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Summary in English

There are significant dynamic challenges associated with the tendencies towards large-
scale wind and wave energy installations. As the size increases without a proportional
increase of the stiffness, the wind turbines become more andmore flexible and ex-
hibit high susceptibility to wind or wave-induced vibrations. In order to reduce such
vibrations it may become necessary to add passively or actively controlled damping
elements to the system in order to remove mechanical energy from the primary struc-
ture. For wave energy converters (WEC) the objective is oppositely to control the
motion of the system in such a way that a maximum mechanical energy is supplied to
the absorber. In both cases, the modeling and control of dynamic systems turns out to
be the most essential problem, which is the main focus of the present thesis.

In contrast to flap-wise blade vibrations and fore-aft towervibrations, edgewise
blade vibrations and lateral tower vibrations in wind turbines are related with in-
significant aerodynamic damping, and may be prone to large dynamic responses or
even aeroelastic instability. Active vibration control via pitch control or aerodynamic
damping devices (such as trailing edge flaps) fail to effectively damp these vibrations.
Therefore, in this thesis, various structural control techniques, which have achieved
significant success in vibration suppression of civil engineering structures, will be ex-
tensively investigated for damping edgewise vibrations and lateral tower vibrations.

To mitigate edgewise vibrations in rotating blades, different passive control de-
vices are proposed in the thesis, such as the roller damper, the tuned liquid column
damper (TLCD), the circular liquid column damper (CLCD) andthe tuned liquid
damper (TLD). In traditional application the motion of the roller or liquid mass is
governed by the gravitational acceleration. At implementation in the outer end of the
rotating wind turbine blade the motion is controlled by the centrifugal acceleration,
which for a blade of the length 63 m may attain a magnitude of 7-8 g. This makes it
possible to use these dampers with rather small mass ratios for effectively suppress-
ing edgewise vibrations. Based on an Euler-Lagrange formulation of the equations
of motion, different 2-degrees-of-freedom (DOF) nonlinear models have been estab-
lished for the coupling between edgewise blade motion and the motion of the mass
of the roller damper, the TLCD, or the CLCD. The edgewise motion of the blade is
modeled by 1-DOF defined in the blade-fixed rotating coordinate system. Parametric
optimizations of these dampers have been performed using the 2-DOF models, and
the optimized dampers are incorporated into a more sophisticated 13-DOF aeroelastic
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model, where the coupling between the lateral tower vibration and the edgewise blade
vibrations is taken into consideration. As for the TLD (sloshing damper) the analysis
is based on a Galerkin variation of the field equations for thevelocity field and for the
free surface condition, leading to a system of coupled non-linear, ordinary differential
equations. The mode shape of the linear standing waves governed by the centrifugal
force is used as functional basis, which also determines theshape function s in the
discretization of the free surface condition.

The second part of the thesis focuses on active and passive control of lateral tower
vibrations. By means of modern power electronics, the generator torque can be pre-
scribed to a certain value with a time delay below10−2 s. In the analysis the details
of the force transmission between the nacelle and the tower is described with special
focus on the influence on the lateral tower motion from the reaction of the generator
torque. Both the gear-driven and direct-driven offshore wind turbines are investi-
gated, with combined excitations from aerodynamic and hydrodynamic loads. Next,
as an alternative to the active generator controller, passive control of lateral tower vi-
brations using TLDs has also been investigated, since it is amore cost-effective and
robust method. The nonlinear model established for the blade-TLD system has been
modified so the rotation of the TLD-fixed coordinate system isnow only due to the
rotational deformation of the top of the tower. Furthermore, a state-of-the-art testing
method, the real-time hybrid testing (RTHT), has been performed to verify the validity
of the proposed equivalent linear damping mechanism for thefluid in the suggested
theoretical model, and also to evaluate the actual behaviorof TLD in damping lat-
eral tower vibrations. In the RTHT, a full scale TLD (which prevents the scale effect)
is manufactured and tested as the physical substructure, while the 13-DOF wind tur-
bine model is employed as the numerical substructure formulated in Matlab/Simulink.
Various values of damper parameters and different load cases have been considered.

The last part of the thesis focuses on the modeling and control of wave energy
point absorbers, which are WECs that absorb energy from waves propagating in any
direction, and with horizontal dimensions much smaller than the dominating wave
length. At first, the optimal control law for a single nonlinear point absorber in ir-
regular sea-state is derived, and proven to be a closed-loopcontroller with feedback
from the present measured displacement and acceleration ofthe floater together with a
non-causal integral control component dependent on futurevelocities. To circumvent
this problem, a causal closed-loop controller is proposed by slightly modifying the op-
timal control law. The basic idea is to enforce the stationary velocity of the absorber
into phase with the wave excitation force in order to ensure apositive power supply to
the absorber at any time. It is shown that the devised causal controller absorbs almost
the same power as the optimal controller in plane irregular sea states. Finally, a new
principle for wave energy absorption, the so-called Gyroscopic power take-off point
absorber, is proposed as a possible solution of delivering constant power to the grid
without introducing expensive power electronics. Assuming monochromatic waves
simplified equations are derived, valid at synchronizationof the precession angular
frequency of the spin axis of the gyro to the angular wave frequency. Stability con-
ditions and the basins of attraction to the point attractorsin the phase plane of the
synchronized motion of the ring are also determined.
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Resumé på dansk

Der er væsentlige dynamiske problemer forbundet med vind- og bølgeenergiinstalla-
tioner i stor skala. Da størrelsen forøges uden proportionelt at forøge stivheden, bliver
vindmøller stadig mere fleksible og udviser som følge heraf øget vibrationsfølsomhed
over for dynamiske vind- eller bølgelaster. For at reduceresådanne svingninger kan
det blive nødvendigt at tilkoble passive eller aktive dæmpningselementer med henblik
på at fjerne mekanisk energi fra primærkonstruktionen. Forbølgeenergianlæg søger
man omvendt aktivt at kontrollere anlægget, således at maksimal mekanisk energi til-
føres absorberen. I begge tilfælde er kontrollen af de dynamiske systemer det mest
fundamentale problem, hvilket er hovedfokus i denne afhandling.

I modsætning til flapvise bladsvingninger og tårnsvingninger i vindretningen er
kantvise bladsvingninger og tårnsvingninger i lateralretningen forbundet med ube-
tydelig aerodynamisk dæmpning, der kan medføre store dynamiske responser, og i
værste tilfælde aero-elastisk ustabilitet. Aktiv svingningsdæmpning via pitchreguler-
ing eller trailing edge flaps er ikke i stand til effektivt at dæmpe disse vibrationer.
Derfor vil denne afhandling i stort omfang undersøge muligheden for at anvende
forskellige strukturelle kontrolteknikker, der har haft succes i vibrationsundertrykkelse
af bygningskonstruktioner, med henblik på dæmpning af kant- og laterale tårnvibra-
tioner.

Til begrænsning af kantsvingninger undersøges i denne afhandling virkningen af
forskellige passive dæmpere, såsom rulledæmpere, tunede væskesøjledæmpere (TLCD),
cirkulære væskesøjledæmpere (CLCD) og tunede væskedæmpere (TLD). I sædvan-
lige anvendelser er rulle eller væskebevægelsen styret af tyngdeaccelerationen. Ved
implementering i den ydre ende af roterende vindmøllevinger er bevægelsen i stedet
styret af centrifugalaccelerationen, der for en vinge på 63m kan antage en størrelse af
7-8 g. Dette muliggør et tilsvarende lavt masseforhold til opnåelse af en given dæmp-
ning af kantsvingningerne. Baseret på en Euler-Lagrange fremgangsmåde er der op-
stillet ikke-lineære modeller til analyse af koblingen mellem bladets kantsvingninger
og bevægelsen af massen af rulledæmperen, TLCD, CLCD og TLD.Vingens kant-
bevægelse er modelleret med en enkelt frihedsgrad, der defineres i et roterende ko-
ordinatsystem, og dæmpermasernes bevægelse ved en enkelt frihedsgrad. Baseret på
2-frihedsgraders model er udført en parametrisk optimering af de anførte dæmpere.
Gyldigheden af denne fremgangsmåde er dernæst verificeret ved inkorporering af de
optimerede dæmpere i en mere sofistikeret 13-frihedsgrads aero-elastisk model, hvor
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der tages hensyn til koblingen mellem laterale tårn-og kantsvingninger. Hvad angår
den tunede vaskedæmper er analysen baseret på Galerkin variation af feltligningerne
for hastighedsfeltet og for den frie overfladebetingelse i det roterende koordinatsys-
tem, der fører til et system af koblede ikke-lineære, ordinære differentialligninger.
Som funktional basis er benyttet egensvingningsformerne istående lineære bølger
styret af centrifugalaccelerationen, der også bestemmer formfunktionerne i diskretis-
eringen af den frie overfladebetingelse.

Anden del af afhandlingen fokuserer på aktiv og passiv kontrol af laterale tårnvi-
brationer. Ved brug af moderne elektronik kan generatorensdrejningsmoment foreskrives
en bestemt værdi med en tidsforsinkelse på under10−2 s. I undersøgelsen er de-
taljerne i kraftoverføringen mellem nacelle og tårn beskrevet med speciel fokus på
indvirkningen af generatorens drejningsmoment på den laterale bevægelse af tårnet.
Både offshore vindmøller med gear box og med direkte drev på generatoren er analy-
seret. Derefter, som et alternativ til den aktive generatorkontrol af den laterale tårn-
bevægelse, er virkningen af en TLD. Den ikkelineære model udviklet til dæmpning
af kantsvingninger er blevet modificeret, så rotationen af koordineringssystemet fik-
seret til dæmperhuset nu kun sker på grund af den rotationen af toppen af tårnet.
Ydermere udføres en state-of-the-art realtime hybrid testing (RTHT), for at verificere
gyldigheden af den benyttede ækvivalente lineære dæmpningsmekanisme for væsken
i den foreslåede teoretiske model, og for at evaluere den faktiske adfærd af en tunet
væskedæmper i fuld skala ved dæmpning af laterale tårnvibrationer. I RTHT an-
vendes en TLD i fuld skala som fysisk substruktur, hvilket eliminerer skala-effekter,
mens 13-frihedsgrads vindmøllemodellen bruges som den numeriske sub-struktur, der
formuleres i Matlab/Simulink. Undersøgelsen tager adskillige værdier for dæmpn-
ingsparametre og forskellige belastningstilfælde i betragtning.

Sidste del af afhandlingen fokuserer på modelleringen og den optimale kontrol af
bølgenenergi punktbsorbere. I undersøgelsen er først udledt den optimale kontrollov
for en enkelt ikkelineær punktabsorber i uregelmæssige plane bølger, der viser sig at
være en lukket-løkke kontrol med feedback af den øjeblikkelige flytning og accelera-
tion af flyderen, og af fremtidige hastigheder af denne. På grund af den sidstnævnte
ikkekausale kontrolkomponent, er der foreslået en alternativ kausal lukket-løkke kon-
trollov, baseret på en mindre modificering af den optimale kontrollov. Ideen er at
tvinge absorberens hastighed i fase med bølgekraften for herved at sikre en positiv ef-
fekttilførsel til absorberen til ethvert tidspunkt. Undersøgelsen viser, at den foreslåede
kausale kontrollov kontrollov i uregelmæssige plane bølger absorberer tæt ved den
samme effekt som den optimale. Endelig er foreslået et nyt princip for bølgeenergi
absorption, en såkaldt Gyroscopic power take-off punktabsorber, som en mulig løs-
ning på at levere konstant effekt til forsyningsnettet udenat introducere stærkstrømse-
lektronik. Ved antagelse af monokromatiske bølger udledesder forenklede ligninger,
gyldige ved synkronisering af præcessionen af gyroens spinaksel til vinkelfrekvensen
af bølgebelastningen. Der fastlægges tillige stabilitetsbetingelser og tiltrækningsom-
råder i faseplanen for den synkroniserede bevægelse af ringen.
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CHAPTER 1
Introduction

This chapter gives the background, motivation and organization of this work. The
vibration and stability problems of wind turbines, state-of-the-art of different control
devices employed for wind turbines, as well as the control strategies widely used
for wave energy point convertors are presented. Based on this literature survey, the
objectives and structure of this thesis are outlined.

1.1 Background

As two important renewable energy sources, wind energy and wave energy have re-
ceived significant attention in energy and policy agendas. An important goal in re-
search and development of renewable energy technologies isto reduce the cost per
unit of delivered electrical energy. This has led to the development of larger wind
turbines with increased rotor diameters and tower heights,to capture more energy
throughout its lifetime and reduce the cost of energy. Modern commercial 5 MW
wind turbines have blades lengths over 60 m, and prototype turbines currently under
development with ratings of 8-10 MW may have blade lengths of80 m or more (Bak
et al. 2013). While increasing the blade lengths and tower heightshas the clear ben-
efit of increased energy capture, this trend also leads to increased flexibility of wind
turbine components, which are susceptible to experience large amplitude vibrations or
even aeroelastic instability.

Wind turbines are aeroelastic systems, where strong couplings between aerody-
namics and structural dynamics take place. The aerodynamicforces on wind turbine
structures depend on the relative velocities of the air passing the structure. If the
structure is deformed, the change in shape due to the elasticdeformation and the
time derivatives of the deformation will both affect the aerodynamic forces, e.g. due
to a changed effective angle of attack. In turn the aerodynamic forces influence the
deformation and the velocity of the structure. There is energy transfer between the
vibrating structure and the air around it. If energy flows from the wind turbine struc-
ture to the air (which is normally the case), this acts like any other type of damping to
reduce the amplitude of the structural motion, and it is called aerodynamic damping.
However under certain circumstances it is possible for energy to flow the other way
around and cause the vibration to increase. This is sometimes referred to as "negative
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2 Introduction

aerodynamic damping". If the negative aerodynamic dampingexceeds the structural
damping, the system renders into aeroelastic instability.

Aerodynamic damping plays an important role in the dynamic behaviors of wind
turbines. Normally, the bending modes of the blades are classified as flap-wise and
edgewise modes (Hansen 2003). Edgewise vibrations are vibrations close to the rotor
plane, while flap-wise vibrations take place out of the rotorplane. The tower bending
modes are classifed as fore-aft (longitudinal) tower mode and lateral tower mode, cor-
responding to along-wind and cross-wind vibrations, respectively. For different modes
of the wind turbine system, the corresponding aerodynamic damping is different. Gen-
erally, for pitch regulated wind turbines, the aerodynamicdamping of flap-wise rotor
and longitudinal tower modes is high, whereas the damping ofedgewise whirling,
drivetrain torsion, and lateral tower modes is low (Hansen 2007). For example, Figure
1.1 shows the aeroelastic damping (structural damping plusaerodynamic damping) of
the first nine modes of the 2.75 MW pitch-regulated, variablespeed NM80 prototype
turbine (Hansenet al. 2006). The aeroelastic damping (in terms of modal logarithmic
decrement) of the first two edgewise whirling modes is around5%, while the logarith-
mic decrement of the three flap-wise modes varies from140% to 200% under normal
operational conditions. The logarithmic decrement of the 1st lateral tower mode is
around5%, much less than that of the 1st fore-aft tower mode (around30%).

Figure 1.1 Predicted aeroelastic damping of the first nine modes of the NM80 turbine, obtained from
eigenvalue analysis (Hansenet al. 2006).

Further, increased flexibility also causes a greater likehood of aeroelastic insta-
bility, where aeroelastic damping of certain modes become negative. The aeroelastic
instability expected to occur in modern mega-watt wind turbines can be divided into
two categories: stall induced vibrations during separatedflow and classical flutter
during attached flow (Hansen 2007). Pitch-regulated variable speed wind turbines
normally do not operate in stall and the risk of stall-induced vibration is not as serious
as for stall-regulated wind turbines. Exception may take place at parked conditions. It
has been shown that under idle conditions, both the 1st lateral tower and 1st edgewise
modes of the 5 MW NREL wind turbine exhibit negative modal damping when the
nacelle yaw is either -30 or 20 degree (Bir and Jonkman 2007).Long slender blades
of pitch-regulated turbines operating in attached flow may have the risk of classical
flutter if the frequency ratio between flap-wise bending and torsional modes is suffi-
ciently low, the rotor speed is sufficiently high, and the center of mass is sufficiently
aft on the blade cross sections (Lobitz 2004; Hansen 2004). During flutter, the first
torsional mode couples to a flap-wise bending mode through the aerodynamic forces,
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and this flutter mode has highly negative damping. Although historically flutter has
not been a driving issue in wind turbine design, it is believed that flutter may become
a major design consideration with the growing trend of larger and more flexible blades
(Hansen 2007; Pourazarmet al. 2015).

Large-amplitude edgewise and lateral tower vibrations notonly contribute to
structural fatigue damage with increased operation and maintenance costs, but also
interfere with the power production, affecting the productivity and reducing efficiency
(Ahlström 2006). On the other hand, aeroelastic instabilities, although not frequently
occur, are potentially much more destructive and can lead torapid failure of the wind
turbine. Therefore, it becomes necessary to passively or actively add damping to the
system by different control devices and control strategies, in order to remove mechan-
ical energy from the primary structure.

1.2 Vibration control of wind turbine components

There has been continued interest among researcher in the past decade to control
structural vibrations in wind turbines. Different types ofvibration control systems
have been proposed, either by changing aerodynamic loads experienced by the rotor
(which is equivalent as increasing aerodynamic damping of the aeroelastic system),
or by introducing extra damping to the primary structure through installed mechanical
devices.

1.2.1 Pitch controller

Blade collective pitch controller is primarily used to limit the aerodynamic power in
above-rated wind speeds in order to keep the turbine within its design limits (Burton
et al. 2001). However, the collective pitch controller can be modified to add damping
into fore-aft tower mode, since changes in pitch also have a major effect on the trust
load and thus the fore-after tower vibration (Bossanyi 2000). Further, by pitching each
blade individually, it is possible to reduce the low-frequency 1P (once-per-revolution)
load peak (resulted from wind shear, tower shadow, yaw misalignment and rotational
sampled turbulence) experienced by blade in-plane (dominantly flap-wise) vibrations
(Bossanyi 2003). As illustrated in the individual pitch control (IPC) scheme in Figure
1.2, the measured out-of-plane bending moment signals at the root of each of the three
blades are transformed into two orthogonald- andq- axis by means of a transformation
based on blade azimuthal angles. A feedback controller (such as PID, LQG) for each
axis generates a pitch demand for that axis, and the twod- andq- axis pitch demands
are converted by the reverse transformation to give pitch demand increments for each
blade. These are summed with the collective pitch demand to give a total pitch demand
for each blade. Furthermore, based on a nonlinear observer (extended Kalman filter)
for estimating the turbine states together with the blade-effective wind speeds, IPC
has been applied to reduce 1P blade loads under extreme gust with direction change
(Kanev and van Engelen 2010).

This procedure is based on local blade response measurement. An alternative
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Figure 1.2 Individual pitch control (IPC) scheme (Bossanyi. 2005).

feed-forward control strategy is to measure the local inflowangle and relative flow ve-
locity on each of the blades, and adjust the individual pitchangles accordingly (Larsen
et al. 2005). The rapid variations in inflow conditions can be compensated faster by
the inflow-based IPC than the normal IPC, leading to higher load reduction without
loss of power production. Clearly, the pitch actuator will experience even greater
activity in this case.

More recently, IPC was developed to improve power output andto reduce pitch
motions of the platform of floating offshore wind turbines (Namik and Stol 2010).
The individual blade pitching creates asymmetric aerodynamic loads in addition to the
symmetric loads created by collective blade pitching to increase the platform restoring
moments. Results show that the IPC reduces power fluctuations, platform rolling rate
and platform pitching, comparing with a baseline collective pitch controller. Again,
the blade pitch actuator usage increases significantly.

The pitch controller functions by changing the effective angle of attack along
the blades and thus the aerodynamic loads experienced by therotor. Therefore this
vibration control method falls into the category which increases aerodynamic damping
of the wind turbine system. The pitch controller primarily affects the fore-aft tower
mode and out-of-plane (flap-wise) blade mode by reducing thelow-frequency (mainly
1P) loads. However, it almost has no effect on the lightly damped lateral tower mode
and edgewise blade mode. The increased usage of pitch actuator (especially the IPC)
may also cause problems regarding maintenance as blade becomes longer.

1.2.2 Aerodynamic devices

In order to prevent excessive wear of the blade pitch system and to reduce the loads on
the rotor in a more efficient way, several concepts of "smart rotor control" have been
proposed. In this approach, aerodynamic load control devices are distributed along the
span of the blade, and through a combination of sensing, control and actuation, these
devices dynamically control the aerodynamic loads on the blades at any azimuthal
positions.

Inspired by existing technology in aircraft and rotorcraftapplications, the trail-
ing edge flap (TEF) is a small movable control surface to directly control lift on a
blade. By increasing or decreasing the camber of the airfoil, TEFs generate substantial
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change in the lift coefficient of the airfoil (change in maximum lift, lift curve slope
and zero-lift angle of attack), by altering the pressure distribution along the chord
(Barlas and Van Kuik 2010). As illustrated in Figure 1.3, TEFs can be employed in
two manners: either discrete rigid flaps or continuous deformable trailing edge. Dis-
crete flaps are mounted on the blade (hinged) and require a moment over the hinge
to achieve the required position, while continuous deformable trailing edge shows a
more smooth change in shape which avoids sharp change in the camber and increases
its effectiveness.

Figure 1.3 Trailing edge flaps concept (Barlas and van Kuik. 2010).

Load reduction capabilities of the rigid TEFs on blade out-of-plane vibrations
have been investigated and compared with the IPC (Lackner and van Kuik 2010). It
is shown that both TEFs and IPC are capable of achieving sizable load reductions,
and the relative performance depends on the specific load case. While IPC more
substantially reduces the 1P load peak, the individual flap controller appears to be
more effective at reducing high-frequency loads, due to itslow inertia and thus fast
reaction. Hybrid control approaches which utilizes both IPC and TEFs offers pos-
sibilities of maximizing the load reductions or achieving large load reductions and
reduced pitch usage compared to IPC. Further, both wind tunnel measurements on
a small-scale wind turbine (Barlaset al. 2013) and full-scale tests of a Vestas V27
wind turbine (Castaignetet al. 2014) have been carried out for evaluating the perfor-
mance of TEFs on load reduction. Promising results were observed which enhance
the proof-of-concept of a "smart" wind turbine rotor.

Another aerodynamic devices for load control on wind turbine, the microtabs
(Chow and Van Dam 2007; Barlaset al. 2013), are small (deployment height in
the order of the boundary layer thickness) translational devices placed near the trail-
ing edge of an airfoil (Figure 1.4). The deployment of such tabs changes the trail-
ing edge flow development, so the effective camber of the airfoil, providing changes
in lift. Lift enhancement is achieved by deploying the tab onthe lower (pressure)
side of the airfoil, while lift mitigation is achieved by deploying the tab on the upper
side (suction). There are different actuation systems designed that could be used to
control the tab motion. One possible design includes modular assemblies of micro-
electro-mechanical translational tabs (actuated by smallintegrated electronic circuits)
designed with a two-position control, either fully retracted (off) or fully deployed (on).
Their effect on lift has been shown as powerful as flaps. The small size of these de-
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vises lead to faster response and overall reduction of complexity and cost. Wind tunnel
results demonstrate that careful design of tab height and location, combined with the
selection of an appropriate baseline airfoil, can yield an effective active load control
system (Johnsonet al. 2010).

Figure 1.4 Microtab concept (Barlas and van Kuik. 2010).

Both TEFs and microtabs are functioning by changing lift coefficients of the
airfoil, and thereby mainly affect the out-of-plane (flap-wise) blade loads. The lightly
damped edgewise vibration is almost not affected by these devises.

Further, boundary layer control methods have also been usedfor load control on
wind turbine blades. Most know methods are boundary layer suction method (Barlas
et al. 2013) which consists in operating a powered system to suck boundary layer flow
from closely spaced vertical slots, synthetic jets (Maldonadoet al. 2010) which are
zero-net mass flux jets created by employing an oscillatory surface within a cavity, and
(active) vortex generators (Barrett and Farokhi 1993) which are aerodynamic surfaces
consisting of small vanes to create a vortex. Traditionallythese methods are used for
flow separation control at moderate or large angle attack, thereby altering the airfoil
pressure distribution and delaying the stall effect. Due totheir simplicity, minute size
and small actuating power needed, boundary layer control methods also appear high
attractive to affect lift and reduce loads on the blade in normal operating conditions,
although much more further investigations need to be carried out.

Alternatively, stall strips are used as a means for reducingedgewise vibrations
(Riziotis et al. 2004; Thirstrup Petersenet al. 1998). Stall strips are small lists with
triangular cross section at the leading edge of the blade, extending only few meters
radially on a blade. Researchers have also found that bladesinstalled with stall strips
perform better with regard to edgewise vibrations; however, this beneficial effect is
overshadowed by the negative impact on the power productionsince a substantial
amount of power is lost at the same time.

1.2.3 Structural control devices

All the above-mentioned methods focus on changing aerodynamic loads experienced
by the rotor, where controller conflicts may take place due tomultiple objectives such
as the power smoothing and load reduction. On the other hand,structural control
technologies, which have achieved significant success in mitigating vibrations of civil
engineering structures, turn out to be a promising alternative and in recent years are
being increasingly investigated for application in wind turbines.

In the past few years, structural control of wind turbine towers has drawn more
and more attention from both academia and industry. Severalpassive and active con-
trol devices have been developed and implemented for tower vibration control. Pendu-
lum dampers immersing in oil have been proposed (Argyriadisand Hille 2004; Faber
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and Dalhoff 2008) to be mounted inside the wind turbine tower, and highly reduced
2-DOF models have been established for this system. Tuned mass damper (TMD)
is the most extensively investigated device, and its schematic diagram is illustrated
in Figure 1.5(a). Taking the tower-blade interaction as well as the rotational effect
into consideration, the performance of a passive TMD in mitigating along-wind tower
vibrations was investigated using a simplified wind turbinemodel. To yield more real-
istic results, an advanced modeling tool has been developedand incorporated into the
aeroelastic code, FAST (Fatigue, Aerodynamics, Structures and Turbulence), allow-
ing the investigation of passive TMDs in vibration control of offshore wind turbine
systems (Lackner and Rotea 2011a; Stewart and Lackner 2014). Roteaet al. (2010)
designed and constructed active TMD for offshore wind turbine towers, and simula-
tion results showed a clear improvement of response using active TMD compared to its
passive counterpart. Passive and active TMD has also been investigated for a floating
barge-type wind turbine (Lackner and Rotea 2011b). Simulation results from FAST-
SC show superior performance of active TMD in reducing fore-aft tower vibrations,
at the expense of active power and large strokes.

TLCD 2

(a) (b)

Figure 1.5 Schematic diagram of two extensively-investigated dampers for wind turbine tower. (a) TMD
(Lackner and Rotea. 2011). (b) TLCD (Mensah and Duenas-Osorio. 2014).

Tuned liquid column damper (TLCD) was also introduced for wind turbine tow-
ers, and its schematic diagram is illustrated in Figure 1.5(b). Wilmink and Hengeveld
(2006) simplified the wind turbine tower to be a SDOF model andconcluded that
TLCD was more effective than the pendulum damper. Colwell and Basu (2009) exam-
ined the effectiveness of TLCD in reducing dynamic responses of monopile offshore
wind turbines under wind and wave loads, and simulation results show that response
reduction of up to55% might be achieved. Structural reliability improvement of wind
turbine towers using TLCD were presented (Mensah and Dueñas-Osorio 2014), and it
illustrates significant reductions in the vulnerability oftowers to wind forces owing to
the inclusion of the damper. Some other passive control devices, such as the ball vi-
bration absorber (BVA) (Zhanget al. 2014), the spherical tuned liquid damper (TLD)
(Chen and Georgakis 2013), the toggle-brace-damper (Brodersen and Høgsberg 2014)
were also proposed for wind turbine towers. The effectiveness of these devices have
been verified by either theoretical or experimental studies.

Most of the works described above focus on the fore-aft towervibrations, which
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are already highly damped due to the high aerodynamic damping in this mode. There-
fore, more works need to be carried out on the structural control of lateral tower vi-
brations.

Structural control of wind turbine blades are mainly focused on active and semi-
active control solutions. Arriganet al. (2011) proposed a semi-active tuned mass
damper (TMD) for the control of flap-wise vibrations in wind turbine blades, although
the modal damping in this direction is already very high due to the aerodynamic damp-
ing. Active TMDs have also been studied for mitigating bladeedgewise vibrations,
and the active TMD achieves greater response reductions than the passive counterpart
(Fitzgeraldet al. 2013). Further, Krenket al. (2012) proposed an active strut mounted
near the root of each blade for suppressing blade vibrations, as illustrated in Figure
1.6. The active control concept developed in this research is based on resonant inter-
action between the rotor and the controller, which is inspired by the concept of TMDs.
Stainoet al. (2012) presented the use of active tendons mounted inside each blade for
active control of edgewise vibrations (Figure 1.7). The controller allows a variable
control force to be applied in the edgewise direction, and the control forces are ma-
nipulated according to a prescribed control law. Simulation results show that the use
of the proposed control scheme significantly improves the response of the blade and
promising performances can be achieved.

Figure 1.6 Rotor blade with an active strut attached at two cross-sections near the root (Krenket al. 2012).

Figure 1.7 Actuator configuration for the proposed active tendon control system (Stainoet al. 2012).

Both active and semi-active control solutions need relatively complicated con-
troller configurations and some amount of power input. This indicates the importance
and necessity of developing simple and robust vibration control devices for wind tur-
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bine blades, although the existing solutions exhibit promising damping effect.

1.3 Control of wave energy point absorbers

In contrast to vibration control of wind turbine componentsthat seeks to minimize
mechanical energy from the primary structure, for wave energy point absorbers the
objective is to control the motion of the system in such a way that a maximum me-
chanical energy is supplied to the absorber. The presence ofa hydraulic power take-off
mechanism (PTO) provides a reaction force (control force) that can influence the mo-
tion of the point absorber, making the optimal performance of the device possible. An
schematic diagram of the point absorber with a PTO system is illustrated in Figure 1.8
(António 2008).

Figure 1.8 Schematic representation of the wave energy point absorberwith a PTO system (António.
2008).

Basically, the point absorber is a mechanical oscillator, performing better as the
wave frequency approaches its natural frequency. Theoretical studies on oscillating
point absorber under regular waves revealed that the optimal performance is obtained
when it’s operating at resonance conditions, i.e. the frequency of oscillation should
match the frequency of the incoming wave (António 2010). It is also shown that under
resonance conditions, the wave excitation force and the velocity response are in phase
with each other. This condition for maximizing energy production has already been
reported by Budal and Falnes (1980) in the early 80’s.

For real irregular waves featuring continuous frequency wave spectrum, several
strategies (Falneset al. 2002) have been proposed for approaching the theoretical
optimal controller, which is non-causal, i.e. the present control demand depends on
future wave loads or responses of the absorber. To handle this problem, non-predictive
causal controllers have been proposed and tested by variousauthors, of which some
of the recent are Valérioet al (2007) and Lopeset al (2009). Such control strategies
are basically suboptimal in irregular sea-states. In Valério et al (2007) it is demon-
strated that the causal control at optimal tuning tends to enforce the velocity of the
absorber into phase with the wave excitation force, which isin agreement with the
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condition proposed by Budal and Falnes (1980). Other causalcontrol methods are
based on prediction of the incoming waves and the related future response of the ab-
sorber (Schoenet al. 2008a; Schoenet al. 2008b). Hence, such approaches combine
elements of open- and closed-loop control. Optimal controlwith constraint on the
displacements and the control force has also been considered (Halset al. 2011). Still,
the non-causality of the optimal control was handled by prediction of wave excitation
force by means of an augmented Kalman filter.

The most extensively investigated causal control method isthe so-called latch-
ing control (Falnes and Budal 1978; French 1979), which is inspired by the condition
that the absorber velocity is kept in phase with the wave excitation. Latching control
consists in locking the motion of the absorber at the very moment when its velocity
vanishes at the end of one oscillation, and waiting for the most favorable situation to
release the body, so as to achieve approximate optimal phasecontrol. The principle
is illustrated in Figure 1.9 for monochromatic wave excitation with the angular fre-
quencyω < ω0 ⇒ T > T0, whereω0 andT0 = 2π

ω0

denote the angular frequency

and eigenperiod of the point absorber, andT = 2π
ω

is the period of the wave load.
u(t), u̇(t) andfe(t) denote the absorber displacement, absorber velocity and the wave
excitation force, respectively.

t

u(t)

u̇(t)

fe(t)

π
ω0

π
ω

Latching

Unlatching

Figure 1.9 Optimal latching control under monochromatic wave excitation.

To optimally determine the latched time-intervals in real random waves is the
problem to be solved, which requires the prediction of the incoming irregular waves
some time into the future (Babaritet al. 2004). For the latching control strategy to be
feasible in real sea conditions, it is required that the dynamic hydrodynamic force can
be observed and predicted at least a semi-period ahead basedon observation of the
sea-surface elevation. In broad-banded irregular sea-states, the prediction of hydro-
dynamic force is related with uncertainty. Normally a significant loss of correlation
of the sea-surface elevation process occurs at the time interval of half peak period
1

2
Tp. This lack of correlation is carried over into the dynamic hydrodynamic force,

which makes the prediction of next semi-period of this quantity uncertain. Further,
the non-continuous activation of the power outtake causes problems for the mechani-
cal implementation of the control action.
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1.4 Objective of the thesis

The objective of this study is to carry out fundamental research on passive and active
vibration control of renewable structures, and to provide useful models for practical
applications. Effective and robust vibration control methods will be explored for miti-
gating the lightly damped edgewise blade vibration and lateral tower vibration in wind
turbines, with the main focus on structural control devices. Rigorous theoretical mod-
eling of different dynamic systems is to be established, based on which detailed design
and analysis of the proposed control devices can be carried out.

Besides, this study will explore technical solutions for wave energy point ab-
sorbers, in order to maximize the mean absorbed power and also to deliver more
smooth power to the grid. A novel suboptimal causal control law will be established
for controlling the motion of the point absorber, and a new type of point absorber will
be proposed with detailed modeling and analysis.

1.5 Outline of the thesis

Chapter 1 presents the introduction and motivation of the whole thesis, where the
background, objectives, and structure are addressed.

Chapter 2 describes the details of the 13-DOF aeroelastic wind turbine model. It
clearly demonstrates how the equations of motion are derived and how the aerody-
namic loads are calculated for the wind turbine system.

Chapter 3 addresses damping of edgewise vibrations in rotating wind turbine blades
by means of different passive dampers. The working principal, the advantage, the dis-
advantage and potential improvement of each damper is explained.

Chapter 4 addresses mitigation of lateral tower vibrations in wind turbines. Active
vibration control using the generator torque and passive control using TLD are both
explored. Real-time hybrid testing of a full-scale TLD is also described in this chapter.

Chapter 5 presents dynamics and control of wave energy point absorbers. A subop-
timal causal controller is proposed for the heave point absorber by slightly modifying
the non-causal optimal control law. The Gyroscopic power take-off point absorber is
modeled and stability analysis is carried out.

Chapter 6 provides the general conclusion drawn from this study and possible fu-
ture extensions.

Appendix A provides the detailed descriptions of the system matrices of 13-DOF
model.

Appendix B contains the enclosed journal paper: "Mitigation of edgewise vibrations
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in wind turbine blades by means of roller dampers".

Appendix C contains the enclosed journal paper: "Tuned liquid column dampers for
mitigation of edgewise vibrations in rotating wind turbineblades".

Appendix D contains the enclosed journal paper: "Damping of edgewise vibration
in wind turbine blades by means of circular liquid dampers".

Appendix E contains the enclosed journal paper: "Nonlinear modeling of tuned liq-
uid dampers (TLDs) in rotating wind turbine blades for damping edgewise vibrations".

Appendix F contains the enclosed journal paper: "Dynamics and controlof lateral
tower vibrations in offshore wind turbines by means of active generator torque".

Appendix G contains the enclosed journal paper: "Full-scale real-time hybrid test-
ing of tuned liquid dampers (TLDs) for vibration control of wind turbine towers".

Appendix H contains the enclosed journal paper: "Optimal control of nonlinear wave
energy point converters".

Appendix I contains the enclosed journal paper: "Stability analysis of the Gyroscopic
Power Take-Off wave energy point absorber".

Appendix J provides detailed results from the real-time hybrid testing.
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CHAPTER 2
The 13-degree-of-freedom

aeroelastic wind turbine
model

The details of the 13-degree-of-freedom (13-DOF) wind turbine model is presented
in this chapter. The indicated reduced order model is based on linear structural dy-
namics together with nonlinear aerodynamics. The blades and the tower are modeled
by Bernoulli-Euler beams, and the drivetrain is modeled by the St.Venant torsional
theory. The blade element momentum (BEM) method is employedfor calculating the
lift and drag forces along each blade, taking the deformation velocities of the structure
into consideration. Further, a collective PI pitch controller and a generator controller
are also included in the model for power control of the machine. Despite its simplic-
ity, this 13-DOF aeroelastic model takes into account many important characteristics
of a wind turbine, including time-dependent system matrices, forward and backward
whirling mods of the rotor, coupling of the tower-blade-drivetrain vibrations, aerody-
namic damping in different modes of the system, as well as flexibility in the drivetrain.
This model has been used as a basic tool for both the theoretical and experimental
studies throughout the thesis.

2.1 General description of the structural model

A schematic representation of the wind turbine model is shown in Figure 2.1. The
motions of the tower and the drivetrain are described in a fixed, global(X1, X2, X3)-
coordinate, while the motion of each blade is described in a moving, local(x1, x2, x3)-
coordinate system with its origin at the center of the hub. Neglecting the tilt and
possible coning of the rotor, theX1 andx1 axis are unidirectional to the mean wind
velocity. The(X2, X3)- and(x2, x3)- coordinate planes are placed at the rotor plane.
TheX3-axis is vertical, and thex3- axis is placed along the undeformed blade axis
oriented from the hub towards the blade tip. The position of the local coordinated sys-
tem attached to bladej is specified by the azimuthal angleΨj(t), which is considered
positive when rotating clockwise seen from an upwind position.
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Figure 2.1 the 13-DOF aeroelastic wind turbine model. Definition of fixed and moving coordinate systems
and the degrees of freedomq1(t), . . . , q11(t).

The blades are modeled as Bernoulli–Euler beams with the bending stiffness
EI1(x3) in the flap-wise direction andEI2(x3) in the edgewise direction. The mass
per unit length isµ(x3). The flap-wise and edgewise motions of the three blades are
modeled by the degrees of freedom (DOFs)qj(t) andqj+3(t) , j = 1, 2, 3, indicat-
ing the tip displacement in the positivex1-direction and in the negativex2-direction,
respectively. The related mode shapes are taken as the undamped fundamental eigen-
modesΦf (x3) andΦe(x3) in the flap-wise and edgewise directions when the blade is
clamped at the hub, i.e. the rotational speed of the rotorΩ = 0 rad/s.

The tower motion is defined by five degrees of freedomq7(t), . . . , q11(t). q7(t)
andq8(t) signify the displacements of the tower at the height of the hub in the global
X1-andX2-directions.q9(t) specifies the elastic rotation of the top of the tower in the
negativeX1-direction, whileq10(t) andq11(t) indicate the corresponding rotations
in the positiveX2-andX3-directions. The height of the tower from the base to the
nacelle is denotedH0, and the horizontal distance from the center of the tower topto
the origin of the moving coordinate systems is denoteds.

As shown in Figure 2.2, the drivetrain is modeled by the DOFsq12(t) andq13(t).
The sign definition shown in Figure 2.2 applies to a gearbox with an odd number
of stages. q12(t) and q13(t) indicate the deviations of the rotational angles at the
hub and the generator from the nominal rotational anglesΩt andNΩt, respectively,
whereN is the gear ratio. Correspondingly,q̇12(t) and q̇13(t) are the deviations of
the rotational speeds at the hub and the generator from the nominal values. In case
of an even number of stages, the sign definitions forq13(t) andf13(t) are considered
positive in the opposite direction.Jr andJg denote the mass moment of inertia of the

Zili Zhang 14



Establishing equations of motion 15

rotor and the generator; andkr andkg denote the St. Venant torsional stiffness of the
rotor shaft and the generator shaft.

Then, the azimuthal angleΨj(t) of bladej (Figure 2.1) is given by

Ψj(t) = Ωt+
2π

3
(j − 1) + q12(t), j = 1, 2, 3 (2.1)

f12(t) q12(t)

Jr
kr

Rotor shaft

Rotor of generator

Generator shaft

kg
q13(t) f13(t)

Stator of generator
f13(t)

Gearbox

Figure 2.2 2-DOF model of the flexible drivetrain with odd number of gearstages. Definition of degrees
of freedomq12(t) andq13(t).

The DOFs of the structure are assembled in the vectorq(t). This vector can
always be partitioned into a sub-vectorql(t) storing the local DOFs (defined in the
moving coordinate system), and a sub-vectorqg(t) storing the global DOFs

q(t) =

[

ql(t)

qg(t)

]

(2.2)

In the present case we have

ql(t) =







q1(t)
...

q6(t)






, qg(t) =







q7(t)
...

q13(t)






(2.3)

2.2 Establishing equations of motion

Let ū1,j(x3, t) andū2,j(x3, t) denote thelocal displacement fieldsof the blade, i.e. the
localx1- andx2- components of the elastic displacement vector seen by an observer
fixed to the moving coordinate system. As described in the above section, the modal-
based attached mode approach is applied for modeling the blade vibrations. Hence, the
displacement fields̄u1,j(x3, t) and ū2,j(x3, t) can be interpolated from the selected
degrees of freedomqj(t) andqj+3(t) as follows

ū1,j(x3, t) ' Φf (x3)qj(t), j = 1, 2, 3

ū2,j(x3, t) ' −Φe(x3)qj+3(t)

}

(2.4)

Due to definitions ofqj(t) andqj+3(t) as the tip displacements, the eigenmodes
must be normalized to one at the tip, i.e.Φf (LB) = Φe(LB) = 1. Then, the local
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16 The 13-degree-of-freedom aeroelastic wind turbine mode l

displacements in (2.4) lead to the following velocity components in the localx1- and
x2- directions of a cross-section of bladej at the positionx3

u̇1,j(x3, t) =
d

dt
ū1,j(x3, t) ' Φf (x3)q̇j(t)

u̇2,j(x3, t) =
d

dt
ū2,j(x3, t) ' −Φe(x3)q̇j+3(t)











(2.5)

Further, due to the rotational angular velocityΨ̇j(t) = q̇12(t) + Ω of the moving
coordinate system, the local displacement vectorū2,j(x3, t) induces a velocity in the
localx3- direction, which can be written as

u̇3,j(x3, t) = Ψ̇j(t)ū2,j(x3, t) ' −
(

q̇12(t) + Ω
)

Φe(x3)qj+3(t)

' −ΩΦe(x3)qj+3(t)
(2.6)

where the2nd order termq̇12(t)qj+3(t) has been ignored in the last statement of (2.6).

u̇3,j

u̇2,j

Ψj

x2

x3

Ω + q̇12(t)

q̇7(t) sq̇10(t)

q̇11(t)

q̇10(t) q̇8(t) − sq̇11(t)

j

qj(t)

u̇1,j

qj+3(t)

Figure 2.3 Velocities at a cross-section of bladej.

As shown in Figure 2.3, in addition to these velocity contributions, the globally
defined DOFsqg(t) also induce velocity contributions at the considered cross-section.

At the hub, the translational DOFsq7(t) and q8(t), and the rotational DOFs
q10(t) andq11(t) induce the translational velocity componentsq̇7(t), q̇8(t)−sq̇11(t)
andsq̇10(t) in the globalX1-, X2-, X3- directions, respectively. The corresponding
moving frame components for bladej are expressed as

u̇1,j(x3, t) = q̇7(t)

u̇2,j(x3, t) = sinΨj sq̇10(t) + cosΨj

(

q̇8(t)− sq̇11(t)
)

u̇3,j(x3, t) = cosΨj sq̇10(t)− sinΨj

(

q̇8(t)− sq̇11(t)
)



















(2.7)
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Establishing equations of motion 17

Further, the angular velocity of the hub induces a velocity component in the local
x2- direction at the considered cross-section

u̇2,j(x3, t) = −x3

(

Ω+ q̇12(t)
)

(2.8)

Finally, at the hub the rotational DOFsq10(t) andq11(t) result in angular veloc-
ities q̇10(t) and q̇11(t) in the globalX2- andX3- directions. In turn, these angular
velocities induce the velocity component in the localx1- direction

u̇1,j(x3, t) = x3 cosΨj q̇10(t) + x3 sinΨj q̇11(t) (2.9)

Summing up the contributions from (2.5), (2.6), (2.7), (2.8), (2.9) provides the
following components of the velocity vector of a cross-section of bladej, in the mov-
ing coordinate system

u̇1,j(x3, t) = Φf (x3)q̇j(t) + q̇7(t) + x3 cosΨj q̇10(t) + x3 sinΨj q̇11(t)

u̇2,j(x3, t) = −Φe(x3)q̇j+3(t) + sinΨj sq̇10(t)+

cosΨj

(

q̇8(t)− sq̇11(t)
)

− x3

(

Ω + q̇12(t)
)

u̇3,j(x3, t) = −ΩΦe(x3)qj+3(t) + cosΨj sq̇10(t)−

sinΨj s
(

q̇8(t)− sq̇11(t)
)







































(2.10)

Defined in the global coordinate system (Figure 2.4), the displacement compo-
nents of the tower inX1- andX2- directions can be expressed as

uX1
(X3, t) = N1(X3)q7(t)−N2(X3)q10(t)

uX2
(X3, t) = N1(X3)q8(t) +N2(X3)q9(t)

}

(2.11)

whereN1(X3) andN2(X3) are cubic Hermite interpolation functions in the following
form

N1(X3) = 3
(X3

H0

)2

− 2
(X3

H0

)3

N2(X3) = H0

(X3

H0

)3

−H0

(X3

H0

)2















(2.12)

Hence, the total kinetic energy of the wind turbine including the blade, the tower
and the generator becomes

T
(

q(t), q̇(t)
)

=
1

2

3
∑

j=1

∫ LB

0

µ(x3)
(

u̇21,j(x3, t) + u̇23,j(x3, t) + u̇23,j(x3, t)
)

dx3

+

∫ H0

0

µ0(X3)
(

u̇2X1
(X3, t) + u̇2X2

(X3, t)
)

dX3 +
1

2
M0

(

q̇27(t) + q̇28(t)
)

+
1

2
Jg

(

NΩ+ q̇13(t)
)2
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18 The 13-degree-of-freedom aeroelastic wind turbine mode l

H0

p ,tw( )X3

1

(  )a

1

1

X1

X3

X2

X3 X3

(  )b ( )c

N1( )X3

N2( )X3

Figure 2.4 Modeling of the tower vibrations. (a) Two DOFs model for the fore-aft tower vibration or
lateral tower vibration. (b) Shape functionN1(X3). (c) Shape functionN2(X3).

(2.13)

whereµ0(X3) is the mass per unit length of the tower,M0 is the mass of the nacelle.
The first term on the right hand side of Eq. (2.13) indicates the kinetic energy stored
in the rotor. The second and third terms represents the kinetic energy stored in the
tower and the nacelle related to the globally defined degreesof freedom. Finally, the
last term indicates the kinetic energy stored in the rotor ofthe generator.

Next, the total potential energy (strain energy) of the windturbine is given by

U
(

q(t)
)

=
1

2
qT (t)Ksq(t) (2.14)

whereKs denotes the structural stiffness matrix including centrifugal stiffening in the
rotating blades.Ks is symmetric and time-independent, as will be given later.

Based on Eqs. (2.13) and (2.14), the equations of motion can be obtained from
the Euler-Lagrange stationary condition of the action integral in analytical mechanics
(Pars 1965)

d

dt

(

∂T

∂q̇

)

−
∂T

∂q
+
∂U

∂q
= fa

(

q̇(t), β(t), t
)

− (Cs +Cgen)q̇(t) (2.15)

The right hand side of Eq. (2.15) is the load vector includingall external and
internal conservative and non-conservative load components. fa

(

q̇(t), β(t), t
)

is the
aerodynamic loads as a function of the structural responseq̇(t) and the pitch angle
β(t), as will be specified in the next subsection.−Csq̇(t) is the linear viscous damp-
ing load term, andCs indicates the structural damping matrix that is symmetric and
positive definite.−Cgq̇(t) is the generator torque, which can be specified to actively
damp tower vibrations as will be shown in Section 4.

The resulting equations of motion of the wind turbine systembecome

M(t)q̈(t) +C(t)q̇(t) +K(t)q(t) = fa
(

q̇(t), β(t), t
)

(2.16)
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Aerodynamic loads 19

whereM(t) is the mass matrix that is symmetric and positive definite,C(t) is the
damping matrix andK(t) is the stiffness matrix. All three matrices are time de-
pendent. In the general case these matrices depend onq(t), i.e. M = M(q),
C = C(q) andK = K(q). In the present case, the dependence is merely on
Ψj(t) = q12(t) + Ωt + 2π

3
(j − 1). Ignoringq12(t) the system matrices all become

periodic time-dependent matrix functions with the constant rotational periodT = 2π
Ω

.

M(t) = M(t+ T ), C(t) = C(t+ T ), K(t) = K(t+ T ) (2.17)

The time-dependence in Eq. (2.17) can be eliminated by a coordinate transfor-
mation, e.g. the Coleman transformation or the multiblade transformation (Bir 2008).
Only in this case it is meaningful to carry out eigenvalue analysis of the wind turbine
system.

For detailed description ofM(t), C(t) andK(t), see Appendix A.
Further, a full-span collective pitch control system is assumed. The time delay

due to mechanical inertia in the pitch actuator system can bemodeled by a linear first
order filter

β̇(t) =
1

τ

(

β0(q12, q̇12, q̈12)− β(t)
)

(2.18)

whereτ is the response time.β0 is the pitch demand, which is specified by the follow-
ing PID controller here, partly due to its wide range of application in the wind turbine
industry, and partly due to its relative simplicity (Ogata 2010)

β0(q12, q̇12, q̈12) = G
(

q̇12(t) +
1

τi
q12(t) + τdq̈12(t)

)

(2.19)

whereG is the controller gain,τi is the integral control time constant andτd is the
derivative control time constant. Inserting Eq. (2.19) into Eq. (2.18), the following
linear control law is obtained

β̇(t) = d1q12(t) + d2q̇12(t) + d3q̈12(t)−
1

τ
β(t) (2.20)

whered1 = G
ττi

, d2 = G
τ

, d1 = Gτd
τ

.
In combination, Eqs.(2.16) and (2.20) form a closed system of differential equa-

tions for determination of the response vectorq(t) and the pitch angleβ(t) , driven by
the turbulence in the inflow to the rotor.

2.3 Aerodynamic loads

In the present study, the blade element momentum (BEM) with Prandtl’s tip loss fac-
tor and Glauert correction is adopted to calculate aerodynamic forces along the blade
(Hansen 2000). Quasi-static aerodynamics is assumed without considering time delay
of the obtained lift force on the airfoil, i.e. any changes ofthe instantaneous angle of
attachα(x3, t) is assumed to be felt immediately in the aerodynamic loads. If neces-
sary the time delay can be modeled by a rational filtration of the aerodynamic loads at
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20 The 13-degree-of-freedom aeroelastic wind turbine mode l

the expense of introducing additional state variable in thedynamic system. It should
be noted that if a dynamic stall model (Leishman and Beddoes 1989; Larsenet al.
2007) is applied in this 13-DOF model, such an extended statevector formulation
become mandatory.

x1

x2

Ve
V1

V2

φ
α

c

β(t) + κ

pL pD

V0

Figure 2.5 Local velocities and forces in the aerodynamic model.

Figure 2.5 shows the local velocities and forces on an airfoil (blade section) that
has a distancex3 away from the hub.V1(x3, t) andV2(x3, t) denote the wind veloc-
ities seen by an observer fixed to the moving(x1, x2, x3)- coordinate system, which
are given as

V1(x3, t) = (1− a)V0 + v1(x3, t)− u̇1(x3, t)

V2(x3, t) = (1 + a′)Ωx3 + v2(x3, t)− u̇2(x3, t)

}

(2.21)

whereV0 is the mean wind velocity far up-stream of the rotor,v1(x3, t) andv2(x3, t)
are the rotational sampled turbulence (Connell 1982) components inx1- andx2- di-
rections, respectively.̇u1(x3, t) andu̇2(x3, t) are the velocity components of the blade
in x1- andx2- directions, due to elastic deformations of the blade, the tower and the
drivetrain.a(x3) anda′(x3) are axial and tangential induction factors determined by
the modified BEM method (Hansen 2000). The instantaneous flowangleφ(x3, t) and
the effective wind velocityVe(x3, t) defined in Figure 2.5 are given by

φ(x3, t) = arctan

(

V1(x3, t)

V2(x3, t)

)

, Ve(x3, t) =
√

V 2
1 (x3, t) + V 2

2 (x3, t) (2.22)

The instantaneous angle of attackα(x3, t) is written as

α(x3, t) = φ(x3, t)− β(t)− κ(x3) (2.23)

whereκ(x3) is the pre-twist of the blade section. Based on the quasi-static assump-
tion, the lift and drag forces per unit length are given by

pL(x3, t) = 0.5ρV 2
e (x3, t)c(x3)cL(α)

pD(x3, t) = 0.5ρV 2
e (x3, t)c(x3)cD(α)

}

(2.24)

whereρ denotes the mass density of air,c(x3) is the chord length of the airfoil,cL(α)
andcD(α) are the static lift and drag coefficients of the airfoil. Correspondingly, the
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Aerodynamic loads 21

normal and tangential loads per unit length become

pN (x3, t) = pL(x3, t) cosφ+ pD(x3, t) sinφ

pT (x3, t) = pL(x3, t) sinφ− pD(x3, t) cosφ

}

(2.25)

HavingpN(x3, t) andpT (x3, t), the external load vectorfa
(

q̇(t), β(t), t
)

on the
right hand side of Eq. (2.16) can be obtained. This 13-dimensional load vector stores
the external loads work-conjugated to the defined degrees offreedom. In the present
case, the components offa

(

q̇(t), β(t), t
)

are given as

fj(t) =

∫ LB

0

Φ1(x3)pN,j(x3, t)dx3, j = 1, 2, 3

fj+3(t) =

∫ LB

0

Φ2(x3)pT,j(x3, t)dx3, j = 1, 2, 3

f7(t) =

3
∑

j=1

∫ LB

0

pN,j(x3, t)dx3

f8(t) = −

3
∑

j=1

∫ LB

0

cosΨj pT,j(x3, t)dx3

f10(t) =
3
∑

j=1

∫ LB

0

(

x3 cosΨj pN,j(x3, t)− s sinΨj pT,j(x3, t)
)

dx3

f11(t) =

3
∑

j=1

∫ LB

0

(

x3 sinΨj pN,j(x3, t) + s cosΨj pT,j(x3, t)
)

dx3

f12(t) = (1− µ)

3
∑

j=1

∫ LB

0

x3 pT,j(x3, t)dx3











































































































































(2.26)

f7(t) andf8(t) indicate the force resultants of the loads on the blades in the
direction of the global translational degrees of freedomq7(t) andq8(t). Similarly,
f10(t) andf11(t) signify the moment resultants in the direction of the globalrota-
tional degrees of freedomq10(t) andq11(t). f12(t) denotes the effective torque on the
drivetrain available for power production. It is reduced bythe factor(1 − µ) relative
to the aerodynamic torque on the rotor, due to friction in thebearings and the gearbox,
as specified by the friction coefficientµ.

Further,f13(t) is the generator torque that can be specified in different forms
for damping lateral tower and drivetrain vibrations, as will be shown in Eq. (4.3)
in Chapter 4.f9(t) is related tof12(t) andf13(t) due to the load transfer from the
drivetrain to the nacelle, as also will be shown in Chapter 4.
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22 The 13-degree-of-freedom aeroelastic wind turbine mode l
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CHAPTER 3
Damping of edgewise

vibrations in rotating wind
turbine blades

In this chapter, different passive control devices have been proposed for mitigating
edgewise vibrations in rotating blades. Normally, dampingeffects of these dampers
are governed by the gravitational acceleration. For rotating wind turbine blades, the
corresponding damping effect are governed by the centrifugal acceleration, which can
reach to a magnitude of 7-8 g for the outboard portion of a 63-m-long blade. This
makes it possible to use these dampers with rather small massratios for effectively
suppressing edgewise vibrations. Formulations and analysis of the blade-damper sys-
tems have been established, where the blade edgewise motionis modeled by SDOF de-
fined in the blade-fixed rotating coordinate system. The dynamics of different dampers
are either described in the global fixed coordinate system, or in local moving coordi-
nate systems. The formulated nonlinear models for the blade-damper systems have
been used for the parametric optimizations of the dampers, and the optimized dampers
are incorporated into the more sophisticated 13-DOF aeroelastic model (Chapter 2) to
verify the application of these reduced-order models. Simulation results show promis-
ing performance of these passive dampers on mitigating edgewise vibrations.

3.1 Dynamics of blade edgewise vibrations

As mentioned in Chapter 1, in contrast with flap-wise blade vibrations, edgewise
blade vibrations in wind turbines are related with insignificant aerodynamic damp-
ing. Therefore, it is of great importance to add damping intoedgewise mode. In the
following sections, different types of blade-mounted dampers have been proposed for
damping edgewise vibrations in rotating wind turbine blades.

Edgewise vibrations of a wind turbine blade are coupled to the lateral tower vibra-
tions (Hansen 2007). Therefore, besides the blade edgewisevibration, the motion of
the lateral tower motion which will also influence the motionof the dampers mounted
inside the blade. Since the focus in this study is on the interaction between the damper
and the blade, as well as the damping effect of the damper on edgewise vibrations,
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24 Damping of edgewise vibrations in rotating wind turbine b lades

the basic assumption here is that the influence from the towermotions can be ignored.
Therefore, the design of the dampers are totally based on thelocal dynamics of the
rotating blade. The validity of this assumption has been evaluated by the more sophis-
ticated 13-DOF wind turbine model (Zhanget al. 2014; Zhanget al. 2015; Basuet al.
2015), and this coupling has been proved to be of minor importance for the optimal
design of the passive dampers inside a blade.

Ψ(t) = Ωt

X1, x1
X2

X3

x2

x3

LB

O

q(t)

g

Figure 3.1 Dynamics of the blade edgewise vibration.

As shown in Figure 3.1, in this chapter the blade edgewise vibration is described
by the single degree of freedomq(t) in the local rotating coordinate system, without
considering the coupling from the lateral tower vibration.The equation of motion
of this SDOF model can be simply obtained from the Euler-Lagrange equation (Pars
1965)

m0 q̈(t) + c0 q̇(t) + (k0 − Ω2m0) q(t) = f0(q̇, t) + fg(t) (3.1)

wherem0, c0 andk0 are the modal mass, modal damping and modal stiffness, respec-
tively. k0 includes both the elastic and geometric contributions (centrifugal stiffening
due to rotation and centrifugal softening caused by the variation of axial force due to
the weight of the blade).f0(q̇, t) denotes the wind induced edgewise modal load on
the primary structure, taking the aerodynamic damping intoconsideration (see Chap-
ter 2). fg(t) denotes the modal load from gravity, which will result in a harmonic
motion in edgewise direction with an angular frequency of 1P(corresponding to the
rotational speed of the rotor). The detailed expressions ofthese parameters are given
by Appendix C.

In Eq. (3.1), the negative stiffness term−Ω2m0 is the result of the centripetal
softening effect, where the blade deflection in the edgewisedirection induces a com-
ponent of the centrifugal force in the same direction (tending to further increase the
blade edgewise deflection) in the rotor plane. The centrifugal softening effect almost
cancels the centrifugal stiffening effect, and thus the rotation of the rotor has insignif-
icant effect on the stiffness of the edgewise blade bending mode.

Based on this 1-DOF blade model, different reduced-order models for the blade-
damper system have been established for the proposed dampers.
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Roller damper 25

3.2 Roller damper

The idea of the roller damper (named ball vibration absorber) emerged for the first time
in Czech proposed for controlling vibration of a suspended prestressed concrete foot-
bridge, although it was not installed because the vibrationceased with the completion
of the bridge deck (Pirner 1994). This kind of damper has beenadopted successfully
on two television towers (Pirner 2002), as shown in Figure 3.2(a). Recently, the roller
damper (ball vibration absorber) was investigated for mitigating tower vibrations of
offshore wind turbines (Zhanget al. 2014), as shown in Figure 3.2(b). Both experi-
mental and numerical results show the efficacy of roller dampers in reducing dynamic
responses of wind turbine towers. These successful applications give us motivations
for investigating the performance of roller dampers on mitigating edgewise vibrations
in rotating wind turbine blades.

(a) (b)

Figure 3.2 Previous investigations of the roller damper. (a) The ball vibration absorber used on two TV
towers (Pirner 1994). (b) Shaking table tests on the performance of roller dampers for controlling wind
turbine tower vibrations (Zhanget al. 2014).

The roller damper consists of a roller rolling along an arc track. The energy
input to the primary structure from dynamic loads could thusbe absorbed through the
rolling motion of the roller. Figure 3.3 shows three possible layouts of the roller, i.e.
a homogeneous ball, a homogeneous cylinder and a flywheel. The flywheel is less
compact but more efficient than the ball and the cylinder since it has the largest mass
moment of inertia.

(a) (b) (c)

m

m
r

r r

R

R0

γm

γm(1 − 2γ)m

Figure 3.3 Possible layouts of the roller damper, with the same massm. (a) homogeneous ball,J =
2
5
mr2, (b) homogeneous cylinder,J = 1

2
mr2, (c) a flywheel and two small rail wheels,J = 2γmr2 +

(1− 2γ)mR2
0 .

In the case of tower vibrations the damping effect of the roller damper is governed
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26 Damping of edgewise vibrations in rotating wind turbine b lades

by the gravitational accelerationg. For the rotating blade, the corresponding damping
effect is governed by the centrifugal acceleration, which can reach up to a magnitude
of 7-8g for a blade with a length of 63 m. This makes it possible to use the roller
damper (or dampers with similar principles described in thefollowing sections) with
rather small mass ratios for effectively suppressing edgewise vibrations.

The roller damper is described by four parametersr, R, m andJ , representing
the radius of the roller, the outer radius of the track, the mass of the roller, and the
mass moment of inertia around the gravitational center of the roller, respectively. In
order to ease the notation as well as the derivation of the equation of motion, these
four parameters can be combined into merely two parameters,namely the equivalent
massme and the equivalent lengthRe, which may be interpreted as the mass and
length of an equivalent mathematical pendulum, as shown in Figure 3.4. Based on
the principle that the equivalent mathematical pendulum should represent the same
kinetic and potential energy as the roller damper (AppendixB), the expressions ofme

andRe become

me = m+
J

r2
R2

(R− r)2
, Re = R− r (3.2)

θ

θ

θ

α
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R
e
=
R
−
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Figure 3.4 Equivalent mathematical pendulum for the roller damper.
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Figure 3.5 Schematic diagram of the reduced 2-DOF model, where the roller damper is presented by the
equivalent mathematical pendulum.

Figure 3.5 shows the reduced 2-DOF model for the blade-damper system, where
the roller damper has been replaced by the equivalent mathematical pendulum. The
position of the damper mass is defined by the local degree of freedomθ(t), which is
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the clockwise rotation from the deformed blade axis. Describing the position vector
and velocity vector of the roller in the fixed global(X2, X3)- coordinate system (the
blade edgewise vibration is described in the local(x2, x3)- coordinate system), the
kinetic and potential energy of the blade-roller damper system can be formulated (see
Appendix B). Employing the Euler-Lagrange equations (Pars1965), the equations of
motion of the 2-DOF system can be obtained, which turn out to be nonlinear ordinary
differential equations with parametric-excited terms (Eqs. (21) and (22) in Appendix
B).

Ignoring the influence of gravity, the angular eigenfrequency of the roller can be
obtained as

ωd =

√

meΩ2x0
meRe

=

√

x0Ω2

Re

(3.3)

It is shown from Eq. (J.1) that the motion of the roller is controlled by the cen-
trifugal accelerationx0Ω2, which is much larger thang if x0 is large enough. The
roller damper should be devised such thatωd is approximately equal to the fundamen-
tal frequency of the blade. This can be achieved by adjustingRe when the position
of the damperx0 and the rotational speed of the rotorΩ (the rated rotational speed)
are fixed. However even during rated operation conditions the rotational speed of the
rotor is varied around the rated value within 5%, which results in the slight change
of the eigenfrequency of the damper and thus detuning to the blade frequency (as
mentioned in section 3.1, stiffness of the rotating blade inedgewise mode is almost
unchanged with differentΩ due to both centrifugal stiffening and softening effects).
This slight detuning effect can be counteracted by increasing bandwidth of the damper
via a damping mechanism (Krenk 2005). The damping mechanismof the roller re-
sults from the rolling friction between the contacting surfaces of the roller and the
track (see Appendix B). However the damping property is not easy to quantify accu-
rately and difficult to adjust during operation, which is themain disadvantage of the
roller damper.

Based on the 2-DOF blade-damper model, parametric optimizations of the tuning
ratio and the coefficient of rolling friction have been carried out using 2-dimensional
numerical optimization (Appendix B). It is shown that as themass ratio (mass of the
roller to the modal mass of the blade) increases, the optimaltuning ratio decreases and
the optimal friction coefficient decreases very slightly. The detuning effect becomes
less sensitive with larger mass ratios, and acceptable control effect of the damper
can be obtained at a wider range of parameter variations. Further, as the mass ratio
increases and as the damper is mounted closer to the blade tip(with larger centrifugal
acceleration), the damping effect on edgewise vibrations becomes more pronounced.
However, the mass of the damper and its mounting position should be constrained
by the available space inside the blade, making the chosen ofthese two parameters a
tradeoff problem.

Figure 3.6 presents the performance of a roller damper with optimized parameters
for mitigating edgewise vibrations, when the mean wind speed is 15m/s and the turbu-
lence intensity is 0.1. The mass ratio is 0.03 and the mounting position isx0=45 m. As
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Figure 3.6 Performance of the roller damper for wind turbines under normal operational conditions,V0 =
15 m s−1, I=0.1,m = 0.03m0, x0 = 45 m, optimal tuning ratio and friction coefficient,Re = 1.785m.
(a) Time series of the edgewise vibration, (b) Fourier amplitude of the edgewise vibration.

shown in Figure 3.6(a), the modal loads from gravity result in a large harmonic mo-
tion in edgewise direction with an angular frequency of 1P. On top of this deterministic
harmonic-varying motion, oscillations related to the edgewise eigenvibration are also
presented in the time history. The roller damper has no effect on the gravity induced
1P motion (very low frequency) since it’s a inertia based vibration absorber, but it ef-
fectively adds damping into the edgewise eigenvibration. The blade edgewise motion
with the roller damper become almost pure harmonic (with the1P frequency) since
the high frequency oscillation has been significantly mitigated the the roller damper
(with a mass of 39 kg). From the Fourier amplitude spectrum (in semi-logarithmic
chart) ofq(t) in Figure 3.6(b), it is more clearly seen that the roller damper effectively
suppress the peak around 6.85 rad/s corresponding to the fundamental edgewise an-
gular frequency. This means that a properly designed rollerdamper is able to absorb
almost all the energy in the fundamental edgewise mode of theblade. However, the
1P frequency peak is not influenced at all by the roller damper.
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Figure 3.7 Performance of the roller damper for wind turbines under aeroelastic instability (here mimicked
by manually set the damping ratioζ0 = −0.001), m = 0.03m0, x0 = 45 m, optimal tuning ratio and
friction coefficient,Re = 1.785m. (a) Time series of the edgewise vibration, (b) Fourier amplitude of the
edgewise vibration.

In contrast to the gravity induced motion, the edgewise vibration (in the funda-
mental edgewise mode) is stochastic in nature, and is influenced by both the turbu-
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lent wind and the operational condition of the turbine. The aerodynamic damping
may become negative under certain conditions (Hansen 2007). Figure 3.7 shows the
performance of the roller damper (same parameters used as inFigure 3.6) when the
aeroelastic instability takes place. In the present numerical example, the modal damp-
ing ratioζ0 of the blade is manually set to be -0.001 (in principleζ0 is always positive)
in order to mimic the negative total damping (the structuraldamping plus the aerody-
namic damping) under aeroelastic instability. It is seen that the edgewise response
increases exponentially with time when there is no roller damper mounted. The in-
stability is totally eliminated by the attached roller damper, implying that significant
damping is introduced by the roller damper into the fundamental edgewise mode to
overwhelm the negative aerodynamic damping.

The roller damper has the advantage that its mass moment of inertia can be ad-
justed (with the same mass) during design process by using different layouts of the
roller. However as mentioned earlier, the damping property(friction between the roller
and the track) is difficult to quantify and adjust. This makesthe roller damper a device
with relatively narrow bandwidth, i.e. the detuning effectbecomes significant when
the rotational speed of the rotor changes (during starting up or closing down of the
rotor), since the damping property can not be adjusted accordingly. Therefore, liquid
dampers, the damping property of which can be controlled easily, become interesting
to be investigated.

3.3 Tuned liquid column damper (TLCD)

Among different liquid dampers, tuned liquid column damper(TLCD) is one of the
favored options because it has several advantages, including low cost, easy installa-
tion and maintenance, easy adjustment of damper geometry tothe target frequency
and controllable damping property by the orifice opening. The controllable damping
property is important for wind turbine blades since detuning of the damper occasion-
ally takes place when the rotor speed deviates from the ratedvalue, such as in the
below-rated region (Burtonet al. 2001).

TLCD imparts external damping to a structure through the inertial force of an
oscillating liquid column in a U-shaped container (Sakaiet al. 1989). Energy of the
liquid column is dissipated when the liquid passes through an orifice opening in the
middle of the horizontal tube. This kind of damper has been successfully implemented
in Hotel Cosima, Hyatt Hotel and Ichida Building in Osaka (Shimizu and Teramura
1994) and also in One Wall Centre in Vancouver (Colwell and Basu 2008). A number
of studies (Balendraet al. 1995; Balendraet al. 1999; Wonet al. 1996) have shown
that a properly tuned TLCD could significantly reduce structural responses under wind
and earthquake excitations. TLCD was developed mainly for the purpose of suppress-
ing horizontal motion of structures (Gaoet al. 1997), as shown in Figure 3.8(a), but
it was also propose for suppressing pitching motion of structures such as bridge deck
(Xue et al. 2000), as shown in Figure 3.8(b). Investigation has also been carried out
for comparing the performance of TLCDs with TMDs, and it was concluded that TL-
CDs were as effective as TMDs in damping structural vibrations (Xu et al. 1992).
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30 Damping of edgewise vibrations in rotating wind turbine b lades

Lee et al. (Leeet al. 2006) investigated the TLCD in reducing the wave induced vi-
brations of the floating platform system. Both the analytical and experimental results
show promising performance of the TLCD when it is accuratelytuned. More recently,
Colwell and Basu (Colwell and Basu 2009) carried out a thorough theoretical study
on the performance of a TLCD for vibration control of offshore wind turbine towers
and observed that a single TLCD could reduce the tower displacement by up to55%.

(a) (b)

Figure 3.8 Previous investigations of TLCD. (a) TLCD for suppressing horizontal motion of the structure
(Gaoet al 1997). (b) TLCD for suppressing pitching motion of the structure (Xueet al2000).
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Figure 3.9 A rotating blade equipped with a TLCD, 2-DOF model proposed in the present study.

The successful applications of TLCD in civil engineering structures again mo-
tivate us to utilized it in wind turbine blades. Same as the roller damper, damping
effect of the blade-mounted TLCD is governed by the large centrifugal acceleration
x0Ω

2. As shown in Figure 3.9, the TLCD mounted inside the blade is composed of a
U-shaped tube with an orifice installed at the centerO of the horizontal tube. Since
the U-shaped container is mounted inside a rotating blade with a changing azimuthal
angle, it should be manufactured in a closed form to prevent the liquid from leak-
ing out of the tube. In this case, an extra slim tube connecting two vertical tubes is
fixed in order to balance the pressure above the liquid columnduring oscillation. The
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cross-sectional area of the TLCD can be non-uniform, where the vertical and horizon-
tal column cross-sectional areas are denoted asA andA0, respectively. The density,
the horizonal width, the vertical height and the overall length of the liquid inside the
TLCD are represented byρ,H ,B andL, respectively, whereL = 2H +B.

A moving (y2, y3)- coordinate system fixed to the damper has been introduced
to describe the liquid motionv(t) relative to the U-shaped tube. Describing the liquid
motion in (y2, y3)- coordinate system and the blade edgewise vibration in(x2, x3)-
coordinate system, the kinetic and potential energy of the blade-TLCD system can be
formulated (see Appendix C). Employing the Euler-Lagrangeequation, the equations
of motion of the 2-DOF blade-TLCD system can be obtained, which turn out to be
nonlinear ordinary differential equations (Eqs. (18) and (19) in Appendix C).

Ignoring the influence of gravity, the circular eigenfrequency of the TLCD can
be obtained as

ωd =

√

2(x0 −H)

2H + αB
Ω =

√

2x0 − L(1− γ)

L+ (α− 1)γL
Ω (3.4)

whereα = A/A0 is the area ratio. The horizontal length ratioγ is defined asγ = B
L

.
It is clearly seen that the motion of the liquid is governed bythe centrifugal accel-
erationx0Ω2. For gravity-based TLCDs with uniform cross sections, the circular
frequency is given by the well-known expressionωd =

√

2g/L. Gaoet al (1997)
further give the expression of circular frequency for the TLCD (gravity-based) with
different cross-sectional areas in its vertical and horizontal sections, which is written
asωd =

√

2g/Lee, whereLee = L+(α− 1)B = L+(α− 1)γL. Eq. (3.4) is analo-
gous to this expression, with the gravitational acceleration replaced by the centrifugal
acceleration.

Further, it should be noted that the damping force of liquid motion (due to the
orifice) can be expressed as (Sakaiet al. 1989)

Fd = −
1

2
ξ ρA0|v̇0| v̇0 (3.5)

wherev0 is the displacement of the liquid in the horizontal tube.ξ is the head loss
coefficient by the opening ratio of the orifice. The value ofξ can be easily adjusted by
changing the orifice opening. Even semi-active control of the TLCD can be carried out
by varying the orifice opening in real-time according to certain optimal control laws
(Yalla et al. 2001). This makes the TLCD a device with relatively large bandwidth,
and it is a major advantage of the TLCD comparing with the roller damper.

Based on the 2-DOF nonlinear model for the blade-TLCD system, parametric
optimizations of the turning ratio and the head loss coefficient have been performed
for various values of mass ratios, the area ratioα and the horizontal length ratioγ,
using 2-dimensional numerical searching (Appendix C). Among other findings, it is
shown that better control performance of the TLCD can be obtained by increasingγ.
This is because the mass of the horizontal part of liquid is the only effective mass
of TLCD acting on the structure, and a damper with a higher value ofγ has a larger
effective mass. However,γ should be limited by the space restriction inside the blade.
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32 Damping of edgewise vibrations in rotating wind turbine b lades

Moreover, an increase inα leads to a shortening of the total length of the liquidL
as well as the horizontal lengthB, but to a slightly reduced control efficiency of the
TLCD. This characteristic is meaningful for applying TLCD into the wind turbine
blades where the available space in the vicinity of the tip islimited.
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Figure 3.10 Behavior of the TLCD under various rotational speeds of the rotor,V0 = 15 m/s,I = 0.1,
x0 = 55 m, mass ratio=0.03,α = 2, γ = 0.7.

When the rotational speed of the rotor deviates from the rated value, the damping
effect of the damper will be reduced due to detuning. However, by varying the head
loss coefficient (orifice opening) in response to the change of the rotational speed, the
performance of the TLCD can be enhanced. Figure 3.10 shows the control perfor-
mance of the TLCD under various rotational speeds of the rotor. As expected, whenΩ
deviates from the rated value, the control efficiency of the TLCD is drastically reduced
because of the frequency detuning. Nevertheless, it is observed that its performance
is improved by semi-actively varying the head loss coefficient in response to the rotor
speed. As for the passive TLCD with fixed head loss coefficient, the reduction ratio
drops to below 10% forΩ < 1 rad/s. On the other hand, the reduction ratio remains
above 10% for allΩ between 0.6 and 1.267 rad/s when different optimal values ofξ
are used for differentΩ.

When the rotor speed is fixed to the rated value, the TLCD with optimal param-
eters is less effective than the optimized roller damper with a same physical massm.
This is because the effective mass of the roller damper is larger thanm, as revealed by
Eq. (3.2), while the effective mass of the TLCD (the liquid inthe horizontal tube) is
always less thanm. However, in practice the rotor speed will always be varied within
a certain range, and TLCD with controllable orifice opening may perform better than
the roller damper in this respect. The controllable dampingproperty of the TLCD
makes it promising to be applied in an operating wind turbines.

3.4 Circular liquid column damper (CLCD)

The roller damper has the advantage of larger effective massand the TLCD has the
advantage of controllable damping property. Is it possibleto devise a damper that
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Figure 3.11 Geometries of the circular liquid damper.

includes both characteristics? The answer is yes.
Motivated by the idea of TLCD together with the roller damper, a new type of

liquid column damper (LCD) has been proposed here for edgewise vibration control
of wind turbine blades. The damper is circular in shape or geometry and hence is
termed as the circular liquid column damper (CLCD). Figure 3.11 shows the schematic
diagram of the CLCD. It is virtually a circular tube partly filled with certain amount
of liquid that could oscillate back and forth inside the tube. The liquid and the circular
tube behave as the roller and the track, respectively. On theother hand, orifices can be
installed inside the circular tube for providing damping mechanism of the CLCD.

The radius of the circular tube (distance from the center point O to the central
axis of the tube) is denotedR, and the radius of the cross-section of the tube is denoted
by r. Therefore, the total dimension of the damper can be calculated asH = 2(R+r).
The liquid inside the tube is assumed to be connected, fillinga segment with central
angle2Θ0 of the complete circle and the center of gravity is denoted byG. A moving
(y2, y3)-coordinate system fixed to the damper has been introduced. This coordinate
system has its origin at the center pointO of the circular damper, withy3-axis placed
on the symmetry line of the damper as shown in Figure 3.11. Themotion of the liquid
is described by the degree of freedomθ(t), which measures the clockwise rotation of
the center of gravity of the liquid from they3- axis.

From the dynamics point of view, the working principle of theCLCD is exactly
the same as the roller damper. Therefore, the liquid inside the circular tube is again
represented by an equivalent mathematical pendulum with the equivalent massme

and the equivalent radiusRe. Based on the principle that the equivalent mathemat-
ical pendulum should represent the same kinetic and potential energy as the CLCD
(Appendix D), the expressions ofme andRe become

Re = R

(

1 +
1

4
α2

)

, me = m

(

1 + 3

4
α2
)

(

1 + 1

4
α2
)2

(3.6)

whereα = r/R is defined as the radius ratio between the cross-section and circular
tube. It can be seen from Eq. (3.6) that the effective massme is always larger than
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the physical massm for 0 < α < 1, making the CLCD a more effect damping device
than the TLCD (me < m) when the rotor is operating in rated rotational speed. On
the other hand, the effective mass of CLCD is generally smaller than that of the roller
damper (Eq. (3.2)) when same physical mass is used for both dampers.

HavingRe andme, the resulting equations of motion of the blade-CLCD system
can be obtained following the same procedure as for the roller damper, and are almost
same as that for the blade-roller damper system, except for the damping force terms.
Same as the TLCD, the damping force acting on the oscillatingliquid is due to the
energy dissipation when the liquid passes through the orifice inside the CLCD. There-
fore, the CLCD possesses the same advantage of TLCD with controllable damping
properties, and has larger bandwidth when the rotational speed of the rotor deviates
from the rated value. Even semi-active control can be carried out by changing the
orifice opening in real-time according to certain optimal control laws. For detailed
equations of motion of the blade-CLCD, as well as the resultsand analysis of the
performance of the CLCD, please see Appendix D.

Having both characteristics of the roller damper and the TLCD, CLCD turns
out to be a quite promising device for damping edgewise vibrations in rotating wind
turbine blades.

3.5 Tuned liquid damper (TLD)

Another kind of liquid damper, namely tuned liquid damper (TLD), has also been
widely used in civil engineering structures, and becomes a natural candidate for damp-
ing edgewise vibrations in wind turbine blades. The large centrifugal acceleration of
the rotating blades again makes it possible to use TLD with rather small mass ratios.

The TLD, which consists of a tank partially filled with fluid, mitigates struc-
tural vibrations by utilizing the sloshing fluid. Therefore, it also has the name of
tuned sloshing damper (Fujiiet al. 1990; Kareem 1990). Normally, the fundamental
sloshing frequency of the liquid is tuned to the fundamentalfrequency of the primary
structure. When the TLD is excited by the motion of the primary structure, the liquid
in the tank begins to slosh, imparting inertial forces onto the structure, out of phase
with its motion, thus absorbing and dissipating energy. Themain advantages of the
TLD are the ease of fabrication and installation, especially where space constraints
exist, and minimal maintenance after installation, which make the device even more
cost-effective than the TLCD and the CLCD.

The TLD has been shown to effectively suppress the wind-induced vibration of
structures (Fujiiet al. 1990; Tamuraet al. 1995; Chang and Gu 1999). It is also
proposed for seismic control of structures. Both experimental and theoretical studies
(Banerjiet al. 2000; Leeet al. 2007; Jinet al. 2007) have shown that a TLD does
reduce the vibrations of flexible structures subjected to earthquake excitations.

For the roller damper, the TLCD and the CLCD, the local dynamics of the damper
can be well accounted for by a single degree of freedom model.Hence, reduced order
2-DOF blade-damper models have been established for the analysis and design of
these devices. However for the TLD, the highly nonlinear nature of the sloshing liquid
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makes the modeling of TLD much more challenging.
Numerous methods have been proposed to predict the responseof sloshing liq-

uid. Equivalent mechanical models based on TMD analogy (Sunet al. 1995; Yuet al.
1999) simplify the TLD to an equivalent tuned mass damper, with the equivalent mass,
stiffness and damping calibrated from the experimental results. This kind of model is
able to predict the energy dissipation through liquid sloshing and is useful in the pre-
liminary design of the TLD. However, the nonlinear fluid response cannot be captured
by such simple models. Nonlinear shallow water wave theory (Sun and Fujino 1994;
Reedet al. 1998) has been proposed for predicting the response of fluid sloshing
in rectangular tanks. Although the nonlinear shallow-water wave equations can be
solved numerically, it is computational inefficient and does not provide an effective
design tool for engineering application. Modal expansion techniques (Faltinsenet al.
2000; Faltinsen and Timokha 2001; Love and Tait 2010) have been used to model the
sloshing problem, where the fluid flow is assumed to be inviscid, irrotational, incom-
pressible and without rigid-body rotations. The velocity potential and the free surface
are expressed as a summation of sloshing modes, and a system of coupled ordinary
differential equations are developed by applying calculusof variations (Faltinsen et
al., 2000; Faltinsen and Timokha, 2001).

Similar as in the work of Faltinsen et al. (Faltinsenet al. 2000) and Faltinsen and
Timokha (Faltinsen and Timokha 2001), modal expansion technique has been used in
this paper for the sloshing problem. However, the main obstacle in modeling the TLD
in rotating blades is that strong non-inertial forces appear in the Euler equations in
terms of the angular acceleration, the Coriolis acceleration and the centripetal accel-
eration. These effects render the use of potential flow theory invalid even for inviscid
and irrotational fluid flow. Therefore, modal expansion is carried out directly on the
velocity field of the fluid rather than the velocity potential. The basic idea for the
modeling of TLD is as follows.
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Figure 3.12 Schematic diagram of the blade-TLD model.

As shown in Figure 3.12, the motion of the fluid relative to thetank is described
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in (y1, y2, y3)-coordinate system fixed to the damper with its originO ′ placed at the
center of the mean water level (MWL). The free surface is defined by a single variable
of the surface elevationη(y1, y3, t) measured from the mean water level. By refor-
mulating the Lagrangian description of the particle motioninto Eulerian description
(Malvern 1969), the boundary value problem (Euler equationwith nonlinear boundary
conditions) is established in(y1, y2, y3)-coordinate system (see Appendix E). Since
inviscid flow has been assumed , no dissipation terms exist inthe Euler equation. The
indicated dissipation mechanism will be modeled by introducing an equivalent lin-
ear damping term in the Euler equation. This linear damping term accommodate the
overall energy dissipation arising from both the fluid viscosity and the flow restrict-
ing devices such as damping screens and baffles (Appendix E).The validity of the
modeling of this equivalent damping has been verified by the real-time hybrid testing
(RTHT) described in the next chapter.

A weak form of the boundary value problem can be obtained by the Galerkin
variational method, where the modal expansions of the velocity field v(y, t) and its
virtual variationδv(y) are expressed as:

v(y, t) =

N
∑

i=1

ri(t)Vi(y) , y ∈ V (t)

δv(y) =

N
∑

i=1

δri Vi(y) , y ∈ V (t)
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(3.7)

wherev(y, t) is the velocity vectors of the fluids particle as seen by an observer fixed
to the (y1, y2, y3)-coordinate system.V (t) is the time-varying fluid domain.ri(t)
andδri denote the generalized coordinates of the velocity field andthe variational
field. The shape functionsVi(y) are not required to fulfill any mechanical boundary
conditions on the free surface. However, they need to have zero divergence and to
fulfill vanishing kinematical boundary conditions on the side walls.

Being placed close to the blade tip with small blade thickness, the widthB of the
TLD will be small compared toh andL. Due to this geometric constrain, the flow is
predominantly 2-dimensional, taking place in the(y1, y2)- plane. Hence it is assumed
thatv3(y, t) ≡ 0 in the present study. The eigenmodes of standing waves in linear
wave theory have been used as shape functions:

Vi(y) =





− sin
(

ki(y1 + L
2
)
)

cosh
(

ki(y2 + h)
)

cos
(

ki(y1 + L
2
)
)

sinh
(

ki(y2 + h)
)

0



 , (y1, y2) =
[

−
L

2
,
L

2

]

×
[

−h, η(y1, t)
]

(3.8)

whereh is the mean water depth andki = i π
L

is the wave number. The angular
eigenfrequenciesωi of the standing waves are approximately determined from the
dispersion relation

ω2
i ' x0Ω

2 ki tanh(kih) (3.9)
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which is identical to the corresponding dispersion relation for gravity waves (Svendsen
et al. 1976), except that the gravitational accelerationg has been replaced by the
centrifugal accelerationx0Ω2.

Next, the boundary condition on the free surface is discretized in a similar man-
ner. Modal expansions of the surface elevationη(y1, t) and its virtual variationδη(y1)
are formulated:

η(y1, t) =

N
∑

i=1

si(t) cos

(

ki

(

y1 +
L

2

)

)

δη(y1) =

N
∑

i=1

δsi cos

(

ki

(

y1 +
L

2

)

)



























(3.10)

wheresi(t) andδsi denote the generalized coordinates ofη(y1, t) andδη(y1). The
selected shape functions in Eq. (3.10) is motivated by the linear wave theory, where
the free surface condition reduces tov2(y1, 0, t) = ∂

∂t
η(y1, t). Hence, the distribution

with y1 for each shape function in Eq. (3.10) should be pairwise proportional to its
counterpart in Eq. (3.8).

Finally, coupled nonlinear differential equations forri(t) andsi(t) can be ob-
tained by substituting Eqs. (3.7), (3.8) and (3.10) into theweak formulation of the
boundary value problem (Appendix E). As mentioned earlier,a linear damping term
µv(y, t) has been incorporated into the Euler equation, accounting for the overall
energy dissipation from both the viscous effect and the damping screens. Upon in-
serting the modal expansions into the weak formulation, this linear damping term
turns out to be

∑

∞

j=1

µ
ρ
mij(t)rj(t), wheremij(t) is the modal mass terms given

in Eq. (19) in Appendix E. Upon reformulation, this term can be further written as
∑

∞

j=1
ξω1mij(t)rj(t), where the non-dimensional damping parameterξ is introduced

asξ = µ/(ρω1), andω1 is the first sloshing eigenfrequency. Equivalent withµ, ξ also
accounts for the overall energy dissipation and will be usedas the only damping pa-
rameter in our theoretical model. In next chapter, this assumed linear damping model
will be verified through real-time hybrid testing, and the value of ξ will also be cal-
ibrated under different cases. Obviously, including damping screens results in larger
dissipation in the flow and thus larger values ofξ.

As shown in Figure 3.13,fc
(

t) with the non-vanishing moving frame components
fc,1(t) andfc,2(t), denotes the external reaction force vector on the liquid due to the
pressurep(y, t) from inner side of the tank. This force vector, when transferred to the
primary structure, represents the passive control force for edgewise vibrations. The
analytical expression offc

(

t) can be obtained by integrating the pressurep(y, t) over
inner surfaces of the tank, in combination with the divergence theorem (Zhanget al.
2015), which turns out to be dependent on the state variablessi(t) through the time-
varying fluid domainV (t). This force vector is then incorporated into the equation of
motion of blade edgewise vibrations, i.e. Eq. (3.1).

In contrary to the other three types of dampers that are described by 1-DOF mod-
els, the motion of the liquid in the TLD is described by a2N -DOF model, as shown
in the modal expansions in Eqs. (3.7) and (3.10). Truncations at the orderN=1 and
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Figure 3.13 Pressure distribution on inner surfaces of the TLD tank.

N=3 have been considered in the present study, representing one and three sloshing
modes, respectively. Figure 3.14(a) shows the simulation results of time histories of
the sloshing force iny1- direction. In general, the result from the one-mode model
agrees well with that from the three-mode model. At certain instants of time such
ast=319.7 s, relatively large discrepancies can be observed between the two models.
This is due to the higher frequency contributions from the second and third sloshing
modes in the three-mode model, which can not be captured by the single-mode model.
Figure 3.14(b) shows the corresponding edgewise tip displacement of the blade when
a TLD is mounted inside. The structural responses from the one-mode and three-mode
models are in excellent agreement with each other. Essentially, the primary structure
behaves like a filter, which filters out high frequency disturbances in the sloshing force,
leading to almost identical results in Figure 3.14(b). Hence, the one-mode model is
sufficient to accurately predict the TLD-damped structuralresponse, and can be uti-
lized for optimal design of the TLD.

Figure 3.15 illustrates the fluid surface elevation at various instants of time for
the one-mode and three-mode models. The general behaviors of the sloshing liquid
are similarly predicted by both models since the first sloshing mode contributes most
to the liquid motion. On the other hand, it is also obviously seen that the second
and third sloshing modes have larger effect on the fluid surface elevation than on the
sloshing force and the structural response. The one-mode model only represents the
first sloshing mode (cosine function), resulting in zero surface elevation at the middle
of the tank at all time, which is surely unrealistic. Therefore, for accurately predicting
the surface elevation, modal expansions to three or more sloshing modes need to be
carried out. Furthermore, it can be seen by comparing Figure3.14(a) and Figure 3.15
that there is a strong correlation between the sloshing force and the surface elevation,
i.e., the sloshing force agrees well with each other whenη(t) is in good agreement
(such ast=306 s, 315.4 s).

To sum up, the TLD is proposed as a competitive candidate for damping edge-
wise blade vibrations in this project. The main contribution here is to establish a
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force) iny1- direction, (b) Blade edgewise tip displacement with TLD.
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useful engineering model for modeling the blade-TLD systemusing modal expansion
technique, where the total energy dissipation during fluid sloshing has been accounted
for by incorporating linear viscous damping terms. Different levels of accuracy can
be achieved by using different numbers of sloshing modes in the modal expansion.
In the simplest case, one-sloshing-mode model can be used for predicting the con-
trolled structural response, while it fails to predict the sloshing response of the liquid
and higher modes need to be included. In next chapter, the validity of this theoretical
model will be further verified by RTHT using a full-scale TLD.

Besides its advantage of cost-effectiveness, TLD also has the potential of being a
semi-active device with rotatable baffles installed insidethe tank (Zahraiet al. 2012),
as shown in Figure 3.16. The main idea behind installing suchbaffles is to compen-
sate the effects of probable mistuning of the TLD, since the eigenfrequency of the
TLD can be adjusted with different angles of the baffle. This characteristic of con-
trollable eigenfrequency makes the TLD a even more promising device for rotating
wind turbine blades than the TLCD and CLCD (with only controllable damping prop-
erties). Further experimental investigations (RTHT) are planned to be carried out in
this respect in the future.

Figure 3.16 TLD with some standing rotatable baffles (Zahraiet al 2012).
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CHAPTER 4
Mitigation of lateral tower

vibrations in wind turbines

This chapter deals with both active and passive control of lateral tower vibrations.
By means of modern power electronics, the generator torque can be prescribed to a
certain value with a time delay below10−2 s and affects the lateral tower vibration
through the reaction on the generator stator. Using this property, feedback control of
lateral tower vibrations can be performed. The load transfer mechanisms from the
drivetrain and the generator to the nacelle are derived, andthe interaction between
the generator torque and the lateral tower vibration are presented in a generalized
manner. Next, as an alternative to the active generator controller, passive control of
lateral tower vibrations using TLDs have also been investigated, since it is a more
cost-effective and robust method. The nonlinear model established for the blade-TLD
system in the preceding chapter has been modified to deal withthe tower-TLD system.
Furthermore, to verify the proposed theoretical model as well as the assumed linear
damping term in the model, and to evaluate the actual behavior of TLDs in damping
lateral tower vibrations, a series of real-time hybrid tests (RTHT) have been performed
on a full-scale TLD (physical substructure), with the 13-DOF model formulated in
Matlab/Simulink (numerical substructure).

4.1 Active generator control of tower vibrations

Similar to the blade edgewise vibration, lateral tower vibrations are also very lightly
damped due to low aerodynamic damping present in this mode. There is also a pos-
sibility of aeroelastic instability in lateral tower mode for some combinations of aero-
dynamic properties and operational conditions, especially for the parked turbine with
nacelle yaw errors (Bir and Jonkman 2007). Moreover, for offshore wind turbines
placed at shallow water, the wave load may act in a different direction of the mean
wind direction due to refraction, and significant lateral tower vibrations may be initi-
ated by the wave load in combination with the resultant aerodynamic loads from the
three blades in the lateral tower direction.

The idea of providing active damping to lateral tower vibration using generator
torque was first proposed by Van der Hooftet al. (Van der Hooftet al. 2003) and
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42 Mitigation of lateral tower vibrations in wind turbines

was further investigated by de Corcueraet al. (De Corcueraet al. 2012) and Fleming
et al. (Fleming et al. 2011). Essentially, the generator torque affects the lateral
tower vibration through the reaction on the generator stator, which is rigidly fixed
to the nacelle. By means of modern power electronics, the generator torque can be
prescribed to a certain value with a delay below10−2 s (Blaabjerget al. 2004). By
using this property, feedback control of the lateral tower vibrations can be performed.
Van der Hooftet al. (Van der Hooftet al. 2003) simplified the tower by a single-
degree-of-freedom(SDOF) representing the lateral translational motion, and the tower
top rotation was neglected. Since the generator torque is affecting the lateral tower
motion via the tower top rotation, this SDOF tower model doesnot adequately account
for the transfer of the generator torque. De Corcueraet al. (De Corcueraet al. 2012)
demonstrated a strategy to design a multi-variable controller based on the H∞ norm
reduction for reducing both the drivetrain torsional vibration and the tower side-to-
side vibration, with simulations carried out in the GH Bladed software. This study
focuses on the controller design procedure. However, the torque transfer mechanism
from the generator to the tower vibration and the effect of the generator torque on other
components of the wind turbine are not demonstrated. Fleming et al. (Van der Hooft
et al. 2003) presented the field-testing results of the effect of active generator control
on the drivetrain and lateral tower vibrations in a 600-kW wind turbine. A multi-
SISO (single-input-single-output) controller is compared with the H∞ controller, and
a similar effect for damping the lateral tower vibration wasobtained.

Actually, the edgewise vibrations of the blades are coupledto the lateral tower
vibration, as well as to the torsional drivetrain vibrationthrough the collective mode.
Since very low, even negative, aerodynamic damping takes place in edgewise vibra-
tion, it is important to investigate the effect of the activegenerator torque on this mode
of vibration. Moreover, as the basis of implementing activegenerator control, the load
transfer mechanisms from the drivetrain and the generator to the nacelle, as well as
the interaction between the generator torque with the lateral tower vibration are not
clearly demonstrated in the above-mentioned studies. The mechanisms need to be re-
vealed clearly. Further, all the previous studies focus on the gear-driven wind turbines.
With offshore wind turbines becoming larger and being movedout further at sea, there
is huge application potential of direct-driven systems, where the turbine rotor is cou-
pled directly to the electrical generator without the gearbox. For the direct-driven
wind turbines, the electric torque in the generator is much larger comparing with the
gear-driven wind turbines, making it possible to damp the lateral tower vibration more
effectively. Therefore, cases of both the gear-driven and direct-driven offshore wind
turbines have been considered in the present study.

The 13-DOF model described in Chapter 2 is used for deriving the load transfer
mechanisms from the generator to the nacelle. All notationsgiven in Chapter 2 are
kept the same here. As shown in Figure 4.1, using D’Alembert’s principle, the load
work-conjugated toq9(t) becomes (Appendix F)

f9(t) =











f9,w(t) − µf12(t) + f13(t) − k0

(

1 +
1

N

)(

q12(t) −
1

N
q13(t)

)

(odd)

f9,w(t) − µf12(t) − f13(t) − k0

(

1−

1

N

)(

q12(t) −
1

N
q13(t)

)

(even)

(4.1)
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Figure 4.1 Schematic diagram of the torque transfer mechanism betweenthe drivetrain and the tower.

where the first equation corresponds to the case with odd number of grea stages and
the second equation for even number of gear stages. The acceleration terms̈q12(t)
andq̈13(t) have been eliminated by means of the equations of motion of the drivetrain
(Chapter 2).µ denotes the friction coefficient due to friction in the bearings and the
gear box,N is the gear ratio.f9,w(t) is the load conjugated toq9(t) induced by waves
propagating in theX2 direction (Appendix F).

Especially for direct-driven wind turbines, whereN = 1, we get from the second
equation in Eq. (4.1) that

f9(t) = f9,w(t)− µf12(t)− f13(t) (4.2)

Hence, based on the relationship (transfer mechanism) betweenf9(t) andf13(t)
in Eqs. (4.1) and (4.2), the lateral tower vibrations can be controlled by specifying
the format of the generator torquef13(t). Modern power electronics makes it possible
to specify the generator torque within certain limits almost instantly. The generator
torque can thus be used as an actuator in the active control oflateral tower vibra-
tions. In the present study, the generator controller with feedback from lateral tower
vibrations is proposed as:

f13(t) = f13,0 +∆f13,0(t) = f13,0 + c0q̇13(t) + caq̇8(t) (4.3)

wheref13,0 is the constant nominal torque and∆f13,0(t) is the torque increment
which can be used as actuator and specified in various ways.c0q̇13(t) is the tor-
sional damping term for the drivetrain with feedback from measured generator speed
(Licari et al. 2013), which is very commonly included in the generator torque. For
mitigating lateral tower vibrations, a damping termcaq̇8(t) (derivative controller) is
included with feedback froṁq8(t) to add damping into the lateral tower mode, andca
is the gain factor. Generally speaking, the tower controller can be augmented with a
torque component proportional to either the displacementq8(t) (proportional control)
or the acceleration̈q8(t) (acceleration control), so that the eigenfrequency of the tower
can be changed to a certain extent. This has not been further pursued in the present
study, since the derivative controller alone is very effective in mitigating lateral tower
vibrations as shown below.
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44 Mitigation of lateral tower vibrations in wind turbines

In practical applications, the feedback signalq̇8(t) is obtained by integrating the
measured tower top acceleration from accelerometers placed in the nacelle. From a
vibration point of view, it is favorable to have largerca and introducing higher damp-
ing into the lateral tower mode. However from a power electronic point of view, it is
favorable thatca is as small as possible in order to have a small power output. Conse-
quently there is tradeoff between these two objects. The gain factorca is chosen such
that the performance criterion considering both the structural vibration and the power
smoothness is minimized (Appendix F).
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Figure 4.2 Lateral tower vibration with and without active generator control, gear-driven wind turbine. (a)
Time history in 400–500 s. (b) Fourier amplitude of lateral tower vibration.

Figure 4.2 shows the lateral tower top displacementsq8(t) in both the time and
frequency domain. There is a reduction of 17.8% in the maximum responses and
a reduction of 37.6% in the standard deviations. The FFT of the responseq8(t) is
presented in Figure 4.2(b). For a system without active generator control, a clear peak
corresponding to the tower eigenfrequency (around1.76 rad/s) is observed without
other visible peaks, owing to the fact that very low aerodynamic damping takes place
in this mode. This peak is reduced to approximately1

3
by the active generator torque

due to the introduced damping to the lateral tower mode.
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Figure 4.3 Influence of the active generator torque on the power output,gear-driven wind turbine.

With the extra torque componentcaq̇8(t) for tower vibration control, fluctuating
of the power output is introduced on top of the nominal torque. As shown in Figure
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4.3, due to this torque increment, the generated power becomes more fluctuated with
an increase of 1.3% in the maximum value and an increase of 33.0% in the standard
deviation. Since the stiffness and mass of the tower for the offshore wind turbine is
very large, it is inevitable that effective control of the tower vibration is at the expense
of a little more fluctuated power output, which is unfavorable for the grid side. One
possible solution to accommodate this problem is to increase the energy storage in the
power converter by increasing the size of the capacitor.

Further, it is also favorable to observe from simulation (Appendix F) that the
edgewise vibration is slightly suppressed by the active generator controller due to the
coupling of edgewise vibration to the lateral tower vibration. The maximum response
and the standard deviation are reduced by 5.5% and 5.0%, respectively (Appendix F).

For direct-driven wind turbines, the nominal generator torque is increased byN
times comparing with the gear-driven wind turbine, while the nominal rotational speed
of the generator is reduced byN times. Figure 4.4 shows the remarkable capability
of the active generator controller in suppressing lateral tower vibrations for the direct-
driven wind turbine. The maximum response ofq8(t) is reduced by 26.6%, and the
standard deviation is reduced by 54.0%. The Fourier spectrum of the lateral tower
top displacement (Figure 4.4(b)) shows that the peak around1.76 rad/s, correspond-
ing to the tower eigenfrequency, is almost totally eliminated by the active generator
controller, comparing with that of the uncontrolled case. The reason for the superior
performance is that the nominal generator torquef13,0 is much larger in the direct-
driven wind turbine, and thus, the additive torque are also increased accordingly.
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Figure 4.4 Lateral tower vibration with and without active generator control, direct-driven wind turbine.
(a) Time history in 400–500 s. (b) Fourier amplitude of lateral tower vibration.

Figure 4.5 shows the time-history of the power output from the generator of the
direct-driven wind turbine. A little negative effect on thesmoothness of the power
output is observed after the implementation of the active generator control. The max-
imum value of the power output is increased from5.41 MW to 5.48 MW (increased
by 1.3%), and the standard deviation is increased from0.108 MW to 0.125 MW (in-
creased by 15.7%), which means less impact on the grid side than that of the gear-
driven case. For direct-driven wind turbines, the value off13,0 is significantly in-
creased, and the relative magnitude betweencaq̇8(t) andf13,0 is smaller comparing
with that of the gear-driven turbine; thus, the smoothness of the power output is less
affected by the active control.
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Figure 4.5 Influence of the active generator torque on the power output,direct-driven wind turbine.

To sum up, the effective control of lateral tower vibration is at the expense of
somewhat more fluctuated power output, and a tradeoff between the vibration aspect
and the power electronic aspect should be considered by properly choosing the con-
troller gain. The active generator controller shows superior performance for the direct-
driven wind turbine, since a better vibration control efficacy can be obtained with less
impact on the smoothness of the power output. Further, it is also favorable to observe
that the active controller has slightly positive influence (although negligible) on the
lightly damped edgewise vibration.

Since this method introduces negative impact on the smoothness of the power
output (even for the direct-driven wind turbine), it is suggested that the controller
should only be switched on when significant lateral tower vibrations take place, e.g.
due to wave excitation or sudden shift of wind directions. Further efforts should be
paid on exploring alternative methods for mitigating lateral tower vibrations without
influencing the power output. Once again, structural control technique turns out to be
a promising solution.

4.2 Damping of lateral tower vibrations using TLD

Unlike for the case of rotating blade, the widely used structural control techniques can
be easily applied to wind turbine towers, with the modeling and analysis methodolo-
gies almost unchanged.

As introduced in Chapter 1, pendulum damper, TMD, TLCD and BVA etc. have
been proposed for structural control of wind turbine towers. All these dampers can
be used to effectively mitigate lateral tower vibrations. However, the pendulum-oil
damper and the TMD suffer from the problem of constrained strokes and the BVA has
the disadvantage that the damping property is difficult to quantify and adjust. Being
a very cost-effective device, the TLD again draws our attention since it is free of the
stroke problem and its damping property can be easily adjusted by attaching damping
screens with various mesh sizes. Consequently, the TLD becomes a natural candidate
for mitigating lateral tower vibrations in wind turbines.

Zili Zhang 46



Damping of lateral tower vibrations using TLD 47

Different theoretical methods (with different accuracy and complexity) have been
proposed for predicting the performance of TLD on the buildings or towers, as de-
scribed in Chapter 3. In principal, all these methods can be applied directly to wind
turbine towers. However to make the thesis consistent, the modal based approach pro-
posed in Chapter 3 for the blade-TLD system will be employed for the tower as well.
Slight modifications are needed since the rotation of the local coordinate system is
now only due to the rotational deformation of the top of the tower.
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Figure 4.6 Modeling of the tower mounted TLD.

As shown in Figure 4.6, the TLD is assumed to be mounted at the top of the
wind turbine tower (with the height ofH0), where the elastic displacement and elastic
rotation at this position areq8(t) andq9(t), respectively. Sincėq9(t) is very small,
the motion of the liquid is governed by the gravitational accelerationg. The modeling
procedure follows almost the same as for the blade-TLD system, except that the az-
imuthal angleΩt of the local(y1, y2)- coordinate system is eliminated. The nonlinear
differential equations Eqs. (25), (31) and (36) in AppendixE can be easily modified
to obtain the differential equations for the tower-TLD system.

It is always important to verify a theoretical model throughexperimental study,
especially when high nonlinearity is involved such as for the sloshing problem here.
Furthermore, as mentioned in Chapter 3, a linear damping term with a single damping
parameter is incorporated into the Euler equation, to account for the total energy dis-
sipation arising from both the fluid viscosity and the damping screens. This assumed
damping model also needs to be verified. All these motivate usto carry out experi-
mental studies on the TLD, with the purposes of getting a moreclear understanding
of the real behavior of the sloshing liquid, verifying the proposed theoretical model as
well as the assumed linear damping model, and providing guidelines for the practical
applications of the TLD.
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4.3 Real-time hybrid testing of a full-scale TLD

It is not feasible to carry out a full-scale experiment of thewind turbine-TLD system
in the lab. A scaled down model of the system tested in lab conditions will essentially
suffer from the scale effect, particularly with respect to the liquid behavior in the
damper (e.g., due to viscous effects), and it may be a challenge to keep appropriate
proportion with dynamic similarities for the wind turbine structure and the TLD.

To circumvent these problems, a state-of-the-art testing method, the real-time
hybrid testing (RTHT) (Nakashimaet al. 1992; Nakashima and Masaoka 1999; Hori-
uchiet al. 1999), has been conducted for this system where the liquid damper is tested
physically and the wind turbine is simulated. The fundamental idea of the RTHT is
to split the entire system into two parts: a numerical substructure and a physical sub-
structure. The former will be simulated in the computer by a developed numerical
model. The latter, which generally has a complicated dynamic behavior (nonlinear
or load rate-dependent), is manufactured and tested using dynamic testing equipment
(shaking table or dynamic actuators) (Leeet al. 2007; Mercan and Ricles 2009). This
method has several advantages, such as the possibility of manufacturing full scale
physical substructure, the reduced cost of the experiment and safe evaluation of struc-
tures at extreme states. The RTHT has been widely adopted forthe performance
evaluation of energy dissipating and vibration absorbing devices, such as elastomeric
dampers (Mercan and Ricles 2009), MR dampers (Christensonet al. 2008), TLDs
(Leeet al. 2007) and TMDs (Igarashiet al. 2000).
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Figure 4.7 Conceptual view of the RTHT for the TLD-wind turbine system.

As shown in Figure 4.7, the present hybrid system includes the numerical sub-
structure, the Target PC, the MTS controller, the actuator and the physical substruc-
ture. A full-scale TLD is manufactured and tested as the physical substructure, while
the 13-DOF aeroelastic model (Chapter 2) is employed as the numerical substructure
and established in Simulink/Matlab in a PC. The complied Simulink model is down-
loaded to another PC, the so-called Target PC, where real-time simulations can be run
in Mathworks xPC Target environment. The MTS controller runs at a frequency of
1024 Hz, which is the update rate for the servo-valve commands. The communication
through the target PC and the MTS controller is managed through the shared common
random access memory network (SCRAMNet), which is a local high-speed network
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ring. Such local high-speed connections drastically reduce delays and make it possi-
ble to perform real-time hybrid simulation. The MTS controller and the actuator are
connected through SCRAMNet as well. At each time step, the tower displacement
command calculated from the Target PC is sent to the MTS controller. The MTS con-
troller generates an appropriate signal for the servo-valve which attempts to move the
actuator to the commanded position. The actual displacement of the actuator and the
reaction force (sloshing force) are measured at the same time. This reaction force is
sent back to the Target PC through the MTS controller, and used for calculating the
tower displacement at the next time step.

In the present case, the integration time step of the numerical substructure is set
to be equal to the sampling time of the MTS controller (1/1024s), since no iterations
are needed for solving the numerical model and the actual task execution time is less
than 1/1024 s. Therefore, synchronization is achieved without using the predictor-
corrector technique (Mosquedaet al. 2005; Schellenberg 2008) that is normally used
for nonlinear finite element models. Further, there is an inherent lag in the displace-
ment response of servo-hydraulic actuator versus the command displacement. Con-
sequently, the measured restoring forces are delayed relative to the command signal.
To compensate for this delay, the compensation technique (Horiuchi et al. 1999) has
been applied here, and satisfactory results have been achieved (Appendix G).

actuator
damping screens

suspensions

Figure 4.8 Test setup and the physical substructure (the TLD).

Figure 4.8 shows the test setup and the physical substructure (the TLD). The full-
size TLD is made up of a closed rectangular tank, with a inner size of 1.93 m (length)
× 0.59 m (width)× 1.2 m (height). Since the width of the tank is much smaller than
the length, it is expected the sloshing of the water is predominately 2-dimensional.
The TLD is suspended to top of the reaction frame by four steelcables in order to
minimize the friction when the tank is enforced to move by theactuator. Further, a
capacitance wave gauge (with a sampling rate of 10 Hz) is installed at the left end-
wall of the tank to measure the liquid surface elevation. Unlike the previously reported
reduced-scale tests on TLDs (Leeet al. 2007; Ashasi-Sorkhabiet al. 2013), the full-
scale tests conducted here eliminate problems related to the scale effect and dynamic
similarity, and reveal real behaviors of the sloshing liquid in a TLD that can be used

49 September 2015



50 Mitigation of lateral tower vibrations in wind turbines

in prototype wind turbines.
Cases with and without damping screens have both been investigated. The in-

clusion of damping screens significantly increases the energy dissipation of the water
sloshing, thus improving the performance of the TLD. For these scenarios, two damp-
ing screens are installed inside the tank at1/3L and2/3L positions, respectively,
whereL is the length of the tank. The size of each mesh for the presentscreen is 2.2
cm × 2.2 cm. It is expected that the damping parameterξ in the theoretical model
proposed in chapter 3 is much larger for the case with dampingscreens comparing
with its counterpart, as will be shown below.

Detailed experimental results are presented in Appendix J and Appendix G. It
is observed that the measured wave height at the left end wallcontain a lot of high
frequency components including both the higher sloshing modes and the nonlinear
interaction effect. The measured sloshing force (reactionforce), on the other hand,
filters out most of the high frequency components since the force is the result of in-
tegrating liquid pressures over inner walls of the tank. By inserting damping screens,
the remaining high frequency components are further mitigated, resulting in a slosh-
ing force that is totally dominated by the first sloshing frequency. Consequently, it is
shown from the results of structural responses that the inclusion of damping screens
effectively improves the control performance of TLD on tower vibrations. Actually,
it is only the first sloshing mode of the liquid motion that counteracts the fundamen-
tal lateral tower vibration. Although TLD effectively addsdamping into lateral tower
vibration even without damping screens, it is suggested that damping screens are in-
cluded into the TLD for better damping performance.
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Figure 4.9 Comparison of the controlled tower displacements obtainedby RTHT and theoretical model, 2
MW wind turbine, tuning ratio=1,V0 = 8 m/s,I=0.1. (a) Without damping screens (ξ = 0.004 used in
the theoretical model), (b) With damping screens (ξ = 0.015 used in the theoretical model).

Based on the experimental results, the theoretical model ofthe TLD-wind turbine
system described in last section can be verified. Especially, it’s rather important to
verify the assumed equivalent linear damping term (with a single damping parameter
ξ, as described in Chapter 3) in this model. Take one load case for example, Figure 4.9
shows the comparison of the controlled tower top displacements obtained by RTHT
and the theoretical model for a 2 MW wind turbine. By setting the damping parameter
ξ to be 0.004, the result from the theoretical model agrees very well with the test

Zili Zhang 50



Real-time hybrid testing of a full-scale TLD 51

result as shown in Figure 4.9(a). Acceptable agreement between the experimental and
theoretical results is also obtained for the case with damping screens, by choosing the
value ofξ to be 0.015. As expected, larger values ofξ should be used in the theoretical
model when damping screens are installed in the TLD. For all other load cases, good
agreements can also be achieved as long as correct values ofξ has been chosen in the
model.

From the performed RTHT, a comprehensive evaluation of the full-size TLD for
multi-megawatts wind turbines has been obtained, with a number of different load
cases and various damper parameters considered (Appendix J). This provides some
guidelines for the practical applications TLDs in wind turbines. One important finding
is that best performance of the TLD is always obtained when the tuning ratio is 1.0
and damping screens are equipped.

Secondly (maybe more importantly), the good agreement between experimental
and theoretical results shows the validity of the proposed model as well as the assumed
equivalent linear damping modal, thus giving strong support to some of the previous
sections in this thesis. However, it should be noted that trial-and-error procedures have
been applied for finding a proper value ofξ, in order that theoretical result fits well
with the experimental result. To make our model suitable forthe design and analysis of
a TLD, a reasonable expression betweenξ and the parameters of the damping screens
(the amount, the installing position and the mesh size) should be provided. In the
future, more tests are planned to be carried out on this full-size TLD with various
parameters of the damping screen considered. Sufficient data are to be collected,
based on which an empirical expression ofξ is to be proposed with respect to the
parameters of the damping screen.

51 September 2015



52 Mitigation of lateral tower vibrations in wind turbines

Zili Zhang 52



CHAPTER 5
Dynamics and control of

wave energy point absorbers

This chapter deals with dynamics and control of wave energy point absorbers. An
optimal control law for a single nonlinear point absorber inirregular sea-state is first
derived, in order to maximize the absorbed energy by the floater (the performance
integral). It is proven to be a closed-loop controller with feedback from measured
displacement, velocity and acceleration of the floater. However, a non-causal integral
control component dependent on future velocities appears in the optimal control law.
To circumvent this problem, a causal closed-loop controller is proposed by slightly
modifying the optimal control law, with the basic idea that the stationary velocity of
the absorber is enforced into phase with the wave excitationforce at any time. Next,
another type of point absorber, the Gyroscopic power take-off point absorber is pro-
posed as a possible solution of delivering constant power tothe grid without intro-
ducing power electronics. Assuming monochromatic waves simplified equations are
derived, valid under synchronization of the ring to the angular frequency of the exci-
tation. Stability conditions and the basins of attraction to the point attractors defining
the synchronized motion are also determined.

5.1 Optimal control of wave energy point absorbers

A wave energy convertor (WEC) may be defined as a dynamic system with one or
more degrees of freedom in order to convert the energy in the waves into mechanical
energy stored in the oscillating system. A point absorber isa WEC that is capable
of absorbing energy from waves propagating in any direction, and with horizontal
dimensions that are small compared to the dominating wave length. In this thesis,
only wave energy point absorbers are investigated. A type ofthe point absorber, the
heave absorber, is modeled as SDOF and is shown in Figure 5.1.

As mentioned in Chapter 1, the optimal control law for a finitecontrol horizon for
achieving maximum absorbed power turns out to be non-causal. From this follows that
any causal control law necessarily is suboptimal. Althoughall the causal controllers
described in Chapter 1 work effectively, how to obtain the best causal controller is
still a question. In the present study, the optimal control law for a point absorber in
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Figure 5.1 SDOF model of the heave absorber. a) Static equilibrium state. b) Dynamic state.

an irregular sea-state is at first devised based on optimal control theory (Meirovitch
1990; Naidu 2002). There are two approaches to the optimization problem, namely,
the method of dynamic programming (Bellman 1956) and the Pontryagin’s principle
(Pontryagin 1987). Dynamic programming is completely equivalent to the Hamilton-
Jacobi equation in analytical dynamics, and is now known as the Hamilton-Jacobi-
Bellman (HJB) equation. The HJB equation provides the necessary and sufficient
condition for optimality. In the present study, another method, the Pontryagin’s prin-
ciple has been used, which is a variational principle and essentially states that an
optimal control must minimize or maximize a given function known as the Hamilto-
nian (Meirovitch 1990). In the analysis, first order wave theory is assumed, and no
constraint on the absorber displacement and the control force is enforced. In reality,
constraints are enforced on the control force to prevent large structural stresses in the
floater at specific hot spots or due to the actuator saturation. Similarly the motion of
the absorber is constrained, either due to limitations on the stroke of the actuator, or
in order to prevent it from hitting the bottom of the sea or making unacceptable jumps
out of water. Several forms of Pontryagin’s principle have been proposed for optimal
control problems with state variable inequality constraints, such as the direct adjoin-
ing approach where the Hamiltonian and Lagrangian are formulated directly from the
constraints (state constraints, mixed constraints) (Jacobsonet al. 1971), and the in-
direct adjoining approach where the derivative of the stateconstraints rather than the
state constraints itself is adjoined to Hamiltonian in forming the Lagrangian (Pontrya-
gin et al. 1962). A review of optimal control algorithms with constraints is given in
Hartl et al. (1995). Optimal control of wave energy point absorbers with state and
control force constraints is not dealt with in the present study.

The performance integral is taken as the absorbed mechanical energy during a
given interval [t0, t1] (Appendix H)

J [z(t), fc(t)] =

∫ t1

t0

fc(τ)v̇(τ) dτ (5.1)

wherez(t) is the state vector,̇v(t) is the velocity of the absorber andfc(t) is the
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control force. The control force is determined so the performance integral (the ab-
sorbed energy) is maximized under condition that the equations of motion with given
initial conditions is fulfilled. The necessary condition for optimal control is that the
1st variation of the performance integral vanishes. Since it is only necessary but not
sufficient, all the obtained stationary solutions from the Pontryagin’s principle need to
be examined to achieve the "true" optimal solution.

The resulting optimal control law is of the feedback type, with feedback from
present displacement and acceleration, and future velocity of the absorber (Nielsen
et al. 2013), given as

fc(t) = −
(

m+mh

)

v̈(t)− r
(

v(t)
)

+

∫

∞

t

hrv̇(τ − t)v̇(τ) dτ (5.2)

wherem is the structural mass including ballast,mh is the added water mass at infinite
high frequencies,r

(

v(t)
)

is the nonlinear buoyancy function andhrv̇(t) is a causal
impulse response function for the radiation force.

It is seen that the main effect of the optimal control force isto eliminate the iner-
tial force and the buoyancy stiffness from the equations of motion, leading to the fact
that at optimal control, all harmonic components of the velocity and the wave excita-
tion force are in phase (Nielsenet al. 2013). This means that the Fourier transform of
the control force and the floater velocity are related as

Fe(ω) = Ch(ω)V̇ (ω) (5.3)

whereCh(ω) = Re(Hrv̇(ω)) is the frequency-dependent hydrodynamic radiation
damping, andHrv̇(ω) is the frequency response function related tohrv̇(t).

The non-causality (the control force depends on future velocities of the absorber)
makes the optimal control law useless for practical applications, unless future veloc-
ities can be predicted. The prediction is difficult for broad-banded wave excitation,
and is also related with errors, which inevitably results ina suboptimal control law.
To circumvent this obstacle, a causal closed-loop controller is suggested by slightly
modifying the optimal control law (Nielsenet al. 2013), written as

fc(t) = −(m+mh)v̈(t) + 2ccv̇(t)− r
(

v(t)
)

−

∫ t

−∞

hrv̇(t− τ)v̇(τ) dτ (5.4)

where the gain factorcc is determined by maximizing the absorbed mean power. The
rational of the proposed causal control law is that it also enforces the velocity of the
absorber into phase with the wave excitation force at all frequencies. In this case, the
Fourier transform of the control force and the floater velocity are related as

Fe(ω) = 2ccV̇ (ω) (5.5)

Eq. (5.5) is quite similar to Eq. (5.3) with the difference that the proportionality
coefficient is frequency independent.

This causal controller is of course suboptimal, however, itis observed to absorb
almost the same power as the optimal causal controller. Figure 5.2 shows the mean
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power absorbed by the optimal controller and by the suboptimal causal controller cal-
culated from analytical expressions (Nielsenet al. 2013), where all response processes
are stationary Gaussian process since the wave excitation process is assumed to be so.
Different values of the significant wave heightHs and the bandwidth parameterσf
have been considered. As seen, the performance of the suboptimal causal controller is
very close to that of the optimal controller at all parametervalues.
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Figure 5.2 Absorbed mean power by optimal controller and sub-optimal causal controller. —: Optimal
controller. - - -: Causal controller. a) Variation withσf ,Hs = 3m. b) Variation withHs, σf = 0.1.

Again, it should be noted that no constraints on the floater displacement and
the control force have been considered in the present study,and thus the unbounded
optimal control force has been sought from stationarity of the Hamiltonian. Further
works is to be done on optimal control of point absorbers withconstraints on system
state and control force.

5.2 Gyroscopic power take-off wave energy point
absorber

For most point absorbers such as the heave absorber, the instantaneous absorbed en-
ergy varies significantly with time, making the expensive additional power electronics
mandatory before the power can be supplied to the grid. This motivates a search for an
alternative device which is able to deliver a more constant power to the grid without
introducing power electronics.

The Gyroscopic power take-off (GyroPTO) wave energy point absorber is a pos-
sible solution to this problem. As shown in Figure 5.3, the GyroPTO wave energy
point absorber consists of a float rigidly connected to a lever. In the other end the
lever is supported by a hinge, which allows for rotations around a horizontal and ver-
tical axis. Inside the float is a mechanical system made up of aspinning flywheel with
a ring and a power take-off system connected to the ring alongits rotational axis. The
ring is free to rotate in a plane orthogonal to the lever. The spin axis of the flywheel
is supported by a track on a ring with a width slightly larger than the diameter of the
axis. The track forms a guidance for the precession of the spin axis, which is assumed
to roll on the inner side of the track during rotations of the ring without any slip. The
wave induced pitch and roll motions of the float produce a timevarying rotation of the
ring, which combined with the spinning velocity of the flywheel creates a gyroscopic
torque parallel to the precession axis. This moment produces the necessary contact
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Figure 5.3 The GyroPTO point absorber. (a) Schematic details. (b) Scaled model tested in a wave tank.

force between the spin axis and the inner side of the track to provide the friction force
making the rolling of the spin-axis possible. Hence, the gyroscopic moment enforces
a non-holonomic kinematical constrain between the rotational velocities of the spin
axis and the ring and makes the former to rotate at a larger angular velocity.

When synchronization of the angular frequency of the ring tothe angular fre-
quency of the wave loading takes place, the response of the ring becomes almost
harmonic. This phenomenon is the basic reason for the functioning of the system. At
synchronization, this means that the generated electric power becomes almost con-
stant in time, making the need for expensive additional power electronics unnecessary
before the power can be supplied to the grid.

Assuming monochromatic waves simplified equations are derived, valid under
synchronization of the ring to the angular frequency of the excitation (Appendix I). It
is demonstrated that the dynamics of the ring at synchronization can be described as
an autonomous nonlinear SDOF system with parametric excitation. This equation is
related with three different types of attractors dependingon initial conditions of the
ring. In one case, the ring vibrations are attracted to a state of rest indicating unstable
synchronization. For the other two types of point attractors, the ring is synchronized to
the wave angular frequency, either rotating in the positiveor in the negative direction.

Figure 5.4 shows the responses of the ring for the initial values (ψ0, ψ̇0) =
(π
2
, ω), whereω is the angular frequency of the wave load, andψ(t) and ψ̇(t) are

the rotational angle and angular velocity of the ring, respectively. Synchronization
with positive rotational speed of the ring (ψ̇(t) ' ω) takes place close to a given equi-
librium point δ1 of the said SDOF oscillator (see Appendix I). At synchronization,
the quantityδ(t) = ψ(t) − ωt − µ1 converges towardsδ1, whereµ1 is a phase an-
gle that can be determined from system parameters, and the fractionψ̇(t)/ω converge
towards 1. In this stationary synchronized state, a forced harmonic oscillation (small
amplitude) with the angular frequency 2ω can also be observed, which is cased by a
parametric excitation term in the autonomous equation of the ring.

Figure 5.5 shows the corresponding results, when the initial conditions are changed
to
(

ψ0, ψ̇0

)

=
(

− π
2
,−ω

)

. In this case synchronization with negative rotational speed
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of the ring takes place to a different equilibrium pointδ1 (see Appendix I). At syn-
chronization, the quantityδ(t) = ψ(t) + ωt − µ2 converges towardsδ1, whereµ2 is
another phase angle that can be determined from system parameters, and the fraction
ψ̇(t)/ω converges towards -1. Again, the forced harmonic oscillations with the angu-
lar frequency2ω around the equilibrium point in the stationary synchronized state is
caused by the parametric excitation term in the autonomous equation of the ring.

It is clearly seen from the above results that the performance of the system de-
pends strongly on the initial values

(

ψ0, ψ̇0

)

. In order to analysis this problem fur-
ther, the basins of attraction (or domain of attraction) (Nayfeh and Mook 2008) in the
(

δ(t), δ̇(t)
)

state space for synchronization toψ̇(t) = ω andψ̇(t) = −ω are deter-
mined. The basin of attraction of an equilibrium point indicates the subset of initial
values(ψ0, ψ̇0) in the phase space for which the trajectories tend to approach the equi-
librium point, although persistent oscillations may occur. The basins of attraction are
separated by the separatrix manifolds originating from thesaddle points.

In Figure 5.6(a) and 5.6(b), the grey colored areas show the basins of attraction
in the the(δ, δ̇)-plane for the same systems as considered in Figures 5.4 and 5.5, re-
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spectively. In the disjoint white part of the state space, nosynchronization is possible,
and the system is attracted to a state of rest. As seen stable synchronization requires
thatδ(t) is confined to a finite interval centered around the equilibrium pointδ1.

The generator has a stator fixed to the ring and a rotor fixed to the spin axis
of the flywheel, so the angular velocity of the generator is equal to the angular spin
velocity θ̇(t) = Nψ̇(t), whereN is the gear ratio between the angular spin velocity
of the flywheel and the precession angular velocity of the ring. It is assumed to be an
asynchronous generator with the characteristic (Simões and Farret 2014)

Mg(t) =Mg,1(V )Nψ̇(t) (5.6)

whereMg,1(V ) is a gain factor depending on the voltageV . Synchronization is pos-
sible only if the gain factorMg,1(V ) fulfills (Appendix I)

Mg,1 ≤
ωJ3

3

2N

√

Φ2
1 +Φ2

3

√

1± sin(2β) cos(β1 − β3) (5.7)

where the upper sign in± refer to synchronization in the positive direction.J3
3 is

the polar moment of inertia of the flywheel. Letϕ1
1(t) andϕ1

3(t) denote the an-
gular rotations of the float around the horizontal and vertical axis, respectively. At
synchronization,ϕ1

1(t) andϕ1
3(t) becomes almost harmonic with the angular wave

frequencyω, the constant amplitudesΦ1 andΦ3, and the constant phasesβ1 andβ3.
β = arctan (Φ1/Φ3). The right hand side term in Eq. 5.7 is the maximum value
of the gain parameterMg,1 that can be used to achieve stable synchronization (the
system state remains inside the grey colored areas in Figure5.6).

In irregular sea-states, waves with different amplitudes and phases are exciting
the structure, causing a broad-banded wave load. However, the response processes
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of the float turn out to be narrow-banded with the central angular frequency equals
the peak angular frequency of the wave spectrumωp. Then, the response processes
indicated by the so-called Rice representation (Rice 1945;Gardner 1990)

ϕ1
1(t) = Φ1(t) cos

(

ωpt+ β1(t)
)

ϕ1
3(t) = Φ3(t) cos

(

ωpt+ β3(t)
)

}

(5.8)

whereΦj(t) andβj(t), j = 1, 3 are the slowly varying amplitude and phases. Eq.
(5.7) still holds withω replaced byωp, and the constant amplitude and phases replaced
by the time-varying equivalents. Therefore, this opens up aneed for a semi-active
control for the stability of the synchronization, i.e.Mg,1(V ) should be reduced by
changing the voltageV when the value of the right hand side term become smaller
than the present value ofMg,1(V ). During operation, the time-varying amplitudes and
phases need to be identified in real time from measuredϕ1

1(t), ϕ̇
1
1(t), ϕ

1
3(t), ϕ̇

1
3(t), in

order to check whether the system remains within the basin ofattraction guaranteeing
synchronization.

Further, from the generator torque in Eq. (5.6), the instantaneous generated elec-
tric power is given by

Pe(t) =Mg(t)Nψ̇(t) = N2Mg,1 ψ̇
2(t) (5.9)

On the other hand, the instantaneous absorbed power by the float is written as
(Appendix I)

Pa(t) = Mϕ1

1
(t) ϕ̇1

1(t) + Mϕ3

1
(t) ϕ̇3

1(t) (5.10)

whereMϕ1

1
(t) andMϕ3

1
(t) are the external hydrodynamic moments work conjugated

toϕ1
1(t) andϕ1

3(t), respectively.
Let P a andP e denote the time averages ofPa(t) andPe(t), respectively.Pa(t)

varies strongly with time, whereasPe(t) is almost constant at synchronization since
the angular velocity of the flywheel̇ψ(t) is almost constant. However, the time av-
eragesP a andP e must balance each other disregarding a small loss due to internal
friction, leading to the following relation

Pa ' P e ' Pe(t) (5.11)

Eq. (5.11) implies that the generated electrical power can not exceed the mean
absorbed power of the float. Generally,Pa is relatively small compared to the theo-
retical maximum where the motions of the float is actively controlled. This means the
generated electric powerPe(t) is also limited due to this power balance. For this rea-
son the system may be improved if it is combined with an activecontrol of the motion
of the float somewhat similar to the heave point absorber described in the previous
section, in order to increaseP a and thus the generated powerPe(t). Both semi-active
and active control of of this system under irregular waves will be pursued in a future
study.
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CHAPTER 6
Conclusions and future

directions

The focus of the present study is to address two seemingly opposite but actually highly
related issues: reducing structural vibrations of wind turbine components and increas-
ing mechanical power supplied to wave energy point absorbers. Modeling of different
dynamic systems have been carried out throughout the thesis. Various control solu-
tions, both passively and actively, have been proposed and analyzed in detail. This
final chapter gives the general conclusions drawn from this study and possible future
extensions of this work.

6.1 General conclusions

(1) The lightly damped edgewise vibrations in wind turbine blades can be suppressed
by various types of passive control devices, i.e. the rollerdamper, the TLCD, the
CLCD and the TLD (sloshing damper). For rotating wind turbine blades, the large
centrifugal acceleration governs the damping effect of these passive dampers, making
it possible to use the dampers with rather small mass ratios for effectively reducing
edgewise vibrations. Under certain circumstances when aeroelastic instability takes
place in the edgewise mode, these passive dampers can also stabilize the structural
response by introducing sufficient damping into the system.

(2) The roller damper has the advantage that its mass moment of inertia can be ad-
justed (with the same mass) during the design process by using different layouts of
the roller. However, the damping property (friction between the roller and the track)
is difficult to quantify and adjust once the damper has been manufactured. On the
other hand, the damping property of the TLCD can be controlled easily by changing
the orifice opening in real-time, making even the semi-active control applicable. The
shortcoming of TLCD is that only the liquid in the horizontaltube acts as the effective
mass, making the damper less effective than the roller damper with a same physical
mass (when both dampers are optimized). The CLCD is as new type of liquid damper
that combines the idea of TLCD with the roller damper. Therefore, it has both the
advantages of large effective mass (larger than the TLCD, but not as large as the roller
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damper) and the controllable damper property. Finally, another liquid damper, the
TLD, turns out to be the most cost-effective device with the advantage of easy fabri-
cation and minimal maintenance. Besides that, TLD also has the potential of being a
semi-active device with rotatable baffles installed insidethe tank, where the sloshing
frequency can be adjusted by changing angles of the baffle.

(3) By means of modern power electronics, the generator torque can be prescribed
to a certain value with a time delay below10−2 s and affects the lateral tower vibra-
tion through the reaction on the generator stator. It is shown that lateral tower vibra-
tions can be effectively suppressed by active generator torque, for both the gear-driven
and direct-driven wind turbines. However, the effective control of tower vibration is
at the expense of somewhat more fluctuated power output, and atradeoff between
the vibration aspect and power electronic aspect should be considered. The negative
impact on the smoothness of the power output can be avoided byusing TLD in con-
trolling lateral tower vibrations. A series of real-time hybrid tests have been carried
out on a full-scale TLD, and proves the TLD to be very effective in reducing lateral
tower vibrations in multi-megawatts wind turbines. It is shown that the best control
effect of TLD is always achieved when the tuning ratio is 1.0 and damping screens
are equipped. The good agreement between experimental and theoretical results also
validates the theoretical model for TLD proposed in this thesis.

(4) From stationarity of the Hamiltonian, an optimal control law for a single wave
energy point absorber in irregular sea-state is first derived. It is proven to be a closed-
loop controller with feedback from measured displacement,velocity and acceleration
of the floater, together with a non-causal integral component dependent on future ve-
locities. A causal closed-loop controller is next proposedto circumvent this problem,
by slightly modifying the optimal control law. The basic idea is to enforce the station-
ary velocity of the floater into phase with the wave excitation force at all frequencies
in the excitation. It is shown that the devised causal controller absorbs almost the same
power as the optimal controller in plane irregular sea states. For delivering more con-
stant power to the grid without introducing power electronics, another type of point
absorber, the Gyroscopic power take-off point absorber is proposed. It is shown that
the dynamics of ring at synchronization (angular frequencyof the ring equals to the
angular frequency of the wave excitation) can be described as an autonomous non-
linear SDOF system, affected by three different types of point attractors. One where
the ring vibrations are attracted to a state of rest indicating unstable synchronization,
and the other two point attractors where the ring is synchronized to the wave angular
frequency, either rotating in positive or negative directions. At stable synchronization,
the generated electric power becomes almost constant.

6.2 Proposals for future directions

(1) Semi-active control of wind turbine components using liquid dampers
The dynamic properties (eigenfrequency, damping) of the wind turbine system
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are dependent on various internal or external conditions, e.g. the rotor rotational
speed, the mean wind speed and the turbulence intensity. Passive dampers with rel-
atively narrow bandwidth may suffer from detuning effect when eigenfrequencies of
the wind turbine components deviate from the designed values. Semi-active liquid
dampers, such as the TLCD with controllable orifice opening,the TLD with rotatable
baffles, are expected to have better performance for the time-varying wind turbine
system. It will be important to carry out both theoretical and experimental studies on
the semi-active liquid dampers for vibration control of wind turbine components. Es-
pecially, full-scale real-time hybrid testing of the semi-active damper using different
control algorithms will be of great value for the application of liquid dampers in real
multi-megawatts wind turbines.

(2) Flutter analysis of wind turbine systems and flutter suppression by means
of control

With the increasing size, wind turbines also become more andmore optimized
with respect to structural dimensions and material usage. Future turbine designs will
likely be stability-driven in contrast to the current loads-driven designs. Although
classical flutter has not been observed on modern pitch-regulated wind turbines, it
is believed to become a very important design considerationas wind turbine blades
become more flexible.

Actually besides the 13-DOF wind turbine model, a detailed finite element (FE)
model for the wind turbine system (not shown in the present thesis) has also been
developed during the period of this Ph.D. study. The FE modeltakes into account
the following effects: (i) offsets between the center of gravity, the shear center and
the aerodynamic center of each cross-section along the blade, which have significant
influence on the coupling between the flap-wise bending mode and the torsional mode.
(ii) the distribution of pre-twist along the blade, which has significant influence on
the coupling between the flap-wise mode and the edgewise mode. (iii) couplings
between the blade vibrations with tower and drivetrain vibrations (as have already
been considered in the 13-DOF model), which means there willbe energy transfer
between different components of the wind turbine. All theseeffects are important for
accurately carrying out flutter analysis and predicting thecritical flutter speed of a
wind turbine system.

The indicated FE model can be used as a basic tool for flutter analysis of wind
turbines. However, it might be necessary to develop a novel stability criteria rather
than the widely-used eigenvalue analysis. More importantly, how to suppress flutter
when it takes place under certain circumstances? One possible solution may be the
so-called "small rotor", where rotatable flaps are mounted at outer part of the blades,
and aerodynamic properties of the blade can be adjusted semi-actively when the angle
of flap changes. Another idea is to devise certain novel dampers for torsional mode
of the blade, and the damping of the torsional mode can be increased by installing
this kind of damper inside the blade. The proper design and accurate modeling of the
torsional damper become very important.

(3) Stochastic optimal control of wave energy point absorbers with state con-
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straint
No constraints on the floater displacement and the control force have been con-

sidered in the present study, and thus the unbounded optimalcontrol force has been
obtained from the classical optimal control theory. In reality, constraints are enforced
on the control force to prevent large structural stresses inthe floater at specific hot
spots or due to the actuator saturation. Similarly the motion of the absorber is con-
strained, either due to limitations on the stroke of the actuator, or in order to prevent it
from hitting the bottom of the sea or making unacceptable jumps out of water.

Several forms of Pontryagin’s principle have been proposedby other researchers
for optimal control problems with state variable inequality constraints, such as the
direct adjoining approach where the Hamiltonian and Lagrangian are formulated di-
rectly from the constraints, and the indirect adjoining approach where the derivatives
of the state constraints rather than the state constraints are adjoined to Hamiltonian
in forming the Lagrangian. These methods are applicable forthe optimal control of
wave energy point absorbers with state and control force constraints.

(4) Stochastic filtering theory and its application to the control of renewable en-
ergy structures

To control the system performance, we must accurately capture the state of the
system at any instant of time. In reality, physical systems are subjected to random dis-
turbance, so that the system state may itself be random. In order to determine the state
of the indicated system, one may build a measuring device andtakes measurements
or observations on this system. These measurements are generally contaminated with
noise caused by electronic and mechanical components of themeasuring device.

The problem of determining the state of a system from noisy measurements is
called filtering or estimation, and is of central importancefor the control of system.
The dynamic system can be modeled by a finite-dimensional Markov process, the
output of a stochastic differential equation. The goal is toobtain the conditional prob-
ability density function of the state, given the measurements. This conditional density
embodies all the information about the state of the system which is contained in the
available measurements, and all estimates of the state can be constructed from this
density.

Definitely, it is of both theoretical and practical values toapply filtering theory to
the control of renewable energy structures.
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APPENDIX A
System Matrices of the

13-DOF model

A.1 Mass matrix

The mass matrixM (t) is symmetric and positive definite, and is made up of the fol-
lowing two contributions

M(t) = M1(t) +M2 (A.1)

whereM1(t) indicates the mass matrix that is attributed to the rotor,M2 indicates the
contribution from the tower, the nacelle and the drivetrain.

(1)M1(t) has the structure

M1(t) =

[

M1,ll M1,lg(t)

M1,gl(t) M1,gg

]

(A.2)

M1,ll is given as

M1,ll =



















m1 0 0 0 0 0

0 m1 0 0 0 0

0 0 m1 0 0 0

0 0 0 m2 0 0

0 0 0 0 m2 0

0 0 0 0 0 m2



















(A.3)

wherem1 andm2 are modal masses related to the fundamental flap-wise and edgewise
eigenvibrations

(

qj(t) andqj+3(t)
)

defined as

m1 =

∫ LB

0

µ(x3)Φ
2
1(x3)dx3

m2 =

∫ LB

0

µ(x3)Φ
2
2(x3)dx3



















(A.4)
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M1,lg(t) = MT
1,gl(t) is given as

M1,lg(t) =



















m3 0 0 m5 cosΨ1 m5 sinΨ1 0 0

m3 0 0 m5 cosΨ2 m5 sinΨ2 0 0

m3 0 0 m5 cosΨ3 m5 sinΨ3 0 0

0 −m4 cosΨ1 0 −m4s sinΨ1 −m4s cosΨ1 m6 0

0 −m4 cosΨ2 0 −m4s sinΨ2 −m4s cosΨ2 m6 0

0 −m4 cosΨ3 0 −m4s sinΨ3 −m4s cosΨ3 m6 0



















(A.5)

where

m3 =

∫ LB

0

µ(x3)Φ1(x3)dx3, m4 =

∫ LB

0

µ(x3)Φ2(x3)dx3

m5 =

∫ LB

0

µ(x3)x3Φ1(x3)dx3, m6 =

∫ LB

0

µ(x3)x3Φ2(x3)dx3



















(A.6)

M1,gg is given as

M1,gg =

























3m0 0 0 0 0 0 0

0 3m0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 3m0s
2 + 1

2
Jr 0 0 0

0 0 0 0 3m0s
2 + 1

2
Jr 0 0

0 0 0 0 0 Jr 0

0 0 0 0 0 0 0

























(A.7)

wherem0 is the mass of a single blade andJr is the mass moment of inertia of the
rotor, given by

m0 =

∫ LB

0

µ(x3)dx3, Jr = 3

∫ LB

0

µ(x3)x
2
3dx3 (A.8)

(2)M2 has the structure

M2 =

[

0 0

0 M2,gg

]

(A.9)

M2,gg=

























m7,7+M0 0 0 m7,10 0 0 0

0 m8,8+M0 m8,9 0 0 0 0

0 m9,8 m9,9+J9 0 0 0 0

m7,10 0 0 m10,10+J10 0 0 0

0 0 0 0 m11,11+J11 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 Jg

























(A.10)
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whereM0 is the mass of nacelle including drivetrain and equipment.J9, J10 and
J11 are the mass moment of inertia of the nacelle related toq9(t), q10(t) andq11(t),
respectively.m7,7 = m8,8, m7,10 = m10,7 = m8,9 = m9,8, m10,10 = m9,9, these
are the consistent mass coefficients of tower related toq7(t) and q10(t) (the fore-
aft tower vibration), andq8(t) and q9(t) (the lateral tower vibration), respectively.
As mentioned in Chapter 2, cubic Hermite polynomial interpolation functions have
been applied for tower displacements (Bernoulli-Euler beam theory). Further,m11,11

is the consistent mass moment of inertia of the tower relatedto q11(t), with linear
interpolation of tower rotations (St. Venant torsional theory). Jg is the mass moment
of inertia of the rotor of the generator.

A.2 Stiffness matrix

The stiffness matrixK(t) is made up of the following two contributions

K(t) = Ks +Kg(t) (A.11)

whereKs is the structural stiffness matrix that is symmetric and positive definite.
Kg(t) is the gyroscopic stiffness matrix.

(1)Ks has the structure

Ks =

[

Ks,ll 0

0 Ks,gg

]

(A.12)

Ks,ll is given as

Ks,ll =



















k1 0 0 0 0 0

0 k1 0 0 0 0

0 0 k1 0 0 0

0 0 0 k2 0 0

0 0 0 0 k2 0

0 0 0 0 0 k2



















(A.13)

wherek1 andk2 are the modal stiffness for the fundamental flap-wise and edgewise
modes under normal operation, i.e. including centrifugal stiffening. There are written
as

k1 =

∫ LB

0

(

EI1(x3)

(

d2Φ1(x3)

dx23

)2

+ F (x3)

(

dΦ1(x3)

dx3

)2
)

dx3

k2 =

∫ LB

0

(

EI2(x3)

(

d2Φ2(x3)

dx23

)2

+ F (x3)

(

dΦ2(x3)

dx3

)2
)

dx3























(A.14)

whereF (x3) = Ω2
∫ L

x3

µ(ξ)ξdξ is the centrifugal axial force per unit length along the
blade.
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Ks,gg is given as

Ks,gg=

























k7,7 0 0 k7,10 0 0 0

0 k8,8 k8,9 0 0 0 0

0 k9,8 k9,9 0 0 0 0

k7,10 0 0 k10,10 0 0 0

0 0 0 0 k11,11 0 0

0 0 0 0 0 k0 − 1

N
k0

0 0 0 0 0 − 1

N
k0

1

N2 k0

























(A.15)

k7,7 = k8,8, k7,10 = k10,7 = k8,9 = k9,8, k10,10 = k9,9, these are the consistent
stiffness coefficients of tower related toq7(t) andq10(t) (the fore-aft tower vibration),
andq8(t) andq9(t) (the lateral tower vibration), respectively.k11,11 is the torsional
stiffness coefficient related toq11(t), with linear interpolation of tower rotations (St.
Venant torsional theory).k0 is the equivalent St. Venant torsional stiffness of the
drivetrain, given as

1

k0
=

1

kr
+

1

N2kg
⇒ k0 =

N2krkg
kr +N2kg

(A.16)

wherekr andkg denote the St. Venant torsional stiffness of the rotor shaftand the
generator shaft, andN is the gear ratio of the gearbox.

(2)Kg(t) has the structure

Ks =

[

Kg,ll 0

Kg,gl(t) 0

]

(A.17)

Kg,ll is given as

Kg,ll =



















0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 −Ω2m2 0 0

0 0 0 0 −Ω2m2 0

0 0 0 0 0 −Ω2m2



















(A.18)

Kg,ll introduces negative stiffness into equations of motion foredgewise degrees of
freedomq4(t), q5(t) andq6(t), the so-called centrifugal softening effect.

Zili Zhang 76



Damping matrix 77

Kg,gl(t) is given as

Kg,gl(t)=Ω2

























0 0 0 0 0 0

0 0 0 m4 cosΨ1 m4 sinΨ2 m4 sinΨ3

0 0 0 0 0 0

0 0 0 m4s sinΨ1 m4s sinΨ2 m4s sinΨ3

0 0 0 −m4s cosΨ1 −m4s cosΨ2 −m4s cosΨ3

0 0 0 0 0 0

0 0 0 0 0 0

























(A.19)

A.3 Damping matrix

The damping matrixC(t) is made up of the following two contributions

C(t) = Cs +Cg(t) +Cgen (A.20)

whereCs is the structural damping matrix that is symmetric and positive definite.
Cg(t) is the gyroscopic damping matrix, andCgen is the generator damping matrix
that can be specified by the active generator controller.

(1)Cs has the structure

Cs =

[

Cs,ll 0

0 Cs,gg

]

(A.21)

Cs,ll is given as

Cs,ll =



















c1 0 0 0 0 0

0 c1 0 0 0 0

0 0 c1 0 0 0

0 0 0 c2 0 0

0 0 0 0 c2 0

0 0 0 0 0 c2



















(A.22)

wherec1 andc2 denote the modal damping coefficients of the fundamental flap-wise
and edgewise modes.cj = 2ζj

√

mjkj , j = 1, 2, andζj is the corresponding modal
damping ratios.
Cs,gg is given as

Cs,gg=

























c7,7 0 0 c7,10 0 0 0

0 c8,8 c8,9 0 0 0 0

0 c9,8 c9,9 0 0 0 0

c7,10 0 0 c10,10 0 0 0

0 0 0 0 c11,11 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

























(A.23)
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c7,7 = c8,8, c7,10 = c10,7 = c8,9 = c9,8, c10,10 = c9,9, these are the damping
constants of tower (without nacelle) specified by means of Rayleigh damping model.
c11,11 is the modal damping constant of the fundamental torsional mode of the tower
without nacelle.

(2)Cg(t) has the structure

Cg(t) =

[

0 Cg,lg(t)

Cg,gl(t) 0

]

(A.24)

Cg,lg(t) is given as

Cg,lg(t) = Ω



















0 0 0 −m5 sinΨ1 m5 cosΨ1 0 0

0 0 0 −m5 sinΨ2 m5 cosΨ2 0 0

0 0 0 −m5 sinΨ3 m5 cosΨ3 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



















(A.25)

Cg,gl(t) is given as

Cg,gl(t)=Ω











0 0 0 0 0 0

0 0 0 2m4 sinΨ1 2m4 sinΨ2 2m4 sin Ψ3

0 0 0 0 0 0

−m5 sinΨ1 −m5 sinΨ2 −m5 sinΨ3 −2m4s cosΨ1 −2m4s cosΨ2 −2m4s cosΨ3

m5 cosΨ1 m5 cosΨ2 m5 cosΨ3 −2m4s sinΨ1 −2m4s sinΨ2 −2m4s sinΨ3

0 0 0 0 0 0

0 0 0 0 0 0











(A.26)
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Paper 1
The paper presented in this appendix is published inJournal of Sound and Vibration,
2014, Volume 333, Pages 5283-5298. DOI: 10.1016/j.jsv.2014.06.006.
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a b s t r a c t

Edgewise vibrations in wind turbine blades are lightly damped, and large amplitude
vibrations induced by the turbulence may significantly shorten the fatigue life of the blade.
This paper investigates the performance of roller dampers for mitigation of edgewise
vibrations in rotating wind turbine blades. Normally, the centrifugal acceleration of the
rotating blade can reach to a magnitude of 7–8g, which makes it possible to use this kind of
damper with a relatively small mass ratio for suppressing edgewise vibrations effectively.
The parameters of the damper to be optimized are the mass ratio, the frequency ratio, the
coefficient of rolling friction and the position of the damper in the blade. The optimization
of these parameters has been carried out on a reduced 2-DOF nonlinear model of the
rotating wind turbine blade equipped with a roller damper in terms of a ball or a cylinder,
ignoring the coupling with other degrees of freedom of the wind turbine. The edgewise
modal loading on the blade has been calculated from a more sophisticated 13-DOF
aeroelastic wind turbine model with due consideration to the indicated couplings, the
turbulence and the aerodynamic damping. Various turbulence intensities and mean wind
speeds have been considered to evaluate the effectiveness of the roller damper in reducing
edgewise vibrations when the working conditions of the wind turbine are changed. Further,
the optimized roller damper is incorporated into the 13-DOF wind turbine model to verify
the application of the decoupled optimization. The results indicate that the proposed
damper can effectively improve the structural response of wind turbine blades.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Modern multi-megawatt wind turbines are designed with increasingly larger rotors in order to capture more energy
throughout their lifetime and reduce the cost of energy. As the rotor diameters increase in size, the stiffness of the blades is
not proportionally increased, which renders the blades more flexible and thus more sensitive to dynamic excitations.
Traditionally, the modes of vibration in the blades are clarified as flap-wise and edgewise modes. Flap-wise vibrations are
vibrations out of the plane of the rotating rotor, whereas edgewise vibrations take place in the rotor plane. Normally, modal
damping in the flap-wise direction is relatively high due to the strong aerodynamic damping when the turbulent flow is
attached to the blade [1]. Hence, the vibrations merely turn out to be quasi-static responses to the turbulence present in the
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incoming wind. In contrast, edgewise vibrations are associated with insignificant aerodynamic damping [1,2] and may be
prone to large dynamic responses. There is also a possibility of instability for some combinations of blade properties and
operational conditions. This corresponds to the case in which the aerodynamic loads pump energy into the vibrational mode
in the edgewise direction, and the sum of the structural damping and the aerodynamic damping becomes negative [3]. For
all these reasons, the reduction of edgewise vibrations has become an increasingly active area of research in the wind power
industry.

Structural control technologies, which have achieved significant success in mitigating vibrations of civil engineering
structures, are being increasingly investigated for application in wind turbines in recent years. Most of these studies focus on
the vibration control of wind turbine towers using external dampers [4–7]. Limited studies have been carried out regarding
the structural control of blade vibrations. A semi-active tuned mass damper (TMD) is investigated in [8] for the control of
flap-wise vibrations in wind turbine blades, although the modal damping in this direction is already very high due to the
aerodynamic damping. Active TMDs have also been studied for the mitigation of edgewise vibrations in wind turbine blades,
and the active TMD achieved greater response reductions than the passive TMD for the edgewise vibration [9]. An active
strut mounted near the root of each blade has been proposed in [10] for the control of blade vibrations. The active control
concept developed in this research is based on resonant interaction between the rotor and the controller, which is inspired
by the concept of TMD. The use of active tendons mounted inside each blade is described in [11] for the active control of
edgewise vibrations. The controller allows a variable control force to be applied in the edgewise direction, and the control
forces are manipulated according to a prescribed control law. However, both semi-active and active control solutions need
relatively complicated controller configurations and some amount of power input. This indicates the importance and
necessity of developing simple and robust dampers for wind turbine blades. An earlier investigation on passive dampers in
rotating wind turbine blades has been carried out by Anderson et al. [12]. A pendulum-typed passive damper was tested on
an operational rotor, and the damper effectively mitigated edgewise stall vibrations of a 600 kW commercial wind turbine.
However, no detailed analytical model was present for optimizing and designing the passive damper.

In this paper, roller dampers are proposed for passive control of edgewise vibrations in rotating wind turbine blades. This
kind of damper was first proposed in [13] to control wind induced vibrations in two television towers. Recently, the roller
damper was investigated in [7] for mitigating tower vibrations of offshore wind turbines, and both experimental and
numerical results show the efficacy of roller dampers in reducing dynamic response of wind turbine towers. In the case of
tower vibrations the control effect of the roller damper is governed by the gravitational acceleration g. For the rotating blade
the corresponding control effect is governed by the centrifugal acceleration, which can reach up to a magnitude of 7–8g for a
blade with a length of 65 m. This makes it possible to use the roller damper with rather small mass ratios for effectively
suppressing edgewise vibrations. A similar idea has also been proposed by Basu et al. [14] using a liquid damper which
consists of a circular tube partly filled with certain amount of liquid that could oscillate back and forth inside the tube. The
main difference between the roller damper and the liquid damper is the dissipation mechanism. The inherent damping of
the roller is due to the rolling friction between the surfaces, while the inherent damping of the liquid is due to the liquid
passage through an orifice opening in the middle of the tube. The latter has its advantage that the damping property of the
liquid damper can be controlled by changing the orifice opening, making the semi-active control solution possible. On the
other hand, the roller damper has its advantage that the control efficiency can be enhanced by increasing the mass moment
of inertia of the roller with a fixed physical mass.

The focus of the present paper is to carry out a comprehensive theoretical study on the performance of roller dampers
in suppressing blade edgewise vibrations. First, a reduced 2-degree-of-freedom (2-DOF) nonlinear model based on an
analytical dynamic formulation is established for a rotating blade with a roller damper mounted inside. The blade is
modeled as a rotating cantilever beam using data calibrated to the National Renewable Energy Laboratory (NREL) 5 MW
baseline wind turbine [15], and the coupling with other components of the wind turbine is ignored. The parameters of the
damper to be optimized are the mass ratio, the frequency ratio, the coefficient of rolling friction and the mounting position
of the damper along the blade. The optimization of these parameters has been carried out on the reduced 2-DOF model,
with the modal loads obtained from a more sophisticated 13-DOF aeroelastic wind turbine model subjected to a
3-dimensional turbulence field. Parametric studies are also performed to evaluate the effect of the mass ratio and the
mounting position on the performance of the roller damper. Based on these results, tradeoffs can be made when designing a
roller damper in practical application. Moreover, various mean wind speeds, turbulence intensities and rotational speeds of
the rotor have been considered to evaluate the effectiveness of the damper in reducing edgewise vibrations when the
working condition of the wind turbine is changed. Finally, the optimized damper is incorporated into the 13-DOF aeroelastic
model to verify the application of the decoupled optimization as well as the control effect of the damper in the highly
coupled wind turbine system.

2. Aeroelastic model of the wind turbine system

A 13-DOF aeroelastic wind turbine model is presented in this section. The indicated model takes several important
characteristics of a wind turbine into account, including time dependent system matrices, coupling of the tower-blades-
drivetrain vibrations as well as nonlinear aeroelasticity. Fig. 1 shows a schematic representation of the wind turbine model
with definitions of the coordinate system and the degrees of freedom. Motions of the structural components are described
either in a fixed, global ðX1;X2;X3Þ�coordinate system, or in moving ðx1; x2; x3Þ�coordinate systems attached to each blade
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with origin at the center of the hub. The X1- and x1-axis are unidirectional to the mean wind velocity. The ðX2;X3Þ- and
ðx2; x3Þ-coordinate planes are placed at the rotor plane. The X3-axis is vertical, and the x3-axis is placed along the
undeformed blade axis oriented from the hub towards the blade tip. Moreover, the position of the local coordinated system
attached to blade j is specified by the azimuthal angle Ψ jðtÞ, which is considered positive when rotating clockwise seen from
an upwind position.

Each blade is modeled as a Bernoulli–Euler beamwith variable mass and stiffness per unit length, and is related with two
degrees of freedom. q1ðtÞ; q2ðtÞ; q3ðtÞ denote the flap-wise tip displacement of each blade in the positive x1-direction.
q4ðtÞ; q5ðtÞ; q6ðtÞ denote the edgewise tip displacement of each blade in the negative x2-direction. Further, the tower motion
is defined by five degrees of freedom q7ðtÞ;…; q11ðtÞ. q7ðtÞ and q8ðtÞ signify the displacements of the tower at the height
of the hub in the global X1- and X2-directions. q9ðtÞ specifies the elastic rotation of the top of the tower in the negative
X1-direction, while q10ðtÞ and q11ðtÞ indicate the corresponding rotations in the positive X2- and X3-directions. The height of
the tower from the base to the nacelle is denoted H, and the horizontal distance from the center of the tower top to the
origin of the moving coordinate systems is denoted s.

The drivetrain is modeled by the degrees of freedom q12ðtÞ and q13ðtÞ (Fig. 2). The sign definition shown in Fig. 2 applies
to a gearbox with odd number of stages. q12ðtÞ and q13ðtÞ indicate the deviations of the rotational angles at the hub and the
generator from the nominal rotational angles Ωt and NΩt, respectively, where N is the gear ratio. Correspondingly, _q12ðtÞ
and _q13ðtÞ are the deviations of the rotational speeds at the hub and the generator from the nominal values. In case of even
number of stages the sign definitions for q13ðtÞ and f 13ðtÞ are considered positive in the opposite direction. Jr and Jg denote

Fig. 2. 2-DOF model of flexible drivetrain with odd number of gear stages. Definition of degrees of freedom q12ðtÞ and q13ðtÞ.

Fig. 1. 13-DOF aeroelastic model of three bladed wind turbine. Definition of fixed and moving frames of reference and the degrees of freedom
q1ðtÞ;…; q11ðtÞ.
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the mass moment of inertia of the rotor and the generator, and kr and kg denote the St. Venant torsional stiffness of the rotor
shaft and the generator shaft.

Further, a full-span rotor-collective pitch controller is included with time delay modeled by a first-order filter. The pitch
demand is modeled by a PI controller [16] with feedback from _q12ðtÞ and q12ðtÞ. A gain-scheduled PI controller is used in this
paper, i.e. the controller gains are dependent on the blade-pitch angle [15].

The Blade Element Momentum (BEM) with Prandtl's tip loss factor and Glauert correction is adopted to calculate
aerodynamic forces along the blade [17]. Nonlinear aeroelasticity is considered by introducing the local deformation
velocities of the blade into calculations of the flow angle and the angle of attack. As a result, this model possesses high
aerodynamic damping in the blade flap-wise and the fore-aft tower vibrations, but relatively low aerodynamic damping in
the blade edgewise and the lateral tower vibrations.

3. Theory of the reduced 2-DOF model for blade–damper system

The 13-DOF wind turbine model displays a highly coupled dynamical system. Lateral displacement and rotations of the
tower around a horizontal line parallel to the mean wind direction will couple with the equations of motion of the edgewise
blade vibration and the roller damper. Since we are interested in studying the interaction between the damper and the
blade and the control effect of the damper on edgewise vibrations, we make the basic assumption for the following theory
that the coupling between the tower and the blade can be ignored. Hence, only blade edgewise vibrations are considered,
and the design of the damper is totally based on the local dynamics of the rotating blade.

3.1. Definition of the problem

Fig. 3 shows the schematic representation of a rotating blade equipped with a roller damper. The edgewise vibration of
the blade is described in the moving ðx1; x2; x3Þ-coordinate system while the motion of the roller is described in the fixed
global ðX1;X2;X3Þ-coordinate system. The mass per unit length and the bending stiffness in the edgewise direction of each
blade are denoted μðx3Þ and EIðx3Þ, respectively. The damper is merely devised to control the fundamental edgewise mode
described by the degree of freedom q3þ jðtÞ, j¼1,2,3, which is also a common practice when applying passive vibration
control techniques.

The rotation of each blade is assumed to take place with a constant rotational speed Ω. Hence, the azimuthal angle Ψ jðtÞ
for blade j is given as

Ψ j tð Þ ¼Ωtþ2π
3

j�1ð Þ; j¼ 1;2;3 (1)

In the following, only blade j¼1 is considered since all three blades behave identical with the same geometrical and
structural parameters. Consequently, all the subscripts j in Fig. 3 can be skipped, e.g. q3þ jðtÞ ¼ qðtÞ and Ψ jðtÞ ¼Ψ ðtÞ. Then,
the local edgewise displacement u2ðx3; tÞ of the rotating blade in the x2-direction can be described by the single modal
coordinate q(t) as

u2ðx3; tÞ ¼ �Φðx3ÞqðtÞ (2)

whereΦðx3Þ indicates the fundamental fixed bay eigenmode of the edgewise vibration. This is normalized to 1 at the tip, i.e.
ΦðLÞ ¼ 1, where L denotes the blade length.

The roller damper consists of a roller rolling inside an arc track. The mass and the mass moment of inertia around the
gravitational center of the roller are denoted m and J, respectively. The radius of the roller and the outer radius of the track
are denoted r and R, respectively. Depending on the available space inside the hollow blade, the track may be devised in the
form of a complete circle or an arc. As shown in Fig. 3, the position of the damper mass inside the arc track is defined by the

Fig. 3. Definition of coordinate systems, geometry and degrees of freedom.
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clockwise rotation θðtÞ from the deformed beam axis. Hence, q(t) and θðtÞ make up the degrees of freedom of this system. It
is assumed that the damper is placed at the coordinate x3 ¼ x0 in the blade. Then, the local displacement and rotation of the
blade at this position with the sign definitions in Fig. 3 are given as

u2;dðtÞ ¼ �Φðx0ÞqðtÞ
φðtÞ ¼Φ0ðx0ÞqðtÞ

)
(3)

where Φ0ðx0Þ ¼ ðd=dx3ÞΦðx3Þjx3 ¼ x0 . For ease of notation the following auxiliary parameters are introduced:

a¼Φðx0Þ
b¼Φ0ðx0Þ

)
(4)

3.2. Local kinematics of the roller damper

Fig. 4 shows three possible layouts of the roller, i.e. a homogeneous ball, a homogeneous cylinder and a flywheel. The
track for the ball or the cylinder as illustrated in Fig. 4(a) and (b) may be devised in the form of either a tube or a frame with
four rails. A more efficient but less compact layout of the roller damper as shown in Fig. 4(c) consists of two small wheels
with the radius r rolling on the rails and a flywheel with the radius R0 attached in the middle of a massless bar. It is assumed
that the wheels in contact to the rails may absorb negative contact forces if necessary. The mass αm of each rail wheel and
the mass ð1�2αÞm of the flywheel are concentrated in the outer edge of the wheels. Hence in this case the mass moment of
inertia of the roller around its mass center becomes J ¼ 2αmr2þð1�2αÞmR2

0, which is larger than that of the ball or the
cylinder with the same physical mass m.

For all these layouts, the roller damper is described by four parameters, i.e. r, R, m and J. In order to ease the notation as
well as the following derivation of the equations of motion, these four parameters can be combined into merely two
parameters as shown below, namely the equivalent mass me and the equivalent length Re, which may be interpreted as
the mass and length of an equivalent mathematical pendulum. The equivalent mathematical pendulum should represent
the same kinetic and potential energy as the roller damper. As shown in Fig. 5, the kinetic energy of the roller mass during
rotation can be written as

T ¼ 1
2mðR�rÞ2 _θ2þ1

2 Jð _αþ _θÞ2 (5)

where α is the rotational angle of the roller relative to the line of gravity. By imposing a sufficient friction coefficient
between the surfaces, sliding of the damper mass is prevented. Thus the relationship between α and θ is given by the

Fig. 4. Possible layouts of the roller damper. (a) Homogeneous ball, J ¼ 2
5mr2, (b) homogeneous cylinder, J ¼ 1

2mr2, (c) a flywheel and two small rail wheels,
J ¼ 2αmr2þð1�2αÞmR2

0.

Fig. 5. Equivalent mathematical pendulum for the roller damper.
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kinematical relation (see Fig. 5):

r αþθ
� �¼ Rθ ) rα¼ R�rð Þθ ) _α ¼ R�r

r
_θ (6)

Substituting Eq. (6) into Eq. (5), the kinetic energy becomes

T ¼ 1
2

mþ J
r2

R2

ðR�rÞ2

 !
ðR�rÞ2 _θ2 ¼ 1

2
meR

2
e
_θ
2

(7)

where

me ¼mþ J
r2

R2

ðR�rÞ2
; Re ¼ R�r (8)

me can be regarded as a measure of the control efficiency of the damper. The larger the value of me is, the higher efficiency is
achieved by the roller damper. For a given physical mass m of the roller, the value of me can be increased by increasing J. In
this respect, the ball damper shown in Fig. 4(a) is less efficient than the cylinder in Fig. 4(b), which in turn is less efficient
than the device shown in Fig. 4(c). It should be noted that me is only used for calculating the kinetic energy of the system.
The potential energy for both systems in Fig. 5 is given by

V ¼mgðR�rÞð1� cos θÞ ¼mgReð1� cos ¼ θÞ (9)

Here the physical mass m is used since the potential energy is always related to the gravity of an object. In the following
derivations of the equations of motion of the 2-DOF system, me and Re are used to calculate the kinetic energy, and m and Re
are used to calculate the potential energy of the system.

3.3. Modeling and analysis of the 2-DOF system

Fig. 6 shows the reduced 2-DOF model for a blade equipped with a roller damper, where the roller damper is represented
by the mathematical pendulum. It should be noted that the equivalent length Re (Re5x0) is locally amplified in the figure in
order to clarify the geometry, which is helpful in deriving the kinetic and potential energy of the system. With sign
definitions in Fig. 6, the velocity components of the blade in the moving ðx2; x3Þ�coordinate system can be written as

v2ðx3; tÞ ¼ �Ωx3�Φðx3Þ _qðtÞ
v3ðx3; tÞ ¼ �ΩΦðx3ÞqðtÞ

)
(10)

The components of the position vector and velocity vector of the damper mass in the fixed global ðX2;X3Þ�coordinate
system are given by

X2;dðtÞ ¼ �x0 sin Ψ �aq cos Ψ�Re sin ðΨþφþθÞ
X3;dðtÞ ¼ x0 cos Ψ�aq sin Ψ þRe cos ðΨ þφþθÞ

)
(11)

V2;dðtÞ ¼ �ðx0Ωþa _qÞ cos ΨþaqΩ sin Ψ�ReðΩþ _φþ _θÞ cos ðΨ þφþθÞ
V3;dðtÞ ¼ �ðx0Ωþa _qÞ sin Ψ�aqΩ cos Ψ�ReðΩþ _φþ _θÞ sin ðΨþφþθÞ

9=
; (12)

The total kinetic energy of the system (i.e. one blade and one roller damper) becomes

T ¼ 1
2

Z L

0
μ x3ð Þ v22 x3; tð Þþv23 x3; tð Þ� �

dx3þ
1
2
me V2

2;d tð ÞþV2
3;d tð Þ

� �

Fig. 6. Schematic diagram of the reduced 2-DOF model.
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¼ 1
2
m0ð _q2þΩ2q2Þþm1Ω _qþ1

2
Ω2m2

þ1
2
me½ðx0Ωþa _qÞ2þa2q2Ω2þR2

e ðΩþb _qþ _θÞ
þ2ReðΩþb _qþθÞððx0Ωþa _qÞ cos ðbqþθÞþaqΩ sin ðbqþθÞÞ� (13)

where m0 ¼
R L
0 μðx3ÞΦ

2ðx3Þ dx3 denotes the modal mass of the blade. Further, m1 ¼
R L
0 μðx3Þx3Φðx3Þ dx3, m2 ¼

R L
0 μðx3Þx23 dx3.

The total potential energy of the system is

U ¼mg x0 cos Ψ �aq sin ΨþRe cos Ψþbqþθ
� �� �þ1

2 k0q
2 (14)

where g is the acceleration of gravity, and k0 denotes the modal stiffness of the blade including the geometric stiffness effect
from centrifugal accelerations. k0 is expressed as

k0 ¼
Z L

0
EI x3ð Þ d2Φðx3Þ

dx23

 !2

þF x3ð Þ dΦðx3Þ
dx3

� �2
0
@

1
A dx3 (15)

where Fðx3Þ ¼Ω2 R L
x3
μðξÞξ dξ is the centrifugal axial force per unit length along the blade. Thus the fundamental angular

eigenfrequency of the blade can be obtained as

ω0 ¼
ffiffiffiffiffiffiffi
k0
m0

s
(16)

As the damper mass rolls along the track, a friction force f(t) takes place due to the rolling friction between the contacting
surfaces. The magnitude of this force is proportional to the normal force acting on the roller through the track. In a rotating
blade, this normal force is governed by the centrifugal force since it is much larger than the gravity force. As shown in Fig. 6,
the total normal force on the damper mass can be expressed as

NðtÞ ¼mRe
_θ
2þmx0Ω

2 cos ðbqþθÞ (17)

Then, the friction force f(t) can be given by

f ðtÞ ¼ μðmRe
_θ
2þmx0Ω

2 cos ðbqþθÞÞsignð _θÞ (18)

where μ is the coefficient of rolling friction between the surfaces. A reaction force in the opposite direction is acting on the
track which is fixed inside the blade. The projection of this force on the blade in the negative x2-direction becomes co-
directional to the degree of freedom q(t). The modal load from this reaction force can be expressed as

f rðtÞ ¼ aμðmRe
_θ
2þmx0Ω

2 cos ðbqþθÞÞ cos ðbqþθÞsignð _θÞ (19)

where a is defined in Eq. (4). Then the generalized loads for each DOF are given by

FqðtÞ ¼ f 0ð _q; tÞ�c0 _qþ f rðtÞ
FθðtÞ ¼ � f ðtÞRe ¼ �μReðmRe

_θ
2þmx0Ω

2 cos ðbqþθÞÞsignð _θÞ (20)

where f 0ð _q; tÞ denotes the turbulence induced modal load on the blade considering aerodynamic damping and couplings
between the blade with other components of the wind turbine, and c0 _q indicates the linear viscous damping load. f 0ð _q; tÞ
is calculated using the more sophisticated 13-DOF aeroelastic wind turbine model introduced in the previous section.
c0 ¼ 2ζ0m0ω0 indicates the modal damping coefficient of the primary structure, ζ0 is the related modal damping ratio.

It can be proved that the magnitude of fr(t) is much smaller than that of f 0ð _q; tÞ and c0 _q, thus this term is ignored in the
following derivation.

Using Eqs. (12), (13) and the two generalized loads, the equations of motion of this 2-DOF system can be obtained from
the stationarity conditions of the Euler–Lagrange equations [18]:

d
dt

∂T
∂ _q

� �
�∂T
∂q

þ∂U
∂q

¼ f 0 _q; tð Þ�c0 _q

) ðm0þmeða2þR2
eb

2ÞÞ €qþmeR
2
eb

€θþc0 _qþðk0�Ω2ðm0þmea2ÞigÞq
þmeReð2ab €qþa €θ�abΩ2qÞ cos ðbqþθÞ�meReðða�bx0ÞΩ2þ2aΩ _θþaðb _qþ _θÞ2Þ sin ðbqþθÞ

�mgða sin ðΩtÞþbRe sin ðΩtþbqþθÞÞ ¼ f 0ð _q; tÞ (21)

d
dt

∂T
∂ _θ

� �
�∂T
∂θ

þ∂U
∂θ

¼ Fθ tð Þ

) meReb €qþmeRe
€θþμðmRe

_θ
2þmx0Ω

2 cos ðbqþθÞÞsignð _θÞ
þmeað €q�Ω2qÞ cos ðbqþθÞþmeð2aΩ _qþΩ2x0Þ sin ðbqþθÞ

�mg sin ðΩtþbqþθÞ ¼ 0 (22)
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In the following numerical simulations, Eqs. (21) and (22) are solved directly instead of carrying out linearization. There
are two reasons for avoiding linearization. Firstly, it may be impossible to perform linearization of the nonlinear equations of
motion in some cases when the value of θ is large. Secondly, even if linearization has been performed, there still remain
some parametric-excited terms and hence time-varying system parameters in the equations of motion. To obtain the system
responses accurately, numerical integration is still needed as in the nonlinear case, making the linearization meaningless.

To calculate the angular eigenfrequency of the roller when it is rolling in the vicinity of the equilibrium position, we set
qðtÞ ¼ 0 and assume small values of θðtÞ in Eq. (22), resulting in the following equation:

meRe
€θðtÞþμðmRe

_θ
2þmx0Ω

2Þsignð _θÞþmeΩ
2x0θðtÞ�mg sin ðΩtþθðtÞÞ ¼ 0 (23)

Ignoring the influence of gravity, the angular eigenfrequency of the roller can be calculated from Eq. (23) as

ωd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meΩ

2x0
meRe

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
x0Ω

2

Re

s
(24)

It is shown that the motion of the roller is controlled by the centrifugal acceleration x0Ω
2, which is much larger than g if

x0 is large enough. Normally, the roller damper should be devised such that ωdCω0. This can be achieved by adjusting Re
when the rotational speed of the rotor Ω and the position of the damper x0 are fixed.

From Eqs. (21) and (22), it can be seen that the performance of the roller damper is affected by parameters m, ωd, μ and
x0, which need to be optimized when designing this kind of damper for different wind turbines. The optimization procedure
will be carried out directly on this 2-DOF nonlinear model, with the turbulence induced modal loads f 0ð _q; tÞ as the external
excitation. It should be noted that in the optimization the couplings of the blade edgewise vibration to other degrees of
freedom are ignored. But the decoupled optimization will be verified by incorporating the damper into the highly coupled
13-DOF wind turbine model.

The reduction ratio η is defined as

η¼ σq;0�σq

σq;0
(25)

where σq;0 and σq are the standard deviations of the edgewise tip displacements of the blade without and with control,
respectively. The optimal parameters of the roller damper can be found by maximizing the reduction ratio.

4. Numerical simulations

The NREL 5 MW baseline wind turbine [15] is utilized to calibrate both the 13-DOF and 2-DOF models. In both models,
each blade has a length of 63 m and an overall mass of 17 740 kg. Eight different airfoil profiles are used for the blade from
hub to tip, the lift and drag coefficients of which are obtained from wind tunnel test. The related data of modal shapes, the
bending stiffness, the mass per unit length of the blade can also be found in [15].

In agreement with [19], the turbulence modeling is based on Taylor's hypothesis of frozen turbulence, corresponding to a
frozen filed convected into the rotor plane in global X1-direction with a mean velocity V0 and a turbulence intensity I. The
turbulence intensity is defined as I ¼ σv=V0, where σv is the standard deviation of the turbulence component in the mean
wind direction. The frozen field is assumed to be homogeneous and isotropic, with a covariance structure given by [20].
Calibrated from this theoretical covariance structure, the first-order AR model as proposed by [10] performs a first-order
filtering of the white noise input, resulting in continuous, non-differentiable sample curves of the turbulence field at the
rotor plane. Next, the turbulence encountered in the moving frame of reference fixed to the rotating blade is obtained
by linear interpolation between the turbulence at different grid points in the fixed frame of reference, resulting in the
rotational sampled turbulence. Due to the longitudinal correlation of the incoming turbulence, a periodicity is present as
spectral peaks at 1Ω, 2Ω, 3Ω⋯ in the auto-spectrum density function of the rotational sampled turbulence.

By applying this turbulence field to the rotor of the 13-DOF wind turbine, we can obtain edgewise modal loads for each
blade. The calculated modal load f 0ð _q; tÞ is exerted to the 2-DOF model, based on which the optimization and parametric
studies of the damper are to be carried out. In the simulation, the fourth-order Runge–Kutta method was applied to solve
the nonlinear ordinary differential equations of the 2-DOF system.

4.1. Optimization and parametric study of the damper

Using data from the NREL baseline wind turbine, the constant parameters employed in the reduced 2-DOF model are
calculated and illustrated in Table 1. The parameters of the damper to be determined are the mass m, the frequency ωd, the
coefficient of rolling friction μ and the mounting position x0 along the blade. Since the control effect of the proposed damper
is dominated by the centrifugal acceleration x0Ω

2, it is expected that we can obtain better control effect by mounting the
damper closer to the blade tip. On the other hand, the available space inside the blade is decreasing towards tip, which
makes the determination of x0 a practical tradeoff problem. In the following optimization procedure x0 is set to be 45 m,
which means that the damper is mounted at a position approximately 2

3 of the total blade length. The effect of various values
of x0 on the performance of the damper will also be investigated later. Furthermore, it is well known that the larger mass
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ratio m=m0 would give a better control performance for a passive damper. However the damper mass should be limited
according to the construction and maintenance considerations. Thus four sets of mass ratios are considered in the
optimization procedure, i.e. m¼ 0:01m0, m¼ 0:02m0, m¼ 0:03m0, m¼ 0:04m0. In the simulation, only a ball is considered
for the roller damper. Since the equivalent mass of a cylinder or a flywheel is larger than that of a ball, it is expected that a
cylinder or a flywheel could obtain a better control effect comparing with a ball, and actually the results obtained in the
simulation are conservative. With m0¼1300 kg, the roller mass will vary between 13 kg and 52 kg. For each assigned value
of the mass ratio, we search for the optimal value of the turning ratio ωd=ω0 and the optimal value of the friction coefficient
μ by maximizing the value of η.

Fig. 7 shows the 2-dimensional numerical optimization results of ωd=ω0 and μ for various mass ratios and a given x0. The
modal load is calculated from a turbulence field with a mean wind speed of 15 m s�1 and a turbulence intensity of 0.1. The
color bar indicates the reduction ratio η by the damper. It can be seen from Fig. 7 that different mass ratios require different

(a) (b)

(c) (d)

Fig. 7. Contour diagrams of the reduction ratios for optimization of ωd and μ, V0 ¼ 15 m s�1, I¼0.1, x0 ¼ 45 m. (a) m¼ 0:01m0, optimization results:
ωd ¼ 0:975ω0, μ¼ 0:0312, η¼ 26:79 percent, Re¼1.703 m, (b) m¼ 0:02m0, optimization results: ωd ¼ 0:952ω0, μ¼ 0:0310, η¼ 31:84 percent, Re¼1.785 m,
(c) m¼ 0:03m0, optimization results: ωd ¼ 0:952ω0, μ¼ 0:0308, η¼ 34:79 percent, Re¼1.785 m, (d) m¼ 0:04m0, optimization results: ωd ¼ 0:938ω0,
μ¼ 0:0295, η¼ 37:26 percent, Re¼1.842 m. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of
this paper.)

Table 1
Parameters in the 2-DOF blade–damper model.

Parameter Value Unit

m0 1.3�103 kg
k0 5.8�104 N m�1

ω0 6.67 rad s�1

ζ0 0.005 –

L 63 m
Ω 1.27 rad s�1

g 9.81 m s�2
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optimal values for the frequency ratio and the friction coefficient. As the mass ratio increases from 1 percent to 4 percent,
the optimal value of ωd=ω0 decreases from 0.975 to 0.938, and the optimal value of μ decreases very slightly from 0.0312 to
0.0295. As expected, the corresponding maximum reduction ratio increases from 26.79 percent for m¼ 0:01m0 to 37.26
percent form¼ 0:04m0. It can also be seen in Fig. 7(a) that a local maxima exists at the right side of the optimal point, due to
the nonlinearity of the system. As the mass ratio increases, no local maxima can be observed anymore. Moreover, the
increase of the mass ratio broadens the read areas in the contour diagram. This means that the detuning of ωd=ω0 and μ
becomes less sensitive with larger mass ratios, and acceptable control effect can be obtained at a wider range of parameter
variations.

If the roller damper parameters shift away from their respective optimal values, the control effect is expected to degrade.
Fig. 8(a) shows the effect of detuning of the frequency ratio, where the optimal values of μ obtained from Fig. 7 are used for
different mass ratios. The value of η decreases faster when ωd=ω0 shifts towards larger values compared with that towards
smaller values and it becomes very small when the frequency ratio is larger than 1. This means that the detuning effect of
ωd=ω0 is more pronounced when it shifts from the optimal value towards larger values and the damper is more robust in
the frequency range of 0:9oωd=ω0o1. Fig. 8(b) shows the effect of various values of friction coefficient on the damper
performance with the optimal values of ωd=ω0. The detuning effect of μ is more pronounced when it shifts towards 0. As
long as the friction coefficient is set to be larger than 0.02, reduction ratio of the edgewise vibration is not very sensible to
the value of μ. Acceptable control effect can always be obtained when μ is set between 0.025 and 0.05. This is favorable
when the friction coefficient between the roller and the circular tube increases slightly due to corrosion during the
operational period.

Fig. 9 shows the influence of the mounting position and the mass ratio on the mitigation effect of the roller damper.
Optimal values of ωd=ω0 and μ have been used for each value of m. Fig. 9(a) shows an expected result that a damper
mounted closer to the tip can reduce the edgewise vibration more efficiently, owing to the larger centrifugal acceleration. As

Fig. 8. Effect of detuning, V0 ¼ 15 m s�1, I¼0.1, x0 ¼ 45 m. (a) Reduction ratio versus ωd=ω0 for various mass ratios, μ optimal for each value of m.
(b) Reduction ratio versus μ for various mass ratios, ωd=ω0 optimal for each value of m.

Fig. 9. Influence of the damper position and the mass ratio on the reduction ratio, V0 ¼ 15 m s�1, I¼0.1, ωd and μ optimal for each value of m. (a) Reduction
ratio versus x0=L for various mass ratios, (b) reduction ratio versus m0=m for various mounting positions.
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x0=L goes below 0.5, the control effect is not acceptable even though the mass ratio is large. The control effect increases
rapidly as the value of x0=L goes up to around 0.7, but it is not improved much as x0=L increases further. This is a favorable
observation since practically it is difficult to mount a damper in the vicinity of the blade tip due to lack of space. Fig. 9(b)
indicates a well known result that as the mass ratio increases the control effect increases. However, one valuable
observation is that the increase of the reduction ratio is not proportional to the increase of the mass ratio. For example,
as the mass ratio goes from 0.02 to 0.05 (increased by 150 percent) for the case of x0 ¼ 45 m, the reduction ratio is only
improved from 31.84 percent to 38.94 percent (increased by 22.30 percent). Considering the ease of maintenance and the
improvement of control performance, it is not worthwhile to devise a damper with large mass ratios. When mounted at the
position between 40 m and 50 m along the blade, a damper with a mass ratio of 0.02 (m¼26 kg) can always achieve
reasonably good control effect.

The motion of the roller is also investigated in various cases. Fig. 10(a) and (b) corresponds to the reduction ratios in
Fig. 8(b) and (a), respectively. As shown in Fig. 10(a) the increase of the friction coefficient μ will reduce the maximum
rotational angle θðtÞ of the roller. The motion of the roller varies slightly as long as μ is set to be larger than 0.01. Fig. 10(b)
shows that a closer mounting position of the damper to the tip will result in a more drastic motion of the roller for a given
mass ratio. This explains the result in Fig. 9(a) that better control performance can be obtained when the damper is set
closer to the tip, since a roller having more drastic motions absorbs more energy from the structural response. Again, the
mass ratio effect is observed that a damper with a bigger mass ratio can achieve a better mitigation effect with a lower roller
peak response. Further, it can be seen that the maximum rotational angle varies from 0.3 rad to 0.95 rad (17–54.41) when
optimal damper parameters are applied. This means that the rolling motion of the damper mass only takes place in a part of
the circle, making it possible to devise a damper with an arc tube or a finite segment of the circular track. This becomes
necessary in the present case, where Re varies from 1.703 m to 1.842 m according to the results of Fig. 7, and the chord of the
blade section at x0 ¼ 45 m is about 3 m [15].

4.2. Performance of the damper

Fig. 11 presents the control performance of the roller damper on the blade edgewise vibration, when V0 ¼ 15 m s�1 and
I¼0.1. The mass ratio is 0.02 and the mounting position of the damper is 45 m. Further, the optimal values of ωd and μ are
utilized. It is observed from Fig. 11(a) that a damper with a mass of 26 kg significantly improves the dynamic response of the
blade. The maximum edgewise tip displacement is reduced from 0.770 m to 0.637 m (reduced by 17.27 percent), and the
standard deviation is reduced from 0.1684 m to 0.1148 m (reduced by 31.84 percent). The Fourier amplitude spectrum of q(t)
as presented in Fig. 11(b) shows that the roller damper effectively suppresses the peak around 6.67 rad s�1 corresponding to
the eigenvibration of the blade in edgewise direction. This means that a properly designed roller damper could almost
totally absorb energy from the eigenvibration of the blade. However, a low peak around 1.27 rad s�1 is hardly affected by the
roller. This is associated with the rotational speed of the blade, and the roller damper is not functioning at this frequency. It
should be noted that much more energy is concentrated around the frequency of 6.67 rad s�1 for the uncontrolled response
since aerodynamic damping is low in the edgewise direction. As a result, although not functioning around the frequency of
Ω, a well tuned roller damper still exhibits promising performance in suppressing edgewise vibrations in a rotating wind
turbine blade.

Fig. 11(c) illustrates the time history of the rotational angle of the roller damper with a mean value of θðtÞ ¼ 0. The
maximum rotational angle of the roller is 0.6287 rad, which means that the motion of the roller is restricted within a small
segment of a circle. Fig. 11(d) shows the Fourier amplitude spectrum of θðtÞ. A clear peak corresponding to the rotational

Fig. 10. Maximum rotational angle of the roller in various cases, V0 ¼ 15 m s�1, I¼0.1. (a) Maximum angle versus μ, ωd optimal for each value of m,
(b) maximum angle versus x0=L, ωd and μ optimal for each value of m.
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speed of the rotor is observed, which can be explained by the last term in Eq. (22). Moreover, two low peaks can be observed
at two sides of the fundamental edgewise frequency, which displays the angular eigenfrequencies of the 2-DOF system.

It is of importance to study the performance of roller dampers when the working condition of the wind turbine is
changed. In the following, different combinations of V0 and I are investigated to evaluate the control effect of the roller
damper with optimal parameters determined from the case of V0 ¼ 15 m s�1 and I¼0.1.

The cut-in, cut-out and rated wind speed of the NREL 5-MM wind turbine are 3 m s�1, 25 m s�1 and 11.4 m s�1,
respectively. With the functioning of the pitch controller, the mean rotational speed of the rotor keeps constant for mean
wind speeds ranging from 11.4 m s�1 to 25 m s�1. Fig. 12 shows the edgewise tip displacement of the blade when
V0 ¼ 25 m s�1 and I¼0.1. The roller damper again works well in this case. There is a reduction of 30.72 percent in the
maximum value and a reduction of 26.38 percent in the standard deviation of q(t) by installing a roller damper in the blade.
Similarly, the frequency component corresponding to eigenvibration of the blade is almost totally eliminated by the damper.
Further, Fig. 13 shows the result in the case of the rated wind speed V0¼11.4 m s�1 with the same turbulence intensity. The
optimized damper achieves similar performance as in the previous cases, with a reduction of 21.98 percent in the maximum
value and a reduction of 26.52 percent in the standard deviation. It is observed that in all cases, the mean value of q(t) with
or without control remains identical, which equals to 0.240 m, 0.225 m, 0.118 m for V0¼11.4 m s�1, 15 m s�1, 25 m s�1,
respectively. The reason for the decreased mean edgewise displacement with the increased mean wind speed is that the
pitch angle tends to be increased as V0 increases from the rated speed to the cut-out speed, so that a constant rated power

Fig. 11. Control performance of the roller damper, V0 ¼ 15 m s�1, I¼0.1, m¼ 0:02m0, x0 ¼ 45 m, optimal ωd and μ, Re¼1.785 m. (a) Time series of the
edgewise vibration, (b) Fourier amplitude of the edgewise vibration, (c) time series of the roller motion, (d) Fourier amplitude of the roller motion.
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(5 MW in this case) is produced. With increased pitch angle, the mean values of the angles of attack along the blade and
hence the mean modal loads are reduced. This is typical for the variable speed, pitch regulated wind turbines.

The turning of the roller damper is based on the rated rotational speed of the rotor (1.27 rad/s). As the blade rotational
speed varies, e.g. when V0 is below rated, or during the starting up or closing down procedures of the wind turbine, the
control efficiency of the roller damper is expected to be reduced due to the frequency detuning. Table 2 shows the influence
of the blade rotational speed on the values of ω0, ωd and the control efficiency of the roller damper. It is seen that ω0 is
slightly reduced as Ω decreases since the centrifugal axial force and hence k0 are reduced, as indicated by Eq. (14). With
fixed x0 and Re, ωd decreases significantly with decreasedΩ, resulting in more pronounced frequency detuning of the roller
damper. Consequently, the reduction ratio of the damper is significantly reduced from 31.84 percent to 6.21 percent whenΩ
decreases from 1.27 rad s�1 to 0.8 rad s�1.

Larger values of the turbulence intensity imply larger amplitude vibrations of the blade. As I increases from 0.1 to 0.3,
the standard deviation of the uncontrolled edgewise vibration increases from 0.1684 m to 0.3915 m. Nevertheless, the
roller damper works similarly well as in Fig. 11. However, by increasing I further to the value of 0.35, one can observe an
interesting phenomenon of the damper performance. As shown in Fig. 14(a), the blade instantaneously vibrates at high
amplitudes and the damper has ceased working in the interval between 200 s and 300 s, where the response of the

Fig. 12. Blade edgewise vibrations with and without the roller damper, V0 ¼ 25 m s�1, I¼0.1, m¼ 0:02m0, x0 ¼ 45 m, Re¼1.785 m, μ¼0.031. (a) Time series,
(b) Fourier amplitude.

Fig. 13. Blade edgewise vibrations with and without the roller damper, V0¼11.4 m s�1, I¼0.1, m¼ 0:02m0, x0 ¼ 45 m, Re¼1.785 m, μ¼0.031. (a) Time
series, (b) Fourier amplitude.
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controlled system is even increased. This can be explained by the time series of the rotational angle of the roller illustrated in
Fig. 14(b). The strong turbulence enforces the roller to perform 3 clockwise full rotations of a magnitude 2π at t¼190 and 2
clockwise full rotations at t¼210. As seen, the reestablishment of the damping effect on the blade requires almost one minute
after the roller starts to move forth and back again around the equilibrium position. It should be noted that due to the symmetry
of the roller damper about its center, both clockwise and counterclockwise full rotations can take place, depending on the
vibration of the blade and hence the turbulence field applied to the rotor. Since the turbulence is stochastic, the direction of the
full rotational is also random. The results in Fig. 14 correspond to the turbulence field used in that specific simulation. Using
different realizations of the turbulence field, the roller may have counterclockwise full rotations. Obviously, such full rotations of
the roller are unfavorable for control of edgewise vibrations. In reality, a turbulence intensity of 0.35 might be encountered when
a wind turbine is placed in the wake of other wind turbines. In such situations, the control efficiency of the roller damper is
expected to be reduced compared with the cases when I is less than 0.35.

Further, for some combinations of blade properties and operational conditions, the sum of the structural damping and
the aerodynamic damping becomes negative, and aeroelastic instability may take place in the edgewise direction. In this
case, the blade vibrates at the first edgewise eigenfrequency with exponentially increasing amplitude. Since the vibrational
energy is completely concentrated in the first edgewise mode, the roller damper which is tuned to this frequency will
effectively add damping into this mode, resulting in a more stable system.

4.3. Evaluation by the 13-DOF aeroelastic wind turbine model

To verify the applicability of the decoupled optimization and the control effect of the damper in highly coupled wind
turbine systems, the optimized damper is incorporated into the 13-DOF aeroelastic wind turbine model. For each blade, a
roller damper is mounted at the position of x0 ¼ 45 m. Therefore, a 16-DOF system is obtained for the wind turbine with totally

Fig. 14. Performance of the roller damper, V0 ¼ 15 m s�1, I¼0.35, m¼ 0:02m0, x0 ¼ 45 m, Re¼1.785 m, μ¼0.031. (a) Time series of the edgewise tip
displacement, (b) time series of the rotational angle of the roller.

Table 2
Influence of the blade rotational speed on ω0, ωd and the damper performance.

Ω (rad/s) ω0 (rad/s) ωd (rad/s) η (%)

1.27 6.679 6.362 31.84
1.20 6.639 6.025 27.53
1.15 6.627 5.774 23.09
1.10 6.610 5.523 19.37
1.05 6.598 5.272 15.82
1.00 6.587 5.021 13.20
0.95 6.575 4.770 11.01
0.90 6.563 4.519 9.45
0.85 6.552 4.268 7.79
0.80 6.540 4.017 6.21
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three roller dampers installed. Rewriting the equations of motion in the state vector form and including the
first-order differential equation of the pitch controller, the dynamics of the system is described by a 33-dimensional state
vector. Again, this can be solved by the fourth-order Runge–Kutta method. Fig. 15 shows the edgewise vibration in blade 1
obtained from the 16-DOF model, with the same damper parameters and the same turbulence field as used in Fig. 11. It is shown
from Fig. 15(a) that the optimized roller damper effectively mitigates the blade edgewise vibration. The maximum edgewise tip
displacement is reduced from 0.751 m to 0.628 m (reduced by 16.38 percent), and the standard deviation is reduced from
0.138 m to 0.099 m (reduced by 28.26 percent). Similar to Fig. 11(b), Fig. 15(b) shows that the frequency component
corresponding to eigenvibration of the blade is significantly reduced by the damper, whereas the frequency component related
to Ω is unaffected. Comparing with the results obtained from the 2-DOF model as illustrated in Fig. 11, the control effect of the
roller damper is slightly reduced when it is incorporated into the highly coupled 13-DOF model. This is because the couplings of
blade edgewise vibration to other degrees of freedom cause a transfer of mechanical energy from edgewise vibration to other
vibrational modes, resulting in a slightly reduced damping efficiency of the damper. Nevertheless, the roller damper with
parameters optimized from the reduced 2-DOF model could achieve equally promising performance on the highly coupled 13-
DOF model. Similar results have also been obtained for edgewise vibrations in the other two blades.

Table 3 shows the effects of the roller damper on other degrees of freedom of the wind turbine system. It can be seen that
the standard deviations of the lateral tower vibration (q8) and the deviation of the rotor rotational speed ( _q12) are slightly
reduced when roller dampers are mounted. This is due to the direct coupling from the edgewise vibration to the lateral
tower vibration and the drivetrain torsional vibration, which in turn results in some energy flow from these modes to the
motion of the roller. It is favorable to obtain slightly reduced lateral tower vibrations since aerodynamic damping in this
mode is very low. Further, the blade flap-wise vibration (q1), the fore-aft tower vibration (q7) and the collective pitch angle
are almost unchanged, with negligibly increased standard deviations. Since _q12ðtÞ is slightly affected by the roller damper,
the pitch controller produces slightly different pitch angles as feedback from _q12ðtÞ. Due to the dependence of the
aerodynamic loads on the pitch angle, q1ðtÞ and q7ðtÞ are also insignificantly affected although there is no direct coupling
between these two modes with the edgewise vibration.

5. Concluding remarks

This paper investigated the performance of roller dampers for mitigation of edgewise vibrations in rotating wind turbine
blades. A reduced 2-DOF nonlinear model based on an analytical dynamic formulation has been established for a rotating

Table 3
Effects of the roller damper on other degrees of freedom (std: standard deviation).

Cases q1 (m) q7 (m) q8 (m) _q12 (rad/s) Pitch angle (rad)

std without damper 0.9732 0.0759 0.0145 0.0149 0.04519
std with damper 0.9738 0.0760 0.0143 0.0147 0.04522

Fig. 15. Blade edgewise vibrations with and without the roller damper, obtained from the 16-DOF model. V0 ¼ 15 m s�1, I¼0.1, m¼ 0:02m0, x0 ¼ 45 m,
Re¼1.785 m, μ¼0.031. (a) Time series, (b) Fourier amplitude.
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blade equipped with a roller damper. The blade is modeled as a rotating cantilever beam using data from the NREL 5-MW
baseline wind turbine, and the coupling with other degrees of freedom in the wind turbine system is ignored. To ease the
derivation of the equations of motion, the roller damper is represented by an equivalent mathematical pendulum, which
possesses the same kinetic and potential energy as the roller damper. The optimization of the damper parameters has been
carried out on this 2-DOF model, with the modal loads obtained from a more sophisticated 13-DOF aeroelastic wind turbine
model subjected to a 3-dimensional turbulence field.

Optimal parameters have been determined for the roller damper with different mass ratios by minimizing the standard
deviation of the controlled response. Extensive parametric studies are presented to evaluate the influence of various system
parameters, such as mass ratio, frequency ratio, friction coefficient and mounting position of the damper. The results reveal
that better performance of the roller damper can be obtained by increasing the mass ratio and mounting the damper closer
to tip. Variations of the frequency ratio and the friction coefficient have significant effect on the control effect. However, the
performance of the damper becomes less sensitive to the friction coefficient when the value of μ is set to be larger than 0.02.
It is shown that a roller damper with a mass of 26 kg can significantly attenuate edgewise blade vibrations, when it is
properly tuned and is placed at outer part along the blade. This kind of damper performs well in operational wind turbines
with a cut-in wind speed of 3 m s�1 (the pitch controller is turned off) and a cut-of speed of 25 m s�1. Robust control effect
of the damper is observed in suppressing edgewise vibrations as long as the turbulence intensity is less than 0.35. However,
stronger turbulence as encountered in the wake of other wind turbines may enforce the roller to perform full rotations in a
short time, resulting in a poor control effect during a certain succeeding transient time intervals.

Further, the roller damper with optimal parameters has been incorporated into the 13-DOF aeroelastic wind turbine
model to verify the decoupled optimization. Simulation results show that the optimized damper performs almost equally
well in the highly coupled wind turbine model as in the reduced 2-DOF model. The slight reduction in the control effect is
attributed to the energy flow between the blade edgewise vibration with other degrees of freedom of the highly coupled
system. In conclusion, the proposed roller damper and the 2-DOF reduced model for parametric optimization are promising
for practical use in wind energy industries.
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SUMMARY

Edgewise vibrations in wind turbine blades are lightly damped, and large amplitude vibrations induced by the
turbulence may significantly shorten the fatigue life of the blade. This paper investigates the performance of tuned
liquid column dampers (TLCDs) for mitigating edgewise vibrations in rotating wind turbine blades. Normally, the
centrifugal acceleration at the outboard portion of a rotating blade can reach to a magnitude of 7–8 g, which makes
it possible to use a TLCD with a very small mass for suppressing edgewise vibrations effectively. The parameters
of the TLCD to be optimized are the mounting position, the mass ratio, the geometries, and the head loss coeffi-
cient of the damper. Based on a reduced 2-DOF nonlinear model developed by the authors, the optimization of
these parameters are carried out by minimizing the standard deviation of the edgewise tip displacement, with
the consideration of both the space limitation inside the blade and the constraint of the liquid motion. The edgewise
modal load for the 2-DOF model has been calculated from a more sophisticated 13-DOF aeroelastic wind turbine
model, which includes the coupling of the blade-tower-drivetrain vibration and the aerodynamic damping pre-
sented in different modes. Various turbulence intensities and rotational speeds of the rotor have been considered
to evaluate the performance of the TLCD. Further, the optimized damper is incorporated into the 13-DOF model
to verify the application of the decoupled optimization. The investigation shows promising results for the use of
the TLCD in mitigating edgewise vibrations in wind turbine blades. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Recent developments in the wind energy industry aim at obtaining more economic and productive
configurations in order to compete in the energy sector. As a result, modern multi-megawatt wind
turbines are designed with increasingly larger rotors to capture more energy throughout their lifetime
and to reduce the cost of energy. As the size of the rotor increases, the stiffness of the blades is not
proportionally increased. These slender and flexible blades exhibit high susceptibility to wind-induced
vibrations, which may significantly shorten the fatigue life of the blade and reduce the efficiency of
wind energy conversion to electrical power.

Normally, the modes of vibration in the blades are classified as flap-wise and edgewise modes. Flap-
wise vibrations are vibrations out of the plane of the rotating rotor, whereas edgewise vibrations take
place in the rotor plane. In operational conditions, flap-wise vibrations are highly damped because of
the strong aerodynamic damping as long as the boundary layer on the back side of the profile is
attached [1]. Hence, the out-of-plane motions merely turn out to be quasi-static responses to the turbulent
wind. In contrast, edgewise vibrations are associated with much smaller aerodynamic damping [1,2],
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which gives rise to the increased dynamic responses and fatigue damage. Further, the edgewise vibrations
will increase the fluctuations of the generator torque, and hence the quality of the generated power. There
is also a possibility of aeroelastic instability in the edgewise direction for some combinations of blade
properties and operational conditions, especially for high performance wind turbines operating close to
stall [1,3]. This corresponds to the case in which the aerodynamic loadings pump energy into the
vibrational mode in the edgewise direction, and the sum of the structural damping and the aerodynamic
damping becomes negative [4]. For these reasons, the suppression of excessive edgewise vibrations has
become a vital design consideration to protect wind turbine blades from the fatigue damage during the
design period and to improve their overall performance.

The use of passive, semi-active, and active control devices has been extensively investigated for
controlling structural vibrations and protecting structures from the damage effect of the environment
[5]. In recent years, structural control technologies are being increasingly investigated for application
in wind turbines. For wind turbine towers, several kinds of passive dampers have been studied to
suppress the vibrations induced by the wind and wave loads [6–8]. Investigations regarding the miti-
gation of blade vibrations are mainly focused on the semi-active and active control solutions. Arrigan
et al. [9] proposed a semi-active tuned mass damper (TMD) for the control of flap-wise vibrations in
wind turbine blades, although the modal damping in this direction is already very high because of
the aerodynamic damping. Active TMDs have also been studied for mitigating edgewise vibrations,
and the active TMD achieves greater response reductions than the passive counterpart [10]. Krenk
et al. [11] proposed an active strut mounted near the root of each blade for suppressing blade vibra-
tions. The active control concept developed in this research is based on resonant interaction between
the rotor and the controller, which is inspired by the concept of TMDs. Staino et al. [12] presented
the use of active tendons mounted inside each blade for active control of edgewise vibrations. The
controller allows a variable control force to be applied in the edgewise direction, and the control forces
are manipulated according to a prescribed control law. Recently, Zhang et al. [13] investigated the
performance of a passive roller damper equipped inside a rotating blade. Because of the large centrif-
ugal acceleration of the rotating blade, it was shown that a roller damper with a very small mass ratio
could effectively mitigate edgewise vibrations in different working conditions of the wind turbine.

Tuned liquid column damper (TLCD) imparts external damping to a structure through the inertial
force of an oscillating liquid column in a U-shaped container [14]. Energy of the liquid column is
dissipated when the liquid passes through an orifice opening in the middle of the horizontal tube.
The TLCD has several advantages over other damping devices including its low cost, easy installation
and maintenance, easy adjustment of damper geometry to the target frequency, and controllable
damping property by the orifice opening. A number of studies [15–17] have shown that a properly
tuned TLCD could significantly reduce structural responses under wind and earthquake excitations.
Investigation has also been carried out for comparing the performance of TLCDs with TMDs, and it
was concluded that TLCDs were as effective as TMDs in damping structural vibrations [18]. Lee
et al. [19] investigated the TLCD in reducing the wave-induced vibrations of the floating platform
system. Both the analytical and experimental results show promising performance of the TLCD when
it is accurately tuned. More recently, Colwell and Basu [7] carried out a thorough theoretical study on
the performance of a TLCD for vibration control of offshore wind turbine towers and observed that a
single TLCD could reduce the tower displacement by up to 55%.

In this paper, TLCDs are proposed for mitigation of edgewise vibrations in rotating wind turbine
blades. In the case of the building or tower vibrations, the oscillation of the liquid column and thus
the control effect of the TLCD are governed by the gravitational acceleration g. For the rotating blade,
the corresponding control effect is governed by the centrifugal acceleration, which can reach to a
magnitude of 7–8 g for the outboard portion of a 65-m-long blade. This makes it possible to use the
TLCD with a rather small mass for effectively suppressing edgewise vibrations. The focus of this paper
is to present a comprehensive theoretical study on the performance of TLCDs in mitigating blade
edgewise vibrations. A reduced 2-DOF nonlinear model is established for a rotating blade equipped
with a TLCD, ignoring couplings between the edgewise vibration with lateral tower and drivetrain
vibrations. The parameters of the TLCD to be optimized are the mass ratio, the tuning ratio, the head
loss coefficient, the cross-sectional area ratio (vertical/horizontal), and the horizontal length ratio.
Parametric studies have been carried out on the 2-DOF model, with the turbulence induced modal
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loads obtained from a more sophisticated 13-DOF aeroelastic wind turbine model subjected to a three-
dimensional turbulence field. Different turbulence intensities and rotational speeds of the rotor have
been considered to evaluate the performance of both the passive TLCD with fixed orifice area and
the TLCD with varying head loss coefficient. Finally, the optimized damper is incorporated into the
13-DOF model to validate the application of the decoupled optimization as well as the control effect
of the TLCD in the highly coupled wind turbine system.

2. AEROELASTIC MODEL OF THE WIND TURBINE SYSTEM

In this section, a 13-DOF aeroelastic wind turbine model is presented. The indicated model displays sev-
eral important characteristics of a wind turbine, including time-dependent systemmatrices, coupled tower-
blades-drivetrain vibrations, and nonlinear aeroelasticity. Figure 1 shows a schematic representation of the
wind turbine model with definitions of the coordinate systems and the degrees of freedom. The motion of
the tower is described in a fixed, global (X1,X2,X3)-coordinate, while the motion of each blade is
described in a moving, local (x1, x2, x3)-coordinate system with origin at the center of the hub. The X1-
and x1-axis are unidirectional to the mean wind velocity. The X3-axis is vertical, and the x3-axis is placed
along the undeformed blade axis orientated from the hub toward the blade tip. Assuming a constant
rotational speed Ω for the rotation of each blade, the position of the local coordinated system attached
to blade j is specified by the azimuthal angle Ψj(t), given by the following equation:

Ψj tð Þ ¼ Ωt þ 2π
3

j� 1ð Þ; j ¼ 1; 2; 3 (1)

which is positive when rotating clockwise as observed from an upwind position.
Each blade is modeled as a Bernoulli–Euler beam with variable mass per unit length and variable

bending stiffness in the flap-wise and edgewise directions. The flap-wise and edgewise motions of
the three blades are modeled by the degrees of freedom qj(t) and qj+ 3(t), j= 1, 2, 3, indicating the tip

Figure 1. 13-DOF aeroelastic model of three bladed wind turbine. Definition of fixed and moving frames of
reference and the degrees of freedom q1(t),…, q11(t).
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displacement in the positive x1-direction and the negative x2-direction, respectively. The related at-
tached modes are taken as the undamped fundamental eigenmodes Φf (x3) and Φe(x3) in the flap-wise
and edgewise directions, when the blade is fixed at the hub. Because of the definition of qj(t) and
qj+ 3(t), these modes must be normalized to 1 at the tip, Φf (LB) =Φe(LB) = 1, where LB denotes the
length of the blade.

The tower motion is defined by the translational degrees of freedom q7(t) and q8(t) in the global X1-
and X2-directions, and the rotational degrees of freedom q9(t), q10(t), q11(t) in the global X1-, X2-, and
X3-directions. The height of the tower from the base to the nacelle is denoted h, and the horizontal dis-
tance from the center of the tower top to the origin of the moving coordinate systems is denoted s.

The drivetrain is modeled by the degrees of freedom q12(t) and q13(t) as shown in Figure 2. The sign
definition applies to a gearbox with odd number of stages. q12(t) and q13(t) indicate the deviations of
the rotational angles at the hub and the generator from the nominal rotational angles Ωt and NΩt,
respectively, where N is the gear ratio. Correspondingly, _q12 tð Þ and _q13 tð Þ are the deviations of the
rotational speeds at the hub and the generator from the nominal values. In case of even number of
stages, the sign definitions for q13(t) and f13(t) are considered positive in the opposite direction. Jr
and Jg denote the mass moment of inertia of the rotor and the generator, and kr and kg denote
the St. Venant torsional stiffness of the rotor shaft and the generator shaft.

Further, a full-span collective pitch controller is included with time delay modeled by a first-order
filter. The pitch demand is modeled by a PI controller [20] with feedback from q12(t) and _q12 tð Þ. A
gain-scheduled PI controller is used for this model, that is, the controller gains are dependent on the
blade pitch angle [21]. The blade element momentum method with Prandtl’s tip loss factor and
Glauert’s correction for large axial induction coefficients is adopted to calculate aerodynamic forces
along the blade [22]. Nonlinear quasi-static aeroelasticity is considered by introducing the local defor-
mation velocities of the blade into the calculation of the flow angle and the angle of attack. As a result,
this model possesses high aerodynamic damping in the blade flap-wise and the fore-aft tower vibra-
tions, but relatively low aerodynamic damping in the blade edgewise and the lateral tower vibrations.

3. THEORETICAL MODEL FOR THE BLADE-TLCD SYSTEM

The 13-DOF wind turbine model displays a highly coupled dynamical system. The couplings of the
blade edgewise vibration to the lateral tower vibration and the drivetrain torsional vibration will
influence the motion of the liquid inside the U-shaped container. Because the focus of this study is
on the interaction between the TLCD and the blade as well as the control efficiency of the TLCD on
edgewise vibrations, the basic assumption in the following theory is that the influence from the tower
and drivetrain motions can be ignored. Therefore, the analysis and tuning of the damper is totally based
on the local dynamics of the rotating blade. The feasibility of this assumption will be later evaluated by
the 13-DOF model.

3.1. Definition of the problem

In the following, only blade j= 1 is considered because all three blades behave identical with the same
geometrical and structural parameters. Consequently, all the subscripts j representing different blades

Figure 2. 2-DOF model of the flexible drivetrain with odd number of gear stages. Definition of degrees of freedom
q12(t) and q13(t).
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can be skipped, that is, q3 + j(t) = q(t), Ψj(t) =Ψ(t). Figure 3 shows the schematic representation of a
rotating blade equipped with a TLCD. The edgewise vibration of the blade is described by the local
degree of freedom q(t) representing the tip displacement in the negative x2-direction. Hence, the local
edgewise displacement field u(x3, t) of the rotating blade in the positive x2-direction can be described
by q(t) as

u2 x3; tð Þ ¼ �Φ x3ð Þq tð Þ (2)

where Φ(x3) =Φe(x3) is the fundamental edgewise eigenmode of the blade, which is normalized to 1 at
the tip.

Assuming the TLCD to be mounted at the coordinate x3 = x0, the local displacement and rotation of
the blade at this position with the sign definition in Figure 3 are given by

u2 x0; tð Þ ¼ �aq tð Þ
φ tð Þ ¼ bq tð Þ

�
(3)

where the auxiliary parameters a and b have been introduced: a=Φ(x0), b=Φ′(x0). Further, the mass per
unit length and the edgewise bending stiffness of each blade are denoted μ(x3) and EI(x3), respectively.

3.2. Modeling of the TLCD

As shown in Figure 4, the TLCD considered in this paper is composed of a U-shaped tube with an
orifice installed at the center O of the horizontal tube. Because the U-shaped container is mounted inside
a rotating blade with a changing azimuthal angle, it should bemanufactured in a closed form to prevent the
liquid from leaking out of the tube. In this case, an extra slim tube connecting two vertical tubes is fixed in
order to balance the pressure above the liquid column during oscillation. The cross-sectional area of the
TLCD can be non-uniform, where the vertical and horizontal column cross-sectional areas are denoted
as A and A0, respectively. The density, the horizontal width, the vertical height, and the overall length
of the liquid inside the TLCD are represented by ρ, H, B, and L, respectively, where L=2H+B. Thus,
the overall mass of the liquid inside the TLCD can be calculated as

m ¼ ρ 2HAþ BA0ð Þ (4)

The displacements of the liquid in the vertical and horizontal tube are defined as v(t) and v0(t), respec-
tively. Assuming the liquid to be incompressible, the continuity of liquid motion indicates that the liquid
velocities at different locations have the following relationship:

_v0 tð ÞA0 ¼ _v tð ÞA ⇒ _v0 tð Þ ¼ α_v tð Þ (5)

where α =A/A0 is the area ratio.

Figure 3. A rotating blade equipped with a tuned liquid column damper.

TUNED LIQUID COLUMN DAMPERS FOR MITIGATION OF EDGEWISE VIBRATIONS

Copyright © 2014 John Wiley & Sons, Ltd. Struct. Control Health Monit. (2014)
DOI: 10.1002/stc



In order to describe the liquid motion v(t) relative to the U-shaped tube inside the rotating blade, a
moving ( y2, y3)-coordinate system fixed to the damper has been introduced. The origin of this coordi-
nate system is fixed at O, and the y3-axis is placed on the symmetry line of the damper, resulting in a
time-varying angle θ(t) between the y3- and the global X3-axis (Figure 4) as given by

θ tð Þ ¼ Ψ tð Þ þ φ tð Þ ¼ Ωt þ bq tð Þ (6)

Further, describing the velocity vector of the point O in the moving ( y2, y3)-coordinate system, the
resulting velocities _v2 tð Þ and _v3 tð Þ of O in the y2- and y3-direction can be expressed as

_v2 tð Þ ¼ � x0 _Ψ tð Þ þ a _q tð Þ� �
cos φ tð Þ ¼ � Ωx0 þ a _q tð Þð Þcos bq tð Þð Þ

_v3 tð Þ ¼ x0 _Ψ tð Þ þ a _q tð Þ� �
sin φ tð Þ ¼ Ωx0 þ a _q tð Þð Þsin bq tð Þð Þ

)
(7)

Therefore, the kinetic and potential energy of the liquid inside the container can be obtained as

Td ¼ 1
2
ρA ∫

0

� H�vð Þ
_v2 � y3 _θ
� �2 þ _v3 þ _v� 1

2
B _θ

� �2
 !

dy3 þ
1
2
ρA ∫

0

� Hþvð Þ
_v2 � y3 _θ
� �2 þ _v3 � _vþ 1

2
B _θ

� �2
 !

dy3

þ1
2
ρA0 ∫

B=2

�B=2

_v2 þ _v0ð Þ2 þ _v3 þ y2 _θ
� �2� �

dy2

¼ ρA H3 þ 3Hv2
� � _θ2

3
þ H2 þ v2
� �

_θ _v2 þ 1
4
H 4 _v22 þ 4 _v23 þ 2 _v� B _θ

� �2� �
� v 2 _v� B _θ
� �

_v3

" #

þ 1
24

ρA0B 12 _v0 þ _v2ð Þ2 þ 12 _v23 þ B2 _θ
2

� �
(8)

Figure 4. Geometry of the U-shaped tuned liquid column damper.

Z. ZHANG, B. BASU AND S. R. K. NIELSEN

Copyright © 2014 John Wiley & Sons, Ltd. Struct. Control Health Monit. (2014)
DOI: 10.1002/stc



Ud ¼ mg x0cosΨ� aq sinΨð Þ � ρAvg �1
2
2H � vð Þcos θ � 1

2
Bsin θ

� �

þ ρAvg �1
2
2H þ vð Þcos θ þ 1

2
Bsin θ

� �

¼ mg x0cosΨ� aq sinΨð Þ þ ρAvg �vcos θ þ Bsin θð Þ

(9)

where g denotes the gravitational acceleration.

3.3. Equations of motion

The velocity components of the blade in the moving (x2, x3)-coordinate system are given by

_u2 x3; tð Þ ¼ �Ωx3 � Φ x3ð Þ _q tð Þ
_u3 x3; tð Þ ¼ �ΩΦ x3ð Þq tð Þ

�
(10)

Thus, the kinetic energy of the primary structure becomes

Tp ¼ 1
2
∫L0 μ x3ð Þ _u22 x3; tð Þ þ _u23 x3; tð Þ� �

dx3

¼ 1
2
m0 _q2 þΩ2q2
� �þ m1Ω _qþ 1

2
Ω2m2

(11)

where m0 ¼ ∫L0 μ x3ð ÞΦ2 x3ð Þdx3 is the modal mass of the blade. Further, m1 ¼ ∫L0 μ x3ð ÞΦ x3ð Þx3dx3 ,
m2 ¼ ∫L0 μ x3ð Þx23dx3.

The potential energy (strain energy) of the primary structure can be written as

Up ¼ 1
2
k0 tð Þq2 (12)

where k0(t) denotes the modal stiffness of the primary structure including the elastic and geometric
contributions:

k0 tð Þ ¼ ke þ k1Ω2 � k2gcos Ωtð Þ (13)

ke is the elastic stiffness of the blade without geometrical contributions. The second term indicates the
geometrical stiffening due to the centrifugal acceleration. The last term indicates the geometrical
softening caused by the variation of the axial force during rotating due to the weight of the blade.
The parameters ke, k1, and k2 are given by

ke ¼ ∫
L

0
EI x3ð Þ d2Φ x3ð Þ

dx23

� �2

dx3

k1 ¼ ∫
L

0
N1 x3ð Þ dΦ x3ð Þ

dx3

� �2

dx3 ; N1 x3ð Þ ¼ ∫
L

x3
μ y3ð Þy3dy3

k2 ¼ ∫
L

0
N2 x3ð Þ dΦ x3ð Þ

dx3

� �2

dx3 ; N2 x3ð Þ ¼ ∫
L

x3
μ y3ð Þdy3

9>>>>>>>>>=
>>>>>>>>>;

(14)

The fundamental edgewise circular eigenfrequency of a static blade can be calculated using the fol-
lowing equation:

ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ke=m0

p
(15)

From Equations (8) and (11), the total kinetic energy of the 2-DOF blade-TLCD system is given by
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T ¼ Tp þ Td ¼ 1
2
m0 _q2 þΩ2q2
� �þ m1Ω _qþ 1

2
Ω2m2

þρA H3 þ 3Hv2
� � _θ2

3
þ H2 þ v2
� �

_θ _v2 þ 1
4
H 4 _v22 þ 4 _v23 þ 2 _v� B _θ

� �2� �
� v 2 _v� B _θ
� �

_v3

" #

þ 1
24

ρA0B 12 _v0 þ _v2ð Þ2 þ 12 _v23 þ B2 _θ
2

� �
(16)

The total potential energy of the system follows from Equations (9) and (12) is given by

U ¼ Up þ Ud

¼ 1
2
k0q

2 þ mg x0cosΨ � aq sinΨð Þ þ ρAvg �vcos θ þ Bsin θð Þ (17)

Based on the kinetic and potential energy presented in Equations (16) and (17), the equations of
motion of this 2-DOF system can be obtained from the Euler–Lagrange equations [23]:

d

dt

∂T
∂ _q

� �
� ∂T

∂q
þ ∂U

∂q
¼ f 0 _q; tð Þ þ f g tð Þ � c0 _q ⇒

m4€q þ m5€v þ c0 _qþ 2m6v _vþ m7 2v _v _qþ v2€qð Þ þ k0 � m0Ω2
� �

q

þk1v cos Ωt þ bqð Þ þ k2v2sin Ωt þ bqð Þ � mga sin Ωtð Þþ
sin bq½� bm8 þ m23ð Þ � bm9 þ m24ð Þ _q� bm10 � m13 þ m25ð Þ_v� bm11 þ m27ð Þv2

�m26 _q
2 þ m15 _v

2 þ 1
2
m14 _v _qþ m14v€q þ m15v€v � bm12 þ m28ð Þv2 _q� m29v

2 _q2� þ

cos bq½m9€q þ m10€v þ bm13 � m19ð Þvþ bm14 � m20ð Þv _q

þ 2m11 þ bm15 � m21ð Þv _vþ m12v _v _q� m22v _q
2 þ m12v2€q� ¼ f 0 _q; tð Þ þ f g tð Þ

(18)

d

dt

∂T
∂ _v

� �
� ∂T

∂v
þ ∂U

∂v
¼ �cd _v0j j _v0 ⇒

m5€q þ m16€v þ cdα2 _vj j _vþ �m30ð Þv� 2m6v _q� m7v _q
2 þ k3sin Ωt þ bqð Þ þ k4vcos Ωt þ bqð Þ

þsin bq � bm17 þ m32ð Þ � bm10 þ m13ð Þ _qþ m18 � m19ð Þ _v� 1
2
m14 _q

2 þ m15v€q


 �
þcos bq m10€q þ bm18 � m31ð Þvþ bm15 � 2m11ð Þv _q� m12v _q

2
� 
 ¼ 0

(19)

where the constant parameters m4�m32 and k3� k6 have been defined in Appendix A. f 0 _q; tð Þ denotes
the wind-induced modal load on the primary structure, taking the aerodynamic damping into consi-
deration. fg(t) denotes the modal load from gravity expressed as

f g tð Þ ¼ sin Ψ tð Þ∫
L

0
μ x3ð ÞgΦ x3ð Þdx3 ¼ m3gsin Ωtð Þ (20)

where m3 ¼ ∫L0 μ x3ð ÞΦ x3ð Þdx3.
c0 = 2ζ 0m0ω0 indicates the modal damping coefficient of the primary structure, where ζ 0 is the corre-
sponding modal damping ratio. cd is the damping coefficient of the TLCD, indicating the energy dis-
sipation due to the passage of liquid through an orifice, as specified in the following form:

cd ¼ 1
2
ξ ρ A0 (21)

where ξ is the head loss coefficient governed by the opening ratio of the orifice placed at O.
By setting q(t) = 0 and assuming small values of θ(t), the circular frequency ωd of the TLCD can be

obtained from Equation (19) as
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ωd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�m30 � m31

m16

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 x0 � Hð Þ
2H þ αB

r
Ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x0 � L 1� γð Þ
Lþ α� 1ð ÞγL

s
Ω (22)

where the horizontal length ratio γ is defined as

γ ¼ B

L
(23)

Further, the mass ratio μ and the tuning ratio χ are introduced as design parameters, defined as

μ ¼ m

m0
; χ ¼ ωd

ω0
(24)

It is shown from Equation (22) that the liquid motion is dominated by the centrifugal acceleration
x0Ω2, which is much larger than g if x0 is large enough. Normally, the TLCD should be devised such
that χ≃ 1. Because the rated rotational speed Ω is known for the wind turbine, the tuning of the TLCD
can be achieved by adjusting L when x0, γ, and α are specified. Next, for given values of L, μ, γ and α,
B, H, A0, A can also be determined, thus fixing the geometries of the TLCD. Parametric studies of x0, μ,
γ, and α on the control efficiency of TLCD will be carried out in the following section, which provides
a guideline for choosing the values of x0, μ, γ, and α reasonably.

As a measure of the efficiency of the damper, the reduction ratio η is defined as

η ¼ σq;0 � σq
σq;0

(25)

where σq and σq,0 are the standard deviations of the edgewise tip displacements of the blade with and
without the TLCD, respectively. The optimal parameters of the TLCD can be found by maximizing the
reduction ratio.

4. RESULTS AND DISCUSSIONS

In the numerical simulations carried out for the present study, data from the NREL 5-MW reference
wind turbine have been used to calibrate the 13-DOF and the 2-DOF models. In both models, each
blade has a length of 63m and an overall mass of 17740 kg, with the fundamental edgewise modal
shape, the bending stiffness, and the mass per unit length provided in [21]. Eight different airfoil
profiles are employed for the blade from the hub to the tip, the lift and drag coefficients of which
are obtained from wind tunnel test [21].

Based on Taylor’s hypothesis of frozen turbulence [24] together with the first-order AR model [11],
a three-dimensional rotational sampled turbulence field has been generated with specified mean
wind speed V0 and turbulence intensity I. Applying this turbulence field to the rotor of the
13-DOF model, the edgewise modal load can be obtained for each blade. The calculated modal
load f 0 _q; tð Þ is applied to the 2-DOF, based on which the optimization and parametric studies
of the TLCD are performed.

4.1. Optimization procedure

The basic parameters employed in the 2-DOF blade-TLCD model are presented in Table I. Although
procedures for design of efficient TLCD are known for linear system [25], they may not be exactly

Table I. Parameters used in the 2-DOF model.

Parameter Value Unit Parameter Value Unit

LB 63 m k1 2.09� 103 kg
m0 1.41� 103 kg k2 47.25 kg/m
ke 6.62� 104 N/m Ω 1.267 s� 1

ω0 6.85 s� 1 g 9.81 m/s2

ζ 0 0.005 — ρ 1.0� 103 kg/m3

TUNED LIQUID COLUMN DAMPERS FOR MITIGATION OF EDGEWISE VIBRATIONS

Copyright © 2014 John Wiley & Sons, Ltd. Struct. Control Health Monit. (2014)
DOI: 10.1002/stc



applicable in the present problem considered. Because of the nonlinearity of Equations (18) and (19), it
is difficult to obtain an analytical solution for the optimal damper parameters. However, they may be
obtained by numerical search, where various combinations of damper parameters are investigated in
a systematic manner until the best combination that maximizes the reduction ratio η is reached. In each
numerical simulation, the fourth-order Runge–Kutta method has been used to solve the nonlinear
differential equations of the 2-DOF system with a time step of 0.02 s.

The parameters of the TLCD to be determined during the design procedure are the mounting position
x0, the mass ratio μ, the horizontal length ratio γ, the area ratio α, the tuning ratio χ, and the head loss
coefficient ξ. Because the damping effect of the oscillating liquid on the structure is governed by the
centrifugal acceleration x0Ω2, better control performance can be achieved by equipping the TLCD closer
to the blade tip. However, the available space inside the hollow blade is diminishing toward the tip,
making the determination of x0 a tradeoff problem. In the following optimization procedure, x0 is set to
be 55m, corresponding to approximately 7/8 of the total blade length. The effect of various values of
x0 on the control efficiency of the TLCD will be investigated later as well. With a fixed value of x0, we
first search for the optimal values of χ and ξ, while μ, γ, α are assigned certain values. By specifying
different values to μ, γ, and α, one can determine the effect of each parameter on the optimal tuning ratio,
the optimal head loss coefficient, and the system response. Four sets of mass ratios are considered in the
optimization, that is, μ =0.02, 0.03, 0.04, 0.05. With the modal mass m0 = 1412 kg, the liquid mass will
vary between 28.24 and 70.6 kg, corresponding to 0.16–0.40% of the overall mass of each blade. The
choices of γ and α have a significant influence on the geometries of the TLCD and should be decided
according to the available space inside the blade. In the present study, three different values of γ and three
different values of α have been taken into consideration, that is, γ =0.5, 0.6, 0.7 and α =1, 1.5, 2.

It should be noted that the optimization has been conducted with the constraint that the maximum
displacement of the liquid vm in the vertical tube should not exceed the vertical height of the liquid column
H, that is, vm⩽H, so that the fluid remains in the vertical portions of the U-shaped tube at all times.

4.2. Parametric study of the TLCD

Table II gives the values of optimal tuning ratio χopt, optimal head loss coefficient ξopt, reduction ratio
of the optimized TLCD, and the ratio of maximum liquid response to the vertical length of the liquid

Table II. Optimal parameters of the tuned liquid column damper and their effects on system responses, V0 = 15m/s,
I = 0.1, x0 = 55m.

α γ χopt ξopt η (%) vm/H B (m) χopt ξopt η (%) vm/H B (m)

μ= 2% μ= 3%
1 0.5 1.000 1.4 24.97 0.974 1.833 0.998 2.2 26.80 0.761 1.860

0.6 0.998 2.7 26.55 0.998 2.239 0.990 2.9 28.88 0.909 2.273
0.7 0.998 7.0 25.09 0.996 2.622 0.982 5.7 29.98 0.999 2.701

1.5 0.5 1.000 1.2 24.65 0.991 1.471 0.998 1.7 26.49 0.785 1.493
0.6 0.998 2.4 26.02 0.990 1.728 0.990 2.4 28.59 0.922 1.754
0.7 0.998 6.3 24.55 0.994 1.947 0.982 5.2 29.51 0.997 2.006

2 0.5 1.000 1.1 24.01 0.988 1.229 0.998 1.4 25.98 0.821 1.247
0.6 0.998 2.2 25.25 0.997 1.407 0.990 2.0 28.12 0.958 1.428
0.7 0.998 5.9 23.67 0.999 1.549 0.982 5.0 28.72 0.998 1.596

μ= 4% μ= 5%
1 0.5 0.990 3.0 27.91 0.653 1.888 0.982 3.7 28.69 0.592 1.916

0.6 0.982 3.9 30.07 0.786 2.310 0.975 4.9 31.00 0.695 2.342
0.7 0.975 5.0 31.99 0.989 2.743 0.960 5.9 33.14 0.918 2.828

1.5 0.5 0.990 2.3 27.59 0.671 1.515 0.982 2.9 28.35 0.606 1.538
0.6 0.982 3.2 29.76 0.804 1.781 0.975 4.0 30.66 0.712 1.808
0.7 0.975 4.4 31.69 0.998 2.037 0.960 5.1 32.80 0.929 2.101

2 0.5 0.990 1.9 27.05 0.691 1.266 0.982 2.3 27.79 0.640 1.285
0.6 0.982 2.7 29.26 0.837 1.450 0.975 3.4 30.11 0.740 1.472
0.7 0.975 4.3 31.15 0.999 1.620 0.960 4.5 32.27 0.956 1.645
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column. The horizontal length B for each case is also presented in Table II to check the possibility of
equipping the TLCD inside the blade.

From Table II, there are five observations to be made:

(i) As the mass ratio μ increases with the values of α and γ unchanged, the reduction ratio η
increases but the value of vm/H decreases, indicating that a TLCD with a larger mass can
achieve higher efficiency with a lower liquid peak response. The horizontal length B increases
slightly as μ increases because of the increased volume of the liquid.

(ii) The optimal tuning ratio and the optimal head loss coefficient highly depend on other
parameters of the TLCD. χopt decreases as μ and γ increases, whereas the variation of α has
no effect on χopt. ξopt increases as γ increases and diminishes as α increases. The variation
of μ has no clear effect on ξopt. As will be shown later, the turbulence intensity also has a
significant influence on ξopt.

(iii) For μ = 3%, 4%, 5%, better control performance of the TLCD can be obtained by increasing
γ. This is because the mass of the horizontal part of liquid is the only effective mass of TLCD
acting on the structure, and a damper with a higher value of γ has a more effective liquid mass.
However, both vm/H and B increase monotonously with γ. Therefore, γ should be limited by
the constraint vm⩽H and the space restriction inside the blade.

(iv) For μ= 2%, η decreases as γ increases from 0.6 to 0.7 even though the mass of the horizontal
liquid column (effective mass) becomes bigger. The reason is that vm/H tends to be relatively
large for TLCD with a small liquid mass, especially when γ= 0.7. In this case, ξopt should be
large enough in order that the constrain vm⩽H is fulfilled, which results in the fact that η is
even smaller compared to the case of γ= 0.6. Therefore, when μ is small and γ is large, the
constraint vm⩽H becomes a decisive factor for ξopt as well as the control efficiency of TLCD.

(v) An increase in α leads to a shortening of the total length of the liquid L as well as the
horizontal length B, but to a slightly reduced control efficiency of the TLCD as revealed
by η. This characteristic is meaningful for applying TLCD into the wind turbine blades where
the available horizontal space in the vicinity of the tip is rather limited. The installation of TLCD
can be realized by choosing a reasonably large α, at the expense of slightly reduced mitigation
effect.

Figure 5 shows the influence of the mounting position of the TLCD on its control performance.
Optimal values of tuning ratio and head loss coefficient have been used for each combination of x0,
μ, α, and γ. The results in Figure 5(a) correspond to the case when the space restriction inside the blade
is not considered, that is, the horizontal length B and thus the selection of α and γ are not limited by the
available horizontal space inside the hollow blade. As expected, it is shown that a TLCD mounted
closer to the tip suppresses the edgewise vibration more efficiently because of the increased centrifugal
acceleration. Again, one can observe that the increase of the TLCD mass provides a better control
performance, but the increase of the reduction ratio is not proportional to the increase of the mass ratio.
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Figure 5. Influence of the damper position on the reduction ratio, V0 = 15m s� 1, I = 0.1, χopt, and ξopt used in each
case. (a) α and γ chosen without consideration of the space restriction inside the blade, (b) α and γ chosen

considering the space restriction inside the blade.
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Figure 5(b) shows the corresponding results obtained with consideration of the space restriction inside
the blade, using the geometry of NREL 5-MW wind turbine blade [21]. In the present study, we set the
available horizontal length at different positions along the blade to be 0.8 times the chord length c of
the corresponding cross section [21], resulting in the constraint of B⩽ 0.8c when determining the value
of α and γ. It can be observed from Figure 5(b) that the control efficiency of TLCD increases monot-
onously until x0 reaches 55m, but decreases as x0 increases from 55 to 60m. This is due to the limita-
tion of horizontal space at the cross section of x0 = 60m (0.8c equals to 1.4m for the NREL blade),
which inevitably requires a large value of α and a small value of γ. Hence, the control performance
of TLCD is reduced when equipping it at x0 = 60m even though the centrifugal acceleration is in-
creased. In reality, results in Figure 5(b) should be utilized in the design procedure, indicating that
x0 = 55m is the best mounting position of TLCD for the NREL 5-MW wind turbine.

In order to evaluate the effect of turbulence intensity I on the optimal tuning ratio and head loss
coefficient, various turbulence intensities have been used to generate the wind field for the 13-DOF
model with a constant mean wind speed (V0 = 15m/s). The modal load f 0 _q; tð Þ for the 2-DOF is then
obtained from the 13-DOF model subjected to the generated wind field. From simulation results, it
is observed that I has no influence on the optimal tuning ratio and the value of χopt is unchanged when
I is varied. On the other hand, I has a noticeable influence on the optimal head loss coefficient. As
shown in Figure 6, different values of I dictate different values of ξopt. ξopt is insensitive to I in the
cases of γ= 0.5 and 0.6. However, ξopt increases significantly as I increases from 0.1 to 0.25 when
γ= 0.7. In this case, ξopt is dominated by the constraint of vm⩽H, because the liquid motion tends
to be increased under strong turbulence field and H tends to be small when γ is large. Only with large
ξopt, the liquid motion can be kept within a certain range to maintain a U-shaped liquid column.

Figure 7 shows the control performance of a TLCD under various turbulence intensities. The results
in Figure 7(a) correspond to the case when a passive TLCD with a fixed head loss coefficient (fixed
orifice) is mounted inside the blade. The constant head loss coefficient is chosen according to
I= 0.25. Hence, the damping property of the TLCD is non-optimal for all turbulence intensities except
for I= 0.25. However, it is seen that the reduction ratio decreases monotonously as I increases from
0.05 to 0.25, and that the mitigation effect of TLCD turns out to be the worst when I = 0.25. This is
because the value of ξopt for I = 0.25 is totally governed by the constraint vm⩽H, which is at the cost
of a significantly reduced control efficiency. As I decreases, the influence from this constraint on the
control efficiency becomes less significant. Therefore, even though non-optimal head loss coefficient
is used for low turbulence intensities, the TLCD still exhibits better control performance than that
under higher turbulence intensities. Figure 7(b) illustrates the corresponding results when the TLCD
is used with varying optimal head loss coefficients in response to different turbulence intensities as
given in Figure 6. The control efficiency remains almost unchanged in the range of I= 0.05 to
I= 0.1, but again decreases monotonously as I increases from 0.1 to 0.25. Comparing the reduction
ratios in Figure 7(a and b), it is observed that the TLCD with varying head loss coefficient exhibits
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Figure 6. Influence of the turbulence intensity on the optimal head loss coefficient, V0 = 15m s� 1, x0 = 55m,
μ= 0.03, α= 2.
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better mitigation performance than that of the passive TLCD for all turbulence intensities below
I= 0.25. The additional reduction provided by the former ranges from 0.30% to 7.13%.

From the previous observations, it is concluded that the efficiency of the TLCD can be improved if
the head loss coefficient can be semi-actively varied in response to the actual turbulence intensity. This
can be realized by changing the orifice area of the valve through a command voltage [26]. It should
also be noted that the optimal tuning ratio χopt is unaffected by the turbulence intensity, which means
that the same TLCD with fixed geometry will perform well under all excitation intensities as long as
the area ratio of the orifice/valve is varied adaptively.

4.3. Wind turbine with variable rotational speeds

Figure 8 presents the comparison of the edgewise vibration with and without TLCD when V0 = 15m/s
and I = 0.1, where the same turbulence field has been used for both controlled and uncontrolled cases.
The tuning of the TLCD is based on the rated rotational speed of the wind turbine, that is, Ω = 1.267
rad/s in the present study. Given x0 = 55m, μ = 0.03, α= 2, and γ= 0.7, the optimal tuning ratio and
head loss coefficient used in the simulation are determined as χopt = 0.982 and ξopt= 5.0, respectively.
The resulting horizontal length B is 1.596m, which meets the horizontal space limitation at the cross
section of x0 = 55m (0.8c equals to 1.906m for the NREL blade).

As shown in Figure 8(a), a TLCD with a mass of 42.36 kg significantly mitigates the edgewise
vibration of the blade. The maximum edgewise tip displacement is reduced from 0.550 to 0.440m
(reduced by 20.00%), and the standard deviation is reduced from 0.1147 to 0.0817m (reduced by
28.72%). The Fourier amplitude spectrum of q(t) in Figure 8(b) shows that the TLCD effectively
reduces the peak around 6.85 rad/s corresponding to the edgewise eigenvibration of the blade. This
indicates that a properly designed TLCD is able to absorb almost all energy in the fundamental
edgewise mode of the blade. Further, it is noted that all frequencies below 6.85 rad/s are hardly affected
by the damper, including a low peak corresponding to the rated rotational speed (1.267 rad/s). It should
be noted that much more energy is concentrated around the frequency of 6.85 rad/s for the uncontrolled
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Figure 7. Behavior of a tuned liquid column damper under various turbulence intensities, V0 = 15m s� 1, x0 = 55m,
μ= 0.03, α= 2. (a) Fixed head loss coefficient chosen according to I = 0.25, (b) varying optimal head loss coeffi-

cient for different turbulence intensities.
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Figure 8. Blade edgewise vibrations with and without tuned liquid column damper (TLCD), V0 = 15m s� 1, I = 0.1,
x0 = 55m, μ= 0.03, α= 2, γ= 0.7. (a) Time series, (b) Fourier amplitude.
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response because aerodynamic damping is low in the edgewise direction. Therefore, although not
functioning below the edgewise eigenfrequency, a well-designed TLCD still exhibits promising
performance in suppressing edgewise vibrations in a rotating wind turbine blade.

Because the TLCD is optimized according to the rated rotational speed of the rotor, it is of interest to
evaluate its performance when the rotational speed of the rotor is varied, for example, during starting
up or closing down procedures of the wind turbine. With fixed geometries of the TLCD, all the param-
eters are invariable except for the head loss coefficient if the orifice area can be changed semi-actively.
Table III gives the values of ξopt for various rotational speeds. It is observed that ξopt increases signif-
icantly as Ω decreases from the nominal value (1.267 rad/s) to 0.6 rad/s. As Ω decreases further, the
centrifugal acceleration will be overwhelmed by the gravitational acceleration, that is, x0Ω2< g,
resulting in malfunctioning of the TLCD and inapplicability of the equations derived in this paper.
The critical value of Ω can be obtained by balancing the centrifugal acceleration with the gravitational

acceleration, that is, x0Ω2
cr ¼ g ⇒Ωcr ¼

ffiffiffiffiffiffiffiffiffi
g=x0

p
. In the present case, we have Ωcr = 0.422 rad/s.

Moreover, even forΩ slightly aboveΩcr, the influence of the gravity becomes so large that the U-shaped
liquid column cannot be maintained (the liquid motion turns out to be very drastic). Hence, we set the
lower limit of Ω to be 0.6 rad/s for the operational range of the TLCD.

Figure 9 shows the control performance of the TLCD under various rotational speeds of the rotor.
As expected, when Ω deviates from the rated value, the control efficiency of the TLCD is drastically
reduced because of the frequency detuning of the damper. Nevertheless, it is observed that the perfor-
mance of the damper can be enhanced by semi-actively varying the head loss coefficient in response to
the change of the rotational speed. As for the passive TLCD with fixed head loss coefficient, the reduc-
tion ratio drops to below 10% for Ω< 1.00 rad/s. On the other hand, the reduction ratio remains above
10% for all Ω between 0.6 and 1.267 rad/s when ξopt given in Table III are used for different Ω. Fur-
ther, it is noted that the control efficiency decreases even faster as Ω increases from the nominal value,
indicating a more significant frequency detuning when Ω> 1.267 rad/s. For modern multi-megawatt
wind turbines, however, the rotational speed of the rotor is limited to the rated value by the pitch
controller. This makes it promising to apply the TLCD in an operating wind turbine, especially the
TLCD with varying head loss coefficients.

4.4. Evaluation by the 13-DOF aeroelastic model

To verify the applicability of the decoupled optimization and the control effect of the TLCD in highly
coupled wind turbine system, the optimized damper is incorporated into the 13-DOF model. For each
blade, a TLCD is mounted at the position of x0 = 55m. Hence, a 16-DOF system is obtained for the
wind turbine with a total of three TLCDs installed. Figure 10 shows the edgewise vibration in blade
1, with the same damper parameters and the same wind field as used in Figure 8. It is shown from
Figure 10(a) that the damper with parameters optimized from the reduced 2-DOF model effectively mit-
igates the blade edgewise vibration of the highly coupled wind turbine system. The maximum edgewise
tip displacement is reduced from 0.481 to 0.400m (reduced by 16.84%), and the standard deviation is
reduced from 0.0895 to 0.0698m (reduced by 21.94%). Similar to Figure 8(b), Figure 10(b)
demonstrates that frequency component corresponding to fundamental edgewise mode of the blade is
significantly reduced by the damper, whereas the frequencies below ω0 are unaffected. Comparing with

Table III. Optimal head loss coefficients for different rotational speeds of the rotor,
x0 = 55m, μ= 0.03, α= 2, γ= 0.7.

Ω (rad/s) ξopt Ω (rad/s) ξopt

1.40 7.9 0.95 23.5
1.35 4.3 0.90 28.5
1.267 5.0 0.85 32.5
1.20 4.0 0.80 37.0
1.15 6.1 0.75 39.5
1.10 9.0 0.70 43.0
1.05 14.4 0.65 44.0
1.00 18.2 0.60 45.0
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the results obtained from the 2-DOF model as illustrated in Figure 8, the control efficiency of the
TLCD is to some extent reduced when it is incorporated into the highly coupled system. This is
because the couplings of blade edgewise vibration to other degrees of freedom cause a transfer of
mechanical energy from edgewise vibration to other vibrational modes, resulting in a slightly worse
damping performance of the damper. Nevertheless, the TLCD with parameters optimized from the
reduced 2-DOF model is still able to achieve promising control performance on the highly coupled
13-DOF model.

5. CONCLUSIONS

In the present paper, a comprehensive theoretical study has been carried out on the performance
of TLCDs for mitigating edgewise vibrations in wind turbine blades. Parametric studies have been
carried out using a reduced 2-DOF nonlinear model developed by the authors for a rotating blade
equipped with a TLCD. The results reveal that a TLCD with a very small mass can effectively
suppress edgewise vibrations in a rotating wind turbine blade. Better control performance can
be obtained by increasing the liquid mass and equipping the damper closer to the blade tip. How-
ever, the damper mass and the mounting position should be limited according to the installation
capacity and the available space inside the blade. It is also found that increasing the area ratio of
the vertical tube to the horizontal tube can greatly reduce the horizontal width of the TLCD at the
cost of slightly reduced control efficiency, making it possible to mount the damper in the vicinity
of the tip. Further, it is shown that the optimal head loss coefficient is changed with the variation
of turbulence intensity, while the turbulence intensity has no influence on the optimal tuning
ratio. Therefore, the performance of a TLCD with fixed geometries can be improved by
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Figure 9. Behavior of the tuned liquid column damper under various rotational speeds of the rotor, V0 = 15m/s,
I = 0.1, x0 = 55m, μ= 0.03, α= 2, γ= 0.7.
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Figure 10. Blade edgewise vibrations with and without tuned liquid column damper (TLCD), obtained from the
16-DOF model. V0 = 15m s� 1, I = 0.1, x0 = 55m, μ= 0.03, α= 2, γ= 0.7. (a) Time series, (b) Fourier amplitude.
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continuously changing the orifice ratio in response to the actual turbulence intensity. Although the
control effect of the damper is drastically reduced when the rotational speed of the rotor deviates
from the nominal value (e.g., during the starting up or closing down procedure of the wind
turbine), it can be enhanced by semi-actively varying the head loss coefficient according to the
change of the rotational speed. Finally, the optimized damper has been incorporated into the
13-DOF aeroelastic wind turbine model to verify the decoupled optimization. Simulation results
show that the optimized damper achieves promising performance in the highly coupled model.
The slight reduction in the control effect is attributed to the energy flow between the blade edge-
wise vibration and other degrees of freedom specifying the tower and drivetrain motions.

Validation of the performance of the TLCD through testing is to be performed in future research. It
is not feasible to carry out a full-scale experiment of such a system with rotating elements in the lab. A
scaled down model of the system tested in lab conditions will essentially suffer from scale effects, par-
ticularly with respect to the liquid behavior in the damper (e.g., due to viscous effects), and it may be a
challenge to keep appropriate proportion with dynamic similarities for the wind turbine structure and
the damper. One option is to conduct real-time hybrid testing of the system where the liquid damper
is tested physically in full scale and the rest of the wind turbine is simulated. However, such facilities
are not available generally in many labs, with full-scale capability. The authors have plans for imple-
mentation of the system and to conduct experimentation in a real-time hybrid simulation framework in
a lab where such a facility is available.

APPENDIX A

The constant parameters in Equations (18) and (19) are given by

m4 ¼ m0 þ 2
3
ρAb2H3 þ 1

2
ρAH 4a2 þ b2B2

� �þ 1
12

ρA0B 12a2 þ b2B2
� �

m5 ¼ � ρABHb m6 ¼ 2 ρAHbΩ

m7 ¼ 2ρAHb2 m8 ¼ �ρA aþ bx0ð ÞH2Ω

m9 ¼ �2 ρAabH2 m10 ¼ � ρAaB

m11 ¼ �ρA aþ bx0ð ÞΩ m12 ¼ �2 ρAab

m13 ¼ ρA aþ bx0ð ÞBΩ m14 ¼ 2 ρAabB

m15 ¼ �2ρAa m16 ¼ ρA 2H þ αBð Þ
m17 ¼ � ρAB Ωx0 m18 ¼ �2ρAΩx0

m19 ¼ ρABbx0Ω2 m20 ¼ ρABb aþ bx0ð ÞΩ
m21 ¼ �2ρAbx0Ω m22 ¼ ρABab2

m23 ¼ ρAH2bx0Ω2 m24 ¼ ρAbH2 aþ bx0ð ÞΩ
m25 ¼ ρABbx0Ω m26 ¼ ρAH2ab2

m27 ¼ ρAbx0Ω2 m28 ¼ ρAb aþ bx0ð ÞΩ
m29 ¼ ρAab2 m30 ¼ 2ρAHΩ2

m31 ¼ �2ρAx0Ω2 m32 ¼ ρABx0Ω2

k3 ¼ ρAgBb k4 ¼ ρAgb

k5 ¼ ρAgB k6 ¼ �2ρAg

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(A1)
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APPENDIX B: NOMENCLATURE

A Cross-sectional area of the vertical column of the TLCD
a=Φ(x0) Auxiliary parameter related to the local displacement of the blade
A0 Cross-sectional area of the horizontal column of the TLCD
B Horizontal length of the liquid inside the TLCD
b=Φ′(x0) Auxiliary parameter related to the local rotation of the blade
c0 Modal damping coefficient of the blade
EI(x3) Edgewise bending stiffness of the blade
f 0 _q; tð Þ Wind-induced modal load considering aerodynamic damping
g Gravitational acceleration
H Vertical length of the liquid inside the TLCD
I Turbulence intensity
k0(t) Modal stiffness of the blade
k1, k2 Stiffness related parameters given by Equation (19)
ke Elastic stiffness of the blade
L Overall length of the liquid inside the TLCD
LB Length of the blade
m Overall mass of the liquid
m0 Modal mass of the blade
q(t) Edgewise tip displacement of the blade
T,U Total kinetic and total potential energy of the blade-TLCD system
t Time
Td,Ud Kinetic and potential energy of the liquid
Tp,Up Kinetic and potential energy of the blade
v(t) Displacement of the liquid in the vertical tube
V0 Mean wind speed
v0(t) Displacement of the liquid in the horizontal tube
_v2 tð Þ Local velocity of the center point O of the horizontal tube in y2-direction
_v3 tð Þ Local velocity of the center point O of the horizontal tube in y3-direction
vm Maximum displacement of the liquid in the vertical tube
(X1,X2,X3)� Global coordinate system
x0 Mounting position of the TLCD
(x1, x2, x3)� Local coordinate system fixed to the rotating blade
(y1, y2, y3)� Local coordinate system fixed to the U-shaped tube
α=A/A0 Cross-sectional area ratio of the vertical column versus horizontal column
γ =B/L Ratio of the horizontal length to overall length of the liquid column
ζ 0 Modal damping ratio of the blade
ζ d Damping coefficient of the TLCD
η Reduction ratio of the edgewise vibration
θ(t) Angle between the local y3- and global X3-axis
μ=m/m0 Ratio of the liquid mass to the modal mass of the blade
μ(x3) Mass per unit length of the blade
ξ Head loss coefficient due to the orifice
ξopt Optimal head loss coefficient
ρ Liquid density
Φ(x3) Fundamental edgewise eigenmode of the blade
φ(t) Local elastic rotation of the blade where the TLCD is mounted
χ =ωd/ω0 Frequency tuning ratio of the TLCD to the blade
χopt Optimal frequency tuning ratio
Ψ(t) Azimuthal angle of blade 1
Ω Rotational speed of the rotor
ω0 Fundamental edgewise circular eigenfrequency of the blade
ωd Circular frequency of the TLCD
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ABSTRACT

This paper proposes a new type of passive vibration control damper for controlling edgewise vibrations of wind turbine
blades. The damper is a variant of the liquid column damper and is termed as a circular liquid column damper (CLCD).
Rotating wind turbine blades generally experience a large centrifugal acceleration. This centrifugal acceleration makes the
use of this kind of oscillatory liquid damper feasible with a small mass ratio to effectively suppress edgewise vibrations.
A reduced 2-DOF non-linear model is used for tuning the CLCD attached to a rotating wind turbine blade, ignoring the
coupling between the blade and the tower. The performance of the damper is evaluated under various rotational speeds of
the rotor. A special case in which the rotational speed is so small that the gravity dominates the motion of the liquid is also
investigated. Further, the legitimacy of the decoupled optimization is verified by incorporating the optimized damper into
a more sophisticated 13-DOF aeroelastic wind turbine model with due consideration to the coupled blade-tower-drivetrain
vibrations of the wind turbine as well as a pitch controller. The numerical results from the illustrations on a 5 and a 10MW
wind turbine machine indicate that the CLCD at an optimal tuning can effectively suppress the dynamic response of wind
turbine blades. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The control of edgewise vibrations in wind turbine blades is an area of topical interest because of the presence of light to
almost no aerodynamic damping in this mode. This problem is expected to persist in the future because of the growth of
the wind energy leading to larger rotors, particularly for offshore deployments. Edgewise vibrations not only contribute to
structural fatigue damage with increased operation and maintenance costs but also interfere with the power production.1

There has been continued interest among researchers in the past few years to control structural vibrations in wind
turbines. Passive structural control techniques2–4 have been used by researchers for controlling vibrations in both onshore
and offshore wind turbines. To cater to variation in environmental/operational changes, semi-active strategies using tuned
mass dampers (TMDs) have been proposed by Arrigan et al.5, 6 Researchers7,8 have found that blades installed with stall
strips perform better with regard to edgewise vibrations; however, this beneficial effect is overshadowed by the negative
impact on the power production. Some other researchers have used synthetic jet actuators,9 microtabs and trailing edge
flaps.10,11 More recently, some active control strategies for wind turbine blades have been proposed. All of these concepts
take advantage of the hollow nature of the blades and utilize the space inside to install the dampers. Svendsen et al.12

proposed the use of active strut elements based on resonant controllers inspired by the concept of TMDs; Staino et al.13

developed a controller based on active tendon/actuator, and Fitzgerald et al.14 used active TMD (ATMD) for edgewise
vibration control. Fitzgerald and Basu15 proposed a variant of ATMD called the cable-connected ATMD in order to reduce
the force demand on the actuator of the ATMD. Although a number of the proposed solutions work well, there is still a

Copyright © 2015 John Wiley & Sons, Ltd.
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need to find simple, maintenance-free and easy to install solutions for vibration control of edgewise vibrations in wind
turbine blades.
Among the passive structural control solutions available, liquid column dampers (LCDs) are one of the favored options

because of the consistent behavior over a range of excitation levels, the self-containing passive damping capability with little
auxiliary equipment, personnel or power required to maintain it and the fact that they are easy to install. An investigation on
the effects of liquid storage tanks containing glycol on the dynamic response of offshore structures indicated that a proper
selection of the tank geometry could dampen the offshore platform vibration.16 Colwell and Basu4 have used tuned liquid
column dampers (TLCDs) for supressing vibration in offshore wind turbine towers/nacelle.
Motivated by the TLCDs, a new type of LCD has been proposed in this paper for edgewise vibration control of wind

turbine blades. The damper is circular in shape or geometry and hence is termed as a circular liquid column damper
(CLCD). The circular shape allows for consistent definition of local dynamic behavior of the liquid irrespective of the
position at the damper. This is due to the axisymmetric nature of the liquid column damper geometry. The presence of
a large centrifugal acceleration in wind turbine blades makes it possible to use this kind of oscillatory liquid damper
with a rather small mass for effectively suppressing edgewise vibrations. To optimize the design of the proposed CLCD,
the interaction between the tower and the blades are ignored. The optimization for tuning of the CLCD to the rotating
blades is based on a reduced 2-DOF non-linear model. In order to evaluate the vibration suppression performance of the
proposed new damper, a more sophisticated 13-DOF aeroelastic wind turbine model with due consideration to the coupled
blade-tower-drivetrain vibrations of the wind turbine as well as a pitch controller are used and numerical simulations are
carried out with the optimally tuned CLCD. Two wind turbines, a 5 and a 10MW machine, are considered to illustrate the
effectiveness of the proposed damper in suppressing vibrations.

2. THEORY FOR THE BLADE-DAMPER SYSTEM

The edgewise vibrations of a wind turbine blade is coupled to the lateral tower and drivetrain vibrations, which also
influence the motion of the liquid damper. Because the focus of this study is on the interaction between the damper and
blade, as well as the control effect of the damper on edgewise vibrations, the basic assumption in the following theory is
that this coupling from the tower and drivetrain motion can be ignored. Therefore, the design of the damper is totally based
on the local dynamics of the rotating blade. The validity of this assumption will be evaluated later by a more sophisticated
13-DOF wind turbine model, which takes into consideration the coupling of blade-tower-drivetrain vibration, the non-linear
aeroelasticity and a collective pitch controller.

2.1. Definition of the problem

Figure 1 illustrates the schematic representation of a rotating blade equipped with a circular liquid damper. The edgewise
vibration of the blade is described in the moving .x2, x3/-coordinate system, while the motion of the liquid inside the
damper is described by another local coordinate system .y2, y3/ fixed to the damper. The mass per unit length and the
bending stiffness in the edgewise direction of each blade are denoted �.x3/ and EI.x3/, respectively. The liquid damper
is devised to control the fundamental edgewise mode, as described by the degree of freedom q.t/. Further, the rotation of

Figure 1. Definition of the coordinate systems, the geometry and the degrees of freedom.
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Figure 2. Geometries of the circular liquid damper.

each blade is assumed to take place with a constant rotational speed �. Hence, the azimuthal angle ‰.t/ of the blade is
given as

‰.t/ D �t (1)

The local edgewise displacement u2.x3, t/ of the rotating blade in the x2 direction can by described by q.t/ as

u2.x3, t/ D �ˆ.x3/ q.t/ (2)

where ˆ.x3/ indicates the fundamental edgewise mode of the blade. This is normalized to 1 at the tip, i.e., ˆ.L/ D 1,
where L denotes the blade length. The negative sign in Equation (2) refers to the definition of q.t/ in the negative direction
of the x2-axis. Hence, q.t/ represents the edgewise tip displacement in the negative x2 direction.
The circular liquid damper is virtually a circular tube partly filled with certain amount of liquid that could oscillate back

and forth inside the tube. As shown in Figure 2, the radius of the circular tube (distance from the center point O to the
central axis of the tube) is denoted by R, and the radius of the cross-section of the tube is denoted by r. Therefore, the total
dimension of the damper can be calculated as H D 2.RC r/. The liquid inside the tube is assumed to be connected, filling
a segment with a central angle 2‚0 of the complete circle, and the center of gravity is denoted by G.
It is assumed that the liquid damper is placed at the coordinate x3 D x0 of the blade. Hence, the local displacement and

rotation of the blade at this position with the sign definition in Figure 1 are given as

u2.x0, t/ D �aq.t/

'.t/ D bq.t/

)
(3)

where the auxiliary parameters introduced are a D ˆ.x0/ and b D ˆ0.x0/.

2.2. Modeling of the circular liquid damper

A moving .y2, y3/-coordinate system fixed to the damper has been introduced for describing the motion of the liquid. This
coordinate system has its origin at the center pointO of the circular damper, with y3-axis placed on the symmetry line of the
damper as shown in Figure 2. Hence, the azimuthal angle of the y3-axis is described by the clockwise rotation ‰.t/C '.t/
from the fixed global X3-axis. The motion of the liquid is described by the degree of freedom �.t/, which measures the
clockwise rotation of the center of gravity of the liquid from the y3-axis. Thus, q.t/ and �.t/make up the degrees of freedom
of the blade-damper system.
From the geometries illustrated in Figure 2, the mass of the liquid can be calculated as

m D �

Z ‚0

�‚0

Z RCr

R�r
w.x/x d� dx (4)

where � denotes the mass density of the fluid. The term w.x/ is the width of the cross-section at a distance x from the center
point O and is given as

w.x/ D 2
q

r2 � .x � R/2 (5)

Substituting Equation (5) into Equation (4), the mass of the liquid becomes

m D 4�‚0

Z RCr

R�r

q
r2 � .x � R/2 x d� dx D � �r2 2‚0R (6)
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Defining RG as the distance from G to O,RG can be given by

m RG D �

Z ‚0

�‚0

Z RCr

R�r
w.x/x2 d�dx D 4�‚0

Z RCr

R�r

q
r2 � .x � R/2 x2 d� dx D � �r2 2‚0R

2

 
1C 1

4

r2

R2

!
(7)

From Equations (6) and (7), it follows that

RG D R

 
1C 1

4

r2

R2

!
D R

�
1C 1

4
˛2
�

(8)

where ˛ D r
R is defined as the radius ratio of the circular cross-section and the damper.

From the dynamics point of view, the liquid inside the circular damper virtually acts as a physical pendulum during its
oscillation. The idea in the following is to represent the liquid damper as an equivalent mathematical pendulum with the
equivalent mass me and the equivalent length Re. The equivalent mass me is approximately equal to the liquid mass m, if
the radius r of the cross-section is small compared with R. The equivalent mathematical pendulum should represent the
same kinetic and potential energy as the circular liquid damper. Because the kinetic energy stored in the local rotation of
the liquid mass can be ignored compared with the translational kinetic energy, the total kinetic energy of the liquid mass
with the angular velocity P� can be written as

T D 1

2
�

Z ‚0

�‚0

Z RCr

R�r
w.x/x

�
x P�
�2

d�dx D 2�‚0 P�2
Z RCr

R�r

q
r2 � .x � R/2 x3 d� dx

D 1

2
� �r2 2‚0R

3
�
1C 3

4
˛2
�
P�2 D 1

2
mR2

�
1C 3

4
˛2
�
P�2

(9)

The kinetic energy of the equivalent mathematical pendulum is

T D 1

2
meR2e P�2 (10)

Equating the kinetic energy of the equivalent mathematical pendulum to that of the oscillating liquid, the relationship
between me and Re follows from

meR2e D mR2
�
1C 3

4
˛2
�

(11)

In order to facilitate the calculation of the potential energy of the liquid mass, we shall choose Re as

Re D RG D R

�
1C 1

4
˛2
�

(12)

Then, from Equations (11) and (12), the equivalent mass of the mathematical pendulum is given by

me D m

�
1C 3

4˛2
�

�
1C 1

4˛2
�2 (13)

2.3. Equations of motion of the 2-DOF model

The velocity components of the primary structure in the moving .x2, x3/-coordinate system can be written as

Pu2.x3, t/ D �� x3 �ˆ.x3/ Pq.t/

Pu3.x3, t/ D �� ˆ.x3/q.t/

)
(14)

The fixed frame components of the displacement vector and velocity vector of the center of gravity G of the liquid
becomes

U2,G.t/ D �x0 sin‰ � aq cos‰ � Re sin.‰ C ' C �/

U3,G.t/ D x0 cos‰ � aq sin‰ C Re cos.‰ C ' C �/

)
(15)

PU2,G.t/ D � .x0�C aPq/ cos‰ C aq� sin‰ � Re

�
�C P' C P�

�
cos.‰ C ' C �/

PU3,G.t/ D � .x0�C aPq/ sin‰ � aq� cos‰ � Re

�
�C P' C P�

�
sin.‰ C ' C �/

9=
; (16)
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Thus, the total kinetic energy of the 2-DOF system becomes

T D 1

2

Z L

0
�.x3/

�
Pu22.x3, t/C Pu23.x3, t/

�
dx3 C 1

2
me

�
PU22,O.t/C PU23,O.t/

�
D 1

2
m0
�
Pq2 C�2 q2

�
C m1�PqC 1

2
�2m2

C 1

2
me

�
..x0�C aPq/2 C a2q2�2 C R2e

�
�C bPqC P�

�
C 2Re .�C bPqC �/ ..x0�C aPq/ cos.bqC �/C aq� sin.bqC �//

�
(17)

where m0 D
R L
0 �.x3/ˆ2.x3/dx3 is the modal mass of the blade, and m1 D

R L
0 �.x3/ˆ.x3/x3dx3,m2 D

R L
0 �.x3/x23dx3.

The total potential energy of the system is

U D mg .x0 cos‰ � aq sin‰ C Re cos.‰ C bqC �//C 1

2
k0.t/q

2 (18)

where g is the acceleration of gravity. The term k0.t/ denotes the modal stiffness of the blade and is given by

k0.t/ D ke C kg.t/ (19)

where ke and kg.t/ specify the elastic and geometric contributions to the modal stiffness. The term kg.t/ is expressed as

kg.t/ D k1 �2 � k2 g cos.�t/ (20)

The first term indicates the geometrical stiffening due to the centrifugal acceleration, whereas the second term is caused
by the variation of the axial force during rotation due to the weight of the blade. The parameters ke, k1 and k2 are given by

ke D
Z L

0
EI.x3/

 
d2ˆ.x3/

dx23

!2
dx3

k1 D
Z L

0
N1.x3/

�
dˆ.x3/

dx3

�2
dx3 , N1.x3/ D

Z L

x3
�.y3/ y3 dy3

k2 D
Z L

0
N2.x3/

�
dˆ.x3/

dx3

�2
dx3 , N2.x3/ D

Z L

x3
�.y3/ dy3

9>>>>>>>>>=
>>>>>>>>>;

(21)

The fundamental edgewise angular eigenfrequency of the blade when it is in stand-still position is obtained as

!0 D
p

ke=m0 (22)

The equations of motion of the 2-DOF system are obtained from the stationarity conditions using Euler–Lagrange
equations

d

dt

�
@T

@Pq
�
� @T

@q
C @U

@q
D F0.t/C Fg.t/ � c0 Pq

)
�

m0 C me

�
a2 C R2eb2

��
RqC meR2eb R� C .c0 C ca/ PqC

�
k0 ��2.m0 C mea2/

�
q

C meRe

�
2ab RqC a R� � ab�2 q

�
cos.bqC �/

� meRe

�
.a � bx0/ �2 C 2a� P� C a

�
bPqC P�

�2�
sin.bqC �/

� mg .a sin.�t/C Reb sin.�tC bqC �//

D F0.t/C Fg.t/

(23)

d

dt

�
@T

@ P�
�
� @T

@�
C @U

@�
D �cd j P� j P�

) meR2eb RqC meR2e R� C cd j P� j P� C meRea
�
Rq ��2 q

�
cos.bqC �/

C meRe

�
2a� PqC�2x0

�
sin.bqC �/ � mgRe sin.�tC bqC �/

D 0

(24)
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where c0 indicates the structural damping coefficient of the primary structure, as specified by the related modal damping
ratio �0 as c0 D 2�0m0!0. The term F0.t/ specifies the modal load on the primary structure from turbulence and pitch
control loads, taking into account aerodynamic damping. The term Fg.t/ denotes the modal load on the blade from gravity
and is given by

Fg.t/ D m3g sin.�t/ (25)

where m3 D
R L
0 �.x3/ˆ.x3/dx3. The term cd indicates the damping coefficient of the liquid damper specifying the energy

dissipation due to the passage of liquid through an orifice, as given by the form

cd D 1

2
��r2R3 (26)

where � denotes the non-dimensional head loss coefficient, which is governed by the opening ratio of the orifice.
Assuming small values of q.t/ and �.t/ and ignoring the influence of gravity, the angular eigenfrequency of the

oscillating liquid can be obtained from Equation (24) as

!d D
r

x0
Re

� (27)

Defining � as the mass ratio between the damper and the modal mass of the structure, and 	 as the natural frequency
ratio between the liquid and the structure, the following relationships follow:

� D m

m0
, 	 D !d

!0
(28)

Further, the reduction ratio 
 of the structural response with and without the damper is defined as


 D �q,0 � �q

�q,0
(29)

where �q,0 and �q are the standard deviations of the edgewise tip displacements of the blade without and with control,
respectively. The optimal parameters of the circular liquid damper can be found by maximizing the value of 
.

2.4. 13-DOF wind turbine model for validation

A 13-DOF aeroelastic model is presented for validating the effectiveness of the circular liquid damper in a highly coupled
wind turbine system. The model displays several important characteristics of a wind turbine, including time-dependent
system matrices, coupled tower-blade-drivetrain vibrations as well as non-linear aeroelasticity. Figure 3 shows a schematic
representation of the wind turbine model with definition of the coordinate systems and the degrees of freedom.
The motions of the blade are described in a moving, local .x1, x2, x3/-coordinate system with origin at the center of the

hub. Each blade is modeled as a Bernoulli–Euler beam with variable mass per unit length and variable bending stiffness in
the flap-wise and edgewise directions. The flap-wise and edgewise motions of the three blades are modeled by the degrees
of freedom qj.t/ and qjC3.t/ , j D 1, 2, 3, with the tip displacement in the positive x1 direction and the negative x2 direction,
respectively. The related attached modes are taken as the undamped fundamental eigenmodes ˆf .x3/ and ˆ.x3/ in the
flap-wise and edgewise directions, when the blade is fixed at the hub. Similar to ˆ.x3/,ˆf .x3/ should also be normalized
to one at the tip, i.e., ˆf .L/ D 1.
The motions of the tower are described in a fixed, global .X1,X2,X3/-coordinate system. The coordinates q7.t/ and q8.t/

define the translational motions of the tower in the X1 and X2 directions, respectively. The coordinates q9.t/, q10.t/, q11.t/
define the rotational motions of the tower in the X1, X2 and X3 directions. The height of the tower from the base to the
nacelle is denoted by h, and the horizontal distance from the center of the tower top to the origin of the moving coordinate
systems is denoted by s.
The drivetrain is modeled by the degrees of freedom q12.t/ and q13.t/ as shown in Figure 4. The sign definition applies

to a gearbox with odd number of stages. The degrees of freedom q12.t/ and q13.t/ indicate the deviations of the rotational
angles at the hub and the generator from the nominal rotational angles�t and N�t, respectively, where N is the gear ratio.
Correspondingly, Pq12.t/ and Pq13.t/ are the deviations of the rotational speeds at the hub and the generator from the nominal
values. In case of even number of stages, the sign definitions for q13.t/ and f13.t/ are considered positive in the opposite
direction. The terms Jr and Jg denote the mass moment of inertia of the rotor and the generator, and kr and kg denote the
St.Venant torsional stiffness of the rotor shaft and the generator shaft.
Further, a full-span collective pitch controller is included with time delay modeled by a first-order filter. The pitch

demand is modeled by a proportional integral (PI) controller17 with feedback from q12.t/ and Pq12.t/. A gain-scheduled
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Figure 3. 13-DOF aeroelastic model of a three-bladed wind turbine. Definition of fixed and moving frames of reference and the
degrees of freedom q1.t/, : : : , q11.t/.

Figure 4. 2-DOF model of the flexible drivetrain with odd number of gear stages. Definition of degrees of freedom q12.t/ and q13.t/.

PI controller is used for this model, i.e., the controller gains are dependent on the blade pitch angle.18 The blade element
momentum method with Prandtl’s tip loss factor and Glauert’s correction for large axial induction coefficients is adopted
to calculate aerodynamic forces along the blade.19 Non-linear quasi-static aeroelasticity is considered by introducing the
local deformation velocities of the blade into the calculation of the flow angle and the angle of attack. As a result, this
model possesses high aerodynamic damping in the blade flap-wise and the fore–aft tower vibrations but relatively low
aerodynamic damping in the blade edgewise and the lateral tower vibrations.

3. RESULTS AND DISCUSSION

In the first phase of numerical simulations, data from the National Renewable Energy Laboratory (NREL) 5MW reference
wind turbine18 have been used to calibrate both the 2-DOF and the 13-DOF models. Each blade has a length of 63m and
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Table I. Parameters in 2-DOF blade-damper model.

Parameter Value Unit

L 63 m
x0 45 m
�0 1.267 rad s�1

m0 1.412�103 kg
m1 3.049�103 kg
ke 6.623�104 Nm�1

k1 2.086�103 kg
k2 47.25 kgm�1

�0 0.005 �
a 0.5267 �
b 0.0238 m�1

� 1.0�103 kgm�3

g 9.81 ms�2

!0 6.848 rad s�1

an overall mass of 17,740 kg, with the fundamental modal shape, the bending stiffness and the mass per unit length given
by Jonkman et al.18 The constant parameters employed in the 2-DOF model are calculated and provided in Table I.
On the basis of Taylor’s hypothesis of frozen turbulence20 together with the first-order auto-regressive (AR) model,21

a three-dimensional (3D) rotational sampled wind field has been generated with a given mean wind speed and turbulence
intensity. By applying this turbulence field to the rotor of the 13-DOF wind turbine, the edgewise modal loads for each blade
can be obtained. The calculated modal load F0.t/ is exerted on the 2-DOF model, on the basis of which the optimization
and parametric studies of the damper are to be carried out. In the simulation, the fourth-order Runge–Kutta method was
applied to solve the non-linear ordinary differential equations of the 2-DOF system.

3.1. Optimization and parametric studies

The parameters of the liquid damper to be determined are the mass ratio �, the frequency ratio 	, the radius ratio ˛, the
head loss coefficient � and the mounting position of the damper x0. Because the damping effect of the oscillating liquid on
the structure is governed by the centrifugal acceleration x0�2, better performance of vibration reduction can be obtained
by mounting the liquid damper closer to the tip of the blade. However, the available space inside the hollow blade decreases
toward the tip, making the determination of x0 a trade-off problem. In the following optimization procedure, x0 is set to be
45m, corresponding to approximately two thirds of the total blade length. Further, four sets of mass ratios are considered
in the optimization, i.e., � D 0.01, 0.02, 0.03, 0.04. With the modal mass m0 D 1412 kg, the liquid mass varies between
14.12 and 56.48 kg, corresponding to 0.08–0.32% of the total mass of each blade. Moreover, four different values of the
radius ratio have been compared, i.e., ˛ D 0.03, 0.05, 0.07, 0.09. It should be noted that the tuning of the damper is based
on the nominal rotational speed of the NREL 5MW wind turbine, i.e., �0 D 1.267 rad s�1.
In the optimization procedure, the optimal frequency ratio 	opt and head loss coefficient �opt are sought such that the

reduction coefficient 
 is maximized, for prescribed values of the mass ratio � and the radius ratio ˛. Table II gives the

Table II. Optimal parameters of the liquid damper and their effects on system responses, x0 D 45m.
�=1% �=2%

˛ D r
R �opt �opt � (%) 2‚0 (rad) H (m) �opt �opt � (%) 2‚0 (rad) H (m)

0.03 1.00 1.57 25.19 1.36 3.17 0.99 6.40 29.40 2.58 3.24
0.05 1.00 0.55 25.19 0.50 3.23 0.99 2.35 29.40 0.92 3.30
0.07 1.00 0.29 25.19 0.26 3.29 0.99 1.22 29.41 0.48 3.36
0.09 1.00 0.18 25.20 0.086 3.35 0.99 0.75 29.41 0.28 3.42

�=3% �=4%

˛ D r
R �opt �opt � (%) 2‚0 (rad) H (m) �opt �opt � (%) 2‚0 (rad) H (m)

0.03 0.98 15.40 31.62 3.62 3.30 0.97 27.70 33.24 4.56 3.37
0.05 0.98 5.68 31.62 1.30 3.36 0.97 9.90 33.24 1.64 3.43
0.07 0.98 2.89 31.63 0.68 3.43 0.97 5.14 33.24 0.84 3.50
0.09 0.98 1.72 31.63 0.40 3.49 0.97 3.07 33.25 0.50 3.56
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values of 	opt, �opt, as well as the corresponding 
, the central angle of the liquid mass 2‚0 and the total width of the
damper H D 2.RCr/. Values of 2‚0 and H are calculated in each case to check the possibility of practical implementation
of the liquid damper with such geometries.
From Table II, four observations are to be made: (i) The reduction ratio 
 increases non-proportionally as the mass

ratio � increases. (ii) As � increases with a given ˛,	opt decreases while �opt increases. Both 2‚0 and H increase as �

increases. (iii) As ˛ varies between 0.03 and 0.09 for a prescribed value of �, the value of 	opt is unchanged, and 
 is
almost unaffected as well. On the other hand, �opt decreases significantly as ˛ increases. (iv) As ˛ increases, 2‚0 decreases
significantly and H increases slightly. For very small values of ˛, the value of 2‚0 may become so large that the annular
tube is almost completely filled with liquid, resulting in ineffectiveness of the damper. On the other hand, a large value
of ˛ may lead to a large value of H, making it impossible to mount the liquid damper inside the blade. Therefore, the
determination of ˛ becomes a trade-off problem depending only on the geometries of the damper and the liquid inside the
tube, as ˛ has almost no effect on the maximum reduction ratio when optimal values of 	 and � are used.

3.2. Performance of the liquid damper

Figure 5 presents the comparison of the edgewise vibration with and without the liquid damper, when the mean wind speed
is 15m s�1 and the turbulence intensity is 0.1. The same turbulence field has been used for cases with and without control
to make the comparison meaningful. Given the mounting position x0 D 45m, the mass ratio � D 0.03 and the radius ratio
˛ D 0.05, the optimal frequency ratio and head loss coefficient of the damper used in the simulation are determined as
	opt D 0.98 and �opt D 5.68, respectively.
As shown in Figure 5(a), a liquid damper with a mass of 42.36 kg significantly mitigates the edgewise vibration of the

blade. The maximum edgewise tip displacement is reduced from 0.550 to 0.417m (reduced by 24.18%), and the standard
deviation is reduced from 0.1147 to 0.0784m (reduced by 31.62%). The Fourier amplitude spectrum of q.t/ as illustrated
in Figure 5(b) shows that the liquid damper effectively suppresses the peak around 6.85 rad s�1 corresponding to the eigen-
vibration of the blade in edgewise direction. This means that a properly designed liquid damper is able to absorb almost
all the energy in the fundamental edgewise mode of the blade. Further, it is noted that all frequencies below 6.85 rad s�1
are hardly affected by the dampers, including a low peak corresponding to a rotational speed of 1.267 rad s�1. It should be
noted that much more energy is concentrated around the frequency of 6.85 rad s�1 for the uncontrolled response as aerody-
namic damping is low in the edgewise direction. Therefore, although not functioning below the edgewise eigenfrequency,
a well-tuned liquid damper still exhibits promising performance in suppressing edgewise vibrations in a rotating wind
turbine blade.
In order to evaluate the performance of the liquid damper during starting up or closing down procedures of the wind

turbine system, results have been calculated at various rotational speeds � < �0. Figure 6 demonstrates the behavior of
the liquid under two scenarios, i.e., x0�2 > g and x0�2 < g, respectively. When the centrifugal acceleration overwhelms
the gravitational acceleration [Figure 6(a)], the liquid is centrifuged toward the tip of the blade, and it oscillates around
a mean value of � D 0 rad according to the definition of �.t/ in the .y2, y3/-coordinate system. On the other hand when
x0�2 < g, the motion of the liquid is dominated by gravity, and the liquid will gravitate downwards and remain close to
the bottom of the circular tube no matter where the blade is placed, as shown in Figure 6(b).
Table III shows the reduction ratios of the damper on edgewise vibrations as well as the corresponding standard devia-

tions of the liquid motion. It is noted that as � decreases from the nominal value �0, the control efficiency of the liquid
damper is drastically reduced as revealed by the value of 
, as a result of detuning of the damper. Acceptable control perfor-
mance can be achieved only when� is no less than 1.1 rad s�1, which means the band width of the damper is rather limited.
Moreover, the standard deviation �	 of �.t/ increases from 0.16 to 0.50 rad as � decreases from 1.267to 0.6 rad s�1. One
interesting observation is that when � changes from 0.5 to 0.4 rad s�1, the value of �	 increases significantly from 0.74
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Figure 5. Blade edgewise vibrations with and without liquid damper, � D 1.267 rad s�1, V0 D 15ms�1, I D 0.1, � D 0.03,
˛ D 0.05, x0 D 45m, � D 1.267 rad s�1. (a) Time series, (b) Fourier amplitude.
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Figure 6. Position of the liquid mass. (a) x0�2 > g, (b) x0�2 < g.

Table III. Performance of the circular liquid damper for various rotational speeds of the rotor.

� (rad s�1) x0�2 g�1 � (%) 
� (rad) � (rad s�1) x0�2 g�1 � (%) 
� (rad)

1.267 7.41 31.62 0.16 0.6 1.65 8.10 0.50
1.2 6.61 29.60 0.16 0.5 1.15 7.40 0.74
1.1 5.56 23.67 0.17 0.4 0.73 6.30 2.23
1.0 4.59 16.03 0.18 0.3 0.41 4.65 2.09
0.9 3.72 11.55 0.21 0.2 0.18 3.98 2.00
0.8 2.94 9.28 0.26 0.1 0.05 4.00 1.86
0.7 2.25 7.80 0.35 0.0 0 3.33 0.17

to 2.23 rad. The critical value of � is obtained when the centrifugal acceleration balances the acceleration of gravity, i.e.,
x0�2 D g ) �cr D

p
g=x0. In the present case, we have �cr D 0.467 rad s�1. For � < �cr, the liquid tends to gravitate

downwards no matter where the blade is positioned, as shown in Figure 6(b).
Figure 7 presents the motion of the liquid mass in both time and frequency domain, under three different rotational

speeds. As shown in Figure 7(a), when � D �0 the liquid moves in an oscillatory manner with the mean value of �.t/
equal to 0 rad, verifying the phenomenon illustrated in Figure 6(a). The dominant angular frequency of �.t/ is around
6.85 rad s�1, and the liquid damper absorbs energy from fundamental edgewise eigenvibrations. Peaks corresponding to 1�
and 2� are also visible in the frequency domain. As � decreases to 0.5 rad s�1 [Figure 7(b)], the liquid motion becomes
quasi-periodic with the dominant frequency equal to 0.5 rad s�1. The reason is that the liquid motion �.t/ is defined in the
moving .y2, y3/-coordinate system; because of more significant influence from gravity, �.t/ turns out to be quasi-periodic
with its dominant frequency equal to the rotational speed of the rotor. One can also observe peaks corresponding to integral
multiples of �, as well as a very low peak around the edgewise eigenfrequency, indicating a very weak coupling to the
fundamental edgewise mode of the blade. As� decreases further to 0.4 rad s�1 [Figure 7(c)], the acceleration due to gravity
overwhelms the centrifugal acceleration. The dominant angular frequency of the quasi-periodic liquid motion is still the
rotational speed of the rotor, and contributions from integral multiples of� can also be observed in the frequency domain. It
is seen from Figure 7(c) that when x0�2 < g, the amplitude of �.t/ varies between 0 and �2� rad in one periodical motion,
verifying the physical fact that the liquid tends to gravitate downwards regardless of the azimuthal angle of the blade.
To verify the applicability of the decoupled optimization and the control effect of the circular liquid damper in a highly

coupled wind turbine system, the optimized damper is incorporated into the 13-DOFmodel. For each blade, a circular liquid
damper is mounted at the position of x0 D 45m. Hence, a 16-DOF system is obtained for the wind turbine with a total
of three liquid dampers installed. Figure 8 shows the edgewise vibration in blade 1, with the same damper parameters and
the same wind field as used in Figure 5. It is shown from Figure 8(a) that the damper with parameters optimized from the
reduced 2-DOF model effectively mitigates the blade edgewise vibration of the highly coupled wind turbine system. The
maximum edgewise tip displacement is reduced from 0.515 to 0.436m (reduced by 15.33%), and the standard deviation is
reduced from 0.1015 to 0.0776m (reduced by 23.55%). Similar to Figure 5(b), Figure 8(b) demonstrates that the frequency
component corresponding to fundamental edgewise mode of the blade is significantly reduced by the damper, whereas the
frequencies below !0 are unaffected. Compared with the results obtained from the 2-DOF model as illustrated in Figure 5,
the control efficiency of the liquid damper is slightly reduced when it is incorporated into the highly coupled system. This
is because the couplings of blade edgewise vibration to other degrees of freedom cause a transfer of mechanical energy
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Figure 7. Time series and related Fourier spectrum of the liquid motion for various values of �, V0 D 15ms�1, I D 0.1, � D 0.03,
˛ D 0.05, x0 D 45m. (a) � D 1.267 rad s�1. (b) � D 0.5 rad s�1. (c) � D 0.4 rad s�1.
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Figure 8. Blade edgewise vibrations with and without the liquid damper, obtained from the 16-DOF model. � D 1.267 rad s�1,
V0 D 15, I D 0.1, � D 0.03, ˛ D 0.05, x0 D 45m, optimal !d and �. (a) Time series, (b) Fourier amplitude.

from edgewise vibration to other vibrational modes, resulting in a slightly worse damping performance of the damper.
Nevertheless, the circular liquid damper with parameters optimized from the reduced 2-DOF model is able to achieve
equally promising results on the highly coupled 13-DOF model.

3.3. Further case study on a 10MW wind turbine

In the deployment of offshore wind power, a clear trend toward larger wind turbines can be observed. It is believed that
larger wind turbines can help to reduce the cost of energy for offshore wind farms, and designs for 10MW turbines are
being developed, such as the Danish Technical University (DTU) 10MW reference wind turbine.22,23 To evaluate the
performance of CLCD in even larger blades, a case study on a 10MW wind turbine is carried out. In this case, data from
the DTU 10MW reference wind turbine22,23 are used to calibrate both the 2-DOF and 13-DOF models. Each blade has
a length of 89.2m and an overall mass of 41,788 kg, which is much larger compared with the blade of the 5MW wind
turbine. As a result of the increased maximum tip speed (90m s�1 for the 10MW turbine and 80m s�1 for the 5MW
turbine), the rotational speed of the 10MW wind turbine is slightly reduced to 1.00 rad s�1, even though the blade length
is significantly increased. Table IV presents the parameters employed in the 2-DOF model for the larger turbine, where the
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Table IV. Parameters in 2-DOF blade-damper
model for the 10MW wind turbine.

Parameter Value Unit

L 89.2 m
x0 60 m
�0 1.00 rad s�1

m0 2.207�103 kg
m1 5.652�103 kg
ke 7.530�104 Nm�1

k1 3.287�103 kg
k2 53.446 kgm�1

�0 0.005 �
a 0.4102 �
b 0.0160 m�1

� 1.0�103 kgm�3

g 9.81 ms�2

!0 5.840 rad s�1
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Figure 9. Blade edgewise vibrations with and without the liquid damper, for the 10MWwind turbine. L D 89.2m,� D 1.00 rad s�1,
V0 D 15, I D 0.1, � D 0.03, ˛ D 0.03, x0 D 60m, optimal !d and �. (a) Time series, (b) Fourier amplitude.

modal parameters are calculated in the same way as in Table I. It should be noted that we obtain the mode shapes of the
blade by establishing a 3D finite element model of the blade with 51 beam elements. Further, sixth-order polynomials are
used to fit the fundamental flap-wise and edgewise mode shapes:

ˆf .x3/ D �1.13Nx6 C 2.533Nx5 � 2.255Nx4 C 1.423Nx3 C 0.4294Nx2
ˆ.x3/ D �0.5087Nx6 � 0.011Nx5 C 1.068Nx4 C 0.3317Nx3 C 0.12Nx2

)
(30)

with Nx D x3
L .

In the same manner, the edgewise modal load for the 2-DOF model is obtained by applying a 3D rotational sampled
wind field to the rotor of the 13-DOF model with V0 D 15m s�1, I D 0.1. Extensive parametric studies of the damper
are not carried out here. With the assigned values of the following parameters, � D 0.03,˛ D 0.03, x0 D 60m (two
thirds of the total blade length), the optimal frequency ratio and head loss coefficient can be determined. Figure 9 shows
the comparison of edgewise vibration with and without the optimized liquid damper for the 10MW turbine. A CLCD
with a mass ratio of 0.03 (m D 66.2 kg) significantly mitigates the edgewise vibration of the blade, with the standard
deviation reduced by 30.05%. The Fourier amplitude spectrum in Figure 9(b) clearly shows two peaks corresponding to
the fundamental edgewise frequency (5.840 rad s�1) and the rotational speed of the rotor (1.00 rad s�1), both of which have
lower frequencies compared with the 5MW turbine. The CLCD almost totally eliminates the peak corresponding to the
fundamental edgewise mode, which proves the effectiveness of the CLCD in a very large wind turbine blade. Because the
calculated edgewise modal loads for the 5 and 10MW turbines are different, quantitative comparison of the performance
of the CLCD is meaningless. Nevertheless, one can observe from Figures 5 and 9 that CLCD with optimal parameters
performs equally well in reducing edgewise vibrations for the NREL 5MW turbine and the DTU 10MW turbine.

4. CONCLUDING REMARKS

A new type of liquid column damper termed as a circular liquid column damper (CLCD) has been proposed in the paper
in order to suppress edgewise vibrations in wind turbine blades. An investigation is then carried out to evaluate the
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effectiveness of the proposed CLCD in mitigating edgewise vibrations in wind turbine blades. Parametric optimization
for tuning of the damper has been carried out using a reduced order (2-DOF) non-linear model developed for a rotating
blade equipped with a CLCD. The optimally tuned damper is then used on a 13-DOF aeroelastic wind turbine model that
incorporates coupled blade-tower-drivetrain vibrations as well as a pitch controller.
Simulation results show that an optimized CLCD with a very small mass ratio can effectively eliminate fundamental

edgewise eigenvibrations of the blade in rated rotational speed. Better control performance can be obtained by increasing
the liquid mass and equipping the damper closer to the blade tip. However, the damper mass and mounting position should
be restricted according to the installation capacity and the available space inside the blade. The size of the damper can be
regulated by changing the value of the radius ratio (˛ D r=R). Further, it is observed that the performance of the CLCD
falls drastically as the rotational speed of the rotor decreases as a result of detuning of the damper. When � is less than
a critical value, the acceleration of gravity overwhelms the centrifugal acceleration, resulting in a situation such that the
liquid tends to gravitate downwards regardless of the azimuthal angle of the blade.
Most of the simulations are based on the NREL 5MW wind turbine. An additional case study on the DTU 10MW

turbine has also been carried out to evaluate the effect of the CLCD in a very large blade. It is shown that an optimally
tuned CLCD performs equally well in the 10MW wind turbine blade, even though the rated rotor rotational speed and
the fundamental edgewise frequency are slightly reduced. All these results show that the proposed CLCDs are promising
passive damper devices and can be utilized in wind turbine blades for edgewise vibration control.
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Abstract8

Tuned liquid dampers (TLDs) utilize the sloshing motion of the fluid to suppress structural vi-
brations and become a natural candidate for damping vibrations in rotating wind turbine blades.
The centrifugal acceleration at the tip of a wind turbine blade can reach a magnitude of 7-8 g.
This facilitates the use of a TLD with a relatively small fluid mass and with feasible geometric
dimensions to mitigate the lightly-damped edgewise vibrations effectively. In the present paper,
modal expansions are carried out directly on the velocity field and the free surface of the slosh-
ing liquid in the rotating coordinate system. A formulation has been proposed leading to coupled
nonlinear ordinary differential equations, which have been obtained through the Galerkin vari-
ational approach together with the modal expansion technique. Two models, with one sloshing
mode and three sloshing modes have been studied in the numerical simulation. It is shown that
the one-mode model is able to predict the sloshing force and the damped structural response ac-
curately, since the primary damping effect on the structure is achieved by the first sloshing mode
of the fluid. Although it is unable to predict the fluid free-surface elevation equally well, the
one-mode model can still be utilized for the design of TLD. Parametric optimization of the TLD
is carried out based on the one-mode model, and the optimized damper effectively improve the
dynamic response of wind turbine blades.

Keywords: tuned liquid dampers, wind turbine blade, edgewise vibration, modal expansion9

1. Introduction10

Recent development in the wind energy industry aims at obtaining more economic and pro-11

ductive configurations in order to compete in the energy sector. This has led to larger multi-12

megawatt wind turbines with increased rotor diameters of over 160m, allowing more wind re-13

source to be captured throughout their lifetime and lowering the cost of energy. On the other14

hand, as the size of the rotor increases, the blades are becoming more flexible and hence are15

more vulnerable to wind-induced vibrations. The large amplitude vibrations may significantly16
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shorten the fatigue life of the blade and reduce the operational efficiency in converting the wind17

energy to electrical power.18

Conventionally, the modes of vibration for the blades are classified as flap-wise and edge-19

wise modes. Flap-wise vibrations are vibrations out of the plane of the rotating rotor, whereas20

edgewise vibrations take place in the rotor plane. During normal operations, flap-wise vibrations21

are highly damped due to the strong aerodynamic damping as long as the boundary layer on the22

suction side of the profile is attached (Hansen, 2007). Therefore, motion in this direction merely23

turns out to be quasi-static responses to the incoming turbulent wind, containing only low fre-24

quency components from the wind shear and the stagnation during tower passage. In contrast,25

the modal damping in the edgewise direction is much lower due to low aerodynamic damping26

(Hansen, 2007; Thomsen et al., 2000), leading to more violent vibrations and increased fatigue27

damage of the blade. Moreover, due to the coupling between the blade edgewise motion and the28

drivetrain torsional motion, the unfavorable edgewise vibrations will increase the fluctuations29

of the generator torque, and hence the quality of the generated power. Further, there is also a30

possibility of aeroelastic instability in the edgewise direction for some combinations of blade31

properties and operational conditions, especially around rated wind speeds for turbines with32

high performance rotors operating close to stall (Hansen, 2007; Bir and Jonkman, 2007). When33

aeroelastic instability takes place, the sum of the structural damping and the aerodynamic damp-34

ing becomes negative in the edgewise direction (Riziotis et al., 2004), and the motion grows35

exponentially, which may potentially lead to the failure of the overall system. Therefore, the36

mitigation of violent edgewise vibrations becomes a vital design consideration to improve the37

overall performance of wind turbine blades and to protect them from the fatigue damage during38

the design period.39

The use of passive, semi-active and active damping devices, which introduce additional40

damping to suppress the damaging effect of wind, wave and earthquake loads on engineering41

structures, have been extensively investigated in the last few decades (Spencer and Nagarajaiah,42

2003). In recent years, an increasing number of investigations are being carried out on vibra-43

tion mitigation of wind turbine components using external devices. For wind turbine towers,44

several types of passive dampers have been proposed for reducing the vibrations induced by the45

wind and wave loads (Murtagh et al., 2008; Colwell and Basu, 2009; Lackner and Rotea, 2011;46

Stewart and Lackner, 2014; Zhang et al., 2014a). On the other hand, investigations regarding47

the mitigation of blade vibrations are mainly focused on the semi-active and active control solu-48

tions (Arrigan et al., 2011; Staino and Basu, 2013; Fitzgerald and Basu, 2014; Staino and Basu,49

2015). Fitzgerald et al. (2013) investigated active TMDs for mitigating edgewise vibrations, and50

the active TMD achieved greater response reductions than its passive counterpart. Active struts51

mounted near the root of each blade was proposed by Krenk et al. (2012) for suppressing blade52

vibrations. Inspired by the concept of TMDs, the active control concept developed in this study53

is based on resonant interaction between the rotor and the controller. Staino et al. (2012) pre-54

sented the use of active tendons mounted inside each blade for the control of edgewise vibrations.55

Manipulated according to a prescribed control law, a variable control force can be applied in the56

edgewise direction, improving the dynamic response of the blade significantly. However, both57

semi-active and active control solutions need relatively complicated controller configurations and58

some amount of power input. Recently, investigations have been carried out on the performance59

of both a roller damper (Zhang et al., 2014b) and a tuned liquid column damper (TLCD) (Zhang60

et al., 2015a) equipped inside a rotating blade. Because of the large centrifugal acceleration of61

the rotating blade, it was shown that both the roller damper and the TLCD with small mass ratios62

could effectively mitigate edgewise vibrations.63
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Added fluid mass can be used to effectively counteract undesired oscillations of structures64

(Langthjem and Nakamura, 2014). The tuned liquid damper (TLD), which consists of a tank65

partially filled with fluid, is a passive damping device for mitigation of structural vibrations by66

utilizing the sloshing fluid. Normally, the fundamental sloshing frequency of the liquid is tuned67

to the fundamental frequency of the primary structure. When the TLD is excited by the motion68

of the primary structure, the liquid in the tank begins to slosh, imparting inertial forces onto the69

structure, out of phase with its motion, thus absorbing and dissipating energy. The main advan-70

tages of the TLD are the ease of fabrication and installation, especially where space constraints71

exist, and minimal maintenance after installation, which make the device very cost-effective.72

The TLD has been shown to effectively suppress the wind-induced vibration of structures (Fujii73

et al., 1990; Tamura et al., 1995; Chang and Gu, 1999). It is also proposed for seismic control of74

structures. Both experimental and theoretical studies (Banerji et al., 2000; Lee et al., 2007; Jin75

et al., 2007) have shown that a TLD does reduce the vibrations of flexible structures subjected to76

earthquake excitations. The primary difficulties associated with TLDs arise from the nonlinear77

nature of the sloshing liquid, which makes modeling and designing these devices challenging.78

Numerous methods have been employed to predict the response of sloshing liquid. Equivalent79

mechanical models based on TMD analogy (Sun et al., 1995; Yu et al., 1999) simplify the TLD80

to an equivalent tuned mass damper, with the equivalent mass, stiffness and damping calibrated81

from the experimental results. This kind of model is able to predict the energy dissipation through82

liquid sloshing and is useful in the preliminary design of the TLD. However, the nonlinear fluid83

response cannot be captured by such simple models. Nonlinear shallow water wave theory (Sun84

et al., 1994; Reed et al., 1998) has been proposed for predicting the response of fluid sloshing in85

rectangular tanks. Although the nonlinear shallow-water wave equations can be solved numeri-86

cally, it is computational inefficient and does not provide an effective design tool for engineering87

application. Modal expansion techniques (Faltinsen et al., 2000; Faltinsen and Timokha, 2001;88

Love and Tait, 2010) have been used to model the sloshing problem, where the fluid flow is as-89

sumed to be inviscid, irrotational, incompressible and without rigid-body rotations. The velocity90

potential and the free surface are expressed as a summation of sloshing modes, and a system of91

coupled ordinary differential equations are developed by applying calculus of variations (Faltin-92

sen et al., 2000; Faltinsen and Timokha, 2001).93

In this paper, the TLD is proposed for mitigating edgewise vibrations in rotating wind tur-94

bine blades. In the case of the building or tower vibrations, the sloshing of the liquid and thus95

the damping effect of the TLD is governed by the gravitational acceleration, g. For a rotating96

wind turbine blade, the corresponding damping effect is governed by the centrifugal acceleration,97

which can reach up to a magnitude of 7-8 g at the tip of a 65m-long blade. This makes it possible98

to use the TLD with a rather small mass for effectively suppressing edgewise vibrations.99

Similar as in the work of Faltinsen et al. (2000) and Faltinsen and Timokha (2001), modal100

expansion technique has been used in this paper for the sloshing problem. However, the main101

obstacle in modeling the TLD in rotating blades is that strong non-inertial forces appear in the102

Euler equations in terms of the angular acceleration, the Coriolis acceleration and the centripetal103

acceleration. These effects render the use of potential flow theory invalid even for inviscid and104

irrotational fluid flow. Therefore, modal expansion is carried out directly on the velocity field105

of the fluid rather than the velocity potential. The basic idea for the modeling of the TLD in106

this paper is as follows. First of all, boundary value problem (Euler equations with the nonlinear107

boundary conditions) for the liquid inside the TLD is derived in the local, rotating coordinate108

system. Next, the Galerkin variational approach has been used to develop two equations, one for109

the velocity field, and the other one for the kinematical boundary condition at the free surface.110
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These two equations are used with the modal expansions to develop a system of coupled ordinary111

differential equations. Here the shape functions in the modal expansion of the velocity field are112

taken as the eigenmodes of standing waves in linear wave theory, based on which the shape113

functions for the surface elevation can also be obtained. Finally, the differential equations of the114

fluid are combined with the equation of motion of the edgewise blade vibration, which completes115

the modeling of the problem.116

In the numerical simulation, both the one-sloshing-mode model and three-sloshing-mode117

model have been considered for study. The sloshing force, the damped structural response and118

the fluid surface elevation are compared between the two models. Parametric studies have also119

been performed for the TLD with different mass ratios and tank lengths.120

2. Theoretical model for the TLD installed in a rotating blade121

The edgewise vibrations of a wind turbine blade are coupled to the lateral tower and drivetrain122

vibrations, which may also influence the motion of the fluid inside the TLD. However, previous123

studies (Zhang et al., 2014b; Zhang et al., 2015a; Basu et al., 2015) have proved that this coupling124

is of minor importance for the optimal design of passive dampers inside a blade. It has been125

shown that the optimally tuned passive dampers perform almost equally well in a highly-coupled126

13-DOF wind turbine model, even though the optimal tuning is based on a reduced 2-DOF blade-127

damper model ignoring the coupling with the tower and drivetrain vibrations. Therefore, in128

the present paper only the mode corresponding to blade edgewise vibrations is considered, and129

the analysis of the TLD is totally based on the local dynamics of the rotating blade without130

considering the influence from other components of the wind turbine.131

2.1. Definition of the problem132

Figure 1 appears about here.133

Fig. 1 shows the schematic representation of a rotating blade equipped with a TLD. (X1, X2, X3)-134

is the global fixed coordinated system with its origin O fixed at the center of the hub. The edge-135

wise vibration of the blade is described in the moving (x1, x2, x3)- coordinate system, while the136

motion of the liquid inside the TLD is described by another local coordinate system (y1, y2, y3)137

fixed to the damper. For each blade, the mass per unit length and bending stiffness in the edge-138

wise direction are denoted by μ(x3) and EI(x3), respectively. Similar to other inertial based139

dampers for passive vibration control such as a tuned mass damper (TMD), the TLD has a rather140

limited bandwidth (although might be wider than a TMD due to nonlinear sloshing effects), and141

is likely only to mitigate vibrations in a single mode at optimal tuning. In the present case the142

aim is to damp the fundamental edgewise mode, which is described by the degree of freedom143

q(t). Further, the azimuthal angle Ψ(t) of the blade is given as:144

Ψ(t) = Ωt (1)

where Ω is the angular rotational speed of the blade, which is assumed constant in time.145
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Further, the local edgewise displacement u2(x3, t) of the rotating blade in the x2-direction can146

be described by the single modal coordinate q(t) as:147

u2(x3, t) = −Φ(x3) q(t) (2)

where Φ(x3) is the fundamental eigenmode of the blade edgewise vibration. This is normalized148

to 1 at the tip, i.e. Φ(LB) = 1, where LB denotes the blade length. The negative sign refers to the149

definition of q(t) in the negative direction of the x2-axis, as shown in Fig. 1.150

Assuming the TLD to be mounted at the coordinate x3 = x0, the elastic displacement and151

rotation of the blade at this position are given by152

u2(x0, t) = −b q(t)
ϕ(t) = c q(t)

⎫⎪⎬⎪⎭ (3)

where the following auxiliary parameters have been introduced:153

b = Φ(x0)
c = Φ ′(x0)

⎫⎪⎬⎪⎭ (4)

The TLD is made up of a closed rectangular tank with the length L and the width B. The154

height of the tank is assumed to be sufficiently larger than the mean water depth h, so that there155

is enough free board and the surface elevation η will not reach the ceiling of the damper. The156

mass of the oscillating liquid becomes:157

ml = ρhLB (5)

where ρ denotes the mass density of the liquid.158

2.2. Boundary value problem in the rotating coordinate system159

As shown in Fig. 2, the motion of the fluid relative to the tank is described in (y1, y2, y3)-160

coordinate system fixed to the damper with its origin O ′ placed at the center of the mean water161

level (MWL). It is assumed that the free surface can be defined by a single variable of the surface162

elevation η(y1, y3, t) measured from the mean water level. Hence, overturning waves, slamming163

or breaking waves are not covered by the following theory. Further, the fluid is considered164

incompressible, inviscid and irrotational.165

Figure 2 appears about here.166

A given fluid particle is described by the position vector r(t), which is decomposed as follows:167

r(t) = r0(t) + y(t) (6)

where r0(t) and y(t) denote the position vector from the fixed origin O to the point O ′ and the168

position vector from the point O ′ to the fluid particle. Further, ω(t) denotes the angular velocity169

vector of the moving (y1, y2, y3)-coordinate system relative to the (X1, X2, X3)-coordinate system170

(Fig. 2). Then the following result can be derived for the velocity vector and acceleration vector171

of the fluid particle in the (y1, y2, y3)-coordinate system:172
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ṙ(t) = ṙ0(t) + v
(
y(t), t

)
+ ω(t) ×

(
r0(t) + y(t)

)

r̈(t) = r̈0(t) + v̇
(
y(t), t

)
+ ω̇(t) ×

(
r0(t) + y(t)

)
+ 2ω(t) ×

(
ṙ0(t) + v

(
y(t), t

))
+

ω(t) ×
(
ω(t) ×

(
r0(t) + y(t)

))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(7)

where ṙ0 is the vector with components ṙ0, j in the local (y1, y2, y3)-coordinate system. r̈0 is the173

vector with components r̈0, j in (y1, y2, y3)-coordinate system. ω̇(t)×
(
r0(t)+y(t)

)
, 2ω(t)×

(
ṙ0(t)+174

v
(
y(t), t

))
andω(t)×

(
ω(t)×

(
r0(t)+y(t)

))
indicate the contributions to the acceleration vector from175

the angular acceleration, the Coriolis acceleration and the centripetal acceleration, respectively.176

It should be noted that v
(
y(t), t

)
and v̇

(
y(t), t

)
indicate the velocity and acceleration vectors of the177

fluid particle as seen by an observer fixed to the (y1, y2, y3)-coordinate system.178

Up to now a Lagrangian description of the motion of a certain fluid particle has been fol-179

lowed. Next, the description is reformulated in Eulerian coordinates. This means that the ac-180

celeration v̇
(
y, t

)
of the particle occupying the position y at the time t is calculated as v̇

(
y, t

)
=181

∂
∂t v(y, t) +

(
v(y, t) ·∇

)
v(y, t) (Malvern, 1969), resulting in the following boundary value problem:182

ρ

(
∂

∂t
v(y, t) +

(
v(y, t) · ∇

)
v(y, t)

)
+ ρ r̈0(t) + ρ ω̇(t) ×

(
r0(t) + y

)
+

2 ρω(t) ×
(
ṙ0(t) + v(y, t)

)
+ ρω(t) ×

(
ω(t) ×

(
r0(t) + y

))
= −∇p(y, t) + ρ g , y ∈ V(t)

∇ · v(y, t) = 0 , y ∈ V(t)

v(y, t) · n(y) = 0 , y ∈ A1(t)

p(y, t) = 0 , y ∈ A2(t)

v2(y, t) =
∂η(y1, y3, t)
∂t

+ v1(y, t)
∂η(y1, y3, t)
∂y1

+ v3(y, t)
∂η(y1, y3, t)
∂y3

, y ∈ A2(t)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(8)

where g denotes the acceleration due to gravity vector. All the components of the vectors en-183

tering Eq. (8) will be indicated in the (y1, y2, y3)-coordinate system, in which the components184

of g become time-dependent. Due to the assumed incompressibility, the volume of the fluid is185

constant in time. However, the shape as specified by the surface elevation η(y1, y3, t) is changing186

with time. Therefore, the domain V(t) occupied by the fluid, the wet part of the boundary A1(t),187

and the free surface A2(t) will be time varying as well.188

The boundary condition v(y, t) · n(y) = 0 at A1(t) specifies that the velocity component of the189

fluid in the outward direction must be zero, where n(y) is the unit normal vector at A1(t). At the190

free surface A2(t), the pressure above atmospheric pressure p(y, t) must vanish. Further, a fluid191

particle at the free surface must remain there at all time, which is specified by the other boundary192

condition at A2(t).193

Being placed close to the blade tip with small blade thickness, the width B of the TLD will194

be small compared to h and L. Due to this geometric constrain, the flow is predominantly 2-195

dimensional, taking place in the (y1, y2)- plane. Hence it is assumed that v3(y, t) ≡ 0 in the196

present study. Due to the incompressibility of the fluid the surface elevation needs to fulfill the197
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integral condition:198 ∫ L/2

−L/2
η(y1, t) dy1 = 0 (9)

The components of r0(t), g and ω(t) in the (y1, y2, y3)-coordinate system are given by (see199

Fig. 1):200

r0(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x0 sin ϕ(t) − bq(t) cosϕ(t)
−x0 cosϕ(t) − bq(t) sinϕ(t)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , g(t) = g

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
− sin

(
Ψ(t) + ϕ(t)

)
cos

(
Ψ(t) + ϕ(t)

)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , ω(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
0

−Ψ̇(t) − ϕ̇(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10)

where the components have been presented in matrix formulation for ease. The term g is the201

scalar magnitude of acceleration due to gravity (i.e. 9.8 m/s2).202

2.3. The Galerkin variational method and the modal expansion203

Faltinsen et al. (2000) proposed the use of potential theory for the sloshing problem, where204

the rotation of the TLD is around the origin O′. The rotation of the TLD is around the origin O205

(the hub center) in the present case, which causes a centrifugal acceleration of the fluid particles206

of the magnitude Ω2 x0, much larger than the centrifugal acceleration of the magnitude Ω2 |y|207

caused by a rotation around O′. In the present study, the solution to the problem will be based208

on a discretization of the velocity field equation and non-linear boundary conditions in Eq. (8),209

rather than based on potential theory.210

In order to derive a weak representation of the boundary value problem in Eq. (8), a virtual211

variation δv(y) of the fluid velocity field is considered with the following properties:212

∇ · δv(y) = 0 , y ∈ V(t)

δv(y) · n(y) = 0 , y ∈ A1(t)

⎫⎪⎪⎬⎪⎪⎭ (11)

Scalar multiplication of the momentum equation with δv(y), followed by an integration over213

V(t) provides:214

∫
V(t)
δv(y) ·

(
ρ

(
∂

∂t
v(y, t) +

(
v(y, t) · ∇

)
v(y, t)

)
+ 2 ρω(t)×v(y, t) − ρ ae(y, t) + ∇p(y, t)

)
dV = 0

(12)
where ae(y, t) is an effective acceleration vector on the fluid particle defined as:215

ae(y, t) = g − r̈0(t) − ω̇(t) ×
(
r0(t) + y

)
− 2ω(t) × ṙ0(t) − ω(t) ×

(
ω(t) ×

(
r0(t) + y

))
(13)

From the divergence theorem216

∫
V(t)
δv(y) · ∇p(y, t) dV = p(y, t) δv(y) · n(y)

∣∣∣
y∈A1(t)+A2(t) −

∫
V(t)

p(y, t)∇ · δv dV = 0 (14)

The vanishing of the volume integral follows from: 1) the mechanical boundary conditions217

for p(y, t) on A2(t) and the kinematic boundary condition for δv(y) on A1(t) as indicated in Eqs.218
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(8) and (11). 2) the assumed incompressibility of the variational field in V(t). Then, Eq. (12) is219

simplified as:220

∫
V
δv(y) ·

(
ρ

(
∂

∂t
v(y, t) +

(
v(y, t) · ∇

)
v(y, t)

)
+ 2 ρω(t) × v(y, t) − ρ ae(y, t)

)
dV = 0 (15)

This variational equation (Eq. (15) ) has some resemblance to the variational principle (Luke,221

1967) for potential flows in the sense that the pressure p(y, t) disappears from the stationarity222

condition.223

Next, the following modal expansion of the velocity field v(y, t) and its virtual variation δv(y)224

are formulated:225

v(y, t) =
∞∑

i=1
ri(t) Vi(y) , y ∈ V(t)

δv(y) =
∞∑

i=1
δri Vi(y) , y ∈ V(t)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(16)

where ri(t) and δri denote the generalized coordinates of the velocity field and the variational226

field. As seen the same functional bases have been assumed for the two expansions, correspond-227

ing to a Galerkin variational method. The shape functions Vi(y) are not required to fulfill any228

mechanical boundary conditions on the free surface A2(t). However, they need to have zero229

divergence in V(t) and to fulfill vanishing kinematical boundary conditions on A1(t):230

∇ · Vi(y) = 0 , y ∈ V(t)

Vi(y) · n(y) = 0 , y ∈ A1(t)

⎫⎪⎪⎬⎪⎪⎭ (17)

Substituting Eq. (16) into Eq. (15), and using that δri can be varied independently, the fol-231

lowing infinite system of ordinary nonlinear differential equation are obtained for the generalized232

coordinates ri(t):233

∞∑
j=1

mi j(t) ṙ j(t) +
∞∑
j=1

ni j(t) r j(t) +
∞∑
j=1

∞∑
k=1

oi jk(t) r j(t) rk(t) = fi(t) , i = 1, 2, . . . (18)

mi j(t) =
∫

V(t)
ρVi(y) · V j(y) dV

ni j(t) =
∫

V(t)
2ρVi(y) ·

(
ω(t) × V j(y)

)
dV = 2ρω(t) ·

∫
V(t)

V j(y) × Vi(y) dV

oi jk(t) =
∫

V(t)
ρVi(y) ·

((
V j(y) · ∇

)
Vk(y)

)
dV

fi(t) =

∫
V(t)
ρVi(y) · ae(y, t) dV

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(19)

The tensor components in equation Eq. (16) are time-dependent due to the time-varying fluid234

domain V(t). In Appendix A, semi-analytical expressions for these components have been given,235

based on which they can be calculated using one-dimensional numerical integration.236

237
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In the present paper, the shape functions in Eq. (19) are taken as the eigenmodes of standing238

waves in linear wave theory (Svendsen and Jonsson, 1976) given by:239

Vi (y) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
− sin

(
ki (y1 +

L
2 )

)
cosh

(
ki (y2 + h)

)
cos

(
ki (y1 +

L
2 )

)
sinh

(
ki (y2 + h)

)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (y1, y2) =
[
−

L
2
,

L
2
]
×

[
− h, η(y1, t)

]
(20)

The chosen shape functions are equivalent to the ones by Faltinsen et al. (2000), Love and240

Tait (2010), where the eigenfunctions in linear potential theory were used as functional basis241

in the expansion of the velocity potential Φ(y, t). The gradient of Φ(y, t) leads to exactly the242

same results as in Eq. (20). It can also be verified that Vi (y) has zero divergence for any value243

of the wave number ki in the liquid domain. Further, the chosen shape functions fulfill certain244

orthogonality conditions, which will make the resulting system equations simpler. In order to245

fulfill the kinematic boundary condition on A1(t) the wave numbers must be chosen as:246

ki = i
π

L
, i = 1, 2, . . . (21)

Mounted inside the rotating blade, the motion of the sloshing fluid in the TLD is primarily247

governed by the centrifugal acceleration x0Ω
2, which turns out to be the dominating component248

in Eq. (13). Hence, the angular eigenfrequencies ωi of the standing waves are approximately249

determined from the dispersion relation:250

ω2
i � x0Ω

2 ki tanh(kih) (22)

which is identical to the corresponding dispersion relation for gravity waves (Svendsen and Jon-251

sson, 1976), except that the gravitational acceleration g has been replaced by the centrifugal252

acceleration x0Ω
2.253

254

Further, the boundary condition on the free surface is discretized in a similar manner. Let255

δη(y1) denote a virtual displacement of the surface elevation η(y1, t). The multiplication of the256

boundary condition with δη(y1) followed by an integration over the interval [−L/2, L/2] provides257

the stationarity condition:258

∫ L/2

−L/2
δη(y1)

(
∂η(y1, t)
∂t

+ v1(y, t)
∂η(y1, t)
∂y1

− v2(y, t)
)
dy1 = 0 (23)

The following modal expansion of the surface elevation η(y1, t) and its virtual variation δη(y1)259

are formulated:260

η(y1, t) =
∞∑
i=1

si(t) cos
(
ki

(
y1 +

L
2

))

δη(y1) =
∞∑
i=1
δsi cos

(
ki

(
y1 +

L
2

))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(24)

where si(t) and δsi denote the generalized coordinates of η(y1, t) and δη(y1). The selected shape261

functions in Eq. (24) is motivated by the linear wave theory, where the free surface condition262

reduces to v2(y1, 0, t) = ∂
∂tη(y1, t). Hence, the distribution with y1 for each shape function in Eq.263

(24) should be pairwise proportional to its counterpart in Eq. (20). Further, the indicated shape264
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functions imply that the incompressibility condition in Eq. (9) is automatically fulfilled.265

266

Substituting Eq. (24) into Eq. (23), and using that δs j can be varied independently, the267

following infinite system of ordinary nonlinear differential equations are obtained for the gener-268

alized coordinates si(t):269

ṡi(t) =
2
L

∫ L/2

−L/2
cos

(
ki

(
y1+

L
2

)) [
p2

(
y1, η(y1, t)

)
+ p1

(
y1, η(y1, t)

) ∞∑
j=1

s j(t) k j sin
(
k j

(
y1+

L
2

))]
dy1

(25)
where:270

p1
(
y1, η(y1, t)

)
= −

∞∑
j=1

r j(t) sin
(
k j

(
y1 +

L
2

))
cosh

(
k j

(
η(y1, t) + h

))

p2
(
y1, η(y1, t)

)
=

∞∑
j=1

r j(t) cos
(
k j

(
y1 +

L
2

))
sinh

(
k j

(
η(y1, t) + h

))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(26)

2.4. Equations of motion for the coupled blade-TLD system271

Obviously, the differential equations in Eqs. (18) and (25) are coupled, and both depend on272

q(t), q̇(t), q̈(t) via the vectors r0(t), g, ω(t) and their time derivatives. The dependence on q̈(t)273

can be eliminated via the equation of motion for q(t) to be specified below. Hence, the dynam-274

ics of the fluid simply depends on the state variables q(t), q̇(t) and the generalized coordinates275

r1(t), r2(t), . . . and s1(t), s2(t), . . .. In practical applications the expansions in Eqs. (16) and (24)276

need to be truncated at the same finite order N. Hence, the fluid motion is described by the fol-277

lowing state vector z(t) of dimension 2N + 2:278

279

z(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
q(t)
q̇(t)
r(t)
s(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (27)

where:280

r(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1(t)
r2(t)
...

rN(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, s(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1(t)
s2(t)
...

sN(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(28)

Figure 3 appears about here.281

As shown in Fig. 3, fc
(
t) = fc

(
z(t), t

)
with the non-vanishing moving frame components fc,1(t)

and fc,2(t), denotes the external reaction force vector on the liquid due to the pressure p(y, t) from
inner side of the tank. This force vector, when transferred to the primary structure, represents the
sloshing force for mitigating edgewise vibrations in the rotating blade. The vector fc

(
t) can be
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obtained from the divergence theorem in combination with Eqs. (8) and (13):

fc(t) = −
∫

A1(t)
p(y, t) n(y) dA =

∫
V(t)
ρ

(
∂

∂t
v(y, t) +

(
v(y, t) · ∇

)
v(y, t) + 2ω(t) × v(y, t) − ae(y, t)

)
dV =

N∑
k=1

bi(t) ṙi(t) +
N∑

k=1

ci(t) ri(t) +
N∑

i=1

N∑
j=1

di j(t) ri(t) r j(t) + e(t) (29)

where the vectors bi(t), ci(t), di j(t), e(t) are given by:282

bi(t) =
∫

V(t)
ρVi(y) dV

ci(t) =
∫

V(t)
2ρω(t) × Vi(y) dV = 2ω(t) × bi(t)

di j(t) =
∫

V(t)
ρ
(
Vi(y) · ∇

)
V j(y) dV

e(t) = −

∫
V(t)
ρ ae(y, t) dV

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(30)

Semi-analytical expressions for the moving frame component of the vectors bi(t), ci(t), di j(t),283

e(t) have been given in Appendix A. They depend on the state variables s(t) through the time-284

varying fluid domain V(t).285

From the linear wave theory, under the influence of the centrifugal acceleration x0Ω
2 alone,286

only the odd-number modes in the expansions in Eqs. (16) and (24) contribute to fc,1(t), and287

that the contribution from any mode to fc,2(t) vanishes totally. In the nonlinear case, with the288

time and space varying acceleration ae(y, t) and the non-symmetric influence of the Coriolis289

acceleration, there will be non-vanishing contributions to both force components from all modes290

in the expansions. However, it is assumed that the odd terms have dominating contributions in291

the control force, and the number of retained terms N should be chosen as an odd number.292

By using the Euler-Lagrange equation, the equation of motion for the edgewise vibration q(t)293

can be formulated (Zhang et al., 2014b; Zhang et al., 2015a; Basu et al., 2015). Coupled with294

the sloshing force from the TLD, the following equation is obtained:295

m0 q̈(t) + c0 q̇(t) + (k0−Ω
2m0) q(t) = f0(q̇, t) + fg(t) + B

(
fc,1(t) cosϕ(t) + fc,2(t) sin ϕ(t)

)
(31)

where f0(t) denotes the wind-induced modal load on the primary structure obtained from a more296

sophisticated 13-DOF aeroelastic model, taking the aerodynamic damping into consideration297

(Zhang et al., 2014c). fg(t) = sin
(
Ωt

) ∫ LB

0 μ(x3)gΦ(x3)dx3 denotes the modal load from gravity.298

The term m0 =
∫ LB

0 μ(x3)Φ2(x3) dx3 is the modal mass of the blade, and k0 denotes the modal299

stiffness including the elastic and geometric contributions:300

k0(t) = ke + k1Ω
2 − k2g cos(Ωt) (32)

In Eq. (32), ke is the elastic stiffness of the blade without geometrical contributions. k1Ω
2

301

indicates the geometrical stiffening due to the centrifugal acceleration. −k2g cos(Ωt) indicates302
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the geometrical softening caused by the variation of the axial force during rotating due to the303

weight of the blade. The parameters ke, k1 and k2 are given by:304

ke =

∫ LB

0
EI(x3)

⎛⎜⎜⎜⎜⎝d2Φ(x3)
dx2

3

⎞⎟⎟⎟⎟⎠
2

dx3

k1 =

∫ LB

0
N1(x3)

(
dΦ(x3)

dx3

)2

dx3 , N1(x3) =
∫ LB

x3

μ(y3) y3 dy3

k2 =

∫ LB

0
N2(x3)

(
dΦ(x3)

dx3

)2

dx3 , N2(x3) =
∫ LB

x3

μ(y3) dy3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(33)

Further, the negative stiffness term −Ω2m0 in Eq. (31) is the result of the centripetal softening305

effect, where the blade deflection in the edgewise direction induces a component of the centrifu-306

gal force in the same direction (tending to further increase the blade edgewise deflection) in the307

rotor plane.308

The fundamental edgewise circular eigenfrequency of a static blade can be calculated using309

the following equation:310

ω0 =
√

ke/m0 (34)

Based on ω0 and m0, the damping coefficient of the primary structure is calculated as:311

c0 = 2 ζ0 ω0 m0 (35)

where ζ0 is the structural damping ratio.312

The ordinary differential equations for the generalized coordinates ri(t) (Eq. (18)) do not313

contain terms to account for the energy losses of the sloshing liquid (ni j(t) is the gyroscopic314

damping term which does not dissipate energy). In principal, energy dissipations in the TLD315

arise from both the fluid viscosity present primarily in the boundary layer and the inclusion of316

flow restricting devices such as screens and baffles. Investigating how these two mechanisms317

contribute to the energy dissipation are beyond the scope of this paper. Instead, in Eq. (18)318

a linear viscous damping term is incorporated to accommodate the overall energy dissipation319

arising from the viscous effect and flow restricting devices:320

N∑
j=1

mi j(t) ṙ j(t) +
N∑
j=1

ci j(t) r j(t) +
N∑
j=1

ni j(t) r j(t) +
N∑
j=1

N∑
k=1

oi jk(t) r j(t) rk(t) = fi(t) (36)

In the present case, ci j(t) is modeled as321

ci j(t) = ξω1mi j(t) (37)

where ξ is a non-dimensional damping parameter, representing both the dissipations from the322

fluid viscosity in the boundary layer and the flow restriction device. For practical applications323

this parameter should be calibrated from full scale eigenvibration tests.324

Eqs. (31), (25) and (36) are combined into the following state vector differential equation,325

which describes the edgewise vibrations of the blade coupled to the fluid motion of the TLD:326

ż(t) = h
(
z(t), t

)
(38)
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Further, the mass ratio μ (ratio between the fluid mass and the modal mass of the structure)327

and the tuning ratio χ (ratio between the first sloshing frequency and the fundamental edgewise328

frequency) are introduced as design parameters, defined as:329

μ =
ml

m0
, χ =

ω1

ω0
(39)

As a measure of the efficiency of the damper, the reduction ratio δ is defined as:330

δ =

∫ ωb

ωa
|Q0(ω)|2dω −

∫ ωb

ωa
|Q(ω)|2dω∫ ωb

ωa
|Q0(ω)|2dω

(40)

where Q(ω) and Q0(ω) are the Fourier amplitude of the edgewise tip displacements of the blade331

with and without the TLD, respectively. ωa and ωb are the lower and upper limits of the consid-332

ered angular frequency range. The optimal parameters of the TLD can be found by maximizing333

the value of δ.334

3. Numerical simulations335

Data from the NREL 5-MW reference wind turbine (Jonkman et al., 2009) have been used336

to calibrate the structural model of the blade. Each blade has a length of 63 m and an overall337

mass of 17740 kg, with the fundamental edgewise modal shape, the bending stiffness and the338

mass per unit length provided by Jonkman et al. (2009). The constant parameters employed in339

the structure-TLD model are calculated and presented in Table 1.340

Table 1 appears about here.341

The edgewise modal loads f0(t) in Eq. (31) are obtained by applying a 3-dimensional rota-342

tional sampled wind field to the rotor of the 13-DOF aeroelastic model (Zhang et al., 2014c),343

with specified mean wind speed V0 and turbulence intensity I. Having f0(t) as the external ex-344

itation, the nonlinear state vector differential equation (Eq. (38)) is numerically solved by the345

fourth-order Runge-Kutta method using a time interval of 0.02 s. At each time step, iterations346

need to be performed to obtain q̈(t) since Eqs. (29) and (31) are nonlinearly coupled.347

In the present study, modal expansions to one sloshing mode (N=1) and three sloshing modes348

(N=3) are evaluated, corresponding to the state vector z(t) of dimension 4 and 8, respectively.349

The one-sloshing-mode model is used for parametric optimization of the TLD, which has been350

justified by comparing the results from the one-mode and three-mode models.351

3.1. Parametric optimization of the TLD using one-mode model352

The parameters of the TLD to be determined are the mass ratio μ, the tuning ratio χ, the353

non-dimensional damping parameter ξ and the mounting position of the damper x0. Because the354

damping effect of the sloshing liquid on the structure is governed by the centrifugal acceleration355

x0Ω
2, better performance of vibration reduction can be obtained by mounting the liquid damper356

closer to the tip of the blade. However, the available space inside the hollow blade decreases357

toward the tip, making the determination of x0 a trade-off problem. In the following, x0 is set358
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to be 55 m, corresponding to approximately 7/8 of the total blade length. Further, four sets of359

mass ratios are considered in the optimization, i.e., μ=0.02, 0.03, 0.04, 0.05. With the modal360

mass m0= 1412 kg, the liquid mass varies between 28.24 and 70.60 kg, corresponding to 0.16%-361

0.40% of the total mass of each blade. The choice of the tank length L has significant influence362

on the tank width and mean fluid depth of the TLD, and it should be decided according to the363

available space inside the blade. In the present study, three different values of L have been taken364

into consideration, i.e., L=1.5, 2, 2.5 m.365

In the optimization procedure, the optimal tuning ratio χopt and the optimal non-dimensional366

damping parameter ξopt are sought such that the reduction ratio δ is maximized, for prescribed367

values of the mass ratio and the tank length. Considering the edgewise angular frequency to be368

6.85 rad/s, ωa = 3 rad/s and ωb = 10 rad/s have been used in Eq. (40).369

Table 2 gives the values of χopt, ξopt, as well as the corresponding δ, the mean fluid depth h370

and the tank width B. From Table 2, there are four observations to be made:371

(i) the reduction ratio δ increases as the mass ratio μ increases, indicating that a TLD with a372

larger fluid mass can achieve higher damping effect;373

(ii) as μ increases with a given L, both χopt and h decrease slightly, but B increases signifi-374

cantly. Actually when L is fixed, the adjustment of fluid mass is mainly achieved by the change375

of B, since h is determined by the tuning condition and the tuning ratio is always around 1. The376

variation of μ has almost no effect on ξopt.377

(iii) as L increases from 1.5 m to 2.5 m for a prescribed value of μ, χopt decreases slightly378

while ξopt is almost not influenced. The variation of L has almost no effect on the reduction ratio379

δ. Therefore, it is mainly the mass ratio that determines the damping efficacy of the TLD.380

(iv) as L increases, h increases significantly and B decreases significantly. The value of L381

should be constrained by the blade chord at the corresponding span-wise position. L should be382

limited also because large value of L will result in a very small value of B that is unrealistic for383

practical implementation. On the other hand, a very small value of L may lead to a large value384

of B that exceeds the available space inside the blade. Further, h becomes very small for a small385

value of L. The significant wave breaking for the shallow water cannot be captured by the present386

theoretical model. Therefore, the determination of L becomes a tradeoff problem, depending on387

the available space inside the blade, the resulting width and the mean fluid depth of the damper.388

Table 2 appears about here.389

Fig. 4 presents the performance of a TLD with optimized parameters for mitigating edgewise390

vibrations, when the mean wind speed is 15 m/s and the turbulence intensity is 0.1. Given x0 = 55391

m, μ = 0.03 and L=2.5 m, the optimal tuning ratio χopt = 0.985 (resulting in h = 0.3468 m) and392

damping parameter ξopt = 0.165 as given in Table 2 are used in the simulation.393

Figure 4 appears about here.394

As shown by the time history in Fig. 4(a), the modal loads from gravity result in a large har-395

monic motion in edgewise direction, with an angular frequency of 1P (1 per rev, corresponding to396
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the rotational speed of the rotor 1.267 rad/s). On top of this deterministically harmonic-varying397

motion, oscillations related to the edgewise eigenvibration are also presented in the time his-398

tory. The TLD has no effect on the gravity induced 1P motion, but effectively adds damping into399

the edgewise eigenvibration. The blade edgewise motion with the TLD becomes almost pure400

harmonic (with the 1P frequency) since the high frequency oscillation has been significantly401

mitigated by the TLD. The maximum edgewise tip displacement is reduced from 0.974 m to402

0.864 m. From the Fourier amplitude spectrum (in semi-logarithmic chart) of q(t) in Fig. 4(b),403

it is more clearly seen that a TLD with a fluid mass of 42.36 kg effectively suppresses the peak404

around 6.85 rad/s corresponding to fundamental edgewise angular frequency. This means that a405

properly designed TLD is able to absorb almost all the energy in the fundamental edgewise mode406

of the blade. However, the 1P frequency peak is not influenced at all by the TLD.407

Figure 5 appears about here.408

On the contrast to the gravity induced motion, the edgewise vibration (in the fundamental409

edgewise mode) is stochastic in nature, and is influenced by both the turbulent wind field and the410

operational condition of the turbine. Under some conditions (Hansen, 2007), the aerodynamic411

damping in the edgewise mode becomes negative, and large amplitude oscillation or even aeroe-412

lastic instability may take place. Fig. 5 shows the performance of the TLD (same parameters413

used as in Fig. 4) under two conditions with different aerodynamic damping. In the present nu-414

merical example, the value of ζ0 is manually changed (in principle ζ0 is always positive) in order415

to mimic the change of the aerodynamic damping, and the same modal loads f0(t) as in Fig. 4416

has been employed. In Fig. 5(a) ζ0 is set to be 0, representing the case where the total damping417

(the structural damping plus the aerodynamic damping) is zero. Large amplitude oscillations418

take place in the fundamental edgewise mode, and the TLD effectively damped the edgewise419

eigenvibration, leaving only the 1P harmonic-varying motion in the edgewise direction. In Fig.420

5(b) ζ0 is set to be -0.001, representing a case with negative total damping (aeroelastic instabil-421

ity). It is seen that the edgewise response increases exponentially with time when there is no422

TLD mounted. The instability is totally eliminated by the attached TLD, implying that signifi-423

cant damping is introduced by the TLD into the fundamental edgewise mode to overwhelm the424

negative aerodynamic damping.425

It should be mentioned that during the transient time period (not shown here), both the blade426

and the fluid are influenced by the initial conditions, and the liquid response contains some high427

frequency components. During this interval, the damping effect of the TLD is ignorable. It takes428

some time (several seconds) for the liquid to start sloshing in its dominating first sloshing mode,429

and hence to spark off the damping effect on the blade edgewise response. This phenomenon is430

also observed in other passive vibration absorbers, such as the TMD, the TLCD and the particle431

damper.432

Moreover, previous studies on the roller damper (Zhang et al., 2014b) and the TLCD (Zhang433

et al., 2015a) have shown that when the rotational speed of the rotor decreases from its rated value434

(during starting up or closing down procedures of the turbine), the damping effect of the damper435

on edgewise vibrations will be drastically reduced due to frequency detuning. Nevertheless, the436

reduction ratio of the damper is always positive for rotational speed ranging from zero to the437

rated value. These observations also apply to the TLD.438
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3.2. Comparison between the one-mode and three-mode models439

Simulation results from the one-mode model and three-mode model are compared, with the440

same TLD parameters utilized in both models, i.e. x0 = 55 m, μ = 0.03, L = 2.5 m, ξ = 0.165,441

h = 0.3468 m.442

Fig. 6(a) shows the time histories of the sloshing force in y1- direction, obtained from Eq.443

(29). In general, the result from the one-mode model agrees well with that from the three-444

mode model, indicating that the most significant damping effect is created by the fundamental445

sloshing mode. At certain instants of time such as t=319.7 s, relatively large discrepancies can446

be observed between the two models. This is due to the higher frequency contributions from447

the second and third sloshing modes in the three-mode model, which can not be captured by the448

single-mode model. Fig. 6(b) shows the corresponding edgewise tip displacement of the blade449

when a TLD is mounted inside. The structural responses from the one-mode and three-mode450

models are in excellent agreement with each other. Essentially, the primary structure behaves451

like a filter, which filters out high frequency disturbances in the sloshing force, leading to almost452

identical results in Fig. 6(b). Hence, the one-mode model is sufficient to accurately predict the453

TLD-damped structural response, and can be utilized for optimal design of the TLD as shown in454

the previous subsection.455

Figure 6 appears about here.456

Fig. 7 illustrates the fluid surface elevation at various instants of time for the one-mode and457

three-mode models. The general behaviors of the sloshing liquid are similarly predicted by both458

models since the first sloshing mode contributes most to the liquid motion. On the other hand,459

it is also obviously seen that the second and third sloshing modes have larger effect on the fluid460

surface elevation than on the sloshing force and the structural response. The one-mode model461

only represents the first sloshing mode (cosine function), resulting in zero surface elevation at462

the middle of the tank at all time, which is surely unrealistic. Therefore, for accurately predicting463

the surface elevation, modal expansions to three or more sloshing modes need to be carried out.464

Furthermore, it can be seen by comparing Fig. 6(a) and Fig. 7 that there is a strong correlation465

between the sloshing force and the surface elevation, i.e., the sloshing force agrees well with466

each other when η(t) is in good agreement (such as t=306 s, 315.4 s).467

Figure 7 appears about here.468

In order to substantiate the results shown in Fig. 7, time histories of the surface elevation469

η(t) at the end walls are illustrated in Fig. 8(a) and 8(b). Again, the solid and dashed curves470

indicate the results when the modal expansion in Eq. (24) is truncated after one mode and three471

modes, respectively. The results from the one-mode model (the solid curves) in Fig. 8(a) and 8(b)472

are absolutely symmetric about the zero axis, which is not the case for the three-mode model.473

Further, it is seen that the one-mode model underestimates the peak heights and overestimates the474

trough depths. This limitation of the one-mode model was also experienced for a TLD subjected475

to pure horizontal excitations (Love and Tait, 2010).476
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Figure 8 appears about here.477

To further unfold the contributions from different sloshing modes on the surface elevation,478

Fig. 9 shows the time series and the corresponding Fourier amplitude spectra of the generalized479

coordinates si(t) in the modal expansion of Eq. (24). Results from the one-mode model are480

shown in Fig. 9(a). As displayed by the Fourier amplitude spectrum to the right, s1(t) appears481

as a broad-banded random oscillation with the central frequency equal to the fundamental slosh-482

ing frequency ω1 of the fluid. A clear peak corresponding to the rotational speed of the rotor483

(Ω=1.267 rad/s) is also observed. Fig. 9(b) shows the results from the three-mode model, where484

the responses of s1(t), s2(t) and s3(t) are compared. As expected, s1(t) is much more significant485

than s2(t) and s3(t). In the Fourier amplitude spectrum, s1(t) also displays small spectral peaks486

in the vicinity of the second and third sloshing frequencies ω2 and ω3. Similarly, spectral peaks487

around ω1 and ω2 are clearly observed in s3(t) besides the third sloshing frequency. This can be488

explained by the nonlinear couplings in Eq. (25). Hence, although very similar with each other,489

the time series of s1(t) in Figs. 9(a) and 9(b) are slightly different due to this coupling.490

Figure 9 appears about here.491

Finally, a widely-used simplified method (Reed et al., 1998) is employed to calculate the492

control force (sloshing force) of TLD in the local y1-direction, and comparisons with the result493

calculated from Eq. (29) are illustrated in Fig. 10. The sloshing force in the simplified method494

is expressed as:495

fst =
1
2
ρx0Ω

2B
[(

h + η(−L/2)
)2
−

(
h + η(L/2)

)2] (41)

which is totally based on the linear hydrostatic pressure distributions (Fig. 3), neglecting all496

inertial effects. Again, the gravitational acceleration g in the original equation (Reed et al., 1998)497

has been replaced by the centrifugal acceleration x0Ω
2 in the present case.498

Fig. 10(a) compares the results from the one-mode model. The sloshing forces calculated499

from hydrodynamic pressure (Eq. (29)) and hydrostatic pressure are in good agreement with each500

other, implying that the hydrostatic pressure force is a dominant part of the sloshing force. Fig.501

10(b) shows the corresponding results for the three-mode model, where the discrepancy is some-502

what larger and the simplified method overestimates the amplitude of the sloshing force. The503

reason is that the inertia/dynamic effects become more pronounced in the higher order sloshing504

modes. Therefore, Eq. (29) is recommended for calculating the sloshing force especially when505

modal expansions are truncated to higher modes.506

Figure 10 appears about here.507

Recently, a series of real-time hybrid testing on a full-scale TLD for mitigating lateral tower508

vibrations of wind turbines have been carried out by the authors (Zhang el al., 2015b). The509

theoretical model proposed in the present paper was slightly modified to handle the case where510
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the liquid motion is governed by gravitational acceleration rather than centrifugal acceleration.511

The test results agree very well with the results predicted by the modified theoretical model,512

which to some extent validates the present theoretical model.513

4. Concluding Remarks514

This paper presents the modeling of a rectangular TLD for the mitigation of edgewise vibra-515

tions in rotating wind turbine blades. For effectiveness, the TLD is required to be placed close to516

the blade tip where the thickness is small, and the width of the damper needs to be small accord-517

ingly. As a consequence the fluid motion of the damper becomes essentially 2-dimensional.518

First of all, the boundary value problem (Euler equation with the nonlinear boundary con-519

ditions) is formulated in a coordinate system fixed to the rotating container. Next, the Euler520

equation and the nonlinear kinematic boundary condition of the free surface are discretized us-521

ing the modal expansion technique, where the velocity field and the free surface are expressed as522

a summation of sloshing modes (eigenmodes of the standing wave under centrifugal acceleration523

are taken as the shape functions for the velocity field). A system of coupled ordinary differential524

equations are obtained, the time-dependent coefficients of which can be numerically calculated525

using the semi-analytical expressions (1-dimensional quadratures).526

Based on a reduced order single-degree-of-freedommodel for the rotating blade, it is demon-527

strated that the edgewise vibrations in the fundamental mode can be effectively damped by an528

optimally designed TLD. It is also shown that the one-sloshing-mode model is able to predict529

the sloshing force and the damped structural response accurately. This implies that the primary530

damping effect on the blade is achieved by the first sloshing mode of the fluid, and higher modes531

have minor effect on the performance of the damper. On the other hand, the one-mode model is532

unable to predict the fluid surface elevation equally well, and a model with three sloshing modes533

or even more modes should be employed to well capture the response of the fluid. Nevertheless,534

the one-mode model can be utilized for preliminary design/tuning of the TLD, with much less535

computational effort and equally good prediction of the damping effect on the primary structure.536
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Appendix A. Semi-analytical expressions for Eqs. (22) and (33)540

mi j(t) is calculated as:541

mi j(t) = m(1)
i j (t) + m(2)

i j (t) (42)
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where:542

m(1)
i j (t) =

m
2
·

∫ 1

0
cos

(
(i − j) π ξ1

) sinh
(
(i + j) π α β(ξ1, t)

)
(i + j) π α

dξ1

m(2)
i j (t) =−

m
2
·

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
2h

s2i(t) , i = j

∫ 1

0
cos

(
(i + j

)
π ξ1

) sinh
(
(i − j) π α β(ξ1, t)

)
(i − j) π α

dξ1 , i � j

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(43)

m = ρhL is the fluid mass per unit width, and the following non-dimensional quantities have543

been introduced:544

ξ1 =
1
L
(
y1 + L/2

)

α =
h
L

β(ξ1, t) =
h + η(ξ1, t)

h

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(44)

ni j(t) is calculated as:545

ni j(t) =

⎧⎪⎪⎨⎪⎪⎩
0 , i = j

n(1)
i j (t) + n(2)

i j (t) , i � j (45)

where:546

n(1)
i j (t) =−m

(
Ψ̇(t) + ϕ̇(t)

) ∫ 1

0
sin

(
(i − j) π ξ1

) cosh
(
(i + j) π α β(ξ1, t)

)
− 1

(i + j) π α
dξ1

n(2)
i j (t) = m

(
Ψ̇(t) + ϕ̇(t)

) ∫ 1

0
sin

(
(i + j) π ξ1

) cosh
(
(i − j) π α β(ξ1, t)

)
− 1

(i − j) π α
dξ1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(46)

oi jk(t) is calculated as:547

oi jk(t) = o(1)
i jk(t) + o(2)

i jk(t) + o(3)
i jk(t) + o(4)

i jk(t) (47)
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where:548

o(1)
i jk(t) =

m k
4h

∫ 1

0
cos

((
k − i − j

)
π ξ1

) sinh
((

k + i + j
)
π α β(ξ1, t)

)
k + i + j

dξ1

o(2)
i jk(t) =

m k
4h
·

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

π

2L
s2i+2 j(t) , k = i + j

∫ 1

0
cos

((
k + i + j

)
π ξ1

) sinh
((

k − i − j
)
π α β(ξ1, t)

)
k − i − j

dξ1 , k � i + j

o(3)
i jk(t) = −

m k
4h
·

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

π

2L
s2i−2 j(t) , k = i − j

∫ 1

0
cos

((
k + i − j

)
π ξ1

) sinh
((

k − i + j
)
π α β(ξ1, t)

)
k − i + j

dξ1 , k � i − j

o(4)
i jk(t) = −

m k
4h
·

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

π

2L
s2 j−2i(t) , k = j − i

∫ 1

0
cos

((
k − i + j

)
π ξ1

) sinh
((

k + i − j
)
π α β(ξ1, t)

)
k + i − j

dξ1 , k � j − i

(48)
fi(t) is calculated as:549

fi(t) = f (1)
i (t) + f (2)

i (t) + f (3)
i (t) + f (4)

i (t) (49)

where550

f (1)
i (t) = m

(
Ψ̈(t) + ϕ̈(t)

) ∫ 1

0

{ h
iπα

[
(β − 1) sinh(iπαξ1) −

cosh(iπαξ1) − 1
iπα

]
sin(iπξ1)

+ (Lξ1 − L/2)
cosh(iπαβ) − 1

iπα
cos(iπξ1)

}
dξ1

551

f (2)
i (t) = m

(
Ψ̇(t) + ϕ̇(t)

)2
∫ 1

0

{ h
iπα

[
(β − 1) cosh(iπαξ1) −

sinh(iπαξ1)
iπα

+ 1
]
cos(iπξ1)

+ (L/2 − Lξ1)
sinh(iπαβ)

iπα
sin(iπξ1)

}
dξ1

552

f (3)
i (t) =m

[ ∫ 1

0
− sin(iπξ1)

sinh(iπαβ)
iπα

dξ1
][
− g sin(Ψ + ϕ) −

(
x0ϕ̈ cosϕ − x0ϕ̇

2 sinϕ

− bq̈ cosϕ + bq̇ϕ̇ sinϕ + b(q̇ϕ̇ + qϕ̈) sinϕ + bqϕ̇2 cosϕ
)
+ (Ψ̈ + ϕ̈)(x0 cosϕ + bq sinϕ)

− 2(Ψ̇ + ϕ̇)(x0ϕ̇ sin ϕ − bq̇ sinϕ − bqϕ̇ cosϕ) + (Ψ̇ + ϕ̇)2(x0 sin ϕ − bq cosϕ)
]

553

f (4)
i (t) =m

[ ∫ 1

0
cos(iπξ1)

cosh(iπαβ) − 1
iπα

dξ1
][

g cos(Ψ + ϕ) −
(
x0ϕ̈ sin ϕ + x0ϕ̇

2 cosϕ

− bq̈ sin ϕ − bq̇ϕ̇ cosϕ − b(q̇ϕ̇ + qϕ̈) cosϕ + bqϕ̇2 sin ϕ
)
+ (Ψ̈ + ϕ̈)(x0 sin ϕ − bq cosϕ)

+ 2(Ψ̇ + ϕ̇)(x0ϕ̇ cosϕ − bq̇ cosϕ + bqϕ̇ sin ϕ) − (Ψ̇ + ϕ̇)2(x0 cosϕ + bq sinϕ)
]

(50)
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The moving frame components of bi(t), ci(t), di j(t), e(t) in Eq. (33) are calculated as:554

bi(t) =
m

i π α

∫ 1

0

⎡⎢⎢⎢⎢⎢⎢⎣
− sin

(
i π ξ1

)
sinh

(
i π α β(ξ1, t)

)
cos

(
i π ξ1

) (
cosh

(
i π α β(ξ1, t)

)
− 1

)
⎤⎥⎥⎥⎥⎥⎥⎦ dξ1 (51)

ci(t) =
2 m
i π α

(
Ψ̇(t) + ϕ̇(t)

) ∫ 1

0

⎡⎢⎢⎢⎢⎢⎢⎣ cos
(
i π ξ1

) (
cosh

(
i π α β(ξ1, t)

)
− 1

)
sin

(
i π ξ1

)
sinh

(
i π α β(ξ1, t)

)
⎤⎥⎥⎥⎥⎥⎥⎦ dξ1 (52)

di j(t) = d(1)
i j (t) + d(2)

i j (t) (53)

where:555

d(1)
i j (t) =

j
2 (i + j)

m
h

∫ 1

0
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(
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)
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)
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(
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) (
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(
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)
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)
⎤⎥⎥⎥⎥⎥⎥⎦ dξ1

d(2)
i j (t) =

j m
h
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1
2 (i − j)

∫ 1

0

⎡⎢⎢⎢⎢⎢⎢⎣
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(
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)
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(
(i − j) π α β(ξ1, t)

)
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(
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−
2 i
l

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
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n=1
s2n−1(t)

1
4 i2 − (2n − 1)2
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(54)

e(t) = e(1)(t) + e(2)(t) (55)

where556

e(1)(t) = −m
( ∫ 1

0
βdξ1

) (
g − r̈0 − ω̇ × r0 − 2ω × ṙ0 −ω × (ω × r0)

)

e(2)(t) = m
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∫ 1

0
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1
2
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1
2

)β
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dξ1

−
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0
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1
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1
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Table 1: Parameters used in the structure-TLD model.

Parameter Value Unit Parameter Value Unit
LB 63 m k1 2.09·103 kg
m0 1.41·103 kg k2 47.25 kg/m
ke 6.62·104 N/m Ω 1.267 s−1

ω0 6.85 s−1 g 9.81 m/s2

ζ0 0.005 − ρ 1.0·103 kg/m3
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Table 2: Optimal parameters of the TLD, V0 = 15 m/s, I = 0.1, x0 = 55 m
μ=2% μ=3%

L [m] χopt ξopt δ [%] h [m] B [m] χopt ξopt δ [%] h [m] B [m]
1.5 1.040 0.165 41.77 0.1344 0.1400 1.010 0.165 46.18 0.1264 0.2234
2.0 1.030 0.165 42.61 0.2390 0.0591 1.005 0.165 46.91 0.2266 0.0935
2.5 1.030 0.136 43.35 0.3842 0.0294 0.985 0.165 46.48 0.3468 0.0489

μ=4% μ=5%
L [m] χopt ξopt δ [%] h [m] B [m] χopt ξopt δ [%] h [m] B [m]
1.5 0.985 0.194 49.08 0.1200 0.3139 0.975 0.194 51.66 0.1174 0.4008
2.0 0.975 0.194 49.39 0.2122 0.1331 0.965 0.194 51.91 0.2075 0.1701
2.5 0.965 0.194 49.19 0.3311 0.0682 0.960 0.194 51.85 0.3273 0.0863
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Figure 1: Definition of the coordinate systems, the geometry and the degrees of freedom.
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Figure 2: Modeling of the TLD.
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x0 = 55 m, μ = 0.03, L = 2.5 m, h = 0.3468 m. (a) Time series, (b) Fourier amplitude in semi-logarithmic chart.
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Figure 5: Performance of the TLD when aerodynamic damping changes (here mimicked by manually changing ζ0 as
illustration). x0 = 55 m, μ = 0.03, L = 2.5 m, h = 0.3468 m. (a) ζ0 = 0, (b) ζ0 = −0.001, aeroelastic instability.
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Abstract: Lateral tower vibrations of offshore wind turbines are normally lightly damped,

and large amplitude vibrations induced by wind and wave loads in this direction may

significantly shorten the fatigue life of the tower. This paper proposes the modeling and

control of lateral tower vibrations in offshore wind turbines using active generator torque.

To implement the active control algorithm, both the mechanical and power electronic

aspects have been taken into consideration. A 13-degrees-of-freedom aeroelastic wind

turbine model with generator and pitch controllers is derived using the Euler–Lagrangian

approach. The model displays important features of wind turbines, such as mixed moving

frame and fixed frame-defined degrees-of-freedom, couplings of the tower-blade-drivetrain

vibrations, as well as aerodynamic damping present in different modes of motions. The load

transfer mechanisms from the drivetrain and the generator to the nacelle are derived, and the

interaction between the generator torque and the lateral tower vibration are presented in a

generalized manner. A three-dimensional rotational sampled turbulence field is generated

and applied to the rotor, and the tower is excited by a first order wave load in the lateral

direction. Next, a simple active control algorithm is proposed based on active generator

torques with feedback from the measured lateral tower vibrations. A full-scale power

converter configuration with a cascaded loop control structure is also introduced to produce

the feedback control torque in real time. Numerical simulations have been carried out using



Energies 2014, 7 7747

data calibrated to the referential 5-MW NREL (National Renewable Energy Laboratory)

offshore wind turbine. Cases of drivetrains with a gearbox and direct drive to the generator

are considered using the same time series for the wave and turbulence loadings. Results show

that by using active generator torque control, lateral tower vibrations can be significantly

mitigated for both gear-driven and direct-driven wind turbines, with modest influence on the

smoothness of the power output from the generator.

Keywords: offshore wind turbine; active generator control; lateral tower vibration;

feedback control; aeroelastic model

1. Introduction

Modern multi-megawatt wind turbines are designed with increasingly larger rotors and higher towers,

in order to capture more energy throughout their lifetime and, thereby, reduce the cost of energy. As wind

turbines grow in size, the stiffness of the blades and the tower are not increased proportionally, rendering

the structure more sensitive to dynamic excitations. Normally, vibrations in the flap-wise direction

and tower vibration in the mean wind direction are highly damped due to the strong aerodynamic

damping [1]. In contrast, edgewise vibrations and lateral tower vibrations are related with insignificant

aerodynamic damping [1,2]. Hence, these modes of vibrations may be prone to large dynamic responses.

Most offshore wind turbines are placed at shallow water. Due to refraction, the approaching waves tend

to propagate in a direction normal to the level curves of the sea bottom. In turn, this means that the wave

load may act in a different direction of the mean wind direction, and significant lateral tower vibrations

may be initiated by the wave load in combination with the resultant aerodynamic load from the three

blades in the lateral direction.

Some studies have been carried out for the structural control of tower vibrations, most of which

focus on passive structural control techniques. Theoretical investigations have been performed on the

effectiveness of a tuned mass damper (TMD) [3] and tuned liquid column damper (TLCD) [4] for

mitigating along-wind vibrations of wind turbine towers, ignoring the aerodynamic properties of the

blades. To yield more realistic results, an advanced modeling tool has been developed and incorporated

into the aeroelastic code, FAST (Fatigue, Aerodynamics, Structures and Turbulence), allowing the

investigation of passive TMDs in vibration control of offshore wind turbine systems [5]. Recently,

a series of shaking table tests have been carried out to evaluate the effect of the ball vibration absorber

(BVA) on the vibration mitigation of a reduced scale wind turbine model, which proves the effectiveness

of the passive damping device [6]. However, the focus of this study is still on along-wind vibrations

without considering the aerodynamic damping. Active structural control of floating wind turbines is

investigated by Lackner and Rotea [7]. Simulation results in FAST show that active control is a more

effective way of reducing structural loads than the passive control method, at the expense of active power

and larger TMD strokes.

For modern variable speed wind turbines, advanced pitch control and generator torque control

techniques for the mitigation of structural loads are being increasingly investigated. In a basic variable
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speed wind turbine control system, torque control is used in below-rated wind speeds to obtain maximum

energy output. Above the rated speed, a pitch controller is utilized to regulate the rotor speed to the

desired value, and the generator torque is held constant (nominal torque) [8]. Additional pitch control

loops as feedback from measured nacelle fore-aft acceleration are usually used to damp fore-aft tower

vibrations [9], although vibration in this direction is already highly damped due to the aerodynamic

damping. Generator torque control is widely used to provide damping into the drivetrain torsional

vibrations [9–11]. Instead of demanding a constant generator torque above the rated one, an additive

torque as feedback from the measured generator speed is added to the torque demand, which is effective

at damping vibrations of the resonant mode of the drivetrain.

The idea of providing active damping to lateral tower vibration using generator torque was first

proposed by Van der Hooft et al. [12] and was further investigated by de Corcuera et al. [13] and

Fleming et al. [14]. Essentially, the generator torque affects the lateral tower vibration through the

reaction on the generator stator, which is rigidly fixed to the nacelle. By means of modern power

electronics, the generator torque can be prescribed to a certain value with a delay below 10−2 s [15].

By using this property, feedback control of the lateral tower vibrations can be performed. Van der

Hooft et al. [12] simplified the tower by a single-degree-of-freedom (SDOF) representing the lateral

translational motion, and the tower top rotation was neglected. Since the generator torque is affecting

the lateral tower motion via the tower top rotation, this SDOF tower model does not adequately account

for the transfer of the generator torque. De Corcuera et al. [13] demonstrated a strategy to design a

multi-variable controller based on the H∞ norm reduction for reducing both the drivetrain torsional

vibration and the tower side-to-side vibration, with simulations carried out in the GH Bladed software.

This study focuses on the controller design procedure. However, the torque transfer mechanism from the

generator to the tower vibration and the effect of the generator torque on other components of the wind

turbine are not demonstrated. Fleming et al. [14] presented the field-testing results of the effect of active

generator control on the drivetrain and lateral tower vibrations in a 600-kW wind turbine. A multi-SISO

(single-input-single-output) controller is compared with the H∞ controller, and a similar effect for

damping the lateral tower vibration was obtained. Again, the effect of the generator torque on other

components of the wind turbine, such as the blades, was ignored. Actually, the edgewise vibrations of the

blades are coupled to the lateral tower vibration, as well as to the torsional drivetrain vibration through

the collective mode. Since very low, even negative, aerodynamic damping takes place in edgewise

vibration, it is important to investigate the effect of the active generator torque on this mode of vibration.

Moreover, as the basis of implementing active generator control, the load transfer mechanisms from the

drivetrain and the generator to the nacelle, as well as the interaction between the generator torque with

the lateral tower vibration are not clearly demonstrated in the above-mentioned studies. Further, all of the

previous studies focus on the gear-driven wind turbines. With offshore wind turbines becoming larger

and being moved out further at sea, there is huge application potential of direct-driven systems, where

the turbine rotor is coupled directly to the electrical generator without the gearbox. The generators

operate at the same rotational speed as the turbine’s rotor and must therefore be much bigger in size.

However, by using permanent magnets in the generators’ rotor and eliminating the gearbox, the weight

of the nacelle can be significantly decreased compared to that of the gear-driven system, which, in turn,

reduces the shipping and installation costs for offshore wind farms. Further, since the gearbox causes
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the greatest downtime resulting in lost revenue, the use of a direct-driven system definitely avoids the

cost of overhauling, removing and reinstalling the gearbox, thus reducing operating costs over the long

term and making electricity from wind farms more competitive. This is especially important for offshore

wind farms, because doing maintenance at sea is a lot more complex and expensive than on the ground.

For the direct-driven wind turbines, the electric torque in the generator is much larger comparing with

the gear-driven wind turbines, making it possible to damp the lateral tower vibration more effectively.

This paper presents a comprehensive investigation into the modeling and control of lateral tower

vibrations in offshore wind turbines using active generator torque, taking into consideration the

consequences of the control on the edgewise blade vibrations and the quality of the produced power.

The load transfer mechanisms from the generator to the tower are derived in a generalized form for

gear-driven wind turbines with an odd or even number of gear stages, as well as for the direct-driven

wind turbines. The active generator control algorithm is investigated based on a 13-degrees-of-freedom

(13-DOF) wind turbine model developed by the authors, which has been calibrated to the referential

5-MW NREL (National Renewable Energy Laboratory) offshore wind turbine [16]. A three-dimensional

(3D) turbulence field is modeled by a low order auto-regressive (AR) model [17]. The dynamic loading

from the rotational sampled turbulence and the non-linear aeroelasticity is assumed to be quasi-static,

i.e., the changes of aerodynamic forces due to changes of the angle of attack are felt without time delay.

The wave load is modeled by the Morison formula [18] in combination with the first order wave theory

and applied to the tower in the lateral direction. A generator model is proposed with a complete solution

to provide the feedback control torque. Cases of gear-driven and direct-driven wind turbines are both

investigated. Simulation results show that lateral tower vibration can be significantly suppressed, and

the edgewise vibrations are also slightly mitigated by the active generator control, while only modest

influence on the smoothness of the power output are brought about by the additive generator torque.

2. Wind Turbine Model

In this section, a 13-DOF aeroelastic wind turbine model is presented with coupled edgewise, lateral

tower and torsional drivetrain vibrations. The torque transfer mechanism between the drivetrain and the

tower are derived in a generalized manner, which forms the basis for active control of tower vibrations

using the generator torque.

2.1. General Description

Despite its simplicity, the 13-DOF aeroelastic model takes into account several important

characteristics of a wind turbine, including time-dependent system matrices, coupling of the

tower-blades-drivetrain vibration, as well as non-linear aeroelasticity. A schematic representation of

the wind turbine model is shown in Figure 1. The motion of structural components is described either in

a fixed, global frame of reference (X1, X2, X3) or in moving frames of reference (x1, x2, x3), attached to

each blade with the origin at the center of the hub. Neglecting the tilt of the rotor, the X1 and x1 axis are

unidirectional to the mean wind velocity. The (X2, X3) and (x2, x3) coordinate planes are placed in the

rotor plane. The X3 axis is vertical, and the x3 axis is placed along the blade axis oriented from the hub
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towards the blade tip. The position of the moving frame attached to blade j is specified by the azimuthal

angle Ψj(t), which is considered positive when rotating clockwise seen from an upwind position.

Figure 1. Thirteen DOFs model of a three-bladed wind turbine. Definition of fixed and

moving frames of reference and the degrees of freedom q1(t), . . . , q11(t).
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The blades are modeled as Bernoulli–Euler beams with the bending stiffness EI1(x3) in the flap-wise

direction and EI2(x3) in the edgewise direction. The mass per unit length is μ(x3). Each blade is

related with two degrees of freedom (DOFs). q1(t), q2(t), q3(t) denote the flapwise tip displacement

in the positive x1 direction. q4(t), q5(t), q6(t) denote the edgewise tip displacement in the negative

x2 direction. The length of each blade is denoted L. The tower motion is defined by five DOFs

q7(t), . . . , q11(t). q7(t) and q8(t) signify the displacements of the tower at the height of the hub in the

global X1 and X2 directions. q9(t) specifies the elastic rotation of the top of the tower in the negative X1

direction, and q10(t) and q11(t) indicate the corresponding rotations in the positive X2 and X3 directions.

The height of the tower from the base to the nacelle is denoted h1, and the tower base begins at an

elevation of h2 above mean sea level (MSL), with a monopile extending from the tower base to the mud

line. The water depth from the mud line to the MSL is denoted h3, and the horizontal distance from the

center of the tower top to the origin of the moving coordinate systems is denoted s (Figure 1).

The drivetrain is modeled by the DOFs q12(t) and q13(t) (Figure 2). The sign definition shown in

Figure 2 applies to a gearbox with an odd number of stages. q12(t) and q13(t) indicate the deviations

of the rotational angles at the hub and the generator from the nominal rotational angles Ωt and NΩt,

respectively, where N is the gear ratio. Correspondingly, q̇12(t) and q̇13(t) are the deviations of the

rotational speeds at the hub and the generator from the nominal values. In case of an even number of

stages, the sign definitions for q13(t) and f13(t) are considered positive in the opposite direction. Jr and
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Jg denote the mass moment of inertia of the rotor and the generator; and kr and kg denote the St. Venant

torsional stiffness of the rotor shaft and the generator shaft. The azimuthal angle of the blade j (Figure 1)

becomes Ψj(t) = Ω t+ q12(t) +
2π
3
(j − 1), j = 1, 2, 3.

Figure 2. Two DOFs model of flexible drivetrain with an odd number of gear stages.

Definition of degrees of freedom q12(t) and q13(t).
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Further, a full-span rotor-collective pitch controller is included in the model with time delay modeled

by a first order filter. The pitch demand is modeled by a PI controller [19] with feedback from q̇12(t) and

q12(t). A gain-scheduled PI controller is used in this paper, i.e., the controller gains are dependent on the

blade-pitch angle [16].

2.2. Coupled Edgewise, Lateral Tower and Torsional Drivetrain Vibrations

The equations of motion of the 13-DOF wind turbine model can be derived from the Euler–Lagrange

equation [20]:

d

dt

(

∂T

∂q̇

)

− ∂T

∂q
+

∂U

∂q
= f(t) (1)

where qT(t) =
[

q1(t), . . . , q13(t)
]

is a 13-dimensional column vector storing all DOFs. T = T (q, q̇)

signifies the kinetic energy, and U = U(q) is the potential energy of the system. The key step in setting

up the coupled equation is to formulate the kinetic energy of each blade with velocity contributions

from both the locally and globally defined DOFs. For example, q̇1(t), q̇7(t), q̇10(t) and q̇11(t) induce the

velocity component of a cross-section of Blade 1 in the x1 direction, while q̇4(t), q̇8(t), q̇10(t), q̇11(t)

and q̇12(t) induce the velocity component of Blade 1 in the x2 direction. f(t) is the force vector

work conjugated to q(t), including structural damping forces, aerodynamic and hydrodynamic forces,

as well as generator control forces.

Assuming linear structural dynamics and substituting the expressions for kinetic and potential

energies into Equation (1), the equations of motion of the 13-DOF wind turbine model are obtained

of the form:

M(t) q̈(t) +C(t) q̇(t) +K(t)q(t) = fe(t) (2)

where M(t) is the mass matrix, C(t) is the damping matrix, including the structural damping and

the gyroscopic damping, and K(t) is the stiffness matrix taking into account the geometric stiffness
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and the gyroscopic stiffness. Both the gyroscopic damping matrix and gyroscopic stiffness matrix are

obtained by substituting the kinetic energy of the system into the Euler–Lagrange equation. Through

this procedure, the coriolis forces and the centrifugal softening effect are taken into account. fe(t) is the

external dynamic load vector work conjugated to q(t), which is composed of the non-linear aerodynamic

loads, the generator torque and the wave loads. All of the indicated system matrices are time dependent,

due to the fact that the DOFs of the blades are formulated in the moving frames of reference, and others

are formulated in a fixed frame of reference.

Next, the DOFs vector q(t) may be partitioned in the following way:

q(t) =

[

q1(t)

q2(t)

]

(3)

qT
1 (t) =

[

q4(t) q5(t) q6(t) q8(t) q9(t) q12(t) q13(t)
]

qT
2 (t) =

[

q1(t) q2(t) q3(t) q7(t) q10(t) q11(t)
] (4)

The main focus of the present study is on the dynamic coupling of edgewise, lateral tower

and torsional drivetrain motions and the effect of active generator torque on these vibrations.

To clearly unfold this coupling, only the sub-system related to DOFs q1(t) is picked out from

Equation (2) and is demonstrated in detail. It should be noted that the numerical simulations in the

subsequent section will always be based on Equation (2), where all of the 13 DOFs are activated. As a

part of Equation (2), the equations of motion related to the above-mentioned sub-system, which show the

coupling of edgewise, lateral tower and torsional drivetrain vibrations, are demonstrated by the following

matrix differential equations:

M1(t) q̈1(t) +C1(t) q̇1(t) +K1(t)q1(t) = fe,1(t) (5)

M1(t) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

m2 0 0 −m1 cosΨ1 0 m3 0

0 m2 0 −m1 cosΨ2 0 m3 0

0 0 m2 −m1 cosΨ3 0 m3 0

−m1 cosΨ1 −m1 cosΨ2 −m1 cosΨ3 m88 +M0 + 3m0 m89 0 0

0 0 0 m98 m99 0 0

m3 m3 m3 0 0 Jr 0

0 0 0 0 0 0 Jg

⎤

⎥
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⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

C1(t) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣
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0 0 c2 0 0 0 0

2Ωm1 sinΨ1 2Ωm1 sinΨ2 2Ωm1 sinΨ3 c88 c89 0 0

0 0 0 c98 c99 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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K1(t) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

k2 − kg 0 0 0 0 0 0

0 k2 − kg 0 0 0 0 0

0 0 k2 − kg 0 0 0 0

Ω2m1 cosΨ1 Ω2m1 cosΨ2 Ω2m1 cosΨ3 k88 k89 0 0

0 0 0 k98 k99 0 0

0 0 0 0 0 k0 −k0
N

0 0 0 0 0 −k0
N

k0
N2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6)

where:

m0 =

∫ L

0

μ(x3)dx3,m1 =

∫ L

0

Φ(x3)μ(x3)dx3,m2 =

∫ L

0

Φ2(x3)μ(x3)dx3,m3 =

∫ L

0

Φ(x3)μ(x3)x3dx3

k2 =

∫ L

0

(

EI2(x3)

(

d2Φ(x3)

dx2
3

)2

+ F (x3)

(

dΦ(x3)

dx3

)2
)

dx3, kg = Ω2m2, Jr = 3

∫ L

0

μ(x3)x
2
3dx3

(7)

Φ(x3) is the undamped eigenmode in the edgewise direction, when the blade is fixed at the hub. Due to

the definition of qj+3(t) , j = 1, 2, 3, this mode must be normalized to one at the tip, i.e., Φ(L) = 1.

F (x3) = Ω2
∫ L

x3
μ(ξ)ξdξ is the centrifugal axial force on the blade. m0 is the mass of each blade, and

M0 is the mass of the nacelle. c2 = 2ζ2
√
m2k2 is the modal damping coefficient of the edgewise

vibration, calculated from the given damping ratio ζ2.

As shown in Figure 3, the lateral tower vibration is modeled by two DOFs, q8(t) and q9(t), with cubic

shape functions N8(X3) and N9(X3), respectively. The consistent mass and stiffness terms for q8(t) and

q9(t) are calculated from the tower itself without considering the nacelle and the rotor, as given by the

following equation:

m88=

H
∫

0

μ0(X3)N
2
8 (X3)dX3, m89=

H
∫

0

μ0(X3)N8(X3)N9(X3)dX3, m99=

H
∫

0

μ0(X3)N
2
9 (X3)dX3

k88=

H
∫

0

EI0(X3)(
∂N8

∂X3
)2dX3, k89=

H
∫

0

EI0(X3)(
∂N8

∂X3
)(
∂N9

∂X3
)dX3, k99=

H
∫

0

EI0(X3)(
∂N9

∂X3
)2dX3

(8)

where μ0(X3) and EI0(X3) are the mass per unit length and bending stiffness in the lateral direction of

the tower, respectively. N8(X3) = 3
(

X3

H

)2−2
(

X3

H

)3
, N9(X3) = H

(

(

X3

H

)3 − (X3

H

)2
)

, H = h1+h2+h3

is the total height of the tower structure. The related damping terms c88, c89, c98, c99 are specified by the

Rayleigh damping model [21] from the consistent mass and stiffness terms, with given damping ratios

ζ8 and ζ9. k0 indicates an equivalent torsional stiffness of the shaft of the drivetrain, given as:

1

k0
=

1

kr
+

1

N2kg
⇒ k0 =

N2krkg
kr +N2kg

(9)



Energies 2014, 7 7754

Figure 3. Modeling of the lateral tower vibration. (a) Two DOFs model for lateral tower

vibration with wave loads. (b) Shape function for the degree of freedom q8(t). (c) Shape

function for the degree of freedom q9(t).
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From Equation (6), it is noted that the edgewise vibrations are coupled to the lateral tower vibration

through the mass matrix, damping matrix and stiffness matrix and coupled to the drivetrain torsional

vibration through the mass matrix alone. Actually, only the collective mode of the edgewise vibration is

coupled with the torsional vibration of the drivetrain.

2.3. Torque Transfer Mechanism between the Drivetrain and the Tower

In Equation (5), the external dynamic load vector work conjugated to q1(t) is expressed as:

fTe,1(t) =
[

f4(t) f5(t) f6(t) f8(t) f9(t) (1− μ)f12(t) −f13(t)
]

(10)

where f4(t), f5(t), f6(t) and f12(t) are dynamic loads work-conjugated to the defined DOFs, resulting

from aerodynamic loads. f8(t) is the load work-conjugated to the degree of freedom q8(t), due to

both aerodynamic loads and wave forces. (1 − μ)f12(t) denotes the effective torque on the drivetrain

available for power production due to friction in the bearings and the gear box, as specified by the friction

coefficient μ. f13(t) indicates the generator torque.

Using D’Alembert’s principle, the net torque on the drivetrain in the global X1 direction becomes

(1 − μ)f12(t) − Jrq̈12(t) ± (f13(t) + Jg q̈13(t)), where the plus sign applies for a gearbox with an odd

number of gear stages (as shown in Figure 2) and the minus sign for an even number of stages. The torque

is transferred to the nacelle in the positive X1 direction via the bearings of the shaft and the gearbox. On

the nacelle, the transferred torque is added to the reaction of the friction torque μf12(t) (always in the

positive X1 direction) and the generator torque on the stator f13(t), which is acting in the negative X1

direction for an odd number of stages or acting in the positive X1 direction for an even number of stages.

Hence, the resultant torque on the bottom of the nacelle becomes f12(t)−Jrq̈12(t)±Jg q̈13(t) (plus sign for

an odd number of gear stages). With q9(t) defined as positive when acting in the negative X1 direction,

the torque work-conjugated to q9(t) resulting from the nacelle becomes −f12(t) + Jrq̈12(t) ∓ Jg q̈13(t)
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(minus sign for an odd number of gear stages). Then, together with the contribution from the wave load,

the total load work-conjugated to q9(t) becomes:

f9(t) =

{

f9,w(t)− f12(t) + Jrq̈12(t)− Jg q̈13(t) (odd number of gear stages)

f9,w(t)− f12(t) + Jrq̈12(t) + Jg q̈13(t) (even number of gear stages)
(11)

where f9,w(t) is the load conjugated to q9(t) induced by waves propagating in the X2 direction. As shown

in Figure 3, pw(X3, t) denotes the distributed wave force acting on the tower, which can be calculated

by the Morison formula. Then, the loads conjugated to q8(t) and q9(t) induced by the distributed wave

force can be written as:
[

f8,w(t)

f9,w(t)

]

=

∫ h3

0

[

N8(X3)

N9(X3)

]

pw(X3, t)dX3 (12)

The control of the lateral tower vibration is actually applied via the torque f9(t) conjugated to q9(t).

For this reason, the relation between f9(t) and f13(t) is analyzed. The equation of motion of the drivetrain

reads from Equations (5) and (10):

[

Jr 0

0 Jg

][

q̈12(t)

q̈13(t)

]

+ k0

[

1 − 1
N

− 1
N

1
N2

][

q12(t)

q13(t)

]

=

[

(1− μ)f12(t)

−f13(t)

]

(13)

The acceleration terms in Equation (11) can be eliminated by means of the equation of motion of the

drivetrain, resulting in the equivalent expression for f9(t):

f9(t) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

f9,w(t)− μf12(t) + f13(t)− k0

(

1 +
1

N

)(

q12(t)− 1

N
q13(t)

)

(odd number of gear stages)

f9,w(t)− μf12(t)− f13(t)− k0

(

1− 1

N

)(

q12(t)− 1

N
q13(t)

)

(even number of gear stages)

(14)

Especially for direct-driven wind turbines, where N = 1, we get from the second equation in

Equation (14) that:

f9(t) = f9,w(t)− μf12(t)− f13(t) (15)

It is seen from the last part of the two sub-equations in Equation (14) that for gear-driven wind

turbines, there are extra coupling terms between the degree of freedom q9(t) and the two DOFs of

the drivetrain, which can be transferred and added to the stiffness matrix in Equation (6). Based on

the relationship between f9(t) and f13(t) in Equations (14) and (15), the lateral tower vibrations

can be controlled by specifying the format of the generator torque f13(t), as will be shown in the

subsequent section.

2.4. Aerodynamic and Wave Loads

In agreement with [22], the turbulence modeling is based on Taylor’s hypothesis of frozen turbulence,

corresponding to a frozen turbulence field that is convected into the rotor in the global X1 direction with

a mean velocity V0, which provides the relation between spatial coordinates and time. The frozen field is

assumed to be a zero mean homogeneous and isotropic stochastic field, with a spatial covariance structure

given by [23]. Calibrated from the theoretical covariance structure, the first order AR model as proposed

by [17] performs a first-order filtering of the white noise input, resulting in continuous, non-differentiable



Energies 2014, 7 7756

sample curves of the turbulence field at the rotor plane in the fixed frame of reference. As shown in

Figure 4, the fixed frame components of the convected turbulence are generated at nn = na ·nr+1 nodal

points at the discrete instants of time t = 0,Δt, 2Δt, · · · , where na is the number of radial lines in the

mesh from the center Node 1 and nr is the number of equidistantly placed nodes along a given radial

line. Next, the fixed frame components of the rotational sampled turbulence vector on each blade with

the azimuthal angle Ψj are obtained by linear interpolation of the turbulence of the adjacent radial lines

according to the position of the blade at each time step. Finally, the moving frame components of the

rotational sampled turbulence are obtained by the following coordinate transformation:

⎡

⎢

⎣

v1,j(x3, t)

v2,j(x3, t)

v3,j(x3, t)

⎤

⎥

⎦
=

⎡

⎢

⎣

1 0 0

0 cosΨj sinΨj

0 − sinΨj cosΨj

⎤

⎥

⎦

⎡

⎢

⎣

v̄1,j(X, t)

v̄2,j(X, t)

v̄3,j(X, t)

⎤

⎥

⎦
(16)

where v1,j(x3, t), v2,j(x3, t) and v3,j(x3, t) are rotational sampled turbulence components for blade

j at the position x3, in the moving frames of reference. v̄1,j(X, t), v̄2,j(X, t), v̄3,j(X, t) are rotational

sampled turbulence components at the same position for blade j in the fixed frame of reference with

X = [0,−x3 sinΨj, x3 cosΨj]
T. Due to the longitudinal correlation of the incoming turbulence,

a certain periodicity is present as spectral peaks at 1Ω, 2Ω, 3Ω... in the frequency domain representation

of the rotational sampled turbulence. The simple AR model used here does not represent the

low-frequency, large-scale turbulent structures very well, due to the homogeneity and isotropy

assumption. On the other hand, the dynamics of the tower are more related to the frequency component

of turbulence in the vicinity of the tower frequency. In this respect, the rotational sampled effect seems

to be more important and is well accounted for by the present model.

The blade element momentum (BEM) method with Prandtl’s tip loss factor and Glauert correction

is adopted to calculate aerodynamic forces along the blade [24]. Non-linear aeroelasticity is considered

by including the local deformation velocities of the blade into the calculation of the flow angle and the

angle of attack. As a result, high aerodynamic damping is introduced in the blade flap-wise and the

fore-aft tower vibrations, but relatively low aerodynamic damping in the blade edgewise and the lateral

tower vibrations.

Figure 4. Nodal points in the rotor plane of the discretized turbulence field. na = 8, nr = 5.
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Sea surface elevation is modeled as a zero mean, stationary Gaussian process defined by the

single-sided version of the JONSWAP (Joint North Sea Wave Project) spectrum [25], which is

determined by the significant wave height Hs and the peak period Tp. Assuming first order wave theory,

the realization of the stationary wave surface elevation process can be obtained by the following random

phase model:

η(X2, t) =
J
∑

j=1

√
2ηj cos(ωjt− kjX2 + φj) (17)

where J is the number of harmonic components in the spectral decomposition, ωj and kj are the angular

frequency and wave number of the j-th harmonic component related through the dispersion relationship

ω2
j = gkj tanh(kjh). φj denotes samples of the random phase Φj , which are mutually independent and

uniformly distributed in [0, 2π]. ηj =
√

Sη(ωj)Δωj denotes the standard deviation of the j-th harmonic

component, and Sη(ωj) is the single-sided JONSWAP spectrum.

Following the linear wave theory, the horizontal velocity v(X3, t) and acceleration v̇(X3, t) of the

water particle at the position X2 = 0 can be written as:

v(X3, t) =
J
∑

j=1

√
2ηjωj

cosh(kjX3)

sinh(kjh)
cos(ωjt+ φj)

v̇(X3, t) = −
J
∑

j=1

√
2ηjω

2
j

cosh(kjX3)

sinh(kjh)
sin(ωjt+ φj)

(18)

The distributed wave force acting at the position X3 of the tower can be calculated by the Morison

Equation [18]:

pw(X3, t) =
1

2
ρwCdDv(X3, t) |v(X3, t)|+ π

4
ρwCmD

2v̇(X3, t) (19)

where ρw is the fluid density, Cd is the drag coefficient, Cm is the inertia coefficient and D is the diameter

of the turbine monopile. The total wave forces can then be calculated by Equation (12), which are acting

on the wind turbine tower perpendicularly to the mean wind direction.

3. Active Generator Control

A simple active control algorithm is proposed based on active generator torque with feedback from

the measured lateral tower vibrations. Closed-loop equations are obtained from the active control.

A full-scale power converter configuration with a cascaded loop control structure is also introduced to

produce the feedback torque in real time.

3.1. Closed-Loop Equations from Active Control

Only the above rated region (Region 3 according to [16]) is considered where the mean wind speed

is higher than the rated value, and the wind turbine produces nominal power with the functioning of the

collective pitch controller. In the basic control system for Region 3, the collective pitch controller is

activated to regulate the rotor speed to the nominal value, while the generator torque is held constant [9].

Modern power electronics makes it possible to specify the generator torque within certain limits almost

instantly (time delay below 10−2 s). Then, the generator torque f13(t) can be used as an actuator in the
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active vibration control of the structure. Sometimes, a torsional damping term as feedback control is

included in the generator torque to damp the resonant mode of the drivetrain [10]. Since the focus is

to investigate the effectiveness of active generator control of lateral tower vibrations and the influence

of the controller on the power output, as well as on the responses of other components, the torsional

damping term is not taken into account in the present study. The generator controller with feedback from

lateral tower vibrations is proposed as:

f13(t) = f13,0 +Δf13,0(t) = f13,0 + caq̇8(t) (20)

where f13,0 = P0

NΩ
is the constant nominal torque and P0 is the nominal power produced by the wind

turbine. With the functioning of the collective pitch controller, f13,0 is balanced by the mean value of the

aerodynamic torque on the rotor. caq̇8(t) is the feedback torque components from lateral tower velocity,

and ca is the gain factor. In practical applications, the feedback signal q̇8(t) is obtained by integrating

the measured tower top acceleration from accelerometers placed in the nacelle.

Then, the generated power becomes:

P (t) =
(

f13,0 +Δf13,0(t)
)(

NΩ + q̇13(t)
)

= P0(t) + ΔP (t) (21)

where P0 = NΩf13,0 is the nominal power of the wind turbine, and ΔP (t) = Δf13,0(t) (NΩ + q̇13(t))+

f13,0q̇13(t) indicates a time-varying deviation from the nominal power. In the absence of the

active generator control, i.e., ca = 0, the deviation of power output only contains the term

f13,0q̇13(t). With active generator control, fluctuation of the power output is introduced by the term

Δf13,0(t) (NΩ + q̇13(t)) due to the torque increment Δf13,0(t). From a power electronic point of view,

it is favorable that ΔP (t) is as small as possible in comparison with P0 in order to have a smooth power

output. From a vibration point of view, it is favorable to have larger ca and, hence, ΔP (t), introducing

higher damping to the lateral tower mode. Consequently, there is a tradeoff between these two objectives.

In this respect, the gain factors ca is chosen such that the following performance criterion is minimized:

J(ca) = W
σq8

σq8,0

+ (1−W )
σP

σP,0

, 0 < W < 1 (22)

where σq8,0 and σP,0 signify the standard deviation of the lateral tower top displacement q8(t) and the

power output without active generator control, i.e., the generator torque is kept constant as f13,0. σq8

and σP denote the standard deviation of q8(t) and the power output, when active generator control is

implemented using Equation (20), and W is the weighting factor for the lateral tower vibration. It is

clear that by increasing the value of W , more importance is placed on maintaining small values for the

lateral tower vibration.

The torque f9(t) work-conjugated to q9(t) for wind turbines with an active generator controller

follows from Equations (14) and (20):

f9(t) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

f9,w(t)− μf12(t) + f13,0 + caq̇8(t)− k0

(

1 +
1

N

)(

q12(t)− 1

N
q13(t)

)

(odd stages)

f9,w(t)− μf12(t)− f13,0 − caq̇8(t)− k0

(

1− 1

N

)(

q12(t)− 1

N
q13(t)

)

(even stages)

(23)
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Substituting Equations (20) and (23) into the load vector (Equation (10)) at the right-hand side of

Equation (5), the equation of motion of the system with active generator controller is given by:

M1(t) q̈1(t) +
(

C1(t) +Ca(t)
)

q̇1(t) +K1(t)q1(t) = fe,1(t) (24)

where:

Ca(t) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 ∓ca 0 0 0

0 0 0 0 0 0 0

0 0 0 ca 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(25)

The system matrices M1(t), C1(t), K1(t) and the load vector fe,1(t) are unchanged, except that an

extra damping matrix Ca(t) is introduced by the active generator controller. Therefore by making use

of the extra damping matrix, it is possible to mitigate lateral tower vibrations, as will be shown in the

following simulation results. The upper sign in Equation (25) refers to the gearbox with an odd number

of stages, while the lower sign corresponds to the case with an even number of gear stages, which also

applies to the direct-driven wind turbines (the number of stages is zero).

3.2. Power Electronic Solution for Torque Control

In order to realize the objective of active control of lateral tower vibration using the generator

torque, a generator model is introduced. As seen in Figure 5, a full-scale power converter configuration

equipped with a permanent magnet synchronous generator (PMSG) or an induction generator (IG) is

considered [15]. Normally, a PMSG-based wind turbine may become a direct-driven system, which

avoids the fatigue-prone gearbox. The principle of the full-scale power converter is the same for both

IG and PMSG. The generator stator winding is connected to the grid through a full-scale back-to-back

power converter, which performs the reactive power compensation and a smooth grid connection. Due to

different positions, the back-to-back power converter is named as the generator-side converter and the

grid-side converter, respectively. The grid-side converter is used to keep the DC-link voltage VDC fixed

and to meet the reactive power demand according to the grid codes [26].

The active generator control scheme for lateral tower vibration is carried out via the generator-side

converter. With the aid of the stator field oriented control (as shown in Figure 5), a cascaded loop

control structure is realized by two controllers: outer speed loop and inner current loop. According to

the maximum power tracking point, the rotor speed demand is calculated by the measured power fed

into grid. Above the rated region, the speed control loop provides a torque demand of f13,0. Along

with additive generator torque demand caq̇8(t), the total torque demand is given in the same form as

Equation (20). The electromagnetic torque Te of the generator can be expressed as [27]:

Te =
3

2
pΨmisq (26)
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where p denotes the number of pole pairs, Ψm denotes the flux induced by the magnet and isq denotes the

stator current in the q axis. It is noted that the electromagnetic torque is only in line with the q axis stator

current. As a consequence, the electromagnetic torque can be simply controlled by the inner current loop

together with the demand of the d axis current setting at zero for minimum power loss.

Figure 5. Control diagram in a wind turbine with a permanent magnet synchronous generator

or an induction generator.
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From the power electronic point of view, direct driven and gear-driven wind turbines are basically

dependent on which kind of generator the manufacturer prefers to use. If the synchronous generator is

selected, due to the relatively low speed of the generator rotor, the wind turbine system could have less

stages of the gearbox or even becomes direct-driven if the poles of the generator are high enough (e.g.,

permanent-magnet synchronous generator). On the other hand, if the induction generator is chosen,

the gearbox must be employed because of its high rotor speed range, which cannot match the speed of

the wind turbine rotor directly.

4. Results and Discussion

Numerical simulations are carried out on the calibrated 13-DOF model subjected to the wave and wind

loads. In all simulations, the same turbulent wind field and wave loads have been used, with the mean

wind velocity V0 = 15 m/s, the turbulence intensity I = 10%, the significant wave height Hs = 2 m

and the time interval Δt = 0.02 s. The worst case study scenario is considered, i.e., the wave loads are

acting on the tower in the lateral direction perpendicular to the mean wind velocity. Both gear-driven

and direct-driven wind turbines are investigated to evaluate the effectiveness of active generator torque

on mitigating lateral tower vibrations.

4.1. Model Calibration

The NREL 5-MW referential wind turbine [16] together with the monopile-type support structure

documented by [28] are used to calibrate the proposed 13-DOF aeroelastic model. The rotor-nacelle
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assembly of the NREL 5-MW wind turbine, including the aerodynamic, structural and pitch control

system properties, remains the same as in [16]. This wind turbine is mounted atop a monopile foundation

at a 20-m water depth, and the tower base begins at an elevation of 10 m above mean sea level (MSL). As

for the rotor, each blade has eight different airfoil profiles from hub to tip, the lift and drag coefficients of

which are obtained by wind tunnel tests. The related data of the modal shapes, the bending stiffness and

the mass per unit length of the blade are also given by [16]. As for the support-structure, the distributed

properties of the tower and monopile are given by [28]. Based on these data, we can calculate the

parameters of the rotor and the support structure (the geometries, the mass parameters and the stiffness

parameters) in the 13-DOF model, as presented in Table 1. Next, to evaluate the validity and feasibility

of the proposed 13-DOF model, comparisons of some results obtained from the present model and from

the NREL FAST program [16] are carried out. Table 2 shows the results for the natural frequencies of the

blade and the tower, as well as the steady-state responses of the blade, the tower and the pitch controller

at different mean wind speeds. The steady-state responses of the present model are obtained by running

simulations on the 13-DOF system at three given, steady and uniform wind speeds, when the turbulence

field is inactivated. The simulation lengths are long enough to ensure that all transient behavior has died

out. The FAST results for the blade and the pitch controller are given by [16], and the results for the

tower are given by [28]. The agreement between FAST and the 13-DOF model is quite good, which

validates the present model.

Table 1. Parameters in the 13-DOF wind turbine model.

Parameter Value Unit Parameter Vale Unit

L 61.50 m k2 5.80× 104 N/m

h1 77.60 m k88 5.14× 106 N/m

h2 10.00 m k89 −1.77× 108 N

h3 20.00 m k99 8.50× 109 N m

s 2.50 m k0 8.70× 108 N m/rad

Ω 1.27 rad/s ζ2 0.005 −
m0 1.70× 104 kg ζ8 0.01 −
m1 2.80× 103 kg ζ9 0.01 −
m2 1.30× 103 kg μ 0.01 −
m3 1.17× 105 kg m Hs 2.00 m

m88 1.05× 105 kg Tp 6.00 s

m89 −1.76× 106 kg m ρ 1.25 kg/m3

m99 3.65× 107 kg m2 ρw 1000 kg/m3

Jr 3.68× 107 kg m2 Cd 1.20 −
Jg 5.30× 102 kg m2 Cm 2.00 −
M0 2.98× 105 kg D 6.00 m
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Table 2. Results obtained from the 13-DOF model and FAST.

Item 13-DOF FAST
1st flap-wise frequency (HZ) 0.669 0.668

1st edgewise frequency (HZ) 1.062 1.079

1st tower fore-aft frequency (Hz) 0.280 0.280

1st tower lateral frequency (Hz) 0.280 0.280

Mean Wind Speed (m/s) 11.4 15 20 11.4 15 20
Collective pitch angle (degrees) 0.40 10.17 17.24 0.00 10.20 17.50

flap-wise tip displacement (m) 5.70 2.77 1.22 5.65 2.75 1.20

tower fore-aft displacement (m) 0.35 0.21 0.16 0.40 0.20 0.15

tower lateral displacement (m) −0.06 −0.06 −0.06 −0.06 −0.06 −0.06

Based on the the model described in Section 2.4, the rotational sampled turbulence field has been

generated. Figure 6 shows the Fourier amplitude spectrum obtained by FFT (fast Fourier transformation)

of the sample curves of the rotational sampled turbulence, at the middle point of Blade 1. A very clear

1P (1.267 rad/s) frequency component of the turbulence in the x2 direction can be observed in Figure 6b.

Less obviously from Figure 6a, the 1P peak can still be observed in the turbulence acting on the blade

in the x1 direction. Figure 7 shows the influence of aeroelasticity on tower vibrations in the case of a

gear-driven wind turbine with gear ratio N equal to 97. It is seen that the aerodynamic damping almost

completely removes the dynamic response of the fore-aft tower vibration q7(t), while the lateral tower

vibration q8(t) is almost unaffected by aerodynamic damping, justifying the necessity of implementing

active vibration control algorithms in this direction.

Figure 6. Fourier amplitude spectrum of the sample curves of the rotational sampled

turbulence, at the middle point of Blade 1. V0 = 15 m/s, I = 10%. (a) The moving frame

component of the rotational sampled turbulence in the x1 direction. (b) The moving frame

component of the rotational sampled turbulence in the x2 direction.
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Figure 7. Tower responses with and without aerodynamic damping, gear-driven wind

turbine. (a) Fore-aft tower top displacement. (b) Lateral tower top displacement. Blue

curve: aerodynamic damping not considered. Red curve: aerodynamic damping considered.
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Normally, in an irregular sea-state, the mean wind direction and the mean direction of wave

propagation are correlated. Hence, the wave loads and the turbulent wind loads on the structure tend

to be somewhat unidirectional in most cases. However, we are focusing on the lightly damped lateral

tower vibration rather than the along-wind response of the tower with relatively strong aerodynamic

damping. Thus, the most conservative load combination is considered in this study, i.e., the wave loads

are acting on the tower in the lateral direction perpendicular to the mean wind velocity, in order to fully

excite the lateral tower vibration. There is also a clear physical explanation for this load combination.

Due to the relatively shallow water, the waves are occasionally refracted tending to propagate orthogonal

to the level curves of the sea bottom, meaning that sometimes the direction of wave propagation may take

place orthogonal to the mean wind velocity. This load scenario is not expected to take place as often as

the unidirectional case. However, considering an offshore wind farm with many wind turbines, there is a

high chance that at all times there is a certain amount of wind turbines under such a scenario. The related

parameter values used in the aerodynamic and wave loads simulation are also listed in Table 1. In [29],

wave measurements were carried out at the German North Sea coast, where the water depth is 29 m.

During a severe storm surge on 2 October 2009, the measured significant height was 5.23 m. This data

to some extent justify the significant wave height we use (Hs = 2 m) for the 20-m water depth in the

simulations. Extensive load cases with different combinations of V0 and Hs (correlated with each other)

are not considered in the present study.

4.2. Gear-Driven Wind Turbine

Firstly, simulations are performed considering a gear-driven wind turbine with gear ratio N = 97,

which is in accordance with the NREL 5-MW wind turbine. In this case, the rotational speed of the

generator is almost N times that of the rotor, and the magnitude of the generator torque is reduced by N

times comparing with the aerodynamic torque acting at the rotor. The performance of the wind turbine

system is almost the same whether the number of gear stages is odd or even, as long as the gear ratio N is

unchanged. Therefore, only the results of the wind turbine with odd-numbered gear stages are illustrated.

By setting the weighting factor W = 0.5, meaning the same importance is placed on mitigating the

tower vibration, and keeping the smoothness of the power output, the gain factor ca is determined as
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ca = 2.0 × 104 Ns in order to minimize the performance criterion J(ca) in Equation (22).

The following figures compare the performance of the wind turbine system with the basic controller and

with the active generator controller. Figure 8 shows the lateral tower top displacements q8(t) in both the

time and frequency domain, where the blue line denotes the responses without active generator control

and the red line with active generator control. There is a reduction of 17.8% in the maximum responses

and a reduction of 37.6% in the standard deviations. For both cases, the same static displacement equal

to −0.057 m is observed. This is caused by the mean value of the tower torque, which is equal to the

negative mean value of the aerodynamic torque at the rotor, i.e., E[f9(t)] = −E[f12(t)], as explained

by Equation (11). The FFT of the response q8(t) is presented in Figure 8b. For a system without

active generator control, a clear peak corresponding to the tower eigenfrequency (around 1.76 rad/s)

is observed without other visible peaks, owing to the fact that very low aerodynamic damping takes

place in this mode. This peak is reduced to approximately 1
3

by the active generator torque due to the

introduced damping matrix in Equation (25). Further, it is observed that base moment of the tower in

lateral direction is effectively suppressed, as well, with the standard deviation reduced from 5.12 × 106

to 3.32 × 106 Nm and the maximum value reduced from 19.63 × 106 to 15.40× 106 Nm. The stress at

the tower base in the lateral direction is calculated accordingly. There is a reduction of 35.2% (6.80 to

4.41 Mpa) in the standard deviation and a reduction of 21.6% (26.07 to 20.44 Mpa) in the maximum

response, which means the fatigue lives of the tower and the foundation are effectively increased by

active control.

Figure 8. Lateral tower vibration with and without active generator control, gear-driven,

W = 0.5. (a) Time history in 400–500 s. (b) Fourier amplitude of lateral tower vibration.
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Figure 9 shows the impact of the active control on the performance of the drivetrain shafts, the gearbox

and the collective pitch controller. The deviations of the rotational speed at the rotor q̇12(t) and at the

generator q̇13(t) are very slightly affected with the standard deviations increased by 1.0% and 0.92%,

respectively, reflecting a very weak coupling between the torsional vibration of the drivetrain with the

lateral tower vibration. Based on Equation (13), the dynamic torque acting at the gearbox can also be

obtained from q12(t) and q13(t), as shown in Figure 9c. It is seen that the active generator controller

introduces a frequency component corresponding to the tower frequency in the gearbox torque, and a

little more fluctuated torque is observed with an increase of 12.6% in the standard deviation, which

is unfavorable for the fatigue life of the gearbox. By reducing the controller gain ca, the negative

effect can be diminished. Further, the performance of the pitch controller is almost unaffected by the
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active generator control (Figure 9d) with the standard deviation increased by 0.93%. It is observed

from Figure 10a,b that the flap-wise tip displacement q1(t) and tower fore-aft top displacement q7(t)

are also insignificantly affected with the standard deviations increased by 0.85% and 2.2% after the

implementation of active generator control. This is expected, since there is no direct coupling between

these two modes of vibration with the generator torque and the lateral tower vibration. The coupling

is indirectly via the pitch controller performance, which changes the effective angle of attack and the

corresponding aerodynamic loads on the blade sections. Figure 10c shows an interesting result that the

edgewise vibration q4(t) is slightly suppressed by the active generator control due to the coupling of

edgewise vibration to the lateral tower vibration, as shown in Equation (6). The maximum response and

the standard deviation are reduced by 5.5% and 5.0%, respectively. Although the focus is to control the

lateral tower vibration through active generator torque, it is favorable to see that the edgewise vibration

with very low aerodynamic damping is also suppressed a little, rather than being negatively affected.

Figure 9. Influence of the active generator control on the drivetrain, the gearbox and the pitch

controller, gear-driven, W = 0.5. (a) Deviation of rotational speed of the rotor. (b) Deviation

of rotational speed of the generator. (c) Torque on the gearbox. (d) Collective pitch angle.
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The time history of power output from the generator is presented in Figure 11. Since the generated

power is related to the lift forces along the blade and, hence, the longitudinal turbulence, the resulting

power output also presents periodicity around 1P frequency, similarly with that in Figure 6a. Due to the

torque increment caq̇8(t), the generated power becomes more fluctuated with an increase of 1.3% in the

maximum value and an increase of 33.0% in the standard deviation, relative to the values without active

generator control. Since the stiffness and mass of the tower for the offshore wind turbine is very large,
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it is inevitable that effective control of the tower vibration is at the expense of a little more fluctuated

power output, which is unfavorable for the grid side. One possible solution to accommodate this problem

is to increase the energy storage in the power converter by increasing the size of the capacitor in Figure 5.

To give more clear insight into the tradeoff between the structural vibration and the power output, five

different values of weighting factor W are used, i.e., W is chosen to be 0.1, 0.3, 0.5, 0.7 and 0.9. For each

W , an optimal value of ca can be obtained through the optimization procedure given by Equation (22).

Table 3 presents the optimized ca and the corresponding standard deviations of q8(t) and the power output

in different cases. It is shown that as the value of W increases, allowing larger values in the control effort,

better structural performance, but worse power quality are achieved. For the extreme case of W = 0.9,

the standard deviation of the lateral tower vibration can be reduced by 60%, but the fluctuation of the

power output is increased by 121.7%. In this case, one solution may be to turn on the active generator

controller merely when large lateral tower vibrations take place.

Figure 10. Influence of the active generator control on the flap-wise, fore-aft tower and

edgewise vibrations, gear-driven, W = 0.5. (a) Flap-wise tip displacement. (b) Fore-aft

tower top displacement. (c) Edgewise tip displacement.
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Figure 11. Time series of power output, gear-driven, W = 0.5.
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Table 3. Performance of the tower controller for the gear-driven case.

Case ca (Ns) σq8 (m) σP (MW)

Basic system 0 0.0330 0.106

W = 0.1 0 0.0330 0.106

W = 0.3 1.0× 104 0.0246 0.121

W = 0.5 2.0× 104 0.0206 0.141

W = 0.7 4.0× 104 0.0167 0.177

W = 0.9 8.0× 104 0.0132 0.235

4.3. Direct-Driven Wind Turbine

Next, simulations of the direct driven wind turbine are carried out. Comparing with the gear-driven

wind turbine, the nominal generator torque is increased by N times, while the nominal rotational speed

of the generator is reduced by N times. Since the magnitude of the generator is increased significantly,

we take the mass moment of inertia of the generator Jg to be N times the original value in the

simulation. This is justified by the data of a 3-MW wind turbine [30], where the mass moment of

inertia of the generator for the direct driven wind turbine is about 150-times that of the gear-driven one

(the total mass is six-times larger and the radius of the stator is five-times larger). The same turbulence

field and wave loads as in the previous case are applied to the wind turbine system in order to make

meaningful comparisons.

Similarly, by setting W = 0.5, the value of the gain factor ca is determined as 2.0 × 106 in order

to minimize the performance criterion J(ca). Figures 12–14 show the results corresponding to similar

parameters studied in the previous case. Results in Figure 12 show the remarkable capability of the

active generator controller in suppressing lateral tower vibrations. The maximum response of q8(t) is

reduced from 0.143 to 0.105 m (reduced by 26.6%), and the standard deviation is reduced by 54.0%.

Again, a static displacement equal to −0.057 m is always present with or without active control. This

value is also unchanged comparing with the gear-driven case, because the mean value of the aerodynamic

torque acting at the rotor is unchanged whether it is a gear-driven or direct-driven wind turbine. Further,

the stress at the tower base is calculated, with the standard deviation reduced from 6.72 to 3.39 Mpa

(49.6%) and the maximum response reduced from 26.12 to 18.90 Mpa (27.6%). The Fourier spectrum

of the lateral tower top displacement (Figure 12b) shows that the peak around 1.76 rad/s, corresponding

to the tower eigenfrequency, is almost totally eliminated by the active generator controller, comparing

with that of the uncontrolled case. The reason for the superior performance is that the nominal generator

torque f13,0 is much larger in the direct-driven wind turbine, and thus, the optimized controller gain ca,

as well as the additive torque are also increased accordingly.

Figure 13 shows the impact of the active generator controller on the responses of other components

of the wind turbine. Similarly, the negative influences on the drivetrain oscillation, the flap-wise

vibration, the fore-aft tower vibration and the performance of the pitch controller are negligible. The

lightly-damped edgewise vibration in Blade 1 (q4(t)) is again slightly suppressed by the active generator

control, due to its coupling to the lateral tower vibration. Similar results have been confirmed for the
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other two blades. It should be noted that the gearbox is eliminated in the direct-driven system, and the

negative impact from the active generator torque on the gearbox as stated in the gear-driven case is no

longer a problem for the direct-driven case.

Figure 12. Lateral tower vibration with and without active generator control, direct-driven,

W = 0.5. (a) Time history in 400–500 s. (b) Fourier amplitude of lateral tower vibration.
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Figure 13. Influence of the active generator control on system responses, direct-driven,

W = 0.5. (a) Deviation of rotational speed of the rotor. (b) Deviation of rotational speed of

the generator. (c) Collective pitch angle. (d) Flap-wise tip displacement. (e) Fore-aft tower

top displacement. (f) Edgewise tip displacement.
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Figure 14 shows the time-history of the power output from the generator. A little negative effect on the

smoothness of the power output is observed after the implementation of the active generator control. The

maximum value of the power output is increased from 5.41 MW to 5.48 MW (increased by 1.3%), and

the standard deviation is increased from 0.108 MW to 0.125 MW (increased by 15.7%), which means

less impact on the grid side than that of the gear-driven case. For direct-driven wind turbines, the value of

f13,0 is significantly increased, and the relative magnitude between caq̇8(t) and f13,0 is smaller comparing

with that of the gear-driven turbine; thus, the smoothness of the power output is less affected by the active
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control. Similarly, the tradeoff between the tower vibration and the power output is illustrated in Table 4,

showing that as the value of the weighting factor W increases, better structural performance, but worse

power quality are obtained. However, acceptable results for the power quality can always be obtained

when the tower vibration is significantly reduced.

Figure 14. Time series of power output, direct-driven, W = 0.5.
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Table 4. Performance of the tower controller for the direct drive case.

Case ca (Ns) σq8 (m) σP (MW)

Basic system 0 0.0328 0.108

W = 0.1 0 0.0328 0.108

W = 0.3 1.0× 106 0.0189 0.116

W = 0.5 2.0× 106 0.0151 0.125

W = 0.7 3.0× 106 0.0132 0.134

W = 0.9 8.0× 106 0.0099 0.175

5. Conclusions

This paper presents a comprehensive investigation into the modeling and control of lateral tower

vibrations of offshore wind turbines using active generator torque. A 13-DOF wind turbine model has

been developed using a Euler–Lagrangian approach, taking into consideration the quasi-static nonlinear

aeroelasticity. The equation of motion was derived, and the coupling of the blade-tower-drivetrain

motion, as well as the load transfer mechanisms from the generator to the tower are demonstrated.

A simple feedback controller was proposed for lateral tower vibrations through the active generator

torque, and a generator model was introduced as the power electronic solution for providing the additive

generator torque in real time.

Numerical simulations have been carried out using data calibrated to the referential 5-MW NREL

offshore wind turbine. Cases of the gear-driven and the direct-driven wind turbines were both considered

to evaluate the effectiveness of the active generator torque for mitigating lateral tower vibrations.

The non-linear time-history results demonstrate that for both gear-driven and direct-driven wind turbines,

the active generator controller is successfully able to reduce the lateral tower vibration induced by the

combined aerodynamic and hydrodynamic loads. The effective control of lateral tower vibration is at

the expense of a little more fluctuated power output, and a tradeoff between the vibration aspect and
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the power electronic aspect should be considered by properly choosing the controller gain. The active

generator controller has negligible affects on the drivetrain oscillation, the flap-wise vibration, the

fore-aft tower vibration and the performance of the controller. It is also favorable to observe that the

lightly-damped edgewise vibration is slightly suppressed by the active generator controller due to its

coupling to the lateral tower vibration. The active generator controller shows superior performance for

the direct-driven wind turbine, since a better vibration control efficacy can be obtained with less impact

on the smoothness of the power output.

In further works, a more sophisticated and realistic consideration of the wind-wave correlation needs

to be investigated. The controller will also be developed in more detail, such as to include filters and to

design the controller when there is a slight rotor imbalance.
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Abstract

Tuned liquid dampers (TLDs) utilize the sloshing motion of the fluid to suppress structural vi-
brations and become a natural candidate for vibration control of wind turbines. Lateral tower
vibrations of wind turbines are normally lightly damped, and large amplitude vibrations induced
by wind and wave loads in this direction may significantly shorten the fatigue life of the tower.
In this paper, a real-time hybrid testing (RTHT) method is implemented for evaluating the per-
formance of a TLD in mitigating lateral tower vibrations of megawatt wind turbines. During
the RTHT, a full-size TLD is tested as the physical substructure while the structural responses
of the wind turbine system are calculated numerically in real time using a 13-degree-of-freedom
(13-DOF) aeroelastic model in the Matlab/Simulink environment. Both the 3 MW and 2 MW
wind turbines have been considered in establishing the Simulink model. Cases of the TLD with
and without damping screens have both been tested, in order to evaluate the performance of the
TLD with different damping ratios. Further, the effect of tuning ratios on the damper perfor-
mance has been studied by changing the mean water level of the tank. Finally, the RTHT results
are compared to the results obtained from an analytical model of the TLD-wind turbine system.
The comparative results indicate that the test method provides an accurate and cost-effective
procedure for performing full-scale tests of passive or semi-active dampers.

Keywords: real-time hybrid testing, tuned liquid dampers, wind turbines, lateral tower
vibration, full scale test

1. Introduction

Recent development in the wind energy industry aims at obtaining more economic and pro-
ductive configurations in order to compete in the energy sector. Multi-megawatt wind turbines
are designed with increasingly larger rotors and higher towers, in order to capture more energy
throughout their lifetime and, thereby, reduce the cost of energy. As wind turbines grow in size,
the stiffness of the blades and the tower are not increased proportionally, rendering the structure
more sensitive to dynamic excitations. The large amplitude vibrations may significantly shorten
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the fatigue life of the structural components and reduce the operational efficiency in converting
the wind energy to electrical power.

Normally, flap-wise blade vibration and fore-aft tower vibration (along-wind direction) are
highly damped due to the strong aerodynamic damping as long as the flow is attached at the
blade [1]. In contrast, edgewise blade vibration and lateral tower vibration (side-side direction)
are related with insignificant aerodynamic damping [1,2]. Hence, these modes of vibrations may
be prone to large amplitude vibrations. There is also a possibility of aeroelastic instability in the
lateral tower mode for some combinations of aerodynamic properties and operational conditions,
especially for the parked turbine with nacelle yaw errors [3]. Moreover, for offshore wind tur-
bines placed at shallow water, the wave load may act in a different direction of the mean wind
direction due to refraction, and significant lateral tower vibrations may be initiated by the wave
load in combination with the resultant aerodynamic loads from the three blades in the lateral
direction. Finally, due to the coupling between the lateral tower vibration with the drivetrain
torsional motion, the unfavorable tower vibrations will increase the fluctuations of the generator
torque, and hence the quality of the generated power.

Some studies have been carried out for the structural control of wind turbine towers. Theo-
retical investigations have been performed on the effectiveness of a tuned mass damper (TMD)
[4] and tuned liquid column damper (TLCD) [5] for mitigating along-wind tower vibrations, ig-
noring the aerodynamic properties of the blades. To yield more realistic results, an advanced
modeling tool has been developed and incorporated into the aeroelastic code, FAST (Fatigue,
Aerodynamics, Structures and Turbulence), allowing the investigation of passive TMDs in vi-
bration control of offshore wind turbine systems [6]. A series of shaking table tests have been
carried out to evaluate the performance of the ball vibration absorber (BVA) on vibration control
of a reduced scale wind turbine model, through which the effectiveness of the passive damping
device was proven [7]. However, the focus of this study is still on the fore-aft tower vibration
without considering the aerodynamic damping. Therefore, it is of great importance and neces-
sity to carry out a comprehensive investigation on structural control of the lightly-damped lateral
tower vibrations.

Tuned liquid damper (TLD), which consists of a tank partially filled with liquid, is a passive
control device for suppressing structural vibrations. The fundamental sloshing frequency of the
liquid is normally tuned to the fundamental frequency of the primary structure. When the TLD is
excited by the motion of the primary structure, the liquid inside the tank begins to slosh, impart-
ing inertial forces onto the structure, out of phase with its motion, thus absorbing and dissipating
energy. The main advantages of the TLD are the ease of fabrication and installation, especially
where space constraints exist, and minimal maintenance after installation, which make the de-
vice cost-effective. The TLD has been proved to effectively control the wind-induced vibration
of structures [8-10]. It is also proposed for seismic control of structures. Both experimental and
theoretical studies [11-13] have shown that TLDs successfully suppress vibrations of the flexible
structures subjected to earthquake excitations.

The main difficulties associated with TLDs arise from the nonlinear nature of the sloshing
liquid, which makes modeling and designing of these devices challenging. Different methods
have been employed to predict the response of sloshing liquid. Equivalent mechanical models
based on TMD analogy [14, 15] simplify the TLD into an equivalent tuned mass damper, with
the equivalent mass, stiffness and damping calibrated from the experimental results. This model
is able to predict the energy dissipation through liquid sloshing and is useful in the preliminary
design of the TLD. However, the nonlinear fluid response cannot be captured. Nonlinear shal-
low water wave theory [16, 17] has been proposed for predicting the response of fluid sloshing
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in rectangular tanks. Although the nonlinear shallow-water wave equations can be numerically
solved, it is computational inefficient and does not provide an effective design tool for engineer-
ing application. Modal expansion techniques [18-20] have been used for modeling the sloshing
problem, where the fluid flow is assumed to be inviscid, irrotational, incompressible and without
rigid-body rotations. The velocity potential and the free surface are expressed as a summation
of sloshing modes, and a system of coupled ordinary differential equations are developed by
applying calculus of variations [18,19].

In principle, all the above-mentioned models have errors in capturing the real dynamic char-
acteristics of the sloshing liquid and the control force generated by the TLD. Therefore, it is nec-
essary to obtain the response of the TLD-structure system through experiments. In the present
paper, a state-of-the-art testing method, real-time hybrid testing (RTHT) [21-23] has been em-
ployed for evaluating the performance of the TLD in vibration control of wind turbine towers.
The fundamental idea of the RTHT is to split the entire system into two parts: a numerical
substructure and a physical substructure. The former will be simulated in the computer by a
developed numerical model. The latter, which generally has a complicated dynamic behavior
(nonlinear or load rate-dependent), is manufactured and tested using dynamic testing equipment
(shaking table or dynamic actuators) [12, 24]. This method has several advantages, such as the
reduced cost of the experiment, the possibility of manufacturing full scale physical substruc-
ture and safe evaluation of structures at extreme states. The RTHT has been widely adopted
for the performance evaluation of energy dissipating and vibration absorbing devices, such as
elastomeric dampers [24], MR dampers [25], TLDs [12] and TMDs [26].

In the study reported here, the performance of the TLD in suppressing lateral tower vibrations
of wind turbines is evaluated through RTHT. A full scale TLD is manufactured and tested as the
physical substructure, while a 13-degree-of-freedom (13-DOF) aeroelastic wind turbine model
is employed as the numerical substructure. The dynamic responses of the wind turbine system
are numerically calculated in real time using the 13-DOF model formulated in Matlab/Simulink,
with the measured control force and the pre-calculated wind-induced modal loads (with due
consideration of the aerodynamic damping) acting as excitations. Both the 3 MW and 2 MW
wind turbines have been considered in establishing the Simulink model. Cases of the TLD with
and without damping screens have been tested for evaluating the control effect of the damper
with different energy dissipations of the sloshing. Further, various values of the tuning ratio, the
mean wind speed and the turbulence intensity are considered in the RTHT, so that a systematic
evaluation of the damper performance can be revealed. Finally, simulation results from a pure
theoretical model are compared with the recorded results from the RTHT, and the acceptable
agreement verifies the accuracy of both the RTHT and the theoretical model.

2. Real-time hybrid testing

2.1. General description
The RTHT presented in this paper has been carried out using the MTS real-time hybrid testing

system at Trinity College Dublin, Ireland [27]. The system allows to simultaneously combine
physical testing of the TLD with the computer model of the wind turbine system. The RTHT
system is mainly composed of the following:

1) a host PC running Matlab/Simulink, which is used to program Simulink models of the
wind turbine system using the Real-Time Windows Target toolbox;
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2) a target PC with the shared common random access memory network (SCRAMNet), on
which compiled Simulink models are downloaded and the real-time simulation is run in Math-
works xPC Target environment;

3) a hybrid controller host PC, which runs the graphical user interface to the MTS servo-
controller. The software Structural Test System (STS) can be used to calibrate and tune instru-
mentation, servo-valves and actuators prior to a test;

4) a MTS servo-controller hardware with SCRAMNet, which includes a digital PID actuator
controller, signal conditioners, data acquisition system and interlock mechanisms. The controller
is preset to run at a frequency of 1024 Hz, which is the update rate for the servo-valve commands;

5) a hydraulic actuator equipped with displacement and force sensors, which physically op-
erate the desired commend to the physical substructure and allows to measure the quantities of
interest.

The communication through the target PC and the MTS controller is managed through the
SCRAMNet, which is a local high-speed network ring. Such local high-speed connections dras-
tically reduce delays and make it possible to perform continuous and/or real-time hybrid sim-
ulation. Using SCRAMNet, memory-writes to the replicated shared memory at one computer
are instantly sent to all other replicated shared memories at 150 MB/s via high-speed fiber optic
cables.

A schematic diagram representing the RTHT system is illustrated in Figure 1. The MTS
controller accepts a displacement or force command and generates the proper command signal
for the servo-valve that moves the actuator to the commanded position. In order to access the
MTS controller from the target PC, Simulink blocks are available to perform input/output oper-
ations through the SCRAMNet memory associated with the controller. The blocks contains the
I/O signals that allow interaction with the experimental specimen. Hence, force and displace-
ments commands can be sent from the target PC to the actuator, while measurement from the
transducers can be fed back to the real-time simulation environment.

Host PC

Matlab/Simulink
Target PC

TCP/IP
MTS controller

Command

SCRAMNet

Hydraulic actuator Test substructure

Transducers
Feedback

Hybrid controller

host PC

TCP/IP

Figure 1: Layout of the RTHT system.

2.2. Implementation of the hybrid model
Figure 2 depicts the conceptual illustrations of the RTHT for the TLD-wind turbine system

carried out in this paper. At each time step, the discrete equations of motion of the 13-DOF
wind turbine model are solved on the target PC. The numerically obtained lateral tower vibration
is sent as a displacement command over the SCRAMNet. The MTS controller generates an
appropriate signal for the servo-valve which attempts to move the actuator to the commanded
position. The actual displacement of the actuator and the interacting force (control force/ sloshing
force) measured from the load cell are fed back to the SCRAMNet and accessed by the target
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PC. With this TLD-generated control force, the equations of motion of the wind turbine system,
where a TLD is installed, are solved numerically, and the displacement command is sent to the
controller again. This process is carried out in real-time.

x3

x1

x2

X_2

X_1

X_3

phi_1

q_4

q_1

q_5

q_2

q_3

q_6

L

q_8 q_10

Target PC

Numerical substructure

Lateral tower
top displacement

(displ cmds)

Control force
(force fbks)

Actuator

TLD

MTS controller

SCRAMNet
displ cmds

force fbks

Physical substructure

Figure 2: Conceptual view of the RTHT for the TLD-wind turbine system.

Applying the load history at fast rates, rather than a ramp-hold load history to the actuator,
improves the performance and accuracy of the experiment by eliminating the hold phase and
associated force relaxation [28]. Better control of the actuator is also achieved through a fast-
rated command signal. Further, high performance actuators coupled with fast hybrid test methods
can capture the rate-dependent behavior of the physical substructure, such as the TLD. In most
of the recent hybrid tests [27-29], the MTS controller runs at a sampling rate of 1024 Hz (1/1024
s sampling time) to control the motion of the servo-hydraulic actuator using the SCRAMNet.
When the integration time step of the numerical substructure is larger than 1/1024 s (for nonlinear
finite element models), the predictor-corrector technique [22, 29] has been widely employed to
generate the displacement command at the required rate (1024 Hz) and to synchronize the hybrid
simulation.

In the present hybrid system, the integration time step of the numerical substructure (the 13-
DOF wind turbine model) is set to be equal to the sampling time of the MTS controller (1/1024
s), since no iterations are needed for solving the numerical model and the actual task execution
time is less than 1/1024 s. Therefore, synchronization is achieved without using the predictor-
corrector technique.

There is an inherent lag in the displacement response of servo-hydraulic actuator versus the
command displacement. Consequently, the measured restoring forces are delayed relative to the
command signal. To compensate for this delay, the compensation technique proposed in [23]
has been applied here. The time lag of the actuator response is measured first and polynomial
extrapolation procedure is then used to predict the command of the actuator by advancing the
current time in the algorithm by the delay time. Detailed results of the delay compensation will
be given later.

2.3. Numerical substructure: the 13-DOF wind turbine model
The numerical substructure of the wind turbine system shown in Figure 3 is a 13-DOF

aeroelastic model. The motions of the tower and the drivetrain are described in a fixed, global
(X1, X2, X3)-coordinate, while the motion of each blade is described in a moving, local (x1, x2, x3)-
coordinate system with its origin at the center of the hub. Assuming a constant rotational speed
Ω of the rotor, the position of the local coordinate system attached to blade j is specified by the
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Figure 3: the 13-DOF aeroelastic wind turbine model. Definition of fixed and moving coordinate systems and the degrees
of freedom q1(t), . . . , q11(t).

azimuthal angle Ψ j(t):

Ψ j(t) = Ωt +
2π
3

( j − 1) , j = 1, 2, 3 (1)

which is positive when rotating clockwise as observed from an upwind position.
Each blade is modeled as a Bernoulli-Euler beam with variable mass per unit length and

variable bending stiffness. The flap-wise and edgewise motions of the three blades are modeled
by the DOFs q j(t) and q j+3(t) , j = 1, 2, 3, indicating the tip displacement in the positive x1-
direction and the negative x2-direction, respectively. The related mode shapes are taken as the
undamped fundamental eigenmodes Φ f (x3) and Φe(x3) in the flap-wise and edgewise directions
with Ω = 0.

The tower motion is defined by the translational DOFs q7(t) and q8(t) in the global X1- and X2-
directions, and the rotational DOFs q9(t), q10(t), q11(t) in the global X1-, X2- and X3-directions.
Hence, the lateral tower vibration is modeled by the top elastic displacement q8(t) and top elastic
rotation q9(t), using cubic shape functions [30]. At each time step, the calculated q8(t) is sent to
the MTS controller as the displacement command.

The drivetrain shown in Figure 4 is modeled by the DOFs q12(t) and q13(t), indicating the
deviations of the rotational angles at the hub and the generator from the nominal rotational angles
Ωt and NΩt, respectively, where N is the gear ratio. Correspondingly, q̇12(t) and q̇13(t) are the
deviations of the rotational speeds at the hub and the generator from the nominal values. Jr and
Jg denote the mass moment of inertia of the rotor and the generator, and kr and kg denote the
St.Venant torsional stiffness of the rotor shaft and the generator shaft.

Assuming linear structural dynamics and substituting the kinetic and potential energies into
the Euler-Lagrange equation [31], the equations of motion of the 13-DOF model are obtained of
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kr
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Stator of generator
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Figure 4: 2-DOF model of the flexible drivetrain with odd number of gear stages. Definition of degrees of freedom q12(t)
and q13(t).

the form:
M(t) q̈(t) + C(t) q̇(t) +K(t) q(t) = fe(t) (2)

where q(t) is the DOFs vector. M(t) is the mass matrix, C(t) is the damping matrix including
the structural and gyroscopic damping, and K(t) is the stiffness matrix taking into account the
geometric and gyroscopic stiffness. fe(t) is the external load vector work conjugated to q(t),
including the non-linear aerodynamic loads and the generator torque. All the indicated system
matrices contain the azimuthal angle Ψ j(t) and are thus time-varying. This is because the DOFs
of the blades are modeled in the moving coordinate system, while others are formulated in a fixed
coordinate system. Detailed expressions of the system matrices can be found in [30].

The 13-DOF model is formulated in Matlab/Simulink, where all the terms are discretized
and the backward Euler method has been used for solving the discrete equations of motion.
The time-varying system matrices are handled by user-defined Matlab functions. Two blocks,
one receives inputs from SCRAMNet to the 13-DOF model and one sends commands from the
13-DOF model to SCRAMNet, are included in the Simulink model as well.

2.4. Experimental substructure test setup

actuator
damping screens

suspensions

Figure 5: Test setup and the physical substructure (the TLD).
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Figure 5 shows a photograph of the test setup and the physical substructure (the TLD). The
setup has a hydraulic actuator in the horizontal direction, a reaction frame and the data acquisition
system. The MTS 244 actuator, with a load capacity of 150 kN and a maximum stroke of ±125
mm, is bolted to the left side of the TLD. One load cell and one linear variable displacement
transducer (LVDT) are attached at the actuator to measure the interaction force and the actuator
displacement. The full-size TLD is made up of a closed rectangular tank, with a inner size of
1.93 m (length) × 0.59 m (width) × 1.2 m (height). Since the width of the tank is much smaller
than the length, it is expected the sloshing of the water is predominately 2-dimensional. The TLD
is suspended to top of the reaction frame by four steel cables in order to minimize the friction
when the tank is enforced to move by the actuator. Further, a capacitance wave gauge (with a
sampling rate of 10 Hz) is installed at the left end-wall of the tank to measure the liquid surface
elevation.

The tank with installed damping screens have also been investigated during the tests. Actu-
ally, the inherent viscous damping of the water is usually much less than the optimal damping
that results in optimal performance of the TLD. The inclusion of the damping screens signifi-
cantly increases the damping ratio and energy dissipation of the water sloshing, thus improving
the performance of the TLD. For these scenarios, two damping screens are installed inside the
tank at 1/3L and 2/3L positions, respectively, where L is the length of the tank. The size of each
mesh in the screen is 2.2 cm × 2.2 cm.

3. Analytical model to capture TLD-structure interaction

A nonlinear model for a TLD in a rotating coordinate system (wind turbine blade) has been
established in [32], where the modal expansion technique was used for modeling the sloshing
of the liquid under gravity, the angular acceleration, the Coriolis acceleration and the centripetal
acceleration. Modal expansion was carried out directly on the velocity field of the liquid rather
than the velocity potential [18-20] because the Coriolis acceleration renders the potential flow
theory unvalid even for inviscous fluid flow. For wind turbine towers, either the methods pro-
posed in [18-20] or in [32] can be employed to model the TLD-structure interaction (actually
they are equivalent). In the present paper, the method proposed in [32] has been applied with
slight modifications where the rotation of the coordinate system is now only due to the rotational
deformation of the top of the tower. This modified theoretical model is briefly described in the
following, and detailed formulation of the coupled nonlinear equations of motion can be found
in [32].

3.1. Modal expansion technique for the sloshing problem
As shown in Figure 6, the TLD is assumed to be mounted at the top of the wind turbine tower

(with the height of H0), and the elastic displacement and elastic rotation at this position are given
by

q(t) = − q8(t)
ϕ(t) = − q9(t)

⎫⎪⎬⎪⎭ (3)

where q8(t) and q9(t) are the 8th and 9th degree of freedom of the 13-DOF model as defined in
Figure 3.

The motion of the fluid relative to the tank is described in (y1, y2, y3)-coordinate system fixed
to the damper with its origin O ′ placed at the center of the mean water level (MWL). The free
surface is defined by a single variable of the surface elevation η(y1, t) measured from the mean
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Figure 6: Modeling of the TLD.

water level. Hence, overturning waves, slamming or breaking waves are not covered by this
theory. For a given fluid particle, the velocity vector and acceleration vector are given by

ṙ(t) = ṙ0(t) + v
(
y(t), t

)
+ ω(t) × y(t)

r̈(t) = r̈0(t) + v̇
(
y(t), t

)
+ ω̇(t) × y(t) + 2ω(t) × v

(
y(t), t

)
+ω(t) ×

(
ω(t) × y(t)

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4)

where r(t), r0(t) and y(t) are defined in Figure 6. v
(
y(t), t

)
and v̇

(
y(t), t

)
indicate the velocity and

acceleration vectors of the fluid particle as seen by an observer fixed to (y1, y2, y3)-coordinate sys-
tem. ω(t) is the angular velocity vector of (y1, y2, y3)-coordinate system relative to (X1, X2, X3)-
coordinate system.

By reformulating the Lagrangian description in Eq. (4) into Eulerian description of the par-
ticle motion, the boundary value problem (Navier-Stokes equation with nonlinear boundary con-
ditions) is established in (y1, y2, y3)-coordinate system. Nest, a weak form of the boundary value
problem can be obtained by the Galerkin variational method, where the modal expansions of the
velocity field v(y, t) and its virtual variation δv(y) are expressed as:

v(y, t) =
N∑

i=1
ri(t) Vi(y) , y ∈ V(t)

δv(y) =
N∑

i=1
δri Vi(y) , y ∈ V(t)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5)

where V(t) is the time-varying fluid domain. ri(t) and δri denote the generalized coordinates of
the velocity field and the variational field. The shape functions Vi(y) are not required to fulfill any
mechanical boundary conditions on the free surface. However, they need to have zero divergence
and to fulfill vanishing kinematical boundary conditions on the side walls.
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Hence, the eigenmodes of standing waves in linear wave theory have been used as shape
functions:

Vi (y) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
− sin

(
ki (y1 +

L
2 )

)
cosh

(
ki (y2 + h)

)
cos

(
ki (y1 +

L
2 )

)
sinh

(
ki (y2 + h)

)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (y1, y2) =
[
−

L
2
,
L
2
]
×

[
− h, η(y1, t)

]
(6)

where h is the mean water depth and ki = i πL is the wave number. The angular frequency of the
ith sloshing mode is given by:

ω2
i = g ki tanh(kih) (7)

Next, the boundary condition on the free surface is discretized in a similar manner. Modal
expansions of the surface elevation η(y1, t) and its virtual variation δη(y1) are formulated:

η(y1, t) =
N∑

i=1
si(t) cos

(
ki

(
y1 +

L
2

))

δη(y1) =
N∑

i=1
δsi cos

(
ki

(
y1 +

L
2

))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(8)

where si(t) and δsi denote the generalized coordinates of η(y1, t) and δη(y1). The selected shape
functions in Eq. (8) is motivated by the linear wave theory, where the free surface condition
reduces to v2(y1, 0, t) = ∂

∂tη(y1, t). Hence, the distribution with y1 for each shape function in Eq.
(8) should be pairwise proportional to its counterpart in Eq. (6).

Finally, coupled nonlinear differential equations for ri(t) and si(t) can be obtained by substi-
tuting Eqs. (5), (6) and (8) into the weak formulation of the boundary value problem [32]. Linear
viscous damping terms are also incorporated to the equations related to ri(t) to accommodate the
overall energy dissipation arising from both the viscous effect and the flow restricting devices
such as the damping screen. The same damping ratio ξ has been used for all sloshing modes
considered in the modal expansion [32].

3.2. The sloshing force
As shown in Fig. 7, fc

(
t) with the non-vanishing moving frame components fc,1(t) and fc,2(t),

denotes the external reaction force vector on the liquid due to the pressure p(y, t) from inner side
of the tank. This force vector, when transferred to the primary structure, represents the control
force for lateral tower vibrations. The analytical expression of fc

(
t) can be obtained by integrating

the pressure p(y, t) over inner surfaces of the tank, in combination with the divergence theorem
[32]. This force vector is dependent on the state variables si(t) through the time-varying fluid
domain V(t).

4. Test results and Analysis

Considering the size of the manufactured TLD, the suitable ratings of wind turbine could be
2 MW and 3 MW, and both of them have been considered in establishing the Matlab/Simulink
model. To obtain data of these two configurations, a classical upscaling/downscaling method
[33] has been used on the widely used NREL 5 MW reference turbine [34]. The resulting system
parameters of the two turbines are provided in Table 1.
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Figure 7: Pressure distribution on inner surfaces of the TLD tank.

Table 1: Parameters of the two wind turbines used in the Simulink model.

Parameter 2 MW 3 MW
Rotor rotational speed [rad/s] 2.000 1.633
Blade radius [m] 40 49
Blade mass [kg] 4488.0 8244.8
Blade structural damping ratio [-] 0.005 0.005
Rotor moment of inertia [kg m2] 3.768·106 1.039·107

Nacelle+hub mass [kg] 7.508·104 1.379·105

Hub height [m] 55.4 67.9
Tower mass [kg] 8.790·104 1.615·105

Tower structural damping ratio [-] 0.01 0.01
First lateral tower frequency [rad/s] 3.369 2.751

Eq. (7) is used for tuning the TLD (by changing the mean water lever h), so that the first
sloshing frequency is close to the first lateral tower frequency shown in Table 1. For each wind
turbine model, tests were undertaken for three different tuning ratios (ratio between the first
sloshing frequency to the first lateral tower frequency) of the TLD and using three different
turbulent wind loads. Moreover, cases of the TLD with and without damping screens were both
evaluated. Therefore, in total 36 (= 2 × 3 × 3 × 2) real-time hybrid tests were conducted, and the
duration for each test was set to be 5 minutes.

4.1. Delay compensation
The developed compensation method in [23] predicts the displacement of the actuator after

the actuator delay δt from the present time by extrapolating an nth-order polynomial function
based on the target (present) displacement and n previous calculated displacements (δt × i units
of time ago, i = 1, 2, ..., n). Therefore, the predicted displacement is δt time ahead of the target
counterpart.

By sending a sinusoidal signal to the actuator, the delay time δt was identified as 15 ms for the
system in this study (it depends both on the actuator and the physical substructure). This delay
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Figure 8: Accuracy of the applied delay compensation technique. (a) without compensation; (b) with compensation

time was used in the compensation technique for predicting (extrapolating) the actuator displace-
ment during all tests. Figure 8(a) shows the results of one test case without delay compensation,
where the solid line is the displacement calculated by the computer (target displacement) and
dashed line is the displacement command sent to the actuator by the controller. They are iden-
tical when no compensation is applied. The dotted line is the measured displacement (feedback
displacement from the actuator), which is observed to be about 15 ms delayed comparing with
the target displacement. Figure 8(b) shows the corresponding results for the same load case with
the delay compensation technique applied. The black dashed line is the predicted (extrapolated
using the polynomial function) displacement, which is now about 15 ms ahead of the target dis-
placement. By applying this predicted value as a command signal to the actuator, the resulting
displacement becomes almost identical to the target one, since the command signal is delayed by
the actuator.

4.2. Control effect of the TLD on tower vibrations
On the basis of Taylor’s hypothesis of frozen turbulence together with the first-order auto-

regressive (AR) model, three-dimensional rotational sampled wind field can be generated with a
given mean wind speed V0 and turbulence intensity I [30]. For each wind turbine model, three
different wind fields (with different combinations of V0 and I) have been applied.

Table 2 shows the response reduction of lateral tower vibrations of the 2 MW wind turbine
by the TLD. The water level of TLD varies from 46.74 cm to 64.80 cm corresponding to three
values of tuning ratio η (0.95, 1.0, 1.05). With fixed size of the tank, the resulting water mass
is only dependent on the water level, and it varies from 532.23 kg to 737.88 kg. Reductions of
both the standard deviation (STD) and the maximum value of the tower top displacement are
presented. From Table 2, there are three observations to be emphasized:
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(i) For all load cases and all configurations, the TLD is effective in reducing the standard
deviations and peak values of the tower top displacement. Hence, the dynamic response and
fatigue life of the 2 MW wind turbine tower can be successfully improved by the TLD designed
in this study.

(ii) The inclusion of damping screens in the TLD significantly improves the control per-
formance of the damper, for all wind loads scenarios and all tuning ratios. By equipping two
damping screens, more energies are dissipated during sloshing and larger response reductions
are achieved by the TLD.

(iii) For the TLD without damping screens, the optimal tuning ratio depends on the mean
wind speed and the turbulence intensity. On the other hand, the optimal tuning ratio is always 1
for cases with damping screens. Acceptable control performance of the TLD can be obtained for
all three tuning ratios considered here, but the best performance is always achieved for all wind
load cases when η = 1 with damping screens equipped.

Table 2: Response reduction of lateral tower vibrations of the 2 MW wind turbine by TLDs with different configurations.
Wind loads Tuning ratio Screen Water level Water mass STD reduction Peak reduction

η = 1.0 no 54.61 cm 621.84 kg 39.80 % 33.63 %
yes 54.61 cm 621.84 kg 51.98 % 47.35 %

V0 = 12 m/s, η = 0.95 no 46.74 cm 532.23 kg 28.01 % 35.46 %
I = 0.08 yes 46.74 cm 532.23 kg 31.28 % 38.52 %

η = 1.05 no 64.80 cm 737.88 kg 41.55 % 15.03 %
yes 64.80 cm 737.88 kg 49.95 % 25.44 %

η = 1.0 no 54.61 cm 621.84 kg 43.55 % 32.75 %
yes 54.61 cm 621.84 kg 52.90 % 48.83 %

V0 = 12 m/s, η = 0.95 no 46.74 cm 532.23 kg 29.50 % 37.06 %
I = 0.1 yes 46.74 cm 532.23 kg 33.03 % 40.85 %

η = 1.05 no 64.80 cm 737.88 kg 37.39 % 9.79 %
yes 64.80 cm 737.88 kg 50.28 % 26.91 %

η = 1.0 no 54.61 cm 621.84 kg 20.38 % 8.80 %
yes 54.61 cm 621.84 kg 32.26 % 13.34 %

V0 = 8 m/s, η = 0.95 no 46.74 cm 532.23 kg 22.13 % 14.56 %
I = 0.1 yes 46.74 cm 532.23 kg 25.77 % 15.61 %

η = 1.05 no 64.80 cm 737.88 kg 9.46 % 2.17 %
yes 64.80 cm 737.88 kg 25.40 % 20.98 %

Figure 9 shows the control effect of the TLD on tower vibrations of the 2 MW wind turbine
in both time and frequency domains, for the case of V0=12 m/s, I = 0.08, η=1.0. Figure 9(a) and
(b) correspond to the TLD without and with damping screens, respectively. For both scenarios,
the tower top displacement q8(t) is significantly reduced by the TLD, while the inclusion of
damping screens further improves the reduction effect as shown in Figure 9(b). From the Fourier
amplitude of q8(t) a clear peak corresponding to the first lateral tower frequency (3.369 rad/s) is
observed due to very low aerodynamic damping in this mode. This peak is effectively suppressed
by the damper, and is almost totally eliminated when damping screens are included in the TLD.
Moreover, in the frequency domain two very small peaks (around 9 rad/s and 13 rad/s) can also
been observed , resulting from the coupling between the lateral tower vibration to the edgewise
blade vibrations. The TLD has no effect on these two peaks.
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Figure 9: Control effect of the TLD on tower vibrations of the 2 MW wind turbine, tuning ratio=1, V0 = 12 m/s, I=0.08.
(a) without damping screens, (b) with damping screens.

Table 3 shows the performance of the TLD on the 3 MW wind turbine. Comparing with Table
2, slightly different results have been obtained, with the following observations to be highlighted:

(i) The overall control effect of the TLD is slightly worse comparing with the results in Table
2. Since the tower frequency of the 3 MW wind turbine is lowered to 2.751 rad/s, the mean
water level (for tuning the sloshing frequency) and thus the water mass of the TLD are reduced,
resulting in smaller mass ratio of the damper.

(ii) For very few cases (such as V0 = 12 m/s, I=0.1, η = 0.95), the inclusion of damping
screens even deteriorates the performance of the TLD. This might be attributed to the increased
nonlinear effect when the water height is shallow in the tank.

(iii) Same as the results in Table 2, for all wind load cases the best performance of the TLD
is always obtained when the tuning ratio is 1 and damping screens are equipped. This turns out
to be the optimal design of the TLD for both 2 MW and 3 MW wind turbines.

Figure 10 shows the performance of the TLD on the 3 MW wind turbine in both time and
frequency domains, for the case of V0=12 m/s, I = 0.1, η=1.0. Again, Figure 10(a) and (b)
correspond to the TLD without and with damping screens, respectively. It is observed that the
equipped damping screens effectively improve the control effect of the TLD, and STD reduction
calculated from the 5-minutes time histories is increased from 28.32% to 40.25%. The spectrum
peak corresponding to the first lateral tower frequency (2.741 rad/s) is reduced by half in Figure
10(a) and by 1/3 in Figure 10(b) using the TLD with damping screens.
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Table 3: Response reduction of lateral tower vibrations of the 3 MW wind turbine by TLDs with different configurations.
Wind loads Tuning ratio Screen Water level Water mass STD reduction Peak reduction

η = 1.0 no 31.64 cm 360.28 kg 28.32 % 18.43 %
yes 31.64 cm 360.28 kg 40.25 % 29.86 %

V0 = 12 m/s, η = 0.95 no 28.08 cm 319.75 kg 27.80 % 26.77 %
I = 0.08 yes 28.08 cm 319.75 kg 18.57 % 4.52 %

η = 1.05 no 35.62 cm 405.60 kg 17.66 % −3.10 %
yes 35.62 cm 405.60 kg 27.78 % 13.09 %

η = 1.0 no 31.64 cm 360.28 kg 29.43 % 25.59 %
yes 31.64 cm 360.28 kg 44.19 % 29.86 %

V0 = 12 m/s, η = 0.95 no 28.08 cm 319.75 kg 32.62 % 24.68 %
I = 0.1 yes 28.08 cm 319.75 kg 21.81 % 9.67 %

η = 1.05 no 35.62 cm 405.60 kg 13.77 % −4.90 %
yes 35.62 cm 405.60 kg 26.10 % 10.42 %

η = 1.0 no 31.64 cm 360.28 kg 8.29 % 4.63 %
yes 31.64 cm 360.28 kg 29.74 % 34.04 %

V0 = 8 m/s, η = 0.95 no 28.08 cm 319.75 kg 9.66 % 4.86 %
I = 0.1 yes 28.08 cm 319.75 kg 12.96 % 4.78 %

η = 1.05 no 35.62 cm 405.60 kg 7.42 % −5.02 %
yes 35.62 cm 405.60 kg 18.84 % 11.78 %

4.3. Measured wave heights and control forces
Figure 11 compares the measured wave heights at the left end wall of the TLD with and

without damping screens for the 2 MW wind turbine, where V0 = 12 m/s, I = 0.08, η = 1.0.
From the time histories in Figure 11(a), it is observed that the water sloshes in a similar trend for
both cases, but much larger amplitude of the wave height is observed when there are no damping
screens. Obviously the inclusion of damping screens leads to increased energy dissipation during
sloshing and thus mitigated motion of the water. Moreover, for TLD with damping screens, the
time history of the wave height near the tank wall turns out to be more symmetric about zero
axis, implying a dominating 1st sloshing mode.

The corresponding Fourier amplitude of the wave heights is illustrated in Figure 11(b). For
the case without damping screens, several spectral peaks can be clearly observed, of which the
most significant one corresponds to the 1st sloshing mode. From Eq. (7), theoretical values
(linear wave theory) of the 2nd, 3rd and 5th sloshing frequencies are calculated as 5.492 rad/s,
6.888 rad/s and 8.934 rad/s, respectively. These three sloshing modes are also presented in Figure
11(b), implying significant contributions from higher modes in the sloshing of the liquid. Further,
it is interesting to observe two other peaks at about 6.7 rad/s and 10.1 rad/s, corresponding to
2 times and 3 times the first sloshing frequency ω1, respectively. This is due to the inherent
nonlinear characteristics of the sloshing system, and higher-harmonics (multiples of the first
frequency) are presented in the liquid response. On the other hand, for the case with damping
screens, all the above mentioned peaks are effectively suppressed, resulting in a dominated peak
of the first sloshing frequency (although this peak is suppressed as well). This again explains the
more symmetric time history of the wave height about the zero axis in Figure 11(a). Finally, in
both cases a peak at about 13 rad/s is presented with the same magnitude. As earlier remarked,
this peak results from the coupling of the tower with blade edgewise vibrations, and the inclusion
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Figure 10: Control effect of the TLD on tower vibrations of the 3 MW wind turbine, tuning ratio=1, V0 = 12 m/s, I=0.1.
(a) without damping screens, (b) with damping screens.

of damping screens has no influence on it.
In connection to Figure 11, Figure 12 compares the measured (by the actuator) control force

(sloshing force) for cases with and without damping screens. From Figure 12(a) it is seen that the
insertion of damping screens reduces the magnitude of the control force, even though the control
effect of the TLD is improved as shown in Figure 9. The corresponding Fourier amplitude in
Figure 12(b) shows a dominating peak of the first sloshing mode as expected. Two small peaks
at the 3rd and 5th sloshing angular frequencies are also observed for the case without damping
screens. The 2nd sloshing mode is totally gone because it has no contribution to the resulting
control force. Moreover, peaks of 2 × ω1 and 3 × ω1 in Figure 11(b) are also filtered out since
the force is the result of integrating liquid pressures over inner walls of the tank. By including
damping screens, peaks of the 3rd and 5th sloshing modes are further eliminated, leaving only the
fundamental peak and the peak due to the coupling effect with the blade vibrations.

For the 3 MW wind turbine with a lower tower frequency, the water depth (for tuning the
damper) in the tank is more shallow and nonlinear effect of the sloshing system becomes more
pronounced.

Figure 13 illustrates the measured wave height at the left end wall for the 3 MW wind turbine,
with V0=12 m/s, I = 0.08, η=1.0. Very drastic motion of the liquid is shown in Figure 13(a) for
the case without damping screens. Actually, wave breaking was also observed during the test.
Again the inclusion of damping screens mitigate the liquid motion effectively. From Figure
13(b), peaks corresponding to the 2nd sloshing, the 3rd sloshing, the 6th sloshing, the 8th sloshing
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Figure 11: Measured wave heights at the left end wall of the tank, 2 MW wind turbine, tuning ratio=1, V0 = 12 m/s,
I=0.08. (a) Time histories, (b) Fourier amplitude in semi-logarithmic chart.
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Figure 12: Measured control force from the TLD, 2 MW wind turbine, tuning ratio=1, V0 = 12 m/s, I=0.08. (a) Time
histories, (b) Fourier amplitude in semi-logarithmic chart.

are observed together with 2 × ω1 and 3 × ω1 peaks. By inserting damping screens, all peaks
corresponding to the higher sloshing modes are almost totally eliminated , but the 2 × ω1 and
3 × ω1 peaks are still visible (although suppressed).

Correspondingly, Figure 14 shows the measured control force in both time and frequency
domains. Observations similar to those in Figure 12 can be made, except that the frequency
components of the control force (without damping screens) turn out to be the dominating 1st

sloshing, the 3rd sloshing, together with 3 × ω1 and 5 × ω1 due to nonlinear interactions. This
again shows the more pronounced nonlinear effect of the relatively shallow water for the 3 MW
wind turbine, since peaks corresponding to nonlinear interactions are totally eliminated in Figure
12(b) for the 2 MW wind turbine.

For Figures 11-14, some further remarks are made as follows. Although the liquid mo-
tion contains a lot of frequency components including both the higher sloshing modes and the
nonlinear interaction effects, the resulting control force filters out most of the high frequency
components. Applied to the main structure, the remaind small amounts of high frequency com-
ponents are further filtered out by the structure. Further, better control effect is achieved when
the resulting control force is dominated by the first sloshing frequency without high frequency
components.
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Figure 13: Measured wave heights at the left end wall of the tank, 3 MW wind turbine, tuning ratio=1, V0 = 12 m/s,
I=0.08. (a) Time histories, (b) Fourier amplitude in semi-logarithmic chart.
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Figure 14: Measured control force from the TLD, 3 MW wind turbine, tuning ratio=1, V0 = 12 m/s, I=0.1. (a) Time
histories, (b) Fourier amplitude in semi-logarithmic chart.

4.4. Comparison of results from RTHT and analytical model
Modal expansions to three sloshing modes (N=3) in Eqs. (5) and (8) have been carried out in

the numerical simulations using the analytical model. Two different values of the damping ratio
ξ are used in the analytical model for cases with and without damping screens.

Figure 15 shows the comparison of the controlled tower top displacements obtained by RTHT
and the analytical model for the 2 MW wind turbine, where V0 = 12 m/s, I = 0.08, η = 1.0.
By setting the damping ratio ξ to be 0.004, the result from the analytical model agrees very well
with the test result as shown in Figure 15(a). Acceptable agreement between the experimental
and analytical results is also obtained for the case with damping screens by choosing the value
of ξ to be 0.02.

Figure 16 shows a similar comparison for the 2 MW wind turbine under the load scenario of
V0 = 8 m/s, I = 0.1, η = 1.0. Again, there is a good agreement between the test and analytical
results for the case without damping screens. The analytical result fits slightly worse with the
test result for the case with damping screens. This is reasonable because in fact the inclusion of
damping screens not only increases energy dissipation but also introduces nonlinear interactions
between the liquid and the screens, which is not accounted for by the analytical model.

As for the 3 MW wind turbine, comparison of the results obtained by RTHT and the analytical
model are shown in Figure 17, where V0 = 12 m/s, I = 0.1, η = 1.0. ξ is set to be 0.005 and
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Figure 15: Comparison of the controlled tower displacements obtained by RTHT and analytical model, 2 MW wind
turbine, tuning ratio=1, V0 = 12 m/s, I=0.08. (a) Without damping screens (ξ = 0.004 used in the analytical model), (b)
With damping screens (ξ = 0.02 used in the analytical model).
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Figure 16: Comparison of the controlled tower displacements obtained by RTHT and analytical model, 2 MW wind
turbine, tuning ratio=1, V0 = 8 m/s, I=0.1. (a) Without damping screens (ξ = 0.004 used in the analytical model), (b)
With damping screens (ξ = 0.015 used in the analytical model).

0.03 in the analytical model for cases without and with damping screens, respectively. Good
agreement between the experimental and analytical results is obtained. Figure 18 shows the
comparison under the load scenario of V0 = 8 m/s, I = 0.1, η = 1.0. Similar observations are
obtained, where the agreement is worse for the case with damping screens. Further, for TLDs
used in the 3 MW turbine, larger values of ξ have been used in the analytical model comparing
with its 2 MW counterpart, implying larger energy dissipations of the shallow water TLD due to
nonlinear interactions and wave breaking.

5. Conclusions

In this paper, a real-time hybrid testing (RTHT) method is implemented for evaluating the
performance of a TLD in mitigating lateral tower vibrations of megawatt wind turbines. During
the RTHT, a full-size TLD is tested as the physical substructure while the structural responses
of the wind turbine system are numerically calculated using a 13-DOF aeroelastic model in the
Matlab/Simulink environment. A compensation technique based on polynomial extrapolation
has been applied to compensate for the inherent actuator delay.

Both 3 MW and 2 MW wind turbine models have been established in Matlab/Simulink, and
19
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Figure 17: Comparison of the controlled tower displacements obtained by RTHT and analytical model, 3 MW wind
turbine, tuning ratio=1, V0 = 12 m/s, I=0.1. (a) Without damping screens (ξ = 0.005 used in the analytical model), (b)
With damping screens (ξ = 0.03 used in the analytical model).
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Figure 18: Comparison of the controlled tower displacements obtained by RTHT and analytical model, 3 MW wind
turbine, tuning ratio=1, V0 = 8 m/s, I=0.1. (a) Without damping screens (ξ = 0.005 used in the analytical model), (b)
With damping screens (ξ = 0.04 used in the analytical model).

different water levels of the TLD are determined from frequency tuning conditions for the two
turbines. The overall control effect of the TLD is slightly worse for the 3 MW wind turbine
(with lower tower frequency) due to the reduced mean water level and thus the mass ratio of
the damper. Moreover, it is shown from test results that the inclusion of damping screens effec-
tively increases energy dissipation during liquid sloshing and in most cases improves the control
performance of the TLD on tower vibrations. For both turbines under all load cases, the best
performance of the TLD is always obtained when the tuning ratio is 1.0 and damping screens are
equipped. Furthermore, the measured wave height at the left end wall is observed to contain a lot
of frequency components including both the higher sloshing modes and the nonlinear interaction
effect. The measured control force, on the other hand, filters out most of the high frequency com-
ponents since the force is the result of integrating liquid pressures over inner walls of the tank.
By inserting damping screens, the remaining high frequency components are further mitigated,
resulting in a control force that is totally dominated by the first sloshing frequency.

Finally, the RTHT results are compared to the results obtained from an analytical model of
the TLD-wind turbine system (based on modal expansion technique). Good agreement between
tested and analytical results demonstrates that the proposed analytical method can yield accept-
able estimates of the response of wind turbine-TLD system under turbulent wind loads. The
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comparative results also indicate that the real-time hybrid test method provides an accurate and
cost-effective procedure for performing full-scale tests of passive or semi-active dampers.
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a b s t r a c t

In this paper the optimal control law for a single nonlinear point absorber in irregular sea-states is
derived, and proven to be a closed-loop controller with feedback from measured displacement, velocity
and acceleration of the floater. However, a non-causal integral control component dependent on future
velocities appears in the optimal control law, rendering the optimal control law less useful for real time
implementation. To circumvent this problem a causal closed-loop controller with the same feedback
information is proposed, based on a slight modification of the optimal control law. The basic idea behind
the control strategy is to enforce the stationary velocity response of the absorber into phase with the
wave excitation force at any time. The controller is optimal under monochromatic wave excitation. It is
demonstrated that the devised causal controller, in plane irregular sea states, absorbs almost the same
power as the optimal controller.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

A wave energy converter (WEC) may be defined as a dynamic
system with one or more degrees of freedom in order to convert
the energy in the waves into mechanical energy stored in the
oscillating system. A point absorber is a WEC that is capable of
absorbing energy from waves propagating in any direction, and
with horizontal dimensions that are small compared to the
dominating wave length. The WEC is typically equipped with an
electric power generator via a hydraulic force system. The reaction
forces from the latter influence the motion of the WEC. In a so-
called reactive control these forces are used to control the motion
of the WEC in such a way that a maximum mechanical energy is
supplied to the absorber. With a certain loss due to friction in the
hydraulic force actuators, the control forces are then transferred to
the generator, where they are converted into electric energy.
Within certain ranges these reaction forces can be specified at
prescribed values.

The idea of extracting energy from the waves is very old and
several types of WEC devices have been proposed (Falnes, 2002a).
This has initiated commercial WEC projects using devices such as
different buoy concepts, Oscillating-Water-Column (OWC) plants,
the Pelamis WEC (Pelamis Wave, 2012), overtopping WEC types like
the Wave Dragon (Wavedragon, 2005), point absorber approaches

used for the Wavestar device (Wave Star, 2005), or the SEAREV
device (Ruellan et al., 2010).

The total hydrodynamic force on the absorber consists of the
quasi-static buoyancy force, the radiation force, and the wave
excitation force. Under the action of these forces, the active control
of a WEC may be classified as either open-loop (feed forward) or
closed-loop (feedback) control. Open-loop control implies that the
control effort is feed forward based on observation (measurement)
of the dynamic hydrodynamic force. Open-loop does not affect the
dynamics of the system, i.e. angular eigenfrequencies and struc-
tural damping ratios are unchanged by the control. Closed-loop
control is entirely based on the observed motion of the absorbers.
Typically, this involves the displacement, velocity or acceleration
components, which easily can be measured by accelerometer or
laser vibrometer measurements onboard the floating device. A
closed-loop control always changes the dynamic properties of the
system (inertia, damping or stiffness parameters) as specified by
the poles and zeros of the frequency response function that relate
the external wave force to the displacement response of the
absorber system.

Many control strategies for WECs have been devised and
reviewed in Falnes (2002b, 2007). Latching control, independently
proposed in Falnes and Budal (1978) and French (1979), is probably
the simplest and definitely the most investigated control strategy.
The control is based on the observation of the dynamic hydrody-
namic force. For this reason latching control should be classified as an
open-loop control strategy. Further, latching control requires that the
hydrodynamic force can be predicted for, at least, a semi-wave period
ahead of the present time. In broad-banded irregular sea-states this
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prediction is related with uncertainty, which may affect the stability
of the control. Normally, merely the sea surface elevation in the
vicinity of the converter is observed. This makes the observation of
the wave excitation force component difficult due to the non-causal
dependence of this quantity on the sea-surface elevation (Falnes,
1995). Further, the power outtake from the control changes between
finite time intervals with zero and non-zero power production and
may cause problems for the mechanical implementation of the
method.

The simplest closed-loop control law is achieved by a so-called
derivative controller, where the reactive control force is specified
to be proportional to and oppositely directed to the velocity of the
WEC. The controller has insignificant influence on the eigenfre-
quency of the absorber. For this reason the controller only
becomes optimal for frequencies in the auto-spectrum of the wave
excitation force in the vicinity of the undamped eigenfrequency of
the absorber. By augmenting the controller with a force compo-
nent proportional to either the displacement (proportional con-
trol) or the acceleration (acceleration control), a broader spectrum
of frequencies can be absorbed. Proportional control will change
the stiffness of the absorber, and acceleration control will change
the mass. In both cases the eigenfrequency can be changed to a
certain extent. Finally, a so-called integral control force component
can be introduced. Here the control force appears as a convolution
integral of the absorber velocity weighted with respect to a given
impulse response function. It turns out that integral control needs
to be introduced, if a perfect phase locking between the wave
excitation force and the velocity of the absorber is attempted at all
frequencies.

The optimal control proves to be non-causal, i.e. the present
control demand depends on future wave loads or displacements of
the floater. To handle this problem various control laws have been
suggested based on prediction of the incoming waves and the
related future response of the absorber (Schoen, 2008a,b). Hence,
such approaches combine elements of open and closed-loop
control. Optimal control with constraint on the displacements
and the control force has also been considered (Hals et al., 2011; Li
et al., 2012). Still, the non-causality of the optimal control was
handled by prediction of the wave excitation force by means of an
augmented Kalman filter. Non-predictive phase control has been
considered by many authors (Valerio et al., 2007; Lopez et al.,
2009). Such control strategies are basically sub-optimal in irregu-
lar sea-states. In Valerio et al. (2007) it is demonstrated that the
control at optimal tuning tends to enforce the velocity of the
absorber into phase with the wave excitation force. The enforce-
ment of this condition by the control force formed the guideline
for the causal control law devised in the present paper.

Since the displacement response at optimal control is signifi-
cant, the non-linear buoyancy component of the control forces
needs to be considered, rather than a linearized version of this
around the static equilibrium state. In this respect the optimal
control law for a point absorber in an irregular sea-state is, at first,
derived based on optimal control theory, assuming non-linear
buoyancy response and linear wave theory. It turns out that the
optimal control force eliminates the inertial and the non-linear
stiffness (buoyancy) loads on the absorber completely. The deriva-
tion of the control law relies upon an initial rational approxima-
tion to the integral component of the radiation force, described by
a number of additional state variables (Yu and Falnes, 1995). The
rational approximation is merely used at the formal derivation of
the optimal control law, and is eliminated again in the final
expression for this quantity. The optimal controller proves to be
of a closed-loop type, incorporating all of the proportional,
derivative, acceleration and integral control force components.
For this reason the control law is optimal in any 2D or 3D irregular
sea-state, as well for transient vibrations induced by the initial

conditions. The study demonstrates that the absorber velocity and
the wave excitation are in phase at all frequencies, with the
implication that mechanical energy is supplied to the absorbed
at all instants of time. The integral control component of the
optimal control is completely non-causal, depending merely on
future velocities of the absorber. Because the velocity response at
optimal control is significantly broad-banded, predictions of this
quantity are difficult and, thereby, makes the control law useless
for real time implementation.

To circumvent this problem, a causal closed-loop controller is
suggested with feedback from measurements of the present
displacement and acceleration, and all velocities up to and
including present time, based on a slight modification of the
optimal control law. The rationale for the controller is that it
enforces the velocity response of the point absorber into phase
with the wave excitation force at all frequencies, as is the case for
the optimal controller. The control law contains a single unspeci-
fied gain factor, which is determined so the absorbed power by the
control force is maximum in a given 2D or 3D sea state. An
analytical solution for the optimal gain factor is derived, when the
absorber is exposed to a plane irregular wave excitation. The
devised controller is shown to be optimal under monochromatic
wave excitation, and a numeric example demonstrates that the
devised causal controller absorbs almost the same power as the
optimal controller in plane irregular sea states.

2. Equation of motion of a WEC

The ðx; y; zÞ�coordinate system is introduced as shown in Fig. 1.
Although, only the heave absorber shown in Fig. 1 will be
analyzed, all results, including the equation of motion and control
laws, may easily be carried over to other single-degree-of-freedom
systems by slight modifications. Only two-dimensional (plane)
regular or irregular waves are considered, which are assumed to
propagate in the positive x direction. The motion v(t) of the body
in the vertical z direction is defined relative to the static equili-
brium state, where the static buoyancy force f b;0 balances the
gravity force mg and a possible static pre-stressing force from the
generator f p;0. The structural mass including ballast is denoted by
m, and g is the acceleration of gravity. Hence

f b;0 ¼mg þ f p;0 ð1Þ

f b;0 is given by Archimedes' law

f b;0 ¼ ρ Dð0Þg ð2Þ

where ρ is the mass density of water, and DðvðtÞÞ denotes the
displaced water volume at the displacement v(t).

In the dynamic state the WEC is excited by an additional
dynamic hydrodynamic force, fh(t), on the top of the static buoy-
ancy force, and by an additional dynamic reactive generator force,
fc(t), on the top of the generator pre-stressing force. The force fc(t)
can be prescribed to a certain extent, for which reason it may be
used to control the motion of the WEC. Henceforth, fc(t) will be

Fig. 1. Loads on heave absorber. (a) Static equilibrium state. (b) Dynamic state.
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referred to as the control force. Then, the equation of motion
becomes

m €vðtÞ ¼ f hðtÞ�f cðtÞ ð3Þ
Assuming linear wave theory fh(t) may be written as a super-
position of the following contributions:

f hðtÞ ¼ f bðtÞ þ f rðtÞ þ f eðtÞ ð4Þ
where fb(t) is the quasi-static increment of the buoyancy force, fr(t)
is the radiation force generated by the motion of the absorber in
still water, and fe(t) is the wave excitation force caused by the wave
action, when the absorber is fixed in the static equilibrium state.
The term fr(t) removes mechanical energy by generating a wave
train propagating away from the absorber, whereas fe(t) supplies
energy to the absorber.

f b(t) is given as

f bðtÞ ¼�ρðDðvðtÞÞ�Dð0ÞÞg¼�rðvðtÞÞ ð5Þ
The non-linear buoyancy function rðvðtÞÞ is limited between the
value r1 corresponding to a fully submerged absorber, and the
value r0 ¼�f b;0, when the absorber is jumping out of the water.
Assuming small vertical vibrations, Eq. (5) may be linearized
around the static equilibrium state as (Newman, 1977)

f bðtÞ ¼�kvðtÞ; k¼ r′ð0Þ ¼ ρD′ð0Þg ð6Þ
The radiation force fr(t) may be written in terms of the following
differential-integro relation (Cummins, 1962; Faltinsen, 1990):

f rðtÞ ¼ �mh €vðtÞ�f r;0ðtÞ ð7Þ

f r;0ðtÞ ¼
Z t

�1
hr _v ðt�τÞ _vðτÞ dτ ð8Þ

The term mh is the added water mass at infinite high frequen-
cies and hr _v ðtÞ is a causal impulse response function for the
radiation force brought forward by the absorber velocity _vðτÞ.

Due to the causality of the impulse response function, the
related frequency response function becomes

Hr _v ðωÞ ¼
Z 1

0
e�iωthr _v ðtÞ dt ð9Þ

Insertion of Eqs. (5), (7) and (8) in Eq. (2) provides the following
integro-differential equation for v(t) driven by the fe(t) and fc(t):

ðmþmhÞ €vðtÞ þ rðvðtÞÞ þ R tt0 hr _v ðt�τÞ _vðτÞ dτ¼ f eðtÞ�f cðtÞ; t4t0
vðt0Þ ¼ v0; _vðt0Þ ¼ _v0

9=
;

ð10Þ
where v0 and _v0 are given initial conditions at the time t0.

Mhðω) and ChðωÞ denote the hydrodynamic added mass and the
hydrodynamic radiation damping coefficient respectively during
monochromatic wave excitation. These are related to the imagin-
ary and real parts of Hr _v ðωÞ by the following sine and cosine
transforms:

MhðωÞ ¼mh þ
1
ω
ImðHr _v ðωÞÞ ¼mh�

1
ω

R1
0 sin ðωtÞhr _v ðtÞ dt

ChðωÞ ¼ ReðHr _v ðωÞÞ ¼
R1
0 cos ðωtÞhr _v ðtÞ dt

9=
; ð11Þ

The indicated sine and cosine transforms of the impulse response
function are consequences of hr _v ðtÞ which is causal.

Then, under monochromatic wave excitation, the radiation
force may be given by the following mixed time and frequency
representation:

f rðtÞ ¼ �MhðωÞ €vðtÞ�ChðωÞ _vðtÞ ð12Þ
The wave excitation force fe(t) may be given in terms of the
following convolution integral of the sea-surface elevation ηðtÞ

(Falnes, 2002a):

f eðtÞ ¼
Z 1

�1
heηðt�τÞηðτÞ dτ ð13Þ

where ηðtÞ refers to the sea-surface elevation observed at a
sufficient distant position, so no disturbances from radiation
waves are present, and heηðtÞ is a non-causal impulse response
function.

The related frequency response function becomes

HeηðωÞ ¼
Z 1

�1
e�iωtheηðtÞ dt ð14Þ

The hydrodynamic parameters and functions k, mh, MhðωÞ, ChðωÞ
and HeηðωÞ have been calculated by the program WAMIT, which is
based on the boundary element method (WAMIT, 2011). Based on
the indicated parameters, the frequency response function Hr _v ðωÞ
is calculated from Eq. (11). Finally, the impulse response functions,
hr _v ðtÞ and heηðtÞ, are obtained numerically by inverse Fourier
transform of Eqs. (9) and (14) respectively.

At first, the case of optimal control at stationary response under
monochromatic wave excitation with the angular frequency ω is
considered. Further, the linear buoyancy model (6) is applied, and
the following parameterized feedback control law is presumed for
the control force

f cðtÞ ¼mc €vðtÞ þ cc _vðtÞ þ kcvðtÞ ð15Þ
where mc, cc and kc represent the gain factors for the acceleration
component, the velocity component and the displacement com-
ponent, respectively.

Then, by insertion of Eqs. (6), (12), (15) in Eq. (3), the following
linear equation of motion for the point absorber is obtained:

M €vðtÞ þ C _vðtÞ þ KvðtÞ ¼ f eðtÞ ¼ jFej cos ðωtÞ ð16Þ

M¼mþMh þmc

C ¼ Ch þ cc
K ¼ kþ kc

9=
; ð17Þ

jFej denotes the amplitude of the wave excitation force. The
stationary solution to (16) reads as

vðtÞ ¼ ReðVeiωtÞ ¼ jV j cos ðωt�Ψ Þ ð18Þ
The displacement amplitude jV j and the phase lag Ψ are given by
the well-known results

Vj j ¼ jFejffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK�ω2MÞ2 þ ω2C2

q ; tan Ψ ¼ ωC
K�ω2M

ð19Þ

The velocity and the control force become

_vðtÞ ¼ ReðiωVeiωtÞ ¼ ReðiωV Þ cos ðωtÞ�ImðiωVÞ sin ðωtÞ ð20Þ

f cðtÞ ¼ Reððkc�ω2mc þ iωccÞVeiωtÞ
¼ Reððkc�ω2mc þ iωccÞVÞ cos ðωtÞ�Imððkc�ω2mc þ iωccÞVÞ sin ðωtÞ

ð21Þ
The instantaneous power absorbed by the control force becomes

PaðtÞ ¼ f cðtÞ _vðtÞ ð22Þ
Rather than the instantaneous absorbed power the time average
Pa during a wave period T ¼ 2π=ω is of interest. By the use of Eqs.
(20) and (21), the time average becomes (Falnes, 2002a)

Pa ¼ 1
T

Z T

0
f cðτÞ _vðτÞ dτ¼

1
2

Fej2 ω2cc
ðK�ω2MÞ2 þ ω2ðCh þ ccÞ2

����� ð23Þ

Next, Eq. (23) is optimized with respect to kc, cc and mc. The
optimality conditions read as

K�ω2M¼ kþ kc�ω2ðmþMh þmcÞ ¼ 0⇒
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kc�ω2mc ¼�kþ ω2ðmþMhÞ ð24Þ

cc ¼ Ch ð25Þ
Insertion of Eqs. (24) and (25) into Eq. (23) provides the following
result for the optimal time-averaged power outtake (Falnes,
2002a):

Pa;optðωÞ ¼
1
8
jFeðωÞj2
ChðωÞ

ð26Þ

The tuning condition in Eq. (24) implies that the absorber is at
resonance at optimal control. Under stationary harmonic excita-
tion with the angular frequency ω, the condition is equivalent to
M €vðtÞ þ KvðtÞ ¼ 0. Insertion of this relation in Eq. (16) provides the
following relation between the wave excitation force and the
absorber velocity at optimal control:

f eðtÞ ¼ ðcc þ ChÞ _vðtÞ ¼ 2Ch _vðtÞ ð27Þ
Eq. (27) shows that the wave excitation force and the velocity
response are in phase at optimal control, which is a well-known
result for a linear single-degree-of-freedom oscillator at resonance
under harmonic excitation.

With the tuning parameters determined by Eq. (24) and (25),
the optimal control law for the stationary harmonic response due
to monochromatic wave excitation may be written as

f cðtÞ ¼mc €vðtÞ þ kcvðtÞ þ cc _vðtÞ ¼�ðmþMhÞ €vðtÞ�kvðtÞ
þ Ch _vðtÞ ð28Þ

3. Rational approximation to the radiation force

The convolution integral defining the integral part f r;0ðtÞ of the
radiation force is replaced by an equivalent system of coupled
first-order differential equations, which is solved along with the
equations of motion of the absorber. The method is based on a
replacement of the actual frequency response function Hr _v ðωÞ by
an approximating rational function ~Hr _v ðωÞ given in the form

~Hr _v ðsÞ ¼
PðsÞ
Q ðsÞ ð29Þ

PðsÞ ¼ p0s
m þ p1s

m�1 þ⋯þ pm�1sþ pm
Q ðsÞ ¼ sn þ q1s

n�1 þ⋯þ qn�1;1sþ qn

9=
;; s¼ iω ð30Þ

The parameters p0; p1;…; pm�1; pm and q1;…; qn�1; qn are all real.
Such a replacement is always possible, because the impulse
response function hr _v ðtÞ is causal. The order of the filter as given
by the pair (m,n) may be chosen freely with the only restrictions
that m≤n. Further, all poles must have negative real parts in order
to ensure that the rational filter is asymptotic stable and strictly
causal. The rational approximation may be obtained by the
MATLAB control toolbox (Mathworks, 2011), as illustrated in
Fig. 2. Fig. 3 shows the related zeros and poles of the approxima-
tion. Then, f r;0ðtÞ may be obtained as output of the following
system of differential equations:

f r;0ðtÞ ¼ p0
dmy
dtm

þ p1
dm�1y

dtm�1 þ⋯þ pm�1
dy
dt

þ pmy ð31Þ

dny
dtn

þ q1
dn�1y

dtn�1 þ⋯þ qn�1
dy
dt

þ qny¼ _vðtÞ ð32Þ

where y(t) is an auxiliary function, which cannot be related with
any physical interpretation. Eq. (32) may be written in the
following state vector form:

d
dt

zrðtÞ ¼ArzrðtÞ þ br _vðtÞ ð33Þ

Fig. 2. Rational approximation of order ðm;nÞ ¼ ð2;3Þ to Hr _v ðωÞ. (a) ReðHr _v ðωÞÞ. (b) ImðHr _v ðωÞÞ. : Numerical determined target frequency response function. : Rational
approximation.

Fig. 3. Poles (x) and zeros (o) for the rational approximation of order ðm;nÞ ¼ ð2;3Þ
to Hr _v ðωÞ.
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where

zrðtÞ ¼

yðtÞ
d
dt
yðtÞ

d2

dt2
yðtÞ
⋮

dn�2

dtn�2yðtÞ

dn�1

dtn�1yðtÞ

2
666666666666666664

3
777777777777777775

; br ¼

0
0
0
⋮
0
1

2
666666664

3
777777775

ð34Þ

Ar ¼

0 1 0 ⋯ 0 0
0 0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 0 1

�qn �qn�1 �qn�2 ⋯ �q2 �q1

2
6666664

3
7777775

ð35Þ

Similarly, Eq. (31) may be written in the vector form

f r;0ðtÞ ¼ przrðtÞ ð36Þ

pr ¼ ½pm pm�1 ⋯ p1 p0 0 ⋯ 0� ð37Þ

4. Optimal stochastic control

The determination of the optimal control in irregular sea-states
involves a stochastic analysis of the dynamic system. In this
respect the convention for indicating stochastic processes and
random variable by upper case letters and their realizations by
lower case letter will be adopted (Nielsen, 2007). The system is
considered in the control interval ½t0; t1�. Hence, the wave excita-
tion process, the control force process and the displacement
process are denoted as fFeðtÞ; t∈½t0; t1�g, fFcðtÞ; t∈½t0; t1�g and
fVðtÞ; t∈½t0; t1�g, respectively, and arbitrary realizations of the said
processes are denoted as fc(t), fe(t) and v(t), respectively.

All state variables are assumed to be known at the initial time
t0, and are treated as deterministic quantities. We seek the control
force process fFcðtÞ; t∈½t0; t1�g, which maximizes the absorbed
mechanical energy Ea ¼ Ea½f cðtÞ; _vðtÞ� during the indicated control
interval for almost all realizations of the involved process (also
known as optimal control with probability one) subject to the
initial value problem defined by Eq. (10), leading to the following
optimization problem:

max Ea½f cðtÞ; _vðtÞ� ¼
R t1
t0
f cðτÞ _vðτÞ dτ

s:t:
ðmþmhÞ €vðtÞ þ rðvðtÞÞ þ R tt0 hr _v ðt�τÞ _vðτÞ dτ¼ f eðtÞ�f cðτÞ
vðt0Þ ¼ v0; _vðt0Þ ¼ _v0

( ) ð38Þ

The optimal control is unchanged, if the performance functional is
modified to ð1=t1�t0ÞEa½f cðtÞ; _vðtÞ�. We will assume that all
involved stochastic processes are ergodic. Then, it follows for
infinite control horizon, corresponding to t0-�1 and t1-1
(Nielsen, 2007)

lim
t1-1
t0-�1

1
t1�t0

Z t1

t0
f cðτÞ _vðτÞ dτ¼ E½FcðtÞ _V ðtÞ� ð39Þ

where E½ � � indicates the expectation operator. Hence, at infinite
control horizon and on condition of ergodic response processes
the optimal control will be the one, which optimizes the expected
(mean) value of the absorbed power PaðtÞ ¼ FcðtÞ _V ðtÞ. This repre-
sents the stochastic equivalence to the time averaging in Eq. (23)
for harmonic monochromatic wave excitation.

The starting point is taken in Eqs. (10), (33) and (36), which
may be combined in the following state vector equation of
dimension N¼ 2þ n:

_zðtÞ ¼ gðzðtÞ; f cðtÞ; tÞ; t∈�t0; t1�
zðt0Þ ¼ z0

)
ð40Þ

where

zðtÞ ¼
vðtÞ
_vðtÞ
zrðtÞ

2
64

3
75 ð41Þ

gðzðtÞ; f cðtÞ; tÞ ¼

_vðtÞ
� 1
M

rðvðtÞÞ� 1
M

przrðtÞ þ
1
M
ðf eðtÞ�f cðtÞÞ

br _vðtÞ þ ArzrðtÞ

2
6664

3
7775 ð42Þ

where M ¼mþmh.
Basically, there are two approaches to solve the indicated

constrained optimization problem: the method of dynamic pro-
gramming (Bellman, 1957), and the variational approach with
Hamiltonian formalism (Pontryagin et al., 1964; Naidu, 2003).
Here, the variational approach will be used. The Hamiltonian of
the control problem is defined as

HðzðtÞ; f cðtÞ; λðtÞ; tÞ ¼ f cðtÞ _vðtÞ þ λT ðtÞgðzðtÞ; f cðtÞ; tÞ; λðtÞ ¼
λvðtÞ
λ _v ðtÞ
λrðtÞ

2
64

3
75

⇒HðzðtÞ; f cðtÞ; λðtÞ; tÞ ¼�rðvðtÞÞ λ _v ðtÞ
M

þ _vðtÞðf cðtÞ þ λvðtÞ þ bT
r λrðtÞÞ

þzTr ðtÞ �pT
r
λ _v ðtÞ
M

þ AT
r λrðtÞ

� �
þ λ _v ðtÞ

M
f eðtÞ�f cðtÞ
� � ð43Þ

In the above equation, (43), λðtÞ is the co-state vector, which forms
the generalized momentum vector of the problem. The Euler–
Lagrange stationarity conditions for optimal control become
(Meirovitch, 1990; Soong, 1990)

State vector equation:

_zðtÞ ¼ ∂H
∂λ

¼ gðzðtÞ; f cðtÞ; tÞ ð44Þ

Co-state vector equation:

_λðtÞ ¼ � ∂H
∂z

¼
d
dv rðvðtÞÞ λ _v ðtÞM

�f cðtÞ�λvðtÞ�brλrðtÞ
pr

λ _v ðtÞ
M �AT

r λrðtÞ

2
664

3
775 ð45Þ

Stationarity condition on the control force:

∂HðzðtÞ; f cðtÞ; λðtÞ; tÞ
∂f c

¼ _vðtÞ�λ _v ðtÞ
1
M

¼ 0

⇒λ _v ðtÞ ¼M _vðtÞ ð46Þ

Terminal condition on the co-state vector:

λðt1Þ ¼ 0 ðλvðt1Þ ¼ λ _v ðt1Þ ¼ 0; λrðt1Þ ¼ 0Þ ð47Þ

Using Eq. (46) the first component equation in Eq. (45) provides
the following solution for the co-state component λvðtÞ:

_λvðtÞ ¼
d
dv

rðvðtÞÞ _vðtÞ ¼ d
dt

rðvðtÞÞ
⇒λvðtÞ ¼ rðvðtÞÞ�rðvðt1ÞÞ ð48Þ
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where the terminal condition (47) has been used in the last
statement.

Using Eqs. (46) and (48) the second component equation in
(45) provides the following solution for the optimal control force:

_λ _v ðtÞ ¼M €vðtÞ ¼ �f cðtÞ�ðrðvðtÞÞ�rðvðt1ÞÞÞ�bT
r λrðtÞ

⇒f cðtÞ ¼ �M €vðtÞ�ðrðvðtÞÞ�rðvðt1ÞÞÞ�bT
r λrðtÞ ð49Þ

Using Eq. (46) the third equation of (45) provides the following
solution for the co-state sub-vector λrðtÞ:
_λrðtÞ ¼ pr _vðtÞ�AT

r λrðtÞ

⇒λrðtÞ ¼�
Z t1

t
eA

T
r ðτ�tÞpT

r _vðτÞ dτ ð50Þ

where the terminal condition (47) has been used, and e�AT
r t

represents the matrix exponential. Insertion of Eq. (50) in Eq.
(49) provides the following representation for the optimal control
force:

f cðtÞ ¼ �M €vðtÞ�ðrðvðtÞÞ�rðvðt1ÞÞÞ þ
Z t1

t
pr e

Ar ðτ�tÞbr _vðτÞ dτ ð51Þ

The term rðvðt1ÞÞ represents a static control force component
useful for counteracting an external static force (time-averaged
mean force) resulting in a non-zero mean displacement vðt1Þ.
However, the static reaction force has already been accounted for
in the static equilibrium Eq. (1). Correspondingly, fc(t) has been
defined as the dynamic component of the control force on the top
of a possible static prestressing force. Hence, fc(t) must be zero in
mean, so we will choose vðt1Þ ¼ 0. Then, the final form of the
optimal control law in a finite control interval is given as

f cðtÞ ¼ �ðmþmhÞ €vðtÞ�rðvðtÞÞ þ
Z t1

t
pr e

Ar ðτ�tÞbr _vðτÞ dτ ð52Þ

As seen the optimal control law is of the feedback type. This means
that the control is optimal for both monochromatic and 2D and 3D
irregular wave excitation, and during the transient phase, where
the response is influenced by the initial conditions. The principal
limitation of the control law (52) is that the integral component is
non-causal, i.e. the control force component depends on future
velocities ahead of the present time t. The velocity response
process f _V ðtÞ; t∈½t0; t1�g at optimal control is broad-banded reflect-
ing a somewhat quasi-static dependence on the wave excitation
process fFeðtÞ; t∈½t0; t1�g. So, prediction of the velocity response
during a sufficiently long time interval ahead of the present time is
related with significant uncertainty.

Next, consider the case of an infinite control horizon, i.e.
t0 ¼�1 and t1 ¼1. Then, the solution to Eq. (33) becomes

zrðtÞ ¼
Z t

�1
eAr ðt�τÞbr _vðτÞ dτ ð53Þ

f r;0ðtÞ follows from Eqs. (8) and (36)

f r;0ðtÞ ¼
Z t

�1
hr _v ðt�τÞ _vðτÞ dτ¼

Z t

�1
pr e

Ar ðt�τÞ br _vðτÞ dτ ð54Þ

Hence, the following representation of the impulse response
function in terms of the applied rational approximation applies

hr _v ðtÞ ¼ pr e
Ar t br ð55Þ

Then, Eq. (52) may be written as

f cðtÞ ¼ �ðmþmhÞ €vðtÞ�rðvðtÞÞ þ
Z 1

t
hr _v ðτ�tÞ _vðτÞ dτ ð56Þ

The velocity response of the absorber at optimal control with
infinite control horizon follows by insertion of Eq. (56) into Eq.

(10), which is reduced toZ t

�1
hr _v ðt�τÞ _vðτÞ dτ þ

Z 1

t
hr _v ðτ�tÞ _vðτÞ dτ¼ f eðtÞ

⇒
Z 1

�1
hr _v ðjt�τjÞ _vðτÞ dτ¼ f eðtÞ ð57Þ

As seen from Eq. (57) the main effect of the optimal control force is
to eliminate the inertial force and the buoyancy stiffness from the
equation of motion. Since large motions take place during optimal
control, it is important that the exact non-linear buoyancy func-
tion rðvðtÞÞ, and not merely the linear version kv(t), is applied in
the control law. Eq. (57) is a Fredholm integral equation of the first
kind with infinite kernel support. Since the integral equation is
linear, it follows that the velocity process f _V ðtÞ; t∈Rg and hence the
displacement process fVðtÞ; t∈Rg at optimal control become zero
mean stationary Gaussian processes, if the wave excitation process
fFeðtÞ; t∈Rg is modeled as a zero mean stationary Gaussian process,
despite the physical system being intrinsic non-linear.

Fourier transformation of Eq. (57) provides the following
relation between the Fourier transforms _V ðωÞ and FeðωÞ of the
velocity at optimal control _vðtÞ and the wave excitation force fe(t):

FeðωÞ ¼ 2ChðωÞ _V ðωÞ ð58Þ
where the following result has been used, cf. Eq. (11):Z 1

�1
e�iωthr _v ðjtjÞ dt ¼ 2

Z 1

0
cos ðωtÞhr _v ðtÞ dt ¼ 2ChðωÞ ð59Þ

Since ChðωÞ is real, Eq. (58) shows that, at optimal control, all
harmonic components of the velocity and the wave excitation
force are in phase. Hence, Eq. (58) merely generalizes the condi-
tion (27) for optimal control at monochromatic wave excitation.

5. Optimal causal feedback control

The non-causality of the optimal control law given by Eq. (56)
implies that it cannot be implemented for practical applications,
unless future velocities can be predicted. To circumvent this
obstacle a closely related causal control law is suggested in this
section.

The starting point is taken from the optimal control law (56),
where the non-causal integral part is replaced by the term
2c _vðtÞ�f r;0ðtÞ, resulting in the following causal control law:

f cðtÞ ¼ �ðmþmhÞ €vðtÞ�rðvðtÞÞ þ 2cc _vðtÞ�f r;0ðtÞ

�ðmþmhÞ €vðtÞ þ 2cc _vðtÞ�rðvðtÞÞ�
Z t

�1
hr _v ðt�τÞ _vðτÞ dτ ð60Þ

The unspecified gain factor cc is determined by an optimality
criterion for the absorbed mean power of the control force under
the given sea-state. The rationale for Eq. (60) is seen by insertion
into Eq. (10), which is reduced to

f eðtÞ ¼ 2cc _vðtÞ ð61Þ
Fourier transformation of Eq. (61) provides the following relation
between the related Fourier transforms:

FeðωÞ ¼ 2cc _V ðωÞ ð62Þ
So the causal control law (60) also enforces the velocity of the
absorber into phase with the wave excitation force at all frequen-
cies. Eq. (62) is quite similar to Eq. (58) with the difference that the
proportionality coefficient is frequency independent. Similarly,
due to the linear relation in Eq. (61), the response vector process
fðVðtÞ; _V ðtÞÞ; t∈Rg becomes a zero mean stationary Gaussian pro-
cess, if this is the case for the wave excitation process fFeðtÞ; t∈Rg.

Since an infinite control horizon is considered and ergodicity
has been assumed for all involved processes, the optimal causal
control must optimize the mean (expected) power outtake of the
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control force. This criterion is used to find the optimal gain factor
cc in case of plane irregular wave excitation.

The expected power absorbed by the causal control force
becomes

Pa ¼ E½FcðtÞ _V ðtÞ� ¼�ðmþmhÞE½ _V ðtÞ €V ðtÞ�

þ2ccE½ _V 2ðtÞ��E½ _V ðtÞrðVðtÞÞ��
Z t

�1
hr _v ðt�τÞE½ _V ðtÞ _V ðτÞ� dτ ð63Þ

In the stationary state, where the response from the initial values
has been dissipated, the normal distributed random variables V(t)
and _V ðtÞ are stochastically independent with zero mean values
E½VðtÞ� ¼ E½ _V ðtÞ� ¼ 0 (Nielsen, 2007). In turn, this implies that _V ðtÞ
and rðVðtÞÞ are also stochastically independent, which means

E½ _V ðtÞrðV ðtÞÞ� ¼ E½ _V ðtÞ�E½rðVðtÞÞ� ¼ 0 � E½rðVðtÞÞ� ¼ 0 ð64Þ
Further, the following expectations apply (Nielsen, 2007):

E½ _V ðtÞ €V ðtÞ� ¼ 0

E½ _V ðtÞ _V ðtÞ� ¼ 1
4c2c

s2Fe

E½ _V ðtÞ _V ðτÞ� ¼ κ _V _V ðτ�tÞ ¼ κ _V _V ðt�τÞ ¼ 1
4c2c

κFeFe ðt�τÞ

9>>>>>=
>>>>>;

ð65Þ

where Eq. (61) has been used. The term κ _V _V ðτÞ denotes the auto-
covariance functions of the velocity process, and s2Fe and κFeFe ðτÞ
indicate the variance and auto-covariance function of the wave
excitation process, respectively.

Insertion of the relations (64) and (65) into Eq. (63) provides
the following result for the absorbed mean power:

Pa ¼
1
2cc

s2Fe�
1
4c2c

Z t

�1
hr _v ðt�τÞκFeFe ðt�τÞ dτ

¼ s2Fe
1
2cc

� 1
4c2c

Z 1

0
ρFeFe ðuÞhr _v ðuÞ du

� �
ð66Þ

ρFeFe ðτÞ ¼
κFeFe ðτÞ
s2Fe

ð67Þ

ρFeFe ðτÞ denotes the auto-correlation coefficient function of the
wave excitation process. The qualitative variation of ρFeFe ðτÞ has
been shown in Fig. 4 for monochromatic, narrow- and broad-
banded stochastic wave excitation forces defined by the band-
width parameter sf of the JONSWAP spectrum. In order to make
the comparison meaningful, the separation time τ has been
normalized with respect to the peak period Tp of the irregular
sea state.

Next, Pa given by Eq. (66) is optimized with respect to the gain
parameter cc. The optimal gain factor becomes

cc ¼
Z 1

0
ρFeFe ðuÞhr _v ðuÞ du ð68Þ

Insertion into Eq. (66) provides the following result for the optimal
absorbed mean power:

Pa;opt ¼
1
4
s2Fe
cc

ð69Þ

Eq. (69) indicates the maximum mean power that can be absorbed
under the considered control law on condition that the control
force demand can be applied without significant time delay and
without saturation problems.

For monochromatic wave excitation with the amplitude jFej
and the angular frequency ω, we have s2Fe ¼ 1

2 Fej2
�� and

ρFeFe ðτÞ ¼ cos ðωtÞ. In this case Eqs. (68) and (69) become

cc ¼
Z 1

0
cos ðωtÞhr _v ðtÞ dt ð70Þ

Pa;opt ¼
1
8
jFej2
cc

ð71Þ

Upon comparison with Eq. (11) it follows that the optimal control
gain in this case becomes cc ¼ ChðωÞ. Then, the mean power
absorbed by the suboptimal causal controller becomes identical
to the optimal absorbed mean power under monochromatic wave
excitation as given by Eq. (26). Hence, the suboptimal causal
controller is optimal under monochromatic wave excitation with
the tuning of the gain parameter given in Eq. (70).

The auto-covariance function of the wave excitation force is
related to the double-sided auto-spectral density function SFeFe ðωÞ
by the Wiener–Khintchine relation (Nielsen, 2007):

κFeFe ðτÞ ¼
Z 1

�1
eiωτSFeFe ðωÞ dω ð72Þ

SFeFe ðωÞ follows from (12) (Nielsen, 2007):

SFeFe ðωÞ ¼ jHeηðωÞj2SηηðωÞ ð73Þ

where SηηðωÞ is the double-sided auto-spectral density function of
the sea-surface elevation process fηðtÞ; t∈Rg. This is modeled as a
zero mean, stationary Gaussian process defined by the following
slightly modified double-sided version of the JONSWAP spectrum

Fig. 4. Autocorrelation coefficient function of the wave excitation force. (a) Mono-
chromatic wave excitation force. (b) Narrow-banded stochastic excitation force
(swells, sf ¼ 0:01). (c) Broad-banded stochastic wave excitation force (wind waves,
sf ¼ 1:0).
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(Hasselmann et al., 1973):

SηηðωÞ ¼ β
H2

s

ωp
γα

jωj
ωp

� ��5

exp �5
4

ω

ωp

� ��4
 !

ð74Þ

where

α¼ exp �1
2

jωj�ωp

sfωp

� �2
 !

Tp ¼
2π
ωp

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
180Hs

g

s

γ ¼ 3:3

9>>>>>>>=
>>>>>>>;

ð75Þ

Tp is the peak period, ωp ¼ 2π=Tp is the related angular peak
frequency, Hs is the significant wave height, and sf is a bandwidth
parameter. β is a normalization parameter to be determined, so the
relation Hs ¼ 4:0sη is fulfilled, corresponding to Rayleigh-
distributed wave heights. In the present version the bandwidth
parameter sf is assumed to be frequency independent, in contrast
to the original formulation of the spectrum (Hasselmann et al.,
1973). As seen, the irregular sea-state is merely defined by the two
parameters sf and Hs. The auto-spectral density function has been
shown in Fig. 5 with various values of sf .

Finally, the expected absorbed power by the optimal control
force given by Eq. (56) becomes

Pa;opt ¼ E½FcðtÞ _V ðtÞ�

¼�ðmþmhÞE½ _V ðtÞ €V ðtÞ��E½ _V ðtÞrðVðtÞÞ� þ
Z 1

t
hr _v ðτ�tÞE½ _V ðtÞ _V ðτÞ� dτ

¼
Z 1

0
κ _V _V ðuÞhr _v ðuÞ du ð76Þ

The auto-covariance function, κ _V _V ðuÞ, of the velocity process at
optimal control follows from the Wiener–Khintchine relation, cf.
Eq. (72):

κ _V _V ðτÞ ¼
Z 1

�1
eiωτS _V _V ðωÞ dω¼ 2

Z 1

0
cos ðωτÞS _V _V ðωÞ dω ð77Þ

where the double-sided auto-spectral density function is given as,
cf. Eqs. (58) and (73):

S _V _V ðωÞ ¼
SFeFe ðωÞ
4C2

hðωÞ
¼ jHeηðωÞj2

4C2
hðωÞ

SηηðωÞ ð78Þ

jHeηðωÞj, ChðωÞ and SηηðωÞ all approach zero as ω-1. Especially ChðωÞ
and jHeηðωÞj are approaching zero quite fast as seen in Figs. 8a and 11.
However, since these functions are determined numerically, the limit
passing of the right-hand side of Eq. (78) is uncertain. Actually,
spurious spectral peaks may evolve due to numerical discretization
errors. Since very little energy is present in the auto-spectrum SηηðωÞ
for ω42ωp, the indicated numerical problem may be circumvented
simply by the assigning ChðωÞ ¼ Chð2ωpÞ for ω≥2ωp.

6. Numerical example

The theory is illustrated with the heave absorber in Fig. 6,
consisting of a cylindrical volume with a diameter D. The bottom
consists of a hemisphere with the same diameter as the cylinder.
The bottom is filled with ballast to stabilize the floater from
capsizing. The relevant data has been indicated in Table 1. The
impulse response function for the radiation force and the wave
excitation force are shown in Figs. 7 and 10. The real and
imaginary parts of the related frequency response functions are
shown in Figs. 8 and 11, respectively. Since the real parts are even
functions of ω, and the imaginary parts are odd functions of ω,
results have only been indicated for positive angular frequencies.
Finally, Fig. 9 indicates the added hydrodynamic mass. Again, due

to the symmetry of the function, results have only been shown for
positive angular frequencies.

Fig. 12 shows the mean power absorbed by the optimal control
as given by Eq. (76) and by the optimal tuned causal controller as
given by Eq. (69) as a function of Hs and sf . As seen, the
performance of the suboptimal causal controller is very close to
that of the optimal controller at all parameter values.

Fig. 13 shows the variation of the normalized mean power
absorbed by the optimal tuned causal control force as a function of
Hs for various values of the bandwidth parameter sf . The results
have been normalized with respect to the 2s2η ¼ 1

8H
2
s . Notice, in

case of monochromatic wave excitation with the wave amplitude
η0 the following relation is holds 2s2η ¼ η20. There is a significant
variation of the normalized absorbed mean power with the
significant wave height. This may be explained with reference to
the second equation in (75), showing that the angular peak
frequency ωp has an inverse square root dependence on Hs. Hence,
the peak value of the one-sided auto-spectral density function
SηðωÞ will shift towards lower angular frequencies as Hs is

Fig. 5. One-sided modified JONSWAP auto-spectral density function as a function
of the bandwidth parameter sf , Hs¼3 m. : sf ¼ 0:03. sf ¼ 0:1.
sf ¼ 0:5. : sf ¼ 1:0.

Fig. 6. Geometry of heave absorber.

Table 1
Heave absorber parameters.

a 8.00 m m 1.84�106 kg
H 7.00 m mh 0.44�106 kg
D 14.00 m ρ 1000 kg/m3

h 30.00 m g 9.81 m/s2
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increased. Further, the modulus of the frequency response func-
tion jHeηðωÞj is a decreasing function of ω, cf. Fig. 11. This means
that the variance of the wave excitation force s2Fe , with the main
contribution given by the integral of jHeηðωÞj2SηðωÞ in the vicinity of
ω¼ ωp, will increase significantly with increasing Hs. On the other
hand the optimal gain factor, cc, as given by Eq. (68), only has a
moderate dependence on Hs. As a result the optimal absorbed
mean power increases with Hs, even after normalization with 2s2η .

Fig. 14 shows the corresponding variation of the normalized mean
power absorbed by the optimal tuned causal control force as a
function of sf for various values of Hs. The normalized absorbed mean
power becomes almost independent of the bandwidth parameter for
sf 40:5. A possible explanation is that the one-sided auto-spectral
density function SηðωÞ becomes increasingly independent of sf as the
bandwidth parameter increased, as seen in Fig. 5.

Considering first-order wave theory the realizations of the
stationary wave excitation force process may be obtained by the
following random phase model (Nielsen, 2007):

f eðtÞ ¼ ∑
J

j ¼ 1

ffiffiffi
2

p
f j cos ðωjt�φjÞ; ωj ¼ ðj�1ÞΔω ð79Þ

where, cf. (73):

f j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SFeFe ðωjÞΔω

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jHeηðωjÞj2SηηðωjÞΔω

q
ð80Þ

J is the number of harmonic components in the spectral decom-
position, fj denotes the standard deviation of harmonic compo-
nents with angular frequencies in the interval �ωj;ωj þ Δω�.

Fig. 7. Impulse response function for the radiation force, hr _v ðtÞ.

Fig. 8. Frequency response function for the radiation force. (a) ReðHr _v ðωÞÞ. (b) ImðHr _v ðωÞÞ.

Fig. 9. Hydrodynamic added mass, MhðωÞ.

Fig. 10. Impulse response function for the wave excitation force, heηðtÞ.
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φj denote samples of the random variables Φj, which are mutually
independent and uniformly distributed in ½0;2π�.

Then, by the use of Eqs. (61) and (79) the following time series
of the displacement v(t), the velocity _vðtÞ and the acceleration €vðtÞ
under optimal tuned causal control are obtained as follows:

vðtÞ ¼ ∑
J

j ¼ 1

f jffiffiffi
2

p
ωjcc

sin ðωjt�φjÞ

_vðtÞ ¼ ∑
J

j ¼ 1

f jffiffiffi
2

p
cc

cos ðωjt�φjÞ

€vðtÞ ¼� ∑
J

j ¼ 1

f jωjffiffiffi
2

p
cc

sin ðωjt�φjÞ

9>>>>>>>>=
>>>>>>>>;

ð81Þ

where cc is given by Eq. (68). The corresponding time series at
optimal control follow by the use of Eqs. (58) and (79):

vðtÞ ¼ ∑
J

j ¼ 1

f jffiffiffi
2

p
ωjChðωjÞ

sin ðωj�φjÞ

_vðtÞ ¼ ∑
J

j ¼ 1

f jffiffiffi
2

p
ChðωjÞ

cos ðωjt�φjÞ

€vðtÞ ¼� ∑
J

j ¼ 1

f jωjffiffiffi
2

p
ChðωjÞ

sin ðωjt�φjÞ

9>>>>>>>>=
>>>>>>>>;

ð82Þ

Fig. 11. Frequency response function for the wave excitation force. (a) ReðHeηðωÞÞ. (b) ImðHeηðωÞÞ.

Fig. 12. Absorbed mean power by optimal control and optimal tuned causal control. — Optimal control. - - - Optimal tuned causal control. (a) Variation with sf , Hs ¼ 3 m.
(b) Variation with Hs, sf ¼ 0:1.

Fig. 13. Variation of normalized optimal absorbed mean power Pa;opt=ð2s2η Þ by the
causal controller as a function of Hs.— sf ¼ 0:1. - - - sf ¼ 0:5.⋯ sf ¼ 1:0. - � - � sf ¼ 5:0.

Fig. 14. Variation of normalized optimal absorbed mean power Pa;opt=ð2s2η Þ by the
causal controller as a function of sf . — Hs ¼ 0:5 m. - - - Hs ¼ 1:0 m. ⋯ Hs ¼ 3:0 m. - �
- � Hs ¼ 5:0 m.
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In order to avoid spurious harmonics in the time series caused by
discretization errors related to the numerical determination of
ChðωÞ, the assignment ChðωÞ ¼ Chð2ωpÞ for ω≥2ωp has been applied,
cf. the remarks following Eq. (78).

The obtained time series are shown in Fig. 15a and b for the
optimal tuned causal and optimal controllers, respectively. As
seen, the response of the absorber is dominated by the peak
angular frequency ωp (Tp¼7.42 s) in both cases.

Fig. 16a and b shows the time series of the instantaneous
absorbed power for the optimal tuned causal controller and the
optimal controllers, respectively. As seen, both time series are
dominated by the angular frequency 2ωp.

7. Concluding remarks

Based on optimal control theory, the optimal control law for a
single point absorber in irregular sea-states has been derived,
assuming nonlinear buoyancy stiffness and linear wave theory. The
optimal controller is proved to be a closed-loop type, with feedback
from the present displacement and acceleration and all future
velocities of the absorber, making the control law non-causal. The

study shows that the essential property of the optimal controller is to
enforce all harmonic components of the wave excitation force into
phase with the corresponding harmonic components of the absorber
velocity with a frequency depending proportionality factor.

To circumvent the indicated non-causality problem, a causal
closed-loop controller has been suggested with feedback from
measurements of the present displacement and acceleration and
all past velocities of the absorber, based on a slight modification of
the optimal control law. The basic idea behind the control strategy
is again to enforce the velocity response of the absorber into phase
with the wave excitation force at any time. In this case the
proportionality factor between the harmonic components is fre-
quency independent. The said proportionality factor, which
appears as an unspecified derivative gain parameter in the control
law, has been optimized for a given irregular sea-state defined by
the auto-spectral density function of the sea-surface elevation
process. The optimal tuned causal controller is optimal under
monochromatic wave excitation. In other sea states the controller
is merely suboptimal. However, in case of plane irregular wave
excitation, the study shows that the causal controller absorbs
almost as much power as the optimal controller for all parameter
values defining the auto-spectral density function.

Fig. 15. Time series of the displacement v(t), velocity _vðtÞ and acceleration €vðtÞ of the absorber under feedback control, sf ¼ 0:1, Hs ¼ 3 m. (a) Optimal tuned causal control.
(b) Optimal control.

Fig. 16. Time series of instantaneous power outtake by optimal control and optimal tuned causal control, sf ¼ 0:1, Hs ¼ 3 m. — Optimal control. - - - Optimal tuned causal
control.
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a b s t r a c t

The Gyroscopic Power Take-Off (GyroPTO) wave energy point absorber consists of a float
rigidly connected to a lever. The operational principle is somewhat similar to that of the
so-called gyroscopic hand wrist exercisers, where the rotation of the float is brought
forward by the rotational particle motion of the waves. At first, the equations of motion of
the system are derived based on analytical rigid body dynamics. Next, assuming
monochromatic waves simplified equations are derived, valid under synchronisation of
the ring of the gyro to the angular frequency of the excitation. Especially, it is
demonstrated that the dynamics of the ring can be described as an autonomous nonlinear
single-degree-of-freedom system, affected by three different types of point attractors. One
where the ring vibrations are attracted to a static equilibrium point indicating unstable
synchronisation and two types of attractors where the ring is synchronised to the wave
angular frequency, either rotating in one or the opposite direction. Finally, the stability
conditions and the basins of attraction to the point attractors defining the synchronised
motion are determined.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The idea of using the gyroscopic moment on a spinning flywheel to absorb wave energy from a floating structure is not
new, see e.g. the OCEANTEC Wave Energy Converter [1], and the devices of Kanki et al. [2,3], and Bracco et al. [4,5]. Common
to these previous developments is a mechanical system made up of a spinning flywheel with a gimbal and a power-take off
system connected to the gimbal along its rotational axis. The wave induced pitch and roll motion of the float produces a time
variation of the orientation of the spin axis, which combined with the spinning velocity of a flywheel creates a gyroscopic
torque parallel to the precession axes. In turn, the gyroscopic torque induces a precession of the gimbal making the capture
of wave energy possible. The underlying dynamics of the indicated developments was investigated by Townsend and Shenoi
[6], who demonstrated that strong nonlinearities including period doubling were present in the dynamic responses of
the float.

The operation principle of the GyroPTO wave energy point absorber is somewhat similar to that of the so-called
gyroscopic hand wrist exerciser sold under the names Dynabee, Powerball or Dynaflex, the dynamics of which was
described by Gulick and O'Reilly [7]. The spin-axis of the flywheel is supported by a track on a ring with a width slightly
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larger than the diameter of the axis. The track forms a guidance for the precession of the spin-axis, which is assumed to roll
on the inner side of the track during rotations of the ring without any slip. If the ring is set in rotation with a certain angular
frequency, a gyroscopic moment is generated in the plane of the ring and at right angle to the spin-axis. In turn this moment
produces the necessary contact force between the spin axis and the inner side of the track to provide the friction force
making the rolling of spin-axis possible. Hence, the gyroscopic moment enforces a kinematical constrain between the
rotational velocities of the spin-axis and the ring and makes the former to rotate at a large angular velocity. Further, in case
the ring is subjected to external harmonic vibrations with a given angular frequency and orientation, it turns out that the
angular frequency of the ring may synchronise with the angular frequency of the excitation. The stator and the rotor of the
electric power generator are fixed to the ring and the spin axis of the flywheel, respectively.

The principle has previously been under consideration for energy harvesting assuming that the system was subjected to
a prescribed harmonic varying external rotation of the plane of the ring [8,9]. These studies demonstrated that stable
synchronised precession of the ring only appears for some amplitude and frequency of the external excitation and that
discontinuous state solutions exist for different initial conditions [9].

The GyroPTO wave energy absorber consists of a float rigidly connected to a lever. In the other end the lever is supported
by a hinge, which allows for rotations around a horizontal and vertical axis. The construction may be classified as a socalled
wave energy point absorber, which is defined as a device with geometrical dimensions that are small compared to a
characteristic wavelength of the seastate and is capable of absorbing energy from waves propagating in all directions [10].
The equations of motion are nonlinear for which reason subharmonic or even chaotic response may occur under harmonic
wave excitation. However, when synchronisation of the angular frequency of the ring to the angular frequency of the wave
loading takes place, the response of the float becomes almost harmonic. This phenomenon is the basic reason for the
functioning of the system. At synchronisation, this means that the generated electric power becomes almost constant in
time, making the need for expensive additional power electronics unnecessary before the power can be supplied to the grid.
This is in contrast to other wave energy point absorbers, where the instantaneous absorbed power varies significantly with
time, making such power electronics mandatory.

In the paper, the equations of motion of the device are at first derived based on analytical rigid body dynamics. The wave
loading on the float is described based on the first-order wave theory, where the related hydrodynamic coefficients are
assumed to be calculated numerically. Next, the dynamics of the ring at synchronisation can be described by an autonomous
nonlinear single-degree-of-freedom system with parametric excitation. The said equation is related with three types of
point attractors. One where the ring vibrations are attracted to a state of rest indicating unstable synchronisation, and the
other two types of point attractors where the ring is synchronised to the wave angular frequency, either rotating in one or
the opposite direction. Finally, the stability and the basins of attraction of the synchronised point attractors are determined.

2. Mechanics of GyroPTO point absorber

2.1. Rigid body dynamics of GyroPTO point absorber

The point absorber consists of a float with a ring and a flywheel inside, see Fig. 1. The float of the GyroPTO device is made
up of two semi-spheres with the diameter d connected with a cylindrical part with the height c, see Fig. 2. The spin-axis of
the flywheel has the radius r1, and the inner radius of the track of the ring is r2. If the ring is set in motion with the angular

Lever

Float

Ring

Flywheel

Fig. 1. Schematic details of the GyroPTO point absorber.
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frequency _ψ ðtÞ, a gyroscopic moment J33
_θðtÞ _ψ ðtÞ on the flywheel is generated according to the law of moment of momentum,

where J3
3
is the polar mass moment of inertia, and _θðtÞ is the angular spin frequency of the flywheel. With the sign

definitions given in Fig. 3, the no-slip rolling of the axis of the flywheel on the track implies the following kinematical
constrain between the indicated angular frequencies:

_θðtÞ ¼N _ψ ðtÞ (1)

where the gear ratio N is given as

N¼ r2
r1

(2)

Due to the constraint in Eq. (1) the internal dynamics of the device has merely a single degree of freedom, which we shall
choose as ψ ðtÞ.

In the following different principal axes coordinate systems attached to three rigid bodies moving relative to each other
will be introduced. The components of a vector and quantities defined in relation to the kth principal axis coordinate system
ðxk1; xk2; xk3Þ; k¼ 1;2;3 are indicated with an upper k. Hence, the jth component of a vector v in the kth principal axis
coordinate system is denoted as vj

k
, and the principal mass moment of inertia of a rigid body at rotation around the

coordinate axis xj
k
is denoted as Jj

k
.

In Fig. 2 the mass center of gravity G1 on of the lever and float is indicated, and an ðx11; x12; x13Þ principal axis coordinate
system with origin at G1 fixed to the float is introduced. Due to the rotational symmetry of the device, the centerline of the
lever forms a principal axis, so G1 is placed on this centerline a distance a from O. The x2

1
-axis is placed along the centerline

Fig. 3. Rolling contact between the precessing ring and the spinning flywheel.

Fig. 2. Schematic geometry of GPTO point absorber. Definition of the ðx11 ; x12 ; x13Þ-coordinate system fixed to the float and lever.
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and orientated in the direction away from O. The x3
1
-axis is placed along the spin axis of the flywheel in a referential position.

The ring is precessing around the x2
1
-axis, and the spin axis of the flywheel is supported to the ring via hinges. Hence, the

plane of the flywheel is always orthogonal to the plane of the ring.
The mass of the lever and float is denoted m1, and the principal axis mass moment of inertia at rotations around the xj

1
-

axis is denoted Jj
1
. Obviously, J11 ¼ J13.

It is assumed that the device is undergoing rotations with the angular velocity vector _φðtÞ. The components of _φðtÞ in the
ðx11; x12; x13Þ-coordinate system are denoted _φ1

1ðtÞ; _φ1
2ðtÞ; _φ1

3ðtÞ. No rotations take place around the x2
1
-axis, so _φ1

2ðtÞ � 0. Hence,
_φ1
1ðtÞ and _φ1

3ðtÞ represent the degrees of freedom of the external structure.
The translational velocity vector _uðtÞ of G1 has the following components in the ðx11; x12; x13Þ-coordinate system:

_u1
1ðtÞ
_u1
2ðtÞ
_u1
3ðtÞ

2
664

3
775¼

�a _φ1
3ðtÞ

0
a _φ1

1ðtÞ

2
664

3
775 (3)

So, the kinetic energy of the lever and float becomes

T1 _φ1
1ðtÞ; _φ1

3ðtÞ
� �

¼ 1
2
m1 _u1

1ðtÞ
� �2

þ _u1
3ðtÞ

� �2� �
þ1
2
J11 _φ1

1ðtÞ
� �2

þ1
2
J13 _φ1

3ðtÞ
� �2

¼ 1
2

J11þm1a2
� �

_φ1
1ðtÞ

� �2
þ _φ1

3ðtÞ
� �2� �

9>>>=
>>>;

(4)

Fig. 4 shows the position of the mass center of gravity G2 of both the ring and the flywheel, placed along the x2
1
-axis at a

distance b from G1. The ring is precessing around the x2
1
-axis, and the spin-axis of the flywheel is fixed to the ring via a

bearing, which allows merely for the spin. An ðx21; x22; x23Þ principal axis coordinate system with origin at G2 is introduced
fixed to the precessing ring. The x2

2
-axis is co-directional to the x2

1
-axis, and the x3

2
-axis is placed along the spin-axis of the

flywheel. The angular precession velocity _ψ ðtÞ of the ring is considered positive in the x2
2
-direction.

The mass of the ring is denoted m2, and the principal axis mass moment of inertia at rotations around the xj
2
-axis is

denoted Jj
2
. Obviously, J21 ¼ J23 ¼ 1

2J
2
2. J2

2
signifies the polar moment of inertia of the ring.

The translational velocity vector _vðtÞ of G2 has the following components in the ðx11; x12; x13Þ-coordinate system:

_v1
1ðtÞ
_v1
2ðtÞ
_v1
3ðtÞ

2
664

3
775¼

�ðaþbÞ _φ1
3ðtÞ

0
ðaþbÞ _φ1

1ðtÞ

2
664

3
775 (5)

The components of _φðtÞ in the ðx11; x12; x13Þ- and ðx21; x22; x23Þ-coordinate systems are related as

_φ2
1ðtÞ

_φ2
2ðtÞ

_φ2
3ðtÞ

2
664

3
775¼

cosψ 0 � sinψ
0 1 0
sinψ 0 cosψ

2
64

3
75

_φ1
1ðtÞ

_φ1
2ðtÞ

_φ1
3ðtÞ

2
664

3
775¼

cosψ _φ1
1ðtÞ� sinψ _φ1

3ðtÞ
0
sinψ _φ1

1ðtÞþ cosψ _φ1
3ðtÞ

2
664

3
775 (6)

Fig. 4. Definition of the ðx21 ; x22; x23Þ-coordinate system fixed to the ring.
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So, the components ð _ψ 2
1; _ψ

2
2; _ψ

2
3Þ of the angular velocity vector _ψ ðtÞ of the ring in the ðx21; x22; x23Þ-coordinate system

become

_ψ 2
1ðtÞ

_ψ 2
2ðtÞ

_ψ 2
3ðtÞ

2
664

3
775¼

cosψ _φ1
1ðtÞ� sinψ _φ1

3ðtÞ
_ψ ðtÞ
sinψ _φ1

1ðtÞþ cos ψ _φ1
3ðtÞ

2
664

3
775 (7)

The kinetic energy of the ring becomes

T2 _φ1
1ðtÞ; _φ1

3ðtÞ; _ψ ðtÞ
� �

¼ 1
2
m2 _v1

1ðtÞ
� �2

þ _v1
3ðtÞ

� �2� �
þ1
2
J21 _ψ 2

1ðtÞ
� �2

þ1
2
J22 _ψ 2

2ðtÞ
� �2

þ1
2
J23 _ψ 2

3ðtÞ
� �2

¼ 1
2

1
2
J22þm2ðaþbÞ2

� �
_φ1
1ðtÞ

� �2
þ _φ1

3ðtÞ
� �2� �

þ1
2
J22 _ψ ðtÞ� �2

9>>>=
>>>;

(8)

In Fig. 5 an ðx31; x32; x33Þ principal axis coordinate system with origin at G2 fixed to the spinning flywheel has been defined.
The x3

3
-axis is placed along the spin axis, co-directional to the x3

2
-axis. The angular spin velocity _θðtÞ is considered positive in

the x3
3
-direction. The x1

2
- and x2

2
-axes are rotated into the x1

3
- and x2

3
-axes by the rotational angle θ around the x3

2
-axis.

The mass of the flywheel is denoted m3, and the principal axis mass moment of inertia at rotations around the xj
3
-axis is

denoted Jj
3
. Obviously, J31 ¼ J32 ¼ 1

2J
3
3. J3

3
signifies the polar moment of inertia of the flywheel.

The translational velocity vector of the flywheel is identical to that of the ring and given by Eq. (5). The components of
_ψ ðtÞ in the ðx21; x22; x23Þ- and ðx31; x32; x33Þ-coordinate systems are related as

_ψ 3
1ðtÞ

_ψ 3
2ðtÞ

_ψ 3
3ðtÞ

2
664

3
775¼

cosθ sin θ 0
� sin θ cosθ 0
0 0 1

2
64

3
75

_ψ 2
1ðtÞ

_ψ 2
2ðtÞ

_ψ 2
3ðtÞ

2
664

3
775¼

cos θ _ψ 2
1ðtÞþ sin θ _ψ 2

2ðtÞ
� sin θ _ψ 2

1ðtÞþ cos θ _ψ 2
2ðtÞ

_ψ 2
3ðtÞ

2
664

3
775 (9)

So, the components ð _θ3
1;

_θ
3
2;

_θ
3
3Þ of the angular velocity vector _θðtÞ of the flywheel in the ðx31; x32; x33Þ-coordinate system

become

_θ
3
1ðtÞ
_θ
3
2ðtÞ
_θ
3
3ðtÞ

2
66664

3
77775¼

cos θ _ψ 2
1ðtÞþ sin θ _ψ 2

2ðtÞ
� sin θ _ψ 2

1ðtÞþ cos θ _ψ 2
2ðtÞ

_ψ 2
3ðtÞþ _θðtÞ

2
664

3
775 (10)

Fig. 5. Definition of the ðx31; x32 ; x33Þ-coordinate system fixed to the flywheel.
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The kinetic energy of the flywheel becomes

T3 _φ1
1ðtÞ; _φ1

3ðtÞ;ψ ðtÞ; _ψ ðtÞ; _θðtÞ
� �

¼ 1
2
m3 _v1

1ðtÞ
� �2

þ _v1
3ðtÞ

� �2� �
þ1
2
J31

_θ
3
1ðtÞ

� �2

þ1
2
J32

_θ
3
2ðtÞ

� �2

þ1
2
J33

_θ
3
3ðtÞ

� �2

¼ 1
2
m3ðaþbÞ2 _φ1

1ðtÞ
� �2

þ _φ1
3ðtÞ

� �2� �
þ1
4
J33 _ψ 2

1ðtÞ
� �2

þ _ψ 2
2ðtÞ

� �2� �
þ1
2
J33 _ψ 2

3ðtÞþ _θðtÞ
� �2

¼ 1
2

1
2
J33þm3ðaþbÞ2

� �
_φ1
1ðtÞ

� �2
þ _φ1

3ðtÞ
� �2� �

þ1
4
J33 _ψ ðtÞ� �2þ sin ψ _φ1

1ðtÞþ cos ψ _φ1
3ðtÞ

� �2
þ4 sin ψ _φ1

1ðtÞþ cos ψ _φ1
3ðtÞ

� �
_θðtÞþ2 _θðtÞ

� �2� �

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(11)

The kinetic energy of the structure is obtained by adding the contributions defined in Eqs. (4), (8) and (11):

T ¼ T _φ1
1ðtÞ; _φ1

3ðtÞ;ψ ðtÞ; _ψ ðtÞ
� �

¼ T1 _φ1
1ðtÞ; _φ1

3ðtÞ
� �

þ T2 _φ1
1ðtÞ; _φ1

3ðtÞ; _ψ ðtÞ
� �

þ T3 _φ1
1ðtÞ; _φ1

3ðtÞ;ψ ðtÞ; _ψ ðtÞ; _θðtÞ
� �

¼ 1
2
J1 _φ1

1ðtÞ
� �2

þ _φ1
3ðtÞ

� �2� �
þ1
2
J2 _ψ ðtÞ� �2

þ1
2
J3 sin ψ _φ1

1ðtÞþ cos ψ _φ1
3ðtÞ

� �2
þ4N sin ψ _φ1

1ðtÞþ cos ψ _φ1
3ðtÞ

� �
_ψ ðtÞ

� �

9>>>>>>>>>>=
>>>>>>>>>>;

(12)

where the frequency constrain in Eq. (1) has been used. Further, the following quantities have been introduced:

J1 ¼ J11þ
1
2
J22þ

1
2
J33þm1a2þ m2þm3ð ÞðaþbÞ2

J2 ¼ J22þ N2þ1
2

� �
J33

J3 ¼
1
2
J33

9>>>>>>>=
>>>>>>>;

(13)

φ1
1ðtÞ, φ1

3ðtÞ and ψ ðtÞ make up the degrees of freedom of the system.
The equations of motions follow from the Euler–Lagrange stationarity conditions of the action integral [11]:

d
dt

∂T
∂ _φ1

1

 !
¼Qφ1

1
tð Þ

d
dt

∂T
∂ _φ3

1

 !
¼Qφ3

1
tð Þ

d
dt

∂T
∂ _ψ

� �
� ∂T
∂ψ

¼Qψ tð Þ

9>>>>>>>>>>=
>>>>>>>>>>;

(14)

where Qφ1
1
ðtÞ, Qφ3

1
ðtÞ, Qψ ðtÞ denote the external conservative and non-conservative moments work-conjugated to the

degrees of freedom φ1
1ðtÞ, φ1

3ðtÞ, ψ ðtÞ, respectively.
The generator has a stator fixed to the ring and a rotor fixed to the spin axis of the flywheel. Hence, the power extract

depends on the angular spin velocity _θ of the flywheel relative to the ring. Further, the generator torque Mg(t) must be
acting in the opposite direction of the spin, i.e. in the negative x3

1
-direction. The extracted electric power is

PeðtÞ ¼MgðtÞ _θðtÞ ¼NMgðtÞ _ψ ðtÞ, which may be modelled by applying an external torque Qψ ðtÞ ¼ �NMgðtÞ on the right-
hand side of the precession equation in Eq. (14).

Correspondingly, the reaction of the generator torque on the stator, and hence on the float, is positive, when acting in the
positive x3

2
-direction. The components in the ðx11; x12; x13Þ-coordinate system follow from the inverse coordinate transforma-

tion given in Eq. (6):

Q _φ11ðtÞ
Q _φ21ðtÞ
Q _φ31ðtÞ

2
64

3
75¼

cosψ 0 sin ψ
0 1 0
� sinψ 0 cosψ

2
64

3
75

0
0
MgðtÞ

2
64

3
75¼

sin ψ MgðtÞ
0
cos ψ MgðtÞ

2
64

3
75 (15)

The kinetic energy given by Eq. (12) is inserted on the left-hand side and the indicated generalised loads on the right-
hand sides, resulting in

J1þ J3 sin 2ψ
� �

€φ1
1þ J3 sin ψ cos ψ €φ1

3þ J3 2N sin ψ €ψ

þ J3 sin ð2ψ Þ _φ1
1þ cos ð2ψ Þ _φ1

3

� �
_ψ þ J3 2N cos ψ _ψ

� �2 ¼ sin ψ MgðtÞþMφ1
1
ðtÞ

(16a)
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J3 sin ψ cos ψ €φ1
1þ J1þ J3 cos 2ψ
� �

€φ1
3þ J3 2N cos ψ €ψ

þ J3 cos ð2ψ Þ _φ1
1� sin ð2ψ Þ _φ1

3

� �
_ψ � J3 2N sin ψ _ψ

� �2 ¼ cos ψ MgðtÞþMφ1
3
ðtÞ (16b)

J3 2N sin ψ €φ1
1þ J3 2N cos ψ €φ1

3þ J2 €ψ

�1
2
J3 sin ð2ψ Þ _φ1

1

� �2
� _φ1

3

� �2� �
þ2 cos ð2ψ Þ _φ1

1 _φ
1
3

� �
¼ �NMgðtÞ

(16c)

Mφ1
1
ðtÞ and Mφ1

3
ðtÞ denote the external hydrodynamic moments work conjugated to φ1

1ðtÞ and φ1
3ðtÞ with contributions

from quasi-static buoyancy, radiation damping and external wave load, respectively. These moments will be indicated in a
following section.

The generator is assumed to be asynchronous with the characteristic [12]

MgðtÞ ¼Mg;0ðtÞþMg;1
_θðtÞ ¼Mg;0ðtÞþMg;1N _ψ ðtÞ (17)

Mg;0ðtÞ is assumed to be applied without any significant time delay and make up the control demand of the problem.
The instantaneous absorbed power by the point absorber is given as

PaðtÞ ¼Mφ1
1
ðtÞ _φ1

1ðtÞþMφ3
1
ðtÞ _φ3

1ðtÞ (18)

The instantaneous generated electric power is given as

PeðtÞ ¼NMgðtÞ _ψ ðtÞ ¼NMg;0ðtÞ _ψ ðtÞþN2Mg;1 _ψ 2ðtÞ (19)

Pa(t) varies strongly with time, whereas Pe(t) is almost constant. However, the time average PaðtÞ is equal to Pe(t), apart
from a small amount of power loss due to mechanical friction.

2.2. Hydrodynamic loads on GyroPTO point absorber

We shall merely consider 2D monochromatic wave excitation with the wave period T and amplitude η0 propagating in
the positive x3

1
-direction. The water depth is h. Assuming linear wave theory, the hydrodynamics momentsMφ1

1
ðtÞ andMφ1

3
ðtÞ

may be written as

Mφ1
1
ðtÞ ¼ �k1φ1

1ðtÞ�Ch;1ðωÞ _φ1
1ðtÞ� Jh;1ðωÞ €φ1

1ðtÞ�M1ðωÞ sin ðωtÞ (20a)

Mφ1
3
ðtÞ ¼ �k3φ1

3ðtÞ�Ch;3ðωÞ _φ1
3ðtÞ� Jh;3ðωÞ €φ1

3ðtÞ�M3ðωÞ cos ðωtþαÞ (20b)

Due to the symmetry of the structure, no self-induced couplings take place between the hydrodynamics moments Mφ1
1
ðtÞ

and Mφ1
3
ðtÞ, i.e. Mφ1

1
ðtÞ merely depends on the angular wave frequency φ1

1ðtÞ and its derivatives, and Mφ1
3
ðtÞ on φ1

3ðtÞ and its
derivatives.

k3 indicates the buoyancy stiffness coefficient at small rotations φ1
3ðtÞ around the static equilibrium state. k1 is a

mechanical spring stiffness introduced in order to prevent drift in the unsupported degree of freedom φ1
1ðtÞ. This stiffness

should be relatively small. In the numerical example it has been specified as k1C0:05k3.
Ch;1ðωÞ, Ch;2ðωÞ and Jh;1ðωÞ, Jh;3ðωÞ indicate the radiation damping coefficients and the added mass moments of inertia,

respectively [10]. These quantities depend on the wave period via the angular wave frequency ω¼ 2π=T .
M1ðωÞ and M3ðωÞ denote the amplitudes of the moments on the float from the external wave loading. These are given as

M1ðωÞ ¼H1ðωÞη0
M3ðωÞ ¼H3ðωÞη0

)
(21)

H1ðωÞ and H3ðωÞ indicate the moduli of the frequency response functions for the wave excitation moments with the
surface elevation observed at the position of the float. α¼ αðωÞ specifies the phase lag between the two load components,
and is specified so M3 in Eq. (20b) becomes positive.

The hydrodynamic parameters k3, Ch;1ðωÞ, Ch;2ðωÞ, Jh;1ðωÞ, Jh;3ðωÞ, M1ðωÞ, M3ðωÞ and αðωÞ have been calculated with the
boundary element program WAMIT [13].

2.3. Simplified equations of motion

At synchronisation of the angular rotational frequency of the ring, we have _ψ ðtÞC7ω ) €ψ ðtÞC0 and
ψ ðtÞC7 ðωtþδ0Þ, where δ0 is an unknown phase angle to be determined. Here and below the upper signs in 7 and 8
refer to synchronisation in the positive direction, and the lower signs to synchronisation in the negative direction. On the
left-hand sides of Eqs. (16a) and (16b) we have J3⪡J1 , so the 2nd, 3rd and 4th terms may be ignored compared to the 1st
term. Further, the first terms on the right-hand sides, indicating the energy transferred from the float to the gyro, are
ignorable compared to the radiation damping terms Ch;1 _φ

1
1 and Ch;3 _φ

1
3. On the left-hand side of Eq. (16c) the 4th term is
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ignorable compared to the 1st and 2nd terms. Then, Eq. (16) may be reduced to

J1þ Jh;1ðωÞ� �
€φ1
1ðtÞþCh;1ðωÞ _φ1

1ðtÞþk1φ1
1ðtÞ ¼ � J32Nω

2 cos ðωtþδ0Þ�M1ðωÞ sin ðωtÞ (22a)

J1þ Jh;3ðωÞ� �
€φ1
3ðtÞþCh;3ðωÞ _φ1

3ðtÞþk3φ1
3ðtÞ ¼ 7 J32Nω

2 sin ðωtþδ0Þ�M3ðωÞ cos ðωtþαÞ (22b)

J2 €ψ þ J32N sin ψ €φ1
1þ J32N cos ψ €φ1

3þNMgðtÞ ¼ 0 (22c)

Eqs. (22a) and (22b) represent the equations of motion of two uncoupled single-degree-of-freedom oscillators under
harmonic excitation. The stationary solutions read [14]

φ1
1ðtÞ ¼ �Φ1ðωÞ sin ωtþβ1ðωÞ� �

φ1
3ðtÞ ¼ �Φ3ðωÞ cos ωtþβ3ðωÞ� �

)
(23)

where

Φ1 ωð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

1�4M1J3Nω2 sin δ0þ J32Nω2
� �2q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1� J1þ Jh;1

� �
ω2

� �2þC2
h;1ω2

q (24a)

Φ3 ωð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

374M3J3Nω2 sin ðα�δ0Þþ J32Nω2
� �2q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3� J1þ Jh;3

� �
ω2

� �2þC2
h;3ω2

q (24b)

β1 ωð Þ ¼ arctan
J32Nω2 cos δ0

M1� J32Nω2 sin δ0

� �
�arctan

ωCh;1

k1� J1þ Jh;1
� �

ω2

 !
(24c)

β3 ωð Þ ¼ arctan
M3 sin α7 J32Nω2 cos δ0
M3 cos α8 J32Nω2 sin δ0

� �
�arctan

ωCh;3

k3� J1þ Jh;3
� �

ω2

 !
(24d)

The phases β1, β3 are arranged, so the amplitudes Φ1, Φ3 become positive. From Eqs. (24c) and (24d) follows that
β1ðωÞ-0 and β3ðωÞ-α for ω-0, and β1ðωÞ-δ0 and β3ðωÞ-δ0 for ω-1. This means that φ1

1ðtÞ and φ1
3ðtÞ become

increasingly in phase, as ω-1.
When the gyro is shut down (ψ ðtÞ ¼ 0), the absolute value (modulus) of the frequency response function for the float (on

both DOFs) with respect to the sea surface elevation can be obtained by modifying the first two equations in Eq. (24). The
resulting expression are given by

Φ1ðωÞ
η0

¼ H1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 � J1 þ Jh;1ð Þω2ð Þ2 þC2

h;1ω2

q
Φ3ðωÞ
η0

¼ H3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3 � J1 þ Jh;3ð Þω2ð Þ2 þC2

h;3ω2

q

9>>>>=
>>>>;

(25)

The generator is assumed to be asynchronous with Mg;0 � 0 corresponding to the linear characteristic:

MgðtÞ ¼Mg;1
_θðtÞ ¼Mg;1N _ψ ðtÞ (26)

Insertion of Eqs. (23) and (26) into Eq. (22) provides

€ψ þe _ψ þ f Φ1 sin ψ sin ωtþβ1

� �þΦ3 cos ψ cos ωtþβ3

� �� �¼ 0 (27)

where

e¼ 2N2

1þ2N2

Mg;1

J33
; f ¼ 2N

1þ2N2ω
2 (28)

The following transformations are introduced:

Φ1 ¼Φ0 sin β
Φ3 ¼Φ0 cos β

)
)

β¼ arctan
Φ1

Φ3

� �
; Φ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ2

1þΦ2
3

q
(29)

So, Eq. (27) may be written as

€ψ þe _ψ þω2
0 γ1 cos ðψ�ωtÞþγ2 cos ðψþωtÞþε1 sin ðψ�ωtÞþε2 sin ðψþωtÞ� �¼ 0 (30)
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γ1 ¼ sinβ cosβ1þ cosβ cosβ3; γ2 ¼ � sin β cos β1þ cosβ cosβ3

ε1 ¼ sin β sinβ1þ cos β sin β3; ε2 ¼ sin β sinβ1� cos β sin β3

ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
fΦ0

r
9>>>=
>>>;

(31)

Finally, the following transformations are introduced:

γ1 ¼ λ1 cos μ1; ε1 ¼ λ1 sin μ1

γ2 ¼ λ2 cos μ2; ε2 ¼ λ2 sin μ2

)
)

μ1 ¼ arctan sin β sinβ1 þ cos β sin β3
sinβ cosβ1 þ cosβ cosβ3

� �
þnπ; λ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin ð2βÞ cos ðβ1�β3Þ

p
μ2 ¼ arctan sin β sinβ1 � cos β sin β3

� sinβ cosβ1 þ cosβ cosβ3

� �
þnπ; λ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin ð2βÞ cos ðβ1�β3Þ

p
9>=
>; (32)

where the integer n is chosen so μ1;μ2A ½0;2π�.
Then, Eq. (30) may be written as

€ψ þe _ψ þω2
0 λ1 cos ðψ�ωt�μ1Þþλ2 cos ðψþωt�μ2Þ
� �¼ 0 (33)

Eq. (33) indicates the motion of an autonomous nonlinear single-degree-of-freedom system with parametric excitation
and linear viscous damping.

3. Stability analysis

At first, assume that Φ1 ¼Φ34β1 ¼ β3 ¼ 0. Then, Eq. (27) may be written as

€ψ þe _ψ þω2
0 cos ψ�ωt

� �¼ 0 (34)

where ω0 has been redefined as

ω0 ¼
ffiffiffiffiffiffiffiffiffi
fΦ1

p
(35)

Eq. (34) may be rewritten in the form:

€δþe _δþω2
0 cos δþeω¼ 0 (36)

where

δ¼ψ�ωt (37)

The equilibrium points of Eq. (36) are given as ðδ; _δÞ ¼ ðδ1;0Þ and ðδ; _δÞ ¼ ðδ2;0Þ, where

δ1 ¼ πþarccos
eω
ω2

0

 !
þ2nπ

δ2 ¼ π�arccos
eω
ω2

0

 !
þ2nπ

9>>>>>=
>>>>>;

(38)

and n indicates an arbitrary integer. The actual value of this parameter depends on the initial values ψ ð0Þ ¼ψ0 and
_ψ ð0Þ ¼ _ψ 0 of the ring motion. As follows from Eq. (38) equilibrium points representing synchronisation are only present for
eωrω2

0. Further, δ1-δ2 as eω-ω2
0.

In order to analyse the stability of the identified equilibrium points, the following perturbed motion is considered:

δðtÞ ¼ δ1;2þΔδðtÞ (39)

Upon insertion into Eq. (36) the following linearised equation is obtained, valid for motions of the perturbation in the
proximity of the equilibrium points δðtÞ ¼ δ1;2:

Δ €δþeΔ _δ�ω2
0 sin δ1;2 Δδ¼ 0 (40)

where

sin δ1 ¼ � sin arccos
eω
ω2

0

 ! !
o0; sin δ2 ¼ � sin δ140 (41)

Hence, the equilibrium points δ¼ δ2 represent unstable saddle points, and the equilibrium points δ¼ δ1 represent
asymptotically stable focus. As eω-ω2

0 a Hopf instability takes place of δ1, and the synchronisation is lost. Instead, the
system is attracted to a new stable state, where the ring performs small forced harmonic motions with the angular
frequency ω around the point ψ ¼ψ1, driven by the term ω2

0 cos ðψ2þωtÞ, where ψ1 and ψ2 are integration constants
depending on the initial values ψ0 and _ψ 0, respectively. These results were first given by Gulick and O'Reilly [7].
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If eω4ω2
0 no synchronisation is possible. Using, Eqs. (28), (29) and (35) this provides the following stability condition for

the synchronised motion:

Mg;1r
1
N
Φ0J

3
3ω (42)

From Eq. (26) follows that the maximum electric power which can be extracted from the synchronised motion becomes

Pe;max ¼N2Mg;1ω2 ¼ω3J33NΦ0 (43)

Next, assume Φ1aΦ33β1a03β3a0. Let

δðtÞ ¼ψ ðtÞ�ωt�μ1 (44)

Then, Eq. (36) may be written as

€δþe _δþλ1ω2
0 cos δþλ2ω2

0 cos δþ2ωtþμ1�μ2

� �þeω¼ 0 (45)

The following equilibrium points are identified from Eq. (45), corresponding to possible synchronised motions:

δ1 ¼ πþarccos
eω
λ1ω2

0

 !
þ2nπ

δ2 ¼ π�arccos
eω
λ1ω2

0

 !
þ2nπ

9>>>>>=
>>>>>;

(46)

As seen, δ1↓ð2nþ1Þπ and δ2↑ð2nþ1Þπ as eω↑λ1ω2
0.

At synchronisation to the equilibrium point δ1 the rotation of the ring is given as

ψ ðtÞ ¼ωtþμ1þδ1 (47)

The assumed rotation at synchronisation in Eqs. (22)–(33) was ψ ðtÞ ¼ωtþδ0. Hence, we have the following relation for
the unknown phase δ0:

δ0 ¼ μ1þδ1 (48)

μ1 ¼ μ1ðδ0Þ and δ1 ¼ δ1ðδ0Þ are nonlinear functions of δ0, so Eq. (48) has to be solved by iteration. Since μ1 is determined
within an addend 2πn, cyclic iteration and similar simple iteration algorithms will not work. In the present case the solution
was found guided by the graphical representation of μ1ðδ0Þ and δ1ðδ0Þ for δ0A �0;2π�.

The stability of Eq. (45) in the vicinity of the indicated equilibrium points is checked by a first-order Lyapunov analysis
similar to the one performed Eqs. (39) and (40), resulting in

Δ €δþeΔ _δ�ω2
0 λ1 sin δ1;2þλ2 sin δ1;2þ2ωtþμ1�μ2

� �� �
Δδ¼ �λ2ω2

0 cos δ1;2þ2ωtþμ1�μ2

� �
(49)

Motions in the vicinity of ðδ; _δÞ ¼ ðδ2;0Þ are unstable, since sin δ240. In the vicinity of ðδ; _δÞ ¼ ðδ1;0Þ forced harmonic
vibrations with the angular frequency 2ω take place, which are partly caused by the parametric excitation
�λ2ω2

0 sin δ1þ2ωtþμ1�μ2

� �
Δδ and partly by the additive excitation �λ2ω2

0 cos δ1þ2ωtþμ1�μ2

� �
. Generally, these

vibrations are stable. Additionally, the parametric excitation may cause internal instability at the frequency ratios [15]:

ωffiffiffiffiffi
λ1

p
ω0

¼ 1;
1
2
;
1
3
;… (50)

However, since ω4ω0 for any realistic wave frequency and λ1r
ffiffiffi
2

p
, parametric instability is unlikely to happen. Hence,

the condition for the existence of stable synchronisations essentially refers to the existence of the equilibrium point δ1.
Similar to Eq. (26) this implies

eωrλ1ω2
0 ) Mg;1r

ωJ33
2N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ2

1þΦ2
3

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 2β

� �
cos β1�β3

� �q
(51)

where Eqs. (28), (29), (31) and (32) have been used.
The maximum electric power, which can be extracted from the synchronised motion becomes, cf. Eq. (26),

Pe;max ¼
ω3J33N

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ2

1þΦ2
3

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 2β

� �
cos β1�β3

� �q
(52)

Eq. (52) reduces to Eq. (43) for Φ1 ¼Φ3 ¼Φ0 and β1 ¼ β3.
Finally, consider synchronisation in the negative direction, corresponding to the following setting:

δðtÞ ¼ψ ðtÞþωt�μ2 (53)

Then, Eq. (33) may be written as

€δþe _δþλ2ω2
0 cos δþλ1ω2

0 cos δ�2ωtþμ2�μ1

� ��eω¼ 0 (54)
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The following equilibrium points are identified from Eq. (54), corresponding to possible synchronised motions:

δ1 ¼ �arccos
eω
λ2ω2

0

 !
þ2nπ

δ2 ¼ arccos
eω
λ2ω2

0

 !
þ2nπ

9>>>>>=
>>>>>;

(55)

As seen, δ1↑2nπ and δ2↓2nπ as eω↑λ2ω2
0.

At synchronisation to the equilibrium point δ1 the rotation of the ring is given as

ψ ðtÞ ¼ �ωtþμ2þδ1 (56)

The assumed rotation at synchronisation was ψ ðtÞ ¼ �ωt�δ0. Hence, we have the following nonlinear relation for the
determination of the unknown phase δ0:

δ0 ¼ �μ2ðδ0Þ�δ1ðδ0Þ (57)

Similar to Eq. (45), the stability of Eq. (54) in the vicinity of the indicated equilibrium points is checked by a first-order
Lyapunov analysis, resulting in

Δ €δþeΔ _δ�ω2
0 λ2 sin δ1;2þλ1 sin δ1;2�2ωtþμ2�μ1

� �� �
Δδ¼ �λ1ω2

0 cos δ1;2�2ωtþμ2�μ1

� �
(58)

Motions in the vicinity of ðδ; _δÞ ¼ ðδ2;0Þ are unstable, since sin δ240. In the vicinity of ðδ; _δÞ ¼ ðδ1;0Þ stable forced
harmonic vibrations with the angular frequency 2ω take place, partly caused by the parametric excitation
�λ1ω2

0 sin δ1�2ωtþμ2�μ2

� �
Δδ and partly by the additive excitation �λ1ω2

0 cos δ1�2ωtþμ2�μ1

� �
. Since

ffiffiffiffiffi
λ2

p
ω0

normally is smaller than ω, parametric instability is unlikely to happen.
Then, the effective stability condition for synchronisation is related to the existence of the equilibrium point δ1, which

implies

eωrλ2ω2
0 ) Mg;1r

ωJ33
2N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ2

1þΦ2
3

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin 2β

� �
cos β1�β3

� �q
(59)

where Eqs. (28), (29), (31) and (32) have been used.
The maximum electric power which can be extracted from the synchronised motion becomes

Pe;max ¼
ω3J33N

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ2

1þΦ2
3

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin 2β

� �
cos β1�β3

� �q
(60)

Upon comparison of Eqs. (52) and (60) it follows that rotation in positive direction provides the largest power, if
cos ðβ1�β3Þ40, and rotation in the negative direction the largest power, if cos ðβ1�β3Þo0. The orientation of the rotation
of the ring should be adjusted accordingly.

Generally, we shall specify Mg;1 in the form:

Mg;1 ¼ ζMg;1;max (61)

where ζA ½0;1�, andMg;1;max indicate the right-hand sides of the inequalities in Eqs (52) or (60). Then, as seen from Eqs. (28),
(32), (51) and (59) the following relations hold:

eω
λ1ω2

0

¼ ζ

eω
λ2ω2

0

¼ ζ

9>>>=
>>>;

(62)

Hence, δ1 and δ2 in Eqs. (46) and (55) become independent of ω and δ0. This facilitates the solution of Eqs. (48) and (57)
somewhat.

4. Numerical example

The structural and hydrodynamic parameters of the scaled model of the GyroPTO shown in Fig. 6 have been indicated in
Tables 1 and 2.

Fig. 7 shows the variation of the amplitude fractionΦ1=Φ3 and the quantity cos ðβ1�β3Þ as a function of the wave period
T. Both quantities are independent of the wave amplitude η0. As seen the vertical amplitudeΦ1 is larger than the horizontal
amplitude Φ3 for To1 s, whereas the opposite is the case for larger wave periods. Similarly, cos ðβ1�β3Þo0 for T40:8 s.
Consequently, the maximum energy harvest at these wave periods is given by Eq. (60), cf. the remarks following Eq. (60).

Fig. 8 shows the variation ofΦ0, Pe;max and the corresponding torque on the generator as a function of the wave period T
and the wave amplitude η0. Pe;max indicates the maximum of the absorbed powers determined by Eq. (52) or Eq. (60). Pe;max

increase proportionally with the wave amplitude. This is because the power take off of the GyroPTO depends linearly on the
vibration amplitudes of the float, which in turn depend linearly on the wave amplitude. This is in contrast to other wave
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point absorbers, where the absorbed power increases proportionally with the square of the wave amplitude [10]. Further,
the torque on the generator for the maximum absorbed power is calculated as Pe;max=ðNωÞ and is illustrated in Fig. 8(c).

The time series for ψ ðtÞ and _ψ ðtÞ=ω have been shown in Fig. 9 for the initial values ðψ0; _ψ 0Þ ¼ ðπ=2;ωÞ and the wave
period T¼2 s. Synchronisation takes place at the equilibrium point δ1 ¼ �πþarccos eω=ðλ1ω2

0Þ
� �

, corresponding to n¼ �1
in Eq. (46). As shown in Fig. 9a, at synchronisation the quantity ψ ðtÞ�ωt�μ1�δ1 and the fraction _ψ ðtÞ=ω converge towards
0 and 1, respectively. The forced harmonic oscillations with the angular frequency 2ω around the equilibrium point in the
stationary synchronised state is caused by the last term on the left-hand side of Eq. (33). The amplitude of these oscillations
is proportional to the parameter λ2. As seen, the relative magnitude of the amplitude amounts to C0:25 percent, which will
cause a corresponding relative time variation of the generated electric power. Fig. 9b shows the corresponding results, when

Fig. 6. Scaled model of the GyroPTO point absorber being tested in a wave tank.

Table 1
Structural parameters of the GyroPTO wave energy point absorber.

Parameter Value Unit Parameter Value Unit

a 0.9891 m J1 72.808 kg m2

b 0.0761 m J2 329.68 kg m2

c 0.080 m J3 0.1830 kg m2

d 0.550 m e 0.0409 s�1

r1 0.009 m f 1.7486 s�2

r2 0.203 m k1 146.7 N m/rad
m1 20.27 kg k3 2925 N m/rad
m2 5.270 kg h 0.60 m
m3 22.11 kg
J1
1

21.68 kg m2

J2
2

0.0952 kg m2

J3
3

0.366 kg m2

Table 2
Parameters in hydrodynamic load model as a function of the wave period.

T (s) Ch;1ðωÞ (N m/(rad/s)) Ch;3ðωÞ (N m/(rad/s)) Jh;1ðωÞ (kg m2) Jh;3ðωÞ (kg m2) H1ðωÞ (N) H3ðωÞ (N) α (rad)

0.50 89.17 22.76 8.901 27.30 466.7 164.7 4.7997
1.00 123.3 101.6 26.81 25.42 1435 914.5 5.3966
1.50 29.01 103.2 33.05 33.58 1256 1651 5.9568
2.00 9.256 88.20 31.14 40.46 963.8 2074 6.1209
2.50 4.096 75.17 29.94 45.82 773.5 2308 6.1854
3.00 2.186 65.01 29.24 50.19 644.7 2449 6.2169
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λ2 is set to 0, equivalent to the system described in Eq. (34). In this case the oscillations around the equilibrium point cease
completely.

In the present case the maximum value of the parameter ζ for which synchronisation with the selected initial values
could be achieved was ζ ¼ 0:8547. The reason why the theoretical maximum cannot be achieved is due to the significant
transient oscillations caused by the initial values, which brings the system out of the basin of attraction related to the
considered equilibrium point.

Fig. 7. Response quantities Φ1=Φ3 and cos ðβ1�β3Þ as a function of the wave period T.

Fig. 8. Response quantities Φ0 and Pe;max as a function of the wave period T and the amplitude η0. - - -: η0 ¼ 0:05 m. —: η0 ¼ 0:10 m. -.-: η0 ¼ 0:15 m.
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Fig. 10a shows the corresponding results, when the initial conditions are changed to ψ0; _ψ 0

� �¼ �π=2; �ω
� �

. In this case
synchronisation takes place to the equilibrium point δ1 ¼ �2π�arccos eω=ðλ1ω2

0Þ
� �

, corresponding to n¼ �1 in Eq. (55). At
synchronisation the quantity ψ ðtÞþωt�μ2�δ1 and the fraction _ψ ðtÞ=ω converge towards 0 and �1, respectively. The forced
harmonic oscillations with the angular frequency 2ω around the equilibrium point in the stationary synchronised state are
caused by the second last term on the left-hand side of Eq. (33). The amplitude of these oscillations is proportional to the
parameter λ1. Since, λ1=λ2 ¼ 0:3079, the relative amplitude and the relative variation of the generated power are reduced
accordingly to C0:075 percent. The maximum value of the parameter ζ for which synchronisation with the selected initial
values could be achieved was ζ ¼ 0:7290.

Fig. 10b indicates the timeseries for the same system as shown in Fig. 10a, when the initial conditions are changed to
ψ0; _ψ 0

� �¼ π=2; �ω
� �

. No synchronisation to the angular wave frequency takes place. Instead, the system is attracted to the
equilibrium point ψ ¼ψ1, performing forced harmonic driven by the term ω2

0 λ1 cos ðψ2�ωt�μ1Þþλ1 cos ðψ2þωt�μ2Þ
� �

,
where ψ1 and ψ2 are integration constants depending on the initial values ψ0 and _ψ 0, respectively. In reality, these
vibrations are more complex than indicated, determined by the full nonlinear equations of motion in Eq. (16).

As seen from the results in Figs. 9a, 10a and c the performance of the system depends strongly on the initial values
ψ0; _ψ 0

� �
. Next, in order to analyse this problem further the basins of attraction for synchronisation to _ψ ðtÞ ¼ω and

_ψ ðtÞ ¼ �ω are determined. The basin of attraction of an equilibrium point indicates the subset of initial values ðψ0; _ψ 0Þ in
the phase space for which the trajectories tend to approach the equilibrium point, although persistent oscillations may
occur. The basins of attraction are separated by the separatrix manifolds originating from the saddle points.

The basins of attraction at attraction related to Eq. (33) are determined from the separatrix manifolds of the following
homogeneous differential equations, cf. Eqs. (45) and (54):

€δþe _δþω2
0λ1 cos δþeω¼ 0; δðtÞ ¼ψ ðtÞ�ωt�μ1�δ1

€δþe _δþω2
0λ2 cos δ�eω¼ 0; δðtÞ ¼ψ ðtÞþωt�μ2�δ1

9=
; (63)

where δ1 are given by Eqs. (46) or (55).

Fig. 9. Variation of ψðtÞ and _ψ ðtÞ, ψ0 ; _ψ 0
� �¼ π

2;ω
� �

, T¼2 s. (a) λ2¼1.3515. (b) λ2¼0.
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Fig. 10. Variation of ψðtÞ and _ψ ðtÞ, T¼2 s. (a) ψ0 ; _ψ 0
� �¼ � π

2; �ω
� �

. (b) ψ0; _ψ 0
� �¼ π

2; �ω
� �

.

Fig. 11. Basins of attraction, T¼2 s. (a) Synchronisation to _ψ ðtÞ ¼ω, M1;g ¼ 0:8547M1;g;max. (b) Synchronisation to _ψ ðtÞ ¼ �ω, M1;g ¼ 0:7290M1;g;max. o: stable
equilibrium points, δ1, x: saddle points, δ2.
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In Fig. 11a and 11b the grey coloured areas show the basins of attraction in the ðδ; _δÞ-plane for the same systems as
considered in Figs. 9a and 10a corresponding to the equilibrium points for n¼ �2, n¼ �1 and n¼0 in Eqs. (46) and (55). In
the disjoint white part of the state space no synchronisation is possible, and the system is attracted to the point ψ ¼ψ1. As
seen stable synchronisation requires that δðtÞ is confined to a finite interval centered around the equilibrium point δ1. The
width of the said interval depends on the magnitude of Mg;1. Actually, the basin of attraction reduces to the single point
ðδ; _δÞ ¼ ðδ1;0Þ for Mg;1 ¼Mg;1;max, corresponding to ζ ¼ 1. The indicated theory presumes a constant amplitude and phase of
the impinging waves, resulting in constant amplitude and phase of the two response components of the float. In irregular
sea-states, waves with different amplitudes and phases are exciting the structure, causing a broad-banded wave load.
However, the response processes of the float turn out to be narrow-banded with slowly varying amplitude and phases.
During operation, these phases and amplitudes need to be identified in real time in order to check whether the system
remains within the basin of attraction guaranteeing synchronisation. If out-crossing of the domain of attraction is
immanent, the magnitude of this domain must be increased by reducing the gain parameter Mg;1. Stochastic semi-active
control of the stability in irregular sea-states has to be devised in the future work.

5. Conclusions

The equations of motion of the GyroPTO wave energy point absorbers have been derived based on a three degree-of-
freedom rigid body model. The resulting equations are highly nonlinear for which reason subharmonic or chaotic response
may occur for the float and the ring. The wave loading on the float is determined based on the first-order wave theory,
where the related hydrodynamic coefficients are assumed to be calculated numerically. Next assuming synchronisation of
the angular velocity of the ring to the angular wave frequency, it is demonstrated that the two equations of motion of the
float may be linearised with no mutual coupling and no coupling to the ring equation. Hence, the motion of the float may be
determined analytically. In turn, this means that the dynamics of the ring at synchronisation can be described by an
autonomous, uncoupled, nonlinear differential equation with parametric excitation. The said equation is related with three
types of point attractors. One where the ring vibrations are attracted to a state of rest indicating unstable synchronisation,
and the other two point attractors where the ring is synchronised to the wave angular frequency, either rotating in one or
the opposite direction. The stability of the synchronised points of attraction have been analysed by a first-order Lyapunov
analysis, and the basins of attraction to these point attractors are determined.
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APPENDIX J
More results from the

real-time hybrid testing

J.1 General description

Considering the size of the manufactured TLD, the suitable ratings of wind turbine
could be 2 MW and 3 MW, and both of them have been considered in establishing the
Matlab/Simulink model.

Figure J.1 shows the Simulink model established in the present study, where the
green block reads inputs (the measured reaction force and the actuator displacement
and the ) from the actuator through SCRAMNet, and the blue block sends outputs
(the calculated displacement, the ) to the actuator throughSCRAMNet. The 13-DOF
model is the key block, where all the terms are discretized and the backward Euler
method has been used for solving the discrete equations of motion. The time-varying
system matrices are handled by user-defined Matlab functions.

For each of the two wind turbine models, three different windloads (time histo-
ries) have been considered. Table J.1 shows the six load cases in total, whereV0 is the
mean wind speed andI is the turbulence intensity.

Further, for each wind turbine model. tests were undertakenfor three different
tuning ratios (ratio between the first sloshing frequency tothe first lateral tower fre-
quency) of the TLD, i.e. 0.95, 1.0, 1.05. Cases of the TLD withand without damping
screens have been both evaluated. Therefore, in total 36 (= 2 × 3 × 3 × 2) real-time
hybrid tests were conducted, and the duration for each test was set to be 5 minutes.

J.2 Results of the 3 MW wind turbine

The performance of the TLD on damping lateral tower vibrations of the 3 MW wind
turbine have been summarized in Table 3 in Appendix G. As an quantitative index of
the damping effect of the TLD, the reduction ratioη is defined as

η =
σq,0 − σq

σq
(J.1)

— 259 —
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13-DOF Model

input from SCRAMNet output to SCRAMNet

Figure J.1 Simulink model for the TLD-wind turbine system.

Table J.1 List of wind load cases in the test.

Load case Rating V0 I Load case Rating V0 I

case 1 3 MW 12 m/s 0.08case 4 2 MW 12 m/s 0.08
case 2 3 MW 12 m/s 0.1 case 5 2 MW 12 m/s 0.1
case 3 3 MW 8 m/s 0.1 case 6 2 MW 8 m/s 0.1

whereσq,0 andσq are the standard deviations of the lateral tower vibration without
and with TLD, respectively.

Time histories of the tower vibration for the 3 MW wind turbine during all 18
tests are presented in Figures J.2-J.10 below.
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Figure J.2 Control effect of the TLD,case 1, tuning ratio = 1. (a) without damping screens,η = 28.32%.
(b) with damping screens,η = 40.25%.
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Figure J.3 Control effect of the TLD,case 1, tuning ratio = 0.95. (a) without damping screens,η =
27.80%. (b) with damping screens,η = 18.57%.

0 50 100 150 200 250 300
-20

-10

0

10

20

30
uncontrolled
with TLD

0 50 100 150 200 250 300

-20

-10

0

10

20
uncontrolled
with TLD

(a) (b)

q 8
(t
)

[m
m

]

q 8
(t
)

[m
m

]

t [s]t [s]

Figure J.4 Control effect of the TLD,case 1, tuning ratio = 1.05. (a) without damping screens,η =
17.66%. (b) with damping screens,η = 27.78%.
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Figure J.5 Control effect of the TLD,case 2, tuning ratio = 1. (a) without damping screens,η = 29.43%.
(b) with damping screens,η = 44.19%.
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Figure J.6 Control effect of the TLD,case 2, tuning ratio = 0.95. (a) without damping screens,η =
33.62%. (b) with damping screens,η = 21.81%.

Both the uncontrolled and controlled tower vibrations are dominated by the first
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Figure J.7 Control effect of the TLD,case 2, tuning ratio = 1.05. (a) without damping screens,η =
13.77%. (b) with damping screens,η = 26.10%.
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Figure J.8 Control effect of the TLD,case 3, tuning ratio = 1. (a) without damping screens,η = 8.29%.
(b) with damping screens,η = 29.74%.
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Figure J.9 Control effect of the TLD,case 3, tuning ratio = 0.95. (a) without damping screens,η =
9.66%. (b) with damping screens,η = 12.96%.
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Figure J.10 Control effect of the TLD,case 3, tuning ratio = 1.05. (a) without damping screens,η =
7.42%. (b) with damping screens,η = 18.84%.

angular frequency of the lateral tower mode (2.74 rad/s), and the TLD reduces the
peak around this frequency significantly. In contrast to this, as can be seen from
Figures 11, 12, 13 and 14 in Appendix G, the measured interaction force and wave
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height contain a lot of high frequency components, either from the higher sloshing
modes or due to nonlinear coupling effect (multiples of the first sloshing frequency).
Before summarizing the test results, Table J.2 gives the theoretical values of both
the higher-order sloshing frequencies and the multiples ofthe first sloshing frequency,
with the corresponding abbreviations. Based on these theoretical values, the frequency
components of the interaction force and the wave height frommeasurements can be
identified and classified accordingly.

Table J.2 Theoretical values of both the angular frequencies of the higher-order sloshing modes and the
multiples of the first sloshing angular frequency, unit: [rad/s], TLD used in 3 MW wind turbine.

sloshing mode value abbrev.multiples value abbrev.
1st mode 2.7509 ωs,1 1 time 2.7509 ωs,1

2nd mode 4.9718 ωs,2 2 times 5.5018 2ωs,1

3rd mode 6.6134 ωs,3 3 times 8.2527 3ωs,1

4th mode 7.8634 ωs,4 4 times 11.0036 4ωs,1

5th mode 8.8838 ωs,5 5 times 13.7545 5ωs,1

6th mode 9.7681 ωs,6 6 times 16.5054 6ωs,1

Next, Table J.3 summarizes the first four frequency components of the interac-
tion force from Fourier amplitude of the measured time histories. The abbreviation
inside the parenthesis indicates the source of this frequency component, either from
the higher sloshing modes or from the multiples of the first sloshing frequency. "/"
means no clear frequency peak can be observed.

Table J.3 First four frequency components of the measured interaction force, TLD for 3 MW wind turbine.

Load case tuning screens1st [rad/s] 2nd [rad/s] 3rd [rad/s] 4th [rad/s]
1 no 2.723-2.827 8.294(3ωs,1) 10.56 14.1(5ωs,1)

yes 2.744-2.827 8.377(3ωs,1) 10.49 /
case 1 0.95 no 2.681-2.827 8.3(3ωs,1) 10.53 14.05(5ωs,1)

yes 2.597-2.744 8.2(3ωs,1) 10.47 /
1.05 no 2.744-2.932 8.838(3ωs,1) 10.47 13.66(5ωs,1)

yes 2.744-2.974 6.66(ωs,3) 10.53 /
1.0 no 2.744-2.869 8.294(3ωs,1) 10.56 14.12(5ωs,1)

yes 2.744-2.827 8.336(3ωs,1) 10.49 /
case 2 0.95 no 2.744-2.806 8.273(3ωs,1) 10.53 14.1(5ωs,1)

yes 2.597-2.744 8.231(3ωs,1) 10.47 /
1.05 no 2.744-2.974 8.901(3ωs,1) 10.49 13.66(5ωs,1)

yes 2.744-2.974 10.53 / /
1.0 no 2.723-2.827 8.273(3ωs,1) 10.47 14.1(5ωs,1)

yes 2.744-2.786 8.231(3ωs,1) 10.47 /
case 3 0.95 no 2.618-2.786 8.315(3ωs,1) 10.56 13.93(5ωs,1)

yes 2.597-2.744 10.56 / /
1.05 no 2.744-2.932 6.639(ωs,3) 10.47 /

yes 2.744-2.974 6.66(ωs,3) 10.47 /

Similarly, Table J.4 summarizes the first four frequency components of the wave
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height from Fourier amplitude of the measured time histories.

Table J.4 First four frequency components of the measured wave height, TLD for 3 MW wind turbine.

case tuning screens1st [rad/s] 2nd [rad/s] 3rd [rad/s] 4th [rad/s]
1 no 2.728-2.822 4.853(ωs,2) 5.662(2ωs,1) 6.49(ωs,3)

yes 2.739-2.772 5.595(2ωs,1) 6.53(ωs,3) 8.234(3ωs,1)
case 1 0.95 no 2.685-2.83 5.605(2ωs,1) 8.384(3ωs,1) 8.779(ωs,5)

yes 2.606-2.776 5.515(2ωs,1) 6.44(ωs,3) 8.14(3ωs,1)
1.05 no 2.734-2.943 5.05-5.869 6.635(ωs,3) 7.784-8.847

yes 2.746-2.967 5.05-5.658 6.654(ωs,3) 7.852-8.405
1.0 no 2.742-2.835 4.849(ωs,2) 5.614(2ωs,1) 6.509(ωs,3)

yes 2.77-2.824 5.594(2ωs,1) 6.535(ωs,3) 8.382(3ωs,1)
case 2 0.95 no 2.689-2.781 4.734(ωs,2) 5.581(2ωs,1) 8.271(3ωs,1)

yes 2.596-2.746 5.547(2ωs,1) 8.237(3ωs,1) 10.53
1.05 no 2.745-2.97 5.05-5.941 6.653(ωs,3) 7.8-8.946

yes 2.746-2.975 5.072-5.797 6.655(ωs,3) 7.837-8.409
1.0 no 2.713-2.831 4.836(ωs,2) 5.56(2ωs,1) 6.487(ωs,3)

yes 2.707-2.773 5.481(2ωs,1) 6.537(ωs,3) 8.238(3ωs,1)
case 3 0.95 no 2.621-2.775 4.728(ωs,2) 5.516(2ωs,1) 6.389(ωs,3)

yes 2.612-2.783 4.714(ωs,2) 5.375(2ωs,1) 6.437(ωs,3)
1.05 no 2.73-2.92 5.043-5.858 6.655(ωs,3) 8.665

yes 2.736-2.973 5.453(2ωs,1) 6.657(ωs,3) 10.54

It should be noted that the frequency component around 10.5 rad/s in Tables J.3
and J.4 is due to the coupling between the tower and the blade.

J.3 Results of the 2 MW wind turbine

The performance of the TLD on damping lateral tower vibrations of the 2 MW wind
turbine have been summarized in Table 2 in Appendix G. Time histories of the tower
vibration for the 2 MW wind turbine during all 18 tests are presented in Figures J.11-
J.19 below.
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Figure J.11 Control effect of the TLD,case 4, tuning ratio = 1. (a) without damping screens,η = 39.80%.
(b) with damping screens,η = 51.98%.
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Figure J.12 Control effect of the TLD,case 4, tuning ratio = 0.95. (a) without damping screens,η =
28.01%. (b) with damping screens,η = 31.28%.
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Figure J.13 Control effect of the TLD,case 4, tuning ratio = 1.05. (a) without damping screens,η =
41.55%. (b) with damping screens,η = 49.95%.
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Figure J.14 Control effect of the TLD,case 5, tuning ratio = 1. (a) without damping screens,η = 43.55%.
(b) with damping screens,η = 52.90%.
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Figure J.15 Control effect of the TLD,case 5, tuning ratio = 0.95. (a) without damping screens,η =
29.50%. (b) with damping screens,η = 33.03%.
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Figure J.16 Control effect of the TLD,case 5, tuning ratio = 1.05. (a) without damping screens,η =
37.39%. (b) with damping screens,η = 50.28%.
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Figure J.17 Control effect of the TLD,case 6, tuning ratio = 1. (a) without damping screens,η = 20.38%.
(b) with damping screens,η = 32.26%.
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Figure J.18 Control effect of the TLD,case 6, tuning ratio = 0.95. (a) without damping screens,η =
22.13%. (b) with damping screens,η = 25.77%.
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Figure J.19 Control effect of the TLD,case 6, tuning ratio = 1.05. (a) without damping screens,η =
9.46%. (b) with damping screens,η = 25.40%.

Table J.5 gives the theoretical values of both the higher-order sloshing frequen-
cies and the multiples of the first sloshing frequency, for the TLD used in the 2 MW
wind turbine.
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Table J.5 Theoretical values of both the angular frequencies of the higher-order sloshing modes and the
multiples of the first sloshing angular frequency, unit: [rad/s], TLD used in the 2 MW wind turbine.

sloshing mode value abbrev.multiples value abbrev.
1st mode 3.3691 ωs,1 1 time 3.3691 ωs,1

2nd mode 5.4921 ωs,2 2 times 6.7382 2ωs,1

3rd mode 6.8880 ωs,3 3 times 10.1073 3ωs,1

4th mode 7.9856 ωs,4 4 times 13.4764 4ωs,1

5th mode 8.9342 ωs,5 5 times 16.8455 5ωs,1

6th mode 9.7881 ωs,6 6 times 20.2146 6ωs,1

Table J.6 summarizes the first four frequency components of the interaction force
from Fourier amplitude of the measured time histories. The abbreviation inside the
parenthesis indicates the source of this frequency component, either from the higher
sloshing modes or from the multiples of the first sloshing frequency. "/" means no
clear frequency peak can be observed.

Table J.6 First four frequency components of the measured interaction force, TLD for 2 MW wind turbine.

Load case tuning screens1st [rad/s] 2nd [rad/s] 3rd [rad/s] 4th [rad/s]
1 no 3.246-3.456 6.828(ωs,3) 8.901(ωs,5) 13.01

yes 3.246-3.456 6.828(ωs,3) 13.01 /
case 4 0.95 no 3.142-3.393 6.786(ωs,3) 13.01 /

yes 3.142-3.393 6.786(ωs,3) 13.01 /
1.05 no 3.372-3.56 6.87(ωs,3) 10.49(3ωs,1) 13.01

yes 3.204-3.435 6.849(ωs,3) 13.01 /
1.0 no 3.204-3.456 6.828(ωs,3) 13.01 /

yes 3.204-3.456 6.849(ωs,3) 13.01 /
case 5 0.95 no 3.142-3.393 6.756(ωs,3) 9.676(3ωs,1) 13.01

yes 3.142-3.393 6.723(ωs,3) 13.01 /
1.05 no 3.33-3.56 6.87(ωs,3) 10.68(3ωs,1) 13.01

yes 3.372-3.56 6.87(ωs,3) 13.01 /
1.0 no 3.246-3.435 6.849(ωs,3) 8.88(ωs,5) 13.05

yes 3.204-3.435 6.849(ωs,3) 8.88(ωs,5) 13.05
case 6 0.95 no 3.142-3.435 6.807(ωs,3) 8.88(ωs,5) 13.15

yes 3.142-3.435 6.807(ωs,3) 8.838(ωs,5) 13.15
1.05 no 3.309-3.581 6.87(ωs,3) 8.901(ωs,5) 13.15

yes 3.309-3.581 6.87(ωs,3) 8.838(ωs,5) 13.15

Similarly, Table J.7 summarizes the first four frequency components of the wave
height from Fourier amplitude of the measured time histories.

It should be noted that the frequency component around 13.1 rad/s in Tables J.6
and J.7 is due to the coupling between the tower and the blade.
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Table J.7 First four frequency components of the measured wave height, TLD for 2 MW wind turbine.

case tuning screens1st [rad/s] 2nd [rad/s] 3rd [rad/s] 4th [rad/s]
1 no 3.247-3.465 5.438(ωs,2) 6.712(2ωs,1) 6.93(ωs,3)

yes 3.206-3.467 6.656(2ωs,1) 6.935(ωs,3) 8.956(ωs,5)
case 1 0.95 no 3.147-3.384 5.331(ωs,2) 6.275-6.767 8.892(ωs,5)

yes 3.132-3.389 6.521-6.761 8.883(ωs,5) 13.2
1.05 no 3.307-3.559 6.866(2ωs,1) 7.118(ωs,3) 8.897(ωs,5)

yes 3.275-3.552 6.901(2ωs,1) 7.105(ωs,3) 8.899(ωs,5)

1.0 no 3.212-3.471 5.423(ωs,2) 6.667(2ωs,1) 6.926(ωs,3)
yes 3.2-3.461 6.661(2ωs,1) 6.834(ωs,3) 8.965(ωs,5)

case 2 0.95 no 3.155-3.395 5.296(ωs,2) 6.292-6.532 6.754(ωs,3)
yes 3.14-3.392 6.531(2ωs,1) 6.764(ωs,3) 8.954(ωs,5)

1.05 no 3.301-3.559 6.86(2ωs,1) 7.119(ωs,3) 8.889(ωs,5)
yes 3.3-3.559 6.858(2ωs,1) 7.118(ωs,3) 8.897(ωs,5)

1.0 no 3.254-3.433 5.454(ωs,2) 6.687(2ωs,1) 6.884(ωs,3)
yes 3.216-3.434 6.654(2ωs,1) 6.843(ωs,3) 8.893(ωs,5)

case 3 0.95 no 3.145-3.441 5.365(ωs,2) 6.531(2ωs,1) 6.79(ωs,3)
yes 3.147-3.442 5.32(ωs,2) 6.45(2ωs,1) 6.815(ωs,3)

1.05 no 3.297-3.574 5.526(ωs,2) 6.871(2ωs,1) 7.147(ωs,3)
yes 3.308-3.57 5.551(ωs,2) 6.887(2ωs,1) 7.158(ωs,3)
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The present thesis deals with fundamental researches on passive and active 
vibration control of renewable energy structures, and provides useful mod-
els for practical applications. Effective and robust vibration control methods 
have been explored for mitigating the lightly damped edgewise blade vibra-
tion and lateral tower vibration, with the main focus on structural control 
devices. Rigorous theoretical modeling of different dynamic system has been 
established, based on which detailed design and analysis of the proposed 
control devices can be carried out. 

This thesis also explores technical solutions for wave energy point absorbers, 
in order to maximize the mean absorbed power and to deliver more smooth 
power to the grid. A novel suboptimal causal control law has been estab-
lished for controlling the motion of the point absorber, and a new type of 
point absorber has also been proposed with detailed modeling and analysis.


