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Abstract 

Static wireless charging using resonant inductive principle offers environmental friendly, 

comfortable and automatic charging solution for electric vehicles. This technology as of now is 

nascent with few products on the market and leading companies and universities actively engaged 

in research. On similar lines, a pioneer PhD project was undertaken in 2012 at Department of 

Energy Technology, Aalborg University with objectives of improving system design and 

developing high power density (weight and dimensions), low cost and low magnetic emissions 

power inductors for this application. This thesis summarizes the research findings of the study. 

Wireless charging system as per state of art design approach consists of four major blocks: primary 

power electronics, inductors, secondary power electronics including load and resonant circuits 

(capacitors). The first contribution of this project is addition of fifth block named reflected quality 

factor in the system design. The fifth block similar to the resonant circuits block is dependent on the 

other blocks but its addition is highly beneficial in understanding and simplification of the system 

design in two main ways. Firstly, the system can be represented as an equivalent power source and 

transmission system including the load similar to other electric system like grids. Secondly, design 

parameters of output power, circuit efficiency and voltage or current stress across resonant 

components can be expressed as simple functions of the five blocks.      

Inductors of wireless charging systems mostly consist of the coils and passive shielding materials 

and are different from inductors used in other industrial and consumer applications as majority of 

magnetic flux passes through air. The first objective in the inductor design is to explain effect of the 

shielding materials on the magnetic field path. The objective serves as base for the second objective 

dealing with minimization of passive shielding usage with respect to power transfer capability, 

weight, dimensions. There have been two major results obtained during the optimization process. 

The first set of results show that additional ferrite should be added in center of the inductors above 

base ferrite as this provides maximum increase in the power transfer per unit weight added. In the 

second investigation, it is shown that reducing passive shielding (ferrite and aluminum) thickness 

reflects comparatively lower decrease in the power transfer and efficiency in comparison to high 

reduction achieved in weight and dimensions of the inductors. Additionally, the same comparative 

analysis has been shown to be true when commonly used high ferrite grade is replaced by 

comparatively lower and cheaper ferrite grade.  

The last objective of this project has been minimization of the magnetic emissions. For this, a semi-

analytical method has been proposed for calculating ratio of the magnetic emissions at different 

values of the coil currents for given inductor setup. This method will help in including the 

emissions as a design parameter for the primary power electronics, secondary power electronics 

with load and capacitors in addition to the inductor design. For development of the analytical 

method, space variation of the magnetic emissions is studied first in the project and results show 

that ratio of secondary coil emission to primary coil emission is constant in the surroundings.  This 

is utilized in introducing the analytical method and three applications have been addressed during 

the project. In the first application, it is shown that higher load quality factor is favorable for given 



inverter current and switching frequency as it provides comparatively lower increase in the 

emissions compared to the output power. In the second application, a novel active shielding method 

of generating cancellation current in the secondary coil without using additional third coil has been 

proposed. This is implemented by designing the secondary capacitor bigger than its resonant value 

and making the secondary circuit inductive. On the negative side, the reduced emissions require 

higher inverter current and bigger primary capacitor to deliver the same output power. At last, two 

resonant topologies series-series and series-parallel are compared in term of the emissions for 

similar power rating. Series-parallel topology has slight advantage over its series-series counterpart 

on account of additional inductive secondary current component as advised by the results.   

At the end, a wireless charging system has been designed and constructed as part of the project. The 

setup delivers output power of approximately 2 kW and 1.2 kW for vertical distance of 10 cm and 

20 cm respectively. Measured resonant circuit efficiencies (primary inverter AC terminals to 

secondary rectifier AC terminals) for the two cases are 89% and 82% respectively. The setup has 

capability to deliver much higher output power subject to availability of higher current rating input 

power source.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Resumé 

Statisk trådløs opladning ved hjælp af resonansprincippet for magnetisk induktion tilbyder en 

miljøvenlig, komfortabel og automatisk opladningsløsning til elbiler. Denne vordende teknologi er 

stadig begrænset udbredt med kun få produkter på markedet og førende virksomheder og 

universiteter er derfor aktivt engageret i forskning og udvikling inden for området. Aalborg 

Universitet er også aktive på området, hvorfor et ph.d. projekt i 2012 blev iværksat ved Institut for 

Energiteknik med formålet at forbedre systemdesignet og effekttætheden (mht. vægt og størrelse), 

samt at reducere omkostningerne og de magnetiske emissioner til denne applikation. Denne 

afhandling sammenfatter forskningsresultaterne af ph.d. projektet. 

Trådløse opladningssystemer består af fire store blokke: primær effektelektronik, spoler, sekundær 

effektelektronik inklusiv belastning og resonanskredse (kondensatorer). Det første videnskabelige 

bidrag i projektet er tilføjelsen af en femte blok i systemdesignet kaldet reflekteret godhedsfaktor. 

Den femte blok er i lighed med resonanskredsløbsblokken afhængig af de øvrige blokke, men dens 

tilføjelse er yderst gavnlig i forståelsen og forenklingen af systemdesignet på to måder: For det 

første kan systemet repræsenteres som en ækvivalent strømkilde og transmissionssystem, med 

belastningen inkluderet, der minder om andre elektriske systemer, såsom el-nettet. For det andet kan 

designparametrene udgangseffekt, effektivitet og spændings- eller strømstress af resonans-

komponenterne udtrykkes som simple funktioner af de fem blokke. 

Induktorerne i trådløse opladningssystemer består for det meste af spolerne og passive 

afskærmningsmaterialer og er forskellige fra induktorerne, der anvendes i andre industrier og 

forbrugerapparater, da størstedelen af den magnetisk flux passerer gennem luften. Det første mål i 

induktordesignet er at forklare virkningen af afskærmningsmaterialernes indflydelse på 

magnetfeltets vej. Dette mål fungerer som base for det andet mål, der beskæftiger sig med 

minimering af passiv afskærmning i forhold til effektroverførelseskapaciteten, vægten og de fysiske 

dimensioner. Der er opnået to store resultater under optimeringsprocessen. Det første sæt resultater 

viser, at yderligere ferrit bør tilføjes i midten af spolerne over base-ferritpladen, da dette giver 

maksimal stigning i effektoverførelsen per vægtenhed tilføjet. I den anden undersøgelse er det vist, 

at reduktion af tykkelsen af passiv afskærmning (ferrit og aluminium) medfører forholdsvis lavere 

reduktion i effektoverførsel og effektivitet i forhold til den høje reduktion af vægt og dimensioner af 

induktorerne, der opnås. Derudover har den samme analyse vist sig at være sand, når almindeligt 

anvendt ferrit af høj kvalitet erstattes af en forholdsvis lavere og billigere kvalitet. 

Det sidste formål med dette projekt er minimering af de magnetiske emissioner. Til dette er en 

semi-analytisk metode blevet foreslået til beregning af forholdet mellem de magnetiske emissioner 

ved forskellige værdier af spolestrømme for en given opsætning. Som en tilføjelse til 

induktordesignet vil denne metode vil hjælpe ved at inkludere emissioner som en designparameter 

for den primære effektelektronik, sekundære effektelektronik med belastning og kondensatorer. Til 

udviklingen af analysemetoden er rumvariation af de magnetiske emissioner først undersøgt, og 

resultaterne viser, at forholdet mellem sekundærspole emissionerne til primærspole emissionerne er 

konstant i omgivelserne. Dette udnyttes i analysemetoden, og tre applikationer er blevet behandlet i 



løbet af projektet. I den første applikation er det vist, at højere belastningskvalitetsfaktor er gunstigt 

for en given inverter-strøm og frekvens, da det giver en forholdsvis lavere stigning i emissionerne i 

forhold til udgangseffekten. I den anden applikation, er en ny afskærmningsteknik blevet foreslået, 

der kan generere en mod-strøm i sekundærspolen uden brug af en tredje spole. Dette implementeres 

ved at designe den sekundære kondensator større end dens resonansværdi og gøre den sekundære 

kreds induktiv. På den negative side kræver de reducerede emissioner højere inverter-strøm og 

større primære kondensator for at levere den samme udgangseffekt. Endeligt er emissionerne af to 

resonanskredse (serie-serie og serie-parallel) sammenlignet for den samme effekt. Serie-parallel 

kredsen har en lille fordel i forhold til serie-serien kredsen på grund af en ekstra induktiv sekundær 

komponent. 

Til sidst er et trådløst opladningssystem blevet designet og konstrueret som en del af projektet. 

Systemet leverer en udgangseffekt på ca. 2 kW og 1,2 kW med en vertikal afstand på henholdsvis 

10 cm og 20 cm. Den målte resonanskredsløbseffektivitet (primær inverter AC terminaler til 

sekundær ensretter AC terminaler) for de to situationer er henholdsvis 89% og 82%. Opstillingen 

har kapacitet til at levere meget højere udgangseffekt på grund af den højere mærkestrøm af 

inputstrømkilden. 
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Electric symbols 

Electrical symbols used in the thesis are summarized first in Table 1. 

Table 1. Electric symbols description 

Symbol Name  Symbol Name 

Vgrid Grid Rms voltage  Ci-dc Primary DC link capacitance  

Vi-dc Inverter voltage (dc side)  Vi Inverter voltage (ac side) 

Vl-dc Load voltage (dc side)*  Il-dc Load current (dc side)** 

Cl-dc Secondary DC link capacitance*  Ll-dc Secondary DC link inductor**  

Vl Load Rms voltage (ac side)*  Il Load Rms current (ac side)** 

Vp Primary inductor Rms voltage  Vs Secondary inductor Rms voltage 

Ip Primary coil Rms current  Is Secondary coil Rms current 

Lp Primary self-inductance  Ls Secondary self-inductance 

M Mutual Inductance  k Coupling factor 

Cp Primary capacitance  Cs Secondary capacitance 

Rlp Primary inductor resistance  Rls Secondary inductor resistance 

Rcp Primary capacitor resistance  Rcs Secondary capacitor resistance 

Rp Primary internal resistance  Rs Secondary internal resistance 

Qp Primary loss quality factor  Qs Secondary loss quality factor 

Rr Reflected resistance  Rl Load resistor 

Qr Reflected load quality factor  Ql Secondary load quality factor 

Pi Input or inverter AC side power  Pl Output or load AC side power 

ηp Primary circuit efficiency  ηs Secondary circuit efficiency 

Η Net circuit efficiency   f Frequency 

ωi Inverter angular switching frequency  fi Inverter switching frequency 

* @ Series-series resonant topology 

**@ Series-parallel resonant topology 

 

 

 

 

 

Note – Square, curl and round brackets are used to represent reference papers (other authors), paper 

written during PhD (PhD papers) and equations respectively in the thesis.
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1. Introduction 

Wireless charging has potential to revolutionize the world of electric power transmission. As the 

name suggests, this technology provides transmission of power without use of wires or cables and 

hence offers comfortable and automatic charging process. This technology was discovered [1-2] 

back in early 1900 by Nikolas Tesla. However it never picked up momentum for everyday 

applications and has mostly been used for two major applications: biomedical [3-5] and induction 

heating [6-7] in the last century. In later part of 20
th

 century, big problem of global warming by 

greenhouse gases came into picture. To reduce transport sector’s share in the problem, there was a 

strong push for development of electric vehicles and hence their charging technologies. Wireless 

charging on account of its automatic and comfort features was seen as a possible solution to enable 

mass deployment of the electric vehicles. As a result, some pioneer studies [8-11] were conducted 

to study feasibility of wireless charging for electric vehicles. However, this technology came into 

limelight through breakthrough paper [12] by researchers of Massachusetts Institute of Technology. 

Since then, this technology is being actively pursued by leading companies and universities as an 

improved solution for various consumer and industrial applications. On the commercial side, this 

technology as of today is on nascent stage with few products [13-14] available in the market.  

Wireless power transfer is possible using different scientific principles such as resonant inductive, 

capacitive, microwave etc. A good overview of these principles and applications can be found in 

[15]. This work is focused on wireless charging by resonant inductive principle only and is 

explained in detail in Chapter 2. This technology can be used in mainly two forms for vehicle 

applications. In the first form, the vehicles are charged on the move by placing the primary and 

secondary coils below the earth and vehicle respectively. As a result, this form is known as dynamic 

wireless charging [9, 16-19] and has capability to reduce transport sector dependence on fossil 

fuels. Practical application of this technology requires massive infrastructure investment and major 

policy changes by national governments. Other form of this technology involves charging vehicles 

when they are parked and is referred as static charging [20-28]. This form requires comparable 

lesser investments compared to the dynamic charging and is more consumer oriented. Combination 

[29] of these two forms by installing wireless charging platforms below the road at traffic signals 

etc. where vehicles are stationary temporarily have also been proposed. From broad technical point 

of view, the two forms differ in respect that both area and magnetic field are varying with time in 

dynamic wireless charging compared to only magnetic field variation with time in the static 

wireless charging. For this particular project, static wireless charging is under consideration and 

term wireless charging is synonymous with static wireless resonant inductive charging in rest of the 

thesis. Before going into depth of the system and inductor design, a brief description of the system 

is provided next.         

1.1. System description    

Block diagram of wireless charging system for vehicles applications is provided in Figure 1. 

 

http://web.mit.edu/
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Figure 1. Block diagram wireless charging system 

There are four major system blocks: primary power electronics, inductors (wireless inductive link), 

secondary power electronics and resonant circuits. The blocks are explained in detail in following 

sections.  

1.1.1. Primary power electronics 

The first block of primary power electronics is similar to power supply block used in most electric 

drives. Both single [30-33] and three [19, 34] phase solutions for power electronics have been 

proposed for vehicle charging. The single phase solution provided in Figure 2 feeding a single 

primary coil is preferred for smaller vehicles (2-3 kW). The three phase solution is better solution 

for charging of heavy vehicles and feeding three primary coils during operation.  

 

Figure 2. Primary power electronics 

In this block, first 50 or 60 Hz grid voltage is rectified and smoothen in DC-link capacitor. There 

are two more variations (Figure 1) apart from the uncontrolled rectifier as shown in Figure 2. In the 

first variation, a DC-DC converter is inserted in between the uncontrolled rectifier and DC-link 

capacitor and is shown with dashed rectangular block in Figure 1. This provides control of DC-link 

voltage and as a result of the output power. Main advantage with the additional converter is that the 

inverter can be fully soft switched compared to partial soft switching achieved with power control 

through phase shifting of inverter legs (Figure 2). These two variations have been discussed in 

detail in [35]. The last variation is fully controlled switches for rectifier to provide bidirectional 

flow of power and enabling the vehicles to be an active player in the electric grid. At end of the 
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Cl-dc

Vl

Vl-dc

rectification process, constant DC-voltage is converted into medium frequency (20 kHz - 85 kHz) 

[20, 26-27, 35] square wave voltage by an inverter as shown in Figure 2.  

1.1.2. Inductor design 

Power is transferred from the primary to secondary inductor using principle of electromagnetic 

induction. Inductors of wireless charging system consists of three main components: coil, ferrite 

and aluminum. The last two are also together categorized as passive shielding. Also, there are active 

shielding methods [20, 36] proposed in literature for reduction of the emissions. The active 

shielding consists of an additional third coil having current and hence magnetic field designed in 

opposite phase to cancel the primary or secondary coil field. The active shielding methods have 

disadvantages of requirement of additional power supply and extra space required for its 

installation. The first problem was solved by researchers at KAIST by powering the third coil via 

the primary coil [20]. Active shielding method by inducing opposite phase current in the secondary 

coil and eliminating requirement of the third coil has been proposed during PhD project {7-8}. The 

inductor design is the major focus area of the thesis and is explained dedicatedly in Chapter 3. 

1.1.3. Secondary power electronics load including battery 

On the secondary side power electronics, uncontrolled rectifier bridge converts high frequency AC 

into DC to be stored in DC-link capacitor which in turn feeds the load (battery). The DC-link 

capacitor provides stable DC-voltage and hence voltage at AC terminals of the rectifier is of square 

wave nature. The uncontrolled rectifier scheme is provided in Figure 3.  

 

 

 

 

 

 

 

Figure 3. Secondary power electronics with battery 

Similar to the primary power electronics, both single [30-33] and three [34] phase solutions have 

been considered for the secondary side power electronics. Also, solutions vary from active switches 

providing bidirectional power flow, incorporating additional DC-DC converter (dashed rectangular 

block in Figure 1) for independent secondary side control [25-27] and primary side controller [37] 

only. The battery (with or without additional DC-DC converter) can be represented as an equivalent 
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load and is the approach followed in the thesis as design of the power electronics is not the major 

focus. 

1.1.4. Resonant circuits 

Resonance capacitor is required in combination with the secondary inductor to cancel its reactance 

and boost output power. On the other hand, capacitor on the primary side is designed to cancel 

effective inductive reactance on the primary side and provide unity power factor operation from 

input side. The capacitors can be arranged in series or parallel combination with the respective 

inductors and leads to four resonant circuit topologies: series-series (SS), series-parallel (SP), 

parallel-series (PS) and parallel-parallel (PP) [23]. The four topologies are provided in Figure 4 

with their comparison presented later in Section 2.2.4.   

 

 

 

 

 

 

 

 

 

 

Figure 4. Resonant topologies 

1.2. Project objectives 

This PhD project at Department of Energy Technology, Aalborg University was started in 

November 2012 with the following objectives to be accomplished.  

1) The first objective is to evaluate existing system design methodologies and provide modifications 

if required. This has been explained in detail in Chapter 2. 

2) Inductors of wireless charging are different from traditional power inductors as majority of 

magnetic path is not closed by magnetic material. Hence, the second objective of the project is to 

explain magnetic field flow and effect of passive shielding materials on it. This has been explained 

in Chapter 3 and is of high importance in optimization of the passive shielding discussed in later 

part of the chapter.  
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3) Passive shielding addition to the coils provides increase and decrease in the power transfer and 

magnetic emissions respectively. On the other hand, their usage also significantly increases the 

inductor weight, cost, dimensions and losses. This objective deals with finding best compromise for 

the inductor design by weighing advantages against the disadvantages. This part is provided at end 

of Chapter 3 with help of two PhD papers {3-4}.    

4) Design and construction of a wireless charging system in the laboratory environment is the next 

objective of the project. Details of the constructed system along with practical challenges with 

construction are discussed in Chapter 4.  

5) The last objective of the project is focused on minimizing the magnetic emissions to the 

surroundings. The first step taken in this direction is to study space variation of the magnetic 

emissions. Based on the results, a semi analytical method has been proposed that includes the 

emissions in design of the primary power electronics, secondary power electronics and capacitors in 

addition to the inductors. Chapter 5 has been dedicated to this objective including the published 

papers and experimental verification. 
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2. System design and analysis 

Design and analysis of wireless charging system is done using Fundamental Mode Approximation 

(FMA) analysis [23, 25-27, 37-39]. Strength of the analysis lies in fact that it converts the two 

complex power electronics blocks into equivalent AC voltage sources and phasor theory is 

applicable. Before going into the depth of the design, FMA analysis is provided below. The analysis 

and design are explained with help of SS resonant topology. The remaining three resonant 

topologies comparison with SS topology is provided in Section 2.4. 

2.1. Fundamental mode approximation (FMA) analysis 

Electric schematic of unidirectional wireless charging system is provided in Figure 5.  

 

 

 

 

 

 

Figure 5. Electrical schematic wireless charging system 

The complex system can be greatly simplified with help of FMA analysis as follows. Rectifier 

combined with DC–link capacitor provides constant DC voltage (Vi,l-dc) on both sides at steady state 

conditions. As a result, voltage at AC terminals of the inverter and load rectifier is of square wave 

nature. It is assumed in the last statement that an additional DC-DC converter is present between the 

primary rectifier and inverter for controlling DC-link voltage. The two resonant circuits are tuned at 

fundamental of inverter switching frequency and hence only fundamental current harmonic is 

present on both sides. This leads to simplification of the two power electronics blocks into 

equivalent voltage sources whose effective Rms voltage is given by 

(Vi,l)FMA
=  

4

π√2
(Vi,l)Square

. (1)  

The inverter AC voltage wave will consists of peaks and zeros when phase shifting control is used 

in place of additional DC-DC converter on the primary side. This leads to equivalent first harmonic 

inverter voltage to be multiplication of first harmonic inverter voltage in (1) by factor sin(α/2), 

where α is overlap angle. The angle and resultant waveforms are presented in [34] for reference and 

are not presented here. For simplification, this section is presented for the angle equal to 180°.  

Also, the battery (with or without additional secondary side DC-DC converter) of electric vehicle 
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can be equated to an equivalent resistor (Rl) as it consumes active power only. This can be further 

simplified to an equivalent FMA resistor using conservation of power and is given by 

(Rl)FMA=  
8

π2
(Rl)Square. (2)  

Using the above two approximations for the power electronics blocks, FMA equivalent circuit of 

the system is provided in Figure 6. The inverter switching frequency is the frequency of the electric 

system. 

 

 

 

 

 

 

 

Figure 6. FMA equivalent circuit 

Kirchoff’s voltage equations for the system are 

(jωiLp+ 
1

jωiCp
+Rp) Ip - jωiMIs= Vi (3)  

(jωiLs+ 
1

jωiCs

+Rs +Rl) Is=jωiMIp. (4)  

Sum (Rp,s= Rlp,ls + Rcp,cs) of internal resistance of the inductor and capacitor on both sides is equated 

to internal resistance of each side. The secondary circuit is referred (5) to the primary side using (4) 

in (3).    

(

 
 
 
 
 
 
 
(jωiLp+ 

1

jωiCp
)+

(

 
 
−(ωiM)

2 (jωiLs+
1

jωiCs
)

(ωiLs −
1

ωiCs
)

2

+ (Rs+ Rl)
2

)

 
 

+

Rp+

(

 
 (ωiM)

2(Rs+ Rl)

(ωiLs −
1

ωiCs
)

2

+ (Rs+ Rl)
2

)

 
 

)

 
 
 
 
 
 
 

Ip=Vi (5)  
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As a result, the reflected resistor on the primary side is given by (6). 

Rr=

(ωiM)
2(Rs+ Rl)

(ωiLs −
1

ωiCs
)

2

+ (Rs+ Rl)
2

.
 (6)  

Also, resistors on the primary and secondary sides in resonant systems are represented in terms of 

quality factors given by (7) and (8). 

Q
p,r

=
ωiLp

Rp,r

 (7)  

Q
s,l

=
ωiLs

Rs,l

 (8)  

Resonant circuit efficiency [38] of the system using (6) is given by (9). 

η=
Rr

 Rr+Rp

Rl
 Rl+Rs

 (9)  

The circuit efficiency can further be decoupled (10) into primary and secondary circuit efficiency.  

η=ηpηs (10)  

The primary and secondary circuit efficiencies are in turn given by (11) and (12). 

ηp=
Rr

 Rr+Rp
 (11)  

ηs=
Rl

 Rl+Rs
 (12)  

The logic behind this decoupling is that the primary circuit has reflected load resistor as its load and 

primary resistor as its internal resistance which matches the traditional definition of efficiency in 

electric circuits. An analogues statement is true for the secondary circuit.  

2.2. State of art design approach 

Wireless power transfer for vehicle applications is a developing technology and limited literature is 

available discussing the complete system design. University of Auckland is one of the pioneers of 

this technology and hence their design methodology [26-28] is taken as state of the art approach. As 

per the approach, firstly the system is designed at operation point with both sides in resonance (13). 

ω
i
=√LpCp=√LsCs.   (13)  
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System design has been decoupled [26-27] into three blocks: primary coil VA rating, coupling 

factor and load quality factor based on the foremost design criterion of output power. The output 

power is derived using (3) to (8), (13) and is given by 

Pl≈VpIpk
2Ql   (14)  

where square of the coupling factor is provided in (15). 

k2 =
M2

LpLs
.  (15)  

First of all, the decoupling between the coupling factor (inductances) and current is valid as 

magnetic (ferrite) core of wireless charging inductors do not saturate [25] in design range of current 

some tens of amperes and frequency below 100 kHz. This is mostly due to the reason that majority 

of magnetic flux path is in air and leads to linear magnetic characteristics as reported in [25]. First 

block in this decoupling is VA rating (VpIp) of the primary coil and is different from first block of 

primary power electronics mentioned in Chapter 1. The secondary block of inductor design is 

represented by square of coupling factor (k
2
) and the final block of secondary power electronics 

with load is represented in term of load quality factor (Ql). Detailed explanation of the blocks along 

with improvements has been provided in next Section 2.3 and is not provided here. Also, values of 

the capacitors (fourth block) are dependent on the remaining three blocks and hence they are not 

considered as an independent design blocks. However, selection of the resonant topology affects the 

system performance and has been discussed separately in Section 2.4. As per this approach, 

increase in value of one of the blocks would increases the output power rating of wireless power 

transfer system. This approach serves as good starting point for the design but has the following 

shortcomings: 

1) This approach is not totally decoupled as the first and second block both are dependent on the 

primary inductor. The voltage across the primary inductor is dependent on the primary inductance 

and similar is true for the coupling factor. This is mainly due to reason that two blocks have been 

coupled into a single first block. Out of these two blocks, one is the primary power electronics and 

second is reflected quality factor introduced in the thesis. It is discussed in detail in next Section 

2.3.     

2) The static charging solution is under consideration in this project. Hence, low voltage limit [25] 

of 1 kV also needs to be followed for voltage stresses on the resonant components. Selection of the 

secondary quality factor provides linear relation (13) to increase in the voltage stress across the 

secondary resonant components.  

|Vs| ≈ |QlVl| (16)  
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However, there is no such parameter available which provides measure of increase in the voltage 

stress across the primary resonant components. This parameter is the reflected quality factor 

introduced as the new block in the thesis. 

3)  The circuit efficiency (9) is dependent on the load, reflected load and internal resistances of both 

sides. However in the standard approach, increase in the efficiency has only being considered by 

lowering of the internal resistances through improved inductor design. The circuit efficiency also 

needs to be considered in selection of the load quality factor and reflected quality factor.   

2.3. Improved design approach 

The standard design decoupling approach has been improved in this project by introducing reflected 

quality factor as fifth block in expression of the output power (14). The reflected quality factor 

similar to the capacitors is dependent on the remaining blocks but should be considered during the 

system design and is explained in this section. The first advantage with this addition is that the 

system design can be represented in similar way to other electrical systems using concept of energy 

source and transmission system (including load). The modified expression for output power is  

Pl≈ViIpQrk
2Ql  (17)  

with the reflected quality factor and reflected resistor provided in (18) and (19). 

Q
r
=

ωiLp

Rr

≈
1

 k
2
Q

l

 (18)  

Rr ≈
ωiM

2Ql
 Ls

.  (19)  

Using (17), the system design can be analyzed as follows: The input power represented by first part 

(ViIp) in (17) is the power to be transferred. The losses have been ignored in (17) (also in standard 

approach (14)) and hence remaining part of expression (Q
r
k2Q

l
) represents a lossless transmission 

system. The transmission system cannot consume or produce power and hence its value is equal to 

one (18). There are three parts: reflected quality factor, coupling factor and load quality factor in the 

transmission system. Out of these three, the last two are independent design blocks and similar to 

standard approach are the second and third design blocks of system design. The first term of the 

reflected quality factor is dependent on the last two terms as provided in (18). Design of the second 

and third blocks hence determines nature (efficiency, voltage stress and emissions) of the power 

transmission. As a simple design rule, the transmission system needs to be designed for higher 

voltage and lower current (higher reflected resistance) solution similar to what is done in electric 

grids for higher system efficiency. In addition, lower current and high voltage solution provides 

lower magnetic emissions to the surroundings on account of lower current and is explained in detail 

in Chapter 3.  
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2.3.1. Primary power electronics 

The first block needs to be designed for VA rating and switching frequency of the inverter switches. 

Due to loosely magnetic coupled nature of wireless charging inductors for vehicle applications (low 

reflected resistance) the current is the limiting factor in VA design of the inverter. Hence as 

discussed above, desirable higher voltage and lower current solution through transmission system 

design would provide higher reflected resistance on the primary side and higher power can be 

transferred for given maximum inverter current [25]. This is provided using rearranged output 

power expression [25] in (20). 

Pl≈Ip
2Rr≈ωiIp

2 M2

 Ls
Q

l
    (20)  

The switching frequency on the other hand is dependent on number of factors. The output power 

and reflected resistance increases linearly with the switching frequency for given inverter current 

(20). As a result, higher switching frequency is favored on account of the output power and 

reflected resistance (16). However, losses in the inductors and capacitors also increase with the 

switching frequency. Exact nature of the function cannot be generalized and depends on the 

inductor and capacitor design. As a result, generalization of primary circuit efficiency behavior with 

frequency is also not possible.  

Secondary circuit efficiency has a similar story to the primary circuit frequency. The load resistor 

value increases linearly for given set of inductors (self-inductance) and load quality factor as per 

(8). On the other hand, the secondary internal resistance increases with frequency with 

mathematical function depending on the component design. As an example, the internal resistances 

variation with frequency has been presented for constructed geometry in Section 4.2.1.The resultant 

efficiency which is product of the two circuit efficiencies (9) to (12) has a similar response as the 

primary and secondary circuit efficiency. Also, the switching losses in the power electronics 

increase with the switching frequency. Hence, the switching frequency selection is compromise 

between the losses in various components and output power. Different design solutions varying 

from 20 kHz to 85 kHz have been proposed in literature promising best compromise between the 

losses and output power. This area is out of scope of this project.   

2.3.2. Inductor design  

The inductor design is done using Finite Elements Method (FEM) simulations and is discussed in 

detail in Chapter 3. In this section, impact of inductor output quantities: coupling factor and internal 

resistance on the system performance will be discussed. The coupling factor as figure of merit for 

inductor design of wireless charging system stands for maximum coupled flux with lowest leakage 

flux for both the coils. First of all, effect of the coupling factor on the primary circuit efficiency is 

discussed (21). The modified expression for the primary circuit efficiency (21) has been obtained 

using (7) and (11).  
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ηp =
Qp

 Qp+Qr
 (21)  

Increase in the coupling factor reduces the primary quality factor (18) for given load quality factor. 

This leads to increase in the primary circuit efficiency (11). A point needs to be mentioned here 

regarding number of coil turns. The self-inductance of each coil is approximate proportional to 

square of number of coil turns for the same coil. On the other hand, the mutual inductance is 

roughly proportional to number of turns of both coils. From the above two statements it can be 

inferred that the coupling factor is practically independent of the number of turns. Ferrite is added 

below the coils in the inductor design to increase the coupling factor and is explained in Chapter 3. 

Meanwhile, the number of turns are normally kept equal [23, 25-26] on both sides for static wireless 

charging applications. Also, lower reflected quality factor due to higher coupling factor stands for 

lower voltage stress across the primary resonant components for given load quality factor as 

provided below in (22).    

  |Vp| ≈ |QrVi| (22)  

Increases in efficiency and lower voltage stress are main reasons for high interest of researchers to 

achieve higher coupling factors through inductor design.     

 2.3.3. Load quality factor 

First factor to be considered in selection of the load quality factor is voltage stress on the resonant 

components on the secondary side. The voltage stress on resonant components is much higher than 

on the load as per principle of series resonance and hence lower quality factors are suitable. Another 

factor advocating for low load quality factor is the secondary circuit efficiency provided in (23). 

ηs =
Qs

 Qs+Ql
 (23)  

However, the reflected quality factor is inversely proportional to the load quality factor (18). Hence, 

lower load quality factor or higher reflected quality factor will reduce the primary circuit efficiency 

and increase the voltage stress on the primary side for given amount of power to be transferred. 

Selection of the secondary quality factor is hence a tradeoff between the efficiency and voltage 

stress on both sides.    

2.4. Resonant circuits 

Value of the capacitors is dependent on the remaining three blocks and is the reason for not taking 

them into consideration as independent design blocks. The load and capacitance values for the four 

topologies are provided in Table 2. The primary capacitance value is calculated for each topology to 

provide unity power factor from input side using FMA analysis. On the other hand, the secondary 

capacitor is made to resonate with the secondary inductors in all the topologies.  
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Table 2. Load and capacitors values for four resonant topologies 

Topology SS SP PS PP 

Load 
ω

i
Ls

Q
l

 ω
i
LsQl

 
ω

i
Ls

Q
l

 ω
i
LsQl

 

Secondary 

Capacitor 

1

ω
i
2Ls

 
1

ω
i
2Ls

 
1

ω
i
2Ls
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i
2Ls

 

Primary 

capacitor 
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ω
i
2Ls

 

1

ω
i

2 (Lp −
M
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Ls
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1

ω
i
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ω

i

2M
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1

ω
i

2

(

  
 
(Lp −

M
2

Ls
)+

M
4

Ls
4 Rl

2

ω
i

2 (Lp −
M

2

Ls
)
)

  
 

 

  

As well known, series and parallel resonance provide higher voltage and current stress on the 

resonant components. Apart from these, dependency of the primary capacitor on the coupling factor 

(mutual and self-inductance) and load is of high importance as also discussed in [23]. The primary 

capacitor of SS topology is independent both of the load and inductances and theoretically is the 

best topology as also pointed out in [23]. On the other hand, primary capacitor of SP topology is 

dependent on the inductances but can be taken care by designing the primary capacitor as per Table 

2. Secondary parallel compensated topologies of SP and PP has favorable current source 

characteristic towards the load compared to voltage source characteristics for secondary series 

compensation (SS and PS). The primary capacitor of parallel compensated topologies (PS and PP) 

is dependent on both the inductances and load. An additional DC-DC converter is used on the 

secondary side in this case [27] which reflects constant load on the primary side and primary 

capacitor can be designed as per Table 2. Also, these topologies require a current source on the 

primary side and are practically implemented using LCL topology on the primary side as explained 

in [23]. This topology provides higher current for given inverter current in the primary coil on 

account of parallel resonance and seems to be a better solution than series compensated primary 

topologies (SS and SP). However, DC-link voltage becomes the limiting factor for these topologies 

as explained in [27].       
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3. Inductor design 

Materials used for the three components: coils, ferrite and aluminum are discussed first before 

going into details of the design. Additional active shielding coils [20, 36] can also be present in the 

magnetic environment as also discussed in Section 1.1.2. However for simplifying the inductor 

design explanation, discussion in this chapter is limited to the three components. 

3.1. Materials  

The materials used in wireless charging system for vehicle applications are summarized in this 

section. Values of material properties used in laboratory setup constructed at Department of Energy 

Technology, Aalborg University are provided in Chapter 4.  

3.1.1. Coils 

Operational frequency (20 kHz - 85 kHz) of the system requires Litz wire with multiple parallel 

strands. Two major parameters of Litz wire to be selected are radius of each parallel strands and 

number of parallel strands. Removal of skin effect is basis of selection for the first part and is done 

by selecting radius of indivual strand lower than the skin depth. Current density of approximately 4 

A/mm
2 

[27] is used for this application and is used to linearly calculate number of parallel strands 

required for given maximum current.  

3.1.2. Ferrite  

High grade of ferrite with high real relative permeability in range of some thousands is used in the 

inductor design. The high grade also offers very low imaginary permeability (losses) which is 

important to deliver output power with good efficiency. Also commercially available high grade 

ferrite has much smaller dimensions than required for fabricating wireless charging inductors for 

vehicle applications. Hence, smaller ferrite plates or bars need to be put together in order to 

fabricate required base ferrite {1}.   

3.1.3. Aluminum 

Common grade aluminum with low resistivity is used in the inductor design. No special grade of 

aluminum has been reported in design of the wireless charging inductors to best of my knowledge. 

3.2. Design 

Inductor design is done using Finite Element Method (FEM) simulations as analytical solutions [40-

42] are mathematical intensive and are not highly accurate. The design consists of designing shape, 

size and placement of the three components: coils, ferrite and aluminum. Major design parameters 

to be achieved are low internal resistance, high coupling factor, and low magnetic emissions. The 

first parameter of internal resistance requires different FEM model than the remaining two 

parameters. This distinction is explained in detail below along with design of the three parameters. 
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3.2.1. Coupling factor and magnetic emissions 

The two design parameters of the coupling factor and magnetic emissions are calculated using 3D 

FEM model. In the model, the multiple parallel conductors of Litz wire are modelled as single 

conductor having similar outer dimensions. FEM solver used in this project is Comsol and has in 

built-in uniform current distribution function in the single conductor coil and external magnetic 

fields [43] can be calculated using this model. Term external is in respect to the coil as this model is 

not able to simulate the current distribution inside the coil. This practical FEM model provides 

solution with good accuracy for the coupling factor and emissions and has been used in other 

research works [25] for this application.  

Different inductor designs [11, 17, 25-27] with variations of the three components have been 

proposed in literature but all of them can be narrowed into a general design. The general design 

consists of a layer of ferrite placed below the coil on opposite side of the other coil and has been 

termed as base ferrite {1}. The coil diameter is kept approximately 60% of the overall inductor 

diameter as suggested in [25] for providing this short circuit path.  The base ferrite is followed by 

another layer of aluminum. Purpose of the three components can be understood with help of two set 

of results for four geometries: only coils, aluminum, ferrite and full provided in Figure 8 and 9. The 

two set of results are at constant current (23 A) and constant output power (1.58 kW) at 20 kHz. 

The sample geometry is taken from PhD papers {4} with the full geometry representing the general 

design introduced earlier in the paragraph. 

 

 

 

 

 

 

 

 

 

 

Reproduced with permission from [T. Batra, E. Schaltz, “Passive shielding effect on space profile of magnetic field 

emissions for wireless power transfer to vehicles”, Journal of Applied Physics, Vol. 117, pp 17A739 - 17A739-4, 2015]. 

Copyright [2015], AIP Publishing LLC.   

Figure 7. Side view sample geometries 
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Reproduced with permission from [T. Batra, E. Schaltz, “Passive shielding effect on space profile of magnetic field 

emissions for wireless power transfer to vehicles”, Journal of Applied Physics, Vol. 117, pp 17A739 - 17A739-4, 2015]. 

Copyright [2015], AIP Publishing LLC.   

Figure 8. Top view sample geometries 
 

The four geometries are constructed in FEM solver (Comsol). The two set of results for V=10 cm 

and H=60 cm are provided below followed by discussion of results. A few words here about 

magnetic emissions measurement guidelines provided by International Commission on Non-

Ionising Radiation Protection (ICNIRP) [25-27, 48]. The guidelines state that body average of Rms 

flux densities should be below 62.5 mG in frequency range 0.8 kHz – 125 kHz. However, region or 

points in the surroundings where the measurements needs to be made are not clarified [25] in the 

guidelines for this application. The measurement method for emissions is again adopted using 

research papers [25-27] from University of Auckland. For horizontal distance (X-axis), the 

emissions are measured at least 50 cm away from center of the inductors. Logic behind this is that 

smallest electric vehicle on the shorter side is assumed to be around 100 cm wide and centrally 

placed wireless charging system would be 50 cm away from first human contact. On the other hand 

for the vertical direction (Z-axis), the emissions are highest in region between the primary (P) and 

secondary (S) coils {3-10} and is measured up to certain distance on both sides from center (C). 

 

3.2.1.1. Constant primary current  

The primary coil is activated with sinusoidal current of 23 A Rms at 20 kHz with the secondary coil 

open circuited. The self-inductance, mutual inductance and coupling factor of the four geometries 
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are provided in Table 3. The magnetic field emissions (H=60 cm) and magnetic field arrow plot 

(normalized) for the four geometries are provided in Figure 9 to 12.  

 

 

 

 

 

 

 

 

 

(a) Magnetic field arrow plot - Normalized scale        (b) Magnetic emissions (µT) versus Z-axis 

Figure 9. Only coils geometry 

 

  

 

 

 

 

 

 

(a) Magnetic field arrow plot - Normalized scale        (b) Magnetic emissions (µT) versus Z-axis 

Figure 10. Ferrite geometry 
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(a) Magnetic field arrow plot - Normalized scale        (b) Magnetic emissions (µT) versus Z-axis 

Figure 11. Aluminum geometry 

 

 

 

 

 

 

 

 

 

 

(a) Magnetic field arrow plot - Normalized scale        (b) Magnetic emissions (µT) versus Z-axis 

Figure 12. Full geometry 

Table 3. Inductances and coupling factor  

Geometry M (µH) Lp=Ls (µH) k 

Only Coils 17 71 0.23 

Ferrite 60 158 0.38 

Aluminum 2 32 0.06 

Full 50 147 0.34 
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3.2.1.2. Constant output power 

Firstly in this section, the output power is calculated using (15) for the only coils geometries with 

primary current of 23 A Rms at 20 kHz and assuming load quality factor of 10 {4}. The value 

comes out to be 1.58 kW and is taken as reference value. The primary current for the remaining 

three geometries is calculated using (15) for similar reference power and load quality factor. The 

primary coil is energized with current provided in Table 4 for the four geometries. The secondary 

coil similar to Section 3.2.1.1 is open circuited and the magnetic emissions for similar horizontal 

distance (H=60 cm) are provided in Figure 13. The emissions plot for the only coil geometry is 

provided again (Figure 9b) in Figure 13a for comparison with the other geometries. 

 

 

 

 

 

 

 

 

 

(a) Only coils geometry           (b) Ferrite geometry 

 

 

 

 

 

 

 

 

 

(c)  Aluminum geometry           (d) Full geometry 

Figure 13. Magnetic emissions (µT) versus Z-axis 
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Table 4. Primary current and coupling factor  

Geometry k Ip Rms (A)  

Only Coils 0.23 23 

Ferrite 0.38 9.52 

Aluminum 0.06 131.24 

Full 0.34 11.03 

 

3.2.1.3. Discussion 

The two set of results provided in Section 3.2.1.1 and 3.2.1.2 are discussed in this section.  

3.2.1.3.1. Only coils geometry 

This is the simplest possible inductor geometry with no passive shielding present. The coupling 

factor and emissions for this geometry are taken as reference and will be used for comparison with 

the remaining three geometries.  

3.2.1.3.2. Ferrite geometry 

High grade ferrite is used below the coil in form of spokes [25], plate [11] and other forms [17, 27]. 

In all the forms, similar idea of providing short circuit path to the magnetic flux from inner to outer 

side of the coil is basis for the design. This is also visible in Figure 10a where the magnetic field 

rotates and passes through the primary base ferrite on the return path. This is different from 

magnetic field behavior of the only coils geometry in Figure 9a. The magnetic flux as well known 

flows in closed loops closing the coil (primary). Due to lower magnetic resistance offered by ferrite, 

the magnetic flux magnitude increases and as a result both the self and mutual inductance increases. 

Increase in the mutual inductance dominates increase in the self-inductance and as a result the 

coupling factor increases. The last statement can be explained with help of magnetic flow arrow 

diagram of Figure 10a. As wireless charging systems have weak magnetic coupling, most of the 

primary magnetic flux does not couple with the secondary coil. Hence, the self-inductance has 

major contribution from leakage flux loops which only have short circuit magnetic path through the 

primary base ferrite. On the other hand, the mutual inductance is integration of flux loops which 

pass through both the primary and secondary ferrite base. Hence the mutual flux loops have 

comparably lower magnetic resistance and provide comparably higher increase in the mutual 

inductance compared to increase in the self-inductance provided by leakage flux loops.  

Apart from the coupling factor, the magnetic emissions also increase for the ferrite geometry 

compared to the only coils geometry for same primary current and is visible by comparing Figure 

9b and 10b. Part of the magnetic emission loop path also finds short circuit path through one or both 

ferrite bases and results in higher emission value for the ferrite geometry. However with increase in 

the coupling factor, lower current compared to the only coil geometry is required for transferring 

the same output power as provided in Table 4. This reduces the emissions for given output power 

and can be verified by comparing Figure 13a and 13b. Summarizing the above, it can be concluded 
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that ferrite increases the coupling factor and on account of lower current required for transferring 

the same power also reduces the emissions. On the negative side, there are magnetic losses in the 

ferrite that reduce the efficiency. The losses are reduced to minimum by using high grade of ferrite 

as already discussed in Section 3.2.1. Also, ferrite being a compound of heavy metal iron has 

significant effect on the weight of the inductor.   

3.2.1.3.3. Aluminum geometry 

Aluminum reduces the magnetic emissions through means of eddy currents. Mechanism of 

reduction of the emissions can be understood with help of magnetic field arrow diagram of Figure 

11a. The magnetic flux goes in parallel with surface of the aluminum on its outer side as it is not 

able to penetrate the aluminum thickness.  Aluminum is used in thickness range of some millimeters 

which is much higher than skin depth of aluminum for the design frequency range (20 kHz to 85 

kHz). As a result, aluminum increases the length of the magnetic flux loop by not allowing the 

loops to pass through them. This results in increased value of the magnetic resistance and reduces 

the magnetic flux value (emissions). The last set of statements can be verified from the emissions 

value for the aluminum geometry (Figure 11b) which is much lower than the values for the only 

coil (Figure 9b) and ferrite (Figure 10b) geometries.  

However, aluminum plate on the secondary side acts as an infinite magnetic resistance again on 

account of eddy currents and hence the magnetic flux does not effectively couple the secondary 

coil. This results in huge drop in the mutual inductance and coupling factor as provided in Table 3. 

This point can also be seen with help of constant power results in Table 4. Very high primary 

current is required to provide similar output power compared to the only coils and ferrite 

geometries. This is not practical and refers to fact that aluminum cannot be alone used in inductor 

design of wireless charging system. A layer of ferrite must be placed in between the coil and 

aluminum for practical system design as also pointed in [20]. This brings the discussion to the full 

geometry discussed next. 

3.2.1.3.4. Full geometry 

Practical inductor design of wireless charging system combines the increased coupling factor from 

ferrite usage and reduction of emissions from combined usage of ferrite and aluminum. Aluminum 

has slight negative effect on the coupling factor even with introduction of ferrite layer as seen by 

comparing the coupling factors of the ferrite and full geometry in Table 3. In other words, slightly 

higher primary current is required to provide similar output power in the full compared to the ferrite 

geometry and is provided in Table 4. This reduction in the coupling factor needs to be accepted in 

the inductor design with aluminum usage as it also provides high reduction in the emissions which 

can be seen by comparing Figure 10b and 12b. The emissions reduction works in similar way as 

explained for the aluminum geometry by elongation of the field path and is provided for this 

geometry in Figure 12a.  

3.2.2. Internal resistance 
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The internal resistance has contributions from DC resistance, skin effect, proximity effect, 

hysteresis loss in ferrite and eddy current losses in both ferrite and aluminum. Calculating the 

internal resistance using 3D FEM model would demand all hundreds parallel strands of Litz wire to 

be modelled separately. This approach is not practical as it needs immense computation power and 

has already been reported in literature [43-44]. For the internal resistance calculation, first the 

external magnetic field is calculated using 3D single conductor model discussed in Section 3.2.1. 

This external magnetic field is used as input for 2D FEM model [43] where all the parallel strands 

can be modelled separately and internal resistance can be computed with reasonably good accuracy. 

This part has not been deeply focused during PhD project due to lack of time and will be considered 

in future works. Alternatively, there are analytical formulas [45-47] also available for calculation of 

the internal resistance with the parallel conductors included. The internal resistance has been 

modeled as discrete resistor in 3D FEM model (discussed in 3.2.1) used in the project.  

3.3. Passive shielding optimization  

Passive shielding as discussed in Section 3.2 increases the power transfer capability and reduces 

emissions of wireless charging system. On the downside, their addition to the coils increases 

weight, dimensions, losses and cost of the inductors. Two investigations (papers) have been made 

during the project for optimization of the passive shielding by weighing their advantages to 

disadvantages. Of all the considered quantities, only the coupling factor and emissions are electro-

magnetic in nature and have been already discussed in detail. The remaining quantities (weight, 

dimensions, losses and cost) are self-explanatory and need not be explained further. Hence, in this 

section only a short summary of the investigation (paper) followed by the published/submitted 

paper is provided.  

3.3.1. Investigation 1 

Base ferrite is used in variety of shape and size: spokes, disk and others in the inductor design of 

wireless charging systems as also discussed in Section 3.2.2.3. However it was observed that extra 

ferrite can be placed parallel to the coil surface and above the base ferrite. Advantage of this 

addition is increase in the coupling factor with no increase in the outer dimensions of the inductor. 

This extra ferrite being closer to the other coil in comparison to the base ferrite has potential of 

providing relative higher increase in the coupling factor. In this paper, best physical location for 

placement of extra ferrite is investigated w.r.t increase in the coupling factor and weight added by 

ferrite. It is deduced from the results that ferrite placed in center of the coil provides highest 

increase in the coupling factor for per unit weight added. The full paper along with the discussion 

and results is provided next in Section 3.3.1.1. 
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3.3.1.1. PhD paper 1  

This paper was originally published with following details. 

{1} T. Batra, E. Schaltz, S. Ahn, “Effect of ferrite addition above the base ferrite on the coupling 

factor of wireless power transfer for vehicle applications”, Journal of Applied Physics, Vol. 

117, pp 17D517 - 17D517-4, 2015. 

http://dx.doi.org/10.1063/1.4919039  

"Reproduced with permission from [T. Batra, E. Schaltz, S. Ahn, “Effect of ferrite addition above 

the base ferrite on the coupling factor of wireless power transfer for vehicle applications”, Journal 

of Applied Physics, Vol. 117, pp 17D517 - 17D517-4, 2015]. Copyright [2015], AIP Publishing 

LLC.”   
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Effect of ferrite addition above the base ferrite on the coupling factor of
wireless power transfer for vehicle applications
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2EMC Lab, CCS Graduate School for Green Transportation, KAIST, Daejeon 305-701, South Korea
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Power transfer capability of wireless power transfer systems is highly dependent on the magnetic

design of the primary and secondary inductors and is measured quantitatively by the coupling

factor. The inductors are designed by placing the coil over a ferrite base to increase the coupling

factor and reduce magnetic emissions to the surroundings. Effect of adding extra ferrite above the

base ferrite at different physical locations on the self-inductance, mutual inductance, and coupling

factor is under investigation in this paper. The addition can increase or decrease the mutual

inductance depending on the placement of ferrite. Also, the addition of ferrite increases the

self-inductance of the coils, and there is a probability for an overall decrease in the coupling factor.

Correct placement of ferrite, on the other hand, can increase the coupling factor relatively higher

than the base ferrite as it is closer to the other inductor. Ferrite being a heavy compound of iron

increases the inductor weight significantly and needs to be added judiciously. Four zones have been

identified in the paper, which shows different sensitivity to addition of ferrite in terms of the two

inductances and coupling factor. Simulation and measurement results are presented for different air

gaps between the coils and at different gap distances between the ferrite base and added ferrite.

This paper is beneficial in improving the coupling factor while adding minimum weight to wireless

power transfer system. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4919039]

I. THEORY

Wireless Power Transfer (WPT) by resonant inductive

coupling has shown great promise for charging of electric

vehicles. The main advantages of WPT charging are comfort

and possibility of power transfer, while the vehicle is moving.1

Providing high power transfer capability with minimum induc-

tor size and weight is one the biggest challenges in design of

WPT inductors. The power transferability of WPT is highly

dependent on the coupling factor between the inductors and is

given2 by P ¼ V1I1k2Q. P is the power transferred to the sec-

ondary side, V1 and I1 are the voltage and current for the pri-

mary coil, k is the coupling factor, and Q is the secondary side

quality factor in the above relation. The coupling factor is

defined as k ¼ Mffiffiffiffiffiffiffi
L1L2

p , where M is the mutual inductance and

L1 and L2 are the self-inductances of the primary and second-

ary coils, respectively. Top and side views of the sample ge-

ometry used in the paper are provided in Figs. 1 and 2. It is a

square geometry of outer dimensions 30 cm� 30 cm. The two

inductors (L1¼L2¼L) are identical and hence the coupling

factor can be written as k ¼ M
L . Litz wire is used for construc-

tion of the coils and relative permeability of the used ferrite is

3200. If no ferrite is present in Figs. 1 and 2, the resultant ge-

ometry is termed as Only Coils Geometry.

Ferrite is added in the base below the coil in the form of

bars2,3 and other forms to increase the coupling factor and

concentrate the field between inductors. Ferrite base is an

essential component for design of WPT for vehicle

applications. For the sample geometry, Base Geometry is

termed as when base ferrite plates along with the coils are

present in the inductors. Statements and results in the paper

are presented with help of the primary field (inductor), and

analogues results are applicable for the secondary field (induc-

tor). Area above the base ferrite and limited to upper end of

the primary coil (marked as Primary Air in Fig. 2) is mostly

having air in the inductor design.2,3 Hence, addition of ferrite

in Primary Air does not increase (desired) outer dimensions of

the inductor but can be used to increase the coupling factor rel-

atively higher than the base ferrite, as it is closer to the other

inductor. Investigating physical locations (Zones) in Primary

and Secondary Air where highest increase in coupling factor is

achieved per unit weight addition of ferrite is the main theme

of this paper. The term “addition of ferrite” stands for extra

addition of ferrite in Primary and Secondary Air of Base

Geometry throughout the paper. Also, zones touching and

away from the base plate are referred to as “Touch” and “Far”

zones, respectively, in Figs. 1 and 2. In other publications,1,4,5

geometries where ferrite was present above the base ferrite

were proposed. But none of them to best of our knowledge

studied placement of ferrite into two separate portions (base

and above) and variation of the two inductances and coupling

factor at different physical locations above the base ferrite.

Variation in the primary self-inductance practically

depends only on addition of ferrite in Primary Air due to large

air gap between the inductors. Magnetic field intensity at a

point close (low magnetic resistance) to circumference of the

primary coil is higher than at a point away (high magnetic re-

sistance) from it in Primary Air of Base Geometry. Hence,

a)Author to whom correspondence should be addressed. Electronic mail:

tba@et.aau.dk.
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two divisions for the self-inductance variation can be made on

basis of ferrite placement from the primary coil circumfer-

ence—high (close—Zones 2 and 3) and low (away—Zones 1

and 4). Further, the close zones can be subdivided as Zone 3

will have lower field compared to Zone 2 as it lies on the outer

side of the coil, which has more area for returning flux as

compared to starting flux. The primary magnetic field flows in

closed loops closing the primary coil and flux inside the coil

is assumed to be the starting flux. Similar argument can be

deduced for inner Zones 1 and 4 with Zone 1 having higher

field. The above statements explain division of Primary Air

into four zones, which show different self-inductance varia-

tion for ferrite addition. On the other hand, variation in the

mutual inductance depends on added ferrite in Secondary Air

only. Ferrite addition should attract more flux inside circum-

ference of the secondary coil than Base Geometry for increase

in the mutual inductance and vice versa. Two distinctions for

increase (Zones 1 and 2) and decrease (Zones 3 and 4) as a

result are possible for mutual inductance variation w.r.t. ferrite

addition. Zones (2 or 3) closer to the secondary coil circum-

ference will show more sensitivity towards mutual inductance

variation compared to Zone (1 or 4) for ferrite addition as

they are closer to path of the primary flux coming towards the

secondary ferrite base plate. Highest flux in Primary Air is in

Zones 2 and 3 and secondary Zones 2 and 3 lie directly above

them and explains the last statement. As a result, Secondary

Air similar to Primary Air is divided into four zones. The

above mentioned behaviors of the inductances for the four

zones along with the supporting results are provided in Sec.

II. The coupling factor variation which is a byproduct of the

two inductances variation is also discussed.

Distance of the zones from the primary coil circumfer-

ence and zone dimensions are arbitrary selected values in the

paper. They are not uniquely defined by any physical law.

Concept of zones has been introduced to mark major areas

(Zones), which show similar behavior towards ferrite addi-

tion. At last, change in the self-inductance, mutual induct-

ance, or coupling factor divided by change in weight of

either inductor has been used as criterion for measuring sen-

sitivity of ferrite addition. As the ferrite material (density) is

same for the base and zones, weight is replaced by volume in

the last definition. They are denoted by symbols Cs, Cm, and

Ck and mathematically sensitivity coefficients for zone fer-

rite can be written as Cs;m; k ¼
L;M; kð Þzone� L;M; kð Þbase geometry

Zone ferrite volume ðVolume ChangeÞ

� �

with Base Geometry as reference. The coefficients for the

base ferrite plate can be defined in a similar way as

Cs;m; k ¼
L;M; kð Þbase geometry� L;M; kð Þonly coils

Base ferrite volume ðVolume ChangeÞ

� �
. Only Coils Geometry

serves as reference value for the latter coefficients.

II. RESULTS

A. No-Load plot

Theory presented in Sec. I was based on the magnetic

field of individual (primary) coil. Primary magnetic field for

the surrounding air of Base Geometry is provided in Fig. 3

and is obtained with a no-load simulation5,6 on Comsol with

the primary coil energized and secondary coil open-

circuited. Length of an arrow represents strength of the mag-

netic field at that point. This plot is used to explain the

results for the four zones in Subsection II B.

B. Sensitivity coefficients

Simulation and experimental results for two different air

gap (V¼ 6 cm and 12 cm) between the inductors are presented

in Tables I–IV. The inductances, Cs, Cm, and Ck are provided

FIG. 1. Sample geometry side view.

FIG. 2. Sample geometry top view.
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in lH, (lH/cm3), (lH/cm3), and (1/cm3), respectively. Also,

abbreviation N.D. stands for Not Defined in the tables. Using

Figs. 1 and 2, ferrite volumes for the base, Zone 1, and the

remaining three zones for either inductor are 540 cm3, 40 cm3,

and 31.1 cm3, respectively. Simulations are done on finite ele-

ment solver Comsol and experimental readings for the induc-

tances are taken with RLC meter (Agilent–U1733C). The

experimental procedure is provided in Fig. 4. The operation

frequency is 10 kHz for both. The simulation and experimen-

tal results are in good compliment with each other. Following

observations are obtained from the results.

1. Touch and far zones

For Touch Zones, the base plate is touching the added

ferrite and hence they act as one material of low magnetic re-

sistivity. On the other hand, when ferrite is added in Far

Zones, an additional magnetic resistance is present between

the base plate and the added ferrite. Far Zones are closer to

return path of the magnetic flux than Touch Zones; still Ck is

lower for them as compared to Touch Zones due to the addi-

tional magnetic resistance. Comparing each zone number for

the two zone types, i.e., Touch and Far, in all four tables val-

idates the last statement. Hence, ferrite should be added

touching rather than at a gap from the base ferrite. The

behavior of self and mutual inductances is discussed in detail

only for Touch Zones in the next points. The sensitivity coef-

ficients for Far Zones are slightly different as compared to

Touch Zones due to the additional magnetic resistance.

2. Zone 1

Magnetic field intensity is moderate in primary Zone 1

in Fig. 3, and hence, Cs increases moderately with addition

in this zone. Cm also increases because the addition links

more primary flux to the secondary coil as compared to the

base geometry. Cm increases comparatively higher than Cs

and hence the coupling factor (Ck) increases. Relative

increase in path length (reciprocal of self-inductance) of the

flux to now pass through primary Zone 1 (originally passing

away from primary Zone 1 in base geometry) is much higher

than relative increase in path length (reciprocal of mutual in-

ductance) of the flux to shift to secondary Zone 1 (originally

passing away from secondary Zone 1 in base geometry) and

explains the last statement. The above statements can be

verified by comparing rows 2 (base geometry) and 3 in the

FIG. 3. Primary magnetic field arrow plot.

TABLE I. Simulations results—V¼ 12 cm.

Zone

Zone

type L¼L1¼L2 Cs M Cm k ¼ M
L

Ck

(� 10�3)

Only coils 180.947 N.D. 17.154 N.D. 0.0948 N.D.

Base geometry 305.839 0.231 39.527 0.041 0.1292 0.064

1 Touch 311.204 0.134 41.461 0.048 0.1332 0.100

2 Touch 317.737 0.382 41.744 0.071 0.1314 0.071

3 Touch 310.235 0.141 38.977 �0.018 0.1256 �0.120

4 Touch 306.701 0.028 39.594 0.002 0.1291 �0.003

1 Far 311.000 0.130 41.154 0.041 0.1323 0.077

2 Far 316.340 0.338 40.861 0.043 0.1292 0

3 Far 311.509 0.182 38.780 �0.024 0.1245 �0.150

4 Far 306.538 0.0225 39.464 �0.002 0.1288 �0.013

TABLE II. Simulations results—V¼ 6 cm.

Zone

Zone

type L¼L1¼L2 Cs M Cm k ¼ M
L

Ck

(�10�3)

Only coils 180.976 N.D. 41.647 N.D. 0.2301 N.D.

Base geometry 319.671 0.257 102.736 0.113 0.3214 0.169

1 Touch 327.015 0.184 108.457 0.143 0.3317 0.257

2 Touch 332.916 0.426 108.747 0.193 0.3266 0.167

3 Touch 323.878 0.135 102.006 �0.023 0.3149 �0.210

4 Touch 320.602 0.030 103.251 0.016 0.3220 0.019

1 Far 326.611 0.173 107.368 0.116 0.3296 0.205

2 Far 331.254 0.372 106.264 0.113 0.3208 �0.190

3 Far 325.138 0.176 101.139 �0.051 0.3111 �0.330

4 Far 320.230 0.018 102.864 0.004 0.3212 �0.006

TABLE III. Experimental results—V¼ 12 cm.

Zone Zone type L1 L2 L¼
ffiffiffiffiffiffiffiffiffiffi
L1L2

p
Cs L1þL2þ 2M1 L1þL2� 2M2 M¼ (M1þM2)/2 Cm k ¼ M

L Ck (� 10�3)

Only coils 172.3 183.6 177.86 N.D. 400.5 318.8 20.425 N.D. 0.1148 N.D.

Base geometry 305.7 311.2 308.4 0.242 694.2 533.8 40.100 0.074 0.1300 0.028

1 Touch 309.7 315.9 312.8 0.110 705.4 540.3 41.275 0.029 0.1320 0.050

2 Touch 316.7 321.8 319.2 0.347 720.8 552.8 42.000 0.061 0.1315 0.048

3 Touch 309.5 313.3 311.4 0.096 699.5 542.1 39.350 �0.024 0.1264 �0.116

4 Touch 306.9 310.9 308.9 0.016 695.5 536.0 39.875 �0.007 0.1291 �0.029

1 Far 310.2 314.1 312.1 0.092 703.3 539.7 40.900 0.020 0.1310 0.025

2 Far 313.9 315.8 314.8 0.206 709.6 544.0 41.400 0.041 0.1315 0.048

3 Far 308.5 312.3 310.4 0.064 692.8 541.2 37.825 �0.073 0.1220 �0.257

4 Far 306.2 310.8 308.5 0.003 693.4 535.4 39.500 �0.019 0.1280 �0.064
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tables. At the end, it can be concluded that this is a preferred

zone for ferrite addition.

3. Zone 2

In primary Zone 2, the magnetic field intensity is highest

of the four zones in Fig. 3 due to shortest magnetic path and

as a result increase in Cs is highest. Cm also increases with

added ferrite on the secondary side with the same reason as

for Zone 1. Cm is also higher for Zone 2 in comparison to

Zone 1 as Zone 2 provides shorter path to the flux. Ck

increases for this zone but high value of Cs forces it to be

lower than Ck for Zone 1. The above comparison for Zone 1

and Zone 2 can be done by comparing rows 3 and 4 in the

tables. Based on the results this zone is the next preferred

area for ferrite addition after Zone 1.

4. Zone 3

Primary Zone 3 has lower field intensity than Zone 2 in

Fig. 3 and as a result same is the case with Cs. Addition of

ferrite to secondary Zone 3 forces some of the flux not to pass

from inside the secondary coil and hence Cm is negative. In

the tables, row 5 has negative Cm and Ck which validates

reduction of the mutual inductance and coupling factor.

Hence, this is not the preferred zone for ferrite addition.

5. Zone 4

This is the outermost zone and has least sensitivity

towards both the self and mutual inductances. Magnitude of

the field is reduced away from the circumference of the coils

in both the primary and secondary Zone 4 and is reason for

low values of Cs and Cm compared to Zone 1 and Zone 2.

The results for this zone are provided in row 6 of the tables.

Ck has low values compared to the first two zones and hence

addition in this zone has least effect on the power transfer

capability of the system.

6. Base and touch zone ferrite

Positive Ck for Touch Zones 1 and 2 appears to be small.

This should, however, not be considered as not having a signifi-

cant influence on the coupling factor. In order to clarify this

point, sensitivity coefficients for Base Geometry are also pro-

vided. Comparing coefficients (Ck) for Zones 1 and 2 with Base

Geometry from rows 1, 2, and 3 of the tables show that they are

close to each other and the remaining two zones are below it.

Hence, it can be concluded that base ferrite also increases the

coupling factor by comparable (or even lower) numbers on a

per unit weight or volume basis. Still base ferrite is necessary in

the inductor design for concentrating the magnetic field in

between the inductors and minimum leakage to surroundings.

III. CONCLUSIONS

Addition of extra ferrite above the base ferrite for the

inductors of wireless power transfer to vehicles is under

investigation in this paper. The additional ferrite being closer

to the other inductor can increase the coupling factor signifi-

cantly. The paper notifies four different zones which show

different sensitivity in terms of the change in self-inductance,

mutual inductance, and coupling factor to extra ferrite addi-

tion. Simulation and experimental results show that the cen-

tral area of the inductor provides highest increase in the

coupling factor per unit added weight and is most favorable

for ferrite addition. Also, the results show that ferrite addition

increases the coupling factor more when the added ferrite is

touching rather than at a gap from the base ferrite.

1S. Ahn and J. Kim, “Magnetic field design for high efficient and low EMF

wireless power transfer in on-line electric vehicle,” in Proceedings of the
5th European Conference on Antennas and Propagation, Rome, Italy,
11–15 April 2011 (IEEE), pp. 3979–3982.

2M. Budhia, G. A. Covic, J. T. Boys, and C. Y. Huang, IEEE Trans. Ind.

Electron. 60(1), 318 (2013).
3M. Budhia, G. A. Covic, and J. T. Boys, IEEE Trans. Power Electron.

26(11), 3096 (2011).
4H. Sakamoto, K. Harada, S. Washimiya, K. Takehara, Y. Matsuo, and F.

Nakao, IEEE Trans. Magn. 35(5), 3526–3528 (1999).
5T. Batra and E. Schaltz, J. Appl. Phys. 115(17), 17E715 (2014).
6T. Batra and E. Schaltz, “Magnetic field emission comparison at different

quality factors with series-series compensation network for inductive power

transfer to vehicles,” in Wireless Power Transfer Conference 2014, Jeju
Islands, South Korea, 8–9 May 2014 (IEEE), pp. 13–16.

TABLE IV. Experimental results—V¼ 6 cm.

Zone Zone type L1 L2 L¼
ffiffiffiffiffiffiffiffiffiffi
L1L2

p
Cs L1þL2þ 2M1 L1þL2� 2M2 M¼ (M1þM2)/2 Cm k ¼ M

L Ck (�10�3)

Only coils 172.3 183.6 177.86 N.D. 447.3 270.7 44.150 N.D. 0.2482 N.D.

Base geometry 317.9 322.7 320.3 0.263 837.2 436.0 100.300 0.104 0.3132 0.120

1 Touch 323.7 330.5 327.1 0.170 860.9 440.9 105.000 0.117 0.3210 0.195

2 Touch 330.4 334.2 332.3 0.386 873.8 449.7 106.025 0.184 0.3191 0.189

3 Touch 320.8 325.2 323.0 0.087 846.3 445.8 99.625 �0.022 0.3080 �0.167

4 Touch 319.6 323.8 321.7 0.045 842.7 439.5 100.800 0.016 0.3132 0

1 Far 323.2 328.1 325.6 0.132 856.4 442.8 103.400 0.077 0.3175 0.107

2 Far 325.1 328.5 326.8 0.209 855.9 445.4 102.625 0.075 0.3140 0.026

3 Far 318.9 323.7 321.3 0.032 835.9 442.4 98.375 �0.062 0.3037 �0.305

4 Far 317.6 322.5 320.0 �0.010 838.7 438.4 100.075 �0.007 0.3095 �0.119

FIG. 4. Experimental procedure.
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3.3.2. Investigation 2 

In this section, two aspects thickness and grade of shielding materials ferrite and aluminum are 

under investigation. Ferrite and aluminum are used in thickness range of few centimeters and few 

millimeters in the system inductor design. In the first aspect, thickness of both shielding materials is 

reduced and an investigation is made for change in the coupling factor, inductor weight, magnetic 

emissions and losses. Results indicate that wireless charging inductors weight and thickness can be 

substantially reduced if slight higher losses and lower coupling factor are accepted. For the second 

aspect, the commonly used high grade expensive ferrite is replaced with relatively lower grade 

cheaper ferrite in terms of performance parameters: coupling factor, inductor weight, magnetic 

emissions and losses. The results for this case indicate that there is not much reduction in the 

coupling factor with the changing ferrite grade. However, the losses are more for the lower grade 

and can be accepted as a tradeoff with reduction in cost. This summary is followed by synopsis of 

submitted paper and additional results in Section 3.3.2.1 and 3.3.2.2 respectively.  

3.3.2.1. PhD paper 2 

This paper has been submitted with following details. 

{2} T. Batra, E. Schaltz, “Influence of Ferrite Grade and Thickness on System Performance of 

Wireless Power Transfer for Vehicle Applications”, Submitted, ECCE Asia 2016. 
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Influence of Passive Shielding Grade and Thickness on System Performance of Wireless 

Power Transfer for Vehicle Applications 

 

1. Introduction – Passive shielding is used in wireless power transfer (WPT) inductors for 

vehicle applications to boost the power transfer and provide shielding from the magnetic field 

emissions. On the other hand, the drawbacks of using passive shielding are increased cost, losses, 

dimensions and weight of the inductors. In this paper, three investigations are made for 

optimizing ferrite grade (Ferrite 1 and 2), ferrite thickness (T) and aluminum thickness (S) by 

counterweighing advantages against disadvantages. The three investigations are explained after 

brief introduction to the experimental inductor and power electronics setup. 

2. Experimental setup – The experimental inductor and electrical setup used in the paper is 

provided in Figure 1 and 2 below. The magnetic emissions are measured for 16 measurement 

points and their average is provided in the results.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – Inductor setup 
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Operation point ⇒ ω
i
=√LpCp=√LsCs ⇒ Circuit efficiency= (VlIs)/(ViIp)   

Figure 2 – Electrical schematic diagram 

3. Investigation 1 – The main motivation behind this investigation is development of low weight 

and low dimensions inductors. Ferrite is used in thickness range of 10 mm [1-3] in the inductor 

design of WPT. Hence, first of all weight of one of the identical inductor (Figure 1) and its 

components for ferrite thickness of 10 cm and aluminum thickness of 2 cm is provided.  

1) Overall weight=11.252 Kg     2) Aluminum=0.724 Kg 

3) Ferrite=8.526 Kg      4) Coil=2.001 Kg 

Ferrite is the main contributor in the inductor weight as provided above. It is proposed in the first 

investigation that the inductor weight and dimensions can be greatly reduced by reducing ferrite 

thickness as this has comparatively lower effect on system performance (output power, emissions 

and efficiency). To prove the last statement, experiments are conducted at constant primary 

current (provide in Table 1), switching frequency (22 kHz) and load (Rl=4.3 Ω) for different 

ferrite thickness and results are summarized in Table 1. Value of the capacitors is constant and 

hence switching frequency is varied slightly from 22 kHz to achieve resonance in the system. The 

same values are used in the remaining two investigations and are not provided again. The 

measured current and voltage waveforms are provided for lowest ferrite thickness (T=2.5 mm) at 

V=20 cm in Figure 3.       

Table 1. System Performance versus Ferrite Thickness 

Ferrite Thickness (T) Output Power Average Emissions  Circuit efficiency 

mm P.U. (%) W P.U. (%)  mG P.U. (%) % P.U. (%) 

V=10cm, Ip=10 A Rms, S=2 mm 

2.5 25 929 59 73 62 91 100 

5 50 1246 78 96 82 89 98 

7.5 75 1392 88 115 98 89 98 

10 100 1588 100 117 100 91 100 

V=20cm, Ip=20 A Rms, S=2 mm 

2.5 25 498 58 118 74 70 85 

5 50 693 81 149 93 73 89 

7.5 75 790 92 168 105 80 98 

10 100 855 100 160 100 82 100 

Per Unit (P.U.) % = (Value at T)/(Base values at T=10mm)×100 



3 
 

 

 

 

 

 

 

Figure 3 – Electrical waveforms at T=2.5 mm, S=2 mm and V=20 cm 

4. Investigation 2 – In state of art inductor designs [1], high and expensive ferrite grade (Ferrite 

1) [4] with high relative permeability (magnetic) and very low imaginary permeability (losses) is 

used. In this investigation, alternate cheaper and inferior magnetic properties ferrite grade [5] is 

compared with the high grade in terms of system performance to reduce inductor cost. Ferrite 1 is 

used in Investigation 1 and results are already provided in Table 1. Corresponding results for 

Ferrite 2 are provided in Table 3. But first, properties of the two ferrite grades are summarized in 

Table 2. Weight of Ferrite 2 is nearly similar to weight of Ferrite 1 provided in Investigation 1. 

Table 2. Comparison ferrite grades 

Ferrite Application 
Real Relative 

Permeability 

Imaginary Relative 

Permeability 
Cost Availability 

1 WPT 2300 ≈0* Expensive Hard 

2 Other Applications 660 20 Cheaper Easy 
* Resolution of manufacturer’s graph does not allow for accurate reading at 22 kHz 

Table 3. System Performance versus Ferrite 2 Thickness 

Ferrite Thickness (T) Output Power Average Emissions  Circuit efficiency 

mm P.U. (%) W P.U. (%)  mG P.U. (%) % P.U. (%) 

V=10cm, Ip=10 A Rms, S=2 mm 

4 40 1323 83 96 68 87 99 

6 60 1460 92 114 81 89 101 

8 80 1527 96 117 83 88 100 

10 100 1588 100 141 100 88 100 

V=20cm, Ip=20 A Rms, S=2 mm 

4 40 760 81 148 74 75 94 

6 60 815 87 162 81 80 100 

8 80 918 98 173 87 80 100 

10 100 940 100 200 100 80 100 

Per Unit (P.U.) % = (Value at T)/(Base values at T=10mm)×100 

At the end, corresponding voltage and current waveforms at S=4 mm, T=2 mm and V=20 cm is 

provided in Figure 4. 
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Figure 4 – Electrical waveforms at S=4 mm, T=2 mm and V=20 cm 

5. Investigation 3 – This investigation is focused on finding optimized thickness for aluminum 

which is used in range of few millimeters in state of art designs [1-3]. For this, the aluminum 

thickness is varied from 0 to 4 mm for both ferrite grades and the results are summarized in Table 

4. Before that, voltage and current waveforms are provided for S=0 mm, T=8 mm and V=20 cm 

are provided in Figure 5. 

     

 

 

 

 

 

Figure 5 – Electrical waveforms for Ferrite 1 at S=0 mm, T=8 mm and V=20 cm 

Table 4. System Performance versus Aluminum Thickness 

Aluminum Thickness (S) Output Power Average Emissions Circuit efficiency 

mm P.U. (%) W P.U. (%) mG P.U. (%) % P.U. (%) 

Ferrite 1 at V=10 cm, Ip=10 A, T=10 mm 

0 0 1779 111 218 186 90 98 

2 100 1597 100 117 100 92 100 

4 200 1442 90 127 109 89 97 

Ferrite 1 at V=20 cm, Ip=20 A, T=10 mm 

0 0 1099 130 249 156 86 106 

2 100 848 100 160 100 82 100 

4 200 835 98 157 98 84 103 

Ferrite 2 at V=10 cm, Ip=10 A, T=8 mm 

0 0 1805 114 216 153 87 100 

2 100 1588 100 141 100 87 100 

4 200 1477 93 123 87 88 100 
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Ferrite 2 at V=20 cm, Ip=20 A, T=8 mm 

0 0 1091 120 223 129 84 104 

2 100 911 100 173 100 80 100 

4 200 820 90 173 100 79 99 

Per Unit (P.U.) % = (Value at S)/(Base values at S=2mm)×100 

5. Results – The following results are obtained from the three investigations. 

1) Investigation 1 and 2 – For both ferrite grades, decrease in the ferrite thickness (usage) is much 

higher than the corresponding decrease in the output power, emissions and efficiency. Hence, 

weight and dimensions of the inductors can be reduced by using lower thickness of ferrite. 

2) Investigation 1 and 2 – The two ferrite grades have near similar performance tested under 

identical conditions. As a result, the lower grade ferrite can replace higher expensive ferrite grade 

subject to condition that slightly higher emissions and lower efficiency are acceptable.  

3) Investigation 3 – First observation from the last investigation is well known and suggests that 

removing aluminum from inductor design will have positive impact on the efficiency and output 

power. However, the emissions increase significantly with removal of aluminum and hence its 

presence in mandatory. Second observation on the other hand is novel and suggests that 

aluminum thickness should be kept to minimum as higher value has very little effect on its 

primary function of reducing emissions.  

6. Final version – In the final version, the following will be added to the present synopsis. 

1) Analytical model based on magnetic circuits to explain the results. 

2) RLC measurements and FEM simulations to supplement experimental results. 

3) Magnetic field measurements at all 16 measurement points. 

4) Experimentally measured waveforms at all ferrite and aluminum thicknesses. 
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3.3.2.2. PhD paper 2 – Additional results 

PhD paper 2 in Section 3.3.2.1 has been submitted as synopsis to a conference where number of 

pages is limited to five. In order to present better understanding of the paper, analytical 

explanation, RLC meter results and experimental readings are added in this section. A point 

needs to be mentioned here that numbering of tables and figures in this section are in 

continuation to the main paper {4} as this section is extension of the paper. 

3.3.2.2.1. Analytical explanation 

In this section, analytical explanation is provided for low dependence of thickness (ferrite and 

aluminum) and grade (ferrite) of the shielding materials on the self and mutual inductances for 

wireless charging inductors. The last statement is presented with help of two figures below. In 

Figure 6, magnetic equivalent circuit of the same inductor setup used in the paper {4} is 

provided. In the second Figure 7, FEM (Comsol) magnetic field plot for primary no-load 

(primary activated) test is provided.   

  

 

   

   

        

 

 

  

 

Figure 6. Magnetic equivalent circuit               

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Primary no-load magnetic field plot               

 

Primary magneto motive force (MMF) is AC in nature but for explanation has been taken as DC 
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sinusoidal cycle polarity of MMF will be reversed. As the two inductors are identical, secondary 

side MMF can also be used for the study. Magnetic impedance (Z=L/(µA)) of ferrite is order of 

magnitude lower than that of air and aluminum as per their complex permeability (Table 6). 

Hence even if area for magnetic flux in ferrite is reduced, high real relative permeability of ferrite 

still makes its impedance to act as a short circuit compared to the other impedances. Majority of 

flux in ferrite flows in X-direction as shown in Figure 7 and length (L) in the magnetic 

impedance is provided by this direction. Dimensions in Y-direction and Z-direction on the other 

hand are used for calculating the area. Analysis done here are 2D analysis (XZ plane) and if YZ 

plane is chosen instead, dimension in Y direction will become the length for the resistance 

formula. Hence only reducing in Z-direction (thickness) does not practically affect the 

inductances and hence the coupling factor, output power and emissions. On the other hand, 

reduction in X or Y dimensions will result in lowering of flux attraction and the inductances can 

have significant variation but is not considered in this investigation. Similar arguments are true 

for varying variation in the inductances with the ferrite grade. A lower ferrite grade still has 

magnetic impedance much smaller than of air and majority of flux passes through it.  

Non-significance of aluminum thickness on the inductances can be explained in an opposite way 

to the ferrite case. Magnetic impedance of the aluminum acts as open circuit compared to other 

impedances in Figure 6. As a result, majority of the magnetic flux linking the two coils (mutual 

inductance) follows the following path: (Zfe-p → Zair3 → Zfe-s)half flux → Zair1. On the other hand, 

majority of flux closing only the primary coil (self-inductance) follows path: (Zfe-p → Zair2)half flux. 

This can be seen with help of no-load FEM simulation in Figure 7. Ferrite impedances are 

negligible as compared to air impedances and the equivalent impedances for the two cases can be 

approximated as (Zair3)half flux → Zair1 and  (Zair2)half flux. Hence, the magnetic flux and inductances 

are highly dependent on the air impedances and not on thickness of shielding materials. But side 

effect of the thickness reduction is that area for flux flow is reduced and this leads to increased 

internal impedance in both materials. The increase in resistance can be verified by RLC meter 

measurements in next Section 3.3.2.2.2. 

 

3.3.2.2.2. RLC meter results 

The self-inductance, mutual inductance and internal resistances at different ferrite thickness and 

grade and aluminum thickness are provided next in Table 5 and 6 respectively. Discussion about 

behavior of the inductances and resistance with variation in the three has already been discussed 

in last Section 3.3.2.2.1 and will not be provided again here. 

Table 5. Inductor Parameters versus Ferrite Thickness and Grade 

Ferrite 

Thickness (T) 
Rlp Lp  Rls Ls  M 

 Mm P.U. (%) mΩ 
P.U. 

(%) 
µH 

P.U. 

(%) 
mΩ 

P.U. 

(%) 
µH 

P.U. 

(%) 
µH 

P.U. 

(%) 

Ferrite 1 at V=10 cm 
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2.5 25 243 148 218 86 204 132 217 88 53 72 

5 50 176 107 241 95 170 110 235 95 65.25 89 

7.5 75 172 105 244 96 163 106 241 98 68.75 94 

10 100 164 100 253 100 154 100 247 100 73.5 100 

Ferrite 1 at V=20 cm 

2.5 25 224 147 215 88 177 132 215 90 19 72 

5 50 166 109 232 95 159 119 229 96 23 87 

7.5 75 164 108 239 98 144 107 235 98 24.75 93 

10 100 152 100 245 100 134 100 239 100 26.5 100 

Ferrite 2 at V=10 cm 

4 40 212 115 241 95 207 122 237 95 212 86 

6 60 193 105 247 97 184 108 244 98 193 93 

8 80 183 99 249 98 171 101 247 99 183 95 

10 100 184 100 254 100 170 100 249 100 184 100 

Ferrite 2 at V=20 cm 

4 40 194 118 236 96 179 122 232 96 194 87 

6 60 177 108 241 98 163 111 237 98 177 93 

8 80 164 100 243 99 153 104 240 99 164 96 

10 100 164 100 246 100 147 100 242 100 164 100 

 Per Unit (P.U.) % = (Value at T)/(Base values at T=10mm)×100 

Table 6. Inductor Parameters versus Aluminum Thickness 

Aluminum 

Thickness (S) 
Rlp Lp  Rls Ls  M 

 Mm P.U. (%) mΩ 
P.U. 

(%) 
µH 

P.U. 

(%) 
mΩ 

P.U. 

(%) 
µH 

P.U. 

(%) 
µH 

P.U. 

(%) 

Ferrite 1 at V=10 cm 

0 0 97 59 256 101 93 60 257 104 80.5 110 

2 100 164 100 253 100 154 100 247 100 73.5 100 

4 200 167 102 248 98 152 99 247 100 71 97 

Ferrite 1 at V=20 cm 

0 0 99 65 246 100 94 70 248 104 30.25 114 

2 100 152 100 245 100 134 100 239 100 26.5 100 

4 200 143 94 241 98 132 99 240 100 25.5 96 

Ferrite 2 at V=10 cm 

0 0 131 72 259 104 119 70 258 104 80.75 113 

2 100 183 100 249 100 171 100 247 100 71.25 100 

4 200 182 99 250 100 178 104 247 100 71 100 

Ferrite 2 at V=20 cm 

0 0 122 74 249 102 114 100 248 103 30.75 118 

2 100 164 100 243 100 153 134 240 100 26 100 

4 200 170 104 243 100 158 139 240 100 25.5 98 

Per Unit (P.U.) % = (Value at S)/(Base values at S=2mm)×100 
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3.3.2.2.3. Experimental results 

The experimental waveforms which could not be provided in PhD paper {4} due to page 

limitation are provided in this section.  

1) Results are presented in Figure 8 for varying ferrite thickness with Ferrite 1, S=2 mm and 

V=10 cm and correspond to upper part of Table 1 in paper {4}. 

   

 

 

 

 

 

 

 

 

 

(a) Emissions          (b) Electrical quantities @ T=2.5 mm 
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             (e) Electrical quantities @ T=10 mm 

Figure 8.  Emissions and electrical quantities @ Ferrite 1, S=2 mm and V=10 cm 

 

2) Results are presented in Figure 9 for varying ferrite thickness with Ferrite 1, S=2 mm and 

V=20 cm and correspond to lower part of Table 1 in paper {4}. 

 

  

 

 

 

 

 

 

 

 

(a) Emissions          (b) Electrical quantities @ T=2.5 mm 
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          (c) Electrical quantities @ T=5 mm            (d) Electrical quantities @ T=7.5 mm 

 

 

 

 

 

 

 

 

 

 

              (e) Electrical quantities @ T=10 mm 

Figure 9.  Emissions and electrical quantities @ Ferrite 1, S=2 mm and V=20 cm 

 

 

3) Results are presented in Figure 10 for varying ferrite thickness with Ferrite 2, S=2 mm and 

V=10 cm and correspond to upper part of Table 2 in paper {4}. 
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(a) Emissions          (b) Electrical quantities @ T=4 mm 

 

  

 

 

 

 

 

 

 

 

          (c) Electrical quantities @ T=6 mm            (d) Electrical quantities @ T=8 mm 
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              (e) Electrical quantities @ T=10 mm 

Figure 10.  Emissions and electrical quantities @ Ferrite 2, S=2 mm and V=10 cm 

 

4) Results are presented in Figure 11 for varying ferrite thickness with Ferrite 2, S=2 mm and 

V=20 cm and correspond to lower part of Table 2 in paper {4}. 

 

  

 

 

 

 

 

 

 

 

(a) Emissions          (b) Electrical quantities @ T=4 mm 
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         (c) Electrical quantities @ T=6 mm            (d) Electrical quantities @ T=8 mm 

 

 

 

 

 

 

 

 

 

 

               (e) Electrical quantities @ T=10 mm 

Figure 11.  Emissions and electrical quantities @ Ferrite 2, S=2 mm and V=20 cm 

 

5) Results are presented in Figure 12 for varying aluminum thickness with Ferrite 1, T=10 mm 

and V=10 cm and correspond to upper part of Table 4 in paper {4}. 
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(a) Emissions          (b) Electrical quantities @ S=0 mm 

 

  

 

 

 

 

 

 

 

            

          (c) Electrical quantities @ S=2 mm            (d) Electrical quantities @ S=4 mm 

Figure 12.  Emissions and electrical quantities @ Ferrite 1, T=10 mm and V=10 cm 

 

6) Results are presented in Figure 13 for varying aluminum thickness with Ferrite 1, T=10 mm 

and V=20 cm and correspond to upper middle part of Table 4 in paper {4}. 



45 
 

 

 

  

 

 

 

 

 

 

 

 

(a) Emissions          (b) Electrical quantities @ S=0 mm 

 

  

 

 

 

 

 

 

 

 

       (c) Electrical quantities @ S=2 mm            (d) Electrical quantities @ S=4 mm 

Figure 13.  Emissions and electrical quantities @ Ferrite 1, T=10 mm and V=20 cm 
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7) Results are presented in Figure 14 for varying aluminum thickness with Ferrite 2, T=8 mm 

and V=10 cm and correspond to lower middle part of Table 4 in paper {4}. 

 

 

  

 

 

 

 

 

 

 

 

(a) Emissions          (b) Electrical quantities @ S=0 mm 

 

  

 

 

 

 

 

 

 

 

       (c) Electrical quantities @ S=2 mm            (d) Electrical quantities @ S=4 mm 

Figure 14.  Emissions and electrical quantities @ Ferrite 2, T=8 mm and V=10 cm 
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8) Results are presented in Figure 15 for varying aluminum thickness with Ferrite 2, T=8 mm 

and V=20 cm and correspond to lower part of Table 4 in paper {4}. 

 

 

  

 

 

 

 

 

 

 

 

 (a) Emissions          (b) Electrical quantities @ S=0 mm 

 

  

 

 

 

 

 

 

 

 

       (c) Electrical quantities @ S=2 mm            (d) Electrical quantities @ S=4 mm 

Figure 15.  Emissions and electrical quantities @ Ferrite 2, T=8 mm and V=20 cm 
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4. Laboratory setup 

Details of the wireless charging system constructed during PhD project in lab of Department of 

Energy Technology, Aalborg University is provided in this section.  

4.1. Power electronics 

The primary and secondary power electronics blocks are simplified in the construction as they are 

not the focus of this study. Complete electric schematic of SS and SP topologies along with 

photographs of the constructed system are provided in Figure 14. The primary side rectifier 

combined with DC-link capacitor provides constant DC voltage (Vi-dc). Hence, they are replaced by 

two DC power supplies each with indivual maximum ratings of 10 A and 600 V. The supplies can 

be arranged in series or parallel depending on requirement of higher current or voltage. The supplies 

are also bottleneck for the output power with maximum current of 20 A. The other components are 

rated for much higher current ratings. In the future, higher current ratings power supplies will be 

introduced to increase output power rating of the setup. The inverter is constructed using two 

inverter legs manufactured by Microsemi. The inverter leg has maximum ratings of 100 A and 1200 

V at 50 kHz (maximum rated frequency). There is no control system implemented in the system as 

focus of the project is on the inductor design and magnetic emissions. The system is operated in 

open loop by calculating required input voltage for given load and switching frequency using FMA 

analysis. On the secondary side, the rectifier bridge is again manufactured by Microsemi and is 

rated for 1200 V and 40 A. Value of DC-link capacitor is 112 µF and the battery is replaced by 

resistor bank with desired resistance set using (2). The DC link capacitor is replaced by DC link 

choke of value 3.9 mH for experiments for SP topology.  

 

 

 

 

 

 

 

 

 

 

(a) Experimental setup shot 1 
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(b) Experimental setup shot 2 

 

  

 

 

 

 

                                                        

(c) SS topology electrical schematic 

 

 

 

 

 

               

(d) SP topology electrical schematic 

 

Figure 14 – Experimental setup 
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4.2. Inductor setup 

The inductor setup designed and constructed during PhD project is provided in Figure 15. The first 

two parts of Figure 15 are photographs of the inductor components followed by three geometric 

views. The setup can be rearranged into four different inductor configurations with varying vertical 

distance (V), horizontal displacement (T) and presence of nearby vehicle (extra aluminum plate). 

Details of the five configurations are provided in Figure 15 (c) to (e) and Table 5.  

Table 5. Inductor configurations 

Configuration V (cm) 
T (cm) [Dotted 

Red Line] 

Extra Aluminum Plate 

Presence [Light Green] 

1 10 0 No 

2 20 0 No 

3 10 10 No 

4 10 0 Yes 

 

 

 

 

 

 

 

 

(a) Primary coil 

 

 

 

 

 

 

 

 

(b) Inductor setup 
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(c) View 1 

 

 

 

 

 

 

 

(d) View 2 

 

 

 

 

 

 

          

(e) View 3 

Figure 15 – Inductor setup 
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Specification of the materials used is provided in Table 6. Ferrite is available in form of square of 

size 53 mm × 53 mm. These small plates are joined together to form big ferrite plates shown in 

Figure 15 (b). 

Table 6. Material properties 

Material Property Value 

Litz wire Number of turns 16 

Litz wire Number of strands in each turn 168 

Litz wire Diameter indivual strand 30 AWG 

Litz wire Maximum rated current  35-40 A 

Litz wire DC resistance 0.002 Ω/m 

Ferrite Real relative permeability 2300 

Ferrite Imaginary relative permeability ≈0* 

Ferrite Resistivity 5 Ω-m 

Aluminum Resistivity 5×10
-8

 Ω-m 

* Resolution of manufacturer’s graph does not allow accurate reading at 22 kHz. 

The emissions measurements are done for 16 measurement points (MP) at two horizontal distances 

(H=0.3 and 0.5 m) from the vehicles. The emissions are measured using AC Milliguass Meter 

Model UHS2 [49] manufactured by Alpha Labs Inc. Error up to 7% has been quoted in the 

instruction guide with additional error due to placement of sensors at different positions in the 

machine if measurements are made closer than two meters from the source. This is true for the 

measurements in the paper and few readings have additional error on this account. Also in the guide 

it has been provided that values shown by the machine needs to be multiplied by 1.2 for readings 

above 20 kHz. Hence, all the experimental readings provided in the thesis are multiplied by this 

factor as all readings lie in this frequency range.  

4.2.1. Inductor parameters 

The inductor parameters i.e. self-inductance, mutual inductance and internal resistance for the four 

inductor configurations are provided below in Table 7.  

Table 7. Inductor configurations inductances and internal resistances 

Configuration Lp (µH) Rlp (mΩ) M (µH) Ls (µH) Rls (mΩ) 

1 250 184 72 248 174 

2 242 154 26 239 147 

3 249 170 53 248 168 
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Configuration Lp (µH) Rlp (mΩ) M (µH) Ls (µH) Rls (mΩ) 

4 250 180 72 247 178 

 

Also, variation of the inductor parameters with frequency (1 kHz – 100 kHz) is provided for 

Configuration 1 in Figure 16. This figure has been provided to point out two things already 

mentioned in Chapter 2. First of all, value the inductances are practically independent of the 

frequency. Secondly, the internal resistance of the inductors is strong function of the frequency. The 

resistance increases with mostly on account of the proximity effect and increased losses in the 

shielding materials. This discussion is limited to this point as further research on the internal 

resistance will be conducted in future projects as also mentioned in Section 3.3.2.  

 

 

 

 

 

 

 

 

(a)  Inductances            (b) Internal resistances 

Figure 16. Inductor parameters versus frequency 

4.2.2. Inductor weight 

The overall weight and weight of indivual components for one of the identical inductors (Figure 15) 

are as follows. 

1) Overall weight=11.252 Kg 

2) Ferrite=8.526 Kg 

3) Aluminum=0.724 Kg 

4) Coil=2.001 Kg 

Ferrite is the biggest contributor in overall weight of the inductors. As a result, minimization of 

ferrite usage has been considered during the project and has already been presented in Section 3.3.2.  
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4.3. Resonance circuits  

The capacitors are designed for minimum switching frequency of 22 kHz. Also, as value of the self-

inductance is practically decoupled [25] from horizontal or vertical misalignment and is also 

provided in Table 7. This leads to the required capacitance on either side to be approximately 215 

nF. There are three major objectives that need to be achieved with the capacitor design. 

1) As SS topology is mainly under focus during PhD project, the capacitors should be able to 

withstand high voltage (18). 

2) Internal resistance of the capacitors should be low to have high system efficiency. 

3) As this is laboratory setup and experiments needs to be conducted with variable capacitor values 

{7-8}. Rearrangement should be possible to provide different net capacitance values. 

Keeping the above three points in mind, three 3.3 nF capacitors having blocking voltage of 1 kV are 

put in series (to increase voltage limit) and then twenty such series combinations are applied in 

parallel (to reduce internal resistance). The combination is mounted on an isolating board providing 

equivalent capacitance of 22 nF. Twenty of such isolating boards are fabricated and can be 

connected in series or parallel to achieve desired capacitance. Most of the experiments are 

conducted at two switching (resonant) frequencies of approximately 22 kHz and 26 kHz. The 

capacitors at these frequencies are termed as capacitor combinations (CC) 1 and 2 respectively. 

Equivalent capacitance and internal resistance for the two capacitor combinations is provided in 

Table 8.  

Table 8. Capacitor properties 

CC f (kHz) Cp (nF) Rcp (mΩ) Cs (nF) Rcs (mΩ) 

1 22 215 32 218 29 

2 26 152 36 152 29 

 

At the end of this chapter two points needs to be mentioned regarding the measurements.  

1) RLC measurements in this chapter are made with Agilent E4980A Precision LCR meter. 

2) A pair of connecting wire (made of Litz wire) is connected to the inductors and capacitors and 

hence their values are added in the given readings. 
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5. Magnetic emissions 

Magnetic emissions produced by wireless charging system are dependent on the coil currents and 

inductor design. However the emissions are minimized only by inductor (coil and passive shielding) 

design as discussed in Section 3.2.1. The magnetic emissions are not considered during selection of 

the two power electronics blocks discussed in Section 2.2. This is mainly due to reason that there 

are no analytical relations connecting the magnetic emissions and coil currents as are available for 

other design parameters voltage stress (20, 21) and output power (12, 15). In this project, semi-

analytical relation between the emissions and system blocks (except inductors) is established. The 

relationship is explained using analytical method first followed by its verification using FEM 

simulations and experiments. 

5.1. Analytical explanation 

Analytical formulas for the magnetic emission calculations are mathematically intensive [40-42] 

and are not available for complicated inductor geometries. Hence, the geometry needs to be 

approximated to closet available standard solution and this leads to errors in the results. This is the 

very reason for wide usage of FEM simulations to make these calculations. Still in order to provide 

an analytical understanding of the emissions to the reader, the section is presented with help of non-

shielded identical two coils geometry [42] with cylindrical coordinates (ρ, φ, z) as shown in Figure 

17. Effect of the shielding on the emissions is added to the analytical results for the two coils 

geometry. 

 

 

 

 

 

 

 

 

Figure 17.  Two coil geometry 

5.1.1. Single current coil  

Analytical expression for the emission in the surroundings for a single current carrying coil (Ip) at 

any point and given instant of time has been presented in [42]. Two components (Bρ-p and Bz-p) of 

the primary coil field (Bp) for the same instant of time are given by (24) and (25). 
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Bρ-p=
µ

π
√

a

ρ 

zp

kp

K(kp)((a-ρ)2+zp
2)-E(k1)(a2+ρ2+zp

2)

((a-ρ)2+zp
2)((a+ρ)2+zp)

2 )
Ip = Kρ-pIp (24)  

Bz-p=
µ

π

√aρ

kp

K(kp)((a-ρ)2+zp
2)+E(kp)(a2-ρ2-zp

2)

((a-ρ)2+zp
2)((a+ρ)2+zp

2)
Ip = Kz-pIp (25)  

kp
2
=

4aρ

((a+ρ)2+zp
2)

. 
 

(26)  

In (24) and (25), K(kp) and E(kp) are complete elliptic integral of the first and second kind 

respectively and kp is given by (26). The two components are product of the current and their space 

variable (Kρ-p, z-p) as provided in (24) and (25). Also, the two emission components are orthogonal 

to each other and hence magnitude of the primary emission (Bp) is given by (27) 

|Bp|=√(Bφ-p)
2
+(Bz-p)

2
 (27)  

Using (24), (25) and (27), it can be concluded that the primary emission (Bp) can also be expressed 

in a similar way as multiplication (28) of the primary space constant (Kp) and coil current. The 

mathematics is not provided as analytical calculation of the space constant is not the purpose of the 

semi-analytical method.  

Bp=KpIp (28)  

The space constants using (24) to (27) depend on the coil geometry, permeability of air and location 

of measurement point in space. For wireless charging inductors having shielding, it is dependent on 

additional factors like size, placement, permeability etc. of the shielding materials. The permeability 

out of these factors is connected to both inductor design and current and is discussed in more detail 

with following two points.  

1) The coil system of Figure 17 has no shielding material and imaginary relative permeability of air 

is zero. Hence the space variable does not induce any phase delay between the emission and current. 

This is also true for shielding wireless power inductors as majority of flux path still passes through 

air and remaining path in ferrite whose real permeability is much higher than imaginary 

permeability (Table 6) [25].   

2) The ferrite core is not saturated [25] for medium power applications like charging of electric 

vehicles due to majority of flux path in air.  

Hence the linearity of emissions to the applied current is also valid for shielded wireless power 

inductor geometries. Another point to be noted is that the coil current unlike the space constant 

impact the emission at all points in the surroundings linearly with equal effect. 
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5.1.2. Two current coils  

For system with both coils carrying current, secondary coil emission (Bs) at the same instant of time 

can be written in an analogues way by replacing subscript p with subscript s in (24) to (27) and is 

given by (29).  

Bs=KsIs (29)  

As a result, space resultant emission (Bt) at the given instant of time is subtraction of the two fields 

as per Lenz’s law and is provided in (30).  

Bt=Bp-Bs (30)  

Also using definition of the space constants from (28) and (29), (30) is modified to (31). 

Bt=KpIp-KsIs (31)  

The coil currents are first sinusoidal harmonic of the switching frequency and hence phasor 

resultant is required to calculate resultant emission (Br).  Phase angle of the primary and secondary 

current are taken as 0 and α respectively. The primary and secondary currents as a result at real 

(t=0) instant of time are Ip and Is cosα. On the other hand, the coil currents for the imaginary time 

instant which is quarter cycle away are 0 and Is sinα respectively. The space resultant at real (Bre) 

and imaginary (Bimag) instant of time using (31) are provided in (32) and (33).  

Bre=KpIp-KsIscosα (32)  

Bimag=-KsIssinα (33)  

The phasor resultant of the emission is equal to square root sum of the two phasor components and 

is provided in (34). It is simplified to (35) using (32) and (33). 

|Br|= √(Bre)2+(Bimag)
2

  (34)  

|Br|= √(KpIp-KsIscosα)
2
+(KsIssinα)2

  (35)  

Unlike linear function of single current coil emission (28), the resultant emission is non-linear 

function of the space constants and coil currents. Hence analytical dependence of the coil currents 

on the resultant emission cannot be determined analytically for given inductor design as the space 

constants do not have unique values in the surroundings. This problem can be solved by modifying 
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(35) to (36) using mathematical rearrangement and the solution is provided in Section 5.1.4 after 

brief discussion on space ratio (Ks/Kp) in Section 5.1.3. 

|Br|= Kp
√(Ip-

Ks

Kp

Iscosα)

2

+ (
Ks

Kp

Issinα)

2

 (36)  

5.1.3. Space ratio 

Constant behavior of the space ratio for shielded and non-shielded (only two coils) in region 

between the coils was explained with help of FEM simulations in {3-4}. It was also shown that the 

ratio behaves more constant for shielded geometries compared to non-shielded geometries. This can 

be explained analytically for the two coil geometry of Figure 17 as follows. Both radius (a) and 

vertical gap (z1+ z2) between wireless power inductors for vehicles applications are in range of 

around 20 cm [25, 27] and the emissions are measured in region with ρ≥50 cm (Section 3.2.1). This 

leads to  

ρ>a  (37)  

ρ>zp (38)  

ρ>zs. (39)  

The three inequalities become bigger with increase in value of ρ and terms ((𝑎 − ρ)2 + 𝑧1
2), 

(𝑎2 + ρ2 + 𝑧1
2), ((𝑎 + ρ)2 + 𝑧1

2) and −(𝑎2 − ρ2 − 𝑧1
2) for the primary emission components in 

(24) and (25) are dominated by ρ. Similarly, the corresponding terms for the second coil are 

dominated again by same distance ρ. As a result, the two coils having same current produce near 

similar emissions in region of highest emissions. This stands for constant value of the space ratio in 

the emissions measurement region. It can be explained in simpler words as that average distance of 

measurement point from the two coils becomes more comparable with increasing ρ. At center of the 

two coils (z1=z2) and for same magnitude of current, fields components for the two coils will be 

exactly equal and the space ratio is exactly one. Change in value of the space ratio lies in small 

bandwidth around central value (at center of coils). The central value is one for geometry of Figure 

17 and selecting this central value for all points does not make a significant difference in calculation 

of the resultant emission. The space ratio is constant but not necessarily one and is shown for 

Configuration 3 later in Section 5.2.2. With different inductors, average distance of measurement 

point from closer say secondary inductor become bit lesser compared to the primary inductor and 

hence the space ratio value shows little drop. The space ratio is measured using no-load tests on 

FEM simulations and has been explained in {3-10}. For the primary no-load test, the secondary coil 

is open-circuited and vice versa for the secondary no-load test. The two no-load emissions readings 

are used to calculate space ratio using (40). 
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Ks

Kp

=
Bs

Bp

Is

Ip

 (40)  

 5.1.4. Emissions ratio 

Taking the space ratio to be constant using discussion in Section 5.1.3, the resultant emissions 

expression of (36) can be in similar terms to the single current coil emission (26) can be expressed 

as multiplication of two parts: space constant or inductor design part (Kp) and current dependent 

part (√(Ip −
Ks

Kp
Iscosα)

2

+ (
Ks

Kp
Issinα)

2

 ). The first part depends on the inductor design as 

provided in Section 5.1.1 and FEM simulations are required to understand effect of factors like coil 

design, shielding materials etc. on the resultant emission. On the other hand, the second part 

impacts value of the emission at all points equally. Hence for a given inductor design, ratio of the 

emissions of wireless charging system at two different operation conditions (denoted by added 

subscript 1 and 2) can be calculated analytically.  

Emissions ratio=
|Br2|

|Br1|

√(Ip2-
Ks

Kp
Is2cosα2)

2

+ (
Ks

Kp
Is2sinα2)

2

 

√(Ip1-
Ks

Kp
Is1cosα1)

2

+ (
Ks

Kp
Is1sinα1)

2

 

 (41)  

The space ratio multiplied by the secondary current in (41) provides effective secondary current 

which is present with respect to the primary current in the surroundings. The space ratio is one for 

geometries with similar inductors as in Figure 17 and hence the secondary current is equal to the 

equivalent secondary current. On the other hand, as an example for a smaller secondary inductor or 

the secondary inductor is shifted away from the measurement point, the space ratio and secondary 

effective current will reduce for the same measurement point. The space ratio is calculated using 

FEM simulations once and hence this method is referred as semi-analytical method. Using this 

method, a comparative analysis can be made analytically for different value of the system blocks 

(except inductors). The space ratio and proposed method is verified in the rest of the chapter using 

FEM simulations and experimental setup for three applications. FEM simulations validation along 

with detailed theory for the three applications is presented with help of published papers {3-10} for 

disc type inductor geometry. The experimental verification on the other hand is done using inductor 

and experimental setup provided in Chapter 4.     

5.2. Space ratio results 

First step in establishing analytical relation between the emissions and other system components is 

to study the emissions profile in the surroundings. This was studied in paper {3} for only two 
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geometries: ferrite and non-ferrite (only coils) provided in Figure 7 and 8. It was later extended to 

all the four geometries of Figure 7 and 8 in next paper {4}. The results from both set of papers 

indicate that the emissions in measurement region have nearly equal contribution from the two coils 

carrying similar current. The two papers with detailed theory and FEM validation are provided next 

in Section 5.2.1 and 5.2.2 followed by experimental verification in Section 5.2.3. 
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5.2.1. PhD paper 3 

This paper was originally published with following details. 

{3} T. Batra, E. Schaltz, “Magnetic Field Emissions for Ferrite and Non-Ferrite Geometries for 

Wireless Power Transfer to Vehicles”, Journal of Applied Physics, Vol. 115, no 17, pp 

17E715 - 17E715-3, 2014. 

http://dx.doi.org/10.1063/1.4868498  

Reproduced with permission from [T. Batra, E. Schaltz, “Magnetic Field Emissions for Ferrite and 

Non-Ferrite Geometries for Wireless Power Transfer to Vehicles”, Journal of Applied Physics, Vol. 

115, no 17, pp 17E715 - 17E715-3, 2014]. Copyright [2014], AIP Publishing LLC. 
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Magnetic field emissions for ferrite and non-ferrite geometries for wireless
power transfer to vehicles
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Minimizing magnetic field emissions to surroundings are one of the most challenging design criteria

for wireless power transfer to vehicles. In this paper, concept of division of the emissions into three

zones (primary, secondary, and combined zone) in the vertical direction is introduced. For

geometries without ferrite, these zones can be defined only on basis of distance from coils. The

simulation results indicate that magnetic field profile in the surroundings is influenced for ferrite

based geometries and the three zones tend to overlap. This overlapping is studied via Comsol

simulations for vertical separation between the coils in range of 100–180 mm. It is observed that

lower vertical separation results in higher overlapping of the zones and the coils behave as they are

effectively placed close to center of air gap. The analysis in this work provides a better understanding

of the space profile of magnetic field emissions (with and without ferrite) for wireless power transfer

to vehicles. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4868498]

Wireless Power Transfer (WPT) is the transfer of energy

through magnetic fields from primary coil to secondary coil

using principle of electromagnetic induction. WPT is used to

charge batteries of commercial devices like smartphones, con-

sumer electronics, etc. It is also considered as a good solution

for charging of Electric Vehicles (EV). Power rating and air

gap between the coils of WPT for EV applications are much

bigger than for the devices mentioned above. As a result, the

analyses presented in this paper are applicable to EV only.

Electric system (battery and power electronics) of EV is

approximated by a resistive load1 during the design process.

Ferrite is used in the inductor design to lower magnetic

resistance for the fields and as a result more power can be

transferred for the same set of coils. Ferrite also significantly

influences space profile of the magnetic fields. The study of

this influence for different vertical separations between the

coils is the main theme of this paper. This influence is

explained by comparing simulation results (Comsol) from

two extreme case geometries: one without ferrite (non-ferrite

geometry) and other having a full-ferrite disc2 (ferrite geom-

etry). There have been papers discussing reduction3 of the

magnetic fields for WPT but none of them to our knowledge

has focused on the space profile of the magnetic fields for

ferrite or non-ferrite geometry based WPT to vehicles.

Side and top views of the sample with non-ferrite geom-

etry are shown in Fig. 1. Side view of ferrite geometry is

identical to the non-ferrite geometry in Fig. 1(a). Disc of air

in the non-ferrite geometry of Fig. 1(b) is to be replaced here

by disc of ferrite to obtain top view of the ferrite geometry.

The geometry shown above consists of two identical and per-

fectly aligned inductors separated by a gap distance (V). The

magnetic field emissions are studied for closet human con-

tact along vertical line at 0.5 m from center of the primary in-

ductor. Litz wire similar to one in Ref. 4 is used in both the

coils and each coil consists of 12 turns. The magnetic field

profile is studied for Series-Series topology in this paper and

fundamental mode analysis5 equivalent circuit is provided in

Fig. 2. The relation1 between the two currents at resonance

condition (w ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
ðLpCp

p
Þ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
ðLsCs

p
)) for the topology

is Is¼ (jwM/Rs)Ip.

Magnetic field (Bp and Bs) at any point in surrounding

will depend linearly (Kp and Ks) as jBpj ¼ Kp � jIpj and

jBsj ¼ Ks � jIsj: Hence, the net magnetic field at any point

can be written as jBj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðIpKpÞ2 þ ðIsKsÞ2

q
:

The magnetic field emissions can therefore be divided in

the space in three zones named as primary, secondary, and

combined zone on basis of Kp and Ks taking the primary cur-

rent equal to the secondary current. This zone division is

defined only with respect to space and not time. Kp and Ks for

a point depend only on distance of that point from the coils. In

the primary zone, the distance of any point (point A in Fig.

1(a)) is less for the primary coil as compared to the secondary

coil which stands for ratio Ks/Kp less than one. The primary

coil dominates the resultant magnetic field in this zone. A simi-

lar argument is applicable for the secondary zone with point B

as an example in Fig. 1(a). A very strict definition of the com-

bined zone can be given by value of Ks/Kp equal to one and

will be a point lying on center (C) in Fig. 1(a). However, for

practical studies, the combined zone can be taken up to some

distance on both the sides from center (C) because in this

region the net magnetic field has a respectable contribution

from both the coils.

Maximum field strength reached for WPT systems is

much lower than saturation limit of ferrite so treating mag-

netic behavior as linear for ferrite geometries is a fair assump-

tion as also reported in other papers.3 Hence, the magnetic

fields for the two coils are proportional to their respective cur-

rents for the ferrite geometry also. The magnetic flux of the

primary and secondary coils is attracted by the ferrite at the

other end. As a result, the maximum of the magnetic field fora)Electronic mail: tba@et.aau.dk.
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the ferrite geometry coils on the vertical line of Fig. 1(a) shifts

close to center (C), i.e., between P and C for the primary cur-

rent and between C and S for the secondary current. The nota-

tion maximum is used here to describe maxima of magnetic

field in space. For maxima in time domain (phasor) later in

the result section, terminology of peak has been used to avoid

confusion. The three zones tend to overlap depending on verti-

cal separation between the two inductors. A smaller gap dis-

tance (V) stands for a bigger overlap between the zones and

vice versa. For the geometry without ferrite on the other hand,

this maximum on the same vertical line occurs at P for the pri-

mary current and at S for the secondary current. These points

are at shortest distance to their corresponding coils. Hence, if

equivalent non-ferrite geometry is made for the ferrite geome-

try with respect to the magnetic emissions, coils of that equiv-

alent geometry would be closer to each other than the ferrite

geometry coils.

The three zones have been defined in terms of ratio

Ks/Kp. This ratio can be obtained by no-load curves for the

two coils plotted at same current (23 A max at 20 kHz).

Ratio of the magnetic fields will be equal to ratio of their cor-

responding constants and is expressed as jBsj=jBpj ¼ Ks=Kp:
Peak magnetic field plots for the geometries at no-load

conditions for gap distance (V) in range of 100–180 mm are

provided in Figs. 3(a)–5(a). Plots of ratio of the peak mag-

netic fields are provided in Figs. 3(b)–5(b). Position of the

primary inductor is fixed and the secondary inductor is

shifted upwards for varying the gap distance (V) in the fig-

ures. The discussion of results is presented below for the

combined and secondary zones. Analogous statements to the

ones provided for the secondary zone are applicable to the

primary zone.

The distance of the two coils from center (C) is identical.

Therefore, center (C) is the exact combined zone with value

of Ks/Kp equal to one for ferrite and non-ferrite curves in

Fig. 3(b). Peak magnetic field at center (C) in Fig. 3(a) is also

identical for both the coils of either geometry, which again

stands for Ks/Kp equal to one. Discussions of results that is

common to (a) or (b) parts of Figs. 3–5 are discussed only for

Figs. 3(a) or 3(b). Values of Ks/Kp for the ferrite and

non-ferrite curves in Fig. 3(b) as per the definition of the pri-

mary and the secondary zone are less and greater than one,

respectively. The peak value of magnetic field for the second-

ary coil is above the one for the primary coil in the secondary

zone for both the geometries in Fig. 3(a), which is synony-

mous with the last statement. Value of Ks/Kp increases in the

secondary zone and then becomes nearly constant as we

move away from center (C) for both the curves in Fig. 3(b).

In Fig. 3(a), maximum of the primary coil for the ferrite

geometry lies between primary (P) and center (C). This

FIG. 2. FMA equivalent Series-Series topology.

FIG. 1. Sample with non-ferrite

geometry.

FIG. 3. Plots at V¼ 10 cm.
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maximum is closer to center (C) as compared to maximum

of the primary coil for the non-ferrite geometry which is cen-

tered at primary (P) in the same figure. This has been

referred as overlapping of the primary zone into the second-

ary zone in this paper. This overlapping can also be seen

with help of Fig. 3(b). In this figure, the ferrite curve is lower

than the corresponding non-ferrite curve in the secondary

zone. Also, as we move in direction of increasing gap dis-

tance (V) from Fig. 3(a) to Fig. 5(a), maximum of ferrite

curves are shifting away from center (C) and the overlapping

is reducing. Ferrite curves of Figs. 3(b)–5(b) when compared

for any fixed point in the secondary zone again show that the

overlapping reduces as value of Ks/Kp increases with the

increasing gap distance (V). The non-ferrite curves show a

similar behavior for the same set of figures. But changes in

values of Ks/Kp are different from Fig. 3(b) to Fig. 5(b) for

the two geometries due to presence of ferrite in the second

geometry.

Concept of division of magnetic field emissions for

Series-Series topology wireless power transfer into three

zones with respect to space has been introduced in this paper.

Criterion for the three zones for non-ferrite based geometries

is based solely on distance, whereas for ferrite based geome-

tries the zones overlap due to magnetic attraction of ferrite

from the other end. As a result the coils appear to be closer

to each other from magnetic emissions point of view.

Summarizing, this work is focused on space profile of mag-

netic fields with and without ferrite for Series-Series topol-

ogy wireless power transfer. This can be used in future

works to study change in resultant magnetic field due to

addition of ferrite in the system. Also, it can be used as a

base for studying magnetic field profiles for the other three

topologies of wireless power transfer to vehicles.

1W. Chwei-Sen et al., IEEE Trans. Ind. Electron. 52(5), 1308 (2005).
2H. Sakamoto et al., IEEE Trans. Ind. Appl. 35(5), 3526 (1999).
3M. Budhia et al., IEEE Trans. Power Electron. 26(11), 3096 (2011).
4M. Budhia et al., IEEE Trans. Ind. Electron. 60(1), 318 (2013).
5M. G. Egan et al., IEEE Trans. Ind. Electron. 35(4), 884 (1999).

FIG. 4. Plots at V¼ 14 cm.

FIG. 5. Plots at V¼ 18 cm.
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Magnetic fields emitted by wireless power transfer systems are of high importance with respect to

human safety and health. Aluminum and ferrite are used in the system to reduce the fields and are

termed as passive shielding. In this paper, the influence of these materials on the space profile has

been investigated with the help of simulations on Comsol for the four possible geometries—no

shielding, ferrite, aluminum, and full shielding. As the reflected impedance varies for the four

geometries, the primary current is varied accordingly to maintain constant power transfer to the

secondary side. Surrounding magnetic field plots in the vertical direction show that maxima’s of

the two coils for the no shielding geometry are centered at the respective coils and for the

remaining three are displaced closer to each other. This closeness would lead to more effective

addition of the two coil fields and an increase in the resultant field from space point of view. This

closeness varies with distance in the horizontal direction and vertical gap between the coils and is

explained in the paper. This paper provides a better understanding of effect of the passive shielding

materials on the space nature of magnetic fields for wireless power transfer for vehicle

applications. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4916930]

I. INTRODUCTION

Wireless power transfer (WPT) is contactless transfer of

energy from the primary coil to the secondary coil by means

of magnetic field. This technology has been used in biomedi-

cal industry for a considerable period of time. Researchers

are interested in this technology for stationary1 and on line2

battery charging of electric vehicles (EVs) due to its safety

and comfort features. The magnetic field emissions to the

surroundings are an unwanted byproduct of this system. In

order to minimize these emissions, active and passive shield-

ing methods3 are used. For passive shielding, ferrite and alu-

minum are added to the inductors to reduce the magnetic

fields to the surroundings. In a previous publication4 by the

same authors, it was shown that ferrite has an effect of dis-

placing magnetic field maxima’s of the two coils closer to

each other in the surroundings (vertical direction) of WPT.

This closeness leads to a higher resultant field from space

point of view as compared to the non-ferrite (or non-

shielded) geometry for which the maxima’s are placed at the

respective coils. In this paper, it is shown that geometries

with aluminum and combination of both materials termed as

aluminum and full geometries also show this effect. Also,

the combination shows this effect more than when one of the

materials is used. Results are presented for different vertical

(V) and horizontal (H) distances from the coils for the four

geometries. As distance is increased and decreased in the

horizontal and vertical directions, respectively, contribution

of the two coils in the resultant magnetic field becomes more

comparable for all the geometries. Additionally in Ref. 4,

constant current was used for both the geometries and hence

the ferrite geometry with higher coupling factor had higher

secondary power (P) and magnetic emissions compared to

the non-ferrite geometry. Comparison for the four geome-

tries in this paper is done at constant secondary power so

that the closeness effect and reduction of fields by the shield-

ing materials and their combination can be studied together.

Increasing the power rating and keeping the magnetic emis-

sions under prescribed limits is one of the most significant

challenges for the future success of this technology. This pa-

per provides insight in the behavior of the magnetic fields in

the surroundings by addition of passive shielding materials.

The results can be used for better design of wireless power

FIG. 1. Sample geometry top view.

a)Author to whom correspondence should be addressed. Electronic mail:

tba@et.aau.dk.
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transfer systems with respect to material use and magnetic

emission reduction.

II. THEORY

First of all, side and top views of the identical inductors

for the four geometries are presented in Figs. 1 and 2, respec-

tively. Coils similar to the ones in Ref. 5 are used and rela-

tive permeability of ferrite is 2300. The primary coil (P),

secondary coil (S), and center line (C) are marked in Fig. 1.

Series-series topology is used in this paper out of the four

topologies6 used in WPT applications. Fundamental mode

analysis (FMA)4 equivalent circuit of the topology is pre-

sented in Fig. 3. The primary and secondary currents at reso-

nant frequency ðwr ¼ 1ffiffiffiffiffiffiffiffi
LpCp

p ¼ 1ffiffiffiffiffiffiffi
LsCs

p Þ are orthogonal to each

other as7 Is ¼
jwrM

Rs

Ip. For a fair comparison of the four geo-

metries for the space nature of the fields, the secondary

power P ¼ Ip2 wrM
2

Ls

Q

� �
has been kept constant. Q is sec-

ondary quality factor and is given by Q ¼ wrLs

Rs

. The pri-

mary current is increased to maintain same secondary power

as the reflected resistance Rr ¼
wrM

2

Ls

Q

� �
is different for

the four geometries.

Due to the large air gap between the coils of WPT, max-

imum magnetic field reached in ferrite core is much lower1,7

than the saturation level for ferrite. Hence, magnetic fields

(Bp and Bs) emitted by the two coils at any point in the sur-

roundings are linearly proportional to the current and are

given by jBp;sj ¼ Kp;sjIp;sj. Kp and Ks are space constants for

the two coils for a given point in the surroundings. The re-

sultant magnetic field with the primary and secondary cur-

rents having phase angle 0� (reference phasor) and 90�

(currents relation above), respectively, can be written4,7 as

jBj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjIpjKpÞ2 þ ðjIsjKsÞ2

q
. The resultant expression con-

tains terms for both the coil currents and space constants. To

investigate effect of the space constants only on the resultant

magnetic field, the currents are taken as equal and the result-

ant field expression is modified to jBj ¼ jIpj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kp

2 þ Ks
2:

q

Contribution of the two coils in the resultant field can be stud-

ied with the help of ratio Ks/Kp. Value of this ratio greater

than one stands for a greater contribution from the secondary

coil in the resultant magnetic field and has been referred as

secondary zone4 (Ks/Kp> 1). Similarly, primary zone4 and

combined zone4 are defined as Ks/Kp< 1 and Ks/Kp¼ 1. The

ratio can be obtained with the help of no-load tests4,7 with the

primary coil energized and secondary coil open-circuited and

vice versa. The no-load test of each coil is done at same input

current (I¼ Ip¼ Is) and dividing the magnetic field of the two

tests yields the ratio Ks

Kp
¼ jBsj
jBpj

� �
. Variation of Ks/Kp for the

four geometries is presented in Sec. III.

III. SIMULATION RESULTS

Values for the reflected resistance are obtained by

simulations on Comsol for different values of the horizontal

and vertical distances for the four geometries. The primary

inductor is at same physical position and the secondary

inductor is moved to change the vertical distance in

the simulations. The input current is then calculated

P ¼ Ip2 wrM
2

Ls

Q

� �
by keeping value of the secondary

power constant. The secondary side power and quality fac-

tor are taken as 1 kW and 10 for calculation of the input

current. Values of the input current and reflected resistance

are provided in Table I. The input current from the table is

used for exciting the coils for the no-load simulation tests.

Rms magnetic fields and ratio Ks/Kp from the no-load tests

are presented in Figs. 4 to 7. The frequency of operation is

20 kHz. Points to the left and right of center line (C) in

Figs. 4 to 7 are the primary and secondary zone points,

respectively. Turn ratio of 12:12 is used for all the geome-

tries in the paper. The number of turns of the primary and

secondary coils is proportional to Kp and Ks, respectively.

Therefore for a turn ratio of 12:24, Ks/Kp value at C will be

shifted to two from one in (c) parts of Figs. 4 to 7. The fol-

lowing points are to be noted from Figs. 4 to 7. Some of the

points are presented only for the secondary zone.

Analogous statements are applicable for the primary zone.

FIG. 2. Sample geometry side view.

FIG. 3. FMA equivalent series-series topology.

TABLE I. Simulation results.

V¼ 10 cm V¼ 20 cm

Geometry Rr (X) I (A) Rr (X) I (A)

No-shielding 4.86 14.34 0.72 37.35

Ferrite 28.80 5.90 3.18 17.73

Aluminum 0.14 84.5 0.01 323.25

Full 21.01 6.90 1.83 23.38
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(1) Aluminum geometry is not a practical inductor design as

the reflected resistance is very low for the same coil size

as provided in Table I. As a result, the primary current

needs to be increased to a high value to maintain the

same power transfer capability. Therefore, a layer of fer-

rite must be present between the aluminum and coil for a

practical inductor design as also provided in Ref. 3. The

full geometry is an example of such a design with com-

bined usage of ferrite and aluminum. Results for the alu-

minum geometry are still provided in the paper to make

a comparison with the other geometries and to under-

stand the effect of aluminum on the space profile of the

magnetic emissions.

(2) Space maxima’s of the primary and secondary coils for

the non-ferrite geometry are centered at point of shortest

distance, i.e., at P and S, respectively, in (a) part of Figs.

4 to 7. For the remaining three geometries, the maxima’s

of the curves are in between P and C and P and S for the

primary and secondary coils rather than at point of short-

est distances in (a) and (b) parts of Figs. 4 to 7. This

closeness of the curves leads to more effective addition

of the primary and secondary magnetic fields as per

jBj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjIpjKpÞ2 þ ðjIsjKsÞ2

q
. Ks/Kp (closeness of the

curves) in the secondary zone is maximum and minimum

for the full and no-shielding geometries, respectively, as

visible in (c) parts of Figs. 4 to 7. For the comparison

between the ferrite and aluminum geometries, Ks/Kp in

the secondary zone is slightly higher for the aluminum as

compared to the ferrite geometry for V¼ 10 cm in (c)

parts of Figs. 4 and 5. In (c) parts of Figs. 6 and 7, i.e.,

for V¼ 20 cm, the trend is opposite with Ks/Kp higher

for the ferrite geometry. But a general consensus cannot

be made that which of the two materials shows this effect

more. Aluminum and ferrite are used in different forms

and sizes in the inductor design of WPT and the results

presented here are for a particular design only.

(3) Ks/Kp curves in the secondary zone for all the geometries

show a decrease in value as H is increased and V is con-

stant. It can be verified by comparing (c) parts of Figs. 4

and 5 or Figs. 6 and 7. For H¼ 0.6 m (Figs. 4(c) and

6(c)), the curves first increase in the primary zone and

then become nearly constant. On the other hand, for

H¼ 1 m (Figs. 5(c) and 7(c)) the curves just increase in the

primary zone. The above statements can be explained with

the help that distances of the measurement point from the

two inductors become more comparable as H is increased.

FIG. 4. (a) and (b) Rms magnetic field versus z-axis—V¼ 10 cm and H¼ 0.6 m. (c) Ratio Ks/Kp versus z-axis—V¼ 10 cm and H¼ 0.6 m.

FIG. 5. (a) and (b) Rms magnetic field versus z-axis—V¼ 10 cm and H¼ 1 m. (c) Ratio Ks/Kp versus z-axis—V¼ 10 cm and H¼ 1 m.
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(4) Ks/Kp is compared for varying V and constant H using

set of Figs. 4(c) and 6(c) or Figs. 5(c) and 7(c). With

increasing V, the curves for all geometries drift apart and

the reason for this is that the magnetic attraction and

repulsion by the ferrite and aluminum reduce signifi-

cantly with increase in the gap distance between the

inductors. Hence with increasing V, the effect reduces

for both the shielding materials and their combination.

IV. CONCLUSION

This paper is focused on individual and combined effect of

the two passive shielding materials aluminum and ferrite on the

space profile of the magnetic emissions for wireless power

transfer system for vehicle applications. Simulation results

show that both the shielding materials and their combination

displace the individual coil field curve closer to each other.

This closeness would lead to a higher resultant field on account

of more effective addition of the individual coil fields. Also, it

is observed from the results that as the distance of the measure-

ment point from the coils is increased, the two coils have a

more comparable role in the resultant magnetic field for all the

geometries. The role of the two coils is again more comparable

with the decreasing gap distance between the two inductors for

all the geometries. All the above statements are explained with

the help of simulations on Comsol in this paper.
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5.2.3. PhD paper 4 – Experimental verification 

PhD paper {4} was presented with help of analytical and FEM results. In this chapter, experimental 

verification of constant nature of the space ratio is provided for the four inductor configurations 

presented in Chapter 4. The inductor configurations belong to category of the full geometry introduced 

in the paper {4}. The space ratio is calculated by performing primary and secondary no-load tests for 

the four inductor configurations and results are provided in Section 5.2.3.1 to 5.2.3.4.  

5.2.3.1. Configuration 1 

The space ratio along with the emissions are provided in Figure 18 (a) to 20 (a) at three different 

current values (10 A Rms, 15 A Rms, 20 A Rms). The switching frequency is 22 kHz for the three 

cases. Additionally, the electric quantities are also provided for the no-load tests in (b) part of Figure 18 

to 20. 

  

 

 

 

 

 

 

 

  

 

(a) Emissions and space ratio     (b) Electrical quantities 

Figure 18.  Configuration 1 @ 10 A Rms 
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(a) Emissions and space ratio     (b) Electrical quantities 

Figure 19.  Configuration 1 @ 15 A Rms 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Emissions and space ratio     (b) Electrical quantities 

Figure 20.  Configuration 1 @ 20 A Rms 
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5.2.3.2. Configuration 2 

The no-load tests results for Configuration 2 at switching frequency of 21.8 kHz are provided in Figure 

21.   

 

        

 

 

 

 

 

 

 

 

(a) Emissions and space ratio     (b) Electrical quantities 

Figure 21.  Configuration 2  
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5.2.3.3. Configuration 3 

The no-load tests results for configuration 3 at switching frequency of 21.8 kHz are provided in Figure 

22.   

 

 

 

 

 

 

 

 

 

 

 

 

(a) Emissions and space ratio     (b) Electrical quantities 

Figure 22.  Configuration 3  
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5.2.3.4. Configuration 4 

The no-load tests results for Configuration 4 at switching frequency of 21.8 kHz are provided in Figure 

23.   

   

 

 

 

 

 

 

 

 

 

(a) Emissions and space ratio     (b) Electrical quantities 

Figure 23.  Configuration 4 

5.3.3.5. Discussion 

The following observations are made from Figure 18 to Figure 23. 

1) For all configurations, the emissions are highest in between the coils or region of highest emissions 

(MP 6 to 10 for Configuration 1, 3 and 4 and MP 6 to 10 for Configuration 2).  

2) For all configurations, the space ratio has constant value in region of highest emissions with value at 

the center of the coils taken as constant value. The central values using Figure 18 to 23 are 1, 1, 0.9 and 

1 for Configuration 1, 2, 3 and 4 respectively. There is deviation on both sides from this central value 

in all configurations. The deviation is higher for points outside the highest emissions region but still 

these points are provided for better understanding of the reader. 

3) For all configurations, the deviation from the central value is lower for horizontal distance H=0.5 m 

compared to H=0.3 m. Explanation for this is that average distance of the measurement points from the 

coils is more comparable for H=0.5 m compared to H=0.3 m. This point was had already been 

discussed in papers {3-4}. 
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4) For Configuration 1, it has been shown in Figure 18 to 20 that the emissions of the two coils increase 

linearly with their respective currents. As an example, the emissions at MP 8 changes from 

approximately 90 mG to 140 mG to 185 mG with corresponding current change of 10 A rms to 15 A 

rms to 20 A rms respectively. This verifies the linearity assumption taken in papers {3-10}. 

5) For Configuration 1, the coil currents for the two tests are equal and hence the emissions are nearly 

same in region of highest emissions. This leads to value of space ratio practically equal to one and is 

visible in lower parts of Figure 18(a) to 20(a).  

6) For Configuration 2, different currents are used for the primary no-load test (8.7 A Rms) and 

secondary no-load test (10.3 A Rms). Hence, the secondary field is above the primary field in Figure 

21(a). This is done to validate (23) for the space ratio calculation for non-similar currents. The ratio can 

be approximated as one for this configuration. Also, as vertical distance between the inductors (V) 

increases to 20 cm for Configuration 2, variation in value of the space ratio is more from the central 

value compared to Configuration 1.  

7) For Configuration 3, the primary inductor is closer to the measurements points compared to the 

secondary inductor. Hence, the primary field is higher than the secondary field for the same current 

value. The value of the ratio is just below 1 and is taken as 0.9 in the highest emission region as visible 

in Figure 22(a).  This shows that the space ratio is constant in the highest emissions region but not 

necessarily equal to 1.  

8) For Configuration 4, behavior of the coil fields and space ratio is practically similar to Configuration 

1. The external metal plate has practically no impact on the emissions in the concerned area which is 

similar to its nearly zero effect on the inductances provided in Table 7.  
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5.3. Application1 

Selection of load quality factor has been considered as discussed in Section 2.3.3 from point of view 

of output power, voltage stress (current stress for parallel resonance) across the resonant 

components and efficiency. In this application, selection of the load quality factor w.r.t. magnetic 

emissions is introduced using the semi-analytical method. General theory for the semi-analytical 

method has already been provided in Section 5.1.4. This theory is streamlined for this specific 

application in PhD papers {5} and {6} for SS and SP topologies respectively. The semi-analytical 

method is verified with FEM results in papers {5-6} in Section 5.3.1 and 5.3.3. Also, experimental 

verification of paper {5} and {6} is provided in Section 5.3.2 and 5.3.4 respectively. The results 

from both papers and experiments indicated that higher quality factor is favorable from the 

emissions point of view for given inverter current and switching frequency. 

5.3.1. PhD paper 5 

This paper was originally published with following details. 

{5} T. Batra, E. Schaltz, “Magnetic field emission comparison at different quality factors with 

series-series compensation network for inductive power transfer to vehicles", Proceedings of 

Wireless Power Transfer Conference (WPTC 2014), pp 13-16, 2014. 

© [2014] IEEE. Reprinted, with permission, from [T. Batra, E. Schaltz, “Magnetic field emission 

comparison at different quality factors with series-series compensation network for inductive power 

transfer to vehicles", Proceedings of Wireless Power Transfer Conference (WPTC 2014), pp 13-16, 

2014] 

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE 

does not endorse any of [Aalborg University]'s products or services. Internal or personal use of this 

material is permitted. If interested in reprinting/republishing IEEE copyrighted material for 

advertising or promotional purposes or for creating new collective works for resale or redistribution, 

please go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to 

learn how to obtain a License from RightsLink. 
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Abstract— Inductive power transfer is non-contact transfer of 

energy by means of magnetic fields. A higher secondary side 

quality factor at fixed input current ensures a linear increase in 

power transfer across the air gap. But also at the same time 

magnetic emissions to the surroundings increase. First of all in 

this paper an analytic expression for comparing the magnetic 

emissions at different quality factors is introduced. It is shown 

with help of simulations on Comsol that emissions have a lower 

increase as compared to linear increase in the power transferred 

with the quality factor as suggested by the analytical calculations. 
 

Keywords-Inductive Power Transfer, magnetic fields, 

resonacne. 

I.  INTRODUCTION  

Inductive Power Transfer (IPT) uses the principle of 
electromagnetic induction for transferring energy from primary 
coil to secondary coil as in a transformer. The coils of a 
transformer are coupled to each other through a magnetic 
medium providing low reluctivity to magnetic flux. On the 
other hand, there is a large air gap between the coils of IPT and 
magnetic flux path is predominantly air.  Hence, capacitors 
need to be added on both sides for unity power factor operation 
and to ensure maximum power transfer [1] across the air gap. 
A block diagram of a IPT system is shown below in Fig. 1. 

 

Figure 1.  Block diagram  inductive wireless power transfer 

Power converter on the primary side enables operation at a 
frequency much higher than the grid frequency and hence size 
of the components is reduced. Current rating of this converter 
limits input current of the system. Power electronics for the 
secondary side have been proposed for both unidirectional [2]  

and bidirectional [3] exchange of power with battery of Electric 
Vehicle (EV).  

Magnetic emissions to the surroundings are a significant 
part of design process for these systems. Active and passive 
shielding [1, 4] is used to minimize these emissions. The study 
of variation of magnetic emissions and power transferred with 
quality factor at fixed input current is the main theme of this 
paper. With help of theoretical expressions and simulations, it 
is shown that the magnetic emissions have a lower increase 
compared to the linear increase in the power with the quality 
factor. This paper would be helpful in forming a better 
understanding of the system design especially w.r.t magnetic 
emissions     

II. SERIES-SERIES COMPENSATION NETWORK 

Fundamental Mode Analysis [5] equivalent circuit diagram 
of the topology is shown below in Fig. 2. The secondary side 
power electronics and battery of EV are approximated by a 
resistance [6]. Also, resistance of the coils and magnetic 
resistance (losses) are much smaller than the load resistance 
and are neglected for the theoretical part. 

 

 

 

 
 

Figure 2.  Fundamental mode analysis equivalent circuit [7] 

Symbols used in this section are first summarized in 

Table I.    

TABLE I.  SYMBOLS 

Symbol Name Symbol Name 

Ip Primary current Is Secondary current 

Vp Primary voltage M Mutual inductance 

Lp Primary self-inductance Ls 
Secondary self-

inductance 
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Symbol Name Symbol Name 

Cp Primary capacitor Cs Secondary capacitor 

Rs Load resistance Q Quality factor 

w Angular frequency wr Resonance angular 
frequency 

 

Voltage equations, resonance frequency and quality factor  

for the system are  

(jwLp+ 
1

jwCp
) Ip - jwMIs=  Vp                     (1) 

( jwLs+
1

jwCs
) Is + RsIs  =jwMIp                    (2) 

 

wr=
1

√LpCp
=

1

√LsCs
                                (3) 

 

Q=wrLs
Rs

.                                         (4) 

Inserting (3) and (4) into (1) and (2) and rearranging, 

Vp= - jw
r
MIs=

wrM
2

Ls
QI

p
                          (5) 

Is =
jwrM

Rs
Ip = jM

Q

Ls
 Ip.                           (6) 

Using (5), input power (P) for the system is  

  P=VpIp=
wrM

2

Ls
QI

p

2.                             (7) 

Peak magnetic field in ferrite core of IPT systems is much 
smaller than saturation field value for ferrite [8]. Hence, 
magnetic fields (Bp and Bs) due to the primary and secondary 
coils at any point in the space can be expressed as 

               |Bp|=Kp|Ip|                                     (8) 

 |Bs|=Ks|Is|.                                     (9) 

Kp and Ks are constants for the primary and secondary coils 
for any point in the space respectively. Using (6), (8) and (9), 
rms magnetic field at any point in the surroundings is given by  

|B|=√(|Ip|Kp)
2
+(|Is|Ks)2  

|B|=Ip √Kp
2+ (KsQ 

M

LS
)

2

.                        (10) 

Using (10), ratio K for comparing rms magnetic fields (Ba 
and Bb) for two different quality factors (Qa and Qb) at the 
same primary current can be expressed as 

K=
|Ba|

|Bb|
=

√1+(Qa
M
LS

Ks
Kp

)
2

 

√1+(Qb
M
LS

Ks
Kp

)
2

 

.                          (11) 

Ratio of power (Pa and Pb) for the quality factors using (7) 

Pa

Pb
=

Qa

Qb

.                                    (12) 

Let us assume that  

Q
a
 >Q

b
                                        (13) 

Squaring both sides, adding similar term on both sides and 
rearranging, 

Q
a

2+Q
a

2 (Q
b

M

LS

Ks
Kp

)
2

 >Q
b

2+Q
b

2 (Q
a

M

LS

Ks
Kp

)
2

           (14) 

Qa

Qb

>

√1+(Qa
M
LS

Ks
Kp

)
2

 

√1+(Qb
M
LS

Ks
Kp

)
2

 

.                              (15) 

Inserting (11) and (12) in (15), 

Pa

Pb
>

|Ba|

|Bb|
.                                    (16) 

Hence, the linear increase of power is higher than 
corresponding increase in the emissions with the quality factor 
at the same input current for inductive power transfer systems. 

III. SAMPLE GEOMETRY  

Side and top views of the sample geometry [9] is provided 

in Fig. 3 (a) and (b) respectively. The two inductors are 

identical, centered symmetrically and have a coupling ratio 

(M/Ls) of 0.21.  Number of turns in both the coils is 12 [10]. 

There are 810 parallel conductors in each turn with an indivual 

diameter of 0.1mm. The outer diameter of the turn is 4mm. 

Relative permeability of the ferrite is 2300.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Side and top views sample geometry [7] 
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IV. RESULTS  

Assuming an EV to be 1m wide, the nearest human will be 

at H = 0.5 m in Fig. 3(a). The results in this section are 

presented for two distances H = 0.5m and 1m. Primary current 

(Ip – 23A rms at 20 kHz) is same for all no-load and on-load 

simulations presented below. 

A. Ratio Ks/Kp 

The ratio can be found by no-load tests [7] on the two coils 

at same current. Using (8) and (9), for the same current 

 
Ks

Kp
=

|Bs|

|Bp|
.                                    (17) 

Rms magnetic fields and their ratio Ks/Kp for the no-load 

simulations are provided in Fig. 4 and Fig. 5. 

 

Figure 4.  Rms magnetic field (µT) versus Z-axis 

 

Figure 5.  Ratio Ks/Kp versus Z-axis 

B. Ratio K 

 Theoretical ratio K can be calculated by applying (11) for 

varying value of Ks/Kp in Fig. 5. The theoretical results and 

simulated results from Comsol for K are presented in Fig. 6 

and 7.  

 

 

 

Figure 6.  Ratio K versus Z-axis (H = 1m) 

Figure 7.  Ratio K versus Z-axis (H = 0.5m) 

Rms magnetic field at different quality factors from 

simulations  are presented next in Fig. 8 and 9. 

 

 

 

 

 

 

 

 

 

Figure 8.  Rms magnetic field (µT) verus Z-axis (H = 1m)  



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.  Rms magnetic field (µT) verus Z-axis (H = 1m)  

The circuit parameters for the simulations are presented in 

Table II. 

TABLE II.  CIRCUIT PARAMETERS 

Q Is(A) Vp(V) P(W)=Vp*Ip (23A) 

4 0.245+j20.053 82.565+j0.279 1898.995 

5 0.385+j25.02 102.839-j0.283 2365.297 

6 0.551+j29.971 123.039-j0.966 2829.897 

7 0.748+j34.902 143.162-j1.767 3292.726 

8 0.973+j39.815 163.210-j2.687 3753.83 

9 1.2263+j44.709 183.180-j3.723 4213.14 

10 1.508+49.585 203.075-j4.875 4670.725 

 

V. DISCUSSION OF RESULTS 

Value of ratio Ks/Kp is fairly constant as one (value at C) 

for both the distances H as seen in Fig. 5. The same can also 

be seen with help of rms magnetic fields in Fig. 4. In this plot, 

magnetic fields for both the coils are nearly same at all points 

in the space. Another point worth mentioning is here that 

number of turns for the primary coil is proportional to Kp and 

vice versa. The turn ratio used in the paper is 12:12 and hence 

value of Ks/Kp is close to one. If the turn ratio was 12:24, the 

value of Ks/Kp would be two at C.  

Theoretical ratio K has been calculated in Fig. 6 and 7 by 

applying (11) along curve Ks/Kp of Fig. 4. It shows good 

compliment with the simulated results in the same figures for 

both the distances. Fig. 8 and 9 again show that rms magnetic 

fields increases with the quality factor of the system. Ks/Kp 

and as a result K for H = 1m has less deviation from the 

corresponding curves for H = 0.5m in Fig. 6 and 7. This stands 

for that the coils have more comparable contribution in the 

resultant magnetic field as the distance in horizontal direction 

is increased.  Also, Ks/Kp varies for geometries without ferrite 

and with the air gap and is discussed in [7]. 

Ratios K in Fig. 6 and 7 have same a small deviation on 

both sides from value at C. By neglecting this deviation or 

approximation of Ks/Kp equal to one gives the advantage that 

theoretical ratio K can be expressed as a single number. The 

approximate K is most accurate for region near C as Ks/Kp is 

actually one there as shown in Fig. 5. The magnetic emissions 

are highest in region near C as seen in Fig. 8 and 9. At the end 

as suggested by (7), input power of the system shows a linear 

increase with the quality factor as shown in Table II. 

VI. CONCLUSION 

In this paper, first of all a theoretical ratio K for comparing 

inductive power transfer system with series-series 

compensation network at different quality factors has been 

developed. Simulated and theoretical results both suggest that 

for a fixed input current magnetic emissions have a lower 

increase as compared to linear increase of power with the 

quality factor. Moreover, ratio K has nearly constant behavior 

and hence can be approximated by its value at the center of the 

system. Both the full and approximated values of K can be 

calculated without performing on-load tests which is very 

advantageous for the initial design of the system.  
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5.3.2. PhD paper 5 – Experimental verification 

This section similar to Section 5.2.3 provides experimental verification of corresponding paper {5}. 

The theory has been provided in paper {5} and this section will verify two main points introduced in 

the paper. First, it was provided that for given inverter current and switching frequency the emissions 

increase relatively lowers than the output power with changing load quality factor (denoted by added 

subscript 1, 2 and 3). Mathematically the last statement is provided as (42) and was proved in PhD 

paper {5} (Equation 15). 

Q2

Q1
>

√1+ (
Ks

Kp

M
Ls

Q2)
2

 

√1+ (
Ks

Kp

M
Ls

Q1)
2

 

 (42)  

Secondly, proposed analytical emissions ratio (41) is verified with experimentally measured emissions 

ratio. The experimental results are presented at different quality factors for the four inductor 

configurations at constant primary current and switching frequency in Section 6.5.3.1 to 6.5.3.4. The 

analytical emissions ratio provided later in Table 9 to 14 is calculated using (41). It has inputs from the 

measured coil currents and space ratio equal to 1, 1, 0.9 and 1 (provided in Section 5.2.3) for the first, 

second, third and fourth inductor configuration for the calculation (41). The experimental space ratio on 

the other hand is calculated by dividing measured emissions in Matlab. This procedure is followed in 

experimental verification of other papers in Section 5.3.4, 5.4.2 and 5.5.3 and will not be provided 

again. The first quality factor (Ql1) is taken as base quality factor for all configurations. Also, the 

capacitor combination is CC2 (Section 4.3) for Case 2 of Configuration 1 and 2 in Section 5.3.2.1.2 and 

5.3.2.2.2 respectively. For remaining experiments, capacitor combination CC1 is used. 

5.3.2.1. Configuration 1  

Results are provided for this configuration for two switching frequencies of 21.8 kHz (Case 1) and 26.1 

kHz (Case 2). 
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5.3.2.1.1. Case 1 

The emissions, emissions ratio and electric quantities are presented at two different quality factors for 

both horizontal distances (H=0.3 m and 0.5 m) in Figure 24. The experimental and analytical 

calculations are provided in Table 9.  

Table 9. Configuration 1 – Case 1 results 

x Rlx (Ω) Qlx/Ql1 Pl (W) Pl ratio* 
Emissions 

ratio*
, 
** 

Analytical 

emissions 

ratio* 

1 5.43 1 610.56 1 1 1 

2 3.24 1.68 970.01 1.59 1.5 1.504 

*@Qlx/Ql1 

** Approximated central value using Figure 24 
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(a) Emissions and emissions ratio     (b) Electrical quantities at Ql1 

 

 

 

 

 

 

 

 

 

            (c) Electrical quantities at Ql2 

Figure 24. Configuration 1 – Case 1 results   
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5.3.2.1.2. Case 2  

The emissions, emissions ratio and electric quantities are presented at two different quality factors for 

horizontal distance (H=0.5 m) in Figure 25. The experimental and analytical calculations are provided 

in Table 10.  

Table 10. Configuration 1 – Case 2 results  

x Rlx (Ω) Qlx/Ql1 Pl (W) Pl ratio* 
Emissions 

ratio*
, 
** 

Analytical 

emissions 

ratio* 

1 7.19 1 1490.40 1 1 1.00 

2 5.22 1.38 1945.44 1.3 1.3 1.24 

*@Qlx/Ql1 

** Approximated central value using Figure 25 
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(a) Emissions and emissions ratio     (b) Electrical quantities at Ql1 

 

 

 

 

 

 

 

 

 

            (c) Electrical quantities at Ql2 

Figure 25. Configuration1 – Case 2 results  
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5.3.2.2. Configuration 2  

Results are provided for this configuration for two switching frequencies of 22 kHz (Case 1) and 26.3 

kHz (Case 2). 

5.3.2.2.1. Case 1 

The emissions, emissions ratio and electric quantities are presented at three different quality factors for 

both horizontal distances (H=0.3 m and 0.5 m) in Figure 26. The experimental and analytical 

calculations are provided in Table 11.  

Table 11. Configuration 2 – Case 1 results  

x Rlx (Ω) Qlx/Ql1 Pl (W) Pl ratio* 
Emissions 

ratio*
, 
** 

Analytical 

emissions 

ratio* 

1 5.23 1 221.13 1 1 1 

2 4.33 1.21 254.39 1.15 1.05 1.04 

3 3.08 1.70 352.46 1.59 1.24 1.23 

*@Qlx/Ql1 

** Approximated central value using Figure 26 

 

 

 

 

 

 

 

 

 

 

 

 



89 
 

   

 

 

 

 

 

  

 

 

(a) Emissions and emissions ratio     (b) Electrical quantities at Ql1 

 

  

 

 

 

 

 

 

 

            (c) Electrical quantities at Ql2                                                 (d) Electrical quantities at Ql3 

Figure 26. Configuration 2 – Case 1 results  
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5.3.2.2.2. Case 2 

The emissions, emissions ratio and electric quantities are presented at two different quality factors for 

horizontal distance (H=0.5 m) in Figure 27. The experimental and analytical calculations are provided 

in Table 12.  

Table 12. Configuration 2 – Case 2 results  

x Rlx (Ω) Qlx/Ql1 Pl (W) Pl ratio* 
Emissions 

ratio*
, 
** 

Analytical 

emissions 

ratio* 

1 5.31 1 1010.99 1 1 1 

2 4.22 1.26 1219.41 1.21 1.07 1.08 

*@Qlx/Ql1 

** Approximated central value using Figure 27 
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(a) Emissions and emissions ratio     (b) Electrical quantities at Ql1 

 

 

 

 

 

 

 

 

 

 

              (c) Electrical quantities at Ql2 

Figure 27.  Configuration 2 – Case 2 results  
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5.3.2.3. Configuration 3 

Results are provided for this configuration at switching frequency of 21.7 kHz. The emissions, 

emissions ratio and electric quantities are presented at three different quality factors for both horizontal 

distances (H=0.3 m and 0.5 m) in Figure 28. The experimental and analytical calculations are provided 

in Table 13. 

Table 13. Configuration 3 results   

x Rlx (Ω) Qlx/Ql1 Pl (W) Pl ratio* 
Emissions 

ratio*
, 
** 

Analytical 

emissions 

ratio* 

1 5.42 1 1 1 1 1 

2 4.43 1.22 1.20 1.17 1.18 1.11 

3 3.19 1.70 1.68 1.45 1.44 1.41 

*@Qlx/Ql1 

** Approximated central value using Figure 28 
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(a) Emissions and emissions ratio     (b) Electrical quantities at Ql1 

  

 

 

 

 

 

 

 

 

 

(c) Electrical quantities at Ql2     (d) Electrical quantities at Ql3 

Figure 28.  Configuration 3 results 
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5.3.2.4. Configuration 4 

Results are provided for this configuration at switching frequency of 21.7 kHz. The emissions, 

emissions ratio and electric quantities are presented for three different quality factors for both 

horizontal distances (H=0.3 m and 0.5 m) in Figure 29. The experimental and analytical calculations 

are provided in Table 14. 

Table 14. Configuration 4  

x Rlx (Ω) Qlx/Ql1 Pl (W) Pl ratio* 
Emissions 

ratio*
, 
** 

Analytical 

emissions 

ratio* 

1 5.25 1 197.83 1 1 1 

2 4.25 1.23 230.52 1.17 1.17 1.18 

3 3.05 1.72 317.63 1.61 1.60 1.52 

*@Qlx/Ql1 

** Approximated central value using Figure 29 
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(a) Emissions and emissions ratio     (b) Electrical quantities at Ql1 

  

 

 

 

 

 

 

 

 

 

(c) Electrical quantities at Ql2     (d) Electrical quantities at Ql3 

Figure 29.  Configuration 4 results 
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5.3.2.5. Discussion 

The following observations are made from the results in Section 5.3.2.1 to 5.3.2.4. 

1) Phase angle between the secondary current and inverter voltage w.r.t. primary current are close to 

90˚ and 0˚ as provided in Figure 24 to 29. However in some cases (Figure 26 and 27), deviation in 

angle between the primary current and inverter voltage is slightly higher compared to others cases. But 

this can be ignored as purpose of the experiments is to verify the emissions ratio and its comparison 

with the output power. Both of which are dependent (4, 44) on the two currents magnitude and phase 

angle between them. As a result, the frequency is tuned in the experiments to provide resonance in the 

secondary side or phase angle between the two currents to be 90˚ as mentioned in theory for this 

application {5}. The small angle on the inverter side marginally increases inverter VA on account of 

reactive power and does not have influence on the measured quantities. Analogues statements are 

applicable for experiments conducted in Section 5.3.4, 5.4.2 and 5.5.3.  

2) The experimental emissions ratio is in good compliance with analytical emissions ratio as provided 

in Table 9 to 14. 

3) It was mentioned in the reference paper {5} that the output power increases linearly with the quality 

factor. However, results summarized in Table 9 to 14 show slightly lower increase in the output power 

compared to the quality factor. This is on account of the internal resistances which are active in the 

experimental results but were ignored in the reference paper {5}.  

4) Increase in the emissions is much lower than increase in the output power for Configuration 2 as 

provided in Table 11 and 12. On the other hand, increase in the two quantities become nearly equal for 

Configuration 1, 3 and 4 provided in Table 9, 10, 13, 14. This behavior can be explained with help of 

(42). With increase in the coupling factor (Configuration 1, 3 and 4), second part of emission term 

become dominating and the emissions ratio value comes closer to quality factor ratio. 

5) For Configuration 1 and 4, the reflected resistance is high or reflected quality factor is low on 

account of lower vertical gap (V=10 cm). This leads to comparable impedance for the first and third 

harmonic on the primary side and is visible in the primary current waveform in (b) and (c) parts of 

Figure 24 and 25 and (b), (c) and (d) parts of Figure 29.  
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5.3.3. PhD paper 6 

This paper was originally published with following details. 

{6} T. Batra, E. Schaltz, “Magnetic field emission comparison at different quality factors with 

series-parallel compensation network for inductive power transfer to vehicles", Proceedings of 
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Abstract— Input current of wireless power transfer system is 

limited by current rating of power converter on the primary side. 

Power rating of wireless power transfer system increases linearly 

with the quality factor for series-parallel topology of the system 

at a given primary current. Magnetic emissions to the 

surroundings also increase with increase in the quality factor. In 

this paper, first analytical expressions are developed for 

comparing magnetic emissions at different quality factors. 

Theoretical and simulation (Comsol) results show comparatively 

lower increase for the magnetic field emissions to the linear 

increase in the power rating with the quality factor. This paper 

signifies that at fixed primary current, operation of wireless 

power transfer system at higher quality factor is favorable with 

respect to the magnetic emissions.   

 
Keywords-Inductive Power Transfer, magnetic fields, 

resonance. 

I.  INTRODUCTION  

Energy in the medium power range can be transferred 
without wires over a large air gap using different scientific 
principles [1]. The frontrunners in this power transfer are 
inductive coupling, resonant inductive coupling and capacitive 
coupling. The first two utilize same principle of 
electromagnetic induction for the power transfer but differ in 
size of the air gap and electrical circuitry. The last one on the 
other hand utilizes totally a different physics and is not under 
consideration. This paper is based on resonant induction 
coupling (RIPT) and hence the term wireless power transfer 
(WPT) is synonymous with RIPT.  A simple block diagram of 
the system is provided below in Fig. 1. 

 

 

 

 

Fig. 1.   Block diagram wireless power transfer [2] 

Voltage source converter on the primary side rectifies the 

grid voltage and then inverts to produce square wave input 

voltage. Resonant circuits comprising of the primary 

capacitors and inductors allow the first harmonic currents of 

the switching frequency to prevail. The primary and secondary 

capacitors are designed to provide unity power factor and 

boost power transfer capability of the system at the resonant 

frequency.   

Power electronics on the secondary side is used to control 

[3] flow of power to the battery of the vehicle by controlling 

the secondary side quality factor. The primary current is held 

constant for the power on the secondary side to be controlled 

linearly with the quality factor. Magnetic emissions [4] to 

surroundings are an important design criterion for WPT and 

do not change linearly with the quality factor. Firstly, 

theoretical expressions for variations in the magnetic 

emissions with the quality factor are developed in this paper. It 

is shown with help of theory and simulations that a higher 

quality factor is better from viewpoint of the magnetic 

emissions at constant primary current. A parallel publication 

discussing the same topic for series-series topology WPT was 

presented by the same authors in [5]. 

II. SAMPLE GEOMETRY  

Sample geometry [2] [5] [6] used in the paper is provided 

in Fig. 2. Specifications for perfectly aligned identical 

inductors are provided in Table I. 
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Fig. 2. Sample geometry [2] [5] [6] 

TABLE I.  INDUCTOR SPECIFICATION [5] [6] 

Property Value 

Number of parallel conductors in each turn 810 

Diameter of parallel conductor 0.1 mm 

Outer diameter of coil 4 mm 

Conductivity of conductor 6×107 (S/m) 

Relative permeability of ferrite 2300 

 

III. SERIES-PARALLEL COMPENSATION NETWORK 

As mentioned in the introduction section that only the first 
harmonic currents are effective in the system, hence 
fundamental mode analysis [7] equivalent circuit is used and is 
provided in Fig. 3. The secondary side power electronics along 
with the load is approximated by a resistor. Moreover, the 
resistance of the coils and magnetic loss resistance are much 
smaller as compared to the load resistance and are neglected 
for the theoretical analysis. 

 

 

 

 
 

Fig. 3. Fundamental mode analysis equivalent circuit [6] 

Symbols used in the paper are provided in Table II.    

TABLE II.  SYMBOLS [5] 

Symbol Name  Symbol Name 

Ip Primary current  Is Secondary current 

Vp Primary voltage  M Mutual inductance 

Lp 
Primary self-

inductance 

 
Ls 

Secondary self-

inductance 

Cp 
Primary 
capacitor 

 
Cs 

Secondary 
capacitor 

Rl Load resistance  Q Quality factor 

w Angular 

frequency 

 wr Resonance angular 

frequency 

 

Expressions for the voltage equations, resonance 

frequency, primary capacitor [8] and quality factor  are 

provided in (1) to (5). 

(jwLp+ 
1

jwCp
) Ip - jwMIs=  Vp                          (1) 

jwMIp= ( jwLs+
1

jwCs
Rp

Rp+
1

jwCs

) I1s                            (2) 

wr=
1

√LsCs
                                            (3) 

Cp= Ls

(LpLs-M2)wr
2
                                             (4) 

Q=
Rl

wrLs
                                               (5) 

(1) and (2) using (3), (4) and (5) are modified to 

Vp= 
wrM

2

Ls
QI

p
                                       (6) 

Is =
M

Ls
(1+jQ) Ip.                                    (7) 

 Input power (P) of the system using (6) is  

  P=
wrM

2

Ls
QI

p

2.                                        (8) 

Due to the large air gap in WPT, operation is always in 
linear region [9] of B-H curve for ferrite. As a result for any 
point in the surroundings, coil magnetic fields (Bp,s) are 
proportional to their respective currents. 

               |Bp,s|=Kp,s|Ip,s|                                     (9) 

Kp,s are constants for a given point in the space for the 
primary and secondary coils. Rms magnetic field using (7), (9) 
and space angle α from Fig. 2 is given by 

|B|=Ip√[Kp
2+ (Ks

M

Ls
)

2

+2KpKs
M

Ls
cosα] + (Ks

M

LS
Q)

2

 .   (10) 

Kp,s varies for different points in space but their ratio is 
fairly constant and along with space angle is provided in the 
results section. This constant behavior can be used to obtain 
magnetic emissions ratio (K) of rms magnetic fields (Ba and 
Bb) using (10) at two different quality factors (Qa and Qb). 
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              (11) 

The currents are taken as equal as the study is based on 
constant primary current and hence (11) is modified to (12) 
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.               (12) 

Also, ratio of power (Pa and Pb) using (8) is  

Pa

Pb
=

Qa

Qb

.                                        (13) 
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An initial assumption is taken as 

Q
a
 >Q

b
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Squaring both sides, first multiplying and then adding 
similar term on both sides and rearranging, 
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Comparing (12), (13) and (16),  

Pa

Pb
>

|Ba|

|Bb|
.                                          (17) 

It can be seen in (17) that the linear increase of power is 

more than corresponding rise in the emissions for increasing 

quality factor.  

IV. RESULTS  

A. Space angle α 

Magnetic field directions for the set of inductors using 

Comsol are presented in Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Magnetic field directions [6] 

The angle is 180° for nearly all points in the space. The 

value is different from this for points very close to the 

inductors as shown in Fig. 4 and is ignored for this study. (12) 

is modified to (18) using space angle equal to 180°.  
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                             (18)  

B. Ratio Ks/Kp 

Ratio Ks/Kp is provided in (19) and is obtained using (9).  

 

Ks

Kp
=

|Bs|

|Bp|
                                         (19) 

No-load simulation tests [2] [5] [6] on Comsol with 23A 

rms at 20 kHz current are carried out and the results are 

provided in Fig. 5 and 6. Ferrite has an effect of displacing 

space maxima’s and has already been discussed by the same 

authors in [2]. The ratio is fairly constant as one as visible in 

Fig. 6. Also Ks and Kp are proportional to number of primary 

and secondary turns and changing number of turns will change 

the ratio accordingly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Rms magnetic field (µT) versus Z-axis – No-load [5] 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Ratio Ks/Kp versus Z-axis – No-load [5] 

C. Ratio K 

On-load simulations are done on Comsol for quality 

factors from 4 to 10. The magnetic emissions for vertical line 

of Fig. 2(a) in matrix form are taken in Matlab. Simulated 

ratio K is obtained by dividing the magnetic emissions w.r.t 

base magnetic emissions at Q=4. Theoretical values of ratio K 

on the other hand are obtained from (18) using ratio Ks/Kp 

from Fig. 6. The two results for ratio K and rms magnetic field 

for simulations are provided in Fig. 7 and 8 respectively. 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Ratio K versus Z-axis – On-load  

 

 

 

 

 

 

 

 

 

 

Fig. 8. Rms magnetic field (µT) verus Z-axis – On-load  

Circuit parameters for on-load Comsol simulations are 

provided in Table III. The primary current is 23A rms at 20 

kHz for all simulations. 

TABLE III.  CIRCUIT PARAMETERS 

Q Is(A) Vp(V) P(W)=Vp*Ip  

4 5.24+j20.12 82.84+j0.56 1905.32 

5 5.36+j25.10 103.18+j0.06 2373.14 

6 5.51+j30.07 123.44-j0.56 2839.12 

7 5.69+j35.01 143.62-j1.30 3303.26 

8 5.90+j39.94 163.73-j2.16 3765.79 

9 6.14+j44.85 183.76-j3.13 4226.48 

10 6.41+49.74 203.71-j4.23 4685.33 

 

Ratio K has good compliment for the two results. 

Moreover, ratio K has small deviation on both sides from 

value at center (C). This deviation is reflected in ratio K from 

ratio Ks/Kp as visible in Fig. 6. If the deviation is ignored 

(Ks/Kp=1), ratio K can be calculated as a single number. This 

is a good advantage for initial system design and is most 

applicable to zone (at and close to C) of highest magnetic 

fields. Also the input power increases linearly with the quality 

factor as shown in Table III.  Therefore for a constant primary 

current, the magnetic emissions have a comparatively lower 

increase as compared to the input power with the increasing 

quality factor.   

V. CONCLUSION 

Magnetic emissions are a significant design criterion for 

wireless power transfer systems. A higher quality factor 

operation enables more power to be transferred on the 

secondary side but also increases the magnetic emissions to 

the surroundings. In this paper, theoretical expressions for 

variations in the magnetic emissions with the quality factor are 

first developed and are later substantiated with simulations. 

Results show that the input power increases linearly with the 

quality factor whereas on the other hand magnetic emissions 

show a lower increase with the quality factor. Hence, higher 

quality factor operation is favorable from viewpoint of the 

magnetic emissions for constant primary current for series-

parallel topology wireless power transfer system.  
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5.3.4. PhD paper 6 – Experimental verification 

This section provides experimental verification of paper {6}. This paper provides similar results for SP 

topology as are provided for SS topology in paper {5}. It has first been shown that for SP topology at 

given inverter current and switching frequency the emissions increase relatively lower than the output 

power with linearly increase load quality factor. The last statement has been proved mathematically as 

Equation (16, 18) in PhD paper {6} and the final result is provided here as (43). 

Q2
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+ (
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M
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Q
2
)

2
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Kp

M
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)
2

+ (
Ks

Kp

M
Ls

Q
1
)

2

 

 (43)  

The second objective of this section is to provide verification of the theoretical emissions ratio (41) 

with experimental calculated emissions ratio. The results are presented only for Configuration 2 at 

switching frequency of 26.3 kHz. The emissions, emissions ratio and electric quantities are presented at 

two different quality factors at horizontal distance (H=0.5 m) in Figure 30. The experimental and 

analytical calculations for this verification are provided in Table 15.  

Table 15. Configuration 2 results 

x Rlx (Ω) Qlx/Ql1 Pl (W) Pl ratio* 
Emissions 

ratio*
, 
** 

Analytical 

emissions 

ratio* 

1 327.6 1 1215.31 1 1 1 

2 418.8 1.28 1524.49 1.25 1.12 1.183 

*@Qlx/Ql1 

** Approximated central value using Figure 30 

5.3.4.1. Discussion 

The following observations are made from the results. 

1) As required, the two currents are nearly 90˚ apart and input power factor is close to one as shown in 

Figure 30.  

2) Both the objectives i.e. the two emissions ratios are in good compliment and increase in the output 

power is higher than increase in the emissions have been verified. 
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(a) Emissions and emissions ratio    (b) Electrical quantities at Ql1 

 

 

 

 

 

 

 

 

 

            (c) Electrical quantities at Ql2 

Figure 30.  Configuration 2 results  
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5.4. Application 2 

Active shielding is used in addition to the passive shielding in the inductors to further suppress 

magnetic emissions in the surroundings. Traditionally in active shielding, an additional coil having 

separate power supply is used to generate magnetic field in phase opposition to one of the coil field 

of wireless charging inductors. This method was improved in [20] by removing requirement of 

additional power supply by powering the active shielding coil from the primary coil of wireless 

charging system. In this project, an improved version of this technology has been introduced by 

generating cancellation currents in the secondary coil rather than using an additional active 

shielding coil. The cancellation method is introduced in PhD papers {7} and {8} for SS and SP 

topologies in Section 5.4.1 and 5.4.3 respectively. The cancellation is made feasible by increasing 

the secondary capacitor value from resonance value and hence increasing value of the secondary 

circuit component in phase with the primary current. This increase leads to cancellation of the 

primary field by the secondary field as explained in detail with help of the semi-analytical method 

in papers {7} and {8}. The theory is supported with FEM results for the proposed cancellation 

method in the papers. Additionally, experimental verification of the method is provided for paper 

{7} in Section 5.4.2.  

5.4.1. PhD paper 7 

This paper was originally published with following details. 

{7} T. Batra, E. Schaltz, S. Ahn, “Reduction of magnetic emission by increasing secondary side 

capacitor for ferrite geometry based series-series topology for wireless power transfer to 

vehicles", Proceedings of 16th European Conference on Power Electronics and Applications 

(EPE'14-ECCE Europe), pp 1-11, 2014. 
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Abstract 

Magnetic fields emitted by wireless power transfer to vehicles can potentially affect living organisms. 

As a result, minimizing the magnetic emissions without compromising with the power transferred is 

one of the most significant challenges in the success of this technology. Active and passive shielding 

methods are used for screening of the magnetic fields of this system. In this paper, a new active 

shielding design method for series-series topology of this technology has been presented. In this 

method, the secondary capacitor value is increased to reduce phase angle between the primary and 

secondary currents from the standard design. Therefore, a part of the secondary magnetic flux comes 

in phase opposition with the primary flux and the resultant field is reduced. Operation point is shifted 

with the new design from the maximum power transfer resonance point and hence the reflected 

resistance is reduced. In order to maintain the same power level, the primary current and voltage have 

to increased and decreased in the same proportion. Also, the primary capacitor needs to be increased 

for maintaining unity input power factor in the system. The above statements are provided first with 

help of analytical expressions and later substantiated with simulations.  At the end, it is also shown 

that resonance in the system is still intact with this new design methodology.    

Introduction 

Wireless power transfer (WPT) in both stationary [1] and on-line [2] charging forms is set to 

revolutionize world of electric vehicles (EV). Charging without wires would be critical in solving 

problems of lower available energy in the battery of EV and uncomfortable hanging cables from the 

wired charging solution. But the wireless solution also has its set of problems mostly in the form of the 

magnetic field emissions to the surroundings that can harm living organisms. This paper is focused on 

the magnetic emissions of WPT and will be discussed after a brief description of the system. A block 

diagram of WPT system is provided below in Fig. 1.  

 

 

 

 

 

 

Fig. 1: Block diagram WPT system [3] 
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The supply voltage in the system is rectified and fed to the DC link capacitor of the resonant 

converter. This enables high frequency square waveform input voltage to the system. The resonant 

circuit filters the primary and secondary currents to sinusoidal of the fundamental component. Energy 

is transferred from the primary coil to the secondary coil in WPT using same principle of 

electromagnetic induction as in classical transformer. The major difference between the two systems is 

presence of a large air gap between the two coils of WPT. This large air gap results in high self-

inductance for the two coils and hence capacitors are required on both sides for compensation. The 

primary side capacitor [4] is mainly responsible for unity input power factor operation and the 

secondary capacitor is used to boost the power transfer capability of the system. The secondary side 

compensation shifts the primary and secondary fluxes orthogonal to each other. And as a result there is 

no cancellation in phasor addition of the two coil fluxes. 

Magnetic field shielding in the system is done by means of active and passive methods [5].  In passive 

shielding, the magnetic field is reduced by a combination of blocking properties of low resistivity 

metals like aluminum and low magnetic resistance path using magnetic materials like ferrite. Active 

shielding on the other hand is cancellation by introducing additional field in opposite direction to the 

main field. Major disadvantage with the active shielding is the requirement of additional components 

(power supply and third coil) in the system. Problem of additional power supply was solved by KAIST 

researchers by proposing Resonant Reactive Current Loop [6] method.  But still this method requires 

an additional third coil for reducing the magnetic emissions.  

In this paper a new design methodology for reducing the magnetic emissions of series-series topology 

WPT. Advantage of the proposed design is that it requires no additional components to be added to the 

system. In the new design, the secondary capacitor value is increased to lower phase angle between the 

primary and secondary currents from standard design [4] value. This enables a part of the secondary 

flux to oppose the primary flux and reduce the resultant field. The reduction first increases with the 

increasing secondary capacitor and then starts to decrease again. This offset from the secondary 

resonance point reduces the power transfer capability of the system. The primary current and voltage 

have to be increased and decreased in similar proportion to maintain same input power. Also an 

additional capacitive component is reflected on the primary side with the new design and hence the 

primary capacitor has to be increased to maintain unity power factor. As the primary capacitor and 

primary self-inductance are mainly responsible for the filter behavior of the system, the resonance in 

the system is maintained. Theoretical expressions are first presented in this paper for the above 

statements and are later supported with simulations. A similar new design methodology was also 

presented by the authors for series-parallel topology WPT in [7]. This new design can be used together 

with the existing active and passive shielding methods to reduce the magnetic emissions of the system.   

Sample geometry 

Sample geometry similar to one in [3] [7] is used in the paper. Top and side views of the geometry are 

provided in Fig. 2.  

 

 

 

 

 

 

 

 

 

 

Fig. 2: Top and side views sample geometry [7] 

 

The coil made of Litz wire is embedded in a ferrite disc. The two inductors are identical and centered 

(aligned case) at the same point. Results for another case (misaligned) where the upper inductor is 

shifted horizontally by 10 cm in the positive X-direction towards the human are also provided in the 
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paper. The self and mutual inductances for the aligned case are 157 µH and 60 µH. For the non-

aligned case, value of the mutual inductance becomes 38 µH while the value of self-inductance 

practically remains unchanged. Detail of the inductor is provided below in Table I. 

Table I: Details of inductor [8] 

Property 
Number 

of turns 

Number of 

parallel 

conductor 

Conductor 

diameter 

Coil outer 

diameter 

Conductor 

conductivity 

Relative 

permeability ferrite 

Value 12 810 0.1 mm 4 mm 6×10
7 
(S/m) 2300 

Theory 

Standard design 

Fundamental Mode Analysis (FMA) [9] equivalent circuit for the topology is provided in Fig. 3.  

 

 

 

 

Fig. 3: FMA equivalent circuit series-series topology  

The equivalent circuit is same for the two designs. Subscripts 1 and 2 are used to denote the standard 

and proposed designs. Also the subscripts p and s are used for denoting the primary and secondary 

sides of the system respectively. The inductors (Lp, Ls and M), load resistor (Rl) and quality factor (Q) 

are same for the two designs. The voltage equations, resonant frequency and Q for the system are 

provided in (1) to (4). 

(jωLp+ 
1

jωC1p,2p
) I1p- jωMI1s,2s=   V1p,2p                     (1) 

( jωLs+
1

jωC1s,2s
) I1s,2s  +  RlI1s,2s  = jωMI1p,2p                                                                                      (2) 

ωr=
1

√LpC1p
=

1

√LsC1s

                                             (3) 

Q=ωrLs

Rl
                       (4) 

Inserting (3) and (4) into (1) and (2), (5) and (6) are obtained 

V1p=
ωrM

2

Ls
QI

1p
                 (5)  

I1s =  j
M

Ls
Q I1p.                 (6) 

The magnetic field path for WPT is dominantly air and hence maximum magnetic field strength in 

ferrite core is much lower than saturation value of ferrite. Hence the non-linear part of the B-H curve 

is not reached and the magnetic fields (B1p,2p and B1s,2s) are proportional by the constants (Kp and Ks) to 

their respective coil currents. It can be expressed in equation form as 

B1p,2p=KpI1p,2p                                                                                                                (7)  

B1s,2s=KsI1s,2s.                                                                                                                (8) 

Real (Re) and imaginary (Imag) parts of the resultant magnetic fields (B1,2) is vector sum of the two 

coil fields with space angle α between them as shown in Fig.2 and is provided in (9) and (10). 
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2

+ (Imag(B
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2
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Magnitude of resultant magnetic field (B1) using (6), (7), (8), (9), (10) and I1p as reference phasor is                                         

|B1|=I1p √Kp
2+ (KsQ 

M

LS
)

2

.              (11) 

New proposed design 

The secondary capacitor of the standard design is taken as b (constant) times the proposed design 

capacitor. 

C1s=bC2s                          (12) 

Inserting (3), (4) and (12) in (1) and (2), we obtain 

V2p= (jω
r
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jωrC2p
) I2p+

ωrM
2

 Ls

Q

 [1+Q
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 ]
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] 
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In order to achieve unity power factor, value of the primary capacitor is calculated by equating 

imaginary part of (13) equal to zero. The values of primary capacitor and primary voltage are  

C2p= 1

ωr 
2Lp[1- 
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2(1-b)

2
)

]

              (15) 
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Magnitude of resultant magnetic field using (7), (8), (9), (10), (14) and I2p as reference phasor is given 

by    

|B2|=I2p √[Kp
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 .        (17) 

Theoretical comparison  

The reflected impedance is lowered for the proposed design for b≠1 and hence the primary current has 

to be increased to maintain the same input power level. Using (5) and (16),  

I2p

I1p
=√1+Q2(1-b)

2
 .             (18) 

Ratio of the primary voltage is reciprocal of ratio for the primary current. Ratio of magnetic emissions 

(K) for the two designs using (11), (17) and (18) is  
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=
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In order to determine ratio K space angle α and ratio Ks/Kp are required. These are provided in next 

section with help of simulations. Ratio of the primary capacitors is also provided in (20). 
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The cost of capacitors is dependent on their capacitance value and voltage rating. Hence, voltage stress 

on the capacitors is an important criterion for comparing the two designs. Ratio of the voltage stresses 

for the primary (VC1p, 2p) and secondary (VC1s, 2s) capacitor using (18) and (20) are provided in (21) 

and (22). The magnitude of secondary current is same for both due to constant output power as losses 

have been neglected in the theoretical comparison. 
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Simulations 

Space angle α  

As per law of electromagnetic induction, the secondary flux opposes the primary flux. Hence value of 

angle α is equal to 180° except for points close to the coils as shown in Fig. 4. Humans are not 

supposed to be very close to the inductors and hence angle α is taken as 180° in the paper. Comsol is 

used to plot the figure with the coils at the center and a cylinder of 3 m radius and 3 m height serving 

as magnetic zero potential.  

 

 

 

 

 

 

Fig. 4: Direction of magnetic fields [7] 

 

Using angle α equal to 180°, (19) is modified to  
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Ratio Ks/Kp  

Ratio Ks/Kp for the set of inductors can be obtained with help of no-load curves [3] [7] at same current 

(23A at 20 kHz). Using (7) and (8),  

Ks

Kp
=

|Bs|

|Bp|
.               (24) 

The ratio Ks/Kp and rms magnetic fields for both the cases are provided in Fig. 5. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Ratio Ks/Kp and rms magnetic field (µT) versus Z-axis  

Ferrite has an effect of displacing space maxima’s closer to each other as provided in [3]. Value of the 

ratio can be approximated as one for both the cases and ratio K can be calculated as a single number 

using (23). This is used later in section “Comparison” for calculating ratio K as a single number for 

given values of b. 

Ratio K 

Theoretical ratio K is calculated using ratio Ks/Kp from Fig. 5 and inserting in (23). On the other hand, 

simulated value of ratio K for the same system is obtained with help of on-load simulations on 

Comsol. Value of Q=6 is used for both the calculations. The frequency of operation is 20 kHz and the 

capacitors are calculated according to (3), (12) and (15). Firstly, values of circuit variables for the 

simulations are provided in Table II and III. Simulations are done using current (primary) source as 

input to the system. Magnitude of primary current (I2p) for the proposed design is taken as constant (23 

A rms) and current magnitude (I1p) for standard design is calculated using (18). As an example, rms 

fields for standard and proposed design at b=1.42 in Fig. 8 corresponds to first row of Table III. 

 

Table II: Circuit variables: Misaligned case 

b V1p(V) I1p (A) I1s (A) V2p (V) I2p (A) I2s (A) 

1.42 56.34+j0.29 8.33 -0.12+j11.82 21.31-j0.20 23 -11.09+j4.34 

1.05 148.65+j0.79 21.93 -0.34+j31.18 141.14+j0.55 23 -9.58+j29.61 

0.95 149.55+j0.79 22.11 -0.34+j31.39 145.15+j2.27 23 8.29+j30.45 

0.769 91.05+j0.47 13.47 0.20+j19.11 55.12+j0.59 23 15.60+j11.47 

0.5 49.16+j0.26 7.27 -0.11+j10.32 16.64+j0.18 23 9.91+j3.35 

 

 

 



Table III: Circuit variables: Aligned case 

b V1p (V) I1p (A) I1s (A) V2p (V) I2p (A) I2s (A) 

1.42 142.71-j0.36 8.33 0.06+j18.85 53.49+j0.07 23 -17.75+j6.98 

1.05 375.65-j0.95 21.93 0.15+j49.61 360.19-j2.74 23 -14.73+j47.56 

0.95 378.78-j0.96 22.11 0.15+j50.03 364.89+j1.06 23 13.78+j48.19 

0.769 230.64-j0.58 13.47 0.09+j30.46 137.10+j1.47 23 24.80+j18.04 

0.5 124.52-j0.22 7.27 0.04+j16.45 40.76+j0.42 23 15.75+j5.30 

 

(a) Misaligned case     (b) Aligned case 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Ratio K and versus Z-axis 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: Rms magnetic field (µT) versus Z-axis – Misaligned case 

 



 

 

 

 

 

 

 

 

 

 

Fig. 8: Rms magnetic field (µT) versus Z-axis – Aligned case 

 

The results for theoretical and simulated values of ratio K are in good agreement as shown in Fig. 6. 

Fig. 7 and 8 depict the same in terms of rms magnetic field values. The circuit variables in Table II 

and III are also compliant with analytical expressions provided in section “Theory”. 

Resonance 

Resonance is maintained with the new proposed design and is shown with help of bode plots of the 

input impedance in Fig. 9 and 10. Using (1) and (2), the input impedance of the standard (Z1) and 

proposed (Z2) designs is provided in (25).  

 Z1,2=jωLp+ 
1

jωC1p,2p
+

ω2M2

jωLs+ 
1

jωC1s,2s
+Rl 

             (25) 

 (a)           (b) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: Input Impedance Bode Plots – Aligned case 
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Fig. 10: Input Impedance Bode Plots – Misaligned case 

The following observations are made from Fig. 9 and 10. 

1) Phase angle for both the aligned and misaligned cases is zero degrees at the operational frequency 

(20 kHz). 

2) Impedance to the higher frequencies is nearly same for different values of b for both the cases. 

Hence, the resonance is maintained in the system. The resonance is dominated by the primary 

capacitor and inductor and hence varying the secondary capacitor does not disturb the resonance of the 

system as proposed in the new design. 

3) The new design shifts the operation from the secondary resonance point to another point. A careful 

examination of the (a) part of Fig. 9 and 10 shows that only for b=1, the local maximum in the 

magnitude plot is located exactly at the operational frequency. 

 

Comparison 

Theoretical ratios given by (18), (20), (21), (22) and (23) are plotted in Matlab to compare the two 

designs for b from 0 to 2. The primary current for the proposed design becomes very high beyond this 

range and hence this range has been selected. Results are provided for different combinations of Ks/Kp, 
M/Ls and Q in Fig. 11.  

      (a) M/Ls=0.38, Ks/Kp=1, Q=6               (b) M/Ls=0.21, Ks/Kp=1, Q=4 

 

 

 

 

 

 

 

 

 



   (c) M/Ls=0.19, Ks/Kp=2, Q=10               (d) M/Ls=0.19, Ks/Kp=2, Q=6 

 

 

 

 

 

 

 

 

 

Fig. 11: Ratios for the two designs  

 

The following points are to be noted from Fig. 11. 

1) Ratio of the primary current is of parabolic nature centered at standard design (b=1). Hence if the 

secondary capacitor value is varied from the standard design, the primary current has to be increased 

to maintain the same power level. As the input power is constant, the primary voltage decreases in 

same proportion to the increase in the primary current.  

2) The primary capacitor voltage stress ratio is product of the primary current ratio and inverse of the 

primary capacitor ratio as per (21). Hence, a bigger value of primary capacitor ratio than the primary 

current ratio ensures a lower voltage stress (VC2p/VC1p<1) for proposed design and vice versa. The 

lower voltage stress (0.8<b<1) is seen clearly shown in (a) part of Fig. 11. On the other hand, the 

secondary voltage stress is lower (b<1) for the proposed design as it changes linearly with b and is 

provided in (22).  

3)  Ratio K has maxima at value of b given by  

  b=1-
Ks

Kp
 M

Ls
                (26) 

This can be found by differentiating (23) and equating it to zero. Point of maxima is same for (a), (c) 

and (d) parts as the product of Ks/Kp and M/Ls is same for them. Ratio K first increases till a maximum 

value and then start to decrease with the increasing secondary capacitor. Also increasing the secondary 

capacitor does not ensure decrease in the magnetic emissions for the proposed design as ratio K is 

lower than one on the left side in all parts of Fig. 11.  

4) Ratio of the primary capacitor shows a similar behavior to ratio K. The maxima point can be found 

in a similar way using (20). It is dependent on the quality factor and is given by   

 b=1-
1

Q
                 (27) 

Conclusion 

Secondary capacitor compensation in series-series wireless power transfer to vehicles is used to boost 

the power transfer capability of the system. But at the same time, it is the most favorable point for the 

phasor addition of the two coils magnetic fields. It is shown with help of theory and simulations that 

by increasing the secondary capacitor, the primary magnetic field can be cancelled to some extent by 

introducing an additional component in the secondary magnetic field and the resultant field can be 

reduced. The operation as a result shifts from the maximum power transfer point and the primary 

current has to be increased to maintain the same power level in the system. It is also shown that the 

resonance in the system is maintained with this design modification.       
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5.4.2. PhD Paper 7 – Experimental verification  

This section provides experimental verification of PhD paper {7} dealing with reduction of the 

emissions by increasing secondary side capacitor. The theory along with FEM simulations validation 

has been provided in paper {7}. In this section, experimental calculated emissions ratio is verified with 

proposed theoretical emissions ratio. There is a minor adjustment in the experimental verification 

compared to the paper {7}. The inverter current was increased in the paper to maintain constant output 

power with increasing secondary capacitor value. However in the experimental setup provided in 

Chapter 4, the inverter current is limited by DC power supplies and hence the experiments are 

conducted at constant inverter current and output power decreases with varying secondary capacitor. 

The experiments are conducted at four capacitance values other than the resonance capacitor value (152 

nF) at switching frequency of 26.3 kHz for Configuration 2. The results are presented for two different 

values of load resistors (cases) in Section 5.4.2.1 and 5.4.2.2. The primary capacitor value has been 

adjusted to provide closet angle to unity power factor.  

5.4.2.1. Case 1  

The emissions, emissions ratio and electric quantities are presented for five secondary capacitance 

values (denoted by added subscript 1 to 5) at horizontal distance (H=0.5 m) in Figure 31. Exact value 

of the capacitors along with experimental and analytical calculations is provided in Table 16. Value of 

the load resistor for all the five experiments is approximately 4 Ω.  

Table 16. Case 1 results  

x Csx Cpx b=Csx/Cs1 Pl (W) Pl ratio* 
Emissions 

ratio*
, 
** 

Analytical 

emissions 

ratio* 

1 152 152 1 1262.45 1 1 1.000 

2 163 155 0.93 894.22 0.71 0.68 0.651 

3 174 155 0.87 569.77 0.45 0.51 0.477 

4 184 155 0.83 388.87 0.31 0.49 0.464 

5 130 141 1.17 474.80 0.38 1.18 1.090 

*@Csx/Cs1 

** Approximated central value using Figure 31 
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(a) Emissions and emissions ratio     (b) Electrical quantities at Cs1 

  

 

 

 

 

 

 

 

 

    (c) Electrical quantities at Cs2     (d) Electrical quantities at Cs3 
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    (e) Electrical quantities at Cs4     (f) Electrical quantities at Cs5 

Figure 31.  Case 1 results  

5.4.2.2. Case 2 

The emissions, emissions ratio and electric quantities are presented for five secondary capacitance 

values at horizontal distance (H=0.5 m) in Figure 32. The capacitors values are similar to the first case 

and are provided again in Table 17. Value of the output power, emissions ratio and analytical emissions 

ratio are also provided in the same table. Value of the load resistor is approximately 5.1 Ω for this case.  

Table 17. Case 2 results 

x Csx Cpx Csx/Cs1 Pl (W) Pl ratio* 
Emissions 

ratio*
, 
** 

Analytical 

emissions 

ratio* 

1 152 152 1 995.80 1.00 1 1.000 

2 163 152 0.93 795.71 0.80 0.78 0.775 

3 174 152 0.87 580.99 0.58 0.6 0.591 

4 184 152 0.83 413.78 0.42 0.57 0.574 

5 130 141 1.17 495.94 0.50 1.18 1.124 

*@Csx/Cs1 

** Approximated central value using Figure 32 
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(a) Emissions and emissions ratio     (b) Electrical quantities at Cs1 

  

 

 

 

 

 

 

 

 

 

                 (c) Electrical quantities at Cs2            (d) Electrical quantities at Cs3 
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 (e) Electrical quantities at Cs4            (d) Electrical quantities at Cs5 

Figure 32.  Case 2 results 

5.4.2.3. Discussion 

Main observations from results in Section 5.4.2.1 and 5.4.2.2 are as follows.  

1) The system has input power factor close to one at all capacitor values for both cases in Figure 31 and 

32.   

2) Foremost point that is validated with the results is compliance of the experimental emissions ratio 

with the analytical emissions ratio as provided in Table 16 and 17. 

3) With increase in the secondary capacitor (subscript 2, 3 and 4), the emission reduces from their 

resonance value (subscript 1) as provided in (a) parts of Figure 31 and 32 respectively. In other words, 

the emissions ratio becomes less than one at off-resonance value as provided in Table 16 and 17. This 

is on account of component of current that comes in phase with the primary current with increase in the 

secondary capacitor. This can be seen by comparing (c) to (e) with (b) parts of Figure 31 and 32 

respectively. The two currents are orthogonal at resonant value of the secondary capacitor in (b) parts 

of Figure 31 and 32.  

4) With reduction (subscript 5) in the secondary capacitor from the resonant value, the emissions 

increase or emissions ratio is above one as provided in Table 16 and 17. It is to be noted that the 
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secondary current is lower for C5 compared to C1. Hence for two coil currents, higher currents 

magnitude not necessarily stands for higher Rms emissions value. The phase angle is an important 

deciding factor in Rms emission value as provided by the semi-analytical method.    

5) The output power and secondary current reduces with variation in the secondary capacitor as 

provided in Table 16 and 17. 
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5.4.3. PhD paper 8 

This paper was first published at PCIM Europe Conference in 2014 with following details. 

{8} T. Batra, E. Schaltz, “Magnetic Emissions Reduction by Varying Secondary Side Capacitor for 

Ferrite Geometry based Series-Parallel Topology Wireless Power Transfer to Vehicles", 

Proceedings of International Exhibition and Conference for Power Electronics, Intelligent 

Motion, Renewable Energy and Energy Management (PCIM Europe 2014), Publisher: VDE 

Verlag, Berlin Offenbach 2014, pp 1-9, 2014. 

https://www.mesago.de/en/PCIM/home.htm?ovs_tnid=0  

https://www.mesago.de/en/PCIM/home.htm?ovs_tnid=0
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5.5. Application 3 

Resonant topologies have been compared in terms of primary capacitor requirement, voltage and 

current stress, voltage or current source characteristic towards load etc. in literature [23, 27] and 

also reported in Section 2.4. However, the topologies have not been compared in terms of the 

magnetic emissions. SS and SP topologies are compared in term of the emissions for similar 

primary power electronics, load quality factor and hence equal output power rating in the third 

application. It is first derived using the semi-analytical method that SP topology with slightly 

inductive secondary circuit has minor edge in term of the emissions over SS topology having purely 

resistive circuit on the secondary side. Two PhD papers {9-10} explaining detailed theory of the 

comparison and validated with FEM results has been published during the project. Papers {9} and 

{10} are provided in Section 5.5.1 and 5.5.2 respectively followed by experimental verification in 

Section 5.5.3.  

5.5.1. PhD paper 9 

This was originally published with following details.  

{9} T. Batra, E. Schaltz, “Magnetic field emission comparison for series-parallel and series-

series wireless power transfer to vehicles – part 1/2", Proceedings of EVTEC and APE, pp 

2014435, 2014.  
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ABSTRACT: Resonant circuits of wireless power transfer system can be designed in four possible ways by placing the 

primary and secondary capacitor in a series or parallel order with respect to the corresponding inductor. The two topologies 

series-parallel and series-series under investigation have been already compared in terms of their output behavior (current or 

voltage source) and reflection of the secondary impedance on the primary side. In this paper it is shown that for the same 

power rating series-parallel topology emits lesser magnetic fields to the surroundings than its series-series counterpart at 

steady state resonant operation. First of all analytical expressions for the above mentioned statement are presented and is 

later substantiated with simulations on a finite element solver (Comsol). Results for variation of the magnetic emissions ratio 

for the two topologies are presented in this paper for different gap distance between the two inductors, horizontal distance 

from the coils and turn ratio.   

 

KEY WORDS: EV and HV systems, Wireless power transfer, Magnetic fields,  Series-series topology, Series-parallel 

topology [A3]

1. Introduction 

Wireless power transfer (WPT) system has lately gained 

momentum for vehicle applications due to their safety and 

automation.  WPT is based on the same principle as that of a 

transformer.  The major difference between the two is presence of 

a large air gap between the coils of WPT. This large air gap 

results in high self-inductance of the coils and hence capacitors 

are used on both sides for unity power factor operation and 

maximum power transfer (1) across the air gap. A block diagram 

of the system is provided below in Fig. 1. 

 

 

 

Fig. 1.  Block diagram wireless power transfer. 

The grid voltage is first rectified and  then inverted for high 

frequency operation in the system. The squared output voltage of 

the inverter is fed to the resonant circuit and the currents as a 

result are of sinusoidal nature. The power electronics on the 

secondary side is used to control the power flow (either 

unidirectional (2) or bidirectional (3) ) of the vehicle battery.   

The self-inductance of the coils is compensated by 

capacitors on both sides by connecting the two in a series or 

parallel order. As a result four configurations (4) for the system 

can be made: series-series (SS), series-parallel (SP), parallel-

series (PS) and parallel-parallel (PP).  The primary capacitor for 

the latter two topologies (PS and PP) is dependent on the load and 

hence these topologies are not favored (4). The other two 

topologies (SS and SP) have their own advantages and 

disadvantages (4). SP topology has the advantage of having 

current source characteristics as compared to voltage 

characteristics of SS topology on the secondary side. SS topology 

on the other hand has the merit of no reflected impedance as 

compared to reactive coupling of SP topology towards the 

primary side.  

In this paper, the two topologies (SS and SP) are compared 

for magnetic field emissions in the surroundings for the same 

input power. It is shown with help of analytical expressions and 

simulations that SP topology is more favorable from magnetic 

emissions point of view. This reduced magnetic field for SP 

topology comes from an additional component of secondary 

magnetic field which comes in phase opposition with the primary 

magnetic field.  This paper is focused on this reduction behavior 

at different horizontal distance (from coils), vertical distance 

(between coils) and turn ratio. It is observed from the results that 

this reduction is practically constant in the surroundings except 

for points very close to the coils. The reduction deviates from the 

constant behavior as the horizontal and vertical distances are 

decreased and increased respectively. Also, variation in the 

number of secondary turns does not affect this reduction for the 

same primary current and quality factor. The decrease in the 

number of turns is compensated by the increase in the secondary 

current and vice versa.  

20144035 
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2. Sample geometry 

 

The sample geometry used in the paper is introduced in this 

section. Side and top views of the geometry are presented below 

in Fig. 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2  Sample Geometry. 

         Ferrite and aluminum are used as passive shields (5, 6) in the 

system. Litz wire is used in both the coils. Results in this paper 

have been presented for two set of turn ratio (T) i.e. 12:12 and 

12:6. A simplification for finite element simulations has been 

made that for the secondary inductor the space taken by the coil is 

same for both the turn ratio. Details of the coils (7) and shielding 

materials are provided in Table 1 below.   

Table 1 Coils and shielding materials.  

 

 

3. Theory 

3.1. Nomenclature 

 

The symbols used in the paper are first summarized in Table 

2. The subscript letter ‘1’ and ‘2’ refer to SS and SP topology 

respectively. The inductors, secondary capacitor and resonance 

frequency are same for both the topologies. Value of the primary 

capacitor on the other hand is different (5) for the two topologies 

for maintaining unity power factor operation (4).   

 

Table 2  Symbols.  

 

Symbol Name  Symbol Name 

Ip1, Ip2 Primary currents  Is1, Is2 
Secondary 

currents 

Vp1, Vp2 Primary voltages  P1, P2 Input Power 

M 
Mutual 

inductance 
 Lp, Ls 

Primary and 

Secondary self-

inductance 

Cp1, Cp2 
Primary 

capacitors 
 Cs 

Secondary 

capacitor 

R1, R2 Load resistance  Q1, Q2 Quality factor 

w Frequency  wr 
Resonance 

frequency 

 

 

2.2. Series-series topology 

         Fundamental mode analysis (FMA) (8) equivalent circuit of 

the topology is provided below in Fig. 3. 

 

 

 

 

 

 

 

 

Fig. 3  FMA equivalent circuit series-series topology. 

 

         Expressions for the voltage equations, resonance frequency 

and quality factor of the system are provided below in (1) to (4) 
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     r s

 1
.                                                                               (4) 

 

         At resonant operation, (3) will be valid. Using (3) and (4), (1) 

and (2) will be transformed to (5) and (6).  The input power is 

given by (7). 
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Property Value 

Number of parallel conductors in each 

turn 
810 

Diameter of parallel conductor 0.1 mm 

Outer diameter of coil 4 mm 

Conductivity of conductor 6×107 (S/m) 

Relative permeability of ferrite 2300 

Conductivity of aluminum 3.7×107 (S/m) 

0.025m 

Y 

X 

(a) Side view 

Y 

X 

(b)    Top view 

KpIp2 
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Real(KsIs2) 
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(a)    Side view 
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          WPT systems use ferrite to reduce magnetic emissions and 

increase the power transfer capability of the system. But due to 

the presence of the large air gap, maximum magnetic field 

reached in ferrite cores of these systems is very less as compared 

to saturation magnetic field for ferrite. Hence, linear coefficient of 

permeability (9) is assumed for ferrite. Hence magnetic fields (Bp1 

and Bs1) at any point in the surroundings due to the primary and 

secondary coils can be written as follows 

  

 p   p p                                                                 (8) 

 s1    s .                                                                (9) 

        

          Kp and Ks are corresponding constants for the primary and 

secondary coils for that point. As the inductors and the 

surroundings are identical for the two topologies, Kp and Ks are 

also same for the two. The number of turns for each coil is 

contained in the corresponding constant and is proportional to it.  

As the current for the two topologies are orthogonal to each other 

as shown in (6), hence the resultant field (B1) at any point is  

 

| 1| √| p1 p|
2
 | s1 s|

2                                                  (10) 

         Using (6), (10) can be transformed to  
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2.3. Series-Parallel topology 

 

      FMA equivalent circuit for this topology is provided next in 

Fig. 4. 

 

 

 

 

 

 

 

 

 

Fig. 4  FMA equivalent circuit series-parallel topology. 

 

Expressions for the voltage equations, resonance frequency, 

primary capacitor and quality factor for the system are provided in 

(11) to (15)  
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      At resonant operation, (14) will be valid. Using (14), (15) and 

(16), (12) and (13) will be transformed to (17) and (18). The input 

power for this topology is given by (19).   
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       The resultant magnetic field using (8), (9), (18) and space 

angle α between the fields in Fig. 2(a) and taking the primary 

current (Ip2) as reference phasor with phase angle zero is  
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2.4. Comparison 

 

     The two topologies have the same input power using (7) and 

(19) when 
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2
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     At this same power, ratio (K) of the magnetic fields using (11), 

(21) and (22)  
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      The angle α is 180 degrees in the surroundings on account of 

principle of electromagnetic induction. Only very close to the 

inductor, the angle α has value other than 180 degrees and is 

explained in the next section. Hence as per (23), SP topology 

emits less magnetic fields as compared to SS topology for the 

same input power rating.  

4. Results 

4.1. Space angle α 

 

     The angle α can be seen with the help of Fig. 5. This figure is 

the arrow representation of the magnetic fields on a normalized 

scale. Outer cylinder has the  magnetic potential zero and has 

dimensions of  3m diameter and 3m height. The coils are located 

at the center of the cylinder.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5  Primary and secondary magnetic field directions. 
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      As seen in Fig. 5, space angle is 180 degrees for nearly all 

points in the space and hence (23) is transformed to (24). 

  

   
| 1|

| 2|
 √

  (  
 
 S

 s
 p
)
2

(  
 

 S

 s

 p
)
2

 ( 
 

 S

 s

 p
)
2

 

                                              (24) 

 

 

4.2. Ratio Ks/Kp 

 

 The ratio Ks/Kp can be investigated by plotting no-load curves 
(10, 11, 12) for the system at same current (23A at 20kHz). Using 

(8) and (9), ratio of magnetic fields of the two coils (Bs and Bp) at 

no-load conditions is equal to ratio Ks/Kp.  

 
  

  
 

  

  
                                                                               (25) 

Ks/Kp curves and rms magnetic fields for the two coils at 

different horizontal distance (H), vertical distance (V) and turn 

ratio (T) are presented in Fig. 6 to 13.   

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6  Ratio Ks/Kp versus Z-axis at V=10cm, T=12:12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7  No-load – Rms magnetic field (µT) versus Z-axis at 

V=10cm, T=12:12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8  Ratio Ks/Kp versus Z-axis at V=20cm, T=12:12. 

 

 

 

 

 

 

 

 

 

 

Fig. 9  No-load – Rms magnetic field (µT) versus Z-axis at 

V=20cm, T=12:12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10  Ratio Ks/Kp versus Z-axis at V=10cm, T=12:6. 
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Fig. 11  No-load – Rms magnetic field (µT) versus Z-axis at 

V=10cm, T=12:6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12  Ratio Ks/Kp versus Z-axis at V=20cm, T=12:6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13  No-load – Rms magnetic field (µT) versus Z-axis at 

V=20cm, T=12:6. 

Following points are to be noted from Fig. 6 to 13. Points to 

left and right of center (C) on the Z-axis are termed as primary  

and secondary zone (10) points respectively in the paper. 

1) As shown in Fig. 6, 8 and 10, 12 the value of ratio Ks/Kp is 

fairly equal to 1 and 0.5 except for points very close to the coils 

(between P and S for H=0.28m). Fig. 7, 9 and 11, 13 depict the 

same in terms of rms magnetic fields. 

2) Ks and Kp are proportional to the number of turns for the 

corresponding coil. Therefore value of ratio Ks/Kp at C is half for 

T=12:6 (Fig. 10 and 12) as compared to the ratio for T=12:12 (Fig. 

6 and 8). 

3) With increase in V (Fig. 6, 8 and 10, 12) for any fixed point in 

the secondary zone for all H (0.28m, 0.7m and 1m), the ratio 

Ks/Kp also increases. On the other hand, increase in H for a 

constant V shows the opposite trend.  

4) Aluminum and ferrite both have an effect on bringing space 

maxima’s of the indivual coils closer to C as compared to 

geometries that do not have passive shielding. Details of the space 

profile curves have been discussed by the same authors in (10, 11, 

12)
 and will not be provided here again.    

 

4.3. Ratio K  

 

    Ratio K can be calculated theoretically by taking value of 

Ks/Kp from Fig. 6, 8, 10 and 12 and applying in (23). Simulated 

values for the same are obtained by on-load simulations on 

Comsol. The circuit parameters used for the calculations are 

provided in Table 3.  

 

Table 3  Circuit Parameters.  

 

T Q V(m) Lp(µH) Ls(µH) M(µH) M/Ls 

12:12 4 0.1 147.09 147.09 49.59 0.34 

12:6 4 0.1 147.09 36.77 24.80 0.67 

12:12 4 0.2 138.69 138.69 14.21 0.10 

12:6 4 0.2 138.69 34.67 7.10 0.20 

 

The ratio K for both set of results and rms magnetic fields from 

on-load simulations are presented in Fig. 14 to 21.  

 

 

 

 

 

 

 

 

  
 

Fig. 14  Ratio K versus Z-axis at V=10cm, T=12:12. 
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Fig. 15  On-load – Rms magnetic field (µT) versus Z-axis at 

V=10cm, T=12:12. 

 

 

 

 

 

 

 

 

 

Fig. 16  Ratio K versus Z-axis at V=20cm, T=12:12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17  On-load – Rms magnetic field (µT) versus Z-axis at 

V=20cm, T=12:12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18  Ratio K versus Z-axis at V=10cm, T=12:6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19  On-load – Rms magnetic field (µT) versus Z-axis at 

V=10cm, T=12:6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20  Ratio K versus Z-axis at V=20cm, T=12:6. 
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Fig. 21  On-load – Rms magnetic field (µT) versus Z-axis at 

V=20cm, T=12:6. 

 

Fig. 14 to 21 provides the following information about the 

magnetic field emissions for the two topologies. 

1) Ratio K is always greater than one in Fig. 14, 16. 18 and 20. 

The same can be seen with help of rms curves of Fig. 15, 17, 19 

and 21. SP topology curves are lower than their corresponding SS 

topology curves in the figures. 

2) The theoretical calculated values (24) with this assumption of 

space angle α equal to 18  degrees sho s good co pliance  ith 

the simulated results in Fig. 14, 16, 18 and 20.  

3) Ratio K is identical for Fig. 14, 18 and 16, 20. Ratio Ks/Kp is 

half for T=12:6 as compared to the ratio for T=12:12 as provided 

in section 4.2. But on the other hand ratio M/Ls for T=12:6 is two 

times this ratio for T=12:12 as shown in Table 3. Hence as per 

(24), the two ratios are identical. This is also visible in terms of 

rms fields in Fig. 15, 19 and 17, 21.   

4) For any H (0.28m, 0.7m or 1m), K has more deviation from the 

value at C with increase in V as seen by comparing Fig. 14, 16 

and 18, 20. 

5) For a constant V (Fig. 14, 16, 18 and 20), ratio K shows lesser 

deviation  from value at C with  increase in H. 

6) Humans are not supposed to be very close (H = 0.28m) to the 

inductors and hence ratio K can be taken as constant. Using value 

of Ks/Kp as one, ratio K can be given a simple number by its value 

at C. 

The rms value of voltages and currents for the on-load 

simulations are presented at last in Table 4. The primary current is 

23A rms for 20kHz for all the on-load simulations. 

 

Table 4  Voltages and currents.  

 

T  V (m) Vp1 (V) Is1 (A) Vp2 (V) Is2 (A) 

12:12 
0.1 

192.40 – 

j 1.30 

0.12 + j 

30.67 

192.23 – 

j 0.23 

7.71 + j 

30.67 

12:12 
0.2 

17.04 – 

j 0.13 

0.05 + j 

8.96 

17.65 – 

j 0.05 

2.36 + j 

9.32 

12:6 0.1 191.29 - 

j 1.29 

0.24 + j 

60.96 

191.11 

+ j 0.38 

15.21+  

j 60.98 

12:6 
0.2 

16.94 – 

j 0.13 

0.10 + j 

17.81 

17.55 – 

j 0.001 

4.66 + j 

18.52 

5. Conclusion 

Series-parallel topology for wireless power transfer system 

performs better in terms of magnetic flux emissions than its 

series-series topology counterpart for the same power rating. In 

very simple words, presence of a part of the secondary magnetic 

flux which is in phase opposition with the primary flux for series-

parallel topology is the reason for the reduced magnetic fields for 

this topology. Theoretical equations describing the above 

statement are presented in this paper and are supported by 

simulations. Ratio of magnetic emissions of the two topologies is 

practically constant in the surroundings and can be represented by 

a single number. Also, it is shown that for the same primary 

current and quality factor, the magnetic emission ratio remains 

unchanged with varying turn ratio. The experimental verification 

of this paper would be included in future works.  
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ABSTRACT: Series-series and series-parallel topologies are the most favored topologies for design of wireless power 

transfer system for vehicle applications. The series-series topology has the advantage of reflecting only the resistive part on 

the primary side. On the other hand, the current source output characteristics of the series-parallel topology are more suited 

for the battery of the vehicle.  This paper compares the two topologies in terms of magnetic emissions to the surroundings 

for the same input power, primary current, quality factor and inductors. Theoretical and simulation results show that the 

series-parallel topology emits lesser magnetic field to the surroundings as compared to its series-series counterpart. The 

results have been provided for ratio of the magnetic emissions for the two topologies at different quality factor, vertical 

distance between the inductors and turn ratio of the coils. 

 

KEY WORDS: EV and HV systems, Wireless power transfer, Magnetic fields,  Series-series topology, Series-parallel 

topology [A3] 

1. Introduction 

Electromagnetic induction is the foundation principle of 

electrical machines. Researchers of today are interested in both 

stationary and on-line wireless charging (1) of electric vehicles 

using this principle. The concept of wireless power transfer (WPT) 

is not new and has been used in applications for a considerable 

time in the bio-medical industry (2). A block diagram of WPT 

system is provided below in Fig. 1. 

 

 

 
Fig. 1.  Block diagram wireless power transfer. 

 

The grid voltage in this system is first rectified to feed the 

DC-link capacitor which in turn feeds the inverter (3). Power is 

transferred from the primary coil to the secondary coil by means 

of magnetic fields. An air-gap of 10 cm to 20 cm is present 

between the two inductors of WPT for vehicle applications. The 

magnetic field path as a result is dominantly air for this system.  

These fields can potentially harm nearby human beings and 

equipment and are required to comply with the guidelines (4). 

Active and passive shielding (1) are used in the design of inductors 

to reduce the magnitude of the fields in the surroundings. 

Power electronics on the secondary side is used to control 

flow of power and current into the battery of vehicle. Capacitors 

are required on the primary and secondary sides for unity power 

factor operation and to boost the power transfer capability of the 

system. The capacitors are connected in series or parallel order to 

the corresponding inductors. The four topologies (5) as a result for 

the system are series-series (SS), series-parallel (SP), parallel-

series (PS) and parallel-parallel (PP). The magnetic emissions of 

the first two topologies are under investigation in this paper. SP 

topology having current source output characteristics is favored 

for the battery over the voltage source output characteristics of SS 

topology. On the other hand, SS topology has the advantage of 

having only resistive reflection on the primary side as compared 

to resistive and capacitive reflection for SP topology. 

This paper compares the magnetic emissions of the two 

topologies for similar input power, primary current, quality factor 

and inductors. Theoretical and simulations show that SP topology 

emits lesser magnetic fields to the surroundings as compared to 

SS topology. The two currents in SS topology are orthogonal to 

each other whereas the phase angle between the two currents is 

lower than ninety degrees in SP topology. This leads to reduction 

of the primary magnetic flux by a component of the secondary 

magnetic flux in SP topology. This reduction depends on the 

quality factor, coupling factor, turn ratio and ratio of distance of 

the coils from the measurement point. In a parallel publication, 

variation in the emissions reduction for the two topologies were 

discussed for different horizontal distance, turn ratio and coupling 

factor by the same authors. This is the second part of the same 

paper and in this part; variation in the reduction is provided for 

different quality factor, coupling factor and turn ratio. First of all 

it is shown in the paper that this reduction decreases with increase 

in the quality factor of the system. It is also observed from the 

results that for system having equal number of coil turns and 

lower coupling factor the maximum reduction point occurs at 

higher quality factor operation and vice versa.  

20144036 
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2. Sample geometry 

The sample geometry used in the paper is introduced in this 

section. Side and top views of the geometry are presented below 

in Fig. 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2  Sample Geometry. 

         Ferrite and aluminum are used as passive shields (1, 6) in the 

system. Litz wire is used in both the coils. Results in this paper 

have been presented for two set of turn ratio (T) i.e. 12:12 and 

12:6. A simplification for finite element simulations has been 

made that for the secondary inductor the space taken by the coil is 

same for both the turn ratio. Details of the coils (4) and shielding 

materials are provided in Table 1 below.   

Table 1 Coils and shielding materials.  

 

 
 
 

3. Theory 

3.1. Nomenclature 

 

The symbols used in the paper are first summarized in Table 

2. The subscript letter ‘1’ and ‘2’ refer to SS and SP topology 

respectively. The inductors, secondary capacitor and resonance 

frequency are same for both the topologies. Value of the primary 

capacitor on the other hand is different (5) for the two topologies 

for maintaining unity power factor operation (5).   

 

Table 2  Symbols.  

 

Symbol Name  Symbol Name 

Ip1, Ip2 Primary currents  Is1, Is2 
Secondary 

currents 

Vp1, Vp2 Primary voltages  P1, P2 Input Power 

M 
Mutual 

inductance 
 Lp, Ls 

Primary and 

Secondary self-

inductance 

Cp1, Cp2 
Primary 

capacitors 
 Cs 

Secondary 

capacitor 

R1, R2 Load resistance  Q1, Q2 Quality factor 

w Frequency  wr 
Resonance 

frequency 

 

 

2.2. Series-series topology 

         Fundamental mode analysis (FMA) (7) equivalent circuit of 

the topology is provided below in Fig. 3. 

 

 

 

 

 

 

 

 

Fig. 3  FMA equivalent circuit series-series topology. 

 

         Expressions for the voltage equations, resonance frequency 

and quality factor of the system are provided below in (1) to (4) 
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         At resonant operation, (3) will be valid. Using (3) and (4), (1) 

and (2) will be transformed to (5) and (6).  The input power is 

given by (7). 

 

 p1  
 r 

2

 s
 

1
 p1                                                                    (5) 

 s      
 1 

 s
  p .                                                                     (6) 

P1  
 r 

2

 s
 
1
 p1
2                                                                       (7) 

   

Property Value 

Number of parallel conductors in each 

turn 
810 

Diameter of parallel conductor 0.1 mm 

Outer diameter of coil 4 mm 

Conductivity of conductor 6×107 (S/m) 

Relative permeability of ferrite 2300 

Conductivity of aluminum 3.7×107 (S/m) 

0.025m 

Y 

X 

(a) Side view 

Y 

X 

(b)    Top view 

KpIp2 

A 

Real(KsIs2) 
α 

(a)    Side view 
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          WPT systems use ferrite to reduce magnetic emissions and 

increase the power transfer capability of the system. But due to 

the presence of the large air gap, maximum magnetic field 

reached in ferrite cores of these systems is very less as compared 

to saturation magnetic field for ferrite. Hence, linear coefficient of 

permeability (8) is assumed for ferrite. Hence magnetic fields (Bp1 

and Bs1) at any point in the surroundings due to the primary and 

secondary coils can be written as follows 

  

 p   p p                                                                 (8) 

 s1    s .                                                                (9) 

        

          Kp and Ks are corresponding constants for the primary and 

secondary coils for that point. As the inductors and the 

surroundings are identical for the two topologies, Kp and Ks are 

also same for the two. The number of turns for each coil is 

contained in the corresponding constant and is proportional to it.  

As the current for the two topologies are orthogonal to each other 

as shown in (6), hence the resultant field (B1) at any point is  

 

| 1| √| p1 p|
2
 | s1 s|

2                                                  (10) 

         Using (6), (10) can be transformed to  
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                                             (11) 

 

 

2.3. Series-Parallel topology 

 

      FMA equivalent circuit for this topology is provided next in 

Fig. 4. 

 

 

 

 

 

 

 

 

 

Fig. 4  FMA equivalent circuit series-parallel topology. 

 

Expressions for the voltage equations, resonance frequency, 

primary capacitor and quality factor for the system are provided in 

(11) to (15)  
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      At resonant operation, (14) will be valid. Using (14), (15) and 

(16), (12) and (13) will be transformed to (17) and (18). The input 

power for this topology is given by (19).   
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       The resultant magnetic field using (8), (9), (18) and space 

angle α between the fields in Fig. 2(a) and taking the primary 

current (Ip2) as reference phasor with phase angle zero is  
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2.4. Comparison 

 

     The two topologies have the same input power using (7) and 

(19) when 
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2
            p1   p2                                               (22) 

 
     At this same power, ratio (K) of the magnetic fields using (11), 

(21) and (22)  
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                                (23) 

      The angle α is 180 degrees in the surroundings on account of 

principle of electromagnetic induction. Only very close to the 

inductor, the angle α has value other than 180 degrees and is 

explained in the next section. Hence as per (23), SP topology 

emits less magnetic fields as compared to SS topology for the 

same input power rating.  

4. Results 

4.1. Space angle α 

 

     The angle α can be seen with the help of Fig. 5. This figure is 

the arrow representation of the magnetic fields on a normalized 

scale. Outer cylinder has the  magnetic potential zero and has 

dimensions of  3m diameter and 3m height. The coils are located 

at the center of the cylinder.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Primary and secondary magnetic field directions. 

 

      As seen in Fig. 5, space angle is 180 degrees for nearly all 

points in the space and hence (23) is transformed to (24). 
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4.2. Ratio Ks/Kp 

 

 Ratio Ks/Kp can be found by plotting no-load curves (9, 10, 11) 

for the system at same current (23A at 20kHz). Using (8) and (9), 

ratio of the magnetic fields of the two coils (Bs and Bp) at no-load 

conditions is equal to ratio Ks/Kp.  

 
  

  
 

  

  
                                                                                 (25) 

Ks/Kp curves and rms magnetic fields for the two coils at 

different quality factor (Q), vertical distance (V) and turn ratio (T) 

are presented in Fig. 6 to 13.   

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6  Ratio Ks/Kp versus Z-axis at V=10cm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7  No-load – Rms magnetic field (µT) versus Z-axis at 

V=10cm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8  Ratio Ks/Kp versus Z-axis at V=20cm. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9  No-load – Rms magnetic field (µT) versus Z-axis at 

V=20cm. 

 

Following points are observed from Fig. 6 to 9. Primary  

and secondary zones (9) are defined as points to the left and right 

of center (C) in the paper. 

1) Value of ratio Ks/Kp is equal to one and half as shown in Fig. 6 

and 8. There is a small deviation from its value at C but for 

practical purposes can be ignored. Fig. 7 and 9 provide the same 

information in terms of rms magnetic fields. 

2) Ks and Kp are proportional to the number of turns for the 

corresponding coil. Therefore value of ratio Ks/Kp at C is half for 

T=12:6 as compared to the ratio for T=12:12 in Fig. 6 and 8. 

3) With increase in V for any fixed point in the secondary zone, 

ratio Ks/Kp increases for both T in Fig. 6 and 8.  

4) Aluminum and ferrite both have an effect on bringing space 

maxima’s of the indivual coils closer to C as compared to 

geometries that do not have passive shielding. Details of the space 

profile curves have been discussed by the same authors in (9, 10, 

11)
 and will not be provided here again.    
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4.3. Ratio K  

 

    Quality factors of 4 to 10 are used for designing these 

systems. Theoretical ratio K can be calculated by using value of 

ratio Ks/Kp from Fig. 6 and 8 and applying in (24). The remaining 

parameters used for the calculation are provided in Table 3.  

 

Table 3  Circuit Parameters.  

 

T V(m) Lp(µH) Ls(µH) M(µH) M/Ls 

12:12 0.1 147.09 147.09 49.59 0.34 

12:6 0.1 147.09 36.77 24.80 0.67 

12:12 0.2 138.69 138.69 14.21 0.10 

12:6 0.2 138.69 34.67 7.10 0.20 

 

 Simulated value of this ratio is obtained from on-load 

simulations on Comsol. Rms magnetic field for the two topologies 

from on-load simulations and their ratio K for both set of results 

at different Q, V and T are presented in Fig. 10 to 17. 

  

 

 

 

 

 

 

 

 

  
Fig. 10  Ratio K versus Z-axis at V=10cm, T=12:12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11  On-load – Rms magnetic field (µT) versus Z-axis at 

V=10cm, T=12:12. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12  Ratio K versus Z-axis at V=20cm, T=12:12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13  On-load – Rms magnetic field (µT) versus Z-axis at 

V=20cm, T=12:12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14  Ratio K versus Z-axis at V=10cm, T=12:6. 
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Fig. 15  On-load – Rms magnetic field (µT) versus Z-axis at 

V=10cm, T=12:6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16  Ratio K versus Z-axis at V=20cm, T=12:6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17  On-load – Rms magnetic field (µT) versus Z-axis at 

V=20cm, T=12:6. 

The observations from Fig. 10 to 17 are provided below. 

1) Ratio K is always greater than one in Fig. 10, 12, 14 and 16. 

The same can be seen with help of rms curves of Fig. 11, 13, 15 

and 17. SP topology curves are lower than their corresponding SS 

topology curves in the figures. 

2) The theoretical calculated values (24) with this assumption of 

space angle α equal to 18  degrees shows good compliance with 

the simulated results in Fig. 10, 12, 14 and 16.  

3) Ratio K has small deviation on both sides from its value at C as 

shown in Fig. 10, 12, 14 and 16. By neglecting the deviation, ratio 

K can be calculated using (24) as a single number and can be used 

to investigate the difference in magnetic emissions for the two 

topologies at same input power for a given combination of (Ks 

/Kp), (M/Ls) and Q. 

3) For higher coupling factor (Q8), ratio K increases with V as 

shown in Fig. 10, 12  and 14, 16. On the other hand, ratio K for 

the other two quality factors (Q6 and Q4) shows the opposite 

trend. But this is a specific observation for the given set of 

parameters. For general analysis, ratio K in (24) is plotted against 

Ks/Kp*M/Ls  for different quality factor as provided in Fig. 18. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18  Ratio K versus ratio Ks/Kp*M/Ls. 

 

For obtaining the point of  maxima in Fig. 18, (24) is 

differentiated w.r.t.  ratio Ks/Kp*M/Ls and is equated to zero. The 

value of ratio Ks/Kp*M/Ls  for which maxima exists is given by 

(26). 
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As factor 4Q2 is very greater than one, hence (26) can be 

simplified to (27). 
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 s

 p

 

 s
)
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-1 2 

2 
2                                                                 (27) 

Horizontal coordinates of  a i a’s in Fig. 18 are in 

agreement with (27). Hence, it can be concluded that for a higher 

quality factor, the maximum ratio K is at a lower value of ratio 

Ks/Kp*M/Ls and vice versa. If number of turns are equal for the 

two coils, ratio Ks/Kp is equal to one and the last statement is 

valid for coupling factor (M/Ls). 



      

 
        

 

Copyright  2014   Society of Automotive Engineers of Japan, Inc. All rights reserved 

 

4) Rms magnetic fields in Fig. 11 and 13 are identical to the 

corresponding field values in Fig. 15 and 17. The secondary turns 

are half for the second set of figures. But the secondary current   

becomes double (Table 4 and 5) to compensate for reduction in 

the number of secondary turns and  hence the secondary magneto 

motive force remains constant. The secondary current becomes 

double on account of two times increase in value of coupling ratio 

(M/Ls – Table 3). Ratio K on the same lines is identical for the 

two sets of T in Fig. 10, 14 and 12, 16. 

5) Ratio K decreases with increase in the quality factor  in Fig. 10, 

12, 14 and 16. The second term in numerator and denominator of 

(24) becomes dominant with the increasing quality factor. Hence 

the ratio approaches unity with the increasing quality factor. 

At last, the rms values of voltages and currents for the on-load 

simulations are presented in Table 4 and 5. The primary current is 

23A rms for 20kHz for all the on-load simulations. 

 

Table 4  Voltages and currents – T=12:12.  

 

Q V (m) Vp1 (V) Is1 (A) Vp2 (V) Is2 (A) 

4 0.1 
192.40 – j 

1.30 

0.12 + j 

30.67 

192.23 – j 

0.23 

7.71 + j 

30.67 

6 0.1 
285. 87 – j 

2.07 

0.19 + j 

45.66 

286.10 – j 

0.45 

7.68 + j 

45.73 

8 0.1 
379.44 – j 

2.88 

0.27 + j 

60.66 

378.98 – j 

0.73 

7.68 + j 

60.62 

4 0.2 
17.04 – j 

0.13 

0.05 + j 

8.96 

17.65 – j 

0.05 

2.36 + j 

9.32 

6 0.2 
25.92 – j 

0.25 

0.06 + j 

13.93 

25.86 – j 

0.13 

2.37 + j 

13.19 

8 0.2 
34.00 – j 

0.34 

0.11 + j 

18.46 

33.97 – j 

0. 17 

2.38 + j 

18.45 

 

 

Table 5  Voltages and currents – T=12:6.  

 

Q V (m) Vp1 (V) Is1 (A) Vp2 (V) Is2 (A) 

4 0.1 
191.29 - j 

1.29 

0.24 + j 

60.96 

191.11 

+ j 0.38 

15.21+  j 

60.98 

6 0.1 
283. 23 – j 

2.05 

0.38 + j 

90.48 

283.52 

+ j 0.44 

15.10 + j 

90.62 

8 0.1 
374.69 – j 

2.84 

0.54 + j 

119.83 

374.40 

+ j 0.44 

14.99 + j 

119.78 

4 0.2 
16.94 – j 

0.13 

0.10 + j 

17.81 

17.55 – 

j 0.001 

4.66 + j 

18.52 

6 0.2 25.65 – j 

0.25 

0.16 + j 

27.57 

25.62 – 

j 0.04 

4.64 + j 

27.56 

8 0.2 33.58 – j 

0.33 

0.23 + j 

36.45 

33.54 – 

j 0. 06 

4.63 + j 

36.43 

 

5. Conclusion 

Series-parallel and series-series compensation networks are 

actively used for design of wireless power transfer system for 

vehicles. The two topologies have their own set of advantages and 

disadvantages. But in this paper it is shown that the series-parallel 

topology has reduced magnetic emissions than the series-series 

topology for same input power, primary current, inductors and 

quality factor. The first outcome of the paper is that with increase 

in the quality factor the reduction becomes less. With help of 

analytical expressions and simulations it is also shown that a 

system having lower coupling factor and equal number of turns 

has a reduction peak at a higher coupling factor and vice versa.     
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6. Conclusion and scientific contributions 

Resonant inductive wireless charging is a promising technology and has capability to enable mass 

deployment of electric vehicles. This technology has been around for a long time but is still immature 

from application point of view. This thesis is summary of research work conducted by PhD student 

Tushar Batra at Department of Energy Technology, Aalborg University on this subject. The first result 

achieved during the project is that the design process has been improved by adding reflected quality 

factor to existing design blocks. Addition of this extra block converts the system into an equivalent 

power source along with the transmission and load. Also, system design parameters of output power, 

voltage stress and efficiency can be defined as simple functions of existing and added design block. A 

special focus has been given to the inductor design by first generalizing the design in terms of usage of 

components. Afterwards two investigations have been made for passive shielding usage optimization 

with respect to various design parameters, i.e. coupling factor, emissions, weight, dimensions and cost. 

Results from the first investigation suggest that additional ferrite should be added in center of the 

inductors as this provides highest increase in the coupling factor per unit weight added. The ferrite and 

aluminum thickness are reduced in the secondary investigation and results show that reduction in 

weight and dimensions are much higher than decrease and increase in the power transfer and losses 

respectively. For cost reduction of the inductors, commonly used high and expensive grade of ferrite is 

compared with lower and cheaper grade. The results show that there is minor decrease in the output 

power and efficiency with usage of the lower grade compared to the higher grade. The last result 

obtained from this project is a semi-analytic method for comparison of magnetic emissions at different 

value of the coil currents. This method will help in including the emissions in design of the primary and 

secondary power electronics apart from the inductor design. The semi-analytical method is based on 

constant ratio of secondary to primary magnetic emissions in far region in the surroundings. This ratio 

has been termed as space ratio and its constant nature is validated with help of theory, simulations and 

experiments. With verification of the semi-analytical method, three applications have been addressed in 

the project. In the first application, it is shown that selection of higher load quality provides comparably 

lower increase in the emissions than increase in the output power for similar output power, inverter 

current and switching frequency. The first application has been provided for SS and SP topologies. An 

active shielding method has been developed in the second application. In the proposed method, the 

secondary capacitor value is increased from the resonance value and hence component of the secondary 

current in phase with the primary current is increased. This leads to cancellation of the primary field 

and reduction in Rms value of the field. This application has been validated with FEM simulations and 

experiments for SS topology and only with FEM simulations for SP topology. The final application 

deals with comparing the emissions of SS and SP topologies at similar input and output conditions. 

Lower emissions for SP topology compared to SS topology derived using the semi-analytical method is 

verified with FEM simulations and experiments for this application. 
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7. Future works 

At the end, the following areas on wireless charging have been shortlisted for further research in future 

projects. 

1) Development of less computational intensive methods for calculation of coil internal resistance. 

2) Optimization of passive shielding usage in the inductor design w.r.t. coupling factor, losses, 

emissions, weight, dimensions and cost. 

3) Investigation on optimal operational frequency w.r.t. output power, efficiency, emissions, weight, 

dimensions and cost. 

4) Investigating second form of this technology: dynamic wireless charging solution for electric 

vehicles.   
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