read-only data placed exclusively
in flash, was well known from C environments. In the role of sole author I de-
scribe in this paper how read-only data can be handled in a similar manner in
Java environments. The HVM was the experimental workbench for the evalua-
tion.

After this paper a burst of implementation work was done on the HVM to
increase its performance.

8.6 Towards a Real-Time, WCET Analysable JVM Run-
ning in 256 kB of Flash Memory - Nordic Workshop
on Programming Theory 2011

In the role of a contributing author this extended abstract describes the changes
that had to be made to the HVM in order to make it analyzable for WCET.

8.7 Safety-Critical Java for Low-End Embedded Platforms
- JTRES 2012

In the role of 1 of 3 equal contributors this paper presents an implementation of
the Safety-Critical Java profile (SCJ), targeted for low-end embedded platforms
with as little as 16 kB RAM and 256 kB flash. The implementation is built
on top of the HVM. The work utilizes many of the capabilities of the HVM:
Hardware objects, 1st level interrupt handling, native variables, and program
specialization through intelligent class linking.

The resulting profile implementation and evaluation benchmarks are the
until now most clear indication that the ideas behind the HVM scale to complex
applications and to real industrial settings.

69

9 Future Work

The state of the HVM today is such that it can be used as it is in many concrete
industrial and educational scenarios. Following this step forward, a selection
of obvious research directions present themselves. This section presents those
research topics and hint at a future research plan.

9.1 Tool Support

The first and foremost task to take up, is to follow up on the ideas in [8]. In
their paper the authors lays out a vision for a complete environment comprised
by a set of tools for supporting the development and execution of hard-real time
embedded Java. Using the WALA [1] and UPPAAL frameworks the authors
have developed tools for Conformance checking, Memory analysis and Schedu-
lability analysis. Using UPPAAL the authors of [23] present the tool TetaJ that
statically determine the WCET of Java programs executed on the HVM. These
tools are today standalone tools, and it would be obvious to embed them into
the HVM Eclipse plugin. The HVM plugin today supports the initiation of the
Java-to-C translation, but it can be extended to also activate tools for the types
of analysis mentioned above. This will bring about a complete Eclipse based
toolbox for development of real-time Java programs for embedded systems.

9.1.1 Debugging

One obvious tool that is missing is the ability to interactively debug Java pro-
grams. Currently the HVM takes some care to produce fairly readable C code,
and it uses names of C data variables that are inherited from Java space. Also
the Java source lines are embedded as comments into the generated C code.
This makes it possible today to debug the resulting program using existing C
based debugging environments. Still, it resembles only being able to debug at
the assembler level while programming at the C level. The Eclipse environment
defines a standardized debugging protocol, and it would be very useful for pro-
grammers to support single-stepping and other standard debugging facilities, at
the Java level, of applications executed on the HVM.

9.2 Large Scale Industrial Experiments

The Polycom industrial case presented in the analysis part of this thesis has
formed the basis of HVM experiments up until now. Recently, through cooper-
ation with the Danish company Grundfos [32], a new platform has been intro-
duced. Grundfos is looking for input to their decision making about which direc-
tion their embedded development methods should take in the future. Grundfos
has considered model based development, but are also interested in exploring
the use of Java for low-end embedded software development. Currently work
is going on with defining a concrete development project where the HVM will

70

be integrated with their existing C based environment and where Grundfos de-
velopers will produce new functionality written in Java and executed alongside
existing C based functionality.

Such large scale industrial experiments will bring valuable feedback about
howthe HVM and other tools may be improved, and it will allow Grundfos to
work with state-of-the-art embedded Java environments to gain the benefits
from high-level software development on their low-level devices.

9.3 HVM optimizations

Section 7 shows that the HVM today achieves a throughput of approximately
a third of native C. For the work with the Polycom and Grundfos devices this
is acceptable, and no present request to improve on this has been made. Still,
there are some obvious optimizations still to make in the HVM to improve on
efficiency:

• Static initializers. When static methods and variables are accessed the
Java specification defines when the static initializers of the static class
must be executed. Currently this check for if the class has been initialized
is done more often than necessary. A static analysis of the Java code will
be able to infer at which points the check for static initialization can be
avoided, because it will be statically decidable that the check must have
been performed previously. This is supported by KESO, but not yet by
the HVM.

• Exception handling. Handling the throw and catch of exceptions, which
is supported in full by the HVM, comes at a significant cost of approxi-
mately 25% (see Section 5.2.2). Given an application it could be useful
to explore to which extent a static analysis can gain information about
which exceptions could be thrown and where. If it can be inferred that
a method cannot throw an exception the code generated for the method
can be made significantly more efficient.

• Object field access. In the HVM access to object fields is done by casting
the object reference to an unsigned char array and accessing certain
parts of that array depending on the type of the field. In KESO, each
Java class is translated into a C struct and the object fields are accessed
through access to the struct members. In practice this allows GCC and
other C compilers to generate more efficient code for accessing object
fields. This trick could benefit the HVM as well.

• Virtual dispatch. The HVM is very good at recognizing if a virtual call site
is not really virtual and turning it into a non virtual method call (which
can be implemented more efficiently, see Section 5.2.8). Still some call
sites are truly virtual and today they are not handled very efficiently in
the HVM. At a truly virtual call site a special utility function gets called
for the dispatching of the call to the proper receiver. Instead the compiler

71

could generate an in-line switch statement that switches on the type of
the target object. This will give a larger code size but will most likely
be significantly more efficient. This idea resembles a Polymorphic Inline
Cache and was put forward by [33].

• Template recognition. The Java compiler translates Java constructs like
for and while loops into common templates of byte code. If the HVM
could recognize these templates, the corresponding for and while con-
structs of the C language could be used. Today the HVM generates goto
statements. It is not obvious that using the corresponding for and while
constructs of the C language instead of goto would increase performance,
but it will most likely make the resulting C code more readable.

9.4 HVM Optimizations Correctness

The producer-consumer method described in Section 5.2.7 is based on some
conjectures about the nature of byte codes generated by Java compilers. Based
on these conjectures one can narrow the type of data manipulated by individual
byte codes, and thus optimize the code generated to use the most narrow type
possible. It seems important to substantiate that the conjectures indeed hold
true for all programs, or if they do not, adapt the optimizations to handle failing
scenarios. Work by [25] is relevant here.

9.5 Java Level GC

The HVM SCJ implementation, described in [63] and included in the appendix,
uses the concepts of Hardware Objects, 1st level interrupt handling and native
variables to implement e.g. process scheduling almost entirely in Java - a fea-
ture usually implemented in the VM infrastructure. Currently investigations
are undergoing to establish if it would be possible to use the same features to
implement a garbage collector for the HVM entirely (or almost entirely) in Java.
Such a solution would have several advantages. First it would be more portable
than a C based solution, and secondly the intelligent class linking facility would
exclude the GC if it were not used, thus keeping down the size of executables
not utilizing GC. Thirdly it would allow developers to easily implement or adapt
GC strategies using the Java language as opposed to changing the VM source
code itself.

9.6 Merging HVM with KESO, FijiVM and others

Each of the VMs - KESO, FijiVM, and HVM - have some advantages that the
others don’t have. E.g. the KESO VM supports the useful concept of isolated
domains, and it produces tight and readable C code. The FijiVM produces
rather obscure but strikingly efficient C code, and it is the most efficient of the
three mentioned VMs. Additionally the FijiVM supports real-time GC, a very
relevant feature. The HVM produces C code that is completely self contained

72

and does not rely on a POSIX like OS or the presence of any other OS or C
runtime library, while still producing fairly efficient C code. Also the HVM is
integrated with the Eclipse environment and supports program specialization
through intelligent class linking.

Ideas from one environment could benefit the others. E.g. could KESO
be integrated with Eclipse? Could it generate code not depending on external
features? How easy would it be to refactor FijiVM to support intelligent class
linking and thus allow it to produce self-contained code, in case the Java source
does not use any OS functionality? In other words, does FijiVM have to be
monolithic? Does KESO have to rely on OSEK?

Extending each of these VMs with features from each other or carefully
selecting the best parts from each to collect them in a new and even better VM
would be very interesting.

9.7 HVM in Educational Settings

The HVM has already been used in educational settings and some new ones are
under the way. Recently two master thesis projects from AAU were completed,
in which the HVM played a significant role (1) WCET analysis of Java programs
on common hardware, also documented in [23] and (2) an implementation of
STM (Software Transactional Memory) based on the HVM. In the near future
it is the intention to use the HVM at VIA University College, when teaching
courses in real-time programming and concepts. Previously those courses was
taught using the C programming language. Evaluations of the courses revealed
that C, being in this setting a new language to the students, was an obstacle
in the process of learning the curriculum. The curriculum is not C as such, but
rather real-time programming and concepts. Since the students are intimately
familiar with Java, the teaching of real-time programming and concepts will be
better when using Java instead of C. At AAU, courses are available to industrial
partners as well as normal students. One of these courses have the aim of
upgrading current C programmers to master Java as well. In this course AAU
plans to use the HVM to allow the industrial partners to program exercises and
examples in Java on their own embedded hardware.

9.8 HVM for .NET

The C# language is usually translated into a byte code format called the
Common Intermediate Language (CIL). Could the ideas behind the HVM, es-
pecially the program specialization through the intelligent class linking feature,
be applied to C# programs as well? The C# language is targeted at server,
desktop and in some case high-end embedded systems as well, but it may be
possible to run CIL programs on even smaller platforms.

73

10 Conclusion

This thesis has presented the analysis, design and implementation of the HVM.
The HVM adds incrementality and integratability to the set of features sup-
ported by Java on low-end embedded platforms.

The work started out of a frustration: it was not possible to find an embedded
Java environment that could run on the KT4585 while keeping the existing
legacy software running as well. Existing environments were not incremental:
adding limited amounts of Java code required a disproportionate amount of
RAM and ROM. They were not integratable: they required the inclusion of
POSIX-like functionality or the use of particular compilers and libraries, or they
produced or contained code that was not directly compilable by the KT4585
build environment. The HVM shows that incrementality can be achieved: the
smallest possible Java program executed using the HVM requires approx 8 kB
of ROM and a few bytes of RAM. The HVM shows that integratability can be
achieved: it produces self-contained, strict ANSI-C code, that can be embedded
into existing build environments about which no assumptions are made. In
operational terms one can program a new OS Task for the KT4585 in Java and
include it in the existing build environment (see Section 5.3). C tasks and Java
tasks can coexist, and the KT4585 software developer can choose which parts
of an application to write in C and which parts to write in Java.

The HVM supports Hardware Objects and 1st level interrupt handling, and
adds the novel feature of native variables. These three concepts make it possible
to write device drivers or, in general, to access hardware from Java space, just
as the developer will be accustomed to do in C.

It is now possible to start field research with companies such as Polycom and
Grundfos and write Java code for industrial devices in operation today. This
will in the future give valuable input to the underlying assumption that Java is
a better language than C in terms of code quality and speed of development.
This claim can not be verified or rejected yet, but now the technical tools to
start the experimental work are available.

In the autumn of 2012 the HVM is going to be used in 6th semester courses
at VIA University College in Horsens for programming the KT4585 in Java.
The feedback from the students will be valuable feedback about the use of the
HVM itself.

Apart from the HVM itself, the thesis work have appeared in 5 conference
papers, 1 journal article and 1 extended abstract (See Section 8). The HVM
has been used in 2 master thesis projects and been referred from several other
papers.

The work with the HVM has not finished. Section 9 lays out a number of
future tasks, and the HVM can be a significant part of fruitful research at CISS,
VIA University College, and elsewhere in the near future.

The introduction stated a problem: that current environments for embedded
Java lacked in incrementality and integratability. This thesis has presented
techniques to solve these problems, and the HVM demonstrates their feasibility.

74

11 Acknowledgement

I am profoundly grateful to Hans Søndergaard. He introduced me to embedded
real-time Java in the first place, and later encouraged me to start this thesis
work. He also introduced me to a very fruitful and inspiring research community
at CISS, Aalborg University. I am forever grateful to A.P. Ravn from CISS for
teaching me how to write scientific materiel and for always helping me to keep
the vision clear and the overall goal in site. I am very grateful to my counsellor
Bent Thomsen, who encouraged me to take up my thesis work again after a
longer break, and with whom I have had many inspiring conversations. I have
used his deep insight into the field of current research in real-time embedded
software to position and clarify my work in relation to other efforts. In the first
half of my thesis period I was very lucky to be introduced to Martin Schoeberl.
Through his ideas and cooperations with him I appeared as coauthor in my first
publications. I hope in the future I will be able to work with him again. I also
thank Kasper Søe Luckow, Casper Svenning Jensen and Christian Frost for their
master thesis work, in which they made the HVM interpreter time predictable
and used UPPAAL to calculate WCET boundaries for Java code executed on
the HVM [23]. I’m very grateful to Polycom and my former boss, Dion Nielsen,
who allowed me to start this thesis work on a part time basis while working at
Polycom. Finally, I am very grateful to VIA University College and my current
boss Jens Cramer Alkjærsig, who have allowed me to finish the work and given
me time and resources to do it.

75

Appendix

The Java Legacy Interface

Stephan Korsholm
Centre for Embedded Software Systems (CISS)

Aalborg University
DK-9220 Aalborg Ø
stk@cs.aau.dk

Philippe Jean
KIRK telecom

Langmarksvej 34
DK-8700 Horsens

phj@kirktelecom.com

ABSTRACT
The Java Legacy Interface is designed to use Java for encap-
sulating native legacy code on small embedded platforms.
We discuss why existing technologies for encapsulating legacy
code (JNI) is not sufficient for an important range of small
embedded platforms, and we show how the Java Legacy In-
terface offers this previously missing functionality.

We describe an implementation of the Java Legacy Inter-
face for a particular virtual machine, and how we have used
this virtual machine to integrate Java with an existing, com-
mercial, soft real-time, C/C++ legacy platform.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management—Schedul-
ing, Threads; D.4.4 [Operating Systems]: Communica-
tions Management—Message sending ; D.4.4 [Operating Sys-
tems]: Organization and Design—Real-time systems and
embedded systems; D.3.4 [Processors]: Run-time environ-
ments, Interpreters.

General Terms
Languages, Design.

Keywords
Java/C integration, legacy code, encapsulation, multilan-
guage interoperability, embedded systems, scheduling, real-
time.

1. INTRODUCTION
During recent years a range of real-time capable embed-

ded execution environments for Java have appeared that are
both efficient, predictable and complete. The Jamaica Java
virtual machine is built around a hard real-time garbage
collector, and has become a commercial product supported
by aicas [2]. Another commercial product is the PERC im-
plementation of Java supported by Aonix [3]. Both these

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JTRES ’07 September 26-28, 2007 Vienna, Austria
Copyright 2007 ACM 978-59593-813-8/07/9 ...$5.00.

environments are hard real-time and high-performance. A
number of open-source virtual machines for Java (JVM) ex-
ist as well, e.g. SableVM [17], JamVM [10], and Jelatine [1].

These implementations are based on accomplishments such
as hard real-time garbage collection [19], ahead-of-time com-
pilation, and the emergence of real-time standards and pro-
files for embedded Java. All together this no longer leaves
any doubt that the benefits of the high level, OO language
Java can be utilized on the board of an embedded real-time
system [4].

For many existing embedded platforms it is not the only
requirement, before starting to use Java, that good Java en-
vironments are available - in many cases it is also mandatory
that Java can be integrated with the existing legacy platform
in order to keep important legacy software running while al-
lowing future development to take place in Java.

Two ways of integrating Java with legacy code are particu-
larly interesting,

1. Integrate via a Java architecture and call non Java
functionality implemented in legacy code.

2. Integrate from the legacy architecture and call Java
functionality.

Using the first method the scheduling of the legacy code
will be managed by the Java architecture, whereas using the
other method the scheduling of the legacy code will not be
changed, rather the Java code will be scheduled according to
the existing scheduling mechanisms of the legacy platform.

In this paper we are interested in 2), as this method of in-
tegration tends to have less impact on the legacy platform.
On a certain range of legacy platforms the existing technol-
ogy JNI (Java Native Interface) [11] can be used to integrate
from the legacy architecture and call Java functionality; but
on an important range of (typically smaller) embedded plat-
forms, without room for a full JNI implementation, or with
scheduling mechanisms other than threading, JNI cannot be
used for integrating Java with legacy code.

To meet this need, we have specified the Java Legacy Inter-
face (JLI). JLI supports the integration of Java with legacy
platforms using method 2) above, and JLI makes it possible
to integrate types of platforms where JNI cannot be used for
this integration. We suggest a design for JLI and describe
an implementation for a particular JVM, and how we have

used this JVM to integrate Java with an existing, commer-
cial, soft real-time, C/C++ legacy platform.

The paper is organized as follows: in Section 2 we look at the
types of legacy platforms that could benefit from using JLI,
and we describe in more detail why JLI is needed. In Sec-
tion 3 we present our initial design for JLI. In Section 4 we
show how we have implemented JLI for a particular legacy
system. Finally in sections 5 and 6 we look at what other
people have done in this area and look ahead at what are
the next steps to take.

2. JAVA ON LEGACY PLATFORMS
The effort required to integrate a JVM with a given legacy

platform depends to a large extent on the scheduling mech-
anism used by the platform. In this section we will look
at some important types of scheduling mechanisms: thread
based scheduling, event-driven scheduling and task based
scheduling.

On thread based scheduling platforms existing technologies
(JNI) can most likely be used to integrate Java with legacy
code, whereas on the other types of platforms this may not
be possible.

2.1 Thread Based Scheduling
Many legacy platforms are build on an OS supporting

threading. The legacy code is executed as a number of
threads scheduled by the OS kernel. When introducing
Java to such a platform, JNI can be used to both start
the JVM and to execute Java code. Using the JNI func-
tion JNI_CreateJavaVM, the JVM can be loaded and initial-
ized. It is now possible for some of the threads to execute
legacy code while other threads execute Java code. Using
the JNI function JNI_AttachCurrentThread native threads
can be attached to the JVM and execute functionality im-
plemented in Java. In this scenario the Java code and legacy
code are now both scheduled using the existing scheduler of
the legacy platform as implemented by the OS. Thus, on
legacy platforms built on top of e.g. Linux, Windows CE or
VxWorks Java code can be integrated with legacy code in
this manner.

2.2 Event-Driven Scheduling
As observed in [8, 7], event-driven programming is a popu-

lar model for writing small embedded systems. In an event-
based execution scheme, application code may register in-
terest in certain events by installing event handlers. The
main executive, also termed the event loop, waits for events
and invokes appropriate handlers. Event handlers cannot be
preempted, but run to completion before allowing the main
executive to schedule the next handler. For most embed-
ded systems to remain responsive it is important that each
event handler is short lived. In many cases it may be consid-
ered a fatal error if a handler fails to return before a given
maximum timeout. Events may be put on the event queue
by e.g. hardware interrupts, but event handlers may also
invoke other handlers asynchronously by sending events to
each other. Thus on an event-driven legacy platform, code is
executed as a continued sequence of handlers being invoked
to handle events.

Unfortunately JNI cannot be used for integrating Java with

an event-driven execution environment, which we will show
in the next section, thus excluding Java from being easily
integrated with this important range of embedded legacy
platforms.

2.3 Task Based Scheduling
Task based scheduling is a particular instance of event-

driven scheduling. A task is a sequence of code that does
some computation based on some input. Tasks communicate
by sending messages to each other. A message is a piece of
data destined for a particular task (the receiver) and the
message data will act as input to the receiving task once it
gets scheduled. One or more message boxes will hold the
message queue(s), and when tasks send messages to other
tasks these messages are inserted into the proper message
box. This principle is also described in [20]. Figure 1 shows
such a system with a single system wide message box.

messages sent by tasks A, B, and C.

A, data A, data B, data C, data C, data

Scheduler

Tasks

A

B

C

Message box

In this example, C will be scheduled twice, then task B once, and
finally task A twice. What happens thereafter depends on the

Figure 1: Task scheduling

When a task gets scheduled it runs to completion. In other
words tasks are non-preemptive and cannot be interrupted
by other tasks, so in effect all tasks get the same priority.
For a task based system to remain responsive it is important
that each task invocation only runs for a short while.

On task based scheduling platforms problems occur imme-
diately if trying to use JNI:

• JVM initialization.
Using JNI_CreateJavaVM to load and initialize the JVM
is not possible because this action does not map to a
single task of limited duration. Depending upon the
Java code the number of class initializers that should
be run may vary, and the entire initialization of the
JVM cannot be guaranteed to finish within the maxi-
mum duration allowed for each task.

• Java thread execution.
Using JNI_AttachCurrentThread to attach Java threads
to the legacy scheduler, or indeed executing the JVM
itself as a task of limited duration, is not directly pos-
sible.

The initialization problem might be solved with an ”initial-
ization phase” before entering an ”active” phase, but the

scheduling requires much more intensive changes. Yet, if too
many changes to the legacy platform are required to solve
the above problems, project managers may be reluctant to
use Java. To avoid these problems it is tempting to let the
JVM take over the responsibilities of the legacy OS. Using
this idea, the JVM becomes the OS and is responsible for
scheduling both Java code and legacy tasks. Legacy tasks
can be activated by means of static native methods, in effect
moving the main executive loop from legacy code into Java.

This may be possible in some cases, and it is worth explor-
ing further how many changes are actually required to use
the JVM as the main executive responsible for scheduling
the execution of legacy code and Java code respectively.

In the following we do not investigate this option further
but look at how the problems can be solved on a task based
scheduling platform without changing the legacy scheduling
mechanism.

3. THE JAVA LEGACY INTERFACE
JLI is designed to support easy integration of Java on em-

bedded platforms where lack of resources or design choices
prevent the use of JNI. This may be the case for smaller em-
bedded platforms without room for an OS, or with an OS
using other scheduling mechanisms than threading.

Just as JNI works well with larger thread based schedul-
ing platforms, we must ensure that JLI works well with the
most common alternatives to thread based scheduling plat-
forms. We have in the initial suggestion for JLI decided to
support task based scheduling platforms, but the methods
and techniques described are directly applicable to standard
event-driven legacy platforms, and we expect, to other types
of legacy platforms as well.

For a Java enabled legacy platform to support JLI, changes
need to be made in three places:

1. The JVM. The JVM needs to support a small set
of interface functions. Changes to the JVM should be
kept to an absolute minimum, but we have identified
some changes that cannot be avoided.

2. The legacy code. We do not need to change the
scheduling of legacy code, or the legacy code itself,
but we add a hook to the legacy scheduler.

3. Two additional tasks. The bulk of the JLI func-
tionality is implemented in two new tasks that we have
added to the set of legacy tasks.

Points 1. and 2. above need to be done for every JVM and
every legacy platform, but the majority of the JLI imple-
mentation is in the two new tasks and these are to a large
extent generic across task based scheduling platforms.

Figure 2 gives an overview of JLI and affected components.
The depicted components provide execution of the JVM in
a task based manner, and provide communication between
Java and legacy software through message passing. In Fig-
ure 2 we see that the JLI functions are implemented in three
places: the JVM, the MessageRouterTask and the legacy
scheduler. E.g. the JLI function JLI_runVM is implemented

by the JVM and used by the JVMTask. In the following we
describe in detail these concepts and how they interact.

JLI_setDMC

JVMTask

Legacy Scheduler

JVM

Java App

JLI_runGC
JLI_runVM
JLI_initVM

JLI_listenForMessage
JLI_messageAvailable
JLI_getMessageData
JLI_setMessageFate
JLI_sendMessage

MessageRouterTask

Figure 2: JLI overview

3.1 Java Code Execution
JLI provides an interface for executing the JVM on a task

based scheduling platform alongside other executing legacy
tasks. In other words JLI must provide a way to ensure that
the JVM does not execute for longer than the maximum
duration allowed for each task. This means that it must be
possible to call the JVM and ask it to execute for a while,
but return before the maximum timeout.

3.1.1 Execution principles
The above observations gives rise to the three JLI inter-

face functions relating to JVM execution, see Figure 2. Each
of these functions takes a timeout value and returns a status.
The timeout specifies for how long the function is allowed to
run and the returned status indicates to the caller for how
long the function actually ran. The first interface function
specified by JLI is

int JLI_runVM(int timeout)

It will execute byte codes, but suspend and return before
the timeout has been reached. Before returning, the JVM
must save the entire state of execution and continue using
that state the next time JLI_runVM is called. If it returns 0
the execution of the Java application has finished.

Before application code starts executing, the application
must be initialized. The initialization of the JVM must be
done in a task based manner as well. Thus the second in-
terface method relating to code execution is

int JLI_initVM(int timeout)

This function behaves as above but executes byte codes in
the class initializers of the Java application. When it returns
0 the initialization has completed.

Apart from executing byte codes, the JVM is also respon-
sible for doing garbage collection. The exact same require-
ments as above hold for doing GC - it must be possible to do
a bit of GC and return before the maximum task timeout.

The third JLI interface function is

int JLI_runGC(int timeout)

Note that this does not require the GC implementation to
be incremental or real-time. Only that the GC operation
can be suspended and resumed later.

3.1.2 Task scheduling
When the JVM supports the JLI interface functions given

above, we can create a new task (JVMTask) written as a
legacy task in C/C++ that handles the proper invocation
of JLI_initVM, JLI_runVM and JLI_runGC.

Consider as an example how the the JVMTask will execute
the JVM:

1. The JVMTask will call JLI_runVM with a proper time-
out that ensures that JLI_runVM will return before the
maximum task timeout.

2. If JLI_runVM returns a value larger than 0, the JVMTask
will send a message to itself.

3. This message is put in the message box, and eventually
the JVMTask will get it’s own message and may now call
JLI_runVM to continue running the JVM.

Messagebox

B, data A, data C, data

Scheduler

VM, data VM, data

Tasks

VM Task
A

B
C

Figure 3: Task based JVM scheduling

Figure 3 illustrates a scenario in which the task C is sched-
uled first, then the JVMTask will run twice, followed by task A
once and task B once. The proper invocation of JLI_initVM
and JLI_runGC can be handled in the same manner.

In the resulting integration, the JVM runs as a task in the
exact same manner as other existing tasks in the legacy code.
This also means that the JVMTask will automatically get
more or less resources as the system executes. If the legacy
tasks are busy sending a lot of messages to each other, the
JVMTask will automatically get scheduled less.

The legacy code is not affected by this solution. Even though
it is required to add a new task (the JVMTask) additional to
the existing set of legacy tasks, all tasks are still scheduled
in the exact same manner as before, and no changes are
required in the scheduler.

3.1.3 JVM slicing
The functions JLI_initVM and JLI_runVM slice the execu-

tion of the JVM, and we have implemented JVM slicing for
an existing JVM not initially supporting this feature.

We also sliced the mark, sweep and compaction phases of the
garbage collector. This means that doing a full garbage col-
lection now corresponds to calling JLI_runGC several times
until it returns 0, indicating that the full GC has completed.

Slicing the JVM and the garbage collector does not in any
way give incremental or real-time properties to the Java code
being executed by the JVM. Even if the JVM supports a
real-time profile, its local scheduling has to be adapted to
the slicing in order to satisfy the real-time properties of the
profile. We have not considered the implications of this in
this work. The slicing simply facilitates the execution of the
JVM on a task based scheduling platform.

In Section 4, we look at how and to what extent these func-
tions can be implemented in a non real-time JVM with a
simple stop-the-world garbage collector.

3.2 Communication
Looking again at Figure 2, we have in Section 3.1 covered

the JVM specific part of JLI. We now move on to look at
that part of JLI that is implemented by the two new tasks
and the legacy scheduler. This part of JLI provides support
for communication between Java code and legacy code.

Legacy tasks communicate by sending messages to each other,
so it should be possible to send messages from Java code to
legacy tasks and vice versa. To support this we have de-
signed the concept of a message router. A message router
looks at each message and decides if the message should
be routed along the usual channels or routed to Java. If
the message is routed to Java, the Java application gets a
chance to handle the message instead of the legacy task to
which the message was originally intended. Section 4.1 gives
a Java code example of how this looks, but here we move on
to explain the details of message routing.

3.2.1 Message routing
The message router has a hook into the scheduler that

allows the message router to look at each message before
it is delivered by the scheduler. To support this the legacy
scheduler implements the JLI function,

void JLI_setDMC(int (*dmc)(receiver, msg))1

and the legacy scheduler must call the supplied callback
function (dmc) prior to actually delivering the message to
the receiver task. If the dmc function returns 0 the legacy
scheduler must not deliver the message as usual; it must dis-
card it.

The message router implements the dmc function to decide
if the message should be routed to Java or if it should be
routed along the usual channels to the receiving task.

1Sets the Deliver Message Callback.

3.2.2 Rerouting messages
The Java program can subscribe to messages for a par-

ticular task. To do this Java programs call the native JLI
function

void JLI_listenForMessage(int receiver)

This will insert a task identification into a list of task iden-
tifications managed by the message router. The message
router compares the receiver of the message to the list of
task identifications. If the receiver is not in the list, the
message router returns the message to the scheduler and
the scheduler will deliver the message to the legacy task as
usual. All messages not subscribed to by Java are delivered
nearly as fast as usual as only a minimal overhead is required
to check each message against the list. If the message should
be routed to Java it will take a different path. In this case
it will be noticeably delayed compared to the normal case.

When the message is routed to Java it will be packaged into
a new message (a message within a message) and sent to
a new task we have introduced, called the MessageRouter-

Task, see Figure 2. This is illustrated in Figure 4.

B

In this illustration the Java application has subscribed to
messages for task A and B. Every time a message is sent
through the scheduler, the message router will look at the
message and compare it to the list of subscriptions. The
first two messages to C is not in the list and will be delive−
red to task C as is. The third message to task B is in the
list of subscriptions and will be packaged in an enclosing
message and sent to the MessageRouterTask.

Message box

A Subscriptions

VM Task

Message Router

B, data A, data C, data

Scheduler

B, data C, data

Tasks

A

B
C

task

Message
router

Figure 4: Routing messages to the Java application

3.2.3 Handling rerouted messages
When the MessageRouterTask receives a rerouted mes-

sage, it unpacks the message and saves a pointer to the en-
closed message in a local variable. To complete the routing,
the MessageRouterTask will now send a message to itself and
return to the scheduler to allow other tasks to run, among
those the JVMTask. Java code calls the native JLI function

int JLI_messageAvailable()

to check if a new message has been saved in the local vari-
able. This function returns the length of the message in
bytes. A return value of 0 specifies that no message is avail-
able to be handled by Java code.

If a message is indeed available, Java code calls another na-
tive JLI function

int JLI_getMessageData(byte[] data)

to get the message data. The message data is returned to
Java in a Java byte array. Now the Java application will do
two things in sequence,

1. Message fate. The Java application looks at the mes-
sage data and calls a native JLI function

void JLI_setMessageFate(boolean fate)

If fate is 0 the message should be sent along the usual
channels to the intended receiver. Otherwise it should
be handled exclusively within Java, and the intended
receiver of the message should not get the message.

2. Message handling. Then a method for handling the
message within Java is called.

When the MessageRouterTask gets scheduled again, it will
check if the Java code has finished the initial analysis of the
message and set the message fate. In case Java signals that
it wants to handle the message itself, the MessageRouter-

Task will clear the saved message pointer and thus be ready
to accept a new message to Java. If Java signals that it
does not want the message, the MessageRouterTask sends
the message on to the originally intended receiver. Note that
it cannot send this message through the message box as that
would cause the message to pass through the entire history
described above once again. Instead the message is deliv-
ered immediately by calling the receiving task from within
the MessageRouterTask.

If the MessageRouterTask receives a new message for Java
before the previous message for Java has been analyzed and
picked up by the Java code, the MessageRouterTask will
simply resend the message through the message box, thus
delaying it until Java has handled the first message.
Figure 5 shows a rerouted message arriving at the Message-

RouterTask. This is a message that has been subscribed to
by the Java application and the message router has previ-
ously told the scheduler not to send this to the intended re-
ceiver, but have instead packaged the message within a new
message and sent it to itself as explained in Section 3.2.2.

A pointer to the message is now saved to hold it until Java
picks up the message. The JVMTask will eventually be sched-
uled and the Java code will get the message data through
JLI_getMessageData. Through the JLI_setMessageFate

function the Java application will signal if the message to
B should be resent to B or just discarded by the message
router.

The above implementation has minimal impact on the sched-
uler, with respect to the amount of code which needs to be

JLI_setMessageFate(boolean b)

B, data
Next message to Java:

Java

JLI_getMessageData(byte[] data)

B, data

Message Router

router
task

Message

Figure 5: Reading messages from Java

added. Even so we require a hook in the execution loop
of the scheduler, and we have had to accept a small de-
lay for each message, even messages not to be handled by
Java. Also, we have had to accept a rather large delay for
messages that are going to be handled by Java. This is ac-
ceptable for some types of messages, e.g. messages updating
the user interface, but unacceptable for other types of mes-
sages, e.g. messages emptying critical buffers. In general if
the application programmer thinks that a message can be
handled by Java he must also know that the handling of the
message will take longer (since interpreted Java runs slower
than compiled C) and it is likely that the delay in delivery
of the message is acceptable.

The above facilities for subscribing to messages allow Java
code to monitor messages for profiling or debugging pur-
poses without actually handling messages. They also allow
Java code to handle all messages to a particular task or only
some. The next section describes how JLI has been used
to Java-enable an existing C/C++ legacy platform and dis-
cusses the possibilities for using Java in the future on the
platform.

4. THE KIRK EXAMPLE JLI
KIRK telecom (recently acquired by Polycom) has pro-

duced DECT based wireless telephony systems for nearly 15
years. Recently new DECT based, wireless, general purpose
control modules have been added to the product portfolio.
The generic DECT modules can for example be attached to
machinery in a production line or cooling storage in super-
markets, and through a wireless link report collected data
about the state of the machinery to a central server (e.g. a
PC) controlling the production line or cooling storage.

To allow end users to configure and adapt the behavior of
these modules we have embedded a JVM in the modules.
The system is fully functional, but a commercial introduc-
tion is pending copyright issues. The intention is to allow
end users to develop control software for the modules in
Java and download their applications to the modules using
the wireless DECT link.

The firmware shipped with the modules is written entirely
in C as a number of legacy tasks controlling the module and
giving it a reasonable default behavior. Through Java the
end users can add to this behavior or completely change it
by writing new tasks in Java or change the behavior of ex-
isting legacy tasks, by subscribing to messages for selected
tasks.

In the following we will describe a Java code example illus-
trating the result of the current integration. Then we will
discuss the effort required to implement JLI on the KIRK
devices.

4.1 Adapting Task Behavior - A Java Exam-
ple

The default legacy firmware consists of a number of legacy
tasks, among those the EEPROMTask. This task handles read-
ing and writing to/from persistent storage on the module.
In the following we will look at a Java example program sub-
scribing to messages for the EEPROMTask. The main method
of the program looks like this:

package main;

import kirknative.JTask;

import kirknative.KIRK;

public class Main {

public static void main(String[] args) {

JTask eepromTask = new EEPROMTask();

eepromTask.start();

try {

eepromTask.join();

} catch (InterruptedException e) {

}

}

}

The EEPROMTask class is a subclass of the JTask class. The
JTask class is part of the KIRK API which is a small set of
classes interfacing to the JLI implementation on the module.
The above program instantiates and starts an EEPROMTask

object that acts as a Java peer task to the legacy EEPROMTask.
Through this object, Java code can subscribe to and han-
dle messages to the EEPROMTask. The EEPROMTask is imple-
mented as follows,

public class EEPROMTask extends JTask {

public EEPROMTask() {

super("EEPROMTASK");

}

public boolean analyzeMessage(Message message) {

return true;

}

public void handleMessage(Message message) {

KIRK.printString(taskName

+ ": "

+ message.toString());

}

}

Because of the implementation of the JTask class (not shown
here) whenever a message is sent to the legacy EEPROMTask

the method analyzeMessage will be called in order to deter-
mine the fate value. Since it returns true, the Java code sig-
nals to the JLI that the message should be sent to the legacy
EEPROMTask as well. Then the method handleMessage is
called. For the sake of simplicity, all this method is doing
here is to print a trace message.

Inside the implementation of JTask and related API classes
we find the code actually using the JLI functions. This is
basically a Java thread that calls JLI_messageAvailable

continually. If such a busy wait technique is too time con-
suming, Java synchronization mechanisms may be used with
internal Java threading. When a message is available to
the subscribed task the analyzeMessage and handleMessage

methods are called in sequence as illustrated by the following
excerpt from the API implementation,

public void run() {

while (!stop) {

ListenFor current = list;

while (current != null) {

int messageSize =

JLI_messageAvailable(current.getTaskID());

if (messageSize > 0) {

byte[] messageData = new byte[messageSize];

JLI_getMessageData(messageData);

Message message = Message.getMessage(messageData);

if (current.

getListener().

analyzeMessage(message)) {

JLI_setMessageFate(true);

} else {

JLI_setMessageFate(false);

}

current.getListener().handleMessage(message);

}

current = current.getNext();

}

}

}

4.2 JLI Implementation Effort
To add Java support to the KIRK devices we have used

the SimpleRTJ JVM from [16]. The reason for choosing this
particular implementation is partly because of other peo-
ple having good experiences with the JVM [15], and partly
because early experiments showed that it was very well writ-
ten, very simple, and very portable.

A desirable side effect of using an existent JVM not initially
supporting JLI is that we have gained detailed knowledge
about what is required to support JLI on a JVM not specif-
ically programmed with legacy integration in mind.

In the following we describe in more detail how we have
prepared the SimpleRTJ for JLI.

4.3 Slicing the JVM
Slicing the JVM consists of dividing the execution of the

JVM into smaller units. To do this all recursions and long
loops are avoided and replaced either by bounded loops or

several limited steps. We analyzed the program dependency
graph closely in order to find candidates for slicing points in
the source code of the JVM.

After the slicing the previously unbounded loop in the JVM
source that handled the continuous execution of the byte
codes was changed to allow it to only execute a certain
number of byte codes. The maximum timeout of the KIRK
legacy tasks is 250 ms, and we made an estimate on how
many byte codes we in average could execute during each
invocation of JLI_runVM in order to return to the scheduler
before the maximum timeout. In our future work we will
improve on this method by using WCET analysis (see Sec-
tion 6).

Estimating how many byte codes can be executed to meet
the task deadline becomes difficult if the Java application
calls legacy code through JNI. In that case an estimate on
the WCET of the legacy function being called must be taken
into account. In our case we did not need to call through
JNI, since we only use the JLI methods for communicating
with legacy code as described in 3.2, and we have postponed
this problem for our future work.

The technique used was not the best and rather ad-hoc.
We believe that the slicing effort can be improved by proper
use of existing tools for program slicing (e.g. CodeSurfer [9]).

If building a JVM from scratch it would be possible to in-
corporate requirements of JLI into the JVM design, thus
supporting JLI from the outset. Also the presence of an in-
cremental garbage collector would have made the slicing of
the collector more straightforward.

4.4 Scheduling GC
The garbage collector provided by SimpleRTJ is a “stop-

the-world” collector which uses simple mark-sweep collec-
tion. We sliced the GC using the same techniques as when
slicing the byte code execution itself. In the current KIRK
implementation of JLI, we check before the execution of each
VM slice if a garbage collection is needed. We can check this
quickly and decide to call JLI_runGC instead if available heap
memory becomes too low. In this manner we do not need
to run garbage collection in the context of JLI_runVM, but
rather only in the context of the scheduler.

4.5 Legacy Code Changes
The changes required to the KIRK legacy platform sched-

uler were very minimal. The effect of adding a hook to the
scheduler as required by JLI was not noticeable on the KIRK
devices, but in our future work we will make measurements
revealing the actual impact of adding this hook.

The implementation of the JVMTask and MessageRouterTask

consists of approx. 350 and 200 lines of code respectively.
They are in no way hardware specific, and generally very
portable and readily applicable to other legacy platforms of
the type described in Section 2.3.

Finally we have developed the KIRK Java API (mentioned
in Section 4.1) interfacing to the JLI. This is under con-
stant development and we await user feedback to continue
its improvement.

4.6 End User Benefits
Using the KIRK API and the JLI implementation for the

KIRK devices we have allowed the Java applications pro-
grammer to do things like,

• Listen in on messages to various tasks without chang-
ing or stealing the messages. This can be used for
monitoring or profiling.

• Grabbing messages to various tasks and handling them
exclusively in Java, or handling them both in Java and
legacy C.

• Implement entire tasks in Java by grabbing all mes-
sages to that task.

• Implement a subset of a task in Java, by grabbing only
a subset of messages to that task and routing the re-
maining messages along the usual channels to the C
legacy task.

The JLI implementation with the KIRK API is not only
useful for the end user of the KIRK products, but can also
be used by KIRK developers to incrementally port selected
parts of functionality from C to Java.

5. RELATED WORK
In this section we will look at some alternative approaches

to integrate Java with legacy code.

The Java Native Interface (JNI [11]) specifies hooks into the
implementation of the JVM that are designed to integrate
Java and native C code. If a JVM implements the JNI speci-
fication, it allows native C code to load the JVM and execute
Java code, and the other way around, it allows Java code to
call native C code. JNI also specifies how to attach native
threads to the JVM and execute Java code in the context of
a native OS thread. If the full specification of JNI is avail-
able in the JVM and if the legacy platform supports native
threads and semaphores, proper use of JNI should be enough
to result in a simple integration of the JVM. But if the plat-
form OS does not support native threads and semaphores,
something else is required.

Using an architectural middelware such as CORBA [5] is a
standard way of integrating multiple devices in a distributed
heterogeneous environment. These techniques have been en-
abled for embedded environments as well [12]. They are
capable of supporting advanced integration (especially dis-
tribution). However, it is well known that they come with a
huge footprint; thus using such middlewares does not seem
like the right tool for the job.

Instead of using a JVM to execute Java we could use ahead-
of-time compilation. Using this approach, Java byte code is
compiled into native code for the platform and linked with
legacy code to obtain the final executable. In this manner
no JVM is needed and finding a way to schedule the JVM
becomes irrelevant. Using ahead-of-time compilation to ex-
ecute Java on embedded systems has been done by many,
e.g. [18]. A slight variation on this strategy is to compile
Java source code (not byte code) into C and then use the
C compiler for the platform to compile and link the Java
functionality together with legacy C code. This is done by

e.g [14] and [21]. The former demonstrates how generated
C source can by integrated with a hard real-time garbage
collector, thus maintaining one of the most important ben-
efits of Java, namely garbage collection, while still gaining
the efficiency of a compiled language. Yet, these approaches
do not directly address the scheduling of the Java code, but
this is the focus of the Phantom compiler for Java [13]. The
Phantom compiler is a serializing compiler that in a manner
of speaking compiles the scheduling of the Java tasks into
the resulting native code.

In general, interpretation using a JVM and ahead-of-time
compilation do not preclude each other, but rather sup-
port each other. Each of these methods of execution has
its strengths and weaknesses compared to the other. Most
importantly, ahead-of-time compilation precludes dynamic
class loading, and in our case this feature was particularly
important. But if an ahead-of-time compiler is available
for the platform, and dynamic class loading is not needed,
ahead-of-time compilation might be the best way to get Java
onto the platform.

6. CONCLUSION AND FUTURE WORK
In this paper we have advocated that integration with

legacy code is important and we have demonstrated that
existing technologies (JNI) for integrating Java with legacy
code are not sufficient for relevant types of legacy platforms.

We have suggested a design for the Java Legacy Interface
and shown how JLI can be used to integrate Java with legacy
code build on task based scheduling platforms.

We have implemented JLI for the KIRK legacy platform and
implemented a Java API for integrating Java with KIRK
legacy code.

Using JLI, it is now possible on the KIRK platform to in-
crementally port selected parts of legacy functionality into
Java and to allow end users to configure device behavior
through simple Java applications that the users can develop
and deploy themselves.

We have identified the following important topics for our
future work:

• WCET analysis is required to implement the slicing
functions accurately. The JVM must know when the
timeout is about to be reached. This can be done if a
WCET exists for each byte code being executed. Inter-
pretation of all byte codes are implemented in C and
we are currently looking at tools like e.g. OTAWA [6]
to do WCET analysis for our particular JVM running
on our particular hardware.

• If the JVM supports a real-time profile, slicing the
JVM will clearly have an impact on the properties of
this profile. We would like to look into the implications
of the slicing, and examine to which extent the side-
effects of the slicing can be alleviated.

• JLI can be used to integrate a JVM with task based
or event-driven platforms, but we would like to make
a survey of other types of relevant embedded legacy

platform to examine if JNI can be used and if not, if
JLI can be augmented to support the platform.

7. REFERENCES
[1] G. Agosta, S. C. Reghizzi, and G. Svelto. Jelatine: a

virtual machine for small embedded systems. In
JTRES ’06: Proceedings of the 4th international
workshop on Java technologies for real-time and
embedded systems, pages 170–177, New York, NY,
USA, 2006. ACM Press.

[2] aicas. http://www.aicas.com/jamaica.html. Visited
June 2007.

[3] Aonix. http://www.aonix.com/perc.html. Visited
June 2007.

[4] D. F. Bacon, P. Cheng, D. Grove, M. Hind, V. T.
Rajan, E. Yahav, M. Hauswirth, C. M. Kirsch,
D. Spoonhower, and M. T. Vechev. High-level
real-time programming in Java. In EMSOFT ’05:
Proceedings of the 5th ACM international conference
on Embedded software, pages 68–78, New York, NY,
USA, 2005. ACM Press.

[5] J. Boldt. The common object request broker:
Architecture and specification. Specification
formal/97-02-25, Object Management Group, July
1995.

[6] H. Casse; and C. Rochange. Otawa, open tool for
adaptive wcet analysis.
http://www.irit.fr/recherches/ARCHI/MARCH/.

[7] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali.
Protothreads: simplifying event-driven programming
of memory-constrained embedded systems. In SenSys
’06: Proceedings of the 4th international conference on
Embedded networked sensor systems, pages 29–42,
New York, NY, USA, 2006. ACM Press.

[8] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
and D. Culler. The nesc language: A holistic approach
to networked embedded systems. In PLDI ’03:
Proceedings of the ACM SIGPLAN 2003 conference
on Programming language design and implementation,
pages 1–11, New York, NY, USA, 2003. ACM Press.

[9] GRAMMATECH.
http://www.grammatech.com/products/codesurfer/.
Visited June 2007.

[10] jamvm. http://jamvm.sourceforge.net/. Visited June
2007.

[11] S. Liang. The Java Native Interface - Programmers
Guide and Specification. Addison-Wesley, 1999.

[12] S. Malek, C. Seo, and N. Medvidovic. Tailoring an
architectural middleware platform to a heterogeneous
embedded environment. In SEM ’06: Proceedings of
the 6th international workshop on Software
engineering and middleware, pages 63–70, New York,
NY, USA, 2006. ACM Press.

[13] A. N. and T. Givargis. Synthesis of time-constrained
multitasking embedded software. ACM Trans. Des.
Autom. Electron. Syst., 11(4):822–847, 2006.

[14] A. Nilsson, T. Ekman, and K. Nilsson. Real Java for
real time - gain and pain. In CASES ’02: Proceedings
of the 2002 international conference on Compilers,
architecture, and synthesis for embedded systems,
pages 304–311, New York, NY, USA, 2002. ACM
Press.

[15] E. Potratz. A practical comparison between Java and
ada in implementing a real-time embedded system. In
SigAda ’03: Proceedings of the 2003 annual ACM
SIGAda international conference on Ada, pages 71–83,
New York, NY, USA, 2003. ACM Press.

[16] RTJComputing. http://www.rtjcom.com. Visited
June 2007.

[17] sablevm. http://www.sablevm.org/. Visited June
2007.

[18] U. P. Schultz, K. Burgaard, F. G. Christensen, and
J. L. Knudsen. Compiling Java for low-end embedded
systems. In LCTES ’03: Proceedings of the 2003 ACM
SIGPLAN conference on Language, compiler, and tool
for embedded systems, pages 42–50, New York, NY,
USA, 2003. ACM Press.

[19] F. Siebert. Hard Realtime Garbage Collection - in
Modern Object Oriented Programming Languages.
PhD thesis, 2002.

[20] A. S. Tanenbaum. Operating Systems - Design and
Implementation. Prentice-Hall, 1987.

[21] A. Varma and S. S. Bhattacharyya. Java-through-c
compilation: An enabling technology for Java in
embedded systems. In DATE ’04: Proceedings of the
conference on Design, automation and test in Europe,
page 30161, Washington, DC, USA, 2004. IEEE
Computer Society.

Hardware Objects for Java

Martin Schoeberl
Institute of Computer Engineering

Vienna University of Technology, Austria
mschoebe@mail.tuwien.ac.at

Christian Thalinger
Institute of Computer Languages

Vienna University of Technology, Austria
twisti@complang.tuwien.ac.at

Stephan Korsholm
Department of Computer Science

Aalborg University DK-9220 Aalborg
stk@cs.aau.dk

Anders P. Ravn
Department of Computer Science

Aalborg University DK-9220 Aalborg
apr@cs.aau.dk

Abstract

Java, as a safe and platform independent language,
avoids access to low-level I/O devices or direct memory ac-
cess. In standard Java, low-level I/O it not a concern; it is
handled by the operating system.

However, in the embedded domain resources are scarce
and a Java virtual machine (JVM) without an underlying
middleware is an attractive architecture. When running the
JVM on bare metal, we need access to I/O devices from Java;
therefore we investigate a safe and efficient mechanism to
represent I/O devices as first class Java objects, where device
registers are represented by object fields. Access to those reg-
isters is safe as Java’s type system regulates it. The access is
also fast as it is directly performed by the bytecodes getfield
and putfield.

Hardware objects thus provide an object-oriented ab-
straction of low-level hardware devices. As a proof of con-
cept, we have implemented hardware objects in three quite
different JVMs: in the Java processor JOP, the JIT compiler
CACAO, and in the interpreting embedded JVM SimpleRTJ.

1 Introduction

In embedded systems Java is now considered an alterna-
tive to C/C++. Java improves the safety of programs due to
compile time type checking, additional runtime checks, and
reference integrity. Those properties result in an increase of
programmer productivity. Furthermore, Java is much more
portable and thus facilitates reuse.

However, portability and safety comes at a cost: access
to low-level devices (common in embedded systems) is not
possible from pure Java. One has to use native functions that
are implemented in C/C++. Invocation of those native func-
tions incurs runtime overheads. Often they are developed in
ad-hoc fashion, thus making them error prone as well; for
instance if they interfere with the Java VM or garbage col-
lection when addressing Java objects. Before we present our

proposed solution, Hardware Objects, we describe the prob-
lem as seen from a Java virtual machine (JVM).

1.1 Embedded JVMs

The architecture of JVMs for embedded systems are more
diverse than on desktop or server systems. Figure 1 shows
variations of Java implementations in embedded systems and
an example of the control flow for a web server application.
The standard approach of a JVM running on top of an op-
erating system (OS) is shown in sub-figure (a). A network
connection bypasses the JVM via native functions and uses
the TCP/IP stack and device drivers of the OS.

A JVM without an OS is shown in sub-figure (b). This
solution is often called running on the bare metal. The JVM
acts as the OS and provides thread scheduling and low-level
access to the hardware. Thus the stack can be written en-
tirely in Java. An example of the approach is JNode1 which
implements the OS fully in Java.

Sub-figure (c) shows a solution where the JVM is a Java
processor. With this solution the native layer can be com-
pletely avoided and all code is Java.

However, for both (b) and (c) we need access to device
registers and in some applications also interrupts. Here we
focus on an object-oriented approach to access device regis-
ters which is compatible with Java. The issue of interrupts is
treated in a companion paper [7], because it is more related
to synchronization and thread scheduling.

1.2 Related Work

An excellent overview of historical solutions to access
hardware devices from high-level languages, including C, is
presented in Chapter 15.2 of [2]. The solution in Modula-1
(Ch. 15.3.1) is very much like C; however the constructs are
safer, because they are encapsulated in modules. In Ada (Ch
15.4.1) the representation of individual fields in registers can
be described precisely using representation classes, while the

1http://www.jnode.org/

Hardware
Java processor (JVM)

Library (JDK)

CPU Memory Ethernet

java.net

TCP/IP

Ethernet

Java application Web server

Hardware

OS (Linux)

JVM

N
at

iv
e

Library (JDK)

CPU Memory Ethernet

java.net

TCP/IP

Ethernet

Java application

N
at

iv
e

Web server

Hardware

JVM

N
at

iv
e

Library (JDK)

CPU Memory Ethernet

java.net

TCP/IP

Ethernet

Java application

N
at

iv
e

Web server

(a) (b) (c)

Figure 1. (a) Standard layers for embedded Java with an operating system, (b) a JVM on the bare metal, and (c) a
JVM as a Java processor

corresponding structure is bound to a location using the Ad-
dress attribute.

More recently, the RTSJ [1] does not give much support.
Essentially, one has to use RawMemoryAccess at the level
of primitive data types. A similar approach is used in the
Ravenscar Java profile [8]. Although the solution is efficient,
this representation of physical memory is not object oriented
and there are some safety issues: When one raw memory
area represents an address range where several devices are
mapped to there is no protection between them.

The aJile processor [6] uses native functions to access de-
vices through IO pins. The Squawk VM [15], which is a
JVM mostly written Java that runs without an operating sys-
tem, uses device drivers written in Java. These device drivers
use a form of peek and poke interface to access the device’s
memory. The JX Operating System [3] uses memory objects
to provide read-only memory and device access, which are
both required by an OS. Memory objects represent a region
of the main address space and accesses to the regions are han-
dled via normal method invocations on the memory objects
representing the different regions.

The distinctive feature of our proposal is that it maps a
hardware object onto the OO address space and provide, if
desired, access methods for individual fields, such that it lifts
the facilities of Ada into the object oriented world of Java.

The remainder of the paper is structured as follows: in
Section 2 we motivate hardware objects and present the idea.
Section 3 provides details on the integration of hardware
objects into three different JVMs: a Java processor, a Just-
in-time (JIT) compiling JVM, and an interpreting JVM. We
conclude and evaluate the proposal in Section 4.

2 Hardware Objects
Let us consider a simple parallel input/output (PIO) de-

vice. The PIO provides an interface between I/O registers

typedef struct {
int data;
int control;

} parallel_port;
#define PORT_ADDRESS 0x10000;

int inval, outval;
parallel_port *mypp;
mypp = (parallel_port *) PORT_ADDRESS;
...
inval = mypp->data;
mypp->data = outval;

Figure 2. Definition and usage of a parallel port in C

and I/O pins. The example PIO contains two registers: the
data register and the control register. Writing to the data
register stores the value into a register that drives the output
pins. Reading from the data register returns the value that is
present at the input pins.

The control register configures the direction for each PIO
pin. When bit n in the control register is set to 1, pin n drives
out the value of bit n of the data register. A 0 at bit n in
the control register configures pin n as input pin. At reset
the port is usually configured as input port2 – a safe default
configuration.

When the I/O address space is memory mapped, such a
parallel port is represented in C as a structure and a constant
for the address. This definition is part of the board level con-
figuration. Figure 2 shows the parallel port example. The
parallel port is directly accessed via a pointer in C. For a
system with a distinct I/O address space access to the de-
vice registers is performed via distinct machine instructions.
Those instructions are represented by C functions that take
the address as argument, which is not a type-safe solution.

2Output can result in a short circuit between the I/O pin and the external
device when the logic levels are different.

public final class ParallelPort {
public volatile int data;
public volatile int control;

}

int inval, outval;
myport = JVMMagic.getParallelPort();
...
inval = myport.data;
myport.data = outval;

Figure 3. The parallel port device as a simple Java
class

package com.board-vendor.io;

public class IOSystem {

// do some JVM magic to create the PP object
private static ParallelPort pp = JVMPPMagic();
private static SerialPort sp = JVMSPMagic();

public static ParallelPort getParallelPort() {
return pp;

}
public static SerialPort getSerialPort() {..}

}

Figure 4. A Factory with static methods for Single-
ton hardware objects

This simple representation of memory mapped I/O de-
vices in C is efficient but unsafe. On a standard JVM, na-
tive functions, written in C or C++, allow low-level access to
devices from Java. This approach is neither safe nor object-
oriented (OO) and incurs a lot of overheads; parameters and
return values have to be converted between Java and C.

In an OO language the most natural way to represent an
I/O device is as an object. Figure 3 shows a class definition
and object instantiation for our simple parallel port. The
class ParallelPort is equivalent to the structure definition for
C in Figure 2. Reference myport points to the hardware ob-
ject. The device register access is similar to the C version.

The main difference to the C structure is that the access
requires no pointers. To provide this convenient representa-
tion of I/O devices as objects we just need some magic in
the JVM and a mechanism to create the device object and re-
ceive a reference to it. Representing I/O devices as first class
objects has following benefits:

Safe: The safety of Java is not compromised. We can access
only those device registers that are represented by the
class definition.

Efficient: For the most common case of memory mapped
I/O device access is through the bytecodes getfield
and putfield; for a separate I/O address space the IO-
instructions can be included in the JVM as variants of
these bytecodes for hardware objects. Both solutions
avoid expensive native calls.

public class IOFactory {

private final static int SYS_ADDRESS = ...;
private final static int SERIAL_ADDRESS = ...;
private SysDevice sys;
private SerialPort sp;
IOFactory() {

sys = (SysDevice) JVMIOMagic(SYS_ADDRESS);
sp = (SerialPort) JVMIOMagic(SERIAL_ADDRESS);

};
private static IOFactory single = new IOFactory();
public static IOFactory getFactory() {

return single;
}
public SerialPort getSerialPort() { return sp; }
public SysDevice getSysDevice() { return sys; }
// here comes the magic!
Object JVMIOMagic(int address) {...}

}

public class DspioFactory extends IOFactory {

private final static int USB_ADDRESS = ...;
private SerialPort usb;
DspioFactory() {

usb = (SerialPort) JVMIOMagic(USB_ADDRESS);
};
static DspioFactory single = new DspioFactory();
public static DspioFactory getDspioFactory() {

return single;
}
public SerialPort getUsbPort() { return usb; }

}

Figure 5. A base class of a hardware object Factory
and a Factory subclass

2.1 Hardware Object Creation

Representing the registers of each I/O device by an object
or an array is clearly a good idea; but how are those objects
created? An object that represents an I/O device is a typical
Singleton [4]. Only one object should map to a single device.
Therefore, hardware objects cannot be instantiated by a sim-
ple new: (1) they have to be mapped by some JVM magic
to the device registers; (2) each device is represented by a
single object.

One may assume that the board manufacturer provides the
classes for the hardware objects and the configuration class
for the board. This configuration class provides the Factory
[4] methods (a common design pattern to create Singletons)
to instantiate hardware objects.

Each I/O device object is created by its own Factory
method. The collection of those methods is the board con-
figuration which itself is also a Singleton (we have only one
board). The configuration Singleton property is enforced by
a class that contains only static methods. Figure 4 shows
an example for such a class. The class IOSystem represents
a minimal system with two devices: a parallel port as dis-
cussed before to interact with the environment and a serial
port for program download and debugging.

+read() : char
+write()

+data : int
+status : int

SerialPort

#IODevice()

IODevice

+data : int
+control : int

ParallelPort

-IOFactory()
+getFactory() : IOFactory
+getSerialPort() : SerialPort
+getParallelPort() : ParallelPort

-single : IOFactory
-serial : SerialPort
-parallel : ParallelPort

IOFactory

«creates»

«creates»

-DspioFactory()
+getDspioFactory() : DspioFactory
+getUsbPort() : SerialPort

-single : DspioFactory
-usb : SerialPort

DspioFactory

«creates»

Figure 6. Hardware object classes and board Factory classes

This approach is simple, but not very flexible. Consider
a vendor who provides boards in slightly different config-
urations (e.g., with different number of serial ports). With
the approach described above each board requires a different
IOSystem class that lists all devices.

2.2 Board Configurations

We can avoid the duplication of code by replacing the
static Factory methods by instance methods and use inher-
itance for different configurations. With a Factory object we
represent the common subset of I/O devices by a base class
and the variants as subclasses.

However, the Factory object itself shall still be a Single-
ton. Therefore the board specific Factory object is created at
class initialization and can be retrieved by a static method.
Figure 5 shows an example of a base Factory and a derived
Factory. Note how getFactory() is used to get a single in-
stance of the hardware object Factory. We have applied the
idea of a Factory two times: the first Factory generates an
object that represents the board configuration. That object is
itself a Factory that generates the objects that represent the
actual devices – the hardware objects.

The shown example Factory is a simplified version of the
minimum configuration of the JOP [11] FPGA module Cy-
core and an extension with an I/O board that contains an USB
interface.

Furthermore, we show in Figure 5 a different way to in-
corporate the JVM magic into the Factory: we define well
known constants (the memory addresses of the devices) in
the Factory and let the native function JVMIOMagic() return
the correct I/O device type.

Figure 6 gives a summary example (a slight variation of
the former example) of hardware object classes and the cor-
responding Factory classes as an UML class diagram. The
serial port hardware object contains additional access meth-
ods to the device register fields. The figure shows that all I/O
classes subclass the abstract class IODevice, a detail we have
omitted in our discussion so far.

public class Example {

public static void main(String[] args) {

IOFactory fact = IOFactory.getFactory();
SerialPort sp = fact.getSerialPort();

String hello = "Hello World!";

for (int i=0; i<hello.length(); ++i) {
// busy wait on transmit data register empty
while ((sp.status & SerialPort.MASK_TDRE)==0)

;
// write a character
sp.data = hello.charAt(i);

}
}

}

Figure 7. Hello World using hardware objects

2.3 Using Hardware Objects

Creation of hardware objects is a bit complex, but usage
is very simple. After obtaining a reference to the object all
what has to be done (or can be done) is to read from and
write to the object fields. Figure 7 shows an example of the
client code. The example is the Hello World program using
low-level access to the terminal via a hardware object.

3 Implementations

In order to show that our proposed approach is work-
able we have chosen three completely different JVMs for
the evaluation: a Java processor (JOP [11, 13]), a JIT JVM
(CACAO [5]) and a small interpreting JVM (the SimpleRTJ
VM [10]). All three projects are open-source and make it
possible for us to show that hardware objects can be imple-
mented in very different JVMs.

We provide implementation details to help other JVM de-
velopers to add hardware objects to their JVM. The tech-
niques used for JOP, CACAO, or SimpleRTJ cannot be used
one-to-one. However, the solutions (or sometimes a work-
around) presented here should guide other JVM developers.

Stack

Handle area Heap
Runtime

structures

GC info

...

handle

[0]

[2]

[1]

[3]GC info

4

...

a

b

handle

reference

reference

M0

Class
info

M1

M2

Constant
Pool

class reference

reference

HW object
handle

class reference

handle

I/O device

reg0

reg1

reg2

Figure 8. Memory layout of the JOP JVM

3.1 HW Objects on JOP

We have implemented the proposed hardware objects in
the JVM for the Java processor JOP [11, 13]. No changes
inside the JVM (the microcode in JOP) were necessary. The
tricky part is the creation of hardware objects (the Factory
classes).

3.1.1 Object Layout

In JOP objects and arrays are referenced through an indirec-
tion, called the handle. This indirection is a lightweight read
barrier for the compacting real-time garbage collector (GC)
[12, 14]. All handles for objects in the heap are located in a
distinct memory region, the handle area. Besides the indirec-
tion to the real object the handle contains auxiliary data, such
as a reference to the class information, the array length, and
GC related data. Figure 8 shows an example with a small ob-
ject that contains two fields and an integer array of length 4.
We can see that the object and the array on the heap just con-
tain the data and no additional hidden fields. This object lay-
out greatly simplifies our object to I/O device mapping. We
just need a handle where the indirection points to the mem-
ory mapped device registers. This configuration is shown in
the upper part of Figure 8. Note that we do not need the GC
information for the HW object handles.

3.1.2 The Hardware Object Factory

As described in Section 2.1 we do not allow applications to
create hardware objects; the constructor is private. Two static
fields are used to store the handle to the hardware object. The
first field is initialized with the base address of the I/O device;
the second field contains a pointer to the class information.
The address of the first static field is returned as the reference
to the serial port object. We have to solve two issues: (1)

obtain the class reference for the HW object; (2) return the
address of a static field as a reference to the hardware object.

We have two options to get a pointer to the class informa-
tion of a hardware object, such as SerialPort, in a method of
IOFactory:

1. Create a normal instance of SerialPort with new on the
heap and copy the pointer to the class information.

2. Invoke a static method of SerialPort. The method exe-
cutes in the context of the class SerialPort and has ac-
cess to the constant pool of that class and the rest of the
class information.

Option 1 is simple and results in following code for the
object factory:

SerialPort s = new SerialPort();
int ref = Native.toInt(s);
SP_MTAB = Native.rdMem(ref+1);

All methods in class Native, a JOP system class, are na-
tive3 methods for low-level functions – the code we want
to avoid in application code. Method toInt(Object o) defeats
Java’s type safety and returns a reference as an int. Method
rdMem(int addr) performs a memory read. In our case the
second word from the handle, the pointer to the class infor-
mation. The main drawback of option 1 is the creation of
normal instances of the hardware class. With option 1 the
visibility of the constructor has to be relaxed to package.

For option 2 we have to extend each hardware object by a
class method to retrieve the address of the class information.
Figure 9 shows the version of SerialPort with this method.
We use again native functions to access JVM internal infor-
mation. In this case rdIntMem(1) loads one word from the

3There are no native functions in JOP – bytecode is the native instruction
set. The very few native functions in class Native are replaced by a special,
unused bytecode during class linking.

public final class SerialPort {

public volatile int status;
public volatile int data;

static int getClassRef() {
// we can access the constant pool pointer
// and therefore get the class reference
int cp = Native.rdIntMem(1);
...
return ref;

}
}

Figure 9. A static method to retrieve the address of
the class information

on-chip memory onto the top-of-stack. The on-chip memory
contains the stack cache and some JVM internal registers. At
address 1 the pointer to the constant pool of the actual class
is located. From that address we can calculate the address of
the class information. The main drawback of option 2 is the
repetitive copy of getClassRef() in each hardware class. As
this method has to be static (we need it before we have an
actual instance of the class) we cannot move it to a common
superclass.

We decided to use option 1 to avoid the code duplication.
The resulting package visibility of the hardware object con-
structor is a minor issue.

All I/O device classes and the Factory classes are grouped
into a single package, in our case in com.jopdesign.io. To
avoid exposing the native functions (class Native) that reside
in a system package we use delegation. The Factory con-
structor delegates all low-level work to a helper method from
the system package.

3.2 HW Objects in CACAO

As a second experiment we have implemented the hard-
ware objects in the CACAO VM [5]. The CACAO VM is a
research JVM developed at the Vienna University of Tech-
nology and has a Just-In-Time (JIT) compiler for various ar-
chitectures.

3.2.1 Object layout

As most other JVMs, CACAO’s Java object layout includes
an object header which is part of the object itself and resides
on the garbage collected heap (GC heap). This fact makes
the idea of having a real hardware-object impossible without
changing the CACAO VM radically. Thus we have to use
an indirection for accessing hardware-fields and hardware-
arrays. Having an indirection adds obviously an overhead
for accesses to hardware-fields or hardware-arrays. On the
other hand, CACAO does widening of primitive fields of the
type boolean, byte, char, and short to int which would make it
impossible to access hardware-fields smaller than int directly
in a Java object. With indirection we can solve this issue. We

store the address of the hardware-field in a Java object field
and access the correct data size in JIT code.

When it comes to storing the hardware address in a
Java object field, we hit another problem. CACAO sup-
ports 32 and 64-bit architectures and obviously a hard-
ware address of a byte-field on a 64-bit architecture won’t
fit into a widened 32-bit object field. To get around
this problem we widen all object fields of sub-classes of
org.cacaovm.io.IODevice to the pointer size on 64-bit ma-
chines. To be able to widen these fields and to generate the
correct code later on in the JIT compiler, we add a VM in-
ternal flag ACC CLASS HARDWARE FIELDS and set it for
the class org.cacaovm.io.IODevice and all its subclasses, so
the JIT compiler can generate the correct code without the
need to do super-class tests during the JIT compiler run. For
hardware-arrays we have to implement a similar approach.
The object layout of an array in CACAO looks like this:

typedef struct java_array_t {
java_object_t objheader;
int32_t size;

} java_array_t;

typedef struct java_intarray_t {
java_array_t header;
int32_t data[1];

} java_intarray_t;

The data field of the array structure is expanded to the ac-
tual size when the array object is allocated on the Java heap.
This is a common practice in C.

When we want to access a hardware array we have the
same problem as for fields – the array header. We cannot put
the array directly on the hardware addresses. Therefore we
add a union to the java xxxarray t-structures:

typedef struct java_intarray_t {
java_array_t header;
union {

int32_t array[1];
intptr_t address;

} data;
} java_intarray_t;

Now we can allocate the required memory for Java arrays
or store the hardware address for hardware arrays into the
array object.

3.2.2 Implementation

CACAO’s JIT compiler generates widened loads and stores
for getfield and putfield instructions. But when we want to
load byte or short fields from a hardware object we need to
generate 8-bit or 16-bit loads and stores, respectively. To get
these instructions generated we implement additional cases
in the JIT compiler for the various primitive types.

Whether the JIT compiler needs to generate 8-bit or 16-
bit loads and stores for boolean, byte, char, or short fields is
decided on the flags of the declared class.

Contrary to hardware fields, when accessing hardware ar-
rays we have to generate some dedicated code for array ac-
cesses to distinguish between Java arrays and hardware ar-
rays at runtime and generate two different code paths, one to
access Java arrays and the other to access hardware arrays.

3.3 HW Objects in SimpleRTJ

In a third experiment we have implemented hardware ob-
jects for the SimpleRTJ interpreter [10]. The SimpleRTJ VM
is described in more detail in [9]. To support the direct read-
ing and writing from/to raw memory we introduced an ad-
ditional version of the put/get-field bytecodes. We changed
the VM locally to use these versions at bytecode addresses
where access to hardware objects is performed. The original
versions of put/get-field are not changed and are still used to
access normal Java object fields.

The new versions of put/get-field to handle hardware ob-
jects are different. An object is identified as a hardware ob-
ject if it inherits from the base class IODevice. This base
class defines one 32 bit integer field called address. During
initialization of the hardware object the address field vari-
able is set to the absolute address of the device register range
that this hardware object accesses.

The hardware object specific versions of put/get-field cal-
culates the offset of the field being accessed as a sum of the
width of all fields preceding it. In the following example con-
trol has an offset of 0, data an offset of 1, status an offset of
3 and finally reset an offset of 7.

class DummyDevice extends IODevice {
public byte control;
public short data;
public int status;
public int reset;

}

The field offset is added to the base address as stored in
the super class instance variable address to get the absolute
address of the device register or raw memory to access. The
width (or number of bytes) of the data to access is derived
from the type of the field.

To ensure that the speed by which normal objects are
accessed do not suffer from the presence of hardware ob-
jects we use the following strategy: The first time a put/get-
field bytecode is executed a check is made if the objects ac-
cessed is a hardware object. If so, the bytecode is substituted
with the hardware object specific versions of put/get-field. If
not the bytecode is substituted with the normal versions of
put/get-field.

For this to be sound, a specific put/get-field instruction is
never allowed to access both normal and hardware objects.
In a polymorphic language like Java this is in general not a
sound assumption. However, with the inheritance hierarchy
of hardware object types this is a safe assumption.

3.4 Summary

We have described the implementation of hardware ob-
jects on JOP in great detail and outlined the implementa-
tion in CACAO and in SimpleRTJ. Other JVMs use different
structures for their class and object representations and the
presented solutions cannot be applied directly. However, the
provided details give guidelines for changing other JVMs to
implement hardware objects.

On JOP all the code could be written in Java,4 it was not
necessary to change the microcode (the low-level implemen-
tation of the JVM bytecodes in JOP). Only a single change in
the runtime representation of classes proved necessary. The
implementation in CACAO was straightforward. Adding a
new internal flag to flag classes which contain hardware-
fields and generating slightly more code for array accesses,
was enough to get hardware objects working in CACAO.

4 Conclusion

We have introduced the notation of hardware objects.
They provide an object-oriented abstraction of low-level de-
vices. They are first class objects providing safe and efficient
access to device registers from Java.

To show that the concept is practical we have imple-
mented it in three different JVMs: in the Java processor JOP,
in the research VM CACAO, and in the embedded JVM Sim-
pleRTJ. The implementation on JOP was surprisingly simple
– the coding took about a single day. The changes in the
JIT JVM and in the interpreter JVM have been slightly more
complex.

The proposed hardware objects are an important step for
embedded Java systems without a middleware layer. Device
drivers can be efficiently programmed in Java and benefit
from the same safety aspects as Java application code.

4.1 Performance

Our main objective for hardware objects is a clean OO
interface to I/O devices. Performance of the access of de-
vice registers is an important secondary goal, because short
access time is important on relatively slow embedded pro-
cessors while it matters less on general purpose processors,
where the slow I/O bus essentially limits the access time. In
Table 1 we compare the access time to a device register with
native functions to the access via hardware objects.

On JOP the native access is faster than using hardware
objects. This is due to the fact that a native access is a spe-
cial bytecode and not a function call. The special bytecode
accesses memory directly, where the bytecodes putfield and
getfield perform a null pointer check and indirection through
the handle.

The performance evaluation with the CACAO JVM has
been performed on a 2 GHz x86 64 machine under Linux

4except the already available primitive native functions

JOP CACAO SimpleRTJ
read write read write read write

native 8 9 24004 23683 2588 1123
HWO 21 24 22630 21668 3956 3418

Table 1. Access time to a device register in clock
cycles

with reads and writes to the serial port. The access via hard-
ware objects is slightly faster (6% for read and 9% for write,
respectively). The kernel trap and the access time on the I/O
bus dominate the cost of the access in both versions. On an
experiment with shared memory instead of a real I/O device
the cost of the native function call was considerable.

On the SimpleRTJ VM the native access is slightly faster
than access to hardware objects. The reason is that the Sim-
pleRTJ VM does not implement JNI, but has it’s own pro-
prietary, more efficient, way to invoke native methods. It
does this very efficiently using a pre-linking phase where the
invokestatic bytecode is instrumented with information to al-
low an immediate invocation of the target native function.
On the other hand, hardware object field access needs a field
lookup that is more time consuming than invoking a static
method.

4.2 Safety and Portability Aspects

Hardware objects map object fields to the device registers.
When the class that represents an I/O device is correct, access
to the low-level device is safe – it is not possible to read from
or write to an arbitrary memory address. A memory area
represented by an array is protected by Java’s array bounds
check.

It is obvious that hardware objects are platform depen-
dent, after all the idea is to have an interface to the bare metal.
Nevertheless, hardware objects give device manufacturers an
opportunity to supply supporting software that fits into Java’s
object-oriented framework and thus cater for developers of
embedded software.

4.3 Interrupts

Hardware objects are a vehicle to write device drivers in
Java and benefit from the safe language. However, most
device drivers also need to handle interrupts. We have not
covered the topic of writing interrupt handlers in Java. This
topic is covered by a companion paper [7], where we discuss
interrupt handlers implemented in Java. Jointly Java hard-
ware objects and interrupt handlers makes it attractive to de-
velop platform dependent middleware fully within an object-
oriented framework with excellent structuring facilities and
fine grained control over the unavoidable unsafe facilities.

Acknowledgement
We thank the anonymous reviewers for their detailed and

insightfully comments that helped to improve the paper.

References
[1] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and

M. Turnbull. The Real-Time Specification for Java. Java Se-
ries. Addison-Wesley, June 2000.

[2] A. Burns and A. J. Wellings. Real-Time Systems and Pro-
gramming Languages: ADA 95, Real-Time Java, and Real-
Time POSIX. Addison-Wesley Longman Publishing Co., Inc.,
3rd edition, 2001.

[3] M. Felser, M. Golm, C. Wawersich, and J. Kleinöder. The
JX operating system. In Proceedings of the USENIX Annual
Technical Conference, pages 45–58, 2002.

[4] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison Wesley Professional, 1994.

[5] R. Grafl. CACAO: A 64-Bit JavaVM Just-in-Time Compiler.
Master’s thesis, Vienna University of Technology, 1997.

[6] D. S. Hardin. Real-time objects on the bare metal: An effi-
cient hardware realization of the Java virtual machine. In Pro-
ceedings of the Fourth International Symposium on Object-
Oriented Real-Time Distributed Computing, page 53. IEEE
Computer Society, 2001.

[7] S. Korsholm, M. Schoeberl, and A. P. Ravn. Java interrupt
handling. In Proceedings of the 11th IEEE International Sym-
posium on Object/component/service-oriented Real-time dis-
tributed Computing (ISORC 2008), Orlando, Florida, USA,
May 2008. IEEE Computer Society.

[8] J. Kwon, A. Wellings, and S. King. Ravenscar-Java: A high
integrity profile for real-time Java. In Proceedings of the 2002
joint ACM-ISCOPE conference on Java Grande, pages 131–
140. ACM Press, 2002.

[9] E. Potratz. A practical comparison between Java and Ada in
implementing a real-time embedded system. In SigAda ’03:
Proceedings of the 2003 annual ACM SIGAda international
conference on Ada, pages 71–83. ACM Press, 2003.

[10] RTJComputing. http://www.rtjcom.com. Visited June 2007.
[11] M. Schoeberl. JOP: A Java Optimized Processor for Em-

bedded Real-Time Systems. PhD thesis, Vienna University of
Technology, 2005.

[12] M. Schoeberl. Real-time garbage collection for Java. In Pro-
ceedings of the 9th IEEE International Symposium on Object
and Component-Oriented Real-Time Distributed Computing
(ISORC 2006), pages 424–432, Gyeongju, Korea, April 2006.

[13] M. Schoeberl. A Java processor architecture for embedded
real-time systems. Article in press and online: Journal of Sys-
tems Architecture, doi:10.1016/j.sysarc.2007.06.001, 2007.

[14] M. Schoeberl and J. Vitek. Garbage collection for safety
critical Java. In Proceedings of the 5th International Work-
shop on Java Technologies for Real-time and Embedded Sys-
tems (JTRES 2007), pages 85–93, Vienna, Austria, September
2007. ACM Press.

[15] D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and D. White.
Java on the bare metal of wireless sensor devices: the squawk
java virtual machine. In VEE ’06: Proceedings of the 2nd
international conference on Virtual execution environments,
pages 78–88. ACM Press, 2006.

Interrupt Handlers in Java

Stephan Korsholm
Department of Computer Science

Aalborg University DK-9220 Aalborg
stk@cs.aau.dk

Martin Schoeberl
Institute of Computer Engineering

Vienna University of Technology, Austria
mschoebe@mail.tuwien.ac.at

Anders P. Ravn
Department of Computer Science

Aalborg University DK-9220 Aalborg
apr@cs.aau.dk

Abstract

An important part of implementing device drivers is to
control the interrupt facilities of the hardware platform and
to program interrupt handlers. Current methods for handling
interrupts in Java use a server thread waiting for the VM to
signal an interrupt occurrence. It means that the interrupt
is handled at a later time, which has some disadvantages.
We present constructs that allow interrupts to be handled di-
rectly and not at a later point decided by a scheduler. A
desirable feature of our approach is that we do not require
a native middelware layer but can handle interrupts entirely
with Java code. We have implemented our approach using
an interpreter and a Java processor, and give an example
demonstrating its use.

1 Introduction

In an embedded system which is implemented as a collec-
tion of cooperating threads, interrupt handlers are more simi-
lar to subroutines than to threads. The handlers are not sched-
uled as threads; they may be invoked any time and even inter-
rupt the thread scheduler, because interrupts are dispatched
by the hardware as response to external events.

Current profiles for real-time Java [5, 2] attempt to hand
over interrupts to normal sporadic threads as quickly as pos-
sible. This can be done by installing a piece of native code,
called the first level interrupt handler, to be invoked by the
hardware, and let this code register the interrupt occurrence
and then return. Then at each reschedule point the interrupt
mark is checked and a waiting thread is unblocked to handle
the interrupt (this is sometimes called the second level inter-
rupt handler). Examples of this approach are found in e.g.
the Squawk VM [11] and the JamaicaVM from aicas [1].
Squawk reports an average latency of 0.1 milliseconds and
a worst case latency of around 13 milliseconds. From [4]
we see that the JamaicaVM has an average latency of 50 mi-
croseconds and a worst case latency of 250 microseconds. In

both cases the interrupts are handled out-of-context.
An advantage of this approach is that the execution of the

second level interrupt handler is controlled by the normal
thread scheduler and thus observes the priorities and schedul-
ing principles of it. Less desirable features are:

Latency: A delay is introduced from the occurrence of the
interrupt until the point in time when it is handled.

Out-of-context execution: The interrupt is handled out of
the context of the first level interrupt handler. This means that
any computation that requires this context cannot be done in
Java, but must be done in native code. If the context depen-
dent part can be kept stereotypical, this is less of a problem.
In other cases where device dependent actions are needed,
the native middelware layer becomes complex.

The contribution of this paper consists in the design and
implementation of a mechanism for handling interrupts in
Java. It does not hand over the interrupt to a sporadic thread,
but handles the interrupt completely in the context of the first
level interrupt handler. We call this mechanism in-context
interrupt handling. An important feature of in-context in-
terrupt handling is that actions that need to be done in the
context of the first level interrupt handler can now be done in
Java, in effect eliminating the need for a native middelware
layer. This mechanism does not preclude the standard way of
handling interrupts in real-time Java, but complements it and
can be used in cases where the standard method is inadequate
for one of the reasons given above.

In Section 2 we will describe how interrupts are handled
in legacy systems. In Section 3 we introduce our design for
in-context interrupt handling, and discuss how the method
can be supported in existing Java execution environments. In
Section 4 we demonstrate how the design has been imple-
mented for two different execution environments for Java:
the JOP Java processor and the SimpleRTJ interpreter. Then
in Section 5 we show a simple example of using our inter-
rupt handling implementations. We conclude the paper in
Section 6.

volatile uint16 P0_UART_RX_TX_REG @ 0xFFE032;
volatile uint16 P0_CLEAR_RX_INT_REG @ 0xFFE036;
volatile uint16 RESET_INT_PENDING_REG @ 0xFFE202;

#define CLR_UART_RX_INT_PENDING 0x0010
#define CLEAR_UART_RI_FLAG P0_CLEAR_RX_INT_REG = 0
#define CLEAR_PENDING_UART_RI_INTERRUPT \

RESET_INT_PENDING_REG = CLR_UART_RX_INT_PENDING

__interrupt void Uart_RX_Interrupt(void) {
UartRxBuffer[UartRxWrPtr++] = P0_UART_RX_TX_REG;
if (UartRxWrPtr>=sizeof(UartRxBuffer)) {

UartRxWrPtr=0;
}
CLEAR_UART_RI_FLAG;
CLEAR_PENDING_UART_RI_INTERRUPT;

}

Figure 1. An example interrupt handler in C

2 Conventional Interrupt Handling

Interrupts are used to signal external events for example,
detecting that a button has been pressed. When an interrupt
occurs the processor simply stops executing the code it runs,
and jumps to an interrupt routine instead. The jump saves
the environment of the interrupted process so that it may be
restored later; this includes saving the CPU registers and the
processor status register. This makes it possible to continue
the execution of the original code when the interrupt routine
has been executed.

Saving the interrupted context and setting up a new con-
text for the interrupt handler is called a context switch. Some
hardware platforms implement a full context switch in hard-
ware, where other platforms implements a partial context
switch in hardware. In the latter case the programmer must
save those parts of the interrupted context that he needs to
overwrite in the interrupt handler.

As an example interrupt handler, Figure 1 shows an ex-
cerpt of code implementing the RS232 receive interrupt for
an existing legacy system. The RS232 receive interrupt is
generated by the hardware when the RS232 interface re-
ceives a byte on the serial line. It is the job of the interrupt
handler to retrieve the byte from the proper device register
and clear the receive interrupt flag.

Though this example contains non-standard compiler di-
rectives and runs on a particular piece of hardware, it illus-
trates the following general features:

I/O Memory: Through the compiler directive name @ ad-
dress the name, e.g. P0 UART RX TX REG is designated to re-
fer directly to a physical memory location, in this case one of
the memory mapped device registers of the UART. Any as-
signment or query of these names in the code will correspond
to reads and writes of the particular register.

Interrupt handlers: Through the compiler directive

interrupt the function void Uart RX Interrupt(void) becomes an
interrupt routine. This basically means that exit and entry
code is generated by the compiler to save and restore the state
of the interrupted process.

The circular buffer UartRxBuffer can be read by user code
outside the context of the interrupt to handle the bytes re-
ceived. Some kind of mutual exclusion between user code
and the interrupt handler may be required. This is typically
implemented by disabling interrupts.

3 In-context Interrupt Handling

Our goal is to be able to implement the interrupt handler
from Figure 1 in pure Java. The two important tasks that the
Uart RX Interrupt handler must do are:

1. Retrieve the received byte from the proper device regis-
ter and save the byte in a data structure.

2. Clean up from the interrupt, in this case clear the
UART receive interrupt flag (CLEAR UART RI FLAG;
CLEAR PENDING UART RI INTERRUPT).

Using the RTSJ profile [2] for Java the above tasks can natu-
rally be solved in the following manner:

Ad 1) Using the raw memory access supplied by RTSJ
through the class RawMemoryAccess, it is possible to read the
received byte from the proper device register. A detailed ex-
ample on how this looks is available in [3] (Chapter 15.5).

Ad 2) The suggested way to handle interrupts in RTSJ
is to use the AsyncEvent and AsyncEventHandler classes.
Again [3] includes a detailed example. In the RTSJ an inter-
rupt occurring is equivalent to the fire method being called on
the AsyncEvent object. This in turn will call the run() method
on all installed handlers. But, to handle the interrupt from
Figure 1 in pure Java, the fire method must be called in the
context of the interrupt. The reason is that the receive in-
terrupt flag must be cleared before exiting the interrupt con-
text. Failing to do so will cause the interrupt to recur. In all
implementations of RTSJ that we know of, handling of the
AsyncEvent corresponding to the interrupt will be scheduled
outside the context of the interrupt. This does not allow us to
implement the handler from Figure 1 in pure Java.

As a complementary way to handle interrupts in Java we
suggest that the native code implementing the first level in-
terrupt handler is used to call the JVM and start executing
the appropriate interrupt handler immediately, or in other
words, before returning from the interrupt. It makes it pos-
sible to handle the interrupt completely in its context. Thus,
we will be able to implement the example in Figure 1 in pure
Java, which includes to clear the interrupt receive flag from
inside Java code.

Whether it is possible to reenter the JVM inside the con-
text of the first level interrupt handler in order to execute the
Java part of the interrupt handler depends on the scheduling
mechanism and the GC strategy. In the remainder of this

section we will look at the consequences of the proposal for
different types of Java execution environments.

3.1 Scheduling

If native threads are used and attached to the VM e.g
through the JNI [6] function JNI AttachCurrentThread it should
be straightforward to reenter the JVM while it is interrupted,
because from the point of view of the JVM the interrupt han-
dler is not different from a normal high priority thread that
has been switched in by the external scheduler.

If an internal scheduler is used (also called green threads)
it will most likely require some work to refactor the JVM
implementation to support reentry at any time. The reason is
that the JVM implementation knows when thread switching
can occur and explicitly or implicitly has used this knowl-
edge when accessing global data. The SimpleRTJ VM [7],
used for one of the experiments described in Section 4, in-
cludes an internal scheduler and the section shows the work
required to make the JVM reenterable.

3.2 Garbage Collection

When executing the Java first level interrupt handler1 in
the context of the interrupt, it becomes very important that
the handler is short lived. The reason for this restriction is
that while an interrupt handler is executing, no other inter-
rupts of the same type can be handled. In many cases no
other interrupts at all can be handled, thus making it particu-
larly important to complete the interrupt handler swiftly. In
particular, this means that the interrupt handler cannot block
waiting for a thread.

In normal execution environments for Java, threads syn-
chronize around garbage collection (GC) to avoid disturbing
an ongoing GC. In the case of interrupt handlers, this become
impossible. Fruthermore, it is not feasible to let interrupt
handlers start a lengthy GC process. Both these facts affect
the interoperability of interrupt handlers with a GC.

3.2.1 Stop-the-world GC

Using this strategy the entire heap is collected at once and
the collection is not interleaved with execution. The collector
can safely assume that data required to do an accurate collec-
tion will not change during the collection. Using stop-the-
world collection an interrupt handler may not change data
used by the GC to complete the collection. In the general
case this means that the interrupt handler is not allowed to
create new objects, or change the graph of live objects.

3.2.2 Incremental GC

The heap is collected in small incremental steps. Write barri-
ers in the mutator threads and non-preemption sections in the

1In this section when we use the term “interrupt handler” we mean an
interrupt handler executed in-context as described in Section 3

GC thread synchronize the view of the object graph between
the mutator threads and the GC thread. Using concurrent
collection it should be possible to allow for allocation of ob-
jects and changing references inside an interrupt handler (as
it is allowed in any normal thread). With a real-time GC the
maximum blocking time due to GC synchronization with the
mutator threads should be known.

3.2.3 Moving Objects

Interruption of the GC during an object move can result in
access to a stale copy of the object inside the handler. A pos-
sible solution to this problem is to allow for pinning of ob-
jects reachable by the handler (similar to immortal memory
in the RTSJ). Concurrent collectors have to solve this issue
anyway for the concurrent threads. The simplest approach is
to disable thread switching and interrupt handling during the
object copy. As this operation can be quite long for large ar-
rays, several approaches to split the array into smaller chunks
have been proposed.

4 Supporting Interrupt Handlers

To experiment with our design for in-context interrupt
handling we have added such support to the SimpleRTJ in-
terpreter [7] and the experimental Java processor JOP.

4.1 Interrupt Handlers in SimpleRTJ

The SimpleRTJ JVM uses a simple stop-the-world
garbage collection scheme. This means that within handlers,
we prohibited use of the new keyword and writing references
to the heap. Additionally we have turned off the compaction
phase of the GC to avoid the problems with moving objects
mentioned in Section 3.2.3.

4.1.1 Reentering the JVM

The SimpleRTJ JVM uses green threads. This means that it
had to be refactored quite a bit to allow for reentering the
JVM from inside the first level interrupt handler. What we
did was to get rid of all global state (all global variables)
used by the JVM and instead allocate shared data on the C
stack. For all parts of the JVM to still be able to access shared
data we pass around a single pointer to the shared data now
allocated on the stack.

4.1.2 Context Switching at Interrupt

The SimpleRTJ JVM contains support for a skimmed down
version of the RTSJ style interrupt handling facilities us-
ing the AsyncEvent and AsyncEventHandler classes. Using the
javax.events package supplied with the JVM a server thread
can be started waiting for events to occur. This server thread
runs at highest priority. The SimpleRTJ JVM reschedule
points are in between the execution of each bytecode. This

means that before the execution of each bytecode the JVM
checks if a new event has been signaled. If so the server
thread is scheduled immediately and released to handle the
event. To achieve in-context interrupt handling we force a
reentry of the JVM from inside the first level interrupt han-
dler by calling the main interpreter loop. Prior to this we
have marked that an event is indeed pending, resulting in the
server thread being scheduled immediately. To avoid inter-
ference with the GC we switch the heap and stack with a new
temporary (small) Java heap and a new temporary (small)
Java stack. Currently we use 512 bytes for each of these
items, which have proven sufficient for running non-trivial
interrupt handlers so far.

The major part of the work was to get rid of the global
state. How difficult this is, will vary from one JVM imple-
mentation to another, but since global state is a bad idea in
any case, JVMs of high quality should use very little global
state. Using these changes we have experimented with han-
dling the RS232 receive interrupt. The final receive interrupt
handler implemented in pure Java is shown in Section 5.

4.2 Interrupt Handlers on JOP

We have implemented a priority based interrupt controller
in JOP. The numbers of interrupt lines can be configured.
An interrupt can also be triggered in software. There is one
global interrupt enable and a local enable for each interrupt
line.

In JOP there is a translation stage between Java bytecodes
and the JOP internal microcode [8]. On a pending inter-
rupt (or exception generated by the hardware) we can use
this translation stage to insert a special bytecode into the in-
struction stream. This trick keeps the interrupt completely
transparent to the core pipeline. Interrupts are accepted at
bytecode boundaries and clear the global enable flag when
accepted. This feature avoids immediate handling of an ar-
riving higher priority interrupt during the first part of the han-
dler. Therefore, the execution of the interrupt handler starts
with global disable. The interrupts have to be enabled again
by the handler at a convenient time.

The special bytecode can be handled in JOP as any other
bytecode: execute microcode, invoke a special method from
a helper class, or execute Java bytecode from JVM.java.

4.2.1 Interrupt Handling

All interrupts are mapped to one bytecode. Therefore, we
perform the dispatch of the correct handler in Java. On an
interrupt the static method interrupt() from a system internal
class gets invoked. The method reads the interrupt number
and performs the dispatch to the registered Runnable. The
timer interrupt (index 0) is handled specially. On a timer
interrupt the real-time scheduler of JOP gets invoked. At
system startup the table of Runnables is initialized with a no-
op handler.

public class InterruptHandler implements Runnable {
public static void main(String[] args) {

InterruptHandler ih = new InterruptHandler();
IOFactory fact = IOFactory.getFactory();
// register the handler
fact.registerInterruptHandler(1, ih);
// enable interrupt 1
fact.enableInterrupt(1);
.....

}

public void run() {
System.out.println("Interrupt fired!");

}
}

Figure 2. An interrupt handler as Runnable

Applications provide handlers via objects that implements
Runnable and register the object for a interrupt number. We
reuse here the I/O Factory presented in [9]. Figure 2 shows a
simple example of an interrupt handler implemented in Java.

For interrupts that should be handled by a sporadic thread
under the control of the scheduler, the following needs to be
performed on JOP: (1) Create a SwEvent (similar to the RTSJ
AsyncEventHandler) that performs the second level interrupt
handler work; (2) create a short first level interrupt handler
as Runnable and invoke fire() of the corresponding software
event handler; (3) register the first level interrupt handler as
shown in Figure 2 and start the real-time scheduler.

4.2.2 Garbage Collection

The runtime environment of JOP contains a concurrent real-
time GC [10]. The GC can be interrupted at a very fine
grain level. During sections that are not preemptive (e.g.
data structure manipulation for a new, write barriers on ref-
erence field write, object copy during compaction) interrupts
are simply turned off. The longest blocking time due to the
GC work is on an object or array copy. In [10] we have ob-
served maximum blocking times of 40 µs induced by the GC
with medium sized arrays.

5 Using Interrupt Handler

We have not seen any need for adding to the RTSJ style
of programming with interrupts (described in Section 3). We
have just changed the way that the AsyncEvent gets scheduled.
In our approach the server thread bound to the handling of the
event gets released immediately inside the context of the first
level interrupt handler and not at some later point. Using the
skimmed down version of the javax.events package distributed
with the SimpleRTJ JVM, the legacy interrupt handler for
the RS232 receive interrupt illustrated in Figure 1, can be
translated into pure Java as it is shown in Figure 3.

public class RS232ReceiveInterruptHandler
extends InterruptHandler {

private RS232 rs232;
private InterruptControl interruptControl;
private short UartRxBuffer[];
private byte UartRxWrPtr;

public RS232ReceiveInterruptHandler(RS232 rs232,
InterruptControl interruptControl) {

// Subscribe to the UART receive int.
super(INT_RS232RX);
this.rs232 = rs232;
this.interruptControl = interruptControl;
UartRxBuffer = new short[32];
UartRxWrPtr = 0;

}
protected void handleInterrupt() {
UartRxBuffer[UartRxWrPtr++] =

rs232.P0_UART_RX_TX_REG;
if (UartRxWrPtr >= UartRxBuffer.length) {

UartRxWrPtr = 0;
}
rs232.P0_CLEAR_RX_INT_REG = 0;
interruptControl.RESET_INT_PENDING_REG =
RS232.CLR_UART_RX_INT_PENDING;

}
}

Figure 3. An example RS232 interrupt handler

5.1 Accessing Device Registers

A very important part of what interrupt handlers normally
need to do is to access device registers. To perform this ac-
cess efficiently, which is a requirement for interrupt handlers,
we use hardware objects as defined in [9]. The hardware
objects rs232 and interruptControl has been defined to fit the
physical hardware platform and allows the interrupt handler
to access appropriate device registers directly.

6 Conclusion

We have introduced the concept of in-context interrupt
handling and shown its implementation in an interpreter and
on a Java processor. An example shows that in-context in-
terrupt handling allows for a greater portion of the interrupt
handler to be written in Java. On legacy systems imple-
mented in C/assembler the default is for interrupt handlers to
be executed in-context, so adding this option as well on Java
based systems will seem natural to experienced programmers
of embedded systems.

The proposal has an impact on the safety, portability and
maintainability of an application. It is clear that Java code
with interrupt handlers may bring the system down, but that
is not different from having the handlers in middleware.
Yet, the basic safety features of Java (pointer checks, index
checks, type checking) are with the proposal brought to bear

on such low level code and thus the safety is improved. Inter-
rupt handlers are highly platform dependent and not portable;
but they are essential for applications, so placing them out-
side the Java application only seemingly makes it portable.
With the good structuring facilities of packages, classes and
interfaces, a well-architected application will preserve porta-
bility by placing interrupt handlers in separate hardware ab-
straction packages. Finally, maintainability will be improved
by having one language for an application, where common
documentation standards are more likely to be applied.

The current proposal comes in this paper with a proof of
concept, but in order for it to really succeed, it needs at some
point in time to enter as part of a standard profile and most
importantly be included in the JVM platforms.

Acknowledgements

We are grateful to the reviewers for their useful comments.

References
[1] aicas. http://www.aicas.com/jamaica.html. Visited June 2007.
[2] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and

M. Turnbull. The Real-Time Specification for Java. Java Se-
ries. Addison-Wesley, June 2000.

[3] A. Burns and A. J. Wellings. Real-Time Systems and Pro-
gramming Languages: ADA 95, Real-Time Java, and Real-
Time POSIX. Addison-Wesley Longman Publishing Co., Inc.,
2001.

[4] J. M. Enery, D. Hickey, and M. Boubekeur. Empirical evalua-
tion of two main-stream rtsj implementations. In JTRES ’07:
Proceedings of the 5th international workshop on Java tech-
nologies for real-time and embedded systems, pages 47–54,
New York, NY, USA, 2007. ACM.

[5] J. Kwon, A. Wellings, and S. King. Ravenscar-Java: A high
integrity profile for real-time Java. In Proceedings of the 2002
joint ACM-ISCOPE conference on Java Grande, pages 131–
140. ACM Press, 2002.

[6] S. Liang. The Java Native Interface - Programmers Guide
and Specification. Addison-Wesley, 1999.

[7] RTJComputing. http://www.rtjcom.com. Visited June 2007.
[8] M. Schoeberl. A Java processor architecture for embedded

real-time systems. Article in press and online: Journal of Sys-
tems Architecture, doi:10.1016/j.sysarc.2007.06.001, 2007.

[9] M. Schoeberl, S. Korsholm, C. Thalinger, and A. P. Ravn.
Hardware objects for Java. In Proceedings of the 11th IEEE
International Symposium on Object/component/service-
oriented Real-time distributed Computing (ISORC 2008),
Orlando, Florida, USA, May 2008. IEEE Computer Society.

[10] M. Schoeberl and J. Vitek. Garbage collection for safety
critical Java. In Proceedings of the 5th International Work-
shop on Java Technologies for Real-time and Embedded Sys-
tems (JTRES 2007), pages 85–93, Vienna, Austria, September
2007. ACM Press.

[11] D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and D. White.
Java on the bare metal of wireless sensor devices: the squawk
java virtual machine. In VEE ’06: Proceedings of the 2nd
international conference on Virtual execution environments,
pages 78–88. ACM Press, 2006.

A Hardware Abstraction Layer in Java

MARTIN SCHOEBERL

Vienna University of Technology, Austria

STEPHAN KORSHOLM

Aalborg University, Denmark

TOMAS KALIBERA

Purdue University, USA

and

ANDERS P. RAVN

Aalborg University, Denmark

Embedded systems use specialized hardware devices to interact with their environment, and since they have to be
dependable, it is attractive to use a modern, type-safe programming language like Java to develop programs for
them. Standard Java, as a platform independent language, delegates access to devices, direct memory access, and
interrupt handling to some underlying operating system or kernel, but in the embedded systems domain resources
are scarce and a Java virtual machine (JVM) without an underlying middleware is an attractive architecture.
The contribution of this paper is a proposal for Java packages with hardware objects and interrupt handlers that
interface to such a JVM. We provide implementations of the proposal directly in hardware, as extensions of
standard interpreters, and finally with an operating system middleware. The latter solution is mainly seen as a
migration path allowing Java programs to coexist with legacy system components. An important aspect of the
proposal is that it is compatible with the Real-Time Specification for Java (RTSJ).

Categories and Subject Descriptors: D.4.7 [Operating Systems]: Organization and Design—Real-time sys-
tems and embedded systems; D.3.3 [Programming Languages]: Language Classifications—Object-oriented
languages; D.3.3 [Programming Languages]: Language Constructs and Features—Input/output

General Terms: Languages, Design, Implementation

Additional Key Words and Phrases: Device driver, embedded system, Java, Java virtual machine

1. INTRODUCTION

When developing software for an embedded system, for instance an instrument, it is nec-
essary to control specialized hardware devices, for instance a heating element or an inter-
ferometer mirror. These devices are typically interfaced to the processor through device
registers and may use interrupts to synchronize with the processor. In order to make the

Author’s address: Martin Schoeberl, Institute of Computer Engineering, Vienna University of Technology, Tre-
itlstr. 3, A-1040 Vienna, Austria; email: mschoebe@mail.tuwien.ac.at. Stephan Korsholm and Anders P. Ravn,
Department of Computer Science, Aalborg University, Selma Lagerlöfs vej 300, DK-9220 Aalborg, Denmark;
email stk,apr@cs.aau.dk. Tomas Kalibera, Department of Computer Science, Purdue University, 305 N. Univer-
sity Street, West Lafayette, IN 47907-2107, USA; email: kalibera@cs.purdue.edu.
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
© 2009 ACM 1539-9087/2009/0?00-0001 $5.00

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009, Pages 1–42.

2 · Martin Schoeberl et al.

programs easier to understand, it is convenient to introduce a hardware abstraction layer
(HAL), where access to device registers and synchronization through interrupts are hidden
from conventional program components. A HAL defines an interface in terms of the con-
structs of the programming language used to develop the application. Thus, the challenge
is to develop an abstraction that gives efficient access to the hardware, while staying within
the computational model provided by the programming language.

Our first ideas on a HAL for Java have been published in [Schoeberl et al. 2008] and
[Korsholm et al. 2008]. This paper combines the two papers, provides a much wider back-
ground of related work, gives two additional experimental implementations, and gives per-
formance measurements that allow an assessment of the efficiency of the implementations.
The remainder of this section introduces the concepts of the Java based HAL.

1.1 Java for Embedded Systems

Over the nearly 15 years of its existence Java has become a popular programming language
for desktop and server applications. The concept of the Java virtual machine (JVM) as the
execution platform enables portability of Java applications. The language, its API speci-
fication, as well as JVM implementations have matured; Java is today employed in large
scale industrial applications. The automatic memory management takes away a burden
from the application programmers and together with type safety helps to isolate problems
and, to some extent, even run untrusted code. It also enhances security – attacks like stack
overflow are not possible. Java integrates threading support and dynamic loading into the
language, making these features easily accessible on different platforms. The Java lan-
guage and JVM specifications are proven by different implementations on different plat-
forms, making it relatively easy to write platform independent Java programs that run on
different JVM implementations and underlying OS/hardware. Java has a standard API for a
wide range of libraries, the use of which is thus again platform independent. With the ubiq-
uity of Java, it is easy to find qualified programmers which know the language, and there
is strong tool support for the whole development process. According to an experimental
study [Phipps 1999], Java has lower bug rates and higher productivity rates than C++. In-
deed, some of these features come at a price of larger footprint (the virtual machine is a
non-trivial piece of code), typically higher memory requirements, and sometimes degraded
performance, but this cost is accepted in industry.

Recent real-time Java virtual machines based on the Real-Time Specification for Java
(RTSJ) provide controlled and safe memory allocation. Also there are platforms for less
critical systems with real-time garbage collectors. Thus, Java is ready to make its way into
the embedded systems domain. Mobile phones, PDAs, or set-top boxes run Java Micro
Edition, a Java platform with a restricted set of standard Java libraries. Real-time Java has
been and is being evaluated as a potential future platform for space avionics both by NASA
and ESA space agencies. Some Java features are even more important for embedded than
for desktop systems because of missing features of the underlying platform. For instance
the RTEMS operating system used by ESA for space missions does not support hardware
memory protection even for CPUs that do support it (like LEON3, a CPU for ESA space
missions). With Java’s type safety hardware protection is not needed to spatially isolate
applications. Moreover, RTEMS does not support dynamic libraries, but Java can load
classes dynamically.

Many embedded applications require very small platforms, therefore it is interesting to
remove as much as possible of an underlying operating system or kernel, where a major
ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

A Hardware Abstraction Layer in Java · 3

Device Processor Memory

Register

Input/Output

Interrupt

Fig. 1. The hardware: a bus connects a processor to device registers and memory, and an interrupt bus connects
devices to a processor

part of code is dedicated to handling devices. Furthermore, Java is considered as the future
language for safety-critical systems [Henties et al. 2009]. As certification of safety-critical
systems is very expensive, the usual approach is to minimize the code base and supporting
tools. Using two languages (e.g., C for programming device handling in the kernel and Java
for implementing the processing of data) increases the complexity of generating a safety
case. A Java only system reduces the complexity of the tool support and therefore the
certification effort. Even in less critical systems the same issues will show up as decreased
productivity and dependability of the software. Thus it makes sense to investigate a general
solution that interfaces Java to the hardware platform; that is the objective of the work
presented here.

1.2 Hardware Assumptions

The hardware platform is built up along one or more buses – in small systems typically
only one – that connect the processor with memory and device controllers. Device con-
trollers have reserved some part of the address space of a bus for its device registers. They
are accessible for the processor as well, either through special I/O instructions or by ordi-
nary instructions when the address space is the same as the one for addressing memory, a
so called memory mapped I/O solution. In some cases the device controller will have di-
rect memory access (DMA) as well, for instance for high speed transfer of blocks of data.
Thus the basic communication paradigm between a controller and the processor is shared
memory through the device registers and/or through DMA. With these facilities only, syn-
chronization has to be done by testing and setting flags, which means that the processor
has to engage in some form of busy waiting. This is eliminated by extending the system
with an interrupt bus, where device controllers can generate a signal that interrupts the
normal flow of execution in the processor and direct it to an interrupt handling program.
Since communication is through shared data structures, the processor and the controllers
need a locking mechanism; therefore interrupts can be enabled or disabled by the proces-
sor through an interrupt control unit. The typical hardware organization is summarized in
Figure 1.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

4 · Martin Schoeberl et al.

public final class ParallelPort {
public volatile int data;
public volatile int control;

}

int inval, outval;
myport = JVMMechanism.getParallelPort();
...
inval = myport.data;
myport.data = outval;

Fig. 2. The parallel port device as a simple Java class

1.3 A Computational Model

In order to develop a HAL, the device registers and interrupt facilities must be mapped
to programming language constructs, such that their use corresponds to the computational
model underlying the language. In the following we give simple device examples which
illustrate the solution we propose for doing it for Java.

1.3.1 Hardware Objects. Consider a simple parallel input/output (PIO) device con-
trolling a set of input and output pins. The PIO uses two registers: the data register and
the control register. Writing to the data register stores the value into an internal latch that
drives the output pins. Reading from the data register returns the value that is present on
the input pins. The control register configures the direction for each PIO pin. When bit n
in the control register is set to 1, pin n drives out the value of bit n of the data register. A
0 at bit n in the control register configures pin n as input pin. At reset the port is usually
configured as input port – a safe default configuration.

In an object oriented language the most natural way to represent a device is as an object
– the hardware object. Figure 2 shows a class definition, object instantiation, and use of
the hardware object for the simple parallel port. An instance of the class ParallelPort is
the hardware object that represents the PIO. The reference myport points to the hardware
object. To provide this convenient representation of devices as objects, a JVM internal
mechanism is needed to access the device registers via object fields and to create the de-
vice object and receive a reference to it. We elaborate on the idea of hardware objects in
Section 3.1 and present implementations in Section 4.

1.3.2 Interrupts. When we consider an interrupt, it must invoke some program code
in a method that handles it. We need to map the interruption of normal execution to some
language concept, and here the concept of an asynchronous event is useful. The resulting
computational model for the programmer is shown in Figure 3. The signals are external,
asynchronous events that map to interrupts.

A layered implementation of this model with a kernel close to the hardware and ap-
plications on top has been very useful in general purpose programming. Here one may
even extend the kernel to manage resources and provide protection mechanisms such that
applications are safe from one another, as for instance when implementing trusted inter-
operable computing platforms [Group 2008]. Yet there is a price to pay which may make
the solution less suitable for embedded systems: adding new device drivers is an error-
prone activity [Chou et al. 2001], and protection mechanisms impose a heavy overhead on
context switching when accessing devices.
ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

A Hardware Abstraction Layer in Java · 5

State
Variables

Control
Program

Control
Program

Interaction

Signals

Fig. 3. Computational model: several threads of execution communicate via shared state variables and receive
signals.

public class RS232ReceiveInterruptHandler extends InterruptHandler {
private RS232 rs232;
private InterruptControl interruptControl;

private byte UartRxBuffer[];
private short UartRxWrPtr;

...

protected void handle() {

synchronized(this) {
UartRxBuffer[UartRxWrPtr++] = rs232.P0_UART_RX_TX_REG;
if (UartRxWrPtr >= UartRxBuffer.length) UartRxWrPtr = 0;

}
rs232.P0_CLEAR_RX_INT_REG = 0;
interruptControl.RESET_INT_PENDING_REG = RS232.CLR_UART_RX_INT_PENDING;

}
}

Fig. 4. An example interrupt handler for an RS232 interface. On an interrupt the method handle() is invoked. The
private objects rs232 and interruptControl are hardware objects that represent the device registers and the interrupt
control unit.

The alternative we propose is to use Java directly since it already supports multithreading
and use methods in the special InterruptHandler objects to handle interrupts. The idea is
illustrated in Figure 4, and the details, including synchronization and interaction with the
interrupt control, are elaborated in Section 3.2. Implementations are found in Section 4.

1.4 Mapping Between Java and the Hardware

The proposed interfacing from hardware to Java does not require language extensions.
The Java concepts of packages, classes and synchronized objects turn out to be powerful
enough to formulate the desired abstractions. The mapping is done at the level of the JVM.
The JVM already provides typical OS functions handling:

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

6 · Martin Schoeberl et al.

Hardware JVM

Library (JDK)

CPU Memory Ethernet

java.net

TCP/IP

LinkLayer

Java application Web server

Hardware

OS (Linux)

JVM

N
at

iv
e

Library (JDK)

CPU Memory Ethernet

java.net

TCP/IP

LinkLayer

Java application

N
at

iv
e

Web server

Hardware

JVM

N
at

iv
e

Library
(JDK)

CPU Memory Ethernet

java.net

TCP/IP

LinkLayer

Java application

N
at

iv
e

Web server

(a) (b) (c)

Fig. 5. Configurations for an embedded JVM: (a) standard layers for Java with an operating system – equivalent
to desktop configurations, (b) a JVM on the bare metal, and (c) a JVM as a Java processor

—Address space and memory management
—Thread management
—Inter-process communication

These parts need to be modified so they cater for interfaces to the hardware.
Yet, the architectures of JVMs for embedded systems are more diverse than on desktop

or server systems. Figure 5 shows variations of Java implementations in embedded systems
and an example of the control flow for a web server application. The standard approach
with a JVM running on top of an operating system (OS) is shown in sub-figure (a).

A JVM without an OS is shown in sub-figure (b). This solution is often called running
on the bare metal. The JVM acts as the OS and provides thread scheduling and low-level
access to the hardware. In this case the network stack can be written entirely in Java.
JNode1 is an approach to implement the OS entirely in Java. This solution has become
popular even in server applications.2

Sub-figure (c) shows an embedded solution where the JVM is part of the hardware layer:
it is implemented in a Java processor. With this solution the native layer can be completely
avoided and all code (application and system code) is written entirely in Java.

Figure 5 shows also the data and control flow from the application down to the hardware.
The example consists of a web server and an Internet connection via Ethernet. In case (a)
the application web server talks with java.net in the Java library. The flow goes down via
a native interface to the TCP/IP implementation and the link layer device driver within the
OS (usually written in C). The device driver talks with the Ethernet chip. In (b) the OS
layer is omitted: the TCP/IP layer and the link layer device driver are now part of the Java
library. In (c) the JVM is part of the hardware layer, and direct access from the link layer
driver to the Ethernet hardware is mandatory.

With our proposed HAL, as shown in Figure 6, the native interface within the JVM in
(a) and (b) disappears. Note how the network stack moves up from the OS layer to the Java

1http://www.jnode.org/
2BEA System offers the JVM LiquidVM that includes basic OS functions and does not need a guest OS.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

A Hardware Abstraction Layer in Java · 7

Hardware JVM

Library (JDK)

CPU Memory Ethernet

java.net

TCP/IP

LinkLayer

Java application Web server

Hardware

OS (Linux)

CPU Memory Ethernet

Hardware

JVM

N
at

iv
e

Library
(JDK)

CPU Memory Ethernet

java.net

TCP/IP

LinkLayer

Java application Web server

(a) (b) (c)

HW Object

JVM

N
at

iv
e

Library
(JDK)

java.net

TCP/IP

LinkLayer

Java application Web server

HW Object

IO Access

HW Object

Fig. 6. Configurations for an embedded JVM with hardware objects and interrupt handlers: (a) standard layers
for Java with an operating system – equivalent to desktop configurations, (b) a JVM on the bare metal, and (c) a
JVM as a Java processor

library in example (a). All three versions show a pure Java implementation of the whole
network stack. The Java code is the same for all three solutions. Version (b) and (c) benefit
from hardware objects and interrupt handlers in Java as access to the Ethernet device is
required from Java source code. In Section 5 we show a simple web server application
implemented completely in Java as evaluation of our approach.

1.5 Contributions

The key contribution of this paper is a proposal for a Java HAL that can run on the bare
metal while still being safe. This idea is investigated in quite a number of places which are
discussed in the related work section where we comment on our initial ideas as well. In
summary, the proposal gives an interface to hardware that has the following benefits:

Object-oriented. An object representing a device is the most natural integration into
an object oriented language, and a method invocation to a synchronized object is a direct
representation of an interrupt.

Safe. The safety of Java is not compromised. Hardware objects map object fields to de-
vice registers. With a correct class that represents the device, access to it is safe. Hardware
objects can be created only by a factory residing in a special package.

Generic. The definition of a hardware object and an interrupt handler is independent of
the JVM. Therefore, a common standard for different platforms can be defined.

Efficient. Device register access is performed by single bytecodes getfield and putfield.
We avoid expensive native calls. The handlers are first level handlers; there is no delay
through event queues.

The proposed Java HAL would not be useful if it had to be modified for each particular
kind of JVM; thus a second contribution of this paper is a number of prototype imple-
mentations illustrating the architectures presented in Figure 6: implementations in Kaffe
[Wilkinson 1996] and OVM [Armbruster et al. 2007] represent the architecture with an

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

8 · Martin Schoeberl et al.

OS (sub-figure (a)), the implementation in SimpleRTJ [RTJ Computing 2000] represents
the bare metal solution (sub-figure (b)), and the implementation in JOP [Schoeberl 2008]
represents the Java processor solution (sub-figure (c)).

Finally, we must not forget the claim for efficiency, and therefore the paper ends with
some performance measurements that indicate that the HAL layer is generally as efficient
as native calls to C code external to the JVM.

2. RELATED WORK

Already in the 1970s it was recognized that an operating system might not be the opti-
mal solution for special purpose applications. Device access was integrated into high level
programming languages like Concurrent Pascal [Hansen 1977; Ravn 1980] and Modula
(Modula-2) [Wirth 1977; 1982] along with a number of similar languages, e.g., UCSD
Pascal. They were meant to eliminate the need for operating systems and were success-
fully used in a variety of applications. The programming language Ada, which has been
dominant in defence and space applications till this day, may be seen as a continuation of
these developments. The advent of inexpensive microprocessors, from the mid 1980s and
on, lead to a regression to assembly and C programming. The hardware platforms were
small with limited resources and the developers were mostly electronic engineers, who
viewed them as electronic controllers. Program structure was not considered a major issue
in development. Nevertheless, the microcomputer has grown, and is now far more pow-
erful than the minicomputer that it replaced. With powerful processors and an abundance
of memory, the ambitions for the functionality of embedded systems grow, and program-
ming becomes a major issue because it may turn out to be the bottleneck in development.
Consequently, there is a renewed interest in this line of research.

An excellent overview of historical solutions to access hardware devices from and imple-
ment interrupt handlers in high-level languages, including C, is presented in Chapter 15 of
[Burns and Wellings 2001]. The solution to device register access in Modula-1 (Ch. 15.3)
is very much like C; however the constructs are safer because they are encapsulated in
modules. Interrupt handlers are represented by threads that block to wait for the interrupt.
In Ada (Ch 15.4) the representation of individual fields in registers can be described pre-
cisely by representation classes, while the corresponding structure is bound to a location
using the Address attribute. An interrupt is represented in the current version of Ada by a
protected procedure, although initially represented (Ada 83) by task entry calls.

The main ideas in having device objects are thus found in the earlier safe languages,
and our contribution is to align them with a Java model, and in particular, as discussed
in Section 4, implementation in a JVM. From the Ada experience we learn that direct
handling of interrupts is a desired feature.

2.1 The Real-Time Specification for Java

The Real-Time Specification for Java (RTSJ) [Bollella et al. 2000] defines a JVM extension
which allows better timeliness control compared to a standard JVM. The core features are:
fixed priority scheduling, monitors which prevent priority inversion, scoped memory for
objects with limited lifetime, immortal memory for objects that are never finalized, and
asynchronous events with CPU time consumption control.

The RTSJ also defines an API for direct access to physical memory, including hardware
registers. Essentially one uses RawMemoryAccess at the level of primitive data types.
Although the solution is efficient, this representation of physical memory is not object
ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

A Hardware Abstraction Layer in Java · 9

oriented, and there are some safety issues: When one raw memory area represents an
address range where several devices are mapped to, there is no protection between them.
Yet, a type safe layer with support for representing individual registers can be implemented
on top of the RTSJ API.

The RTSJ specification suggests that asynchronous events are used for interrupt han-
dling. Yet, it neither specifies an API for interrupt control nor semantics of the handlers.
Any interrupt handling application thus relies on some proprietary API and proprietary
event handler semantics. Second level interrupt handling can be implemented within the
RTSJ with an AsyncEvent that is bound to a happening. The happening is a string constant
that represents an interrupt, but the meaning is implementation dependent. An Async-
EventHandler or BoundAsyncEventHandler can be added as handler for the event. Also an
AsyncEventHandler can be added via a POSIXSignalHandler to handle POSIX signals. An
interrupt handler, written in C, can then use one of the two available POSIX user signals.

RTSJ offers facilities very much in line with Modula or Ada for encapsulating memory-
mapped device registers. However, we are not aware of any RTSJ implementation that
implements RawMemoryAccess and AsyncEvent with support for low-level device access
and interrupt handling. Our solution could be used as specification of such an extension.
It would still leave the first level interrupt handling hidden in an implementation; therefore
an interesting idea is to define and implement a two-level scheduler for the RTSJ. It should
provide the first level interrupt handling for asynchronous events bound to interrupts and
delegate other asynchronous events to an underlying second level scheduler, which could
be the standard fixed priority preemptive scheduler. This would be a fully RTSJ compliant
implementation of our proposal.

2.2 Hardware Interface in JVMs

The aJile Java processor [aJile 2000] uses native functions to access devices. Interrupts
are handled by registering a handler for an interrupt source (e.g., a GPIO pin). Systronix
suggests3 to keep the handler short, as it runs with interrupts disabled, and delegate the real
handling to a thread. The thread waits on an object with ceiling priority set to the interrupt
priority. The handler just notifies the waiting thread through this monitor. When the thread
is unblocked and holds the monitor, effectively all interrupts are disabled.

Komodo [Kreuzinger et al. 2003] is a multithreaded Java processor targeting real-time
systems. On top of the multiprocessing pipeline the concept of interrupt service threads is
implemented. For each interrupt one thread slot is reserved for the interrupt service thread.
It is unblocked by the signaling unit when an interrupt occurs. A dedicated thread slot on a
fine-grain multithreading processor results in a very short latency for the interrupt service
routine. No thread state needs to be saved. However, this comes at the cost to store the
complete state for the interrupt service thread in the hardware. In the case of Komodo,
the state consists of an instruction window and the on-chip stack memory. Devices are
represented by Komodo specific I/O classes.

Muvium [Caska 2009] is an ahead-of-time compiling JVM solution for very resource
constrained microcontrollers (Microchip PIC). Muvium uses an Abstract Peripheral Toolkit
(APT) to represent devices. APT is based on an event driven model for interaction with
the external world. Device interrupts and periodic activations are represented by events.
Internally, events are mapped to threads with priority dispatched by a preemptive sched-

3A template can be found at http://practicalembeddedjava.com/tutorials/aJileISR.html

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

10 · Martin Schoeberl et al.

uler. APT contains a large collection of classes to represent devices common in embedded
systems.

In summary, access to device registers is handled in both aJile, Komodo, and Muvium by
abstracting them into library classes with access methods. This leaves the implementation
to the particular JVM and does not give the option of programming them at the Java level.
It means that extension with new devices involve programming at different levels, which
we aim to avoid. Interrupt handling in aJile is essentially first level, but with the twist that it
may be interpreted as RTSJ event handling, although the firing mechanism is atypical. Our
mechanism would free this binding and allow other forms of programmed notification, or
even leaving out notification altogether. Muvium follows the line of RTSJ and has a hidden
first level interrupt handling. Komodo has a solution with first level handling through a full
context switch; this is very close to the solution advocated in Modula 1, but it has in general
a larger overhead than we would want to incur.

2.3 Java Operating Systems

The JX Operating System [Felser et al. 2002] is a microkernel system written mostly in
Java. The system consists of components which run in domains, each domain having its
own garbage collector, threads, and a scheduler. There is one global preemptive scheduler
that schedules the domain schedulers which can be both preemptive and non-preemptive.
Inter-domain communication is only possible through communication channels exported
by services. Low level access to the physical memory, memory mapped device registers,
and I/O ports are provided by the core (“zero”) domain services, implemented in C. At the
Java level ports and memory areas are represented by objects, and registers are methods of
these objects. Memory is read and written by access methods of Memory objects. Higher
layers of Java interfaces provide type safe access to the registers; the low level access is
not type safe.

Interrupt handlers in JX are written in Java and are run through portals – they can reside
in any domain. Interrupt handlers cannot interrupt the garbage collector (the GC disables
interrupts), run with CPU interrupts disabled, must not block, and can only allocate a
restricted amount of memory from a reserved per domain heap. Execution time of interrupt
handlers can be monitored: on a deadline violation the handler is aborted and the interrupt
source disabled. The first level handlers can unblock a waiting second level thread either
directly or via setting a state of a AtomicVariable synchronization primitive.

The Java New Operating System Design Effort (JNode4) [Lohmeier 2005] is an OS writ-
ten in Java where the JVM serves as the OS. Drivers are written entirely in Java. Device
access is performed via native function calls. A first level interrupt handler, written in as-
sembler, unblocks a Java interrupt thread. From this thread the device driver level interrupt
handler is invoked with interrupts disabled. Some device drivers implement a synchronized
handleInterrupt(int irq) and use the driver object to signal the upper layer with notifyAll().
During garbage collection all threads are stopped including the interrupt threads.

The Squawk VM [Simon et al. 2006], now available open-source,5 is a platform for
wireless sensors. Squawk is mostly written in Java and runs without an OS. Device drivers
are written in Java and use a form of peek and poke interface to access the device registers.
Interrupt handling is supported by a device driver thread that waits for an event from the

4http://jnode.org/
5https://squawk.dev.java.net/

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

A Hardware Abstraction Layer in Java · 11

JVM. The first level handler, written in assembler, disables the interrupt and notifies the
JVM. On a rescheduling point the JVM resumes the device driver thread. It has to re-enable
the interrupt. The interrupt latency depends on the rescheduling point and on the activity
of the garbage collector. For a single device driver thread an average case latency of 0.1 ms
is reported. For a realistic workload with an active garbage collector a worst-case latency
of 13 ms has been observed.

Our proposed constructs should be able to support the Java operating systems. For JX
we observe that the concepts are very similar for interrupt handling, and actually for device
registers as well. A difference is that we make device objects distinct from memory objects
which should give better possibilities for porting to architectures with separate I/O-buses.
JNode is more traditional and hides first level interrupt handling and device accesses in
the JVM, which may be less portable than our implementation. The Squawk solution has
to have a very small footprint, but on the other hand it can probably rely on having few
devices. Device objects would be at least as efficient as the peeks and pokes, and interrupt
routines may eliminate the need for multithreading for simple systems, e.g., with cyclic
executives. Overall, we conclude that our proposed constructs will make implementation
of a Java OS more efficient and perhaps more portable.

2.4 TinyOS and Singularity

TinyOS [Hill et al. 2000] is an operating system designed for low-power, wireless sensor
networks. TinyOS is not a a traditional OS, but provides a framework of components
that are linked with the application code. The component-based programming model is
supported by nesC [Gay et al. 2003], a dialect of C. TinyOS components provide following
abstractions: commands represent requests for a service of a component; events signal the
completion of a service; and tasks are functions executed non-preemptive by the TinyOS
scheduler. Events also represent interrupts and preempt tasks. An event handler may post
a task for further processing, which is similar to a 2nd level interrupt handler.

I/O devices are encapsulated in components and the standard distribution of TinyOS in-
cludes a rich set of standard I/O devices. A Hardware Presentation Layer (HPL) abstracts
the platform specific access to the hardware (either memory or port mapped). Our pro-
posed HAL is similar to the HPL, but represents the I/O devices as Java objects. A further
abstractions into I/O components can be built above our presented Java HAL.

Singularity [Hunt et al. 2005] is a research OS based on a runtime managed language
(an extension of C#) to build a software platform with the main goal to be dependable.
A small HAL (IoPorts, IoDma, IoIrq, and IoMemory) provides access to PC hardware. C#
style attributes (similar to Java annotations) on fields are used to define the mapping of
class fields to I/O ports and memory addresses. The Singularity OS clearly uses device
objects and interrupt handlers, thus demonstrating that the ideas presented here transfer to
a language like C#.

2.5 Summary

In our analysis of related work we see that our contribution is a selection, adaptation,
refinement, and implementation of ideas from earlier languages and platforms for Java.
A crucial point, where we have spent much time, is to have a clear interface between
the Java layer and the JVM. Here we have used the lessons from the Java OS and the
JVM interfaces. Finally, it has been a concern to be consistent with the RTSJ because

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

12 · Martin Schoeberl et al.

public abstract class HardwareObject {
HardwareObject() {};

}

Fig. 7. The marker class for hardware objects

public final class SerialPort extends HardwareObject {

public static final int MASK_TDRE = 1;
public static final int MASK_RDRF = 2;

public volatile int status;
public volatile int data;

public void init(int baudRate) {...}
public boolean rxFull() {...}
public boolean txEmpty() {...}

}

Fig. 8. A serial port class with device methods

this standard and adaptations of it are the instruments for developing embedded real-time
software in Java.

3. THE HARDWARE ABSTRACTION LAYER

In the following section the hardware abstraction layer for Java is defined. Low-level ac-
cess to devices is performed via hardware objects. Synchronization with a device can
be performed with interrupt handlers implemented in Java. Finally, portability of hard-
ware objects, interrupt handlers, and device drivers is supported by a generic configuration
mechanism.

3.1 Device Access

Hardware objects map object fields to device registers. Therefore, field access with byte-
codes putfield and getfield accesses device registers. With a correct class that represents
a device, access to it is safe – it is not possible to read or write to an arbitrary memory
address. A memory area (e.g., a video frame buffer) represented by an array is protected
by Java’s array bounds check.

In a C based system the access to I/O devices can either be represented by a C struct
(similar to the class shown in Figure 2) for memory mapped I/O devices or needs to be
accessed by function calls on systems with a separate I/O address space. With the hardware
object abstraction in Java the JVM can represent an I/O device as a class independent of
the underlying low-level I/O mechanism. Furthermore, the strong typing of Java avoids
hard to find programming errors due to wrong pointer casts or wrong pointer arithmetic.

All hardware classes have to extend the abstract class HardwareObject (see Figure 7).
This empty class serves as type marker. Some implementations use it to distinguish be-
tween plain objects and hardware objects for the field access. The package visible only
constructor disallows creation of hardware objects by the application code that resides in
a different package. Figure 8 shows a class representing a serial port with a status register
and a data register. The status register contains flags for receive register full and transmit
ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

A Hardware Abstraction Layer in Java · 13

public final class SysCounter extends HardwareObject {

public volatile int counter;
public volatile int timer;
public volatile int wd;

}

public final class AppCounter extends HardwareObject {

public volatile int counter;
private volatile int timer;
public volatile int wd;

}

public final class AppGetterSetter extends HardwareObject {

private volatile int counter;
private volatile int timer;
private volatile int wd;

public int getCounter() {
return counter;

}

public void setWd(boolean val) {
wd = val ? 1 : 0;

}
}

Fig. 9. System and application classes, one with visibility protection and one with setter and getter methods, for
a single hardware device

register empty; the data register is the receive and transmit buffer. Additionally, we define
device specific constants (bit masks for the status register) in the class for the serial port.
All fields represent device registers that can change due to activity of the hardware device.
Therefore, they must be declared volatile.

In this example we have included some convenience methods to access the hardware
object. However, for a clear separation of concerns, the hardware object represents only
the device state (the registers). We do not add instance fields to represent additional state,
i.e., mixing device registers with heap elements. We cannot implement a complete device
driver within a hardware object; instead a complete device driver owns a number of private
hardware objects along with data structures for buffering, and it defines interrupt handlers
and methods for accessing its state from application processes. For device specific opera-
tions, such as initialization of the device, methods in hardware objects are useful.

Usually each device is represented by exactly one hardware object (see Section 3.3.1).
However, there might be use cases where this restriction should be relaxed. Consider a
device where some registers should be accessed by system code only and some other by
application code. In JOP there is such a device: a system device that contains a 1 MHz
counter, a corresponding timer interrupt, and a watchdog port. The timer interrupt is pro-
grammed relative to the counter and used by the real-time scheduler – a JVM internal
service. However, access to the counter can be useful for the application code. Access

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

14 · Martin Schoeberl et al.

import com.jopdesign.io.*;

public class Example {

public static void main(String[] args) {

BaseBoard fact = BaseBoard.getBaseFactory();
SerialPort sp = fact.getSerialPort();

String hello = "Hello World!";

for (int i=0; i<hello.length(); ++i) {
// busy wait on transmit buffer empty
while ((sp.status & SerialPort.MASK_TDRE) == 0)

;
// write a character
sp.data = hello.charAt(i);

}
}

}

Fig. 10. A ‘Hello World’ example with low-level device access via a hardware object

to the watchdog register is required from the application level. The watchdog is used for
a sign-of-life from the application. If not triggered every second the complete system is
restarted. For this example it is useful to represent one hardware device by two different
classes – one for system code and one for application code. We can protect system reg-
isters by private fields in the hardware object for the application. Figure 9 shows the two
class definitions that represent the same hardware device for system and application code
respectively. Note how we changed the access to the timer interrupt register to private for
the application hardware object.

Another option, shown in class AppGetterSetter, is to declare all fields private for the
application object and use setter and getter methods. They add an abstraction on top of
hardware objects and use the hardware object to implement their functionality. Thus we
still do not need to invoke native functions.

Use of hardware objects is straightforward. After obtaining a reference to the object all
that has to be done (or can be done) is to read from and write to the object fields. Figure 10
shows an example of client code. The example is a Hello World program using low-level
access to a serial port via a hardware object. Creation of hardware objects is more complex
and described in Section 3.3. Furthermore, it is JVM specific and Section 4 describes
implementations in four different JVMs.

For devices that use DMA (e.g., video frame buffer, disk, and network I/O buffers) we
map that memory area to Java arrays. Arrays in Java provide access to raw memory in
an elegant way: the access is simple and safe due to the array bounds checking done by
the JVM. Hardware arrays can be used by the JVM to implement higher-level abstractions
from the RTSJ such as RawMemory or scoped memory.

Interaction between the garbage collector (GC) and hardware objects needs to be crafted
into the JVM. We do not want to collect hardware objects. The hardware object should not
ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

A Hardware Abstraction Layer in Java · 15

ISR Context switches Priorities

Handler 2 Hardware
Event 3–4 Software

Table I. Dispatching properties of different ISR strategies

be scanned for references.6 This is permissible when only primitive types are used in the
class definition for hardware objects – the GC scans only reference fields. To avoid collect-
ing hardware objects, we mark the object to be skipped by the GC. The type inheritance
from HardwareObject can be used as the marker.

3.2 Interrupt Handling

An interrupt service routine (ISR) can be integrated with Java in two different ways: as a
first level handler or a second level event handler.

ISR handler. The interrupt is a method call initiated by the device. Usually this abstrac-
tion is supported in hardware by the processor and called a first level handler.

ISR event. The interrupt is represented by an asynchronous notification directed to a
thread that is unblocked from a wait-state. This is also called deferred interrupt handling.

An overview of the dispatching properties of the two approaches is given in Table I. The
ISR handler approach needs only two context switches and the priority is set by the hard-
ware. With the ISR event approach, handlers are scheduled at software priorities. The
initial first level handler, running at hardware priority, fires the event for the event handler.
Also the first level handler will notify the scheduler. In the best case three context switches
are necessary: one to the first level handler, one to the ISR event handler, and one back to
the interrupted thread. If the ISR handler has a lower priority than the interrupted thread,
an additional context switch from the first level handler back to the interrupted thread is
necessary.

Another possibility is to represent an interrupt as a thread that is released by the interrupt.
Direct support by the hardware (e.g., the interrupt service thread in Komodo [Kreuzinger
et al. 2003]) gives fast interrupt response times. However, standard processors support only
the handler model directly.

Direct handling of interrupts in Java requires the JVM to be prepared to be interrupted.
In an interpreting JVM an initial handler will reenter the JVM to execute the Java handler.
A compiling JVM or a Java processor can directly invoke a Java method as response to the
interrupt. A compiled Java method can be registered directly in the ISR dispatch table.

If an internal scheduler is used (also called green threads) the JVM will need some
refactoring in order to support asynchronous method invocation. Usually JVMs control
the rescheduling at the JVM level to provide a lightweight protection of JVM internal data
structures. These preemption points are called pollchecks or yield points; also some or all
can be GC preemption points. In fact the preemption points resemble cooperative schedul-
ing at the JVM level and use priority for synchronization. This approach works only for
uniprocessor systems, for multiprocessors explicit synchronization has to be introduced.

6If a hardware coprocessor, represented by a hardware object, itself manipulates an object on the heap and holds
the only reference to that object it has to be scanned by the GC.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

16 · Martin Schoeberl et al.

In both cases there might be critical sections in the JVM where reentry cannot be
allowed. To solve this problem the JVM must disable interrupts around critical non-
reenterable sections. The more fine grained this disabling of interrupts can be done, the
more responsive to interrupts the system will be.

One could opt for second level handlers only. An interrupt fires and releases an associ-
ated schedulable object (handler). Once released, the handler will be scheduled by the JVM
scheduler according to the release parameters. This is the RTSJ approach. The advantage
is that interrupt handling is done in the context of a normal Java thread and scheduled as
any other thread running on the system. The drawback is that there will be a delay from
the occurrence of the interrupt until the thread gets scheduled. Additionally, the mean-
ing of interrupt priorities, levels and masks used by the hardware may not map directly to
scheduling parameters supported by the JVM scheduler.

In the following we focus on the ISR handler approach, because it allows programming
the other paradigms within Java.

3.2.1 Hardware Properties. We assume interrupt hardware as it is found in most com-
puter architectures: interrupts have a fixed priority associated with them – they are set with
a solder iron. Furthermore, interrupts can be globally disabled. In most systems the first
level handler is called with interrupts globally disabled. To allow nested interrupts – being
able to interrupt the handler by a higher priority interrupt as in preemptive scheduling –
the handler has to enable interrupts again. However, to avoid priority inversion between
handlers only interrupts with a higher priority will be enabled, either by setting the inter-
rupt level or setting the interrupt mask. Software threads are scheduled by a timer interrupt
and usually have a lower priority than interrupt handlers (the timer interrupt has the lowest
priority of all interrupts). Therefore, an interrupt handler is never preempted by a software
thread.

Mutual exclusion between an interrupt handler and a software thread is ensured by dis-
abling interrupts: either all interrupts or selectively. Again, to avoid priority inversion,
only interrupts of a higher priority than the interrupt that shares the data with the software
thread can be enabled. This mechanism is in effect the priority ceiling emulation proto-
col [Sha et al. 1990], sometimes called immediate ceiling protocol. It has the virtue that
it eliminates the need for explicit locks (or Java monitors) on shared objects. Note that
mutual exclusion with interrupt disabling works only in a uniprocessor setting. A simple
solution for multiprocessors is to run the interrupt handler and associated software threads
on the same processor core. A more involved scheme would be to use spin-locks between
the processors.

When a device asserts an interrupt request line, the interrupt controller notifies the pro-
cessor. The processor stops execution of the current thread. A partial thread context (pro-
gram counter and processor status register) is saved. Then the ISR is looked up in the
interrupt vector table and a jump is performed to the first instruction of the ISR. The han-
dler usually saves additional thread context (e.g. the register file). It is also possible to
switch to a new stack area. This is important for embedded systems where the stack sizes
for all threads need to be determined at link time.

3.2.2 Synchronization. Java supports synchronization between Java threads with the
synchronized keyword, either as a means of synchronizing access to a block of statements
or to an entire method. In the general case this existing synchronization support is not
ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

A Hardware Abstraction Layer in Java · 17

Device

Register:
Status
Data

ISR ApplicationHW Thread

Buffer

Fig. 11. Threads and shared data

sufficient to synchronize between interrupt handlers and threads.
Figure 11 shows the interacting active processes and the shared data in a scenario in-

volving the handling of an interrupt. Conceptually three threads interact: (1) a hardware
device thread representing the device activity, (2) the ISR, and (3) the application or device
driver thread. These three share two types of data:

Device data. The hardware thread and ISR share access to the device registers of the
device signaling the interrupt

Application data. The ISR and application or device driver share access to e.g., a buffer
conveying information about the interrupt to the application

Regardless of which interrupt handling approach is used in Java, synchronization be-
tween the ISR and the device registers must be handled in an ad hoc way. In general there
is no guarantee that the device has not changed the data in its registers; but if the ISR can
be run to completion within the minimum inter-arrival time of the interrupt the content of
the device registers can be trusted.

For synchronization between the ISR and the application (or device driver) the follow-
ing mechanisms are available. When the ISR handler runs as a software thread, standard
synchronization with object monitors can be used. When using the ISR handler approach,
the handler is no longer scheduled by the normal Java scheduler, but by the hardware.
While the handler is running, all other executable elements are suspended, including the
scheduler. This means that the ISR cannot be suspended, must not block, or must not block
via a language level synchronization mechanism; the ISR must run to completion in order
not to freeze the system. This means that when the handler runs, it is guaranteed that the
application will not get scheduled. It follows that the handler can access data shared with
the application without synchronizing with the application. As the access to the shared
data by the interrupt handler is not explicitly protected by a synchronized method or block,
the shared data needs to be declared volatile.

On the other hand the application must synchronize with the ISR because the ISR may
be dispatched at any point. To ensure mutual exclusion we redefine the semantics of the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

18 · Martin Schoeberl et al.

public class SerialHandler extends InterruptHandler {

// A hardware object represents the serial device
private SerialPort sp;

final static int BUF_SIZE = 32;
private volatile byte buffer[];
private volatile int wrPtr, rdPtr;

public SerialHandler(SerialPort sp) {
this.sp = sp;
buffer = new byte[BUF_SIZE];
wrPtr = rdPtr = 0;

}

// This method is scheduled by the hardware
public void handle() {

byte val = (byte) sp.data;
// check for buffer full
if ((wrPtr+1)%BUF_SIZE!=rdPtr) {

buffer[wrPtr++] = val;
}
if (wrPtr>=BUF_SIZE) wrPtr=0;
// enable interrupts again
enableInterrupt();

}

// This method is invoked by the driver thread
synchronized public int read() {

if (rdPtr!=wrPtr) {
int val = ((int) buffer[rdPtr++]) & 0xff;
if (rdPtr>=BUF_SIZE) rdPtr=0;
return val;

} else {
return -1; // empty buffer

}
}

}

Fig. 12. An interrupt handler for a serial port receive interrupt

monitor associated with an InterruptHandler object: acquisition of the monitor disables
all interrupts of the same and lower priority; release of the monitor enables the interrupts
again. This procedure ensures that the software thread cannot be interrupted by the inter-
rupt handler when accessing shared data.

3.2.3 Using the Interrupt Handler. Figure 12 shows an example of an interrupt han-
dler for the serial port receiver interrupt. The method handle() is the interrupt handler
method and needs no synchronization as it cannot be interrupted by a software thread.
However, the shared data needs to be declared volatile as it is changed by the device driver
thread. Method read() is invoked by the device driver thread and the shared data is pro-
tected by the InterruptHandler monitor. The serial port interrupt handler uses the hardware
object SerialPort to access the device.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

A Hardware Abstraction Layer in Java · 19

package com.board-vendor.io;

public class IOSystem {

// some JVM mechanism to create the hardware objects
private static ParallelPort pp = jvmPPCreate();
private static SerialPort sp = jvmSPCreate(0);
private static SerialPort gps = jvmSPCreate(1);

public static ParallelPort getParallelPort() {
return pp;

}

public static SerialPort getSerialPort() {..}
public static SerialPort getGpsPort() {..}

}

Fig. 13. A factory with static methods for Singleton hardware objects

3.2.4 Garbage Collection. When using the ISR handler approach it is not feasible to
let interrupt handlers be paused during a lengthy stop-the-world collection. Using this GC
strategy the entire heap is collected at once and it is not interleaved with execution. The
collector can safely assume that data required to perform the collection will not change
during the collection, and an interrupt handler shall not change data used by the GC to
complete the collection. In the general case, this means that the interrupt handler is not
allowed to create new objects, or change the graph of live objects.

With an incremental GC the heap is collected in small incremental steps. Write barriers
in the mutator threads and non-preemption sections in the GC thread synchronize the view
of the object graph between the mutator threads and the GC thread. With incremental col-
lection it is possible to allow object allocation and changing references inside an interrupt
handler (as it is allowed in any normal thread). With a real-time GC the maximum blocking
time due to GC synchronization with the mutator threads must be known.

Interruption of the GC during an object move can result in access to a stale copy of the
object inside the handler. A solution to this problem is to allow for pinning of objects
reachable by the handler (similar to immortal memory in the RTSJ). Concurrent collectors
have to solve this issue for threads anyway. The simplest approach is to disable interrupt
handling during the object copy. As this operation can be quite long for large arrays,
several approaches to split the array into smaller chunks have been proposed [Siebert 2002]
and [Bacon et al. 2003]. A Java processor may support incremental array copying with
redirection of the access to the correct part of the array [Schoeberl and Puffitsch 2008].
Another solution is to abort the object copy when writing to the object. It is also possible to
use replication – during an incremental copy operation, writes are performed on both from-
space and to-space object replicas, while reads are performed on the from-space replica.

3.3 Generic Configuration

An important issue for a HAL is a safe abstraction of device configurations. A definition
of factories to create hardware and interrupt objects should be provided by board vendors.
This configuration is isolated with the help of Java packages – only the objects and the
factory methods are visible. The configuration abstraction is independent of the JVM.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

20 · Martin Schoeberl et al.

public class BaseBoard {

private final static int SERIAL_ADDRESS = ...;
private SerialPort serial;
BaseBoard() {

serial = (SerialPort) jvmHWOCreate(SERIAL_ADDRESS);
};
static BaseBoard single = new BaseBoard();
public static BaseBoard getBaseFactory() {

return single;
}
public SerialPort getSerialPort() { return serial; }

// here comes the JVM internal mechanism
Object jvmHWOCreate(int address) {...}

}

public class ExtendedBoard extends BaseBoard {

private final static int GPS_ADDRESS = ...;
private final static int PARALLEL_ADDRESS = ...;
private SerialPort gps;
private ParallelPort parallel;
ExtendedBoard() {

gps = (SerialPort) jvmHWOCreate(GPS_ADDRESS);
parallel = (ParallelPort) jvmHWOCreate(PARALLEL_ADDRESS);

};
static ExtendedBoard single = new ExtendedBoard();
public static ExtendedBoard getExtendedFactory() {

return single;
}
public SerialPort getGpsPort() { return gps; }
public ParallelPort getParallelPort() { return parallel; }

}

Fig. 14. A base class of a hardware object factory and a factory subclass

A device or interrupt can be represented by an identical hardware or interrupt object for
different JVMs. Therefore, device drivers written in Java are JVM independent.

3.3.1 Hardware Object Creation. The idea to represent each device by a single object
or array is straightforward, the remaining question is: How are those objects created? An
object that represents a device is a typical Singleton [Gamma et al. 1994]. Only a single
object should map to one instance of a device. Therefore, hardware objects cannot be
instantiated by a simple new: (1) they have to be mapped by some JVM mechanism to the
device registers and (2) each device instance is represented by a single object.

Each device object is created by its own factory method. The collection of these methods
is the board configuration, which itself is also a Singleton (the application runs on a single
board). The Singleton property of the configuration is enforced by a class that contains
only static methods. Figure 13 shows an example for such a class. The class IOSystem
represents a system with three devices: a parallel port, as discussed before to interact with
the environment, and two serial ports: one for program download and one which is an
interface to a GPS receiver.
ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

A Hardware Abstraction Layer in Java · 21

#HardwareObject()

HardwareObject

-BaseBoard()
+getBaseFactory() : BaseBoard
+getSerialPort() : SerialPort

-single : BaseBoard
-serial : SerialPort

BaseBoard

+rxFull() : bool
+txEmpty() : bool

+data : int
+status : int

SerialPort
+data : int
+control : int

ParallelPort

-ExtendedBoard()
+getExtendedFactory() : ExtendedBoard
+getGpsPort() : SerialPort
+getParallelPort() : ParallelPort

-single : ExtendedBoard
-gps : SerialPort
-parallel : ParallelPort

ExtendedBoard

1

1

11

1

1

Fig. 15. Device object classes and board factory classes

This approach is simple, but not very flexible. Consider a vendor who provides boards
in slightly different configurations (e.g., with different number of serial ports). With the
above approach each board requires a different (or additional) IOSystem class that lists all
devices. A more elegant solution is proposed in the next section.

3.3.2 Board Configurations. Replacing the static factory methods by instance methods
avoids code duplication; inheritance then gives configurations. With a factory object we
represent the common subset of I/O devices by a base class and the variants as subclasses.

However, the factory object itself must still be a Singleton. Therefore the board specific
factory object is created at class initialization and is retrieved by a static method. Figure 14
shows an example of a base factory and a derived factory. Note how getBaseFactory() is
used to get a single instance of the factory. We have applied the idea of a factory two times:
the first factory generates an object that represents the board configuration. That object is
itself a factory that generates the objects that interface to the hardware device.

The shown example base factory represents the minimum configuration with a single
serial port for communication (mapped to System.in and System.out) represented by a
SerialPort. The derived configuration ExtendedBoard contains an additional serial port for
a GPS receiver and a parallel port for external control.

Furthermore, we show in Figure 14 a different way to incorporate the JVM mechanism
in the factory: we define well known constants (the memory addresses of the devices) in
the factory and let the native function jvmHWOCreate() return the correct device type.

Figure 15 gives a summary example of hardware object classes and the corresponding
factory classes as an UML class diagram. The figure shows that all device classes subclass
the abstract class HardwareObject. Figure 15 represents the simple abstraction as it is seen
by the user of hardware objects.

3.3.3 Interrupt Handler Registration. We provide a base interrupt handling API that
can be used both for non-RTSJ and RTSJ interrupt handling. The base class that is extended
by an interrupt handler is shown in Figure 16. The handle() method contains the device
server code. Interrupt control operations that have to be invoked before serving the device

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

22 · Martin Schoeberl et al.

abstract public class InterruptHandler implements Runnable {
...

public InterruptHandler(int index) { ... };

protected void startInterrupt() { ... };
protected void endInterrupt() { ... };

protected void disableInterrupt() { ... };
protected void enableInterrupt() { ... };
protected void disableLocalCPUInterrupts() { ... };
protected void enableLocalCPUInterrupts() { ... };

public void register() { ... };
public void unregister() { ... };

abstract public void handle() { ... };

public void run() {
startInterrupt();
handle();
endInterrupt();

}
}

Fig. 16. Base class for the interrupt handlers

ih = new SerialInterruptHandler(); // logic of new BAEH

serialFirstLevelEvent = new AsyncEvent();
serialFirstLevelEvent.addHandler(

new BoundAsyncEventHandler(null, null, null, null, null, false, ih)
);

serialFirstLevelEvent.bindTo("INT4");

Fig. 17. Creation and registration of a RTSJ interrupt handler

(i.e. interrupt masking and acknowledging) and after serving the device (i.e. interrupt re-
enabling) are hidden in the run() method of the base InterruptHandler, which is invoked
when the interrupt occurs.

The base implementation of InterruptHandler also provides methods for enabling and
disabling a particular interrupt or all local CPU interrupts and a special monitor implemen-
tation for synchronization between an interrupt handler thread and an application thread.
Moreover, it provides methods for non-RTSJ registering and deregistering the handler with
the hardware interrupt source.

Registration of a RTSJ interrupt handler requires more steps (see Figure 17). The Inter-
ruptHandler instance serves as the RTSJ logic for a (bound) asynchronous event handler,
which is added as handler to an asynchronous event which then is bound to the interrupt
source.
ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

A Hardware Abstraction Layer in Java · 23

Direct (no OS) Indirect (OS)

Interpreted SimpleRTJ Kaffe VM
Native JOP OVM

Table II. Embedded Java Architectures

3.4 Perspective

An interesting topic is to define a common standard for hardware objects and interrupt
handlers for different platforms. If different device types (hardware chips) that do not
share a common register layout are used for a similar function, the hardware objects will
be different. However, if the structure of the devices is similar, as it is the case for the serial
port on the three different platforms used for the implementation (see Section 4), the driver
code that uses the hardware object is identical.

If the same chip (e.g., the 8250 type and compatible 16x50 devices found in all PCs for
the serial port) is used in different platforms, the hardware object and the device driver,
which also implements the interrupt handler, can be shared. The hardware object, the
interrupt handler, and the visible API of the factory classes are independent of the JVM
and the OS. Only the implementation of the factory methods is JVM specific. Therefore,
the JVM independent HAL can be used to start the development of drivers for a Java OS
on any JVM that supports the proposed HAL.

3.5 Summary

Hardware objects are easy to use for a programmer, and the corresponding definitions are
comparatively easy to define for a hardware designer or manufacturer. For a standardized
HAL architecture we proposed factory patterns. As shown, interrupt handlers are easy to
use for a programmer that knows the underlying hardware paradigm, and the definitions are
comparatively easy to develop for a hardware designer or manufacturer, for instance using
the patterns outlined in this section. Hardware objects and interrupt handler infrastructure
have a few subtle implementation points which are discussed in the next section.

4. IMPLEMENTATION

We have implemented the core concepts on four different JVMs7 to validate the proposed
Java HAL. Table II classifies the four execution environments according to two important
properties: (1) whether they run on bare metal or on top of an OS and (2) whether Java
code is interpreted or executed natively. Thereby we cover the whole implementation
spectrum with our four implementations. Even though the suggested Java HAL is intended
for systems running on bare metal, we include systems running on top of an OS because
most existing JVMs still require an OS, and in order for them to migrate incrementally to
run directly on the hardware they can benefit from supporting a Java HAL.

In the direct implementation a JVM without an OS is extended with I/O functionality.
The indirect implementation represents an abstraction mismatch – we actually re-map the
concepts. Related to Figure 6 in the introduction, OVM and Kaffe represent configuration
(a), SimpleRTJ configuration (b), and JOP configuration (c).

7On JOP the implementation of the Java HAL is already in use in production code.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

24 · Martin Schoeberl et al.

public final class SerialPort extends HardwareObject {
// LSR (Line Status Register)
public volatile int status;
// Data register
public volatile int data;
...

}

Fig. 18. A simple hardware object

The SimpleRTJ JVM [RTJ Computing 2000] is a small, interpreting JVM that does not
require an OS. JOP [Schoeberl 2005; 2008] is a Java processor executing Java bytecodes
directly in hardware. Kaffe JVM [Wilkinson 1996] is a complete, full featured JVM sup-
porting both interpretation and JIT compilation; in our experiments with Kaffe we have
used interpretative execution only. The OVM JVM [Armbruster et al. 2007] is an execu-
tion environment for Java that supports compilation of Java bytecodes into the C language,
and via a C compiler into native machine instructions for the target hardware. Hardware
objects have also been implemented in the research JVM, CACAO [Krall and Grafl 1997;
Schoeberl et al. 2008].

In the following we provide the different implementation approaches that are necessary
for the very different JVMs. Implementing hardware objects was straightforward for most
JVMs; it took about one day to implement them in JOP. In Kaffe, after familiarizing us
with the structure of the JVM, it took about half a day of pair programming.

Interrupt handling in Java is straightforward in a JVM not running on top of an OS (JOP
and SimpleRTJ). Kaffe and OVM both run under vanilla Linux or the real-time version
Xenomai Linux [Xenomai developers 2008]. Both versions use a distinct user/kernel mode
and it is not possible to register a user level method as interrupt handler. Therefore, we
used threads at different levels to simulate the Java handler approach. The result is that
the actual Java handler is the 3rd or even 4th level handler. This solution introduces quite
a lot of overheads due to the many context switches. However, it is intended to provide a
stepping stone to allow device drivers in Java; the goal is a real-time JVM that runs on the
bare hardware.

In this section we provide more implementation details than usual to help other JVM
developers to add a HAL to their JVM. The techniques used for the JVMs can probably
not be used directly. However, the solutions (or sometimes work-arounds) presented here
should give enough insight to guide other JVM developers.

4.1 SimpleRTJ

The SimpleRTJ JVM is a small, simple, and portable JVM. We have ported it to run on
the bare metal of a small 16 bit microcontroller. We have successfully implemented the
support for hardware objects in the SimpleRTJ JVM. For interrupt handling we use the
ISR handler approach described in Section 3.2. Adding support for hardware objects was
straightforward, but adding support for interrupt handling required more work.

4.1.1 Hardware Objects. Given an instance of a hardware object as shown in Figure 18
one must calculate the base address of the I/O port range, the offset to the actual I/O port,
and the width of the port at runtime. We have chosen to store the base address of the I/O
port range in a field in the common super-class for all hardware objects (HardwareObject).
ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

A Hardware Abstraction Layer in Java · 25

SerialPort createSerialPort(int baseAddress) {
SerialPort sp = new SerialPort(baseAddress);
return sp;

}

Fig. 19. Creating a simple hardware object

The hardware object factory passes the platform and device specific base address to the
constructor when creating instances of hardware objects (see Figure 19).

In the put/getfield bytecodes the base address is retrieved from the object instance. The
I/O port offset is calculated from the offset of the field being accessed: in the example in
Figure 18 status has an offset of 0 whereas data has an offset of 4. The width of the field
being accessed is the same as the width of the field type. Using these values the SimpleRTJ
JVM is able to access the device register for either read or write.

4.1.2 Interrupt Handler. The SimpleRTJ JVM uses a simple stop-the-world garbage
collection scheme. This means that within handlers, we prohibit use of the new keyword
and writing references to the heap. These restrictions can be enforced at runtime by throw-
ing a pre-allocated exception or at class loading by an analysis of the handler method.
Additionally we have turned off the compaction phase of the GC to avoid the problems
with moving objects mentioned in Section 3.2.4.

The SimpleRTJ JVM implements thread scheduling within the JVM. This means that it
had to be refactored to allow for reentering the JVM from inside the first level interrupt
handler. We got rid of all global state (all global variables) used by the JVM and instead
allocate shared data on the C stack. For all parts of the JVM to still be able to access
the shared data we pass around a single pointer to that data. In fact we start a new JVM
for the interrupt handler with a temporary (small) Java heap and a temporary (small) Java
stack. Currently we use 512 bytes for each of these items, which have proven sufficient for
running non-trivial interrupt handlers so far.

The major part of the work was making the JVM reentrant. The effort will vary from
one JVM implementation to another, but since global state is a bad idea in any case JVMs
of high quality use very little global state. Using these changes we have experimented with
handling the serial port receive interrupt.

4.2 JOP

JOP is a Java processor intended for hard real-time systems [Schoeberl 2005; 2008]. All
architectural features have been carefully designed to be time-predictable with minimal
impact on average case performance. We have implemented the proposed HAL in the
JVM for JOP. No changes inside the JVM (the microcode in JOP) were necessary. Only
the creation of the hardware objects needs a JOP specific factory.

4.2.1 Hardware Objects. In JOP, objects and arrays are referenced through an indi-
rection called handle. This indirection is a lightweight read barrier for the compacting
real-time GC [Schoeberl 2006; Schoeberl and Vitek 2007]. All handles for objects in the
heap are located in a distinct memory region, the handle area. Besides the indirection to the
real object the handle contains auxiliary data, such as a reference to the class information,
the array length, and GC related data. Figure 20 shows an example with a small object that
contains two fields and an integer array of length 4. The object and the array on the heap

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

26 · Martin Schoeberl et al.

I/O device
HW object

handleStack

Handle area Heap
Runtime

structures

GC info

...

handle

[0]

[2]

[1]

[3]
GC info

Arr. size

...

a

handle

reference

reference

M0

Class
info

M1

M2

Constant
Pool

class reference

reference

class ref.

handle reg0

reg1

reg2

Fig. 20. Memory layout of the JOP JVM

just contain the data and no additional hidden fields. This object layout greatly simplifies
our object to device mapping. We just need a handle where the indirection points to the
memory mapped device registers instead of into the heap. This configuration is shown in
the upper part of Figure 20. Note that we do not need the GC information for the hard-
ware object handles. The factory, which creates the hardware objects, implements this
indirection.

As described in Section 3.3.1 we do not allow applications to create hardware objects;
the constructor is private (or package visible). Figure 21 shows part of the hardware ob-
ject factory that creates the hardware object SerialPort. Two static fields (SP PTR and
SP MTAB) are used to store the handle to the serial port object. The first field is initialized
with the base address of the I/O device; the second field contains a pointer to the class
information.8 The address of the static field SP PTR is returned as the reference to the
serial port object.

The class reference for the hardware object is obtained by creating a normal instance
of SerialPort with new on the heap and copying the pointer to the class information. To
avoid using native methods in the factory class we delegate JVM internal work to a helper
class in the JVM system package as shown in Figure 21. That helper method returns the
address of the static field SP PTR as reference to the hardware object. All methods in class
Native, a JOP system class, are native9 methods for low-level functions – the code we want
to avoid in application code. Method toInt(Object o) defeats Java’s type safety and returns
a reference as an int. Method toObject(int addr) is the inverse function to map an address to
a Java reference. Low-level memory access methods are used to manipulate the JVM data
structures.

8In JOP’s JVM the class reference is a pointer to the method table to speed-up the invoke instruction. Therefore,
the name is XX MTAB.
9There are no real native functions in JOP – bytecode is the native instruction set. The very few native methods
in class Native are replaced by special, unused bytecodes during class linking.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

A Hardware Abstraction Layer in Java · 27

package com.jopdesign.io;

public class BaseFactory {

// static fields for the handle of the hardware object
private static int SP_PTR;
private static int SP_MTAB;

private SerialPort sp;

IOFactory() {
sp = (SerialPort) makeHWObject(new SerialPort(), Const.IO_UART1_BASE, 0);

};

...

// That’s the JOP version of the JVM mechanism
private static Object makeHWObject(Object o, int address, int idx) {

int cp = Native.rdIntMem(Const.RAM_CP);
return JVMHelp.makeHWObject(o, address, idx, cp);

}
}

package com.jopdesign.sys;

public class JVMHelp {

public static Object makeHWObject(Object o, int address, int idx, int cp) {
// usage of native methods is allowed here as
// we are in the JVM system package
int ref = Native.toInt(o);
// fill in the handle in the two static fields
// and return the address of the handle as a
// Java object
return Native.toObject(address);

}
}

Fig. 21. Part of a factory and the helper method for the hardware object creation in the factory

To disallow the creation with new in normal application code, the visibility is set to
package. However, the package visibility of the hardware object constructor is a minor
issue. To access private static fields of an arbitrary class from the system class we had to
change the runtime class information: we added a pointer to the first static primitive field
of that class. As addresses of static fields get resolved at class linking, no such reference
was needed so far.

4.2.2 Interrupt Handler. The original JOP [Schoeberl 2005; 2008] was a very puristic
hard real-time processor. There existed only one interrupt – the programmable timer inter-
rupt as time is the primary source for hard real-time events. All I/O requests were handled
by periodic threads that polled for pending input data or free output buffers. During the
course of this research we have added an interrupt controller to JOP and the necessary
software layers.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

28 · Martin Schoeberl et al.

static Runnable ih[] = new Runnable[Const.NUM_INTERRUPTS];
static SysDevice sys = IOFactory.getFactory().getSysDevice();

static void interrupt() {

ih[sys.intNr].run();
}

Fig. 22. Interrupt dispatch with the static interrupt() method in the JVM helper class

Interrupts and exact exceptions are considered the hard part in the implementation of a
processor pipeline [Hennessy and Patterson 2002]. The pipeline has to be drained and the
complete processor state saved. In JOP there is a translation stage between Java bytecodes
and the JOP internal microcode [Schoeberl 2008]. On a pending interrupt (or exception
generated by the hardware) we use this translation stage to insert a special bytecode in
the instruction stream. This approach keeps the interrupt completely transparent to the
core pipeline. The special bytecode that is unused by the JVM specification [Lindholm
and Yellin 1999] is handled in JOP as any other bytecode: execute microcode, invoke
a special method from a helper class, or execute Java bytecode from JVM.java. In our
implementation we invoke the special method interrupt() from a JVM helper class.

The implemented interrupt controller (IC) is priority based. The number of interrupt
sources can be configured. Each interrupt can be triggered in software by a IC register
write as well. There is one global interrupt enable and each interrupt line can be enabled
or disabled locally. The interrupt is forwarded to the bytecode/microcode translation stage
with the interrupt number. When accepted by this stage, the interrupt is acknowledged
and the global enable flag cleared. This feature avoids immediate handling of an arriving
higher priority interrupt during the first part of the handler. The interrupts have to be
enabled again by the handler at a convenient time. All interrupts are mapped to the same
special bytecode. Therefore, we perform the dispatch of the correct handler in Java. On
an interrupt the static method interrupt() from a system internal class gets invoked. The
method reads the interrupt number and performs the dispatch to the registered Runnable as
illustrated in Figure 22. Note how a hardware object of type SysDevice is used to read the
interrupt number.

The timer interrupt, used for the real-time scheduler, is located at index 0. The scheduler
is just a plain interrupt handler that gets registered at mission start at index 0. At system
startup, the table of Runnables is initialized with dummy handlers. The application code
provides the handler via a class that implements Runnable and registers that class for an
interrupt number. We reuse the factory presented in Section 3.3.1. Figure 23 shows a
simple example of an interrupt handler implemented in Java.

For interrupts that should be handled by an event handler under the control of the sched-
uler, the following steps need to be performed on JOP:

(1) Create a SwEvent with the correct priority that performs the second level interrupt
handler work

(2) Create a short first level interrupt handler as Runnable that invokes fire() of the corre-
sponding software event handler

(3) Register the first level interrupt handler as shown in Figure 23 and start the real-time
scheduler

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

A Hardware Abstraction Layer in Java · 29

public class InterruptHandler implements Runnable {

public static void main(String[] args) {

InterruptHandler ih = new InterruptHandler();
IOFactory fact = IOFactory.getFactory();
// register the handler
fact.registerInterruptHandler(1, ih);
// enable interrupt 1
fact.enableInterrupt(1);
.....

}

public void run() {
System.out.println("Interrupt fired!");

}
}

Fig. 23. An example Java interrupt handler as Runnable

In Section 5 we evaluate the different latencies of first and second level interrupt handlers
on JOP.

4.3 Kaffe

Kaffe is an open-source10 implementation of the JVM which makes it possible to add
support for hardware objects and interrupt handlers. Kaffe requires a fully fledged OS
such as Linux to compile and run. Although ports of Kaffe exist on uCLinux we have not
been able to find a bare metal version of Kaffe. Thus even though we managed to add
support of hardware objects and interrupt handling to Kaffe, it still cannot be used without
an OS.

4.3.1 Hardware Objects. Hardware objects have been implemented in the same man-
ner as in the SimpleRTJ, described in Section 4.1.

4.3.2 Interrupt Handler. Since Kaffe runs under Linux we cannot directly support the
ISR handler approach. Instead we used the ISR event approach in which a thread blocks
waiting for the interrupt to occur. It turned out that the main implementation effort was
spent in the signaling of an interrupt occurrence from the kernel space to the user space.

We wrote a special Linux kernel module in the form of a character device. Through
proper invocations of ioctl() it is possible to let the module install a handler for an interrupt
(e.g. the serial interrupt, normally on IRQ 7). Then the Kaffe VM can make a blocking
call to read() on the proper device. Finally the installed kernel handler will release the user
space application from the blocked call when an interrupt occurs.

Using this strategy we have performed non-trivial experiments implementing a full in-
terrupt handler for the serial interrupt in Java. Still, the elaborate setup requiring a special
purpose kernel device is far from our ultimate goal of running a JVM on the bare metal.
Nevertheless the experiment has given valuable experience with interrupt handlers and
hardware objects at the Java language level.

10http://www.kaffe.org/

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

30 · Martin Schoeberl et al.

4.4 OVM

OVM [Armbruster et al. 2007] is a research JVM allowing many configurations; it is pri-
marily targeted at implementing a large subset of RTSJ while maintaining reasonable per-
formance. OVM uses ahead of time compilation via the C language: it translates both
application and VM bytecodes to C, including all classes that might be later loaded dy-
namically at run-time. The C code is then compiled by GCC.

4.4.1 Hardware Objects. To compile Java bytecode into a C program, the OVM’s
Java-to-C compiler internally converts the bytecode into an intermediate representation
(IR) which is similar to the bytecode, but includes more codes. Transformations at the
IR level are both optimizations and operations necessary for correct execution, such as
insertion of null-pointer checks. The produced IR is then translated into C, allowing the
C compiler to perform additional optimizations. Transformations at the IR level, which
is similar to the bytecode, are also typical in other JVM implementations, such as Sun’s
HotSpot.

We base our access to hardware objects on IR instruction transformations. We intro-
duce two new instructions outb and inb for byte-wide access to I/O ports. Then we employ
OVM’s instruction rewriting framework to translate accesses to hardware object fields,
putfield and getfield instructions, into sequences centered around outb and inb where ap-
propriate. We did not implement word-wide or double-word wide access modes supported
by a x86 CPU. We discuss how this could be done at the end of this section.

To minimize changes to the OVM code we keep the memory layout of hardware objects
as if they were ordinary objects, and store port addresses into the fields representing the
respective hardware I/O ports. Explained with the example from Figure 18, the instruction
rewriting algorithm proceeds as follows: SerialPort is a subclass of HardwareObject; hence
it is a hardware object, and thus accesses to all its public volatile int fields, status and data,
are translated to port accesses to I/O addresses stored in those fields.

The translation (Figure 24) is very simple. In case of reads we append our new inb
instruction after the corresponding getfield instruction in the IR: getfield will store the I/O
address on the stack and inb will replace it by a value read from this I/O address. In case
of writes we replace the corresponding putfield instruction by a sequence of swap, getfield,
and outb. The swap rotates the two top elements on stack, leaving the hardware object
reference on top of the stack and the value to store to the I/O port below it, The getfield
replaces the object reference by the corresponding I/O address, and outb writes the value
to the I/O port.

The critical part of hardware object creation is to set I/O addresses into hardware object
fields. Our approach allows a method to turn off the special handling of hardware objects.
In a hardware object factory method accesses to hardware object fields are handled as if
they were fields of regular objects; we simply store I/O addresses to the fields.

A method can turn off the special handling of hardware objects with a marker exception
mechanism which is a natural solution within OVM. The method declares to throw a Prag-
maNoHWIORegistersAccess exception. This exception is neither thrown nor caught, but
the OVM IR level rewriter detects the declaration and disables rewriting accordingly. As
the exception extends RuntimeException, it does not need to be declared in interfaces or in
code calling factory methods. In Java 1.5, not supported by OVM, a standard substitute to
the marker exception would be method annotation.

Our solution depends on the representation of byte-wide registers by 16-bit fields to hold
ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

A Hardware Abstraction Layer in Java · 31

Reading from the device register serial.data, saving the result to the stack

original bytecode stack content modified bytecode stack content

{serial} {serial}
GETFIELD data {io port address} GETFIELD data {io port address}

=⇒ INB {inval}

Writing a value on the stack into the device register serial.data

original bytecode stack content modified bytecode stack content

{serial}, {outval} {serial}, {outval}
PUTFIELD data empty =⇒ SWAP {outval}, {serial}

=⇒ GETFIELD data {outval}, {io port address}
=⇒ OUTB empty

Fig. 24. Translation of bytecode for access to regular fields into bytecode for access to I/O port registers.

the I/O address. However, it could still be extended to support multiple-width accesses to
I/O ports (byte, 16-bit, and 32-bit) as follows: 32-bit I/O registers are represented by Java
long fields, 16-bit I/O registers by Java int fields, and byte-wide I/O registers by Java short
fields. The correct access width will be chosen by the IR rewriter based on the field type.

4.4.2 Interrupt Handler. Low-level support depends heavily on scheduling and pre-
emption. For our experiments we chose the uni-processor x86 OVM configuration with
green threads running as a single Linux process. The green threads, delayed I/O operations,
and handlers of asynchronous events, such as POSIX signals, are only scheduled at well-
defined points (pollchecks) which are by default at back-branches at bytecode level and
indirectly at Java-level blocking calls (I/O operations, synchronization calls, etc). When
no thread is ready to run, the OVM scheduler waits for events using the POSIX select call.

As OS we use Xenomai RT Linux [Xenomai developers 2008; Gerum 2004]. Xenomai
tasks, which are in fact user-space Linux threads, can run either in the Xenomai primary
domain or in the Xenomai secondary domain. In the primary domain they are scheduled by
the Xenomai scheduler, isolated from the Linux kernel. In the secondary domain Xenomai
tasks behave as regular real-time Linux threads. Tasks can switch to the primary domain
at any time, but are automatically switched back to the secondary domain whenever they
invoke a Linux system call. A single Linux process can have threads of different types:
regular Linux threads, Xenomai primary domain tasks, and Xenomai secondary domain
tasks. Primary domain tasks can wait on hardware interrupts with a higher priority than
the Linux kernel. The Xenomai API provides the interrupts using the ISR event handler
approach and supports virtualization of basic interrupt operations – disabling and enabling
a particular interrupt or all local CPU interrupts. These operations have the same seman-
tics as real interrupts, and disabling/enabling a particular one leads to the corresponding
operation being performed at the hardware level.

Before our extension, OVM ran as a single Linux process with a single (native Linux)
ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

32 · Martin Schoeberl et al.

OVM Main
Thread

Java
ISR Handler

OVM IRQ Server
ISR Event Thread

OVM Scheduler

OVM Pending
Interrupts Mask

OVM Listener
ISR Event Thread

(Xenomai PD)

Xenomai
Scheduler

Xenomai
ISR Handler

waitForInterrupt waitForInterrupt

pollcheck
getPendingInterrupts hardware interrupt

setPendingInterrupt

getPendingInterrupts

setPendingInterrupt

run

pollcheck

Fig. 25. Invocation of a Java interrupt handler under OVM/Xenomai.

thread, a main OVM thread. This native thread implemented Java green threads. To support
interrupts we add additional threads to the OVM process: for each interrupt source handled
in OVM we dynamically add an interrupt listener thread running in the Xenomai primary
domain. The mechanism that leads to invocation of the Java interrupt handler thread is
illustrated in Figure 25.

Upon receiving an interrupt, the listener thread marks the pending interrupt in a data
structure shared with the main OVM thread. When it reaches a pollcheck, it discovers that
an interrupt is pending. The scheduler then immediately wakes-up and schedules the Java
green thread that is waiting for the interrupt (IRQ server thread in the figure). To simu-
late the first level ISR handler approach, this green thread invokes some handler method.
In a non-RTSJ scenario the green thread invokes the run() method of the associated Inter-
ruptHandler (see Figure 16). In an RTSJ scenario (not shown in Figure 25), a specialized
thread fires an asynchronous event bound to the particular interrupt source. It invokes the
fire() method of the respective RTSJ’s AsyncEvent. As mentioned in Section 3.3.3 the RTSJ
logic of AsyncEventHandler (AEH) registered to this event should be an instance of Inter-
ruptHandler in order to allow the interrupt handling code to access basic interrupt handling
operations.

As just explained, our first level InterruptHandlers virtualize the interrupt handling op-
erations for interrupt enabling, disabling, etc. Therefore, we have two levels of interrupt
virtualization, one is provided by Xenomai to our listener thread, and the other one, on
top of the first one, is provided by the OVM runtime to the InterruptHandler instance. In
particular, disabling/enabling of local CPU interrupts is emulated, hardware interrupts are
disabled/enabled and interrupt completion is performed at the interrupt controller level (via
ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

A Hardware Abstraction Layer in Java · 33

the Xenomai API), and interrupt start is emulated; it only tells the listener thread that the
interrupt was received.

The RTSJ scheduling features (deadline checking, inter-arrival time checking, delaying
of sporadic events) related to release of the AEH should not require any further adaptations
for interrupt handling. We could not test these features as OVM does not implement them.

OVM uses thin monitors which means that a monitor is only instantiated (inflated) when
a thread has to block on acquiring it. This semantic does not match to what we need –
disable the interrupt when the monitor is acquired to prevent the handler from interrupting.
Our solution provides a special implementation of a monitor for interrupt handlers and
inflate it in the constructor of InterruptHandler. This way we do not have to modify the
monitorenter and monitorexit instructions and we do not slow down regular thin monitors
(non-interrupt based synchronization).

4.5 Summary

Support for hardware objects (see Section 3.1) and interrupt handling (see Section 3.2) to
all four JVMs relies on common techniques. Accessing device registers through hardware
objects extends the interpretation of the bytecodes putfield and getfield or redirects the
pointer to the object. If these bytecodes are extended to identify the field being accessed
as inside a hardware object, the implementation can use this information. Similarly, the
implementation of interrupt handling requires changes to the bytecodes monitorenter and
monitorexit or pre-inflating a specialized implementation of a Java monitor. In case of the
bytecode extension, the extended codes specify if the monitor being acquired belongs to
an interrupt handler object. If so, the implementation of the actual monitor acquisition
must be changed to disable/enable interrupts. Whether dealing with hardware or interrupt
objects, we used the same approach of letting the hardware object and interrupt handler
classes inherit from the super classes HardwareObject and InterruptHandler respectively.

For JVMs that need a special treatment of bytecodes putfield and getfield (SimpleRTJ,
Kaffe, and OVM) bytecode rewriting at runtime can be used to avoid the additional check
of the object type. This is a standard approach (called quick bytecodes in the first JVM
specification) in JVMs to speedup field access of resolved classes.

Historically, registers of most x86 I/O devices are mapped to a dedicated I/O address
space, which is accessed using dedicated instructions – port read and port writes. Fortu-
nately, both the processor and Linux allow user-space applications running with admin-
istrator privileges to use these instructions and access the ports directly via iopl, inb, and
outb calls. For both the Kaffe and OVM implementations we have implemented bytecode
instructions putfield and getfield accessing hardware object fields by calls to iopl, inb, and
outb.

Linux does not allow user-space applications to handle hardware interrupts. Only kernel
space functionality is allowed to register interrupt handlers. We have overcome this issue
in two different ways:

—For Kaffe we have written a special purpose kernel module through which the user
space application (the Kaffe VM) can register interest in interrupts and get notified about
interrupt occurrence.

—For OVM we have used the Xenomai real-time extension to Linux. Xenomai extends the
Linux kernel to allow for the creation of real-time threads and allows user space code to
wait for interrupt occurrences.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

34 · Martin Schoeberl et al.

Both these work-arounds allow an incremental transition of the JVMs and the related
development libraries into a direct (bare metal) execution environment. In that case the
work-arounds would no longer be needed.

If a compiling JVM is used (either as JIT or ahead-of-time) the compiler needs to be
aware of the special treatment of hardware objects and monitors on interrupt handlers.
One issue which we did not face in our implementations was the alignment of object fields.
When device registers are represented by differently sized integer fields, the compiler needs
to pack the data structure.

The restrictions within an interrupt handler are JVM dependent. If an interruptible,
real-time GC is used (as in OVM and JOP) objects can be allocated in the handler and
the object graph may be changed. For a JVM with a stop-the-world GC (SimpleRTJ and
Kaffe) allocations are not allowed because the handler can interrupt the GC.

5. EVALUATION AND CONCLUSION

Having implemented the Java HAL on four different JVMs we evaluate it on a several
test applications, including a tiny web server, and measure the performance of hardware
accesses via hardware objects and the latency of Java interrupt handlers.

5.1 Qualitative Observations

For first tests we implemented a serial port driver with hardware objects and interrupt
handlers. As the structure of the device registers is exactly the same on a PC, the platform
for SimpleRTJ, and JOP, we were able to use the exact same definition of the hardware
object SerialPort and the test programs on all four systems.

Using the serial device we run an embedded TCP/IP stack, implemented completely
in Java, over a SLIP connection. The TCP/IP stack contains a tiny web server and we
serve web pages with a Java only solution similar to the one shown in the introduction in
Figure 6. The TCP/IP stack, the tiny web server, and the hardware object for the serial port
are the same for all platforms. The only difference is in the hardware object creation with
the platform dependent factory implementations. The web server uses hardware objects
and polling to access the serial device.

5.1.1 A Serial Driver in Java. For testing the interrupt handling infrastructure in OVM
we implemented a serial interrupt based driver in Java and a demo application that sends
back the data received through a serial interface. The driver part of the application is a full-
duplex driver with support for hardware flow control and with detection of various error
states reported by the hardware. The driver uses two circular buffers, one for receiving and
the other for sending. The user part of the driver implements blocking getChar and putChar
calls, which have (short) critical sections protected by the interrupt-disabling monitor. To
reduce latencies the getChar call sets the DSR flag to immediately allow receiving more
data and the putChar, after putting the character into the sending buffer, initiates immedi-
ately the sending, if this is not currently being done already by the interrupt machinery.
The driver supports serial ports with a FIFO buffer. The user part of the demo application
implements the loop-back using getChar and putChar. The user part is a RTSJ AsyncEvent-
Handler which is fired when a new character is received. From a Java perspective this is
a 2nd level interrupt handler, invoked after the corresponding serial event is fired from the
1st level handler. To test the API described in the paper we implemented two versions that
differ in how the first level handler is bound to the interrupt: (a) a RTSJ style version where
ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

A Hardware Abstraction Layer in Java · 35

the first level handler is also a RTSJ event handler bound using bindTo to the JVM provided
1st level serial event, and (b) a non-RTSJ style version where the 1st level handler is regis-
tered using a InterruptHandler.register call. We have stress-tested the demo application and
the underlying modified OVM infrastructure by sending large files to it through the serial
interface and checked that they were returned intact.

5.1.2 The HAL in Daily Use. The original idea for hardware objects evolved during
development of low-level software on the JOP platform. The abstraction with read and
write functions and using constants to represent I/O addresses just felt wrong with Java.
Currently hardware objects are used all over in different projects with JOP. Old code has
been refactored to some extent, but new low-level code uses only hardware objects. By
now low-level I/O is integrated into the language, e.g., auto completion in the Eclipse IDE
makes it easy to access the factory methods and fields in the hardware object.

For experiments with an on-chip memory for thread-local scope caching [Wellings and
Schoeberl 2009] in the context of a chip-multiprocessor version of JOP, the hardware array
abstraction greatly simplified the task. The on-chip memory is mapped to a hardware array
and the RTSJ based scoped memory uses it. Creation of an object within this special scope
is implemented in Java and is safe because the array bounds checks are performed by the
JVM.

5.1.3 JNI vs Hardware Objects. JNI provides a way to access the hardware without
changing the code of the JVM. Nevertheless, with a lack of commonly agreed API, using
it for each application would be redundant and error prone. It would also add dependencies
to the application: hardware platform and the operating system (the C API for accessing
the hardware is not standardized). The build process is complicated by adding C code to
it as well. Moreover, the system needs to support shared libraries, which is not always the
case for embedded operating systems (example is RTEMS, used by ESA).

In addition, JNI is typically too heavy-weight to implement trivial calls such as port
or memory access efficiently (no GC interaction, no pointers, no threads interaction, no
blocking). Even JVMs that implement JNI usually have some other internal light-weight
native interface which is the natural choice for hardware access. This leads us back to a
Java HAL as illustrated here.

5.1.4 OVM Specific Experience. Before the addition of hardware objects, OVM did
not allow hardware access because it did not and does not have JNI or any other native
interface for user Java code. OVM has a simplified native interface for the virtual machine
code which indeed we used when implementing the hardware objects. This native interface
can as well be used to modify OVM to implement user level access to hardware via regular
method calls. We have done this to implement a benchmark to measure HWO/native over-
heads (later in this section). As far as simple port access is concerned, none of the solutions
is strictly better from the point of the JVM: the bytecode manipulation to implement hard-
ware objects was easy, as well as adding code to propagate native port I/O calls to user
code. Thanks to ahead-of-time compilation and the simplicity of the native interface, the
access overhead is the same.

The OVM compiler is fortunately not “too smart” so it does not get in the way of sup-
porting hardware objects: if a field is declared volatile side-effects of reading of that field
are not a problem for any part of the system.

The API for interrupt handling added to OVM allows full control over interrupts, typ-
ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

36 · Martin Schoeberl et al.

JOP OVM SimpleRTJ Kaffe
read write read write read write read write

native 5 6 5517 5393 2588 1123 11841 11511
HW Object 13 15 5506 5335 3956 3418 9571 9394

Table III. Access time to a device register in clock cycles

ically available only to the operating system. The serial port test application has shown
that, at least for a simple device; it really allows us to write a driver. An interesting fea-
ture of this configuration is that OVM runs in user space and therefore it greatly simplifies
development and debugging of Java-only device drivers for embedded platforms.

5.2 Performance

Our main objective for hardware objects is a clean object oriented interface to hardware
devices. Performance of device register access is an important goal for relatively slow
embedded processors; thus we focus on that in the following. It matters less on general
purpose processors where the slow I/O bus essentially limits the access time.

5.2.1 Measurement Methodology. Execution time measurement of single instructions
is only possible on simple in-order pipelines when a cycle counter is available. On a
modern super-scalar architecture, where hundreds of instructions are in flight each clock
cycle, direct execution time measurement becomes impossible. Therefore, we performed a
bandwidth based measurement. We measure how many I/O instructions per second can be
executed in a tight loop. The benchmark program is self-adapting and increases the loop
count exponentially till the measurement run for more than one second and the iterations
per second are reported. To compensate for the loop overhead we perform an overhead
measurement of the loop and subtract that overhead from the I/O measurement. The I/O
bandwidth b is obtained as follows:

b =
cnt

ttest − tovhd

Figure 26 shows the measurement loop for the read operation in method test() and the
overhead loop in method overhead(). In the comment above the method the bytecodes of
the loop kernel is shown. We can see that the difference between the two loops is the single
bytecode getfield that performs the read request.

5.2.2 Execution Time. In Table III we compare the access time with native functions to
the access via hardware objects. The execution time is given in clock cycles. We scale the
measured I/O bandwidth b with the clock frequency f of the system under test by n = f

b .
We have run the measurements on a 100 MHz version of JOP. As JOP is a simple

pipeline, we can also measure short bytecode instruction sequences with the cycle counter.
Those measurements provided the exact same values as the ones given by our benchmark,
such that they validated our approach. On JOP the native access is faster than using hard-
ware objects because a native access is a special bytecode and not a native function call.
The special bytecode accesses memory directly where the bytecodes putfield and getfield
perform a null pointer check and indirection through the handle for the field access. De-
spite the slower I/O access via hardware objects on JOP, the access is fast enough for all
ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

A Hardware Abstraction Layer in Java · 37

public class HwoRead extends BenchMark {

SysDevice sys = IOFactory.getFactory().getSysDevice();

/* Bytecodes in the loop kernel
ILOAD 3
ILOAD 4
IADD
ALOAD 2
GETFIELD com/jopdesign/io/SysDevice.uscntTimer : I
IADD
ISTORE 3

*/
public int test(int cnt) {

SysDevice s = sys;
int a = 0;
int b = 123;
int i;

for (i=0; i<cnt; ++i) {
a = a+b+s.uscntTimer;

}
return a;

}

/* Bytecodes in the loop kernel
ILOAD 3
ILOAD 4
IADD
ILOAD 2
IADD
ISTORE 3

*/
public int overhead(int cnt) {

int xxx = 456;
int a = 0;
int b = 123;
int i;

for (i=0; i<cnt; ++i) {
a = a+b+xxx;

}
return a;

}
}

Fig. 26. Benchmark for the read operation measurement

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

38 · Martin Schoeberl et al.

currently available devices. Therefore, we will change all device drivers to use hardware
objects.

The measurement for OVM was run on a Dell Precision 380 (Intel Pentium 4, 3.8 GHz,
3G RAM, 2M 8-way set associative L2 cache) with Linux (Ubuntu 7.10, Linux 2.6.24.3
with Xenomai-RT patch). OVM was compiled without Xenomai support and the generated
virtual machine was compiled with all optimizations enabled. As I/O port we used the
printer port. Access to the I/O port via a hardware object is just slightly faster than access
via native methods. This was expected as the slow I/O bus dominates the access time.

On the SimpleRTJ JVM the native access is faster than access to hardware objects. The
reason is that the JVM does not implement JNI, but has its own proprietary, more efficient,
way to invoke native methods. It is done in a pre-linking phase where the invokestatic
bytecode is instrumented with information to allow an immediate invocation of the target
native function. On the other hand, using hardware objects needs a field lookup that is
more time consuming than invoking a static method. With bytecode-level optimization at
class load time it would be possible to avoid the expensive field lookup.

We measured the I/O performance with Kaffe on an Intel Core 2 Duo T7300, 2.00 GHz
with Linux 2.6.24 (Fedora Core 8). We used access to the serial port for the measure-
ment. On the interpreting Kaffe JVM we notice a difference between the native access and
hardware object access. Hardware objects are around 20% faster.

5.2.3 Summary. For practical purposes the overhead on using hardware objects is in-
significant. In some cases there may even be an improvement in performance. The benefits
in terms of safe and structured code should make this a very attractive option for Java
developers.

5.3 Interrupt Handler Latency

5.3.1 Latency on JOP. To measure interrupt latency on JOP we use a periodic thread
and an interrupt handler. The periodic thread records the value of the cycle counter and
triggers the interrupt. In the handler the counter is read again and the difference between
the two is the measured interrupt latency. A plain interrupt handler as Runnable takes a
constant 234 clock cycles (or 2.3 µs for a 100 MHz JOP system) between the interrupt
occurrence and the execution of the first bytecode in the handler. This quite large time
is the result of two method invocations for the interrupt handling: (1) invocation of the
system method interrupt() and (2) invocation of the actual handler. For more time critical
interrupts the handler code can be integrated in the system method. In that case the latency
drops down to 0.78 µs. For very low latency interrupts the interrupt controller can be
changed to emit different bytecodes depending on the interrupt number, then we avoid the
dispatch in software and can implement the interrupt handler in microcode.

We have integrated the two-level interrupt handling at the application level. We set up
two threads: one periodic thread, that triggers the interrupt, and a higher priority event
thread that acts as second level interrupt handler and performs the handler work. The first
level handler just invokes fire() for this second level handler and returns. The second level
handler gets scheduled according to the priority. With this setup the interrupt handling
latency is 33 µs. We verified this time by measuring the time between fire of the software
event and the execution of the first instruction in the handler directly from the periodic
thread. This took 29 µs and is the overhead due to the scheduler. The value is consistent
with the measurements in [Schoeberl and Vitek 2007]. There we measured a minimum
ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

A Hardware Abstraction Layer in Java · 39

Median (µs) 3rd Quartile (µs) 95% Quantile (µs) Maximum (µs)

Polling 3 3 3 8
Kernel 14 16 16 21
Hard 14 16 16 21
User 17 19 19 24
Ovm 59 59 61 203

Table IV. Interrupt (and polling) latencies in microseconds.

useful period of 50 µs for a high priority periodic task.
The runtime environment of JOP contains a concurrent real-time GC [Schoeberl and

Vitek 2007]. The GC can be interrupted at a very fine granularity. During sections that
are not preemptive (data structure manipulation for a new and write-barriers on a refer-
ence field write) interrupts are simply turned off. The copy of objects and arrays during
the compaction phase can be interrupted by a thread or interrupt handler [Schoeberl and
Puffitsch 2008]. Therefore, the maximum blocking time is in the atomic section of the
thread scheduler and not in the GC.

5.3.2 Latency on OVM/Xenomai. For measuring OVM/Xenomai interrupt latencies,
we have extended an existing interrupt latency benchmark, written by Jan Kiszka from the
Xenomai team [Xenomai developers 2008]. The benchmark uses two machines connected
over a serial line. The log machine, running a regular Linux kernel, toggles the RTS state
of the serial line and measures the time it takes for the target machine to toggle it back.

To minimize measuring overhead the log machine uses only polling and disables lo-
cal CPU interrupts while measuring. Individual measurements are stored in memory and
dumped at shutdown so that they can be analyzed offline. We have made 400,000 mea-
surements in each experiment, reporting only the last 100,000 (this was to warm-up the
benchmark, including memory storage for the results). The log machine toggles the RTS
state regularly with a given period.

We have tested 5 versions of the benchmark on the target machine: a polling version
written in C (polling), a kernel-space interrupt handler in C/Xenomai running out of control
of the Linux scheduler (kernel), a hard-realtime kernel-space interrupt handler running out
of control of both the Xenomai scheduler and the Linux scheduler (hard), a user-space
interrupt handler written in C/Xenomai (user), and finally an interrupt handler written in
Java/OVM/Xenomai (ovm).

The results are shown in Table IV. The median latency is 3 µs for polling, 14 µs for
both kernel-space handlers (hard and kernel), 17 µs for user-space C handler (user), and
59 µs for Java handler in OVM (ovm). Note that the table shows that the overhead of using
interrupts over polling is larger than the overhead of handling interrupts in user-space over
kernel-space. The maximum latency of OVM was 203 µs, due to infrequent pauses. Their
frequency is so low that the measured 95% quantile is only 61 µs.

The experiment was run on Dell Precision 380 (Intel Pentium 4 3.8 GHz, 3G RAM, 2M
8-way set associative L2 cache) with Linux (Ubuntu 7.10, Linux 2.6.24.3 with Xenomai-
RT patch). As Xenomai is still under active development we had to use Xenomai workarounds
and bugfixes, mostly provided by Xenomai developers, to make OVM on Xenomai work.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

40 · Martin Schoeberl et al.

5.3.3 Summary. The overhead for implementing interrupt handlers is very acceptable
since interrupts are used to signal relatively infrequently occurring events like end of trans-
mission, loss of carrier etc. With a reasonable work division between first level and sec-
ond level handlers, the proposal does not introduce dramatic blocking terms in a real-time
schedulability analysis, and thus it is suitable for embedded systems.

5.4 Discussion

5.4.1 Safety Aspects. Hardware objects map object fields to the device registers. When
the class that represents a device is correct, access to it is safe – it is not possible to read
from or write to an arbitrary memory address. A memory area represented by an array is
protected by Java’s array bounds check.

5.4.2 Portability. It is obvious that hardware objects are platform dependent; after all
the idea is to have an interface to the bare metal. Nevertheless, hardware objects give device
manufacturers an opportunity to supply supporting factory implementations that fit into
Java’s object-oriented framework and thus cater for developers of embedded software. If
the same device is used on different platforms, the hardware object is portable. Therefore,
standard hardware objects can evolve.

5.4.3 Compatibility with the RTSJ Standard. As shown for the OVM implementation,
the proposed HAL is compatible with the RTSJ standard. We consider it to be a very
important point since many existing systems have been developed using such platforms or
subsets thereof. In further development of such applications existing and future interfacing
to devices may be refactored using the proposed HAL. It will make the code safer and
more structured and may assist in possible ports to new platforms.

5.5 Perspective

The many examples in the text show that we achieved a representation of the hardware
close to being platform independent. Also, they show that it is possible to implement
system level functionality in Java. As future work we consider to add devices drivers for
common devices such as network interfaces11 and hard disc controllers. On top of these
drivers we will implement a file system and other typical OS related services towards our
final goal of a Java only system.

An interesting question is whether a common set of standard hardware objects is de-
finable. The SerialPort was a lucky example. Although the internals of the JVMs and
the hardware were different one compatible hardware object worked on all platforms. It
should be feasible that a chip manufacturer provides, beside the data sheet that describes
the registers, a Java class for the register definitions of that chip. This definition can be
reused in all systems that use that chip, independent of the JVM or OS.

Another interesting idea is to define the interaction between the GC and hardware ob-
jects. We stated that the GC should not collect hardware objects. If we relax this restriction
we can redefine the semantics of collecting an object: on running the finalizer for a hard-
ware object the device can be put into sleep mode.

11A device driver for a CS8900 based network chip is already part of the Java TCP/IP stack.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

A Hardware Abstraction Layer in Java · 41

ACKNOWLEDGMENTS

We wish to thank Andy Wellings for his insightful comments on an earlier version of the
paper. We also thank the reviewers for their detailed comments that helped to enhance
the original submission. The research leading to these results has received funding from
the European Community’s Seventh Framework Programme [FP7/2007-2013] under grant
agreement number 216682 (JEOPARD).

REFERENCES

AJILE. 2000. aj-100 real-time low power Java processor. preliminary data sheet.
ARMBRUSTER, A., BAKER, J., CUNEI, A., FLACK, C., HOLMES, D., PIZLO, F., PLA, E., PROCHAZKA, M.,

AND VITEK, J. 2007. A real-time Java virtual machine with applications in avionics. Trans. on Embedded
Computing Sys. 7, 1, 1–49.

BACON, D. F., CHENG, P., AND RAJAN, V. T. 2003. A real-time garbage collector with low overhead and con-
sistent utilization. In POPL ’03: Proceedings of the 30th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages. ACM Press, New York, NY, USA, 285–298.

BOLLELLA, G., GOSLING, J., BROSGOL, B., DIBBLE, P., FURR, S., AND TURNBULL, M. 2000. The Real-
Time Specification for Java. Java Series. Addison-Wesley.

BURNS, A. AND WELLINGS, A. J. 2001. Real-Time Systems and Programming Languages: ADA 95, Real-Time
Java, and Real-Time POSIX, 3rd ed. Addison-Wesley Longman Publishing Co., Inc.

CASKA, J. accessed 2009. micro [µ] virtual-machine. Available at http://muvium.com/.
CHOU, A., YANG, J., CHELF, B., HALLEM, S., AND ENGLER, D. 2001. An empirical study of operating

systems errors. SIGOPS Oper. Syst. Rev. 35, 5, 73–88.
FELSER, M., GOLM, M., WAWERSICH, C., AND KLEINÖDER, J. 2002. The JX operating system. In Proceed-

ings of the USENIX Annual Technical Conference. 45–58.
GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. M. 1994. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison Wesley Professional.
GAY, D., LEVIS, P., VON BEHREN, R., WELSH, M., BREWER, E., AND CULLER, D. 2003. The nesC language:

A holistic approach to networked embedded systems. In PLDI ’03: Proceedings of the ACM SIGPLAN 2003
conference on Programming language design and implementation. ACM Press, New York, NY, USA, 1–11.

GERUM, P. 2004. Xenomai - implementing a RTOS emulation framework on GNU/Linux. http://www.
xenomai.org/documentation/branches/v2.4.x/pdf/xenomai.pdf.

GROUP, T. C. 2008. Trusted computing. Available at https://www.trustedcomputinggroup.org/.
HANSEN, P. B. 1977. The Architecture of Concurrent Programs. Prentice-Hall Series in Automatic Computing.

Prentice-Hall.
HENNESSY, J. AND PATTERSON, D. 2002. Computer Architecture: A Quantitative Approach, 3rd ed. Morgan

Kaufmann Publishers Inc., Palo Alto, CA 94303.
HENTIES, T., HUNT, J. J., LOCKE, D., NILSEN, K., SCHOEBERL, M., AND VITEK, J. 2009. Java for safety-

critical applications. In 2nd International Workshop on the Certification of Safety-Critical Software Controlled
Systems (SafeCert 2009).

HILL, J., SZEWCZYK, R., WOO, A., HOLLAR, S., CULLER, D. E., AND PISTER, K. S. J. 2000. System archi-
tecture directions for networked sensors. In Proceedings of the 9th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS IX), ACM SIGPLAN. ACM, Cam-
bridge, MA, 93–104. Published as Proceedings of the 9th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS IX), ACM SIGPLAN, volume 35, number 11.

HUNT, G., LARUS, J. R., ABADI, M., AIKEN, M., BARHAM, P., FAHNDRICH, M., HAWBLITZEL, C., HOD-
SON, O., LEVI, S., MURPHY, N., STEENSGAARD, B., TARDITI, D., WOBBER, T., AND ZILL, B. D. 2005.
An overview of the singularity project. Tech. Rep. MSR-TR-2005-135, Microsoft Research (MSR). Oct.

KORSHOLM, S., SCHOEBERL, M., AND RAVN, A. P. 2008. Interrupt handlers in Java. In Proceedings of the
11th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing
(ISORC 2008). IEEE Computer Society, Orlando, Florida, USA.

KRALL, A. AND GRAFL, R. 1997. CACAO – A 64 bit JavaVM just-in-time compiler. In PPoPP’97 Workshop
on Java for Science and Engineering Computation, G. C. Fox and W. Li, Eds. ACM, Las Vegas.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

42 · Martin Schoeberl et al.

KREUZINGER, J., BRINKSCHULTE, U., PFEFFER, M., UHRIG, S., AND UNGERER, T. 2003. Real-time event-
handling and scheduling on a multithreaded Java microcontroller. Microprocessors and Microsystems 27, 1,
19–31.

LINDHOLM, T. AND YELLIN, F. 1999. The Java Virtual Machine Specification, Second ed. Addison-Wesley,
Reading, MA, USA.

LOHMEIER, S. 2005. Jini on the Jnode Java os. Online article at http://monochromata.de/jnodejini.html.
PHIPPS, G. 1999. Comparing observed bug and productivity rates for java and c++. Softw. Pract. Exper. 29, 4,

345–358.
RAVN, A. P. 1980. Device monitors. IEEE Transactions on Software Engineering 6, 1 (Jan.), 49–53.
RTJ COMPUTING. 2000. simpleRTJ a small footprint Java VM for embedded and consumer devices. Available

at http://www.rtjcom.com/.
SCHOEBERL, M. 2005. Jop: A java optimized processor for embedded real-time systems. Ph.D. thesis, Vienna

University of Technology.
SCHOEBERL, M. 2006. Real-time garbage collection for Java. In Proceedings of the 9th IEEE International

Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC 2006). IEEE,
Gyeongju, Korea, 424–432.

SCHOEBERL, M. 2008. A Java processor architecture for embedded real-time systems. Journal of Systems
Architecture 54/1–2, 265–286.

SCHOEBERL, M., KORSHOLM, S., THALINGER, C., AND RAVN, A. P. 2008. Hardware objects for Java.
In Proceedings of the 11th IEEE International Symposium on Object/component/service-oriented Real-time
distributed Computing (ISORC 2008). IEEE Computer Society, Orlando, Florida, USA.

SCHOEBERL, M. AND PUFFITSCH, W. 2008. Non-blocking object copy for real-time garbage collection. In
Proceedings of the 6th International Workshop on Java Technologies for Real-time and Embedded Systems
(JTRES 2008). ACM Press.

SCHOEBERL, M. AND VITEK, J. 2007. Garbage collection for safety critical Java. In Proceedings of the
5th International Workshop on Java Technologies for Real-time and Embedded Systems (JTRES 2007). ACM
Press, Vienna, Austria, 85–93.

SHA, L., RAJKUMAR, R., AND LEHOCZKY, J. P. 1990. Priority inheritance protocols: An approach to real-time
synchronization. IEEE Trans. Comput. 39, 9, 1175–1185.

SIEBERT, F. 2002. Hard Realtime Garbage Collection in Modern Object Oriented Programming Languages.
Number ISBN: 3-8311-3893-1. aicas Books.

SIMON, D., CIFUENTES, C., CLEAL, D., DANIELS, J., AND WHITE, D. 2006. Java on the bare metal of
wireless sensor devices: the squawk Java virtual machine. In Proceedings of the 2nd international conference
on Virtual execution environments (VEE 2006). ACM Press, New York, NY, USA, 78–88.

WELLINGS, A. AND SCHOEBERL, M. 2009. Thread-local scope caching for real-time Java. In Proceedings
of the 12th IEEE International Symposium on Object/component/service-oriented Real-time distributed Com-
puting (ISORC 2009). IEEE Computer Society, Tokyo, Japan.

WILKINSON, T. 1996. Kaffe – a virtual machine to run java code. Available at http://www.kaffe.org.
WIRTH, N. 1977. Design and implementation of modula. Software - Practice and Experience 7, 3–84.
WIRTH, N. 1982. Programming in Modula-2. Springer Verlag.
XENOMAI DEVELOPERS. 2008. Xenomai: Real-time framework for Linux. http://www.xenomai.org.

Received August 2008; revised April 2009 and July 2009; accepted September 2009

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, September 2009.

Flash memory in embedded Java programs

Stephan Korsholm
VIA University College

Horsens, Denmark
sek@viauc.dk

ABSTRACT
This paper introduces a Java execution environment with
the capability for storing constant heap data in Flash, thus
saving valuable RAM. The extension is motivated by the
structure of three industrial applications which demonstrate
the need for storing constant data in Flash on small embed-
ded devices.

The paper introduces the concept of host initialization of
constant data to prepare a Flash image of constant data that
can be kept outside the heap during runtime.

The concept is implemented in an interpreter based Java
execution environment.

Categories and Subject Descriptors
B.3.1 [Memory Structures]: Read-only memory (ROM);
C.3 [Special-purpose and Application-based Systems]:
Real-time and embedded systems; D.3.4 [Processors]: In-
terpreters

General Terms
Languages, Design.

Keywords
Java/C Integration, Flash Memory, Embedded Systems, Real-
Time.

1. INTRODUCTION
The C programming language together with appropriate

runtime libraries is widely used when implementing software
for tiny devices. C environments support a range of features
such as

1. accessing device registers and raw memory,

2. handling first level interrupts,

3. storing constant data in Flash.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JTRES 2011 September 26-28, 2011, York, UK
Copyright 2011 ACM 978-1-4503-0731-4I/11/09 ...$10.00.

These features are often controlled by compiler directives
that instruct the compiler to generate code for e.g. (1) ac-
cessing hardware through memory mapped device registers
(2) marking C-functions as interrupt handlers and generat-
ing proper save and restore code stubs and (3) marking a
piece of data as constant and placing it in a read-only data
segment.

Previous work in [15] and [12] has demonstrated how (1)
and (2) can be added to Java execution environments. This
paper describes a method to support (3) for Java by marking
parts or all of an object as constant and eligible for storing
in Flash, thereby freeing valuable RAM storage.

The method presented here shows how to store constant
data (e.g. in the form of large arrays) in Flash instead of
the heap. The idea is to pre-execute the initial part of the
program on a host platform and in that part of the program
build the arrays and other data that are considered constant
and thus can be kept in Flash. After the pre-execution on the
host the constant data is converted into an image that can be
kept in Flash on the target. When running on the target the
Flash image is accessible for reading by the application while
writing to the Flash image is implemented as null operations.

The methods used in the process have been used in po-
pular environments like C (see Section 3) and Ada (see
Section 7) for many years in order to solve the same problem.
The contribution of this paper is to apply these methods
to the Java domain. By doing this we have solved pro-
blems from industrial settings. Problems which until now
have prevented us from using Java on a certain class of em-
bedded targets. We describe these applications further in
Section 1.1.

We consider our proposal a starting point to bridge an
important gap many embedded developers have to cross if
they consider using a high level, well structured language like
Java in the embedded domain. The method can be improved
in several ways and we discuss these in Section 8.

1.1 Constant Data
Constant data are data that are initialized at application

load time and do not change during the entire lifetime of the
application. To find out how much constant data a given
C application is using, the unstripped binary file can be
inspected. We have looked at three industrial embedded C
applications and examined their use of constant data. The
example applications are

1. The DECT protocol stack from Polycom. It is used
by Polycom, Horsens, DK [14] for implementing wire-
less communication between devices. It is used on the

CR16 16bit platform from National with 8KB RAM
and 768KB Flash

2. The Modbus control and monitoring application from
Grundfos. It is used by Grundfos, Bjerringbro, DK [9]
for monitoring and controlling pumps. It is used on
the NEC v850 32bit platform with 4KB and upwards
of RAM and 64-1024KB Flash

3. The HVM Java virtual machine [11]. It is used by
the author for programming tiny embedded devices in
Java. It is used on the ATMega 8bit platform from
AVR with 8KB RAM and 256KB Flash

Table 1 divides the used data memory into two types: va-
riable data and constant data. Variable data may be written
during the execution of the program and have to be kept in
RAM, whereas constant data are only written once during
initialization and can be kept in ROM. For reference, the
size of the code itself is included in Table 1 as well.

Code Variable Data Constant Data
DECT 234KB 7KB (8%) 78KB (92%)

Modbus 171KB 207KB (83%) 41KB (17%)
HVM 22KB 4KB (29%) 10KB (71%)

Table 1: Overview of data usage

All three applications use a significant amount of constant
data. For the DECT and HVM applications it would not be
possible to hold the constant data in RAM together with
the variable data as that would require more RAM than is
available on the devices.

Further scrutinizing the source code of the applications
above reveals the following examples of use of constant data

• DECT. Arrays of bytes used as input to the DSP (Di-
gital Signal Processor) to generate ringing tones

• Modbus. Large tables of approx. 512 entries each. The
tables map names to data locations called registers.
The indirection through the tables are used to control
access to the registers - some tables allow full access to
all registers while others allow limited access to only
some registers. Section 6 looks into this example in
more detail

• HVM. A selection of the class file content is initialized
as a graph-like structure for easy access to important
information when the code is interpreted

It seems reasonable to expect that other applications for
similar types of platforms use constant data to a significant
degree as well and it follows that being able to store con-
stant data in Flash is desirable when implementing similar
applications in Java for similar types of platforms.

1.2 Why Flash?
Producers of embedded solutions seek to use Flash as op-

posed to RAM whenever possible. The reason is that the pro-
duction price per unit is significantly lower by using Flash
as much as possible instead of adding more RAM to the
design. The Polycom and Grundfos units are produced and

sold in large quantities, and even minor savings in unit pro-
duction cost have a great impact on the profitability of their
businesses.

The remainder of this paper will describe a design for
using Flash for constant data in Java programs and show an
implementation in an interpreter based execution environ-
ment.

2. RUNNING EMBEDDED JAVA ON TINY
DEVICES

We will use the HVM [11] to illustrate how constant data
can be integrated into a Java execution environment. The
HVM is a small interpreter based JVM intended for use on
tiny devices. An architectural overview of the HVM Java
execution environment is shown in Figure 1.

Figure 1: HVM Architecture

The Eclipse IDE integrated with any Java compiler and
SDK is used to compile the Java source code into class files.

Next a plugin tool, called icecap [11], analyzes the gene-
rated class files and convert them into C code by storing the
Java byte codes and other class file content in byte arrays
in two auto-generated C files - methods.c and classes.c.

Finally the developer can use any C based cross compiler
environment (e.g. the avr-gcc tool chain for the AVR family
of processors) or the commercially available IAR compiler
tool-chain (for a wide variety of industry standard embed-
ded platforms). The C cross compiler compiles the HVM
interpreter itself (interpreter.c) and the auto-generated C
files into a final executable for the target. A non-cross com-
piler can be used as well to generate an executable for the
host platform (e.g. Linux or Windows) to run the executable
in the host environment for testing or debugging.

3. A DESIGN FOR FLASH DATA IN JAVA
Consider the following C example of constant data taken

from the DECT application

const unsigned char wav_num_0[] =
{ 23, 112, -1, -1 };

This is a simplified version of a longer array used by the
DSP to generate ringing tones. When the C compiler trans-
lates this into assembler it will look like the following

.globl wav_num_0

.section .rodata

.type wav_num_0, @object

.size wav_num_0, 4
wav_num_0:
.byte 23
.byte 112
.byte -1
.byte -1

Based on this assembler output from the compiler, the lin-
ker will create an array of bytes in the section rodata which
means that the array will eventually be packaged along side
the code in Flash. Additionally it will link the use of the
variable names to the location of the data in Flash. We no-
tice that preparing the constant data for Flash is done on
the host, before the application is started, since it is difficult
and usually avoided to write to Flash during runtime. It is
only when the application is loaded, that the boot-loader
will be able to write code and constant data to the Flash.
When control is handed over from the boot-loader to the
application, the Flash memory becomes read-only.

In Java the example above looks like this

public class ConstantData
{

final byte wav_num_0[] =
{ 23, 112, -1, -1 };

}

And now the assembler output (the Java byte codes) from
the compiler is

public class ConstantData extends Object{
public ConstantData();
Code:
0: aload_0
1: invokespecial #1; //"<init>":()V
4: aload_0
5: iconstant_4
6: newarray byte
8: dup
9: iconstant_0
10: bipush 23
12: bastore
13: dup
14: iconstant_1
15: bipush 112
17: bastore
18: dup
19: iconstant_2
20: iconstant_m1
21: bastore
22: dup
23: iconstant_3
24: iconstant_m1
25: bastore
26: putfield #2; //wav_num_0:[B
29: return

}

The main difference from the C solution is that the code
to set up the constant data is executed on the target during
runtime, where as the C solution prepares a read-only section
of data on the host. In Java the wav num 0 array will be a
normal array placed in the heap (in RAM) into which the
bytes are written at runtime.

The goal of our design for constant data in Java is to place
the wav num 0 array in Flash rather than on the heap.

3.1 Identifying Constant Data
Byte codes to create and access data in general must know

which type of data is accessed, mainly because constant data
are not located in the heap (RAM) but located in Flash. To
facilitate this, constant data must be inferred implicitly or
marked explicitly.

For simplicity we will mark constant data at the time of
declaration. In the examples below we use the const keyword
to mark constant data. Since this is not a Java keyword
any actual implementation could use Java annotations when
marking constant data. Below follows an example of marking
a piece of data as constant

public class ConstantData
{
private const byte wav_num_0[] =
{ 23, 112, -1, -1 };

public static void main(String args[])
{
ConstantData cdata = new ConstantData();

}
}

3.2 Creating Constant Data - Host Initializa-
tion

Creating and initializing constant data must be done be-
fore the application is downloaded and run on the target -
this is because writing to Flash at runtime is very difficult
and inefficient. Similar to what C environments do, the con-
stant data segments must be built and linked with the final
executable on the host. To solve this challenge we suggest
to use host initialization of constant data.

The idea is to run the initialization part of the applica-
tion on the JVM on the host platform. While running on the
host platform, the soon-to-be read-only segment of constant
data can be built in RAM on the host. The start of the initi-
alization phase will be the start of the program. The end of
the initialization phase could either be inferred implicitly or
marked explicitly. For simplicity we have chosen the latter,
as in the following example

public class ConstantData
{
private const byte wav_num_0[] =
{ 23, 112, -1, -1 };

private const byte wav_num_1[] =
{ 43, 12, -1, -1 };

private const int NUM = 42;

public boolean flag;

public static void main(String args[])
{
ConstantData cdata = new ConstantData();
System.lockROM();
cdata.flag = true;

}
}

The call to System.lockROM signals the end of the ini-
tialization phase. During the initialization phase three new
objects are created

1. cdata is an object with three constant data fields and
one non-constant field. We allocate 8 bytes for the two
array references and 4 bytes for the int NUM - these
12 bytes plus some bookkeeping are allocated in the
constant heap. The non constant part of the object is
one byte field of size 1 byte. This is allocated in the
normal heap. For the HVM the bookkeeping informa-
tion is a class index and a reference into the normal
heap pointing to the non-constant part of the object

2. wav num 0 is a constant array of 4 bytes. Since it is
marked as const, it is not allocated in the standard
heap, but in the constant heap. The array uses 4 bytes
plus some bookkeeping information. For the HVM an
additional 2 bytes for the element count and 2 bytes
for the type are needed. Thus 8 bytes are allocated in
the constant heap

3. Similarly wav num 1 is allocated in the constant heap
right after the previous item

When the System.lockROM() method is called on the host,
the content of the host memory is as depicted in Figure 2.

3.3 Creating Constant Data - Target Initializa-
tion

After the host initialization phase, the content of the con-
stant heap is transferred into a C array of bytes and saved in
a file rom.c. Using the cross compiler environment, the inter-
preter in interpreter.c, the Java application in classes.c and
methods.c, and the constant data Flash image in rom.c are
linked to form the final executable. The overall architecture
is depicted in Figure 3.

So, the initialization part will be run twice - once on the
host to produce the constant heap, and once on the target
when the executable is downloaded and run. On the target
it will repeat the initialization step - it will execute the same
code, allocate objects and read/write to them in the same
sequence,but the way the allocation and access are handled
is different on the target:

• When allocating data in the constant heap, the same
allocation procedures can be carried out, but the con-
stant heap is already initialized and placed in Flash.
References to the existing objects are returned to the
caller.

• When writing to the constant heap no actual write
takes place since the value is already there.

• When reading from the constant heap a Flash read
operation is carried out.

In order for this to work, the initialization phase must be
deterministic - when executed on the target, objects must
be allocated and written in the exact same order as they
were on the host. Additionally the allocation of constant
data must only take place during the initialization phase.

3.4 Preparing the Constant Data Heap
The heap of constant data has to be useful on both the

host environment during initialization and later on the tar-
get environment when the application is running. The values
in the constant heap can be viewed as a graph of data, where

Figure 3: Creating the ROM image

the nodes (objects and arrays) contain basic data like inte-
gers and the edge between the nodes are references. This
graph is transferred from the host to the target. The con-
sequence of this is

• the edges cannot be actual pointers (addresses), as the
addresses are not going to be the same on the host as
on the target

• the values in the nodes have to be in the same byte
order

Transferring the constant heap is basically a serialization
of the data into a platform independent format. In the HVM
all references in the constant heap are stored as offsets, either
into the constant heap itself, or offsets into the normal heap
and all values are stored in little endian format. This incurs
an overhead for accessing data in the constant heap, but it
does not affect how data are accessed in the normal heap.

3.5 Discussion
By using host initialization of constant data it is now pos-

sible to create the Flash image and link it with the final
executable - in exactly the same manner as is done in C
environments. Reading and writing to the constant heap on
the host are done in the same manner as reading and writing
to the normal heap, as both heaps are kept in RAM. On the
target, accessing Flash from program code is different from

Figure 2: Host memory after initialization

accessing RAM memory. The hardware architecture of em-
bedded devices can be divided into either a Von Neumann
architecture or a Harvard Architecture [16]. In the former,
both code and data are in the same address space, and in-
structions for reading and writing to Flash are the same as
instructions for reading and writing to RAM. In the latter,
architecture code and data are kept in two separate data
spaces and accessed using different instructions.

In both cases it is easy and fast reading from Flash at
runtime, but it is difficult writing to Flash at runtime.

To support constant data in Java on any embedded ar-
chitecture, the VM needs to know if it is accessing Flash or
normal RAM so that it may use the proper instructions for
doing so.

In Section 4 we will show what is required to augment an
existing JVM with capabilities for identifying and accessing
constant data.

4. IMPLEMENTING CONSTANT DATA IN
A VM

All creation and access of constant data take place through
byte codes. Constant data can be either arrays or field vari-
ables. The byte codes involved in accessing arrays or object
fields must be augmented with capabilities to recognize and
access constant data as well. The cost of this in terms of
execution efficiency is discussed in Section 5.

The byte codes that may be directly involved in accessing
constant data are new, newarray, the array store byte codes
- call these xastore, the array load byte codes - call the-
se xaload, and finally the object field accessors getfield and
putfield. For simplicity we defer the handling of static con-
stant data, but this is a simple extension to the current im-
plementation. In the following we describe the changes that
are required to the involved byte codes in order to handle
constant data - first on the host, then on the target.

4.1 Host Handling of Constant Data
new contains a reference to the class that is being instan-

tiated. If one of the fields in the class is declared as constant
data, then the object is allocated differently than from nor-
mal heap objects. Whether the class does indeed contain
constant data can either be embedded in the byte code, or
looked up at runtime. The HVM checks at runtime if the
class contains constant data, and if so the new byte code
will allocate two parts of data, one in the constant heap and
one in the normal heap as described in Section 3.2.

newarray does not contain enough information to know
if the array is constant or not. The array is constant if it is
later saved in a constant field, but this is not known when
the byte code is executed. To solve this problem, the icecap

tools (see Figure 1) perform a static analysis of the code to
instrument the newarray byte code with a flag indicating if
a constant array is being allocated or not.

xastore, xaload retrieve the array to store/load from the
stack. On the host it makes no difference to these byte codes
if the array is in the constant heap or not.

putfield, getfield As with new these byte codes have
enough information to decide if the field being written is
inside a constant data object or not, and if the field itself is
a constant field. This information can either be looked up
at runtime or embedded in the byte code. The HVM looks
up the information at runtime to properly access the field in
either the constant heap or the normal heap.

4.2 Target Handling of Constant Data
new, newarray On the target the new byte code should

not actually allocate and clear a new piece of memory for
constant objects. Rather, if the object being allocated con-
tains constant data, it should return a reference to the data
as it is already present in the Flash section. If the alloca-
tions of constant objects are proceeding in the same order
and with the same sizes as during the initialization phase on
the host, the references returned will be correct. Still the non
constant part of the object must be allocated in the normal
heap.

xastore Whether the array is a constant array or not can
be determined by looking at the reference - if it points into
the constant heap, it is a constant array. Since we prefer
to avoid writing to the Flash on the target, the array store
operation can instead check if the value being written is the
same as the value already present in Flash.

xaload On Harvard architecture platforms the loading
from Flash must be done using a special load instruction -
e.g. on the ATMega2560 the instruction to load from Flash is
called lpm (Load Program Memory) where as the instruction
to load from RAM is called ld. On many Von Neumann
architectures no changes are required to this byte code as
loading from Flash is no different than loading from RAM
(as is the case with the CR16 platform).

putfield On the target this instruction cannot actually
write to constant fields, but should behave in the same man-
ner as the array store instruction. If the target field of the
write is a non constant field inside a constant object, then
an extra indirection is required.

getfield On the target this instruction works as the ar-
ray load instructions, so it is necessary to use special load
instructions for accessing Flash, but more important, the
loading of a non constant field from an object with constant
fields requires an extra indirection.

4.3 Checking Constant Data Access
After the initialization phase the program should never

write to constant data again. If a new value is written to a
constant array after the initialization phase, the interpreter
would discover that an illegal write is taking place. In the
current implementation on the HVM this will result in a
runtime exception.

If constant data access conventions are violated, a static
check would be better than introducing new runtime checks
as discussed in Section 8.

5. COST OF CONSTANT DATA
The goal of any implementation of constant data for Java

should be

1. If a program does not use constant data, its runtime
efficiency should not be affected by the option for doing
so. Likewise, the resulting size of the executable and its
RAM requirements at runtime should not be affected.

2. If a program does use constant data, only the size
of constant data or the efficiency by which constant
data can be accessed must be affected. In other words
- reading and writing to objects or arrays that do not
contain any constant data should not be less efficient
because of the presence of constant data elsewhere.

To meet these requirements it must be possible to identify
and substitute involved byte codes with special purpose byte
codes that know about constant data.

In the absence of dynamic class loading, it is statically
decidable for the new, putfield, and getfield byte codes if they
will be used for objects containing constant data. Creating
objects and accessing fields do not involve virtuality in Java
- a field cannot be overwritten in a subclass, it can be over
shadowed, but it is statically decidable for each new, putfield,
and getfield byte code if it will involve constant data fields
or not.

For the byte codes used for array creation and access, it is
not in general possible to decide statically if they will work
on constant arrays or not. Consider the situation where a
constant field holding an array is being initialized by calling
some virtual method that returns the array. In that case it is
generally unknown which newarray byte code is being used
for creating the array. In the HVM we restrict ourselves to
handle array creations as in the following example,

public class ConstantData
{

final byte wav_num_0[] =
{ 23, 112, -1, -1 };

}

The code for this can be analyzed and the byte codes
annotated so that special purpose byte codes can be used
at runtime for the creation and initialization of constant
arrays. Even so when reading from an array on Harvard
Architecture targets the xaload byte code must always check
if it is reading from an array in the Flash - this will violate
both (1) and (2) above. Currently this problem has not been
solved in the HVM implementation.

Other byte codes that are affected by the presence of con-
stant data are the arraylength, instanceof and checkcast byte

codes, the first for the same reason as with xaload, the latter
two because they need to access the object to retrieve its
class which again on Harvard Architecture machines must
be done differently from accessing normal RAM - hence an
extra check is needed in the general case.

To sum up: the cost of supporting constant data in the
HVM has been an extra check introduced in the arraylength,
instanceof, checkcast and xaload byte codes. In Section 6.1
we conclude a worst case cost of approx. 7% increase in
running time.

5.1 Impact on GC
Introducing an extra heap (the constant heap) naturally

affects the garbage collector (GC). The HVM uses a reference
counting GC and to support constant data the following
changes have to be made,

• Collecting constant data. Constant data are by nature
never garbage. They may become unreachable but they
can never be collected since they are placed in Flash
which is read-only. The HVM uses 6 bits for the reference
count and if the reference count becomes 0x3f the GC
will never consider the object garbage. Objects in the
constant data heap are given an initial reference count
of 0x3f

• Updating reference counts. During the initialization
phase it is not needed to update reference counts to
objects in the constant heap - they will be marked
as immortal anyway, but objects in the normal heap
that are referred from the constant heap will have their
reference count updated as normal

If a GC strategy uses a marking phase, the constant heap
may contain references into the ordinary heap. Such refe-
rences are additional roots to the marking phase. This set of
additional roots never changes after the initialization phase.
It seems like a reasonable idea to disable GC during the ini-
tialization phase and then after the initialization phase add
the constant set of additional roots to the full set of GC
roots. Then any mark-sweep collector may safely ignore the
presence of constant data.

6. THE MODBUS APPLICATION REWRIT-
TEN FOR JAVA

In the following we will look at the Modbus application
from Grundfos. Below is a Java version of some Modbus
functionality found in the existing C implementation. This
functionality accounts for a large part of the use of constant
data in that application. The functionality in the form of
constant arrays marks which of a set of 512 registers may be
accessed and which may not be accessed. These tables are
always consulted before acessing the registers, and depen-
ding on the situation, references to different lookup tables
are used. If a register may not be accessed, it is marked as
NOACCESS, otherwise its index into the register array is
given. E.g. when a device is configured for the first time by
a user with administrator priveleges, it should be possible to
access all registers. In this case the configuratorRegisterMap
is used. When running in the field the software should no
longer be able to change everything but only certain parts
of the configuration. In that case the fieldUserRegisterMap

is used. The register array itself (not shown here) is kept in
RAM, but the lookup tables are constant data and can be
kept in Flash.

class ConstantData {
public const int[] fieldUserRegisterMap = {
REG1,
REG2,
NOACCESS,
REG4,
REG5,
NOACCESS,
NOACCESS,
NOACCESS,
REG9,
...,
REG512

};

public const int[] configuratorRegisterMap = {
REG1,
REG2,
REG3,
REG4,
REG5,
REG6,
REG7,
REG8,
REG9,
...,
REG512

};

The Modbus application contains 7 such lookup tables
taking up approx. 3.5 KB of constant memory. In the 4KB
version of the target these tables alone would occupy most of
the available RAM if translated into Java. Only after adding
support for constant data in Flash, is the HVM able to run
the code from the example above. Currently, parts of the
Modbus application is being ported to Java to gain more
experience from using constant data in Flash and from using
Java on the Grundfos platforms in general.

6.1 Measuring Cost
When adding a new feature to a Java execution environ-

ment, it is reasonable to expect, that programs actually
using the feature will have to pay a cost for that in terms of
execution time. On the other hand, programs that do not use
the feature, should not have to pay for it. In the following we
present the result of performing three measurements while
executing the same program on the HVM

1. Executing the program while all data are kept and ac-
cessed in RAM on a HVM build that does not support
constant data in Flash

2. Executing the program while all data are still kept and
accessed in RAM but this time on a HVM build that
does indeed support constant data in Flash

3. Finally, executing the program while all data are kept
and accessed in Flash on a HVM build that does sup-
port constant data in Flash

The program we used creates and scans each element in
the two lookup tables from the Modbus example described
in the previous section. The program was executed on the
ATMega2560 and we measured execution time by counting
clock cycles.

We would expect a rise in execution time of 3) compared
to 1). This corresponds to paying a cost for actually using
the feature. But we would like to see as little rise as possible
in execution time of 2) as this corresponds to paying a cost
for a feature that is not being used.

The results from measuring the cost of adding support for
constant data in Flash on the HVM is listed in Table 2.

As can be seen we pay a cost of approximately 7% in sce-
nario 2) above. We consider this a worst case scenario for the
following reasons: As described in Section 5 it is difficult to
statically decide if array creation and array access op-codes
may be used for accessing Flash data, thus they must be
able to handle the general case where Flash data may be p-
resent. On top of that, array load and array store operations
may be executed many times compared to other byte codes,
if the scanning of arrays is involved. The test program will
execute the byte code newarray twice and the byte codes
arraylength, iastore and iaload many times corresponding
to the length of the arrays.

That there is a cost in actually using the feature and ac-
cessing objects in Flash, in 3) above, is not surprising, but
of course the implementation should seek to get this cost as
low as possible.

6.2 Discussion
The HVM is an interpreter and as such users of it are

aware of a degradation in execution efficiency compared to
AOT or JIT compiled environments. Such users may be wil-
ling to accept an additional degradation of 7.5%. Still, it
seems a high price to pay for supporting constant data in
Flash. Furthermore the HVM is not optimized and futu-
re optimizations of the HVM bringing down the execution
time of all byte codes will most likely increase the percenta-
ge wise cost of supporting Flash data. A possible option to
alleviate this problem is to extend on the static analysis to
make it better at deciding which array access byte codes may
be used to access Flash and substitute these byte codes for
their Flash aware counterparts during compile time. While
this is in general an undecidable problem, data flow analysis
may in practice be able to bring down the average cost.

7. RELATED WORK
The final modifier in the Java language ensures that a

variable is not changed after its initialization. For variables
of basic type, e.g. integer, this works fine but for references
it only ensures that the reference itself is not changed - it is
still possible to change the target of the reference.

Several suggestions have been made to add “read-only”
qualifiers to Java to ensure that both arrays and objects are
not changed if marked read-only (e.g. [4] and [2]). The focus
for their research is to statically enforce rules about proper
use of data and thus be able to catch errors earlier. The
focus of this paper is to be able to minimize use of RAM
by using Flash instead. These two efforts are synergetic in
the sense that any successful suggestion for marking and
statically enforcing read-only data in Java would have as a
direct side effect that the compiler could generate byte codes
to place and access data in Flash.

The suggestion presented in this paper to mark read-only
data at the point of declaration does not ensure or enforce
that read-only data are indeed read-only, but if the program-
mer respects the read-only declaration, then we have shown

Clock Cycles Cost in %
(1) Without Flash support 179827 0%

(2) With Flash support, not using it 193415 7.5%
(3) With Flash support, using it 240258 33.5%

Table 2: Overview of data usage

how that may carry over to save that data in Flash.
The HVM is similar in its design to the TakaTuka VM [1]

and the Darjeeling VM [6]. All three VMs are Flash aware
and store byte codes and other runtime structures in Flash.
To further reduce RAM use at runtime, this paper describes
how runtime items like arrays and objects that are conside-
red read-only can be stored in Flash as well. Since the Taka-
Tuka and Darjeeling VMs are Flash aware interpreter based
environments, it is most likely possible to include the design
for constant data presented here in those environments as
well.

The RTSJ [3] supports accessing physical memory through
the physical memory classes and the raw memory access
classes. This means that the addressed storage could be of
any memory type (RAM, ROM, Flash, etc.). E.g. through
the use of the method

void getLongs(long off, long[] arr, ...)

on the class RawMemoryAccess it is possible to read data
from Flash and store it in the heap in the arr array. As long
as this array is in use it will take up heap space. With the
design presented in this paper, the array can be referred to
directly at its Flash location.

Dividing the execution of a program into several phases is
known from e.g. SCJ [17]. A SCJ application is a sequence
of mission executions. A mission embodies the life cycle of a
safety-critical application. Each mission is comprised of initi-
alization, execution, and cleanup phases. The proper execu-
tion of the application is enforced through the user-defined
implementation of the Safelet interface. The suggestion in
this paper for dividing the execution into an initialization
phase and a following runtime phase could be greatly im-
proved by adopting similar designs.

The idea of doing a partial execution of the initialization
phase is used in other scenarios. An interesting example is
the V8 JavaScript Engine used in Google chrome. In order
to speed up the instantiation of any additional JavaScript
context, the initial setup of built-in objects is done only
once to produce what they call a snapshot : “.. a snapshot
includes a serialized heap which contains already compiled
code for the built-in JavaScript code” [8]. The V8 concept
of a “snapshot” is very similar to the partially evaluated
constant heap described in Section 3.2.

Finally, like C, Ada also supports ’ROM-able objects’ [7].
The support stems from the more general concept of ’pre-
elaboration’, introduced so that real-time programs can start
up more quickly. In Ada a certain class of static expressions
can be evaluated at compile-time, just like a certain part
of expressions in C can. Even though this is introduced to
speed up start-up time, the Ada documentation also states
that pre-elaborated objects are ROM-able.

8. FUTURE WORK
Explicitly marking constant data (see Section 3.1) and

explicitly marking the end of the initialization phase (see

Section 3.2) is a reasonable starting point, but this sugge-
stion can be error prone - runtime errors may occur if con-
stant data are marked incorrectly. This invites us to add tool
support for identifying constant data automatically and for
identifying the end of the initialization phase automatically.

Constant data can informally be described as “data that
is written to once, but read from several times”. The ini-
tialization phase is an execution path that starts from the
beginning of the program and until the last constant data
have been initialized. Can a static analysis of the appli-
cation find the maximal subset of the heap that has the
“write-once/read-many” propertiy? Can the code point that
corrosponds to the transition from the initialization phase
to the mission phase be found? If that execution point and
subset of data can be found through a static analysis, then
the programmer would not have to mark constant heap data,
nor have to mark the end of the initialization phase.

The effort described here to use Flash for constant heap
data is a small part of a larger effort to make Java an at-
tractive alternative to C for embedded software developers.
The overall objective is divided into two parts

1. Make popular features, supported by well known C en-
vironments, available to Java developers as well. Pro-
minent examples of such features are (1) device register
access (2) 1st level interrupt handling and (3) constant
heap data located in Flash.

2. Add tool support to improve on supported features
when compared to their support in C environments.

In relation to (1) above, significant improvements have al-
ready been made. The support for Hardware Objects [15],
1st level interrupt handling [12] and now constant heap data
in Flash may be a prerequisite for many to contemplate
making the transition from C environments to Java environ-
ments. For example, adding tool support for identifying con-
stant data and the related initialization phase will make the
transition from C to Java even more attractive.

The focus of the HVM has not been execution efficiency,
but rather to prove that features known from C environ-
ments (hardware objects, interrupt handling and constant
heap data) - features considered very important by many
embedded developers - can indeed be implemented in a Java
execution environment. Other Java environments for embed-
ded systems have achieved impressive execution efficiency,
e.g.

• Interpretation. The JamVM [10] is considered one of
the most efficient interpreters with execution times ap-
proximately three times slower than compiled C.

• JIT compilation. The Cacao Java JIT compiler [5] is a
highly efficient JIT compiler for embedded systems.

• AOT compilation. The Fiji VM [13], which is an AOT
compilation based execution environment for embed-
ded systems delivers “comparable performance to that

of server-class production Java Virtual Machine imple-
mentations”

These efficient environments for the embedded target could
add support for our features described above, thus taking
away an important obstacle for engineers within the em-
bedded industry to consider Java for their next generation
development of embedded software.

9. CONCLUSION
This paper motivates why it is important to be able to

keep read-only heap data in Flash when executing Java on
small embedded devices. Three industrial applications de-
monstrate the use of constant data in existing C programs
- two of these applications will not be able to run in Java if
constant data cannot be placed and accessed in Flash. These
examples justify the claim that the number of applications
that could potentially be implemented in Java on small em-
bedded devices will be significantly greater if constant data
in Flash is supported.

Engineers are used to being able to place constant data in
Flash in the C environments they use. This paper presents
a design for constant data in Java - and an implementation
in an interpreter based environment. Engineers will in this
respect be able to do in Java what they are used to doing
in C. But they will be able to do more than that: the host
initialization phase can initialize more complicated structu-
res than is possible in C. As long as data are written just
once and the procedure for doing so is deterministic, all usu-
al Java constructs may be used during initialization. In C
only a very limited subset of the language can be used to
initialize constant data. Thus the design presented here not
only adds similar functionality to Java environments, but
extends that functionality as well.

10. ACKNOWLEDGEMENT
Thank you to Niels Jørgen Strøm from Grundfos, who sta-

ted the original requirement that constant heap data had to
be kept in flash, and who formulated the original ideas that
formed the basis for our work. Thank you to Dion Nielsen
from Polycom for allowing us to use their software. A warm
thanks to A.P. Ravn for sharing his great insight and valu-
able comments on the first drafts of the paper. Also a warm
thank you to Hans Søndergaard for reading and commenting
on this paper again and again.

Finally, we are grateful for the instructive comments by
the reviewers which have helped us clarify several points in
this paper.

11. REFERENCES
[1] F. Aslam, C. Schindelhauer, G. Ernst, D. Spyra,

J. Meyer, and M. Zalloom. Introducing takatuka: a
java virtualmachine for motes. In Proceedings of the
6th ACM conference on Embedded network sensor
systems, SenSys ’08, pages 399–400, New York, NY,
USA, 2008. ACM.

[2] A. Birka and M. D. Ernst. A practical type system
and language for reference immutability. SIGPLAN
Not., 39:35–49, October 2004.

[3] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr,
and M. Turnbull. The real-time specification for java

1.0.2. Available at:
http://www.rtsj.org/specjavadoc/book index.html.

[4] J. Boyland. Why we should not add readonly to java
(yet). In In FTfJP, pages 5–29, 2005.

[5] F. Brandner, T. Thorn, and M. Schoeberl. Embedded
jit compilation with cacao on yari. In Proceedings of
the 2009 IEEE International Symposium on
Object/Component/Service-Oriented Real-Time
Distributed Computing, ISORC ’09, pages 63–70,
Washington, DC, USA, 2009. IEEE Computer Society.

[6] N. Brouwers, K. Langendoen, and P. Corke.
Darjeeling, a feature-rich vm for the resource poor. In
Proceedings of the 7th ACM Conference on Embedded
Networked Sensor Systems, SenSys ’09, pages 169–182,
New York, NY, USA, 2009. ACM.

[7] T. B. et. al. Ada 9x project report. Revision request
report, pages 3.2–3.4, The US Department of Defence,
August 1989.

[8] Google. V8 javascript engine, embedder’s guide.
http://code.google.com/apis/v8/embed.html, 2011.

[9] Grundfos. http://www.grundfos.com/. Visited June
2011.

[10] jamvm. http://jamvm.sourceforge.net/. Visited June
2011.

[11] S. Korsholm. Hvm lean java for small devices.
http://www.icelab.dk/, 2011.

[12] S. Korsholm, M. Schoeberl, and A. P. Ravn. Interrupt
handlers in java. In Proceedings of the 2008 11th IEEE
Symposium on Object Oriented Real-Time Distributed
Computing, pages 453–457, Washington, DC, USA,
2008. IEEE Computer Society.

[13] F. Pizlo, L. Ziarek, and J. Vitek. Real time java on
resource-constrained platforms with fiji vm. In
Proceedings of the 7th International Workshop on
Java Technologies for Real-Time and Embedded
Systems, JTRES ’09, pages 110–119, New York, NY,
USA, 2009. ACM.

[14] Polycom. http://www.polycom.dk/. Visited June
2011.

[15] M. Schoeberl, S. Korsholm, C. Thalinger, and A. P.
Ravn. Hardware objects for java. In In Proceedings of
the 11th IEEE International Symposium on
Object/component/serviceoriented Real-time
distributed Computing (ISORC 2008. IEEE Computer
Society, 2008.

[16] A. S. Tanenbaum and J. R. Goodman. Structured
Computer Organization, fifth edition, pages 18, 80.
Prentice Hall, Upper Saddle River, NJ, USA, 2010.

[17] TheOpenGroup. Safety-critical java technology
specification (jsr-302). Draft Version 0.79,
TheOpenGroup, May 2011.

Safety-Critical Java for Low-End Embedded Platforms

Hans Søndergaard, Stephan E.
Korsholm

VIA University College
Horsens, Denmark

{hso,sek}@viauc.dk

Anders P. Ravn
Department of Computer Science

Aalborg University, Denmark
apr@cs.aau.dk

ABSTRACT
We present an implementation of the Safety-Critical Java
profile (SCJ), targeted for low-end embedded platforms with
as little as 16 kB RAM and 256 kB flash. The distinctive
features of the implementation are a combination of a lean
Java virtual machine (HVM), with a bare metal kernel im-
plementing hardware objects, first level interrupt handlers,
and native variables, and an infrastructure written in Java
which is minimized through program specialization. The
HVM allows the implementation to be easily ported to em-
bedded platforms which have a C compiler as part of the
development environment; the bare metal approach elimi-
nates the need for a resource consuming operating system
or C-library; the program specialization means that the in-
frastructure for the SCJ profile is optimized for a particular
application keeping only the code and data the application
needs. The SCJ implementation is evaluated with a known
benchmark and shown to reduce this to a size where it can
execute on a minimal configuration.

Categories and Subject Descriptors
C.3 [Special Purpose and application-based systems]:
Real-time and embedded systems; D.3.3 [Programming
Languages]: Language Constructs and Features

Keywords
Embedded Systems, Real-Time Java, Virtual Machine, Safety-
Critical Java

1. INTRODUCTION
Recently efforts have been made to enable the Java lan-
guage for embedded systems, and environments such as Fi-
jiVM [17], JamaicaVM [25] and PERC [14] show that Java
can be executed efficiently on high-end embedded devices,
thus allowing embedded software engineers to reap the ben-
efits from using Java, tools and methods. The benefits
that desktop and server developers have had for some time.
Java environments for high-end embedded devices are even

Figure 1: Event Driven Scheduling

more powerful than their C counterparts: explicit memory
management is replaced by automatic memory management
through real-time garbage collection, and threads and syn-
chronization are supported by APIs such as the RTSJ [7].
Additionally a significant amount of tools exist for perform-
ing static program analysis of embedded Java programs both
for checking resource consumption, analysing potential run-
time errors, and for specializing programs so they become
more ressouce efficient.

For low-end embedded systems, with limited memory and
computational resources, and usually without a POSIX-like
OS, the evidence that Java can substitute or support the use
of C is not as strong, but environments such as KESO [10],
PERC Pico [3], and Muvium [8] are paving the way.

To further increase the usability of Java for low-end em-
bedded systems we present a SCJ [29] implementation that
runs on systems with a few kBs of RAM and less than 256
kB of ROM. This implementation is, to our knowledge, the
smallest SCJ implementation available in terms of footprint.

Low-end platforms
In order to clarify the kind of platform we have in mind, we
give the example of a KIRK DECT Application Module [20]

from Polycom [19], also called the KT4585. This module is
used to wirelessly transmit voice and data using the DECT
protocol. It has the following features:

• 40 Mhz, 16 bit RISC architecture

• 2 x 8 kB RAM, 768 kB ROM

• Apart from the main processor (a CR16c) the KT4585
module features processors to do voice encoding and
for controlling a radio receiver/transmitter

Polycom uses a C based framework for programming the
main processor of the KT4585. It uses a simple event-driven
programming model. As observed in [11, 9], event-driven
programming is a popular model for writing small embed-
ded systems. Figure 1 illustrates the model: Program logic
is implemented by event handlers that may activate other
handlers by sending events to them. A simple event is just
a signal, but it may also carry a limited amount of data
with it. A dispatcher loop will retrieve a next event from a
list, find the receiving handler, and call it with the event as
actual parameter. Hardware Interrupts (HW) may generate
events through interrupt service routines. Periodic processes
are implemented by a clock driver having a list of handlers
to be signalled at appropriate times.

In our experience, the use of such home-grown, event-driven,
simple RTOS implementations is a popular choice, although
this is not an easy mechanism to analyze for hard real-time
properties. Another common attribute of embedded envi-
ronments, such as the KT4585, is that since memory is lim-
ited, a common solution to memory management is to allo-
cate most memory during application start up and only to
a limited extent use dynamic memory management.

These observations suggest that Java, together with the SCJ
profile, can fulfill the requirements of environments such as
the KT4585, both in terms of scheduling mechanisms and
memory management. Environments such as KESO and
Muvium already show that Java in itself can be enabled for
such small devices, and it is our hypothesis that the SCJ
profile as well can be made to run at this level and fit well
with known architectural concepts.

The SCJ-HVM framework
In order to execute Java programs on low-end platforms we
need: a resource efficient Java virtual machine, a minimal
hardware interface layer, and a somewhat more elaborate
infrastructure that implements the SCJ profile. The archi-
tecture of the implementation is shown in Figure 2.

The virtual machine is the HVM and Section 2 gives an
overview of the HVM showing how it meets our requirements
for resource efficiency.

The minimal hardware interface layer is specified by VMInter-

face. According to Figure 2 this interface is divided into
three parts:

• Memory allocation can be controlled through the class
AllocationArea. Using facilities of this class, the SCJ

Figure 2: SCJ architecture with the VMInterface to
HVM.

infrastructure can control where allocations done by
e.g. the new and newArray instructions of the HVM are
made. The current allocation area can be exchanged
with another to eventually implement SCJ memory se-
mantics

• Process scheduling is done through an interface to the
CPU that defines a minimal Process object1, with meth-
ods for initialization and an associated static ProcessSe-

quencer class that implements a context switch

• Finally the interface to a Clock specifies methods to
get the granularity and the absolute time; for efficiency
reasons it has a delayUntil method.

Further details of the implementation including the use of
the novel feature of native variables are in Section 2.

The SCJ infrastructure is discussed in detail in Section 3. It
introduces the main concepts of the profile and then focuses
on implementation of the infrastructure at the Java level of
nested scoped memories and scheduling of the handlers that
implement program logic. In particular, we show implemen-
tations of a static cyclic executive as well as a fixed priority
preemptive scheduler. Thus all parts of the SCJ, including
the schedulers, are implemented in pure Java.

A crucial part of the framework does not show up. It is the
program specialization that works together with the HVM.
It is an intelligent class linking, where a static analysis of
the Java source base is performed. It computes a conser-
vative estimate of the set of classes and methods that may
be executed in a run of the entire program. Only this set
is translated into C and included in the final executable.
This can for instance eliminate a cyclic executive if missions
only use fixed priority preemptive scheduling or vice versa.
The implications are shown in Section 4 that evaluates the
framework using the refactored CDx benchmark [12], called

1So named in recognition of the Modula 2 ancestry [31]

miniCDj [18]. The result is that this application fits on the
very small platform mentioned in the beginning.

In summary, the contribution of this paper is a SCJ imple-
mentation for low-end embedded platforms with as little as
16 kB RAM and 256 kB flash. This is achieved by combin-
ing:

• The HVM virtual machine

• Hardware near features like native variables, hardware
objects, and 1st level interrupt handlers, allowing for
an implementation almost without a native layer

• Program specialization to eliminate superfluous infras-
tructure

Yet, this is just one step forward. There are still interesting
questions of making the ensemble more space and execution
time efficient, perhaps by generalizing some interactions on
the interface. This is discussed in the concluding Section 6.

2. THE HVM
To support the execution of the SCJ profile on low-end em-
bedded systems, it has been built on top of the features of
the HVM. The HVM is a lean Java virtual machine for low-
end embedded devices. It is a Java-To-C compiler but sup-
ports interpretation as well. The main distinguishing feature
of the HVM is its ability to translate a single piece of Java
code into a self contained unit of ANSI-C compatible C code
that can be included in an existing build environment with-
out adding any additional dependencies. The raison d’̈ı£¡tre
of the HVM is to support the stepwise addition of Java into
an existing C based build and execution environment for low-
end embedded systems such as the KT4585. We call this
feature integrateability, and it enables the translated Java
code to be included in an existing, possibly non-standard,
C based build and execution environment. Other important
features of the HVM are,

• Intelligent class linking. A static analysis of the Java
source base is performed. This computes a conserva-
tive estimate of the set of classes and methods that
may be executed in a run of the program. Only this
set is translated into C and included in the final exe-
cutable

• Execution on the bare metal (no POSIX-like OS re-
quired). The generated source code is completely self
contained and can be compiled and run without the
presence of an OS or C runtime library

• Hybrid execution style. Individual methods (or all
methods) can be marked for compilation into C or in-
terpretation only. Control can flow from interpreted
code into compiled code and vice versa. Java excep-
tions are supported and can be thrown across interpre-
tation/compilation boundaries

• First level interrupt handling. The generated code is
reentrant and can be interrupted at any point to al-
low for the immediate handling of an interrupt in Java
space

• Hardware object support. The preferred way to pro-
gram basic I/O in the HVM is to use Hardware Objects
according to [23]. Hardware objects is a way to access
device registers from Java code in a controlled manner

• Native variable support. Native variables as described
in Section 2.1.1 are supported

• Portability. Generated code does not utilize compiler
or runtime specific features and can be compiled by
most cross compilers for embedded systems e.g. GCC
or the IAR C Compiler from Nohau [15].

The HVM does not support garbage collection, but relies on
the use of the SCJ scoped memory model.

2.1 The VM Interface
The minimal hardware interface layer as specified by the
VMInterface, is implemented in the HVM almost entirely in
Java. It contains the following main parts:

public interface VMInterface {
public class AllocationArea { ... }

public class Process { ... }
public class ProcessScheduler { ... }
public class ProcessSequencer { ... }

public class RealtimeClock { ... }
}

The AllocationArea class defines the connection to a hard-
ware memory area where objects and arrays can be created.

The Process classes define an execution context for the vir-
tual machine, the Java stack and the logic to be executed.
At a context switch, internal registers of the virtual machine
and the native processor are saved on the stack.

The class RealtimeClock defines an interface to a hardware
clock.

In the following we will look at how each part of this in-
terface: the memory access part, the scheduling part, and
the realtime clock part, is implemented in the HVM, keep-
ing in mind that this will later form the basis for our SCJ
implementation described in Section 3.

2.1.1 AllocationArea
The VMInterface defines a memory area for object allocation
by two machine addresses (assumed to be 32 bit integers):
the base of the area, and free, the first free location for a
new object. Additionally, the maximal size of the area is
given by the integer size. Thus the invariant base + size

>= free is maintained.

During start-up the HVM statically allocates a single consec-
utive area of RAM memory to be used as the Java memory.
Since the HVM does not support GC, but relies on the use
of the SCJ memory model, the management of allocation in
this consecutive area of RAM is very simple and based on
only three variables:

unsigned char* HVMbase;
uint32_t HVMfree;
uint32_t HVMsize;

Thus there is a direct correlation between the base, free, and
size variables of the AllocationArea and these variables in
the HVM. If it could be supported to set the HVM variables
directly from Java space, it could be controlled from Java
space where allocation would take place. This is supported
in the HVM through the novel concept of native variables.
Native variables are a facility for changing, from Java space,
the value of C data variables in the underlying VM. In the
HVM, only static Java variables can be marked as native
variables as illustrated in Figure 3 below.

@IcecapCVar
private static int HVMbase;

Marking a static Java variable as a native variable.

Reads and writes to this variable will actually be to the

native C variable with the same name instead.

Figure 3: Marking native variables

When this variable is accessed from Java it is not being set
as a static class variable, rather the Java-to-C compiler will
generate code accessing the C variable HVMbase instead.

In a similar manner the other variables are declared as native
variables:

public class AllocationArea {
private int base;
private int size;
private int free;
...
@IcecapCVar
private static int HVMbase;
...
@IcecapCVar
private static int HVMsize;
...
@IcecapCVar
private static int HVMfree;
...

}

Using this facility, Java methods can be called at runtime
to set the point of allocation for Java heap data, thus directly
controlling memory allocations from Java space. These meth-
ods are the following,

@IcecapCompileMe
public static int allocateBackingStore(
int backingStoreSize) {...}

@IcecapCompileMe
public static void switchAllocationArea(
AllocationArea newScope,
AllocationArea oldScope) {...}

The static method allocateBackingStore takes a block from
the current allocation area of size backingStoreSize. It re-
turns the base of the area, given that the precondition

HVMfree + backingStoreSize <= HVMbase + HVMsize

holds. This method is really an allocation of a piece of un-
initialized memory.

And finally, a static method switchAllocationArea saves
the current allocation area in oldScope and sets it to newS-

cope.

Both of these can be written in Java, but they have to be
compiled in order to ensure atomic execution with respect to
the HVM. The @IcecapCompileMe annotation ensures that
the annotated method will always get compiled, and never
interpreted.

This is a very lean interface to memory allocation. Yet it
enables nested scoped allocation of memory areas at the Java
level without polluting the virtual machine if these are not
used, for instance in a garbage collection based environment.

2.1.2 Process
The context for an executable logical process is initialized
by a static method:

static Process newProcess(Runnable logic, byte[] stack)

Preemption of a currently running process is done in an
interrupt method of a private class which calls a scheduler
to getNextProcess and then does a context switch.

HVM
Process

Sequencer
Process

Scheduler

return

store context
stackPointer = sp
sp = schedulerStack

interrupt !!!

process = getNextProcess()

Assembler
Stub

interrupt()

process.sp =
 stackPointer

stackPointer =
 process.sp

sp = stackPointer
restore context

return !!!

Figure 4: Context switch through the layers.

Figure 4 describes the sequence involved in a process pre-
emption and context switch. First an interrupt occurs and
an interrupt service routine implemented in assembler is en-
tered. This routine saves all machine registers on the stack
and then sets the C variable stackPointer to the current
value of the stack pointer. Then the stack pointer is set
to the beginning of a special stack used by the ProcessSe-

quencer and ProcessScheduler. Now the flow of control
enters Java space. The C code generated by the HVM tools
are such that static Java methods can be called directly
from C without any further setup. In this case the Pro-

cessSequencer contains a static method interrupt which

gets called. It saves the C variable stackPointer in the pre-
empted Process object, by mapping it to a native variable as
described in the previous section. Then the ProcessSched-

uler is called to getNextProcess. The stack pointer of the
new Process object is saved in the native variable stack-

Pointer and flow of control returns to the interrupt service
routine which sets the stack pointer to the value of stack-

Pointer and restores the processor context and returns from
interrupt handling to resume the execution of the next pro-
cess.

The interrupt used to start the preemption and context
switch can be based on a hardware clock of the underly-
ing micro controller. Since the HVM supports Hardware
Objects as described in [23] it is straightforward to start a
hardware timer triggering an interrupt. Because the HVM
generates reentrant code, the interrupt can be handled al-
most entirely in Java. The only part of the sequence in
Figure 4 that is not implemented in Java is the assembler
code stub manipulating the micro controller stack pointer
register. This means that in order for the Process frame-
work to run on a new architecture this assembler stub has
to be reimplemented using the instruction set of the new
target. Currently implementations exist for 32 and 64 bit
Intel, the KT4585 and the AVR ATMega2560 [4].

2.1.3 RealtimeClock
This is a simple class that binds to a simple hardware clock.

public class RealtimeClock {
public static void getGranularity(RelativeTime grain) {
...}
public static void getCurrentTime(AbsoluteTime now) {
...}
public static void delayUntil(AbsoluteTime time) {
...}
}

Implementing the RealtimeClock class is platform specific.
On the KT4585 several hardware clocks can be started through
proper configuration of devices registers, which can be done
using Hardware Objects. The current development platform
for the KT4585 has a counter uint32_t systemTick. This
variable is continuously updated by the KT4585 RTOS ev-
ery 10 ms and used to measure system time. Using native
variables this counter can be accessed directly from Java
space:

@IcecapCVar
static int systemTick;

3. THE SCJ PROFILE
That particular event model mentioned above, suitable for
programming low-end embedded platforms, is supported by
the SCJ profile.

An application executes a sequence of missions. The mis-
sions are executed serially by an infrastructure MissionSequencer

that has the flow shown in Figure 5.

A mission is a real-time program where schedulability can be
checked. It consists of a fixed number of handlers with the

usual temporal properties of a real-time process. Handlers
are either periodic or aperiodic. The necessary assumptions
to check schedulability of aperiodic handlers are not part
of the profile. Level 2 of the profile, which is not included
in this implementation, allows MissionSequencers as a third
kind of handler. Thereby Level 2 opens up for nested, con-
current missions.

Level 0 uses a Cyclic executive and therefore allows peri-
odic handlers only. Level 1 has a Fixed Priority Preemptive
Scheduler and admits aperiodic handlers as well.

Each handler has a private memory for temporary objects
that are created during execution of the handler’s applica-
tion logic which is the handleAsyncEvent method. This mem-
ory is reset at the end of the handleAsyncEvent method call.

A mission has a mission memory in which the handlers of
the mission are created together with objects that are shared
between the handlers. The lifetime of the objects in mission
memory is the lifetime of the mission.

Since a SCJ application consists of one or more missions, the
application has an immortal memory in which the missions
are created and which may contain inter-mission data as
well. The lifetime of immortal memory is the lifetime of the
application.

Thus the SCJ memory model defines the three allocation
context memories for allocating objects: immortal mem-
ory, mission memory, and private memory. The concept
of scoped memories is inherited from RTSJ, but simplified
and restricted, and SCJ does not support a heap with a
garbage collector.

Different SCJ implementations exist:

• on top of RTSJ

• with a native function layer to the JVM

• a bare metal version

The first two types of SCJ implementations were the first
to come into existence [29, 18]. The second one is exempli-
fied by the oSCJ/L0 implementation [18], whereas no SCJ
implementation has until now been done using hardware ob-
jects and other hardware near features.

Due to the limitations of low-end embedded platforms where
the event-driven programming model most often is used, we
have implemented Level 0 and Level 1 only. The implemen-
tation follows the specification in [30] and is for single core
controllers.

Because the implementation of full SCJ is done entirely in
Java and looks much like previous implementations, only
classes which use the VMInterface will be considered in the
following, cf. Figure 2.

3.1 Implementing Scoped Memory
The SCJ MemoryArea class extends the AllocationArea class
in VMInterface.

SetUpMissionMemory

NextMission?

/mi = this.getNextMission()

mi == null ||
stop

InitialiseMission
in MissionMemory

mi != null && !stop

WaitMissionTermination

MissionCleanup

StartHandlers

Figure 5: Mission sequencing.

It has a singleton static AllocationAreaStack to keep track of
the memory area scopes. The stack method pushAllocArea,
besides pushing the parameter allocation area aa on the
stack also switches allocation areas; popAllocArea is imple-
mented in a correspondingly way.

Two static fields, immortal and currentArea, hold references
to the immortal memory and the current memory area, re-
spectively.

public class MemoryArea extends AllocationArea
implements AllocationContext

{
static class AllocationAreaStack
{
private Stack<AllocationArea> allocationAreaStack;

private static AllocationAreaStack stack
= new AllocationAreaStack();

...
void pushAllocArea(AllocationArea aa) {...}
void popAllocArea() {...}

}

static ImmortalMemory immortal;
static MemoryArea currentArea;
...

}

The MemoryArea class implements the methods specified in
the AllocationContext interface:

public class MemoryArea extends AllocationArea

implements AllocationContext
{
...
public void executeInArea(Runnable logic)
throws IllegalArgumentException {...}

// the rest of the methods from AllocationContext
}

In executeInArea, the push- and popAllocArea are used:

public void executeInArea(Runnable logic) throws ... {
...
AllocationAreaStack.instance().pushAllocArea(this);

logic.run();

AllocationAreaStack.instance().popAllocArea();
}

3.2 Implementing Process Scheduling
In SCJ the scheduling is based on the cyclic executive ap-
proach at Level 0, and the fixed priority preemptive approach
at Level 1.

An infrastructure class ScjProcess uses Process.newProcess
to instantiate a Process object for the HVM. This process
object will be created for the specific platform architecture
and encapsulates the SCJ handler.

class ScjProcess
{
Process process;
ManagedEventHandler target;

ScjProcess(ManagedEventHandler handler, int[] stack)
{
this.target = handler;

this.process = Process.newProcess(
new Runnable() {
public void run() {
target.privateMemory.enter(new Runnable() {
public void run() {
target.handleAsyncEvent();

}
});

}
}, stack);

}
..

}

The abstract class ProcessScheduler in VMInterface is ex-
tended by an infrastructure class ScjProcessScheduler which
implements the getNextProcess() method. The encapsu-
lated handler in the returned process object depends on the
SCJ Level: At Level 0 the process object is returned with a
mission sequencer; at Level 1 the handler with the highest
priority is taken from a priority queue and returned in the
process object.

public final Process getNextProcess() {
ScjProcess scjProcess;

if (scjLevel == 0) {
scjProcess = CyclicScheduler.instance().
getCurrentProcess();

...
} else {
scjProcess = PriorityScheduler.instance().
move();

...
}

return scjProcess.process;
}

The context switch is done by the ProcessSequencer class
which is instantiated by a scheduler. The call of get-

NextProcess() is in outline:

public abstract class ProcessSequencer
{
public ProcessSequencer(ProcessScheduler scheduler) {...}

private void interrupt() {
...
saveSP(currentProcess);
...
currentProcess = scheduler.getNextProcess();
...
restoreSP(currentProcess);
...

}
...
public static ProcessSequencer
getProcessSequencer(ProcessScheduler scheduler) {...}

public final void start() {...}
}

At Level 1, processes waiting for release are stored in another
priority queue sorted on absolute release time. This queue
is updated as a side effect of the getNextProcess call.

Finally, in the two scheduler classes, CyclicScheduler and
PriorityScheduler, the getProcessSequencer(...).start()
method is called. The CyclicScheduler class is an infras-
tructure class.

3.3 Implementing Realtime Clock
The static methods in the VMInterface.RealtimeClock class,
cf. Subsection 2.1.3, are used in SCJ by for example the
RealtimeClock class.

The delayUntil construct is not absolutely needed. It can
be replaced by a busy wait in the CyclicExecutive class
where it is used. Yet, it may be more efficient in terms
of for instance power to implement it by special processor
instructions.

The getGranularity method is needed if an initialization
needs to check assumptions that have been made in an off-
line schedulability test. It seems better to record such as-
sumptions in a prelude instead of letting the application run
with a platform mismatch.

4. EVALUATION

In this section we will check the ROM and RAM require-
ments for our SCJ implementation, and we will briefly look
at execution efficiency though this is not the main focus of
our effort.

ROM requirements are demonstrated with the well known
benchmark miniCDj from [18]. The HVM can fully analyze,
compile and run the miniCDj benchmark on 32 and 64 bit
Intel platforms, but the benchmark requires a backing store
of at least 300 kB, so we will not be able to run it on a low-
end embedded system. Still, we will compile it for a low-
end embedded system to assess how well the HVM program
specialization can keep the ROM footprint down.

To demonstrate RAM requirements we will run a simple SCJ
application consisting of 1 mission and 3 periodic handlers
scheduled by a priority scheduler. This application can run
with a backing store of approx 8 kB, thus allowing us to
deploy it on the KT4585.

Finally we show preliminary measurements comparing the
execution efficiency of the HVM with KESO and FijiVM.

4.1 ROM requirements
After some minor adjustments the miniCDj benchmark com-
piles against the javax.safetycritical package from our
SCJ implementation described in Section 3. As JDK we use
the OpenJDK 1.6.0 class libraries in this evaluation. After
the HVM program specialization has optimized the appli-
cation, a total of 151 classes and 614 methods are included
in the final binary. These classes are divided between the
packages as shown in Figure 6.

Classes Methods
java.lang.* 46 171
java.util.* 10 42

javax.safetycritical.* 46 185
minicdj.* 49 216

Total 151 614

Figure 6: Program specialization results

Since our KT4585 C-runtime does not support float and
double - two data types used heavily by the miniCDj bench-
mark - we compiled the generated C code for a similar plat-
form with float support: the AVR ATMega2560 platform
from Atmel. This is a 8 bit architecture with 8 kB of RAM
and 256 kB of flash. We compiled the code using the avr-gcc
compiler tool chain [4] .

The resulting ROM requirements are listed in Figure 7. Re-
sults are listed for a mostly interpreted and for a compilation
only configuration.

Using the mostly interpreted configuration, the ROM meets
our goal with a large margin and is well below the 256 kB
available on the ATMega2560. Using the compilation only
configuration, the resulting application is approximately 276
kB and no longer fits onto the ATMega2560.

The reason for the difference in ROM size between the com-
pilation and interpretation configuration, is that C code gen-
erated by the HVM Java-to-C compiler, requires more code

ROM
Mostly interpreted 94682
Compilation only 282166

Compiling the miniCDj benchmark for an 8 bit low-

end device (ATMega2560), using the HVM and the avr-

gcc compiler tool-chain. Numbers in bytes.

Figure 7: HVM-SCJ ROM requirements

space than the original Java byte codes. Whether this is a
general rule cannot be inferred from the above, and if the
HVM Java-to-C compiler was able to produce tighter code
the difference would diminish. But this experiment has an
interesting side-effect and shows, that in the particular case
of the HVM, the hybrid execution style allows us to run
programs on low-end embedded devices, that we would oth-
erwise not be able to fit on the device.

The work reported in [18] shows results from running the
miniCDj benchmark on the OVM, but it does not report a
resulting ROM size. It states however that the benchmark is
run on a target with 8MB flash PROM and 64MB of PC133
SDRAM - a much larger platform than the ATMega2560.

4.2 RAM requirements
In our simple SCJ application with 1 mission and 3 han-
dlers, the RAM usage can be divided into the parts shown
in Figure 8. The stack sizes and the required sizes for the
SCJ memory areas were found by carefully recording alloca-
tions and stack height in an experimental setup on a PC host
platform. We then compiled the application for the KT4585
using the gcc cross compiler for the CR16c micro-controller
(this benchmark does not utilize float or double).

SCJ related
’Main’ stack 1024

Mission sequencer stack 1024
Scheduler stack 1024
Idle task stack 256

3xHandler stack 3072
Immortal memory 757
Mission memory 1042

3xHandler memory 3x64 = 192
HVM infrastructure

Various 959
Class fields 557

Total 9907

Numbers in bytes.

Figure 8: HVM-SCJ RAM requirements

The results show that a total of approx 10 kB RAM is re-
quired. The ROM size of the application is approx 35 kB.
These numbers enable us to run SCJ applications on low-end
embedded systems such as the KT4585.

4.3 Execution efficiency
To give a hint at the execution efficiency of the HVM com-
pared to another well known similar environment we have

executed 4 home-made benchmarks using both native C,
KESO, and the HVM. This method is based on the same
idea as the miniCDj and CDc benchmarks; to create similar
programs in both C and Java and compare their execution
time.

We executed the benchmarks on the ATMega2560 platform
and accurately measured the clock cycles used using the
AVR Studio 4 simulator. The results are listed in Figure 9.

C KESO HVM

Quicksort 100 108 130
Trie 100 223 486

Determinant 100 190 408
WordReader 100 331 362

Average 100 213 347

Figure 9: Cycle count comparison

From this we can conclude that for the benchmarks tested,
KESO is approximately 2 times slower than C and the HVM
is apporximately 3 times slower than C.

To compare KESO, FijiVM, and HVM (GCJ included for
reference as well), we had to move to a 32 bit Linux plat-
form and arrived at the results listed in Figure 10. These
results are obtained by measuring instruction counts using
the PAPI API [16], and not clock cycles as in Figure 9.

C KESO FijiVM HVM GCJ

Quicksort 100 101 136 111 172
Trie 100 93 54 136 245

Determinant 100 59 37 96 171
WordReader 100 251 218 177 328

Average 100 126 111 130 229

Figure 10: Instruction count comparison

A more elaborate description of the methods used to obtain
these numbers are available from the HVM website [13].

5. RELATED WORK
The work reported here would have been impossible with-
out the inspiration from other researchers. Some sources
have already been mentioned in the preceding sections. In
the following, the related work which we have studied, is
more systematically summarized in the main innovation ar-
eas: Java virtual machines, program specialization, and bare
metal implementation, as well as SCJ concepts and imple-
mentations.

5.1 Java Virtual Machines
Our main sources of inspiration have been the FijiVM [17]
and the KESO VM [10]. Both are based on Java-to-C com-
pilation, just like the HVM. The FijiVM ensures hard real-
time execution guarantees, including real-time GC, of Java
software on high-end embedded systems. It produces strik-
ingly efficient C code (see Section 4.3). The FijiVM requires
a POSIX-like OS and produces executables too large for low-
end embedded systems. The KESO VM comes very close to

offer the same kind of integrateability as the HVM: it pro-
duces sufficiently small executables and strips away unused
code. The code produced by KESO require the presence
of certain OSEK specific header files and certain standard
features of the C-runtime. But it is our impression that it
would be possible to make KESO just as integrateable as the
HVM with only a limited effort. Neither FijiVM nor KESO
support interpretation, which is supported by the HVM. In
comparison with FijiVM and KESO the main contribution
of the HVM is the support for integrateability of Java into
an existing C based build and execution environment.

5.2 Program Specialization
The method applied to do program specialization (the act of
shrinking a given application to contain only actual depen-
dencies) is an instance of the k-CFA algorithm as described
in [24]. The core problem is actually that of doing type
inference of virtual method calls. At virtual method call
sites the HVM performs a variable-type analysis (VTA) as
introduced by [28]. For all possible paths leading up to a
virtual call site the analysis keeps track of all classes that
may have been instantiated. This limits the set of imple-
mentations that may be invoked. It may be necessary to
repeat the analysis as new possibly instantiated classes are
discovered. This method is known to terminate (see [24]).
No SCJ specific optimizations are applied.

During the program specialization phase the HVM loads
class files using the BCEL API [2].

5.3 Bare Metal Implementation
Here we have essentially been building on the journal arti-
cle [22] that consolidates work in which we have participated.
For background on this subarea, we refer to the article.

5.4 SCJ
Clearly we have been inspired by having access to succes-
sive drafts from the committee on the SCJ profile [29, 30].
We have wholeheartedly embraced the main concepts struc-
turing a real-time application, although we have questioned
details and design decisions [6, 27]. For the memory model
we have learned much from the JOP implementation [21].
Further, we have learned from the early implementations [18,
1]. As a stepping stone toward the implementation presented
here, we have done an implementation using RTSJ [26] but
based on delegation instead of inheritance as in [1]. Inheri-
tance from RTSJ does not help in making an implementation
lean.

6. CONCLUSION
The main result of this work is shown in the evaluation. It
is indeed feasible to use an SCJ implementation for low-end
platforms. It is important, because SCJ supports a program-
ming style close to what embedded system programmers use,
although in a safer language than the usual combination of
C and assembly language. On this line we mention that we
are already interacting with companies that would like to
evaluate the potential for their developments.

Nevertheless, there is a research perspective as well, where
this work may inspire others to take up ideas from this im-
plementation. The key is the combination of a lean virtual

machine, program specialization, and bare metal implemen-
tation, combined with the SCJ concepts in an infrastruc-
ture. This has been presented already, but during the work
we have found a number of areas where they might be gen-
eralized or taken even further. Most of the ideas centre on
the interface between the virtual machine and the infras-
tructure, which could be a more general profile, for instance
full Java.

An issue that strikes us is, that a Level 0 application with a
cyclic executive is essentially a sequential program. It could
become that simple, if the initial thread is the initial mission
sequencer, which continues to execute the CyclicScheduler

until a misssion termination is signalled. That eliminates all
context switching for the processor for cyclic executives; we
have a sequential program execution.

The idea may be taken a step further. Since the mission
sequencer is the only active entity between missions (Level 0
and 1), there is no reason why schedulers should not change
between missions, that allows mixed Level 0 and Level 1
missions using the expected scheduling discipline. An added
benefit might be that data structures for scheduling can be
allocated in mission memory, thus they are reclaimed and
do not fill up immortal memory.

Another idea is to include Object layout via VMInterface,
that would pave the way for a garbage collector in Java,
given that roots can be provided.

A simplification of the stub scheduler in the VMInterface

seems feasible if the RealtimeClock becomes a proper inter-
rupt handler. It should then call the ’interrupt’ of the stub
for every tick and update variables representing the time.

In the implementation, we have not yet included a monitor
to realize synchronized methods. Since it must use a priority
ceiling protocol for Level 1, it has to interact with the sched-
uler and thus requires some public disable/enable methods
in the virtual machine interface.

Breaking away from these concrete ideas, we would finally
like to mention that this implementation, which is already
embedded in an Eclipse environment, needs to be supple-
mented by more tools before we have a development en-
vironment for a working programmer. However, this is a
longer story. For some of our ideas in this context, we refer
to [5].

7. ACKNOWLEDGMENTS
This work is part of the CJ4ES project and received partial
funding from the Danish Research Council for Technology
and Production Sciences under contract 10-083159. The au-
thors are very grateful to Martin Scoerberl for his comments
on an early draft. We would also like to thank the reviewers
for their instructive comments which have helped us clarify
several points in this paper.

8. REFERENCES
[1] aicas. http://www.aicas.com/jamaica.html. Visited

June 2012.

[2] Apache. BCEL Manual. Available at:
http://commons.apache.org/bcel/manual.html,

2012. Visited June 2012.

[3] Atego. Aonix Perc Pico. Available at:
http://www.atego.com/products/aonix-perc-pico/.

[4] AVRFeaks. AVR Freaks.
http://www.avrfreaks.net/, Visited June 2012.

[5] T. Bøgholm, C. Frost, R. R. Hansen, C. S. Jensen,
K. S. Luckow, A. P. Ravn, H. Søndergaard, and
B. Thomsen. Towards harnessing theories through tool
support for hard real-time Java programming.
Innovations in Systems and Software Engineering,
June 2012.

[6] T. Bøgholm, R. R. Hansen, A. P. Ravn, B. Thomsen,
and H. Søndergaard. A Predictable Java profile -
rationale and implementations. In JTRES 2009:
Proceedings of the 7th international workshop on Java
technologies for real-time and embedded systems, pages
150–159, New York, NY, USA, 2009. ACM.

[7] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr,
and M. Turnbull. The Real-Time Specification for
Java. Java Series. Addison-Wesley, 2000.

[8] J. Caska and M. Schoeberl. Java dust: how small can
embedded Java be? In Proceedings of the 9th
International Workshop on Java Technologies for
Real-Time and Embedded Systems, JTRES ’11, pages
125–129, New York, NY, USA, 2011. ACM.

[9] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali.
Protothreads: simplifying event-driven programming
of memory-constrained embedded systems. In SenSys
’06: Proceedings of the 4th international conference on
Embedded networked sensor systems, pages 29–42,
New York, NY, USA, 2006. ACM Press.

[10] C. Erhardt, M. Stilkerich, D. Lohmann, and
W. Schröder-Preikschat. Exploiting static application
knowledge in a Java compiler for embedded systems: a
case study. In Proceedings of the 9th International
Workshop on Java Technologies for Real-Time and
Embedded Systems, JTRES ’11, pages 96–105, New
York, NY, USA, 2011. ACM.

[11] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
and D. Culler. The nesc language: A holistic approach
to networked embedded systems. In PLDI ’03:
Proceedings of the ACM SIGPLAN 2003 conference
on Programming language design and implementation,
pages 1–11, New York, NY, USA, 2003. ACM Press.

[12] T. Kalibera, J. Hagelberg, F. Pizlo, A. Plsek,
B. Titzer, and J. Vitek. CDx: a family of real-time
Java benchmarks. In Proceedings of the 7th
International Workshop on Java Technologies for
Real-Time and Embedded Systems, JTRES ’09, pages
41–50, New York, NY, USA, 2009. ACM.

[13] S. E. Korsholm. HVM (hardware near virtual
machine). http://www.icelab.dk/, Visited June 2012.

[14] K. Nilsen. Differentiating features of the PERC virtual
machine. Available at:
http://www.aonix.com/pdf/PERCWhitePaper_e.pdf,
2009.

[15] NOHAU. http://www.nohau.se/iar. Visited January
2012.

[16] PAPI. Papi - the Performance Application
Programming Interface.
http://icl.cs.utk.edu/papi/index.html, 2012.

[17] F. Pizlo, L. Ziarek, and J. Vitek. Real time Java on

resource-constrained platforms with Fiji vm. In
Proceedings of the 7th International Workshop on
Java Technologies for Real-Time and Embedded
Systems, JTRES ’09, pages 110–119, New York, NY,
USA, 2009. ACM.

[18] A. Plsek, L. Zhao, V. H. Sahin, D. Tang, T. Kalibera,
and J. Vitek. Developing safety critical Java
applications with oSCJ/L0. In Proceedings of the 8th
International Workshop on Java Technologies for
Real-Time and Embedded Systems, JTRES ’10, pages
95–101, New York, NY, USA, 2010. ACM.

[19] Polycom. http://www.polycom.dk/. Visited January
2012.

[20] Polycom. The KIRK DECT application module 6.0.
http://www.polycom.eu/products/voice/wireless_

solutions/dect_communications/modules/dect_

krm_application.html, 2012.

[21] M. Schoeberl. Memory management for safety-critical
Java. In Proceedings of the 9th International
Workshop on Java Technologies for Real-Time and
Embedded Systems, JTRES ’11, pages 47–53, New
York, NY, USA, 2011. ACM.

[22] M. Schoeberl, S. Korsholm, T. Kalibera, and A. P.
Ravn. A Hardware Abstraction Layer in Java. ACM
Trans. Embed. Comput. Syst., 10(4):42:1–42:40, Nov.
2011.

[23] M. Schoeberl, S. Korsholm, C. Thalinger, and A. P.
Ravn. Hardware objects for Java. In In Proceedings of
the 11th IEEE International Symposium on
Object/component/serviceoriented Real-time
distributed Computing (ISORC 2008. IEEE Computer
Society, 2008.

[24] O. Shivers. http://www.ccs.neu.edu/home/shivers/
citations.html#diss. Visited August 2012.

[25] F. Siebert. Realtime garbage collection in the
JamaicaVM 3.0. In Proceedings of the 5th
international workshop on Java technologies for
real-time and embedded systems, JTRES ’07, pages
94–103, New York, NY, USA, 2007. ACM.

[26] H. Søndergaard and A. P. Ravn. Implementation of
Predictable Java (PJ) and Safety Critical Java (SCJ).
http://it-engineering.dk/HSO/PJ/, Visited June
2012.

[27] H. Søndergaard, B. Thomsen, A. P. Ravn, R. R.
Hansen, and T. Bøgholm. Refactoring Real-Time Java
profiles. In ISORC 2011: Proceedings 2011 14th IEEE
International Symposium on
Object/Component/Service-Oriented Real-Time
Distributed Computing, pages 109 – 116, Los Alamitos,
CA, USA, 2011. IEEE.

[28] V. Sundaresan, L. Hendren, C. Razafimahefa,
R. Vallée-Rai, P. Lam, E. Gagnon, and C. Godin.
Practical virtual method call resolution for java.
SIGPLAN Not., 35(10):264–280, Oct. 2000.

[29] TheOpenGroup. Jsr 302: Safety Critical Java
Technology. http://jcp.org/en/jsr/detail?id=302,
2006.

[30] TheOpenGroup. Safety-Critical Java Technology
Specification. Draft Version 0.79, TheOpenGroup,
May 2011.

[31] N. Wirth. Programming in Modula-2. Springer Verlag,
1985.

Towards a Real-Time, WCET Analysable JVM Running in 256
kB of Flash Memory

Stephan Korsholm
VIA University College
8700 Horsens, Denmark

sek@viauc.dk

Kasper Søe Luckow
Aalborg University

9220 Aalborg, Denmark
luckow@cs.aau.dk

Bent Thomsen
Aalborg University

9220 Aalborg, Denmark
bt@cs.aau.dk

1 Introduction

The Java programming language has recently received much attention in the real-time systems commu-
nity as evidenced by the wide variety of initiatives, including the Real-Time Specification for Java[8],
and related real-time profiles such as Safety-Critical Java[6], and Predictable Java[3]. All of these focus
on establishing a programming model appropriate for real-time systems development. The motivation
for the profiles has been to further tightening the semantics, for accommodating static analyses, such as
Worst Case Execution Time (WCET) analysis that serves an integral role in proving temporal correctness.

Evidently, the presence of the Java Virtual Machine (JVM) adds to the complexity of performing
WCET analysis. To reduce the complexity, a direction of research has focused on implementing the
JVM directly in hardware[9]. To further extend the applicability of real-time Java, we want to allow
software implementations of the JVM executed on common embedded hardware, such as ARM and
AVR, while still allowing the system to be amenable to static analyses. This necessarily demands that
the JVM is amenable to static analyses as well, which is difficult, since the JVM specification is rather
loosely defined. Specifically, the JVM specification emphasises on what a JVM implementation must do
whenever executing a Java Bytecode, but leaves how unspecified. This makes JVM vendors capable of
tailoring their implementation to their application domain.

In our recent research, we have developed a WCET analysis tool called Tool for Execution Time
Analysis of Java bytecode (TetaJ)[5], which allows for taking into account a software implemented JVM
and the hardware. The development of TetaJ has made us explicitly reason about JVM design accom-
modating WCET analysis. The contribution of this paper is to present our preliminary research efforts
in making Java tractable for real-time embedded systems on more common execution environments by
elaborating on how a real-time JVM must handle certain issues. Constraining the degree of freedom of
the real-time JVM vendors is a necessity to ensure, that the application running on the JVM is temporally
correct, since the WCET is often obtained using static analyses relying on predictable behaviour.

2 TetaJ

TetaJ employs a static analysis approach where the program analysis problem of determining the WCET
of a program is viewed as a model checking problem. This is done by reconstructing the control flow of
the program and the JVM implementation, and generate a Network of Timed Automata (NTA) amenable
to model checking using the state-of-the-art UPPAAL model checker[1]. The NTA is structured such that
the model checking process effectively simulates an abstract execution of the Java Bytecode program on
the particular JVM and hardware.

TetaJ has proven suitable for iterative development since it analyses on method level, and because
analysis time and memory consumption are reasonably low. In a case study[5, 2], an application con-
sisting of 429 lines of Java code was analysed in approximately 10 minutes with a maximum memory
consumption of 271 MB. The case study is based on the Atmel AVR ATmega2560 processor and the

1
Page 86 of 117

Preliminary Design Criteria for a Real-Time, WCET Analysable JVM Korsholm, Luckow, Thomsen

Hardware near Virtual Machine (HVM)1 which is a representative example of a JVM targeted at embed-
ded systems.

Currently, TetaJ provides facilities for automatically generating an NTA representing the JVM by
the provision of the HVM executable. The METAMOC[4] hardware models are reused in TetaJ thereby
having the desirable effect that TetaJ can benefit from the continuous development of METAMOC.

We have strong indications that TetaJ produces safe WCET estimates, that is, estimates that are at
least as high as the actual WCET and TetaJ may therefore be appropriate for analysing hard real-time
Java programs. As to the precision, we have results showing that TetaJ produces WCET estimates with
as low as 0.6% of pessimism[5].

3 Hardware near Virtual Machine

The HVM is a simplistic and portable JVM implementation targeted at embedded systems with as low as
256 kB of flash memory and 8 kB of RAM and is capable of running bare-bone without operating system
support. To support embedded systems development, the HVM implements the concept of hardware
objects[7], that essentially prescribe an object-oriented abstraction of low-level hardware devices, and
allow for first-level interrupt handling in Java space.

The HVM employs iterative interpretation for translating the Java Bytecodes to native machine in-
structions. The interpreter itself is compact, and continuously fetches the next Java Bytecode, analyses
it, and finally executes it. The analyse and execute stages are implemented by means of a large switch-
statement with cases corresponding to the supported Java Bytecodes.

A special characteristic of the HVM is that the executable is adapted to the particular Java Bytecode
program. Specifically, the Java Bytecode of the compiled program is encapsulated in arrays within the
HVM itself. This, however, does not affect the behaviour of the interpreter, and is merely a way of
bundling the Java Bytecode with the HVM into a single executable.

4 Preliminary Design Criteria for a Predictable HVM

During the development of TetaJ, the implementation of the HVM has been inspected and modified
according to the needs of WCET analysis. Some modifications simply comprise bounding the number
of loop iterations while others require more elaborate solutions to be developed. In the following, we
present our experiences with modifying the HVM towards predictable and WCET analysable behaviour.

4.1 Eliminating Recursive Solutions

Some Java Bytecode implementations are intuitively based on recursive solutions. Specifically, the Java
Bytecodes responsible for method invocations such as invokevirtual employ a recursive approach.

The heart of the HVM is the methodInterpreter which implements the interpretation facilities. When-
ever e.g. invokevirtual is executed, the methodInterpreter is recursively called to process the code of the
invoked method. This, however, is undesirable seen from a static WCET analysis perspective, since it is
difficult to statically determine the depth of the recursive call. The problem is circumvented by introduc-
ing an iterative approach and introduce the notion of a call stack and stack frames. Using this solution,
a stack frame containing the current call context, that is, stack pointer, program counter etc. are pushed
onto the stack, and the methodInterpreter simply continues iteratively fetching Java Bytecodes from the
called method. When the particular method returns, the stack is popped and the context restored to the
point prior to the method invocation.

1http://www.icelab.dk

2
Page 87 of 117

Preliminary Design Criteria for a Real-Time, WCET Analysable JVM Korsholm, Luckow, Thomsen

4.2 Reducing Pessimism of the Class Hierarchy

Since Java is strongly typed, type casts produce the checkcast Java Bytecode which is responsible for
iteratively checking the class hierarchy to determine whether the type cast is type compatible. Another
example is the instanceof operator which similarly consults the class hierarchy iteratively. Establishing
a tight bound that applies for every part of the class hierarchy cannot be done statically. Instead it is only
possible to establish a global bound corresponding to the maximum depth of the class hierarchy. This
gives rise to pessimism that affects the resulting WCET extensively.

This problem has been resolved by harnessing that the HVM is adapted to the particular application.
Because this process is performed prior to runtime, it is possible to exercise how the class hierarchy is
built and construct a matrix specifying how classes are interrelated. The matrix will be incorporated in
the final executable, and can be used for determining type compatibility among classes in constant time,
by simply looking up the matrix.

4.3 Constant Time Analyse Stage

Different compilers and different optimisation levels may or may not implement a sufficiently large
switch-statement as a look-up table. Because of this uncertainty, we have replaced the analyse stage in
the methodInterpreter to ensure that this stage is performed in constant time regardless of compiler and
optimisation levels. The replacement consists of extracting the individual Java Bytecode implementa-
tions from the switch-statement into respective functions. This also has the desirable side-effect that they
are easily located in the disassembled HVM executable. An array of function-pointers to each of these
functions substitutes the original switch-statement, thereby allowing for constant access time to each of
the Java Bytecode implementations using the opcodes as look-up keys.

References
[1] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi. UPPAAL - A Tool Suite for Automatic Verifi-

cation of Real-time Systems. Hybrid Systems III, pages 232–243, 1996.
[2] Thomas Bøgholm, Christian Frost, Rene Rydhof Hansen, Casper Svenning Jensen, Kasper Søe Luckow, An-

ders P. Ravn, Hans Søndergaard, and Bent Thomsen. Harnessing theories for tool support. Submitted for
publication: Innovations in Systems and Software Engineering, 2011.

[3] Thomas Bøgholm, René R. Hansen, Anders P. Ravn, Bent Thomsen, and Hans Søndergaard. A predictable
java profile: Rationale and implementations. In JTRES ’09: Proceedings of the 7th International Workshop on
Java Technologies for Real-Time and Embedded Systems, pages 150–159, New York, NY, USA, 2009. ACM.

[4] Andreas E. Dalsgaard, Mads Chr. Olesen, Martin Toft, René Rydhof Hansen, and Kim Guldstrand Larsen.
METAMOC: Modular Execution Time Analysis using Model Checking. In Björn Lisper, editor, 10th Interna-
tional Workshop on Worst-Case Execution Time Analysis (WCET 2010), volume 15 of OpenAccess Series in
Informatics (OASIcs), pages 113–123. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2010.

[5] C. Frost, C. S. Jensen, K. S. Luckow, and B. Thomsen. WCET Analysis of Java Bytecode Featuring Common
Execution Environments. Accepted for publication: The 9th International Workshop on Java Technologies for
Real-time and Embedded Systems - JTRES 2011, 2011.

[6] JSR302. The java community process, 2010. http://www.jcp.org/en/jsr/detail?id=302.
[7] Stephan Korsholm, Anders P. Ravn, Christian Thalinger, and Martin Schoeberl. Hardware objects for java.

In In Proceedings of the 11th IEEE International Symposium on Object/component/serviceoriented Real-time
distributed Computing (ISORC 2008. IEEE Computer Society, 2008.

[8] Oracle. RTSJ 1.1 Alpha 6, release notes, 2009. http://www.jcp.org/en/jsr/detail?id=282.
[9] Martin Schoeberl. JOP: A Java optimized processor. In On the Move to Meaningful Internet Systems 2003:

Workshop on Java Technologies for Real-Time and Embedded Systems (JTRES 2003), volume 2889 of LNCS,
pages 346–359, Catania, Italy, November 2003. Springer.

3
Page 88 of 117

References

[1] T.J. Watson libraries for analysis (WALA). http://wala.sourceforge.
net, Visited August 2012 2012.

[2] Uppaal. http://www.uppaal.com/, Visited August 2012 2012.

[3] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques, and Tools (2nd Edition). Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2006.

[4] aicas. http://www.aicas.com/jamaica.html. Visited June 2012.

[5] Apache. BCEL Manual. Available at: http://commons.apache.org/
bcel/manual.html, 2012. Visited June 2012.

[6] AVRFeaks. AVR Freaks. http://www.avrfreaks.net/, Visited June
2012.

[7] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A Transparent Dy-
namic Optimization System. SIGPLAN Not., 35(5):1–12, May 2000.

[8] T. Bøgholm, C. Frost, R. R. Hansen, C. S. Jensen, K. S. Luckow, A. P.
Ravn, H. Søndergaard, and B. Thomsen. Towards Harnessing Theories
Through Tool Support for Hard Real-Time Java Programming. Innovations
in Systems and Software Engineering, pages 1–12, 2012.

[9] P. Bothner. http://www.linuxjournal.com/article/4860. Visited
march 2012.

[10] F. Brandner, T. Thorn, and M. Schoeberl. Embedded JIT Compilation
with CACAO on YARI. In Proceedings of the 2009 IEEE International
Symposium on Object/Component/Service-Oriented Real-Time Distributed
Computing, ISORC ’09, pages 63–70, Washington, DC, USA, 2009. IEEE
Computer Society.

[11] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A Portable
Programming Interface for Performance Evaluation on Modern Processors.
Int. J. High Perform. Comput. Appl., 14(3):189–204, Aug. 2000.

[12] C. Chambers and D. Ungar. Customization: Optimizing Compiler Tech-
nology for SELF, a Dynamically-typed Object-Oriented Programming Lan-
guage. SIGPLAN Not., 24(7):146–160, June 1989.

[13] L. R. Clausen, U. P. Schultz, C. Consel, and G. Muller. Java Bytecode
Compression for Low-end Embedded Systems. ACM Trans. Program. Lang.
Syst., 22(3):471–489, May 2000.

[14] R. Costa and E. Rohou. Comparing the Size of .NET Applications with Na-
tive Code. In Proceedings of the 3rd IEEE/ACM/IFIP international confer-
ence on Hardware/software codesign and system synthesis, CODES+ISSS
’05, pages 99–104, New York, NY, USA, 2005. ACM.

163

[15] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
An Efficient Method of Computing Static Single Assignment Form. In
Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, POPL ’89, pages 25–35, New York, NY, USA,
1989. ACM.

[16] L. P. Deutsch and A. M. Schiffman. Efficient Implementation of the
Smalltalk-80 System. In Proceedings of the 11th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, POPL ’84, pages 297–
302, New York, NY, USA, 1984. ACM.

[17] Diasemi. Dialog semiconductor. http://www.diasemi.com/
single-chip-dect-cat-iq-solution. Visited January 2012.

[18] L. Dickman. A Comparison of Interpreted Java, WAT, AOT, JIT, and
DAC. http://www.helmitechnologies.com/campaign/knowledge_kit/
esmertec.pdf, 2002.

[19] DSE. http://www.dseair.dk/. Visited June 2012.

[20] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali. Protothreads: Simplifying
Event-driven Programming of Memory-constrained Embedded Systems. In
SenSys ’06: Proceedings of the 4th international conference on Embedded
networked sensor systems, pages 29–42, New York, NY, USA, 2006. ACM
Press.

[21] C. Erhardt, M. Stilkerich, D. Lohmann, and W. Schröder-Preikschat. Ex-
ploiting Static Application Knowledge in a Java Compiler for Embedded
Systems: A Case Study. In Proceedings of the 9th International Workshop
on Java Technologies for Real-Time and Embedded Systems, JTRES ’11,
pages 96–105, New York, NY, USA, 2011. ACM.

[22] M. A. Ertl, D. Gregg, A. Krall, and B. Paysan. Vmgen: a generator of
efficient virtual machine interpreters. Softw. Pract. Exper., 32(3):265–294,
Mar. 2002.

[23] C. Frost, C. S. Jensen, K. S. Luckow, and B. Thomsen. Wcet analysis of
java bytecode featuring common execution environments. In Proceedings
of the 9th International Workshop on Java Technologies for Real-Time and
Embedded Systems, JTRES ’11, pages 30–39, New York, NY, USA, 2011.
ACM.

[24] M. Fulton and M. Stoodley. Compilation techniques for real-time java pro-
grams. In Proceedings of the International Symposium on Code Generation
and Optimization, CGO ’07, pages 221–231, Washington, DC, USA, 2007.
IEEE Computer Society.

[25] E. Gagnon, L. J. Hendren, and G. Marceau. Efficient inference of static
types for java bytecode. In Proceedings of the 7th International Sympo-
sium on Static Analysis, SAS ’00, pages 199–219, London, UK, UK, 2000.
Springer-Verlag.

164

[26] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler.
The nesc language: A holistic approach to networked embedded systems.
In PLDI ’03: Proceedings of the ACM SIGPLAN 2003 conference on Pro-
gramming language design and implementation, pages 1–11, New York, NY,
USA, 2003. ACM Press.

[27] GCC. http://gcc.gnu.org/install/specific.html. Visited march
2012.

[28] GCC. http://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html.
Visited June 2012.

[29] GNU. http://www.gnu.org/software/classpath/classpath.html. Vis-
ited June 2012.

[30] GNU. http://ulibgcj.sourceforge.net/. Visited June 2012.

[31] O. Group. http://portal.osek-vdx.org/files/pdf/specs/os223.pdf.
Visited May 2012.

[32] Grundfos. http://www.grundfos.com/. Visited June 2011.

[33] U. Hölzle, C. Chambers, and D. Ungar. Optimizing dynamically-typed
object-oriented languages with polymorphic inline caches. In Proceedings
of the European Conference on Object-Oriented Programming, ECOOP ’91,
pages 21–38, London, UK, UK, 1991. Springer-Verlag.

[34] jamvm. http://jamvm.sourceforge.net/. Visited June 2011.

[35] D.-H. Jung, S.-M. Moon, and S.-H. Bae. Evaluation of a java ahead-of-time
compiler for embedded systems. Comput. J., 55(2):232–252, Feb. 2012.

[36] T. Kalibera, J. Hagelberg, P. Maj, F. Pizlo, B. Titzer, and J. Vitek. A
family of real-time java benchmarks. Concurr. Comput. : Pract. Exper.,
23(14):1679–1700, Sept. 2011.

[37] S. Korsholm and P. Jean. The Java legacy interface. In JTRES ’07: Pro-
ceedings of the 5th international workshop on Java technologies for real-time
and embedded systems, pages 187–195, New York, NY, USA, 2007. ACM.

[38] S. Korsholm, M. Schoeberl, and A. P. Ravn. Interrupt handlers in Java.
In Proceedings of the 2008 11th IEEE Symposium on Object Oriented Real-
Time Distributed Computing, pages 453–457, Washington, DC, USA, 2008.
IEEE Computer Society.

[39] A. Krall and R. Grafl. Cacao – a 64 bit javavm just-in-time compiler. In
Proceedings of the Workshop on Java for Science and Engineering Compu-
tation, PPoPP 97. G. C. Fox and W. Li Eds. ACM, 1997.

165

[40] B. B. Kristensen, O. L. Madsen, and B. Møller-Pedersen. The when, why
and why not of the beta programming language. In Proceedings of the third
ACM SIGPLAN conference on History of programming languages, HOPL
III, pages 10–1–10–57, New York, NY, USA, 2007. ACM.

[41] P. Nanthanavoot and P. Chongstitvatana. Code-Size Reduction for Em-
bedded Systems using Bytecode Translation Unit. In Conf. of Electri-
cal/Electronics, Computer, Telecommunications, and Information Technol-
ogy (ECTI), 2004.

[42] F. Nielson, H. Nielson, and C. Hankin. Principles of Program Analysis.
Springer, 1999.

[43] K. Nilsen. Differentiating features of the perc virtual machine. Available
at: http://www.aonix.com/pdf/PERCWhitePaper_e.pdf, 2009.

[44] NOHAU. http://www.nohau.se/iar. Visited January 2012.

[45] NOHAU. http://www.iar.com/en/Products/
IAR-Embedded-Workbench/. Visited February 2012.

[46] OPENJDK. http://openjdk.java.net/. Visited June 2012.

[47] PAPI. Papi - the Performance Application Programming Interface. http:
//icl.cs.utk.edu/papi/index.html, 2012.

[48] G. Phipps. Comparing observed bug and productivity rates for Java and
c++. Softw. Pract. Exper., 29:345–358, April 1999.

[49] F. Pizlo, L. Ziarek, P. Maj, A. L. Hosking, E. Blanton, and J. Vitek.
Schism: fragmentation-tolerant real-time garbage collection. SIGPLAN
Not., 45(6):146–159, June 2010.

[50] F. Pizlo, L. Ziarek, and J. Vitek. Real time Java on resource-constrained
platforms with fiji vm. In Proceedings of the 7th International Workshop
on Java Technologies for Real-Time and Embedded Systems, JTRES ’09,
pages 110–119, New York, NY, USA, 2009. ACM.

[51] J. Plevyak and A. A. Chien. Precise concrete type inference for object-
oriented languages. SIGPLAN Not., 29(10):324–340, Oct. 1994.

[52] A. Plsek, L. Zhao, V. H. Sahin, D. Tang, T. Kalibera, and J. Vitek. De-
veloping safety critical java applications with oscj/l0. In Proceedings of
the 8th International Workshop on Java Technologies for Real-Time and
Embedded Systems, JTRES ’10, pages 95–101, New York, NY, USA, 2010.
ACM.

[53] Polycom. http://www.polycom.dk/. Visited January 2012.

166

[54] Polycom. The kirk dect application module 6.0. http://www.polycom.
eu/products/voice/wireless_solutions/dect_communications/
modules/dect_krm_application.html, 2012.

[55] E. Quinn and C. Christiansen. Java pays – positively. Available at:
http://www.justice.gov/atr/cases/exhibits/1344.pdf, 1998. Visited
February 2012.

[56] V. Research. 2011 EMBEDDED SOFTWARE & TOOLS MARKET IN-
TELLIGENCE SERVICE. http://www.vdcresearch.com/, 2011.

[57] M. Schoeberl, S. Korsholm, C. Thalinger, and A. P. Ravn. Hardware ob-
jects for Java. In In Proceedings of the 11th IEEE International Sympo-
sium on Object/component/serviceoriented Real-time distributed Comput-
ing (ISORC 2008. IEEE Computer Society, 2008.

[58] N. Semiconductor. http://www.national.com/. Visited January 2012.

[59] N. Semiconductor. CR16C, Programmers Reference Manual. http://
www.national.com/appinfo/cp3000/publicfiles/Prog_16C.pdf. Vis-
ited January 2012.

[60] O. Shivers. http://www.ccs.neu.edu/home/shivers/citations.html#
diss. Visited August 2012.

[61] F. Siebert. Realtime garbage collection in the jamaicavm 3.0. In Proceedings
of the 5th international workshop on Java technologies for real-time and
embedded systems, JTRES ’07, pages 94–103, New York, NY, USA, 2007.
ACM.

[62] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam,
E. Gagnon, and C. Godin. Practical virtual method call resolution for
java. SIGPLAN Not., 35(10):264–280, Oct. 2000.

[63] H. Sndergaard, S. Korsholm, and A. P. Ravn. Safety-Critical Java for Low-
End Embedded Platforms. Accepted for JTRES’12, Pending publication,
2012.

[64] A. S. Tanenbaum, H. van Staveren, E. G. Keizer, and J. W. Steven-
son. A practical tool kit for making portable compilers. Commun. ACM,
26(9):654–660, Sept. 1983.

[65] TheOpenGroup. Safety-Critical Java Technology Specification (JSR-302).
Draft Version 0.79, TheOpenGroup, May 2011.

[66] R. Vallée-Rai, P. Co, E. Gagnon, L. H. n, P. Lam, and V. Sundaresan. Soot
- a java bytecode optimization framework. In CASCON ’99: Proceedings
of the 1999 conference of the Centre for Advanced Studies on Collaborative
research, page 13. IBM Press, 1999.

167

[67] D. Van Horn and H. G. Mairson. Deciding kcfa is complete for exptime.
SIGPLAN Not., 43(9):275–282, Sept. 2008.

[68] G. Wiki. http://gcc.gnu.org/wiki/History. Visited march 2012.

[69] Wikipedia. http://en.wikipedia.org/wiki/P-code_machine. Visited
August 2012.

168

