
Aalborg Universitet

Convolutional Methods for Music Analysis

Velarde, Gissel

DOI (link to publication from Publisher):
10.5278/vbn.phd.tech.00005

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Velarde, G. (2017). Convolutional Methods for Music Analysis. Aalborg Universitetsforlag.
https://doi.org/10.5278/vbn.phd.tech.00005

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: July 05, 2025

https://doi.org/10.5278/vbn.phd.tech.00005
https://vbn.aau.dk/en/publications/58c48e75-a440-4cde-8209-b7cea8e28e31
https://doi.org/10.5278/vbn.phd.tech.00005




CONVOLUTIONAL METHODS
FOR MUSIC ANALYSIS

BY
GISSEL VELARDE

DISSERTATION SUBMITTED 2017

C
O

N
V

O
LU

TIO
N

A
L M

E
TH

O
D

S
 FO

R
 M

U
S

IC
 A

N
A

LY
S

IS
G

ISSEL VELA
R

D
E





Convolutional Methods
for Music Analysis

Ph.D. Dissertation by

Gissel Velarde

Department of Architecture, Design and Media Technology

Aalborg University, Denmark

January, 2017



Dissertation submitted:  January, 2017

PhD supervisor:   Associate Professor David Meredith
    Aalborg University

Assistant PhD supervisor: Senior Lecturer Tillman Weyde
    City, University of London

PhD committee:   Associate Professor Cumhur Erkut (chairman)
    Aalborg University
    Professor José Manuel Iñesta Quereda
    University of Alicante
    Associate Professor Emilia Gómez
    Universitat Pompeu Fabra

PhD Series:  Technical Faculty of IT and Design, Aalborg University

ISSN (online): 2446-1628 
ISBN (online): 978-87-7112-887-1

Published by:
Aalborg University Press
Skjernvej 4A, 2nd floor
DK – 9220 Aalborg Ø
Phone: +45 99407140
aauf@forlag.aau.dk
forlag.aau.dk

© Copyright: Gissel Velarde

Printed in Denmark by Rosendahls, 2017



Dedicado a Sol Samantha y a Kira Isabel

iii



iv



Author’s Curriculum Vitae

Gissel Velarde holds a Licenciatura degree in Systems Engineering from the Bolivian Catholic University

and a Master of Science in Electronic Systems and Engineering Management from the South Westphalia

University of Applied Sciences, where she was a DAAD scholarship holder between 2006 and 2008. Be-

tween 2008 and 2012, she worked in industry as a data analyst at Miebach GmbH in Germany. In 2010, she

received a Best Paper Award nomination at the Industrial Conference on Data Mining in Berlin. In October

2012, she began her PhD study under the supervision of David Meredith and Tillman Weyde, supported

by a PhD fellowship from the Department of Architecture, Design and Media Technology, Aalborg Univer-

sity. Between 2015 and 2016, Velarde was a research member of the European project, “Learning to Create”

(Lrn2Cre8), a collaborative project within the Future and Emerging Technologies (FET) programme of the

Seventh Framework Programme for Research of the European Commission.

Between 1990 and 2002, Velarde studied piano at the Conservatorio Plurinacional de Música in La Paz,

Bolivia. She won first and second prizes at the National Piano Competition in Bolivia (in 1994 and 1997

respectively). She also released two music albums.

Velarde has published research papers dealing with computational methods for music analysis, music

information retrieval, machine learning and data analysis. During her PhD study at Aalborg University,

she has supervised student projects on the Bachelor program in Medialogy and was a teaching assistant

on the Master of Science program in Sound and Music Computing.

v



vi



Abstract

This dissertation presents novel convolution-based methods for music analysis. The aim of this research

project was two-fold: first, to design, implement and evaluate a convolution-based automated framework

for the analysis of music with applications to music segmentation, pattern discovery, and classification; and

second, to study convolution in relation to music-analytical and perceptual properties. In this framework,

we systematically studied and evaluated the effect of filtering and other processing techniques for repre-

sentation and segmentation. Moreover, we studied and optimised the parameters of filters (Haar, Morlet,

Gaussian and learnt filters), and machine learning algorithms (k-nearest neighbours, single linkage, sup-

port vector machines, convolutional neural networks) in pattern discovery and classification applications.

This framework was designed, implemented and evaluated in the one-dimensional (1-D) space and the

two-dimensional (2-D) space. The proposed methods were intended to be as general as possible, avoiding

the use of domain-specific knowledge features. We found that filtering can improve recognition compared

to non-filtered representations by improving robustness to musical variations. Moreover, local process-

ing and processing at a large scale prove to be important in music classification, and a combination of

large-scale and small-scale feature extraction strategies can be complementary for ensembling. In 1-D, our

convolution-based segmentation method is comparable to a state-of-the-art Gestalt-based segmentation

approach in classification experiments. In the last three Music Information Retrieval Evaluation eXchange

campaigns, our proposed method for the discovery of repeated themes and sections applied to mono-

phonic symbolic music has been shown to be a competitive approach over all measures in that evaluation.

In 2-D, our convolution-based ensemble of classifiers reaches the state-of-the-art on composer recognition

and achieves similar performance on genre classification. Moreover, our classifiers perform equally well on

symbolic and audio music data. Finally, observation of filters automatically learnt by a convolutional neu-

ral network provides musicological insight on composer style. Future work might include the evaluation

of the framework on larger datasets and on tasks not related to music.
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Resumé

Denne afhandling præsenterer nye foldning-baserede metoder til musikanalyse. Formålet med dette

forskningsprojekt var dobbeltsidigt: For det første at designe, gennemføre og evaluere en foldning-baseret,

automatiseret ramme for analysen af musik med henblik på musiksegmentering, mønsteropdagelse og

klassifikation; og for det andet at studere foldning (convolution) i relation til musikanalytiske og per-

ceptuelle egenskaber. Inden for disse rammer har vi systematisk undersøgt og vurderet effekten af

filtrering og andre behandlingsteknikker til repræsentation og segmentering. Desuden har vi under-

søgt og optimeret parametrene for filtrene (Haar, Morlet, Gauss og lærte filtre) og maskinlæringsalgo-

ritmer (k-nærmeste naboer, single linkage, support vektormaskine, convolutional neurale netværk) i møn-

steropdagelse og klassificeringsapplikationer. Denne ramme blev designet, implementeret og evalueret

i endimensionale (1-D) rum og i todimensionale (2-D) rum. De foreslåede metoder havde til hensigt at

være så generelle som mulige, og undgå brug af domænespecifikke vidensfunktioner. Vi fandt, at fil-

trering kan forbedre genkendelse i forhold til ikke-filtrerede repræsentationer ved at forbedre robusthed

af musikalske variationer. Desuden viser lokal forarbejdning og behandling på en stor skala sig at være

vigtig i klassificering af musik, og en kombination af funktionsekstraktionsstrategier i storskala og lille

skala kan være et supplement til ensembling. I 1-D kan vores foldning-baserede segmenteringsmetode

sammenlignes med en state-of-the-art gestalt-baserede segmenteringstilgang i klassificeringsforsøg. I de

sidste tre Music Information Retrieval Evaluation eXchange-kampagner har vores foreslåede metode til

opdagelsen af gentagne temaer og sektioner anvendt på monofonisk symbolsk musik vist sig at være en

konkurrencedygtig tilgang til samtlige målinger i denne vurdering. I 2-D når vores foldning-baserede

ensemble af klassificeringer state-of-the-art på komponistanerkendelse og opnår lignende resultater på

genreklassificering. Desuden præsterer vores klassificeringer lige så godt i forbindelse med symbolske og

audiomusik-data. Endelig giver observation af filtre automatisk lært af et convolutional neuralt netværk

musikvidenskabelig indsigt i forhold til komponiststil. Det fremtidige arbejde kan omfatte evaluering af

rammerne i forbindelse med større datasæt og opgaver uden tilknytning til musik.

ix



x



Thesis details

Thesis Title: Convolutional Methods for Music Analysis

PhD Student: Gissel Velarde

PhD Supervisor: Associate Professor David Meredith, Aalborg University

PhD Co-Supervisor: Senior Lecturer Tillman Weyde, City, University of London

Submission date: January, 2017.

This thesis has been submitted for assessment in partial fulfillment of the PhD degree. The thesis is

based on the submitted or published collection of papers listed below. Parts of the papers are used directly

or indirectly in the extended summary of the thesis. As part of the assessment, co-author statements have

been made available to the assessment committee and are also available at the Faculty.

• Wavelet-filtering of symbolic music representations for folk tune segmentation and classification.

Velarde, Gissel; Weyde, Tillman; Meredith, David. Proceedings of the Third International Workshop

on Folk Music Analysis (FMA2013). Meertens Institute; Department of Information and Computing

Sciences; Utrecht University, 2013. p. 56-62.

Publication: Article in proceedings

• An approach to melodic segmentation and classification based on filtering with the Haar-wavelet.

Velarde, Gissel; Weyde, Tillman; Meredith, David. In: Journal of New Music Research, Vol. 42, No.

4, 2013, p. 325-345.

Publication: Journal article

• A wavelet-based approach to the discovery of themes and sections in monophonic melodies. Velarde,

Gissel; Meredith, David. 2014. Music Information Retrieval Evaluation eXchange, Taipei, Taiwan,

Province of China.

Publication: Conference abstract of the algorithms submitted for evaluation at the Music Information

Retrieval Evaluation eXchange (see http://www.music-ir.org/mirex/).

xi

http://www.music-ir.org/mirex/


• A Wavelet-Based Approach to Pattern Discovery in Melodies. Velarde, Gissel; Meredith, David;

Weyde, Tillman. Computational Music Analysis. ed. / David Meredith. Cham, Switzerland :

Springer, 2016. p. 303-333.

Publication: Book chapter

• Composer Recognition based on 2D-Filtered Piano-Rolls. Velarde, Gissel; Weyde, Tillman; Cancino

Chacón, Carlos; Meredith, David; Grachten, Maarten. Proceedings of the 17th International Society

for Music Information Retrieval Conference. 17. ed. International Society for Music Information

Retrieval, 2016. p. 115-121.

Publication: Article in proceedings

• Convolution-based Classification of Audio and Symbolic Representations of Music. Velarde, Gissel;

Cancino Chacón, Carlos; Meredith, David; Weyde, Tillman; Maarten Grachten

Submitted: In review.

Publication: Journal article

xii



Preface

The idea of using convolution for music analysis arose while I was reading a paper by Darrell Conklin

about viewpoints to represent melodies. In that paper, a short melody of about four bars was presented in

score notation, followed by different viewpoints, such as e.g., pitch and duration represented as integer

numbers, pitch interval distance as the number of semitones between two successive notes, pitch contour

direction of one note with respect to the next (ascending, descending, same), etc. Suddenly, wavelets came

to my mind. I thought that it was possible to represent melodies and capture their musical properties

in one single process! By convolution, a function would then compute a coefficient at each position of

the melody over the whole time dimension, the process would repeat with a dilated function at another

time-scale, and again at another time-scale and so on. I encoded melodies analyzed by Stein (1979), and

compared visually his analysis to the ones produced by the continuous wavelet transform, reporting those

findings in a late-breaking demo at the International Society for Music Information Retrieval (ISMIR) 2010

conference. Possibly, those first ideas towards the analysis of music via wavelets, made my supervisors bet

on me as a sorcerer’s apprentice. In these last four years, I have devoted my life to exploring these ideas

in depth, guided by my supervisors David Meredith and Tillman Weyde, to whom I am deeply thankful.

Wavelets and machine learning were introduced to me by Roberto Carranza Estivariz (1939-2005) when I

was studying systems engineering in Bolivia. Carranza inspired me to pursue research and advised me to

apply for a scholarship abroad. And so, this journey that began with the power of a small wave took me

across an ocean.

Gissel Velarde

Aalborg University, October, 2016
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1

Introduction

1 Introduction

Good representations are of interest to the information retrieval community, because the performance of

machine learning methods strongly depends on the representations used; the assumption is that some

representations work better than others at modelling discriminatory features in the variability of the

data (Bengio et al., 2013). This dissertation explores the effect of convolution as a filtering mechanism

for music representation, segmentation, pattern discovery and classification, in combination with machine

learning techniques. Parameters and processing techniques were systematically studied in order to find

the best practices. The aim was to understand how convolution relates to music analysis and perception.

Convolution is a mathematical tool that transforms a signal into a set of coefficients using an analysing

function (filter). Computational methods can use convolution to build robust and redundant represen-

tations of signals. Robustness is desired to deal with variations of the objects to be recognised. In the

visual system, for example, neurons are stimulus-selective and can detect visual objects irrespective of

their precise position, size or contrast (Schnupp, 2006). A similar phenomenon occurs in the recognition of

auditory objects, e.g., musical patterns which are recognised by the listener even if transposed or stated at

different instants in time (Deutsch, 2013). Neural redundancy is largely related to feature selectivity, and

it is gradually reduced at higher processing stations in the brain (Chechik et al., 2006).

The neurology and physiology of sensorial perception have been extensively modelled via convolution

(filtering). For example, cortical receptive-field profiles of simple cells, neurons that detect oriented lines or

edges within their receptive field (sensory space region) (Hubel & Wiesel, 1962), have been modelled with

Gabor filters (Daugman, 1980; Jones & Palmer, 1987; Marčelja, 1980). Thanks to the technological advances

in neurology, researchers have been able to characterise the relationship between natural images and brain

activity based on Gabor receptive-field models (Kay et al., 2008). Auditory perception, from the cochlea
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to higher centres in the auditory pathway, has been modelled with bandpass filters (Daubechies & Maes,

1996; Karmakar et al., 2011; Sinaga et al., 2003). In image processing, vision is modelled by convolution

or filtering and machine learning algorithms for object and texture recognition (Bengio et al., 2013; LeCun

et al., 2010; Nixon & Aguado, 2012; Tuia et al., 2014). In audio music classification, Gabor filters have

been successfully used in genre classification (Wu et al., 2011). The success of these models and methods

on modelling perception and the similitude of the convolution process to neurological and physiological

mechanisms, was the motivation to investigate its usefulness for modelling music perception and analysis.

2 Background

Convolution as a mathematical tool possibly appeared for the first time in its general form in a study by

Sylvestre François Lacroix in 1754, and then it was extensively used by Jean Baptiste Joseph Fourier, Siméon

Denis Poisson, Augustin Louis Cauchy and others (Dominguez, 2015). However, it was first in 1934 that

the term convolution (in English) was used by Aurel Friedrich Wintner in a paper about the convolution of

Bernoulli Distributions (Dominguez, 2015).

In the second half of the twentieth century and soon after the first programmable computers were

developed (Lavington, 2012), technical reports about data discrimination and recognition were written (Fix

& Hodges, 1951; Rosenblatt, 1957). Today’s widely used support vector machine classifier was developed

years later by Cortes & Vapnik (1995), although the origins of this classifier might be found in publications

by Vapnik, contemporary to those of Rosenblatt (1957) (Gammerman & Vovk, 2015). In 1906, Santiago

Ramón y Cajal and Camillo Golgi won a Nobel prize for their work on the nervous system, describing

that neurons and their interconnections are fundamental to the brain’s functions (Nilsson, 2010). Fifty

years later, the perceptron (Rosenblatt, 1957), an artificial neural network, preceded the discovery of Hubel

& Wiesel (1962) of simple, complex and hypercomplex cells of receptive fields in cat’s visual cortex. In

1979, convolution was proposed as a model underlying perception and memory by Murdock Jr. (1979)

and a year later, two works (Daugman, 1980; Marčelja, 1980) applied 2-D Gabor filters (Gabor, 1946) to

model the responses of cortical simple cells. At the same time, the wavelet theory was being developed

by Morlet, Goupillaud and Grossmann, who studied seismic waves (Farge, 1992). The Gabor filter is an

approximation of the Morlet wavelet (Antoine et al., 1993). However, since the work by Marčelja (1980),

Daugman (1980) and Morlet (1981), Gabor filters have been associated with image processing and Morlet

wavelets with the wavelet community.

Two studies close in time and aim, considered the effect of filtering representations for robust classi-

fication of audio (Daubechies & Maes, 1996) and images (Lecun et al., 1998). Daubechies & Maes (1996)

proposed the use of the wavelet transform to model cochlear processing for speech recognition. Convolu-
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tional neural networks (CNNs) were proposed to build representations robust to the handwritten digit’s

shape variability within class (Lecun et al., 1998). Today, CNNs are state-of-the-art in image processing

applications.

Since the nineteenth century, Hugo Riemann and other musicologists developed their theories based

on concepts of structural units, hierarchies, relations, similarity, repetition, variation, and style (Lerdahl &

Jackendoff, 1983; Monelle, 1992; Nattiez, 1975; Ruwet, 1966; Schenker, 1935; Schoenberg, 1984). Psychologi-

cal studies have concentrated on mechanisms of musical perception and memory. Lamont & Dibben (2001)

found that similarity ratings of music were primarily based on surface features like contour and texture

rather than on motivic or harmonic relations. Müllensiefen & Wiggins (2011b) studied melodic struc-

tures empirically and found that exposure refines memory representations. Deutsch (1999) adapted visual

Gestalt principles to auditory experiments in order to understand how musical patterns were perceived,

and found evidence that similar principles operate on visual and auditory objects. Similarly, neurological

studies have suggested a direct interaction in mechanisms of vision and audition and common neural sub-

strates in the brain, to establish robust representations of the world (Ernst & Bülthoff, 2004; Hidaka et al.,

2011; Schön & Besson, 2005).

Although in the late twentieth century, there have been some studies for automatic or semi-automatic

analysis of music, the beginning of a new century correlated with an increased number of publications in

the field of music information retrieval (MIR). Indeed, the first conference of the International Society for

Music Information Retrieval took place in 2000. Since then, several computational music analysis methods

have been proposed. These systems have usually been designed and evaluated either to deal with audio

or symbolic representations of music. Audio refers to the digital representation of a recording of a specific

musical performance in terms of a sampled waveform, while symbolic refers to the encoding of music

in terms of notes and their properties, and thus relates more closely to a notated score. In the symbolic

context, popular representations are strings and multidimensional feature vectors (e.g., Conklin, 2006;

Ponce de León & Iñesta, 2004; van Kranenburg et al., 2013). In audio, the input to most of the methods

is based on some transformation of the audio data such as Fourier or mel-frequency cepstral coefficients

(MFCCs) (Müller, 2015). MIR applications include among others: segmentation (e.g., Cambouropoulos,

2001; Paulus et al., 2010), classification (see Corrêa & Rodrigues, 2016; Fu et al., 2011) and pattern discov-

ery (see Collins, 2016; Janssen et al., 2013).

3 The evolution of the project

Initially, this research project aimed to study wavelets and the wavelet transform for music analysis.

Wavelets can be seen as filters with specific mathematical properties, and the Continuous Wavelet Trans-
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form (CWT) as the convolution of a signal and a wavelet family. The discrete version of the wavelet

transform (DWT) was not within the scope of the project, as it is more suitable for compression and

reconstruction purposes, applications not considered in this thesis.

There have been several studies using the CWT and the DWT on audio applications such as feature

extraction for genre classification (e.g., Wu et al., 2011), pitch contour extraction and melodic indexing

(e.g., Jeon & Ma, 2011), rhythmic content analysis (e.g., Smith & Honing, 2008), denoising (Berger et

al., 1994), and audio compression (e.g., Srinivasan & Jamieson, 1998). In contrast, the use of wavelets on

symbolic representations of music has been scarce: Pinto (2009) used the DWT for music indexing. Just

recently, Shafer (2016) presented substantial work on the use of wavelets for symbolic music classification

and pattern extraction.

Initial experiments on the use of wavelets for music analysis on symbolic representations were pre-

sented before this project started (Velarde, 2010; Velarde & Weyde, 2011, 2012a,b,c,d). The following publi-

cations reporting the use of wavelets for music analysis were applied in the one-dimensional (1-D) space,

studying music representation, segmentation, classification and pattern discovery (see Papers I to IV). In

these four publications, we studied several parameters, techniques and algorithms, but we only used the

Haar wavelet. In the two-dimensional (2-D) space, we tested the effect of using two different filters for

classification and found no significant difference in the classification results when filtering with a Gaussian

filter or a Morlet wavelet (see Paper V). In recent years, deep learning methods such as CNNs have been

shown to outperform previous approaches in image classification tasks. In these methods, the filters are

automatically learned by the systems, in contrast with wavelet filters, which must obey some mathematical

conditions. We noticed that the approach of the project was very related to CNNs in the sense that con-

volution is the underlying process in a hierarchical fashion. We therefore performed experiments using a

CNN, obtaining filters which we directly related to musical features (see Paper VI). Therefore, there was no

further motivation to restrict our study to wavelet filters, but instead, we recognised the general relevance

of convolution for music analysis.

Next, considerations relating to the development of a framework for computational music analysis are

presented.

4 Computational music analysis

Music analysis is a discipline that applies music theory with the aim of understanding how music is

designed, structured and elaborated (Horton, 2014). In this discipline, there is no definitive analysis of

a piece, but several different possible valid analyses (Marsden, 2016). On the other hand, computational

music analysis methods, despite taking different approaches, are usually expected to produce an output
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that matches a “ground truth” (Marsden, 2016). In some tasks, the ground truth is unquestionable (e.g.,

composer classification, when the composers of the analysed work are known with certainty), while in

others, the “ground truth” represents only the subjective judgement or perception of specific individuals

(e.g., discovery of repeated themes and sections). Despite these considerations, analyses produced by

computers are of interest because they are applicable to e.g., recommendation systems, music education,

music creation and music indexing. They can also serve to support musicology.

5 Research questions

This dissertation addresses the following research questions:

• To what degree can convolution support the analysis of music in relation to segmentation, pattern

discovery and classification?

• What are the best techniques and parameter settings for carrying out such tasks?

• How can we understand a convolution-based representation of music from a music-theoretical and

perceptual perspective?

6 General and Specific Objectives

The general objectives of this dissertation are: 1. to develop and evaluate an automated framework for mu-

sic analysis based on convolution, with applications to segmentation, classification and pattern discovery;

and 2. to study filters in relation to music-analytical and perceptual properties.

The specific objectives of the work reported in this dissertation are:

• design, implement and evaluate a framework applying convolution as the basis for the structural

analysis of music applied to segmentation, pattern discovery and classification, and compare it with

other algorithms;

• evaluate 1-D and 2-D filters for structural analysis in relation to music analysis and perception;

• evaluate and test systematically the use of filters, features of coefficients, time scales and similarity

measures in classification tasks (e.g., composer, genre, tune-family classification) and pattern discov-

ery (e.g., motivic analysis) in order to find the best techniques and parameter settings; and

• relate filters to musical properties.
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Music file Sampling Processing Boundary
detection

Segments

Figure 1.1: Diagram of the method for music segmentation

Music file Sampling Processing Clustering Patterns

Figure 1.2: Diagram of the method for pattern discovery

Music file Sampling Processing Classification Label

Figure 1.3: Diagram of the method for music classification

7 Methodology

The methodology is to study convolution as a mechanism for extracting relevant features of music for

representation and segmentation, and then to apply machine learning algorithms to these features for

classification and clustering. A summary of the techniques, algorithms and methods studied is presented

in section 9.

The framework for computational music analysis has been applied to three applications: music segmen-

tation, pattern discovery and classification (see Fig. 1.1 to 1.3, respectively). The main difference between

these applications is the output. For music segmentation, the output corresponds to segments (or local

boundaries) in a piece of music (Fig. 1.1), while for music classification the output is its label (Fig 1.3).

Finally, for pattern discovery, the output of the system corresponds to the occurrences of patterns found in

the piece (Fig. 1.2). In the sampling phase, music files are converted to 1-D or 2-D signals, and the following

processing steps are therefore carried out in the 1-D or 2-D space (see sections 10 and 11). This is followed

by a processing phase in which the signals are transformed in various ways to find a suitable representation

for each application. For music classification and pattern discovery we also tested the effect of segmenting

the input signals before processing.

8 Applications and evaluation

The framework presented in this dissertation has been applied to music segmentation, pattern discovery

and classification, and it has been evaluated against state-of-the-art approaches.
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8.1 Music segmentation

Figure 1.1 shows a flowchart of the method for music segmentation. The input to the system is a music file,

and the system outputs the found segments (or the local boundaries) of the piece. We evaluated the effect

of segmentation for classification, and tested different segmentation approaches (constant-duration, zero-

crossings and local maxima) and compared them to the Local Boundary Detection Model (LBDM) (Cam-

bouropoulos, 1997, 2001) in classification experiments. The wavelet-based segmentation and the LBDM

measure local changes in melodic contour, such that the LBDM measures the degree of change of suc-

cessive values and the wavelet segmentation detects locally maximal changes of average pitch in melodic

contour at a defined time-scale (see Paper I). The classification accuracies obtained when segmenting at

local maxima or zero-crossings are comparable to those obtained when segmenting with the LBDM (see

Paper I, Tables 1 and 2 for comparison between local maxima segmentation and the LBDM; see Paper II,

Figures 10 and 11 for comparison between zero-crossings and the LBDM).

8.2 Pattern discovery in music

Figure 1.2 shows the general form of the method used for pattern discovery. The input to the system

is a music file and the system outputs clusters of pattern occurrences ranked according to their salience.

This method has been submitted for evaluation to the Music Information Retrieval Evaluation eXchange

(MIREX), on the task of discovering repeated themes and sections in symbolic, monophonic music. In

the last three MIREX events, our proposed method for pattern discovery has proved to be a competitive

approach over the different measures. In the MIREX 2016, our VM1 submission significantly outper-

formed all other submissions on establishment recall per pattern and occurrence recall per pattern, and

it was suggested as a candidate for visual analysis as it outputs fewer patterns than other algorithms

(see the evaluation at http://www.music-ir.org/mirex/wiki/2016:Discovery_of_Repeated_Themes_%

26_Sections_Results). See Paper IV, sec. 12.3.1.2, for an evaluation on our submissions in 2014. Finally,

see Paper IV, sec. 12.3.1.3, as an example of the produced output of the method and its visualisation.

8.3 Music classification

Figure 1.3 presents a diagram of the method for music classification. The input to the system is a music file,

and the system outputs its computed label. In 1-D, we evaluated our method on the task of classifying folk

tunes into tune families and compared its classification accuracy to a state-of-the-art approach based on

string alignment by van Kranenburg et al. (2013). The accuracies of our proposed method are close to those

reported by van Kranenburg et al. (2013) using a local approach with interval sequence features (see Paper

II, Table 3 and van Kranenburg et al. (2013), Table 4). However, the accuracies reported by van Kranenburg
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et al. (2013) using expert-annotated phrase boundaries are far more accurate than those obtained with our

method, which does not use this information.

Moreover, we performed experiments on parent work recognition. We tested empirically musicological

claims of motivic coherence in Bach’s Two-Part Inventions (Dreyfus, 1996), see Experiment 1 in Paper II,

sec. 4.1, and Experiment 2 in Paper IV, sec. 12.3.2.

In 2-D, our convolution-based method was evaluated on the difficult task of discriminating between

Haydn and Mozart string quartet movements. Our method proved robust to encoding, transposition

and amount of information (see Paper V, sec. 4). Moreover, we compared the classification accuracies

of our method to those obtained by van Kranenburg & Backer (2004), reaching the state-of-the-art, while

avoiding the use of hand-crafted features and voice parsing (see Paper V, sec. 4, Table 3.). Our convolution-

based ensemble of classifiers was evaluated on composer and genre recognition on audio and symbolic

representations of music. The ensemble of classifiers reached the state-of-the-art on composer recognition

on two datasets of Haydn and Mozart string quartet movements (see Paper VI, Tables 3 and 4), and proved

to be versatile, achieving similar performance on genre classification, using The Well-Tempered Clavier by

J.S. Bach (see Paper VI, Tables 2 and 6). Moreover, our classifiers obtained similar performance on audio

and symbolic representations (see Paper VI, Experiments 2 and 3). Finally, we are able to provide insight

into style through the observation of filters automatically learnt by a CNN (see Paper VI, sec. 3.3).

9 Summary of the techniques, algorithms and methods studied

Tables 1.1 and 1.2 present a summary of the techniques, algorithms and methods studied in the 1-D and

the 2-D space related to publication.
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Table 1.1: Summary of the techniques, algorithms and methods studied in the 1-D space related to each
publication

Paper I: Paper II: Paper III: Paper IV:
FMA
2013 (Ve-
larde,
Weyde, &
Meredith,
2013b)

JNMR
2013 (Ve-
larde,
Weyde, &
Meredith,
2013a)

MIREX
2014 (Ve-
larde &
Meredith,
2014)

CMA
2016 (Ve-
larde,
Meredith, &
Weyde, 2016)

Representations: pitch signal (MNN), normalized
pitch signal and wavelet coefficients

X X X X

Representation: absolute wavelet coefficients X
Segmentation: constant-duration (or constant-
length) and wavelet zero-crossings

X X X

Segmentation: local maxima X X
Segmentation: absolute maxima X X
Filter: Haar wavelet at a single scale X X X X
Segment length normalization by zero padding X X X X
Segment length normalization by interpolation X
Geometric transformations: inversion, retrograde
and retrograde inversion

X

Classifier: k-NN X X X
Distance measures: Euclidean and cityblock X X X X
Distance measure: Dynamic Time Warping X
Diagonal concatenation of segments X X
Horizontal concatenation of segments X
Clustering: single linkage (nearest-neighbour) X X
Ranking: compression ratio X X
Parameter tuning X X X X
Application: Folk tune classification. Dataset: The
Dutch Folk Tunes (Grijp, 2008)

X X

Application: Parent work recognition. Dataset: The
Two-Part inventions by J.S Bach (Bach, 1790)

X X

Application: Discovery of repeated themes and sec-
tions. Dataset: The JKU PDD (Johannes Kepler Uni-
versity Patterns Development Database, 2014)

X X

Comparison of segmentation based on
wavelets (Velarde et al., 2013a,b) and the
LBDM (Cambouropoulos, 2001)

X X

Comparison of the wavelet-based segmentation
and classification method (Velarde et al., 2013a) and
alignment methods (van Kranenburg et al., 2013)

X X

Comparison of our method for pattern discovery
VM1 (Velarde & Meredith, 2014) and NF1(Nieto &
Farbood, 2013), OL1(Lartillot, 2014), DM10 (Mered-
ith, 2013)

X X
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Table 1.2: Summary of the techniques, algorithms and methods studied in the 2-D space related to each
publication

Paper V: Paper VI:
ISMIR
2016 (Ve-
larde,
Weyde, Can-
cino Chacón,
Meredith,
& Grachten,
2016)

(Manuscript) (Ve-
larde, Can-
cino Chacón,
Meredith,
Weyde, &
Grachten, in
review)

Representations: piano-roll p70qn, p400n, MNN and morphetic
(diatonic) pitch and their filtered versions

X X

Representation: p f l , MNN and morphetic (diatonic) pitch and
their filtered versions

X

Representations: STFT and VQT spectrogram sp400n, sp400n and
their filtered versions

X

Pitch range centering Cb X X
Center of mass centering Cm X
LDA X X
Segmentation: constant-length X
Filter: Morlet wavelet at a single scale and orientation X
Filter: Gaussian filter X X
Classifier: SVM with linear kernel X X
Classifier: k-NN with Euclidean distance X
Classifier: CNN X
Parameter tuning X X
Application: Composer classification. The Haydn and Mozart
string quartets. Dataset introduced by van Kranenburg & Backer
(2004)

X X

Application: Composer classification. The Haydn and Mozart
string quartets. Dataset introduced by Hillewaere et al. (2010)

X

Application: Genre classification. The Well-Tempered Clavier by J.
S. Bach. Datasets (Bach, 1722, 1742)

X

Comparison of methods (Velarde et al., in review; Velarde,
Weyde, et al., 2016) and the string-based method by Hillewaere
et al. (2010) and the style-makers and kNN based-method by van
Kranenburg & Backer (2004)

X X
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10 Music analysis in the one-dimensional space

The computational analysis of music in the 1-D space is based on representing music as 1-D signals aiming

to model melodic contour, similarity and variation. Previous approaches have used the following represen-

tations: strings (e.g., Hillewaere et al., 2010; van Kranenburg et al., 2013), contour vectors (Juhász, 2009),

contours (Huron, 1996), polynomial functions (Müllensiefen & Wiggins, 2011a; Urbano et al., 2010), and

Fourier coefficients (Schmuckler, 1999). We introduced (normalized) pitch signals and wavelet coefficients

(Papers I and II).

As mentioned previously in this introduction, representation is fundamental for computational meth-

ods as machine learning algorithms strongly depend on them. In this work we aimed to study the effect of

convolution (i.e., filtering with the Haar wavelet) and other processing techniques or transformations (e.g.,

transposition, geometric transformations) in 1-D signals for music applications. These representations are

briefly introduced in the next section.

10.1 One-dimensional representations of music

In Papers I to IV, we introduced four 1-D representations (see Paper IV, Fig. 12.2 for illustration):

• pitch signal representation, described in Paper II, sec. 3.1.1. Illustrations between the correspondence

of score notation and its pitch signal can be seen in Paper II, Fig. 1 (a), (b), and Paper IV, Fig. 12.10.

• normalized pitch signal representation, described in Paper II, sec. 3.1.1.

• wavelet representation (or wavelet coefficient representation), described in Paper II, sec. 3.1.2.

• absolute wavelet coefficient representation, described in Paper IV, sec. 12.2.1, para. 7.

Melodies are sampled to pitch signals first; the other three representations (normalized pitch signal,

wavelet coefficient and absolute wavelet coefficient) are transformations of pitch signals. In the case of

polyphonic works, a pitch signal can be sampled for each part, if each part was encoded separately (for

example, see Paper II, sec. 4.1). Polyphonic works without information on part encoding could still be

encoded as pitch signals by generating a melodic line by applying a skyline approach (Uitdenbogerd &

Zobel, 1998) (as in Collins, 2014) (see Paper II, sec. 12.3.1). However, we have not studied the effect of the

skyline algorithm on our 1-D approach. It is possible that for certain styles of music the performance of

our 1-D algorithms would be affected by using this technique.

In the 1-D space, we apply the CWT (Antoine, 1999) with the Haar wavelet and select a single scale,

thus effectively applying a filter on the signal (see Paper II, sec 3.1.2). The Haar wavelet (Haar, 1910) is

illustrated in Paper II, Fig. 2. We discuss the problem of selecting a filter in Paper II, section 3.2. Filtering
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Figure 1.4: Diagram of the proposed method for music segmentation in the 1-D space. The system receives
a piece of music and outputs its computed segments (or local boundaries). Thick grey boxes are optional
processing steps. The modules in the boundary detection phase are exclusive, such that only one seg-
mentation approach takes place. Filtering does not precede constant-duration segmentation to find local
boundaries, as the local boundaries are set with constant-duration.

with the Haar wavelet at a single scale emphasises the signal’s information on that specific time-scale

(discussion on the selection of scale is given in Paper II, section 3.4).

Additionally, we tested the following geometric transformations: inversion, retrograde and retrograde

inversion as seen in Paper II, Fig. 8.

10.2 Segmentation

Segmentation is a very important task for music analysis and perception (Lerdahl & Jackendoff, 1983)

(see Paper II, sec. 2.2.1, for a deeper argumentation). In the 1-D space, we also evaluated the effect of

filtering for segmentation, as well as the use of a base-line segmentation based on chunking signals at a

constant-length (or constant-duration). The evaluated wavelet-based segmentation approaches are:

• wavelet zero-crossings, illustrated in Paper II, Fig. 4, where the scale for representation and segmen-

tation is the same, therefore it is possible to observe visually the coincidence of zero-crossing and

segmentation points in the wavelet coefficient representation;

• wavelet local maxima, illustrated in Paper II, Fig. 5: the scale for representation and segmentation is

the same;

• wavelet absolute maxima, illustrated in Paper IV, Fig. 12.4, bottom graph: the scale for representation is

different from the scale for segmentation and, therefore, the segmentation points do not necessarily

coincide with the local maxima points in the represented signal.

Music segmentation was evaluated in classification experiments (see section 8.1). Figure 1.4 shows

a diagram of the proposed segmentation method. A music file is first sampled to a 1-D pitch signal.

The grey boxes are optional. The modules in the segmentation phase are exclusive, such that only one
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Figure 1.5: Diagram of the proposed method for pattern discovery in the 1-D space. The system receives
a piece of music and outputs its computed clusters of pattern occurrences. Thick grey boxes are optional
processing steps.

segmentation approach takes place. Filtering takes place for zero-crossings, local maxima and absolute

maxima segmentation.

10.3 Pattern discovery

Our proposed method for pattern discovery (Papers III and IV), resembles the method of paradigmatic

analysis developed by Ruwet (1966) and Nattiez (1975) (for an introduction see Paper IV, sec. 12.1). Fig-

ure 1.5 shows a diagram of the proposed method for pattern discovery from the input to the output

(presented in more detail than in Paper IV, Fig. 12.1). A music file is first sampled to a 1-D pitch signal,

and then undergoes several processing steps. Filtering is an optional step, as signals can be sent to the

segmentation phase as pitch signals or as filtered signals. After segmentation, there are comparison, clus-

tering and ranking phases. The output of the method corresponds to the computed patterns organised

into ranked clusters. A detailed description of the method is given in Paper IV, sec. 12.2.

Experiments reporting the use of the method for pattern discovery in music are presented in Paper IV,

sec. 12.3. Moreover, the method was evaluated against other approaches in three editions of the MIREX

task on discovery of repeated themes and sections (monophonic symbolic version) (see section 8.2).

10.4 Music classification

Figure 1.6 presents a diagram of the proposed method for music classification in 1-D. A piece of music

is first sampled to a 1-D pitch signal, and then undergoes several processing steps before classification

with a k-Nearest Neighbour (k-NN) algorithm. Thick grey boxes are optional processing steps. We tested

the effect of filtering on representation and segmentation. After segmentation, only signals represented

as pitch signals are normalized in pitch, being transformed to normalized pitch signals. Filtered signals

(i.e., wavelet coefficient and absolute wavelet coefficient representations) do not follow the processing module
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Figure 1.6: Diagram of the proposed method for music classification in the 1-D space. The system receives
a piece of music and outputs its computed class label. Thick grey boxes are optional processing steps. If
filtering takes place, the normalization in pitch does not take place.

normalization in pitch as wavelet filtering acts as a normalization process; wavelet representations in 1-D

are transposition invariant. In order to measure similarity between segments, we used two normalization

techniques (zero-padding or interpolation) to equalise the length of segments (see the effect of these two

normalization techniques in Paper II, Fig. 6). Finally, we use a k-NN classifier. The final computed class

label corresponds to the most frequently predicted class of the segments. We evaluated the method on folk

tune classification and on parent work recognition (see section 8.3).

11 Music analysis in the two-dimensional space

The computational analysis of music in the 2-D space is based on representing music as 2-D signals aiming

to model musical texture. The motivation for representing music in the 2-D space as pitch–time images is

presented in Paper V, section 2.1. We aimed to sample both audio and symbolic music representations to

2-D pitch-time images in order to propose a general method for music analysis that does not depend on

the type of input representation. The method processes and analyses music in a similar form regardless of

it being an audio or a symbolic file. For symbolic representations we use piano-rolls and for audio we use

spectrograms. Spectrogram images present spectral information over time and are used in audio music

classification (e.g., Costa et al., 2012; Velarde et al., in review; Wu et al., 2011). Piano-roll images present

notes over time and were successfully introduced for music classification by Velarde, Weyde, et al. (2016)

(Paper V).

Similarly as in the 1-D space, we aimed to study the effect of convolution (i.e., filtering with Morlet,

Gaussian and learnt filters) and other transformations (e.g., transposition, dimensionality reduction) in

music applications. In the 2-D space, we applied the method to music classification.

11.1 Two-dimensional representations of music

Today, the most commonly used forms of visual representation for music are notated scores and piano-

rolls (as commonly used in, for example, sequencer software). Audio data is often represented visually,
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e.g., in the form of spectrograms.

We sample piano-roll images from symbolic representations of music (e.g., MIDI files), and sample

spectrograms from audio files (see Papers V and VI). Examples of pitch–time representations of music can

be seen in Paper VI, Fig. 3. The following pitch–time representations are used in the 2-D space:

• Piano-rolls of full-length pieces are described in Paper VI section 2.1.1. Piano-roll excerpts of the first

70 quarter notes and piano-roll excerpts of the first 400 notes are described in Paper V sections 3.1.3

and 3.1.4.

• Spectrograms are computed using the Short Time Fourier Transform (STFT) or Variable Q-Transfrom

(VQT), see Paper VI, section 2.1.2.

We used two filters for our experiments: a Morlet wavelet and a Gaussian filter, for details on both

filters see Paper V section 3.2.4. Additionally, we automatically learn filters by a CNN, see Paper VI,

section 2.3.1.

Apart from studying the effect of filtering, we also study the effect of applying different processing

techniques or transformations. Certain musical variations do not affect human recognition of music, e.g.,

recognising a melody and its transposed version, but could dramatically affect the performance of a system.

In Paper V section 3.2, we introduced transformations aiming to find a better representation space (e.g.,

Linear Discriminant Analysis, center of mass centering, filtering) and to test the robustness of the method

to transformations that could be considered as perceptually irrelevant for recognition (e.g., pitch range

centering):

• pitch range centering, modelling transposition (see Paper V sec. 3.2.1)

• center of mass centring, (see Paper V sec. 3.2.2)

• Linear Discriminant Analysis (LDA), (see Paper V sec. 3.2.3)

• filtering, (see Paper V sec. 3.2.4)

11.2 Music classification

In Paper V, we move from 1-D to 2-D representations, and introduce a method for music classification

which does not need domain knowledge features such as contrapuntal features or any other handcrafted

features which are dataset dependent. Moreover, the method does not depend on the encoding or parsing

of separate voices, which makes it more general than both our own approach in 1-D (Velarde et al., 2013b),

and previous methods that have been applied to the same task (Herlands et al., 2014; Hillewaere et al.,

2010; Hontanilla et al., 2013; van Kranenburg & Backer, 2004).
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The approach in Paper V exploits musical texture of large structures of music (excerpts of about 70

quarter notes in length or containing 400 notes) for its predictions. However, we hypothesised that the

recognition of style might also need local processing of small patterns occurring translated in time and/or

transposed in pitch. It was previously shown that local processing is very important for music classifica-

tion (van Kranenburg et al., 2013; Velarde et al., 2013a). Therefore, in Paper VI we introduced a segmen-

tation phase, extracting local features at small time scales. We experimented with ensembling classifiers

based on feature extraction at small time scales of about 1 or 2 quarter notes, combined with feature ex-

traction at the large scale. These approaches were evaluated on two style recognition tasks (composer and

genre classification) using both symbolic and audio representations of music (see section 8.3, para. 3).

12 Discussion

The aims of this dissertation were, first, to evaluate the effectiveness of convolution for music analysis

in applications such as segmentation, classification, and pattern discovery; and second, to study filters in

relation to music-theoretical and perceptual properties. In this section, general findings and considerations

within the scope of this framework are presented, as well as considerations outside its original scope.

Convolution is indeed a crucial component of the computational music analysis methods presented in

this dissertation, and has been shown to significantly improve recognition over non-filtered representa-

tions. However, it is not the only process that helped us to classify music or to find musical patterns. Its

relevance should be attributed to providing a robust and discriminative representation of music.

In 1-D (Papers I to IV), we have shown that appropriately tuned filters deliver a representation robust

to melodic variation, which might emphasize relevant parts of the melodic contour, having a beneficial

effect on the similarity measure; possibly due to the transposition invariance of the wavelet representation

and the use of an appropriate time-scale (Papers I and II). Additionally, we found another representation,

the normalized pitch signal, which proved to be powerful for musical material which is restated with less

degree of variation (Paper IV).

In 2-D (Papers V and VI), we have shown that appropriately tuned filters deliver a representation robust

to textural variation, which might highlight contour, having a beneficial effect on the similarity measure,

and significantly improving recognition over non-filtered representations.

Moreover, we found that local processing is crucial in music categorization and pattern discovery, but

processing at large scale also proves relevant (Papers II and VI), so that a combination of feature extraction

at small and large time scales makes the system robust across datasets (see Paper VI).

Filtering as a segmentation mechanism has been studied in the 1-D space only. The method for seg-

mentation was evaluated in classification experiments, rather than by using a ground truth containing
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information on perceived local boundaries. Segmentation was also used as a subprocess in pattern dis-

covery. In classification and pattern discovery experiments, absolute maxima segmentation worked better

than zero-crossing segmentation, helping to improve recognition and being twice as fast as zero-crossing

segmentation (Paper IV). Moreover, constant-length segmentation at a small scale of 1 qn, proved to work

well for recognition when the musical material is restated with less degree of variation (see Paper IV). In

2-D, constant-length segmentation was also successfully used in our classification experiments (Paper VI).

It seems possible that this straightforward approach combined with other mechanisms is useful for mu-

sical recognition, given that small segments might be “atomic” structural musical units, and do not need

any segment length normalization for the similarity measure. Conklin (2006) also found high classification

accuracies using pitch class segments of beat-length.

In music classification experiments, we have modelled musical texture in the 2-D space based on pitch–

time representations. The success of this visual representation of music, exploits the relation between the

visual and auditory processing for music perception (Deutsch, 2013).

Normalization has been shown to be important for music similarity. Transposing melodic segments

(pitch normalization) was relevant in parent work recognition (e.g., Paper II). However, this strategy

seemed to be less effective when using full-length pieces or large musical excerpts (compare Paper II,

sec. 5.2.1, and Paper V, sec. 4). This result might indicate that in some cases the tonal content is relevant

for music similarity. In 1-D, we used segmentation approaches delivering segments of different lengths.

Measuring segment similarity requires segment length equalisation (normalization). We found that nor-

malization by zero padding produced better results than normalization by interpolation, suggesting that

the structure of segments is related to their length (Paper II).

In 1-D, we evaluated the use of Euclidean, city-block and dynamic time warping (DTW) distances. We

found similar results when measuring similarity with city-block and Euclidean distances. In general, DTW

was not associated with the best results when finding musical patterns, and was more computationally

expensive than the other two distances. We assumed that the DTW distance might prove to be useful for

music presenting temporal deviations such as ritardando or accelerando (Paper IV). As Euclidean and city-

block distances performed similarly in our experiments in 1-D, and as the Euclidean distance is generally

used as a distance measure in image processing, we measured similarity with the Euclidean distance in

the 2-D space.

When classifying with a CNN, we applied a hierarchical structure with nine filters of about 1 qn in the

first layer, and five filters of about half qn in the second layer (Paper VI). In our experiments, the CNN did

not outperform the state-of-the-art (Paper VI). We attributed this result to the training of the CNN with a

small number of samples or a possibly reached “glass ceiling” in the evaluated task; however, the CNN’s

automatically learnt filters allowed us to directly relate those filters to musical patterns, gaining musical
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insight (Paper VI, sec. 3.3).

12.1 On using the results of computational music analysis to support musicology

In general, musicologists might be interested in computational music analysis methods to, for example,

test a theory (or theories) systematically, or to test different methods for the same problem, and to find an

approach that is more appropriate for a given task.

In particular, our computational approach resembling paradigmatic analysis (Nattiez, 1975; Ruwet, 1966)

has shown to be competitive when evaluated on a ’ground truth’ analysis not produced by experts in

paradigmatic analysis. This suggests that paradigmatic analysis is a relevant method for music analysis.

Additionally, this suggests convergence of human music analysis given a well-defined output. Musi-

cologists may be interested in a visualisation of the patterns obtained by our method which resembles

paradigmatic analysis, and they might help us by giving feedback to the output of the approach.

Spurious composer attribution can be a practical application of our classification approach. Musicol-

ogists might be interested to compare their hypotheses to the predictions of the system. Additionally,

the filters learnt by the convolutional neural network might relate to musical structures of the analysed

datasets. However, this relation is not well understood and deserves future work.

12.2 1-D or 2-D?

We developed computational music analysis methods in the 1-D and 2-D space, but we did not compare

the two approaches with each other. Pattern discovery was evaluated in 1-D only, and although we tested

the method for music classification in 1-D and 2-D, we did not run experiments on the same datasets,

and therefore, we do not have sufficient evidence to draw conclusions regarding the advantages of one

approach over the other, or guidelines to select one of the two for a given task.

Although it would seem intuitive, we do not have any firm evidence that analysis in 1-D would be

more appropriate for monophonic music, nor that analysis in 2-D would be generally more suited for

polyphonic works. To make such conclusions, we would need to study both approaches over the same

context, to evaluate, for example competitiveness and complexity. However, concerning complexity, it is

evident that the approach in the 1-D space is more economical than its counterpart in the 2-D space. On

the other hand, the performance of the 1-D approach might be affected by the parsing of voices for some

styles of music.
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13. Conclusion

12.3 On the generalizability of the methods for music and beyond

It seems possible that the methods in 1-D and 2-D can generalise well for music where timbral features are

not the most important descriptors of their style. We evaluated the methods on folk music and classical

music of the periods: renaissance, baroque, classical and romantic, but it might well be that music from

other periods of time and genres could be effectively analysed with the proposed methods.

We did not evaluate the proposed methods outside music applications. However, the methods in 1-D

for segmentation, pattern discovery and classification can be used for applications in other domains, such

as finance, weather, medicine, etc., where data is represented as a 1-D signal or time-series.

In the MIR community, the evaluation of computational methods is based on specific applications, such

as music classification, segmentation, chord estimation, query by singing/humming, etc., (see the Music

Information Retrieval Evaluation eXchange at http://www.music-ir.org/mirex/wiki/MIREX_HOME). We

participated in the MIREX task on the discovery of repeated themes and sections (Collins, 2014). Our

method has been benchmarked against other methods, which for example represent data not as time-

series but as point sets (Meredith, 2013).

Keogh & Kasetty (2003) presented a survey and evaluation of various methods for time-series applica-

tions in finance, medicine, astronomy and networking among others. However, there was no evaluation of

methods for music applications.

In 2-D, our method for classification can be potentially used in non-music applications where the

input are images. Indeed, we evaluated a convolutional neural network which is state-of-the-art in digit

recognition.

Therefore, the main contributions of this dissertation are the design and evaluation of convolution-

based methods in music applications, and the musical insight gained by their use.

13 Conclusion

The main contribution of this dissertation is the introduction of novel convolution-based methods for

music analysis. We designed, implemented and evaluated an automated framework for the analysis of

music in applications such as music segmentation, pattern discovery, and classification. We systematically

studied and evaluated the effect of filtering and other processing techniques on representation and seg-

mentation. Moreover, we studied and optimized the parameters of filters (Haar, Morlet, Gaussian and

learnt filters), and machine learning algorithms (k-nearest neighbours, single linkage, support vector ma-

chines, convolutional neural networks) in pattern discovery and classification applications. We developed

a framework for music analysis in the one-dimensional and two-dimensional spaces; however, we did

not rigorously compare one-dimensional approaches with two-dimensional approaches. The proposed
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methods do not use domain knowledge features and are therefore more generalizable than other methods

which depend on dataset-derived or style-dependent features. We found that filtering improves recog-

nition over non-filtered representations, and that, in particular, filtered representations are more robust

to musical variation. Moreover, local processing and processing at a large scale prove to be important

in music classification, and a combination of large-scale and small-scale feature extraction strategies can

be complementary for ensembling. In 1-D, our convolution-based segmentation method is comparable

to a state-of-the-art Gestalt-based segmentation approach in classification experiments. In the last three

Music Information Retrieval Evaluation eXchange campaigns, our proposed method, which resembles

paradigmatic analysis, has been evaluated on the discovery of repeated themes and sections task applied

to monophonic symbolic music, and has been shown to be a competitive approach over all measures in that

evaluation. In 2-D, our convolution-based ensemble of classifiers reaches the state-of-the-art on composer

recognition and achieves similar performance on genre classification. Moreover, our classifiers perform

equally well on symbolic and audio music data. Finally, observation of filters automatically learnt by a

convolutional neural network provides musical insight.

13.1 Future work

Future work might consider the following aspects:

• Evaluation of the performance and complexity of the proposed methods in 1-D and 2-D for classifi-

cation, using the same datasets.

• Extension of the 1-D pattern discovery method to audio and the polyphonic version.

• In 1-D, evaluating the approach using other filters such as Gaussian, Ricker, Daubechies.

• In 1-D and 2-D, evaluation of the use of a convolutional neural network initiating the filters with

given Morlet wavelets or Gaussian filters.

• Evaluation on multi-class classification tasks (e.g., genre, composer, performer, etc.) on larger datasets.

• Evaluation of classification results in the analysis of spurious attributions.

• Obtaining feedback from musicologists and music students on the output of the methods.

• Evaluating the proposed method on non-music-related tasks and applications.
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ABSTRACT 
 
The aim of this study is to evaluate a machine-learning method 
in which symbolic representations of folk songs are segmented 
and classified into tune families with Haar-wavelet filtering. 
The method is compared with previously proposed Gestalt-
based method. Melodies are represented as discrete symbolic 
pitch-time signals. We apply the continuous wavelet transform 
(CWT) with the Haar wavelet at specific scales, obtaining fil-
tered versions of melodies emphasizing their information at par-
ticular time-scales. We use the filtered signal for representation 
and segmentation, using the wavelet coefficients’ local maxima 
to indicate local boundaries and classify segments by means of 
k-nearest neighbours based on standard vector-metrics (Euclid-
ean, cityblock), and compare the results to a Gestalt-based seg-
mentation method and metrics applied directly to the pitch sig-
nal. We found that the wavelet based segmentation and wavelet-
filtering of the pitch signal lead to better classification accuracy 
in cross-validated evaluation when the time-scale and other pa-
rameters are optimized. 

1. INTRODUCTION 

One of the aims of folk song research is the study of me-
lodic variations caused by the process of oral transmis-
sion between generations (van Kranenburg et al., 2009). 
Wiering et al. (2009) propose an interdisciplinary and on-
going process between human expertise, methods and 
models to understand melodic variation and its mecha-
nisms. Classification models and methods dealing with 
such challenges define their representation and pro-
cessing to be evaluated based on some ground truth. In 
this paper, we present our method based on wavelet-
filtering and evaluate it on a collection of Dutch folk 
songs (“Onder de groene linde”, Grijp, 2008), in which 
songs were classified into tune families according to ex-
pert similarity assessments, mainly based on rhythm, con-
tour and motifs (Wiering et al., 2009; Volk & van 
Kranenburg, 2012). 
 

The collection of folks songs that we study in this 
paper, is a monophonic collection of Dutch folk melodies 
encoded in MIDI files, so that we have pitches encoded 
as integer numbers, ranging from 0 to 127, and onsets and 
durations in quarter notes and subdivisions. In order to 
analyse these files via wavelets, we sample each melody 
as a one dimensional (1D) signal. Graphically, the melod-
ic contour of 1D pitch signal can be drawn in a pitch over 
time plot, with the horizontal axis representing time in 
quarter notes, and the vertical axis representing pitch 
numbers. This contour representation of melodies has 

been linked to human melodic processing, using contour 
classes (Huron, 1996), interpolation lines (Steinbeck, 
1982) and polynomial functions (Müllensiefen & Wig-
gins, 2011; Müllensiefen, Bonometti, Stewart & Wiggins, 
2009). However, the contour representation does not give 
direct access to some aspects that are important for music 
similarity. Large-scale changes, like transposition of a 
melody lead to a completely different set of values alt-
hough the melody is not substantially different. Similarly, 
small-scale changes like ornaments can lead to different 
pitch values even if the main essential shape of the melo-
dy is preserved.     
 

Wavelet coefficients are obtained as the inner prod-
uct of a 1D signal and a wavelet (i.e., a short signal with 
zero average and defined energy). The wavelet is shifted 
along the time axis and for each time position a coeffi-
cient is calculated. This is equivalent to a convolution 
with the wavelet flipped along the time axis, and thus to a 
finite impulse response filtering of the signal. The wave-
let can be stretched on the time axis, leading to coeffi-
cients at different time-scales, corresponding to different 
filters. This process can also be understood as comparing 
the melodic shape with the wavelet shape, so that the co-
efficients represent similarity values at different time-
positions and time-scales. The process of producing a full 
set of wavelet coefficients for a signal is known as the 
wavelet transform (WT), of which there are different var-
iants. The transformed signal is represented as a set of 
coefficient signals at different scales. We use the Haar 
wavelet, which is a function of time t that takes values of 
1 if 0 ≤ t < 0.5, or 0.5 ≤ t < 1, and 0 otherwise. 
 

We use the information of the wavelet coefficients to 
define and compare melodic segments. Local maxima of 
the wavelet coefficients occur when the inner product of 
the melody and the wavelet is maximal in that position. 
In the case of the Haar wavelet this occurs when there is a 
locally maximal change of pitch - averaged over half the 
length of the wavelet - in the melody. Therefore, we use 
the local maxima of wavelet coefficients to indicate seg-
mentation points. If the found segments correlate with 
human structural perception and music theory, we assume 
that they can be used to classify melodies containing sim-
ilar segments. A melodic fragment and its transposed ver-
sion will be represented by the same wavelet coefficients 
(except for very beginning of the melody). 
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Musical similarity in folk music is a hard problem to de-
fine (Wiering et al., 2009). We can understand it as a par-
tial identity, where entities share some properties that can 
be measured (Cambouropoulos, 2009). With wavelet-
filtering we apply a process that selectively focuses on a 
specific time-scale. It is a preprocessing step before de-
termining segment similarities, which we calculate based 
on distance metrics. In the following section we will dis-
cuss some computational models and methods that have 
been used to model melodic similarity in symbolic music 
representation and have been applied to classify folk 
melodies. 

2. RELATED WORK 

2.1 Modelling melodic variations 

Computational models applied to modelling melodic var-
iations in symbolic music representations of folk songs 
include string matching methods and multidimensional 
feature vectors to represent global properties of melodies 
(Hillewaere, Manderick & Conklin, 2009; Hillewaere, 
Manderick & Conklin, 2012; van Kranenburg, 2010). In 
origin and genre classification, global representations per-
form only slightly worse than string-based methods 
(Hillewaere et al., 2009 and 2012). However, methods 
based on global representation depend heavily on the 
choice of features, which can lead to reduce generaliza-
bility. 

Van Kranenburg, Volk & Wiering (2013) showed that 
sequence alignment algorithms using local features prove 
successful in classifying folk song melodies to tune fami-
lies defined by experts. Sequence alignment algorithms 
are used to quantify similarity of sequences by computing 
the operations needed to transform one sequence into an-
other, by means of substitutions, insertions and deletions 
(Manderick & Conklin, 2012; van Kranenburg, 2010). 
Although van Kranenburg’s (2010) method was very suc-
cessful when used to classify melodies from the Dutch 
folk-song corpus into tune families, its representation re-
quires 14 attributes for each note in a melodic sequence 
(see van Kranenburg, 2010, pp. 94-95), apart from the 
standard information that is encoded in MIDI format 
(pitch number, onset and duration), meaning that this ap-
proach might not be applicable for classification using 
MIDI files only. In the following section we present our 
method, which can be applied to any data set encoded in 
MIDI format, or any other format containing pitch, onset 
and duration information for each note in a melody. 

2.2 Gestalt-based segmentation 

Segmentation is a core activity for musical processing 
and cognition (Lerdahl & Jackendoff, 1983). In order to 
study this mechanism, some authors adapt concepts of 
visual processing to study musical processing. Cam-
bouropoulos (1997, 2001) presents a segmentation model 
based on Gestalt principles of similarity and proximity, 

known as the local boundary detection model (LBDM). 
The LBDM computes a profile of segmentation strength 
in the range [0, 1], based pitch intervals, inter-onset-
intervals and rests. When the strength exceeds a thresh-
old, a segmentation point is introduced. (Cambouropou-
los, 2001). We use the LBDM here as a baseline for our 
model. 

2.3 The use of wavelets in the symbolic domain 

Wavelet analysis has been applied to diverse time series 
datasets. A time series is a set of observations recorded at 
a specified time (Brockwell & Davis, 2009). The use of 
wavelets for time series processing and analysis can be 
found in different areas, i.e. meteorological (Torrence & 
Compo, 1998), political (Aguiar-Conraria, Magalhaes, 
Soares, 2012), medical (Hsu, 2010), financial (Hsieh, 
Hsiao, & Yeh, 2011). Wavelets are also well known in 
audio music information retrieval (Andén & Mallat, 
2011; Jeon & Ma, 2011; Smith & Honing, 2008; Tzane-
takis, Essl, & Cook, 2001), but they have been scarcely 
applied on symbolic music representations. The only ex-
ample of wavelets applied to symbolic music representa-
tion, apart from our previous study (Velarde & Weyde, 
2012), is presented by Pinto (2009), demonstrating that it 
is possible to index melodic sequences with few wavelet 
coefficients, obtaining improved retrieval results com-
pared to the direct use of melodic sequences. The method 
used by Pinto can be exploited for compression purposes, 
whereas our method is used for structural analysis and 
classification.    

3. THE METHOD 

We extend the method introduced in Velarde and Weyde 
(2012) by exploring segmentation based on the infor-
mation of the wavelet coefficients’ local maxima, and 
evaluate it on the classification of folk tunes into tune 
families. Our previous study (Velarde & Weyde, 2012) 
showed good results in a different classification task us-
ing the 15 Two-Part Inventions by J. S. Bach. 

3.1 Representation 

We represent melodies as normalized pitch signals or by 
the wavelet coefficients of the pitch signals. Discrete 
pitch signals v[l] with length L are sampled from MIDI 
files at a rate r (given in number of samples per quarter 
note), so that we have a pitch value for every time point, 
expressed as v[t]. Rests are replaced by the following 
procedure: if a rest occurs at the beginning of a sequence, 
it is replaced by the first pitch number that appears in the 
sequence, otherwise it is replaced by the pitch number of 
the last note that precedes it. 

Normalized pitch signal representation (vr). We nor-
malize pitch signals segments, by subtracting the average 
pitch in order to make the representation transposition-
invariant. The normalization is applied after the segmen-
tation. 
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Wavelet representation (wr). We apply the continuous 
wavelet transform (CWT) (Mallat, 2009), expressed in a 
discretized version as the inner product of the pitch signal 
v[l] and the Haar wavelet ψs,u[l] , at position u and scale 
s: 

ws[u]= ψs,u[l]v l[ ]
l=1

L

∑                       (1) 

To avoid edge effects due to finite-length sequences 
(Torrence & Compo, 1998), we pad on both ends with a 
mirror image of the pitch signal (Woody & Brown, 2007). 
Once the coefficients are obtained, the segment that cor-
responds to the padding is removed, so that the signal 
maintains its original length. 

3.2 Segmentation 

Wavelet segmentation (ws). Local maxima of the wave-
let coefficients occur when the inner product of the melo-
dy and the wavelet is maximal. This occurs with the Haar 
wavelet, when there is a locally maximal change of pitch 
(averaged over half the length of the wavelet) in the mel-
ody. We use local maxima of wavelet coefficients to de-
termine local boundaries. 

3.3 Classification 

The melodic segments are used as the data points for 
classification. A melody is represented as a set of seg-
ments, and we use the k-Nearest-Neighbour (kNN) meth-
od for classification (Mitchell, 1997). We use two differ-
ent distance measures: cityblock distance and Euclidean 
distance. We define the maximal length n of all segments 
to be compared and pad shorter segments as necessary 
with zeros at the end. 

4. EXPERIMENT 

In our experiment we address the question of how filter-
ing the representation of melodic segments affects the 
folk tune family classification. We assumed that if seg-
ments represent meaningful melodic structures, they can 
be used to identify tunes belonging to a tune family and 
that some time-scales of the melodic contour might be 
more discriminative than others. 

We ran the experiment1 using the collection "Onder 
de groene linde" (Grijp, 2008). This collection is a high 
quality data set of 360 monophonic songs classified into 
26 families according to field-experts’ similarity assess-
ments in terms of melodic, rhythmic and motivic content 
(Volk & van Kranenburg, 2012). The MIDI files of this 

                                                             
1 The algorithms are implemented in MATLAB (The Mathworks, Inc) 
using the Wavelet Toolbox and the MIDI Toolbox for the implementa-
tion of the LBDM (Eerola & Toiviainen, 2004), and we use an update of 
Christine Smit’s read_midi function  
(http://www.ee.columbia.edu/~csmit/matlab_midi.html, accessed 4 Oc-
tober 2012). 

collection are sampled into pitch signals with a sampling 
rate of 8 samples per quarter note (qn). We apply the 
CWT with the Haar wavelet using a dyadic set of 8 scales. 
Melodies are represented as normalized pitch signals (vr) 
or as the resulting wavelet coefficients (wr). Signals are 
segmented by the wavelet coefficients’ local maxima 
(ws), or by the local boundary detection model (LBDM;  
Cambouropoulos, 1997, 2001) using thresholds from 0.1 
to 0.8 in steps of 0.1. We explored the parameter space 
with a grid search testing all combinations of representa-
tions and segmentations: wavelet representation (wr), 
normalized pitch signal representation (vr), wavelet seg-
mentation (ws), LBDM (LBDM) segmentation and 1 to 5 
nearest neighbours. Segments are used to build classifiers 
from training sets and that are tested on unseen folk mel-
odies. We evaluate the classification accuracy with city-
block and Euclidean distances in leave-one-out cross val-
idation. 

5. RESULTS 

The results of the experiment can be seen in Figures 1 to 
4. Alternatively, Tables 1 and 2 shows the best and worst 
classification values over all parameters for each combi-
nation of representation-segmentation, for each value of k 
in the kNN method, and for Euclidean and cityblock dis-
tance metrics. The results show that wavelet filtering of 
the melodies can improve classification performance 
compared to using the pitch signal directly. Independent-
ly of the segmentation method, wavelet representation 
proves to be more discriminative than pitch signals. For 
this corpus and experimental setup, we have used single 
time-scales and evaluated this melodic discrimination 
performance. The classification performance varies, ob-
taining best results at small scales and poor results at 
large scales, with exception of the largest scale which re-
covers its performance to some extent. 

In terms of segmentation, it is possible to observe 
that shorter segments produce better results when used 
with wavelet representation. This is contrary to the results 
of the LBDM applied to pitch signals, where shorter 
segments produce worse results than larger ones. We ob-
serve an improvement towards threshold 0.4 and a gradu-
al improvement towards the threshold of 0.8, which cor-
responds to larger segments, meaning that using the com-
plete melodic sequences or a combination of complete 
melodies and melodic segments, can lead to better classi-
fication results when using pitch signals. 
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Figure 1. Accuracies for the combination of wavelet rep-

resentation (wr) and wavelet segmentation (ws). 
 
 

 
Figure 3. Accuracies for the combination of pitch signal 

representation (vr) and wavelet segmentation (ws). 

 
Figure 2. Accuracies for the combination of wavelet rep-

resentation (wr) and local boundary detection model 
(LBDM). 

 

 
Figure 4. Accuracies for the combination of pitch signal 
representation (vr) and local boundary detection model 

(LBDM). 
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In general, similarity measured by cityblock distance 

proves more accurate than by Euclidean distance in pitch 
signals over time or wavelet representations, and the ef-
fect of using cityblock distance makes the difference be-
tween segmentation methods less important. The number 
of k-nearest neighbours shows that one or two neighbours 
produce the best results and when k increases further the 
accuracy decreases. 

 

Euclidean distance 

represent.-
segment.  

 
Value Nearest Neighbours 

1 2 3 4 5 

wr-ws best 0.8417 0.8417 0.8306 0.8194 0.7917 

worst 0.4667 0.4667 0.4583 0.4333 0.4167 

wr-
LBDM 

best 0.8111 0.8111 0.8083 0.7889 0.7694 

worst 0.4472 0.4472 0.4528 0.4333 0.4139 

vr-ws best 0.8083 0.8083 0.7806 0.7667 0.7444 

worst 0.5194 0.5194 0.5333 0.525 0.5639 

vr-
LBDM 

best 0.7778 0.7778 0.7444 0.7333 0.7083 

worst 0.4111 0.4111 0.3722 0.3806 0.3806 
 

Table 1. Classification accuracies best and worst values 
for each combinations using Euclidean distance. 

 
Cityblock distance 

represent.-
segment.  Value 

Nearest Neighbours 

1 2 3 4 5 

wr-ws best 0.8556 0.8556 0.8333 0.8306 0.7972 

worst 0.4833 0.4833 0.4639 0.45 0.4167 

wr-
LBDM 

best 0.8417 0.8417 0.8083 0.8028 0.7778 

worst 0.4417 0.4417 0.4556 0.4417 0.4139 

vr-ws best 0.8139 0.8139 0.7972 0.7778 0.7472 

worst 0.5194 0.5194 0.5194 0.5139 0.5583 

vr-
LBDM 

best 0.7889 0.7889 0.7778 0.75 0.725 

worst 0.4139 0.4139 0.3861 0.3778 0.3806 
 
Table 2. Classification accuracies best and worst values 

for each combinations using cityblock distance. 

 

6. DISCUSSION AND FUTURE DIRECTIONS 

The best classification accuracies based on wavelet seg-
mentation are only slightly better than the best accuracies 
obtained by the LBDM. The parameter exploration shows 
however, that wavelet segmentation performs better 
across different scales than the LBDM across different 
thresholds. Interestingly, these comparable methods meet 
the criteria of measuring local changes in melodic con-

tour. While the LBDM measures the degree of change 
between successive values, the wavelet segmentation 
finds locally maximal falls of average pitch in melodies 
using different scales. The fact that small scales perform 
better than larger scales corroborates the findings of van 
Kranenburg et al. (2013) that local processing is most 
important in melodic similarity. 

In terms of representation, wavelet-representation 
proves more discriminative than raw pitch signals. We 
assume that this is due to the transposition invariance of 
the wavelet representation and the emphasis on a specific 
time-scale. 

Our best results are far less accurate than the results 
reported by van Kranenburg et al. (2013) using alignment 
methods on the same corpus. Our method uses only the 
information that is encoded in MIDI format (pitch num-
ber, onset and duration). It requires less encoded expert 
knowledge than the method used by van Kranenburg 
(2010), making it applicable to other corpuses of folk 
songs encoded in MIDI format or similar. In order to 
make a more reliable comparison, our method would 
need to include the expert based features used by van 
Kranenburg (2010). For instance, annotated phrase in-
formation seems to improve importantly the results ob-
tained by sequence alignment algorithms. This infor-
mation could be used to improve the scale selection. Also, 
our method uses only the information about contained 
segments, and not the order of the segments, leaving 
room for further work. 

We used one default setup for the whole corpus, i.e. 
one best performing scale for all songs. In a future study, 
we are interested to address wavelet scale selection de-
rived from individual songs’ periodicities. 

7.     CONCLUSION 

The main contribution of this research is the evaluation of 
wavelet-filtered signals for melodic segmentation and 
classification on a corpus of folk songs in MIDI format. 
Wavelet-filtering proves more discriminative than direct 
representation of pitch signals or pitch-time series. Seg-
mentation by local maxima of wavelet coefficients per-
forms slightly better than LBDM segmentation when 
processing at individual scales. Small scales perform bet-
ter than large scales, indicating that local processing may 
be more relevant for melodic similarity in classification 
tasks. 

The method presented here can be applied to other 
corpora and other symbolic formats that encode melodies. 
Possible ways to improve the classification performance 
of the method presented in this paper could be using 
alignment of wavelet representations of complete melo-
dies, using selective combination of scales and exploring 
metrical information derived from songs’ periodicities. 
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based on filtering with the Haar-wavelet 
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Abstract 

We present a novel method of classification and segmentation of melodies in 

symbolic representation. The method is based on filtering pitch as a signal over time 

with the Haar-wavelet, and we evaluate it on two tasks. The filtered signal 

corresponds to a single-scale signal ws from the continuous Haar wavelet transform. 

The melodies are first segmented using local maxima or zero-crossings of ws. The 

segments of ws are then classified using the k–nearest neighbour algorithm with 

Euclidian and city-block distances. The method proves more effective than using 

unfiltered pitch signals and Gestalt-based segmentation when used to recognize the 

parent works of segments from Bach’s Two-Part Inventions (BWV 772–786). When 

used to classify 360 Dutch folk tunes into 26 tune families, the performance of the 

method is comparable to the use of pitch signals, but not as good as that of string-

matching methods based on multiple features.  

Keywords: Music analysis, wavelet analysis, classification, symbolic music, melodic 

analysis, information retrieval, folk song analysis, melodic segmentation 

1 Introduction 
Melodic classification models depend strongly on melodic representation. 

Computational models that work on symbolic data (e.g., MIDI) usually transform the 

data into a suitable representation before applying any machine learning technique. 
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Most computational approaches for melodies use string methods, treating melodies as 

sequences of notes or intervals, and modelling distributions and transitions of note 

properties (Knopke & Jürgensen, 2009; Hillewaere, Manderick, & Conklin, 2009). 

Other approaches use multidimensional feature vectors to represent global properties 

of melodies, assigning coefficients to various musical dimensions (Ponce de Léon & 

Iñesta, 2004; Hillewaere, Manderick, & Conklin, 2012; van Kranenburg, 2010). 

We present below a method for analysing and classifying monophonic 

melodies, which involves filtering symbolic representations of melodies with the Haar 

wavelet. We evaluate it on two classification tasks, each using a different MIDI 

dataset. In the first task, we use the approach to identify the parent works of segments 

from the parts of the fifteen Two-Part Inventions (BWV 772–786) by Johann 

Sebastian Bach (1685-1750)1. In the second task, the method is used to classify 360 

Dutch folk songs into 26 tune families (Grijp, 2008). We compare our wavelet-based 

approach to the use of unfiltered pitch signals and a previous Gestalt-based model of 

segmentation (Cambouropoulos, 1997, 2001).  

2 Background 

2.1 The wavelet transform 

The wavelet transform (WT) is a mathematical tool that was born from a 

multidisciplinary effort in mathematics, physics, computer science and engineering. 

Having developed rapidly since the second half of the 1980s, wavelets have been used 

for numerous applications (Daubechies, 1996; Mallat, 2009) and are today a standard 

tool in audio and image processing.  

In the context of time-based one-dimensional (1D) signals, a wavelet is a 

signal that has finite energy concentrated over a short amount of time and that is zero 

or almost zero everywhere else. Mathematically, a wavelet is normally characterized 

by a total energy of 1 and an average of 0, with its energy centred around time 0 

(Mallat, 2009). The WT decomposes a signal into a sum of components based on 

different versions of a so-called mother wavelet and often an additional scaling 

function, also called the father wavelet. We focus here on the mother wavelet and the 

coefficients that are based on shifted and scaled versions of the mother wavelet. 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 !We used the Musedata encodings of Bach’s Two-Part Inventions, available at 
http://www.musedata.org.!
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Shifting refers to the position of the wavelet in time, while scaling refers to the degree 

of compression of the wavelet shape on the time axis, along with a normalization 

factor to maintain an energy of 1 (Antoine, 1999; Daubechies, 1996). The scaled and 

shifted versions of the wavelet are weighted by coefficients, determined by the inner 

product with the wavelet, so that they add up to the original signal. The wavelet 

transformation can also be viewed as using a filter-bank, where the coefficients at 

each scale correspond to a different band-pass filter that emphasises a specific scale in 

the signal (see Farge, 1992, pp. 449–450). 

The WT is similar to the Fourier transform, with Fourier frequency 

corresponding to the inverse scale in wavelets. The sine and cosine functions used in 

Fourier analysis are periodic signals, so that the Fourier components are not localized 

in time within the signal being analysed. Wavelets, by contrast, have localized energy 

and use several shifted and scaled versions, so that wavelet coefficients become more 

localized in time when the scale decreases, at the expense of scale resolution. Wavelet 

analysis offers a trade-off between better time resolution for small scales, 

corresponding to high frequencies, and better scale resolution for large scales, 

corresponding to low frequencies (Antoine, 1999; Farge, 1992; Torrence & Compo, 

1998).  

There are different types of wavelets with different properties and the choice 

of wavelet to analyse a signal depends on the type of the signal and the features that 

are relevant to the analysis. There are two main forms of the WT, the continuous 

wavelet transform (CWT) and the discrete wavelet transform (DWT), and the two 

different forms tend to be used for different purposes. The CWT is mostly used for 

signal analysis (i.e., pattern identification or feature detection), while the DWT is used 

for compression and reconstruction (Antoine, 1999; Mallat, 2009). Our method is 

based on the CWT, which will be described below.  

In audio music information retrieval (MIR), both the continuous and discrete 

WT have been applied extensively in tasks such as rhythmic content analysis (Smith 

& Honing, 2008), feature extraction for music genre classification (Andén & Mallat, 

2011; Grimaldi, Cunningham, & Kokaram, 2003; Tsunoo, Ono, & Sagayama, 2009; 

Tzanetakis, Essl, & Cook, 2001), pitch contour extraction and melodic indexing in 

“query-by-humming” systems (Jeon, Ma, & Ming Cheng, 2009; Jeon & Ma, 2011), 

denoising (Berger, Coifman, & Goldberg, 1994; Yu, Mallat, & Bacry, 2008) and 
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audio compression (Dobson, Yang, Whitney, Smart, & Rigstaa, 1996; Srinivasan & 

Jamieson, 1998).  

Wavelets exhibit similarities to many information-processing steps in the 

human brain and have been extensively used in modelling vision (see, e.g., Kay, 

Naselaris, Prenger, & Gallant, 2008; Zhang, Zhang, Huang, & Tian, 2005; Zhang, 

Shan, Qing, Chen, & Gao, 2009). In hearing, auditory perception in the cochlea and 

the auditory pathway has been modelled using bandpass filters based on the CWT and 

other wavelet-based techniques (Daubechies & Maes, 1996; Sinaga, Gunawan & 

Ambikairajah, 2003; Karmakar, Kumar & Patney, 2011). The interesting 

mathematical properties of wavelets and their applicability to modelling neural 

mechanisms motivate us to explore here the applicability of wavelets to the symbolic 

level of music description (i.e., to notes and their properties). 

2.2 Symbolic music representation and analysis with wavelets 

Although wavelets have been used extensively for analysing music audio, the use of 

the WT is scarce in the symbolic domain. One isolated example is Pinto’s (2009) use 

of the DWT to index melodic sequences with few wavelet coefficients, obtaining 

improved retrieval results compared to the direct use of the melodies.  

A Western staff-notation score depicts a piece of music as a set of notes, 

specifying (amongst other things) the pitch, relative onset time and relative duration 

of each note. In a MIDI file, the pitch of each note is specified by its MIDI note 

number, which represents its chromatic pitch (see Meredith, 2006, pp. 126–129). For 

the purpose of wavelet analysis, a melody can be represented as a 1D signal, called a 

pitch signal, that indicates the chromatic pitch (MIDI note number) of the melody at 

each tatum time-point. The pitch signal can then be transformed into coefficients at 

different scales using the WT. A similar representation using Fourier analysis has 

been shown by Schmuckler (1999) to capture relevant information for melodic 

similarity.  

2.2.1 Melodic segmentation  

Music unfolds over time. This characteristic is the most prominent difference between 

music and visual art, engaging our brains in a prediction-expectation game of events 

occurring over time (Huron, 2006; Levitin, 2006). We do not know how a piece will 

develop or end until it finishes. However, as the music unfolds, we constantly identify 

segments that start somewhere, develop and end. Finding coherent segments, or 
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groups, at various different time scales is a basic, automatic aspect of music cognition 

(Lerdahl & Jackendoff, 1983). 

Most theoretical work in music perception has concentrated on the perceived 

associations of events, based on grouping, adapting visual Gestalt principles of 

similarity and proximity to musical perception. These theories include Tenney and 

Polansky’s (1980) theory of temporal Gestalt-units, Lerdahl and Jackendoff’s (1983) 

grouping structure theory and the Local Boundary Detection Model (LBDM) of 

Cambouropoulos (1997, 2001), which sets local boundaries according to change and 

proximity rules. The rules in these models address both local changes and longer-term 

averages, so that representing melodic movements at different scales with wavelet 

filters, leading to different levels of localization on the time-axis, appears to be an 

appropriate approach for deriving group boundaries. 

2.2.2 Relation to neural mechanisms  

Recent neuroscientific imaging work based on EEG, fMRI and MEG provides 

evidence that musical structure constantly engages the brain in a game of prediction, 

expectation and reward, based on long-term memory and statistical regularities of 

coded features (Trainor & Zatorre, 2009). Moreover, it has been observed that brain 

activity increases transiently at musical movement boundaries, as well as other non-

musical event boundaries, and it has been suggested that segmentation is thus an 

essential perceptual component, occurring simultaneously at multiple time-scales as 

an adaptive mechanism that integrates recent past information to improve predictions 

about the near future (Kurby & Zacks, 2008).  

Perceptual boundary detection has been successfully modelled with wavelets. 

For example, Gabor wavelets have been used to model the early stages of the visual 

pathway (Kay et al., 2008; Nixon & Aguado, 2012; Zhang et al., 2005; Zhang et al., 

2009). It therefore seems reasonable to hypothesise that a similar wavelet-based 

approach might successfully be used to model group boundary perception in 

melodies. 

2.2.3 Melodic theory 

Huron (1996) proposes a reductionist approach to melodic classification, summarizing 

the contour of a folk song by its first and final pitches, along with an average of all the 

pitches in between. He demonstrates that folk songs have arc-like contours, with an 

inverted ‘U’ shape being the most common. In his study, a melody is classified into 
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one of nine types, depending on whether it describes a trajectory that is ascending, 

descending, horizontal or a combination of these basic types.  

In Schenkerian analysis (Brown, 2005; Forte & Gilbert, 1982; Schenker, 

1935), the musical surface or foreground is recursively reduced to a fundamental 

structure (Ursatz) by removing notes of progressively greater structural importance. 

In a wavelet representation, small-scale structures that occur only in the foreground 

(e.g., ornaments) will be represented only in the small-scale coefficients; whereas the 

higher structural levels (corresponding loosely to the background or fundamental 

structure) will be represented by the coefficients at greater time scales. In this way, 

wavelets at different scales can be used to extract structure at what would correspond 

to different transformational levels (Schichten) in the Schenkerian approach. 

It is possible to understand many musical works as having been generated by 

the reverse of this hierarchical reduction process—that is, by the successive 

elaboration of a fundamental structure with less structural notes, until the detailed 

foreground or musical surface emerges. Wavelet filters emphasise different temporal 

scales in a pitch signal, thus providing a tool to focus on and discover musical 

structure at a variety of different temporal scales. 

3 Method 
We investigate the effectiveness of the WT to represent relevant properties of 

melodies in segmentation and classification tasks. Our input data are sequences of 

notes, represented as pitch signals. To these we apply the CWT and obtain a time-

scale representation for structural analysis in classification tasks. Figure 1 a) presents 

the score representation of a melodic fragment, Figure 1 b) is the 1D pitch signal that 

represents it, and Figure 1 c) is its CWT by Haar wavelet, in a scalogram plotting the 

absolute coefficients, using darker colours for smaller values and brighter colours for 

larger values. 
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Figure 1. The opening bars of the upper part of J. S. Bach’s Invention in C major (BWV 772), 

represented as a) a score, b) a pitch signal and c) a scalogram of the CWT (i.e., the absolute values of 

the coefficients). 

3.1 Representation 

We represent melodies as pitch signals or by the wavelet coefficients of the pitch 

signals.  

3.1.1 Pitch signal representation 

A discrete pitch signal v with length L is sampled from MIDI files at a rate r in 

number of samples per quarter note (qn), so that we have a pitch value for every time 

point, expressed as v[t].  We use two different ways of treating rests: they are either 

represented by the value 0, or they are removed from the representation by the 

following procedure: if a rest occurs at the beginning of a sequence, it is replaced by 

the first pitch number that appears in the sequence, otherwise it is replaced with the 

pitch number of the note that immediately precedes it. 
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Normalized pitch signal representation. We normalize pitch signal segments by 

subtracting the average pitch in order to make the representation invariant to 

transposition. The normalization is applied after the segmentation. 

3.1.2 Wavelet representation 

The CWT2 transforms a 1D signal into a set of coefficients ws,u using an analysing 

function  !s,u(t) , which is derived from the mother wavelet !  by scaling by a factor 

s > 0  and shifting in time by an amount u! ℝ:  

!s,u(t) =
1
s
!

t !u
s

"

#
$

%

&
'.                                (1) 

The coefficients ws,u are calculated for real valued wavelets as the inner product of the 

signal v(t) and the analysing function !s,u(t) :  

ws,u = v,!s,u = v(t)!s,u
!"

+"

# (t)dt.                (2) 

To avoid edge effects due to finite-length sequences (Torrence & Compo, 

1998), we pad on both ends with a mirror image of the pitch signal (Woody & Brown, 

2007). Once the coefficients are obtained, the segment that corresponds to the padding 

is removed, so that the signal maintains its original length.  

We can treat coefficients on one scale as a function of the shift parameter with 

ws(u) = ws,u . Then the CWT acts as a filter, equivalent to the convolution of v with the 

scaled and flipped real-valued wavelet. The CWT calculates the wavelet coefficients 

at all points u, so that the complete information of the pitch signal is still retained in 

the coefficients at one scale and it can be recovered using deconvolution, given a 

suitable wavelet. 

For implementation on a computer, we can write equation (2) in a discretized 

version, where we compute the convolution for each translation u and scale s: 

ws[u]= !s,u[l]v l[ ]
l=1

L

! .                               (3)  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2!We follow the presentation by Antoine (1999). Signals processed by digital computers have to be 
discretized. The term “continuous” refers to the fact that all sample positions are used as shift values, as 
opposed to the discrete wavelet transform where shift values are much sparser.!
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The summation index only needs to run over the support of ! , i.e., between the 

maximum and minimum time-points for which !  is not zero, which is typically 

considerably shorter than the signal v.  

3.2 Wavelet choice 

The selection of wavelet or analysing function depends on the kind of information 

that we want to extract from the signal, considering that the transform’s coefficients 

combine information about the signal and the wavelet (Farge, 1992). The wavelet 

should give a compact representation of the variation in the signal that we are 

interested in. We use the Haar wavelet, which is defined by 

                   (4) 

 

and has a shape as shown in Figure 2.3 

 
Figure 2. The shape of the Haar wavelet. 

We selected the Haar wavelet because it matches the discontinuous, step-wise 

nature of the pitch signal. A continuous wavelet would require a combination of 

many small-scale components to represent the step transitions between pitches, 

obscuring the representation of pitch changes. On the other hand, the Haar wavelet is 

not suitable for continuous pitch data, which could represent vibrato, glissando, 

melismatic ornamentation, etc.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3!The Haar function was introduced by Haar in 1910 (Haar, 1910). Equation (4) uses Mallat’s (2009) 
notation.!
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The Haar wavelet has support on the time interval [0,s), and the inner product 

with the Haar wavelet calculates the difference between the averages of pitch in the 

first and second halves of that interval. In other words, the coefficient ws,u gives a 

measure of whether the melody is moving upwards or downwards over the scale 

period starting at position u. 

Figure 3 illustrates the Haar wavelet shifted and scaled. In each of the three 

rows of sub-figures, different wavelet shifts can be seen (first vs. second column). 

The scale is 0.5 in the first row and 0.25 in the second and third rows. 

56



! 11!

 
Figure 3. The Haar wavelet shifted and scaled. 

3.3 Segmentation 

We use the wavelet coefficients to determine melodic segments in two different ways, 

setting segmentation points either at local maxima or at zero crossings of the wavelet 

coefficients. Default segmentation points are set at the beginning and at the end of 

signals.  
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3.3.1 Zero crossing segmentation 

Zero crossings occur when the inner product between the melody and the Haar 

wavelet is zero. This means that the average pitch in the first half of the scale period is 

equal to the average pitch in the second half of the scale period. See Figure 4 for 

illustration. 

 
Figure 4. Wavelet coefficient signal at the scale of 4 for the first 16 qns of the sixth Invention in E 

major (BWV 777). Locations of zero-crossings are indicated by dotted vertical lines. 

3.3.2 Local maxima segmentation  

Local maxima in the wavelet representation occur when the shapes of the melody and 

the Haar wavelet correlate most. The inner product with the Haar wavelet of length s 

can also be described as the difference of the average pitch during the first half of the 

wavelet minus the average pitch over the second half of the wavelet times s. Local 

maxima occur, therefore, where there is a locally maximal fall in average pitch 

content at the scale of the wavelet used. See Figure 5 for illustration. 
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Figure 5. Wavelet coefficient signal at the scale of 4 for the first 16 qns of the sixth Invention in E 

major (BWV 777). Local maxima are indicated by dotted vertical lines. 

3.3.3 Segment length normalization 

In the evaluation tasks described below, the segments identified need to be classified, 

for which we introduce similarity measures on segments. We use the Euclidean and 

city-block distances, which entails that the segments need to be represented as vectors 

of equal length. However, segments are not generally of the same length when using 

the segmentation approaches described here. In order to obtain segments of equal 

length, we use two different procedures: we normalize the length of segments to the 

maximal segment length, or we define a maximal length for all segments and pad 

shorter segments as necessary with zeros at the end. 

For comparison, we also segment using Eerola and Toiviainen’s (2004) 

implementation of Cambouropoulos’ (1997, 2001) LBDM (see above). The LBDM 

calculates a normalized boundary strength between 0 and 1 for the interval between 

each pair of consecutive notes in a melody (Cambouropoulos, 2001). In order to 

generate a specific segmentation, it therefore requires a threshold value between 0 and 

1 to be defined.  

3.4 Scale selection  

In this study, we use the wavelet coefficients at only one scale, as we focus only on a 

single level of segmentation. By representing melodies by their wavelet coefficients at 

only one scale, we emphasise information on that time-scale in the signal, as 

discussed above. Small scales focus on short-term movements, while large scales 

emphasise the longer-term trend of the melody. We have tested dyadic multiples of 

quarter notes as scale values and selected those that yield the best classification 

results.    
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3.5 Classification 

We use the wavelet representation and segmentation to perform classification of 

melodies with a k-Nearest-Neighbour (kNN) classifier. A kNN classifier is defined by 

a set of labelled items and a distance measure. It then assigns labels to a new item x 

by finding the k items that are closest to x according to the distance measure and 

choosing the label that occurs most often among these k items. 

We use two different distance measures, city-block distance and Euclidean 

distance. The Euclidean distance between two segments, st and sc, is given by 

dstsc
E = (st[ j]! sc[ j])2

j=1

n

" . 

The city-block distance is given by 

dstsc
C = st[ j]! sc[ j]

j=1

n

" .!

3.6 Example 

For illustration, Figure 6 presents an example of similarity measurements between a 

target segment (row 2) from a melody represented as pitch signal (row 1) and four test 

segments (rows 3 to 6).  Test segment 3 has the smallest distance to the target 

segment when segment length normalization by zero padding is applied. On the other 

hand, if segment length normalization by interpolation is applied, the segment that has 

the smallest distance to the target segment is test segment 1. 
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Figure 6. Illustration of a melodic segment (row 1) and similarity measurements between a target 

segment (row 2) and four test segments (rows 3 to 6). Segment length normalization by zero padding 

(left column) vs. segment length normalization by interpolation (right column). The black square in 

row 1 denotes the target segment. 
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4 Classification experiments 
In this section, we present two experiments on different data sets4. One experiment is 

on recognizing the parent works of segments from Bach’s Two-Part Inventions (BWV 

772–786). The second experiment is on recognizing the tune families to which Dutch 

folk songs belong, using the Dutch Song Database (Grijp 2008; The Meertens 

Institute, 2012).  

4.1 Experiment 1: Classification of segments from J. S. Bach’s Two-Part 

Inventions 

Music theorists describe J. S. Bach’s Inventions as being coherently developed from a 

theme, the subject, that dominates each piece (see, e.g., Dreyfus, 1996). The 

Invention’s subject is presented in the exposition, and it is contrapuntally treated 

across the (usually three) other sections (Stein, 1979). From this point of view, we 

hypothesize that the parent work of one of the later sections of an Invention can be 

successfully identified by finding the Invention with the exposition that the section 

resembles most closely in terms of melodic segments used. 

For the 15 Two-Part Inventions, the classifier set C is built from segments sci,j 

from the expositions of all Inventions, where each segment can stem from either the 

upper or the lower part. sci,j  is the jth segment in Invention i. We define the length of 

the exposition as 16 qn, which is, of course, not accurate in all cases, but rather 

corresponds to the longest exposition in order to avoid including exposition material 

in the test sets possibly however, including material of the following section in the 

classifier. After the first 16 qn, each invention is divided into 3 sections of equal length to 

build the test sets. Each test set T is built from segments st, where each st can stem 

from either the upper or the lower part. We denote the jth segment in Invention i by 

sti,j.   To classify a segment st to one of the 15 classes, we apply 1-NN classification. 

That is, we compute the distances between st and all sc in C, and classify st to the 

class i of the sci,j that has the smallest distance to st. The section is assigned the class 

most frequently predicted by its segments. In both cases we use the next nearest point 

to break ties. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4!The algorithms are implemented in MATLAB (R2012b, The Mathworks, Inc) using the Wavelet 
Toolbox and the MIDI Toolbox (Eerola & Toiviainen, 2004). We use the LBDM implementation of the 
MIDI Toolbox, and an update of Christine Smit’s read_midi function 
(http://www.ee.columbia.edu/~csmit/matlab_midi.html, accessed 4 October 2012).!
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We test the classification accuracy of classifiers built from the first 4, 8 or 16 

qn, on three, equally-divided sections after the exposition (see Figure 7), to study the 

development of the method’s performance over the course of the Invention. We 

expect the classification rates to first decrease, reflecting the increasing degrees of 

variation of the original material and to increase towards the end, where the original 

material typically returns. We also compare different representations, segmentations 

and distance measures, as the performance can inform us about the suitability of these 

measures for representing the motivic coherence that music theorists describe in the 

Inventions. 

We also test the effect of including contrapuntal variations in the classifier, 

because music theorists claim that these techniques are used for variation in the 

Inventions (and generally in imitative styles of music) (see, e.g., Dreyfus, 1996). 

Specifically, we considered inversion (reflection in a constant-pitch axis), retrograde 

(reflection in a constant-time axis) and retrograde inversion (rotation through a half 

turn) (see Figure 8). Contrapuntal variations are added as classes to the kNN classifier 

and we therefore have 4 times the number of classes. 

We compare the wavelet representation with the normalized pitch signal 

representation, as described above. We evaluate the case when classifier and test sets 

contain one segment for each part and section, i.e. “without segmentation”, and the 

case of applying a segmentation algorithm to create several segments from each part 

and section, which we call “with segmentation”. We compare the results of zero 

crossing wavelet segmentation with two other segmentation methods: segmentation 

into segments of constant length, as a simplistic baseline segmentation, and 

segmentation with Cambouropoulos’ LBDM as mentioned above. Local maxima 

wavelet segmentation was not used in this experiment as preliminary tests showed 

that segmenting at zero crossings produced better results in general for this dataset. 

Figure 9 shows, as an example, the first 16 qn of the upper voice of the first Invention 

(BWV 772) in the different combinations used for the experiments.  
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Figure 7. Scheme of classifier and test construction based on signal vi. 

        (a)                            (b)                           (c)                            (d) 

 

Figure 8. Contrapuntal variations: (a) prime form, (b) inversion, (c) retrograde and (d) retrograde 

inversion. 

 

 
44& œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ
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Figure 9.  The first 16 qn of the upper voice of Invention 1 (BWV 772) in different combinations of 

representation and segmentation (the segmentation points are shown as vertical dotted lines): 

Normalized pitch signal representation (odd rows) and wavelet representation at scale of 4 qn (even 

rows), without segmentation (rows 1 and 2), wavelet segmentation at scale of 4 qn (rows 3 and 4), 

constant segmentation at 4 qn (rows 5 and 6), and LBDM with a threshold of 0.4 (rows 7 and 8). Pitch 

signal normalization takes places after segmentation, leading to pitch shifts between the original 

melody and the segments. 

 

 When the segments’ lengths are normalized by zero padding, the length of 

segments is set to the maximal segment length, and shorter segments are padded as 

necessary with zeros at the end, even if they are segmented by constant length 

segmentation. In this case the sampling rate is not affected. When the segments’ 

lengths are normalized by interpolation, the lengths of segments are resized to the 
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maximal segment length by nearest neighbour interpolation (de Boor, 1978). This, of 

course, changes the sampling rate in most cases.  

We used pitch signals initially sampled at 8 samples per quarter note (qn) and 

varied the following parameters to optimize classification performance:  

• two melodic representations: normalized pitch signal representation (vr) and 

wavelet representation at scale of 1 qn (wr), 

• without segmentation and with three segmentation methods: constant 

segmentation (cs) at 1 and 4 qn, LBDM with thresholds of 0.2 and 0.4 and 

zero crossing wavelet segmentation (ws) at scale 1 and 4 qn, 

• segment length normalization by zero padding and by interpolation and 

• Euclidean and city-block distance. 

The optimal values of these parameters and the effect of representation, segmentation 

and contrapuntal variations will be presented in the results section. 

4.2 Experiment 2: Classification of Dutch Folk Tunes 

Folk tunes are a cultural heritage and interesting to study in the context of melodic 

classification because: 

1) they present variation due to the process of oral transmission between 

generations; 

2) understanding variations can help us understand cultural developments in 

music; and  

3) there is a substantial body of research and data to support experiments and 

comparisons. 

The Meertens Institute in Amsterdam hosts a collection of Dutch folk songs 

that has been digitized and classified into tune families according to similarity 

assessments done by experts (van Kranenburg, 2010). The Dutch Song Database we 

use contains 360 folk songs in 26 tune families, and is a subset of the collection 

known as “Onder de groene linde” (Grijp, 2008; The Meertens Institute, 2012). 

Automatic classification methods based on global features and string matching have 

been extensively tested by van Kranenburg (2010), and he concluded that recurrence 

of common motives is the most important musical factor in defining tune families. 

For the Dutch tune family classification task, we designed two experiments, 

testing, among other parameters, the effect of segmentation. We use complete 

melodies or segments of melodies for classification.  
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4.2.1 Experiment 2-1: Classification without segmentation 

In this experiment, we use complete melodies without segmentation. The songs of the 

Dutch Song Database are sampled to pitch signals of length 210. We evaluate rest 

representation5 and pitch normalization, as described in section 3.1. Moreover, we 

evaluate melodies as pitch signals or as wavelet coefficients. When melodies are 

represented as wavelet coefficients, we apply the CWT with Haar wavelet at a single 

scale. We evaluate classification accuracy with 1NN using city-block and Euclidean 

distances in leave-one-out cross validation on the corpus of 360 folk songs. 

4.2.2 Experiment 2-2: Classification with segmentation 

We build the classifier set C from all segments scj of the whole corpus minus one—

that is 359 labeled songs. The remaining song is used for testing. We use kNN 

classification, where k=1 to 5. We thus compute the distances between a test segment 

stj and all segments in C, and assign the segment to the most frequent class of the k 

segments with the smallest distances and the tune to the most frequent class of its 

segments. We calculate the classifiers’ accuracies using all segments of all songs 

belonging to a tune family with 1 to 5 nearest neighbours and with two distance 

measures (Euclidean and city-block) in leave-one-out cross validation on the corpus 

of 360 folk songs. 

In this second experiment with segmentation, we use once again the two types 

of melodic representations (normalized pitch signal and wavelet coefficients at one 

scale) but only two segmentation models: LBDM and local maxima of wavelet 

coefficients. Zero crossings were not used in this experiment as preliminary tests 

showed that segmenting at local maxima produced better results in general for this 

dataset6. The MIDI files of this collection are initially sampled at 8 samples per qn. 

We apply the CWT with the Haar wavelet using a dyadic set of 8 scales. Melodies are 

represented as normalized pitch signals (vr) or as the resulting wavelet coefficients 

(wr). Signals are segmented by the wavelet coefficients’ local maxima (ws), or by the 

local boundary detection model LBDM using thresholds from 0.1 to 0.8 in steps of 

0.1. We explore the parameter space with a grid search, testing all combinations of 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
5! We also tested the way that rests are represented in normalized pitch signals by assigning the value 
zero to rests, subtracting the average pitch (excluding rests) and assigning the value zero to rests again 
after normalization. This practice produced worse results than the way that rests are represented in the 
normalized pitch signal representation described in section 3.1. !
6 We ran some tests with segmentation points at local extrema (i.e., local minima and maxima), but, in 
general, results with local maxima were better. 
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representations and segmentations: wavelet representation (wr), normalized pitch 

signal representation (vr), wavelet segmentation (ws), LBDM (LBDM) segmentation. 

Segment length normalization is done by zero padding and by interpolation. 

5 Results and discussion 

5.1 Results of experiment 1: Classification of segments from J. S. Bach’s 

Two-Part Inventions 

5.1.1 Experiment 1-1. Classification without segmentation 

Table 1 shows the best accuracies with a corpus of the 15 Two-Part Inventions by J. 

S. Bach (BWV 772–786) without segmentation. The parameters used to achieve the 

values shown in Table 1 are: 

• pitch signals sampled at 8 samples per qn, 

• normalized pitch signal representation, 

• wavelet representation at the scale of 1 qn, 

• 1-nearest neighbour classifier with city-block or Euclidean distance, and 

• length normalization by zero padding or by interpolation. 

 

 

City-block Euclidean 

 
(wr) (vr) (wr) (vr) 

Mean NC 0.1778 0.0889 0.1333 0.0889 
Std-Dev. NC 0.0385 0.0770 0.0667 0.1018 
Mean CP 0.1333 0.1556 0.0667 0.1333 
Std-Dev. CP 0.0667 0.1388 0.0000 0.1155 

Table 1. Experiment without segmentation. Summary of the best classification accuracies over three 

sections of the inventions, mean and standard deviation (Std-Dev.) of the classifiers build from the first 

16 qn. Classifier built from the exposition (NC), and the classifier built from the exposition and its 

contrapuntal variations (CP). Combinations: wavelet representation (wr), normalized pitch signal 

representation (vr)..Appendix A, Table A3 shows the results of all combinations tested in the 

experiment. 

 

This approach is a baseline experiment, which does not use segment information or 

alignment, and the observed accuracies are above chance level (6.66%) but very low 

as expected.  
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5.1.2 Experiment 1-2. Classification with segmentation 

For this corpus and experiment, segmentation improves the classification rates 

substantially. Figures 10 and 11 show the classification performance on each section, 

the effect of segmentation and representation (rows vs. columns), the effect of 

including contrapuntal techniques (Figure 10 vs. Figure 11) and the number of quarter 

notes used for the classifiers (red, green and blue lines). The remaining fixed 

parameter values were chosen such that the best results were achieved in the majority 

of the cases shown (Appendix A, Tables A1 and A2 summarize the results of all other 

parameterisations). The used parameter values are: 

• normalized pitch signal representation, 

• wavelet representation at the scale of 1 qn, 

• zero crossing wavelet segmentation at the scale of 1 qn, 

• LBDM segmentation at a threshold of 0.2, 

• constant segmentation at 1 qn, 

• 1-nearest neighbour classifier with city-block distance, and 

• segment length normalization by zero padding. 

The classification results vary widely, with segmentation method having a 

stronger effect than representation type. Wavelet segmentation combined with 

wavelet representation produces the best classification results when using 16 quarter 

notes of the exposition. 

Including contrapuntal variations is clearly detrimental when using wavelet 

segmentation and to some degree when using LBDM, but improves performance with 

constant segmentation. This result was unexpected, as a common view in musicology 

is that inversion, retrograde and retrograde inversion are important principles of 

variation in J. S. Bach’s inventions (e.g. Stein, 1979) and would therefore help in 

recognising the inventions. However, the lower-than-expected recognition rates 

achieved with our contrapuntal variation classifier may be due to the fact that we use 

chromatic pitch representations rather than ones based on diatonic (or “morphetic”) 

pitch (see Meredith, 2006, pp. 126–9).   

The classification performance generally decreases from the 1st to the 2nd 

sections and it rises from the 2nd to the 3rd sections, to some degree conforming to 

the expectation of increased similarity between the final section and the exposition. 
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Figure 10.  Performance for each section with the classifier based on the exposition. 

 

Figure 11. Performance for each section with the classifier based on the exposition and its contrapuntal 

variations. 

5.2 Results of experiment 2: Classification of Dutch Folk Tunes  

5.2.1 Classification without segmentation 

Table 2.1 shows the classification rates obtained in the experiment on the corpus of 

360 Dutch Folk songs without segmentation, using complete melodies. The parameter 

values are: 

• pitch signals of length 210, 

• normalized pitch signal representation, 

• wavelet representations at a single scale and 

• classification in leave-one-out cross validation with 1 nearest neighbours using 

Euclidean and city-block distances. 
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 City-block  Euclidean  City-block  Euclidean  
 Rests removed  Rests represented by zeros 

(vr) 
0.8806 0.8694 0.7944 0.7056 

(wr) 0.8556 0.8306 0.7472 0.7222 
Table 2. Classification accuracy observed for different methods. Pitch signal representation (vr) and 

wavelet representation (wr) combined with different distance measures and rest treatment. 

 

For this experiment, removing rests from the representation produced better 

classification accuracies. We therefore removed rests from the representation for the 

experiment with segmentation. The use of complete melodies represented as pitch 

signals without filtering produces the best results. 

5.2.2 Classification with segmentation 

Contrary to the effect seen in experiment 1, segmentation did not produce a 

significant change in the classification rates, even varying several parameters. Figure 

12 shows the classification rates obtained with segmentation, where brighter colours 

indicate higher rates. The parameter values are: 

• pitch signals initially sampled at 8 samples per qn, 

• normalized pitch signal representation, 

• wavelet representations using a dyadic set of 8 scales, 

• local maxima wavelet segmentation using a dyadic set of 8 scales, 

• LBDM segmentation using thresholds from 0.1 to 0.8 in steps of 0.1, 

• classification with 1 to 5 nearest neighbours using city-block distances, and 

• segment length normalization by zero padding. 

Table 3 summarizes the best and worst classification rates with the parameters 

mentioned above. The effect of using segment length normalization by interpolation 

produces slightly lower results than segment length normalization by zero padding 

(see Table 4).  

The results show that wavelet filtering of the melodic segments can improve 

classification performance compared to using the pitch signal directly. When 

segmentation is used, wavelet representation proves to be more discriminative than 

pitch signals independently of the segmentation method. The classification 

performance varies, obtaining best results at small representation scales and poor 

results at large scales, with the exception of the largest scale, which recovers its 

performance to some extent (see Figure 12).  
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In terms of segmentation, we observe that shorter segments produce better 

results when used with wavelet representation. This is contrary to the results of the 

LBDM applied to pitch signals, where shorter segments produce worse results than 

larger ones. We observe an improvement towards threshold 0.4 and a gradual 

improvement towards the threshold of 0.8, which corresponds to larger segments, 

meaning that using the complete melodic sequences or a combination of complete 

melodies and melodic segments can lead to better classification results. Indeed, as 

shown in the first part of this second experiment using the Dutch Song Database, the 

classification rates improve when using complete melodies represented as pitch 

signals. 

In general, the city-block distance performs slightly better than Euclidean 

distance and the wavelet representation works better than the normalized pitch signal 

representation. In addition, we studied the effect of using more than one nearest 

neighbour. It can be observed that using one and two nearest neighbours produced the 

best results. Different effects are seen when using values greater than 2 for k in the 

kNN, but in general the performance decreases as k increases.  

The best classification rates are achieved by using the wavelet representation 

and segmentation using 1 or 2 nearest neighbours at small scales. This suggests that 

the melodies in this corpus contain typically several similar segments that are typical 

for that family. This agrees with van Kranenburg’s (2010) claim that recurrent 

motives are important for determining the family of a folk song in the Dutch Song 

Database. On the other hand, the results of van Kranenburg et al. (2013) using string-

matching are considerably better, suggesting that information on the order of the 

segments also plays an important role.!
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Table 3. Summary of the accuracies for the combinations: wavelet representation and wavelet 

segmentation (wr-ws), wavelet representation and local boundary detection model (wr-LBDM), pitch 

signal representation and wavelet segmentation (vr-ws), pitch signal representation and local boundary 

detection model (vr-LBDM), segment length normalization by zero padding. 
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Table 4. Summary of the accuracies for the combinations: wavelet representation and wavelet 

segmentation (wr-ws), wavelet representation and local boundary detection model (wr-LBDM), pitch 

signal representation and wavelet segmentation (vr-ws), pitch signal representation and local boundary 

detection model (vr-LBDM), segment length normalization by interpolation. 
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! !
a) b) 

! !
c) d) 

Figure 12. Accuracies for the combinations: a) wavelet representation (wr) and wavelet segmentation 

(ws), b) wavelet representation (wr) and local boundary detection model (LBDM), c) pitch signal 

representation (vr) and wavelet segmentation (ws), pitch signal representation (vr) and local boundary 

detection model (LBDM), segment length normalization by zero padding. 
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5.3 Discussion 

We have presented two experiments, in which continuous Haar-wavelet filtering was 

applied in two musicologically motivated classification tasks. The results of the first 

experiment support the view that there are strong, intra-opus, motivic relations within 

Bach’s Two-Part Inventions that allow for the parent works of sections from these 

pieces to be identified, depending on the amount of material used from the exposition, 

along with the approaches used to segment and represent the music. The negative 

effect of adding contrapuntal variations in the classifiers in connection with wavelet 

segmentation is interesting and may suggest that the similarities captured by wavelets 

are different to and in some way incompatible with contrapuntal variations we have 

used in the experiment. On the other hand, this effect could also be an artefact of the 

specific type of pitch representation used—we intend to explore this further in future 

work. 

When the wavelet-based approach was used to identify the tune families of 

songs in a database of Dutch folk songs, it proved to work slightly better than using 

the LBDM with direct melody comparison and slightly worse than using complete 

melodies without filtering. However, results with string-matching methods reported 

by van Kranenburg et al. (2013) are considerably better. This indicates that the overall 

sequential structure of the melody is relevant for this task, which is ignored in the 

segmentation approach. This is supported by the observation that the wavelet-based 

classifier performs similarly at small and large scales, with different k values and for 

different distance metrics, indicating that the relevant information may not be just in 

the segments.   

Segment length normalization by zero padding produces slightly better results 

than normalization by interpolation. This suggests that the structure of segments is 

related to their length and the effect of zero padding does not negatively influence the 

reliability of similarity measurement. 

Melodic segmentation has a different effect between the two experiments 

possibly due to musical differences between the Dutch folk tunes and Bach’s 

Inventions or due to different principles determining whether two tunes should be in 

the same tune family or whether two melodic excerpts belong in the same piece. 
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6 Conclusion 
In this paper, we have presented a method for using wavelets to represent and 

segment melodies for classification and we have evaluated it on two different 

musicological classification tasks. Our main contribution has been to introduce and 

demonstrate the potential of a novel, wavelet-based approach to modelling melodic 

structure. 

The results of the experiments reported here suggest that a method employing 

a wavelet-based approach to representing and segmenting the data can out-perform 

one that uses a direct pitch-time representation and Gestalt-based or constant-duration 

segmentation in the task of predicting which work in a collection contains a given 

query segment. When the task was to identify the musicologically defined tune family 

to which a given folk song belongs, our wavelet-based approach worked only slightly 

better than one based on Gestalt principles and slightly worse than one without 

segmentation using pitch melodies. However, it was clearly out-performed by string-

matching methods, which is probably due to the fact that, in this task, the overall 

structure of the compared melodies contains relevant information that our 

classification method is not using, regardless of whether or not wavelets are used. 

We propose that the positive results of wavelet representation and 

segmentation can be understood by viewing the wavelets in terms of the pitch trend 

over the scale duration. Focusing on an appropriate time-scale, giving less weight to 

short-term movement as well as the average pitch (i.e., transposition), can make 

relevant parts of the melodic contour more prominent in the distance measure. 

7 Future work 
There are several further aspects of modelling melodic perception with wavelets that 

have not been explored in this study, including the problem of automatic scale 

determination, and the relation between musical style and features in wavelet 

coefficient representations. 

Understanding the wavelet analysis better in terms of musical properties may 

help improve the results for melodic similarity. Multiple scales could be used for 

hierarchical segmentation. Using a selective combination of scales and exploring 

metrical information derived from songs’ periodicities could be used to develop a 

method for scale selection. Applying machine learning to develop more complex 
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wavelet-based feature extraction from melodies could also be a very interesting way 

to use the wavelet representation on symbolic music data. 

We also aim to identify the cognitive mechanisms that underlie the 

effectiveness of the wavelet-filtering approach and to explain why coefficient zero-

crossings work better in some classification tasks while coefficient local maxima 

work better in others. 

We generally aim in future research to gain a deeper understanding of the 

musical meaning and perceptual relevance of wavelet-based music representation and 

segmentation. 
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Appendix!A!
!
      Wavelet rep. (wr)                    Pitch signal rep. (vr)     
      (ws) (LBDM) (cs) (ws) (LBDM) (cs) 

A 

Rests 
represented 

Mean NC 0.8444 0.4444 0.5333 0.5333 0.6667 0.5556 
Std-Dev. NC 0.0770 0.0385 0.2906 0.1764 0.1333 0.2694 

Mean CP 0.7111 0.5111 0.5111 0.4000 0.5556 0.4889 
Std-Dev. CP 0.1018 0.1018 0.2341 0.0000 0.0385 0.2143 

Rests 
removed 

Mean NC 0.7556 0.6000 0.5333 0.4000 0.6222 0.4889 
Std-Dev. NC 0.0770 0.0667 0.2309 0.1333 0.0770 0.2776 

Mean CP 0.5778 0.6000 0.5556 0.2667 0.4889 0.4000 
Std-Dev. CP 0.2037 0.0667 0.2694 0.1155 0.0385 0.2309 

B 

Rests 
represented 

Mean NC 0.4889 0.4889 0.3556 0.5556 0.3556 0.3556 
Std-Dev. NC 0.1018 0.0770 0.2694 0.0385 0.1018 0.2776 

Mean CP 0.3556 0.4000 0.3556 0.4222 0.3333 0.4000 
Std-Dev. CP 0.1018 0.0667 0.2694 0.1018 0.0667 0.2000 

Rests 
removed 

Mean NC 0.4000 0.6000 0.3556 0.3111 0.3778 0.4222 
Std-Dev. NC 0.0000 0.0000 0.3289 0.0770 0.1018 0.3289 

Mean CP 0.4000 0.5111 0.3778 0.3778 0.4000 0.3778 
Std-Dev. CP 0.0667 0.1678 0.3791 0.1388 0.1155 0.1925 

LN-Zero padding 
      Wavelet rep. (wr)                    Pitch signal rep. (vr)     
      (ws) (LBDM) (cs) (ws) (LBDM) (cs) 

A 

Rests 
represented 

Mean NC 0.8000 0.4444 0.5778 0.6444 0.4444 0.5778 
Std-Dev. NC 0.0667 0.0385 0.3151 0.0385 0.1678 0.3079 

Mean CP 0.6889 0.3778 0.5778 0.3556 0.4667 0.5111 
Std-Dev. CP 0.0385 0.0385 0.2524 0.1018 0.0667 0.2694 

Rests 
removed 

Mean NC 0.8000 0.5333 0.5556 0.3556 0.4667 0.4667 
Std-Dev. NC 0.0667 0.0000 0.3421 0.1678 0.1333 0.2906 

Mean CP 0.6444 0.4444 0.5778 0.2222 0.4667 0.4000 
Std-Dev. CP 0.1018 0.0385 0.2694 0.1388 0.0667 0.2906 

B 
Rests 

represented 

Mean NC 0.3556 0.1778 0.3556 0.4444 0.1778 0.3778 
Std-Dev. NC 0.1018 0.1388 0.2694 0.0770 0.1540 0.2037 

Mean CP 0.3778 0.2000 0.3778 0.4889 0.1778 0.4222 
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Std-Dev. CP 0.0385 0.1333 0.1925 0.0385 0.0385 0.2037 

Rests 
removed 

Mean NC 0.4000 0.2667 0.3333 0.2889 0.2222 0.4000 
Std-Dev. NC 0.1333 0.1764 0.2906 0.1018 0.1018 0.2000 

Mean CP 0.3111 0.1778 0.4222 0.3111 0.2222 0.3333 
Std-Dev. CP 0.1388 0.1018 0.2694 0.1018 0.1018 0.2309 

LN-Interpolation 
Table A1. Classification accuracies over three sections of the inventions, mean and standard deviation 
(Std-Dev.) values of the classifiers build from the first 16 qn, using only the exposition (NC) and the 
exposition and its contrapuntal variations (CP) for wavelet representation at the scale of 1 qn and 
normalized pitch signal representation using city-block distance and 1NN. (A) corresponds to 
segmentation: (ws) at 1 qn, (LBDM) at threshold 0.2 and (cs) at 1 qn. (B) corresponds to segmentation 
(ws) at 4 qn, (LBDM) at threshold 0.4 and (cs) at 4 qn.  
 
 
      Wavelet rep. (wr)                    Pitch signal rep. (vr)     
      (ws) (LBDM) (cs) (ws) (LBDM) (cs) 

A 

Rests 
represented 

Mean NC 0.8667 0.4667 0.5333 0.5111 0.6222 0.6444 
Std-Dev. NC 0.0667 0.1333 0.2906 0.1678 0.0385 0.2524 
Mean CP 0.7111 0.4444 0.5111 0.3778 0.6000 0.5333 
Std-Dev. CP 0.0385 0.0770 0.1678 0.0385 0.0000 0.2404 

Rests 
removed 

Mean NC 0.7333 0.5333 0.5111 0.4000 0.6000 0.5556 
Std-Dev. 
NC 0.0667 0.0000 0.2524 0.1333 0.0667 0.2341 
Mean CP 0.6000 0.5778 0.5778 0.2444 0.4444 0.4444 
Std-Dev. 
CP 0.2000 0.0385 0.2341 0.1018 0.0385 0.2524 

B 

Rests 
represented 

Mean NC 0.4667 0.4444 0.3333 0.3556 0.3778 0.4222 
Std-Dev. 
NC 0.1155 0.1388 0.2309 0.1018 0.1018 0.2341 
Mean CP 0.3778 0.3333 0.4444 0.3778 0.3556 0.4222 
Std-Dev. 
CP 0.1678 0.0000 0.3079 0.1678 0.0385 0.2143 

Rests 
removed 

Mean NC 0.3778 0.4222 0.3333 0.3333 0.4000 0.3556 
Std-Dev. 
NC 0.1018 0.1388 0.3528 0.2000 0.1333 0.3289 

Mean CP 0.3778 0.4000 0.3333 0.2667 0.3778 0.3556 
Std-Dev. 
CP 0.1388 0.1155 0.3528 0.1764 0.0770 0.2694 

LN-Zero padding 
      Wavelet rep. (wr)                    Pitch signal rep. (vr)     
      (ws) (LBDM) (cs) (ws) (LBDM) (cs) 

A 

Rests 
represented 

Mean NC 0.7778 0.4667 0.4889 0.6000 0.4444 0.6222 
Std-Dev. NC 0.1018 0.0667 0.3289 0.0667 0.1018 0.2776 

Mean CP 0.7111 0.3778 0.5778 0.3556 0.4444 0.4889 
Std-Dev. CP 0.0385 0.0385 0.2037 0.0770 0.0770 0.2143 

Rests 
removed 

Mean NC 0.8000 0.4667 0.4889 0.3778 0.4667 0.5778 
Std-Dev. 
NC 0.0667 0.1155 0.3421 0.1018 0.1333 0.3079 
Mean CP 0.6667 0.4000 0.5333 0.2222 0.4000 0.4000 
Std-Dev. 
CP 0.1155 0.0667 0.3055 0.1388 0.1155 0.2906 
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B 

Rests 
represented 

Mean NC 0.3333 0.2222 0.4667 0.4222 0.2222 0.3556 
Std-Dev. 
NC 0.0667 0.1018 0.2667 0.0385 0.0770 0.2143 
Mean CP 0.3333 0.2889 0.4222 0.3778 0.2000 0.4444 
Std-Dev. 
CP 0.0000 0.1540 0.2776 0.0770 0.0667 0.1388 

Rests 
removed 

Mean NC 0.3778 0.2222 0.3556 0.3111 0.3111 0.3333 
Std-Dev. 
NC 0.1018 0.1678 0.3906 0.1388 0.0770 0.2404 
Mean CP 0.3333 0.1778 0.2889 0.2000 0.2667 0.3778 
Std-Dev. 
CP 0.0667 0.0770 0.3289 0.1333 0.1764 0.2037 

LN-Interpolation 
Table A2. Classification accuracies over three sections of the inventions, mean and standard deviation 
(Std-Dev.) values of the classifiers build from the first 16 qn, using only the exposition (NC) and the 
exposition and its contrapuntal variations (CP) for wavelet representation at the scale of 1 qn and 
normalized pitch signal representation using Euclidean distance and 1NN. (A) corresponds to 
segmentation: (ws) at 1 qn, (LBDM) at threshold 0.2 and (cs) at 1 qn. (B) corresponds to segmentation 
(ws) at 4 qn, (LBDM) at threshold 0.4 and (cs) at 4 qn.  
 
 

   
City-block Euclidean 

   
(wr) (vr) (wr) (vr) 

P 

Rests 
represented 

Mean NC 0.1778 0.0889 0.1333 0.0889 
Std-Dev. NC 0.0385 0.0770 0.0667 0.1018 
Mean CP 0.1333 0.1556 0.0667 0.1333 
Std-Dev. CP 0.0667 0.1388 0.0000 0.1155 

Rests removed 

Mean NC 0.1333 0.0667 0.0667 0.1111 
Std-Dev. NC 0.1155 0.0000 0.0000 0.0385 
Mean CP 0.1556 0.1111 0.1333 0.0667 
Std-Dev. CP 0.0385 0.1388 0.0000 0.0667 

I 

Rests 
represented 

Mean NC 0.0667 0.0889 0.0889 0.0444 
Std-Dev. NC 0.0667 0.0385 0.0770 0.0385 
Mean CP 0.0889 0.1333 0.1111 0.0667 
Std-Dev. CP 0.0770 0.0667 0.1018 0.0667 

Rests removed 

Mean NC 0.0222 0.0667 0.0222 0.0667 
Std-Dev. NC 0.0385 0.0000 0.0385 0.0000 
Mean CP 0.0222 0.1556 0.0444 0.0889 
Std-Dev. CP 0.0385 0.1018 0.0385 0.0385 

Table A3. Classification accuracies without segmentation over three sections of the inventions, mean 
and standard deviation (Std-Dev.) values of the classifiers build from the first 16 qn, using only the 
exposition (NC) and the exposition and its contrapuntal variations (CP) for wavelet representation at 
the scale of 1 qn (wr) and normalized pitch signal representation (vr) using city-block and Euclidean 
distances and 1nn. (P) corresponds to length normalization by zero padding. (I) corresponds to 
interpolation length normalization by interpolation.!
!
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Aalborg University 
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ABSTRACT 

We present the computational method submitted to the 
MIREX 2014 Discovery of Repeated Themes & Sections 
task, and the results on the monophonic version of the 
JKU Patterns Development Database. In the context of 
pattern discovery in monophonic music, the idea behind 
our method is that, with a good melodic structure in terms 
of segments, it should be possible to gather similar seg-
ments into clusters and rank their salience within the 
piece. We present an approach to this problem and how 
we address it. In general terms, we represent melodies 
either as raw 1D pitch signals or as these signals filtered 
with the continuous wavelet transform (CWT) using the 
Haar wavelet. We then segment the signal either into 
constant duration segments or at the resulting coeffi-
cients’ modulus local maxima. Segments are concatenat-
ed based on their contiguous city-block distance. The 
concatenated segments are compared using city-block 
distance and clustered using an agglomerative hierar-
chical cluster tree. Finally, clusters are ranked according 
the sum of the length of segments’ occurrences. We pre-
sent the results of our method on the JKU Patterns De-
velopment Database.   

1. INTRODUCTION 

We present the computational method1 submitted to the 
MIREX 2014 Discovery of Repeated Themes & Sections 
task, and the results on the monophonic version of the 
JKU Patterns Development Database2. In the context of 
pattern discovery of monophonic pieces, the idea behind 
our method is that, with a good melodic structure in terms 
of segments, it should be possible to gather together simi-
lar segments to rank their salience within the piece (See 
‘paradigmatic analysis’ [3]). We also consider other as-
pects of the problem, in particular, representation, seg-
mentation, measuring similarity, clustering of segments 
and ranking segments according to salience.  

 
 
 
 
 
 

                                                             
1The algorithm is implemented in MATLAB (R2013b, The Math-
works,Inc), using the following toolboxes: Signal Processing, Statistics, 
Symbolic Math, Wavelet, and the MIDI Toolbox (Eerola & Toiviainen, 
2004). 
2 https://dl.dropbox.com/u/11997856/JKU/JKUPDD-noAudio-
Aug2013.zip. Accessed 12 May 2014 

 
In the context of this MIREX task, a good melodic 

structure is considered to be one that is closer to the 
ground truth analysis, which specifies certain patterns 
identified by expert analysts as being important or notice-
able. These patterns may be nested or hierarchically relat-
ed (see [1]). We use an agglomerative technique to clus-
ter segments by similarity. Clusters are then ranked ac-
cording to a perceptually motivated criterion. 

2. METHOD 

The method follows and extends our previously reported 
approach to melodic segmentation and classification 
based on filtering with the Haar wavelet [4] and uses 
some ideas from a generic motif discovery algorithm for 
sequential data [2]. It follows [4] in terms of representa-
tion and segmentation, extending the segmentation 
method. As [2] is very generic, we use the idea of com-
puting a similarity matrix for “window connectivity in-
formation” as described in section 2.2.4.  

2.1 Representation 
As in [4], we represent melodies either as raw 1D pitch 
signals or as these signals filtered with the continuous 
wavelet transform (CWT) using the Haar wavelet at a 
single time scale. The melodic contour of a melody is 
sampled using chromatic MIDI pitch information at a de-
fined sampling rate. In the case of pitch signal representa-
tion, after segmentation, melodic segments are normal-
ized by subtracting the average pitch.  

2.2 Segmentation 

2.2.1 First stage segmentation 
We use some of the segmentation methods described in 
[4] and additionally use modulus maxima segmentation. 
The segmentation methods are:  

- constant segmentation, i.e., segmentation into 
segments of constant length, or 

- modulus maxima, where segmentation points are 
set at local modulus maxima of the wavelet co-
efficients. 

2.2.2 Segment length normalization 

The segments obtained using these methods generally 
have different lengths. In order to normalize their length 
for the purpose of measuring their city-block distances, 

This document is licensed under the Creative Commons 
Attribution-Noncommercial-Share Alike 3.0 License. 
http://creativecommons.org/licenses/by-nc-sa/3.0/ 
© 2014 The Authors 
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and therefore have segments of equal length we define a 
maximal length for all segments and pad shorter seg-
ments as necessary with zeros at the end. 

2.2.3 Comparison 

Segments are compared by building a distance matrix 
giving all pair-wise distances between segments in terms 
of normalized city-block distance. The normalization 
consists of dividing the pairwise distance by the length of 
the smallest segment before segment length normaliza-
tion by zero padding.  

2.2.4 Concatenation of segments 

We binarize the distance matrix setting a threshold: val-
ues lower than or equal to the threshold take the value of 
1 or true, otherwise the value is 0 or false. We concate-
nate segments of contiguous true values of the diagonals, 
to form longer segments. 

2.3 Comparison 

This time we use the segments that have been concatenat-
ed as described in 2.2.4. The comparison is the same as in 
2.2.3. 

2.4 Clustering 

The distance matrix obtained in 2.3 is used for clustering. 
We use agglomerative clusters from an agglomerative 
hierarchical cluster tree. Finally, clusters are ranked ac-
cording to the sum of the length of segments’ occurrenc-
es. 

3. EXPERIMENTS 

We tested the following parameter combinations: 

- Melodies sampled at 16 samples per quarter note 
(qn) 

- Representation: normalized pitch signal or 
wavelet coefficients filtered at the scale of 1 qn 

- Segmentation: constant segmentation or modu-
lus maxima 

- Scale segmentation at 1 or 4 qn 

- Threshold for concatenating segments: 0.1 or 1 

- Distance for both comparisons: city-block 

- Number of clusters: 7 

- Ranking criterion: Sum of the length of occur-
rences 

4. RESULTS 

We used the evaluation metrics defined by Collins and 
Meredith in [1] and Collins’ Matlab implementation to 
compute the results. The results are obtained applying our 
method on the JKU Patterns Development Database 

monophonic version, which contains five melodies for 
training: Bach's Fugue BWV 889, Beethoven's Sonata 
Op. 2, No. 1, Movement 3, Chopin's Mazurka Op. 24, 
No. 4, Gibbons's Silver Swan, and Mozart's Sonata 
K.282, Movement 2. Table 1 and Table 2 present the re-
sults of our two submissions VM1 and VM2 respectively. 
In our experiments we have tested all combinations men-
tioned in section 3, and selected two configurations to 
submit to MIREX. VM1 differs from VM2 in the follow-
ing parameters:  

- Normalized pitch signal representation,  
- Constant segmentation at the scale of 1 qn, 
-  Threshold for concatenation 0.1.  

VM2 differs from VM1 in the following parameters:  
- Wavelet coefficients representation filtered at 

the scale of 1 qn 
- Modulus maxima segmentation at the scale of 4 

qn 
- Threshold for concatenation 1 

 
According to Friedman’s test (χ2(1)=1.8, p=0.1797) 

VM1 and VM2 show no significant difference in the re-
sults of the “three-layer” F1 score. However, for discov-
ering exact occurrences, VM1 outperforms VM2, 
(χ2(1)=4, p=0.045). On the other hand, there is a statisti-
cally significant difference in the runtime, suggesting that 
VM2 should be preferable for fast computation, (χ2(1)=5, 
p=0.0253). 

In general, recall values are slightly higher than pre-
cision values, and the standard deviation of the recall val-
ues are slightly lower than the standard deviation of the 
precision values. For standard precision, recall and F1 
score, the standard deviation is highest, compared to the 
standard deviation of establishment and occurrence 
measures. These results suggest that VM1 and VM2 per-
form consistent on the training dataset over establishment 
and occurrence values, and VM1 performs less consistent 
on the standard measures. 

5. CONCLUSIONS 

We present a novel computational method for the discov-
ery of repeated themes and sections in monophonic mel-
odies and the results of our two submissions on the same 
task, considering that VM1 and VM2 perform similarly 
on the ‘three-layer” measures, but VM1 should be prefer-
able for standard measures and VM2 should be preferable 
for runtime computation.    
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 Piece n_P   n_Q P_est R_est  F1_est  P_occ  

(c=.75) 

R_occ  

(c=.75) 

F1_occ 

(c=.75) 

P_3 R_3 F1_3 Runtime  

(s) 

 FFTP_ 

est  

FFP  P_occ  

(c=.5) 

R_occ  

(c=.5) 

F1_occ  

(c=.5) 

P R F1 

Bach 3 7 0.87 0.95 0.91 0.63 0.72 0.67 0.51 0.65 0.57 8.50 0.95 0.60 0.63 0.72 0.67 0.14 0.33 0.20 

Beethoven 7 7 0.92 0.92 0.92 0.98 0.98 0.98 0.86 0.91 0.88 31.00 0.76 0.80 0.89 0.93 0.91 0.57 0.57 0.57 

Chopin 4 7 0.53 0.86 0.66 0.66 0.86 0.75 0.48 0.70 0.57 34.20 0.68 0.47 0.46 0.83 0.60 0.00 0.00 0.00 

Gibbons 8 7 0.95 0.95 0.95 0.66 0.93 0.77 0.85 0.79 0.82 17.76 0.77 0.79 0.66 0.93 0.77 0.29 0.25 0.27 

Mozart 9 7 0.92 0.79 0.85 0.82 0.96 0.88 0.79 0.69 0.73 23.61 0.67 0.73 0.72 0.92 0.81 0.57 0.44 0.50 

mean 6.2 7 0.84 0.89 0.86 0.75 0.89 0.81 0.70 0.75 0.71 23.01 0.77 0.68 0.67 0.87 0.75 0.31 0.32 0.31 

SD 2.59 0 0.17 0.07 0.12 0.15 0.11 0.12 0.19 0.10 0.14 10.34 0.11 0.14 0.15 0.09 0.12 0.26 0.22 0.23 

Table 1. Results of VM1 on the JKU Patterns Development Database.  

 

 Piece n_P   n_Q P_est R_est  F1_est  P_occ  

(c=.75) 

R_occ  

(c=.75) 

F1_occ 

(c=.75) 

P_3 R_3 F1_3 Runtime  

(s) 

 FFTP_ 

est  

FFP  P_occ  

(c=.5) 

R_occ  

(c=.5) 

F1_occ  

(c=.5) 

P R F1 

Bach 3 7 0.56 0.65 0.60 0.89 0.43 0.58 0.39 0.41 0.40 5.07 0.59 0.37 0.56 0.46 0.50 0.00 0.00 0.00 

Beethoven 7 7 0.90 0.90 0.90 0.79 0.89 0.84 0.82 0.86 0.84 5.54 0.67 0.75 0.83 0.90 0.86 0.00 0.00 0.00 

Chopin 4 7 0.58 0.86 0.69 0.69 0.83 0.75 0.53 0.78 0.64 5.83 0.65 0.44 0.67 0.65 0.66 0.00 0.00 0.00 

Gibbons 8 7 0.92 0.88 0.90 0.79 0.84 0.82 0.81 0.73 0.77 2.22 0.70 0.76 0.72 0.69 0.71 0.14 0.13 0.13 

Mozart 9 7 0.83 0.71 0.77 0.93 0.93 0.93 0.77 0.63 0.69 5.70 0.56 0.68 0.84 0.88 0.86 0.00 0.00 0.00 

mean 6.2 7 0.76 0.80 0.77 0.82 0.78 0.78 0.66 0.68 0.67 4.87 0.63 0.60 0.72 0.71 0.72 0.03 0.03 0.03 

SD 2.59 0 0.17 0.11 0.13 0.09 0.20 0.13 0.19 0.17 0.17 1.51 0.06 0.18 0.12 0.18 0.15 0.06 0.06 0.06 

Table 2. Results of VM2 on the JKU Patterns Development Database.  
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Convolutional methods for music analysis

Paper IV. A Wavelet-Based Approach to Pattern Discovery in Melodies.
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Chapter 12
A Wavelet-Based Approach to Pattern Discovery
in Melodies

Gissel Velarde, David Meredith, and Tillman Weyde

Abstract We present a computational method for pattern discovery based on the
application of the wavelet transform to symbolic representations of melodies or
monophonic voices. We model the importance of a discovered pattern in terms of the
compression ratio that can be achieved by using it to describe that part of the melody
covered by its occurrences. The proposed method resembles that of paradigmatic
analysis developed by Ruwet (1966) and Nattiez (1975). In our approach, melodies
are represented either as ‘raw’ 1-dimensional pitch signals or as these signals filtered
with the continuous wavelet transform (CWT) at a single scale using the Haar wavelet.
These representations are segmented using various approaches and the segments
are then concatenated based on their similarity. The concatenated segments are
compared, clustered and ranked. The method was evaluated on two musicological
tasks: discovering themes and sections in the JKU Patterns Development Database
and determining the parent compositions of excerpts from J. S. Bach’s Two-Part
Inventions (BWV 772–786). The results indicate that the new approach performs
well at finding noticeable and/or important patterns in melodies and that filtering
makes the method robust to melodic variation.

12.1 Introduction

Since the 19th century, music theorists have placed great importance on the analysis
of motivic repetition and variation (Marx, 1837; Reicha, 1814; Riemann, 1912;

Gissel Velarde · David Meredith
Department of Architecture, Design and Media Technology, Aalborg University, Aalborg, Denmark
e-mail: {gv, dave}@create.aau.dk

Tillman Weyde
Department of Computer Science, City University London, London, UK
e-mail: t.e.weyde@city.ac.uk
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Schoenberg, 1967), leading to the development of paradigmatic analysis by Ruwet
(1966) and Nattiez (1986) during the latter half of the 20th century. Ruwet’s method
consists of an exhaustive similarity comparison of small units or segments in order to
generate a structural description (see Monelle, 1992). Paradigmatic analysis focuses
on clustering similar segments in a melody into “paradigms”, regardless of where
these segments might occur. It is typically carried out in parallel with syntagmatic
analysis which focuses on identifying sequential relationships between consecutive
segments. Syntagmatic and paradigmatic analysis can be seen as complementary
tools for exploring the semiotic structure of a melody.

Almost three decades after the work by Ruwet, the first computational models
to automate paradigmatic analysis of music appeared (Adiloglu et al., 2006; Anag-
nostopoulou and Westermann, 1997; Cambouropoulos, 1998; Cambouropoulos and
Widmer, 2000; Conklin, 2006; Conklin and Anagnostopoulou, 2006; Grilo et al.,
2001; Höthker et al., 2001; Weyde, 2001). However, it is difficult to evaluate these
models, as some are not fully automated (e.g., require a user-supplied segmentation),
the implementations are generally not public and they have not been tested on a
common ground truth. Although the notion of defining a ground truth at all for a mu-
sical analysis is controversial, the MIREX task on discovery of repeated themes and
sections (Collins, 2014) offers a practical opportunity to evaluate thematic analysis
algorithms. However, it should be noted that the ‘ground truth’ analyses used in this
task do not include any analyses by experts in paradigmatic analysis.

In this chapter, we focus on describing a fully automated method of musical anal-
ysis that closely resembles paradigmatic analysis. It has been implemented in Matlab
and it is publicly available.1 The method is based on segmenting melodies, cluster-
ing the resulting segments by similarity and then ranking the clusters obtained. In
Sect. 12.3 we present the results obtained when our method was used for discovering
repeating themes and sections in the Johannes Kepler University Patterns Develop-
ment Database (JKU PDD).2 We also compare these results with those obtained using
other methods. In order to test the generalizability of the proposed method, we also
evaluated it on a second musicological task, namely, that of identifying the parent
compositions of excerpts from J. S. Bach’s Two-Part Inventions (BWV 772–786).3

1 Available at http://www.create.aau.dk/music/software/. It is implemented in MATLAB (R2014a,
The Mathworks, Inc), using the following toolboxes: Signal Processing, Statistics, Symbolic
Math, Wavelet, and the MIDI Toolbox (Eerola and Toiviainen, 2004). We also used an imple-
mentation of the dynamic time warping algorithm (DTW) by Paul Micó, accessed on 30-April-
2013 from http://www.mathworks.com/matlabcentral/fileexchange/16350-continuous-dynamic-
time-warping.
2 https://dl.dropbox.com/u/11997856/JKU/JKUPDD-Aug2013.zip. Accessed on 12-May-2014.
3 MIDI encodings edited by Steve Rasmussen,
http://www.musedata.org/encodings/bach/rasmuss/inventio/. Accessed April 2011
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12 A Wavelet-Based Approach to Pattern Discovery in Melodies 305

12.1.1 Melodic Structure and Wavelet Analysis

Our understanding of melodic structure has benefited from work that has been carried
out in a number of fields, including music theory, psychology neuroscience and
computer science. For example, melodic contour has been studied by Huron (1996),
who classified melodies into 9 types according to their shapes (e.g., ascending, de-
scending, arc-like, etc.) by considering the first, last and average pitches of a melody.
In contrast, Schenkerian analysis aims to recursively reduce the musical surface
or foreground to a fundamental structure (Urzatz) via one or more middleground
levels (Schichten) (Schenker, 1935). Furthermore, listeners typically hear melodies
to be “chunked” into segments or, more generally, groups (Cambouropoulos, 1997;
Lerdahl and Jackendoff, 1983; Tenney and Polansky, 1980). Neuroscientific evidence
from fMRI studies suggests that brain activity increases when subjects perceive
boundaries between musical movements, and, indeed, boundaries between events in
other, non-musical domains (Kurby and Zacks, 2008). Such evidence strongly sup-
ports the notion that segmentation is an essential component of perception, occurring
simultaneously at multiple timescales. Psychological approaches focus on perception
and memory and have tried to determine relevant melodic structures empirically (see,
e.g., Lamont and Dibben, 2001; Müllensiefen and Wiggins, 2011b).

Computational approaches to the analysis of melodic structure include geometric
approaches to pattern discovery, grammars, statistical descriptors, Gestalt features
and data mining (see, e.g., Conklin, 2006; Mazzola et al., 2002; Meredith et al., 2002;
Weyde, 2002). Wavelet analysis is a relatively new approach that has been widely
used in audio signal processing. However, to our knowledge, it has been scarcely used
on symbolic music representations, except by Smith and Honing (2008), who used
wavelets to elicit rhythmic content from sparse sequences of impulses of a piece, and
Pinto (2009), who used wavelets for melodic indexing as a compression technique.

As mentioned above, the wavelet-based method that we present below is closely
related to paradigmatic analysis. It is based on the assumption that, if a melody is
segmented appropriately, then it should be possible to produce a high-quality analysis
by gathering together similar segments into clusters and then ranking these clusters by
their importance or salience. In our study, we were particularly interested in exploring
the effectiveness of the wavelet transform (WT) (Antoine, 1999; Farge, 1992; Mallat,
2009; Torrence and Compo, 1998) for representing relevant properties of melodies in
segmentation, classification and pattern detection.

Wavelet analysis is a mathematical tool that compares a time-series with a wavelet
at different positions and time scales, returning similarity coefficients. There are two
main forms of the WT, the continuous wavelet transform (CWT) and the discrete
wavelet transform (DWT). The CWT is mostly used for pattern analysis or feature
detection in signal analysis (e.g., Smith and Honing, 2008), while the DWT is used
for compression and reconstruction (e.g., Antoine, 1999; Mallat, 2009; Pinto, 2009).
In our method, we sample symbolic representations of melodies or monophonic
voices to produce one-dimensional (1D) pitch signals. We then apply the continuous
wavelet transform (CWT) to these pitch signals, filtering with the Haar wavelet
(Haar, 1910). Filtering with wavelets at different scales resembles the mechanism by
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Fig. 12.1 A schematic overview of the main stages of the proposed method

which neurons, such as orientation-selective simple cells in the primary visual cortex,
gather information from their receptive fields (Hubel and Wiesel, 1962). Indeed, more
recently, Gabor wavelet pyramids have been used to model the perception of visual
features in natural scenes (Kay et al., 2008).

Wavelet coefficient encodings seem to be particularly appropriate for melodic
analysis as they provide a transposition-invariant representation. We also use wavelet
coefficient representations to determine local segment boundaries at different time
scales, which accords well with the notion that listeners automatically organize the
musical surface into coherent segments, or groups, at various time scales (Lerdahl
and Jackendoff, 1983).

12.2 Method

The method presented in this chapter extends our previously reported approach to
melodic segmentation and classification based on filtering with the Haar wavelet
(Velarde et al., 2013), and also incorporates an approach to segment construction
similar to that developed by Aucouturier and Sandler (2002) for discovering patterns
in audio data. A schematic overview of the method is shown in Fig. 12.1. In the
following sub-sections we explain the method in detail.

12.2.1 Representation

A wide variety of different strategies have been adopted in music informatics for
representing melodies, including (among others) viewpoints (Conklin, 2006), strings
(McGettrick, 1997), contours (Huron, 1996), polynomial functions (Müllensiefen
and Wiggins, 2011a), point sets (Meredith et al., 2002), spline curves (Urbano, 2013),
Fourier coefficients (Schmuckler, 1999) and global features (van Kranenburg et al.,
2013).

The representations used in this study are illustrated in Fig. 12.2. The top graph
in this figure shows what we call a raw pitch signal. This is a discrete pitch signal,
v, with length, L, constructed by sampling from MIDI files at a rate, r, in samples
per quarter note (qn). MIDI files encode pitches as MIDI Note Numbers (MIDI NN).
We denote the pitch value at time point t by v[t]. This representation is not used for
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Fig. 12.2 Representations used in the method. From top to bottom: a raw pitch signal, a normalized
pitch signal, a wavelet coefficient representation and an absolute wavelet coefficient representation

segment comparison directly. It is either filtered by the Haar wavelet or transformed
into what we call a normalized pitch signal in order to obtain a transposition-invariant
representation which is then segmented.

The second graph in Fig. 12.2 shows a normalized pitch signal, obtained by
subtracting the average pitch of a segment from the pitch values in that segment.
This process is applied to each segment individually after segmentation. It serves to
reduce the measured dissimilarity between segments that have very similar contour
but occur at different pitch heights (i.e., have different transpositions).

The third graph in Fig. 12.2 shows a wavelet coefficient representation resulting
from carrying out a continuous wavelet transform (CWT) on the pitch signal with
the Haar wavelet at a single time scale. This process tends to highlight structural
features at the scale of the wavelet. The Haar wavelet (Haar, 1910) is used because it
measures the movement direction of the melody and because its shape reflects the
step-wise nature of symbolic pitch signals. Figure 12.3 shows an example of a Haar
wavelet.

The CWT computed at a single time scale acts as a filter by the convolution of v,
the pitch signal, with the scaled and flipped real-valued wavelet for each translation,
u, and scale, s:

ws[u] =
L

∑̀
=1

ψs,u[`]v[`] . (12.1)

To avoid edge effects due to finite-length sequences (Torrence and Compo, 1998), we
pad on both ends with a mirror image of v (Woody and Brown, 2007). To maintain
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Fig. 12.3 The Haar wavelet

the signal’s original length, the segments that correspond to the padding on both ends
are removed after convolution.

The bottom graph in Fig. 12.2 shows an absolute wavelet coefficient representation.
The value at each time point in this representation is the absolute value of the wavelet
coefficient at that time point.

The type of wavelet to use depends on the kind of information one wishes to
extract from the signal, since the wavelet coefficients combine information about
the signal and the analysing function (Farge, 1992). We use the Haar wavelet (Haar,
1910) as the analysing function, as defined by Mallat (2009):

ψt =





1, if 0≤ t < 0.5,
−1, if 0.5≤ t < 1,
0, otherwise.

(12.2)

The choice of time scale depends on the scale of structure in which one is interested.
Local structure is best analysed using short time scales, while longer-term structure
can be revealed by using wavelets at longer time scales. When features of the wavelet-
based representations are used for segmentation (as will be described in Sect. 12.2.2),
using a shorter wavelet leads to smaller segments in general. We therefore expect
shorter wavelets to be more appropriate for finding smaller melodic structural units
such as motives, while longer wavelets might be expected to produce segments at
longer time scales such as the phrase level and above. In the experiments reported
below, we used a variety of different scales in order to explore the effect of time scale
on performance.

12.2.2 Segmentation

Segmentation is a central component of music perception, occurring simultaneously
at multiple timescales as an adaptive mechanism of the brain. It has been shown
that brain activity increases transiently at musical movement boundaries, as well as
other non-musical event boundaries (Kurby and Zacks, 2008). In agreement with the
neuroscientific evidence, most theories of music perception and cognition note the
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importance of segmentation, or grouping at various different time scales. Typically,
such theories concentrate on the perceived associations of events, relating visual
Gestalt principles to the musical domain. Examples of such theories include Tenney
and Polansky’s theory of temporal Gestalt-units (Tenney and Polansky, 1980), Lerdahl
and Jackendoff’s theory of grouping structure (Lerdahl and Jackendoff, 1983) and
Cambouropoulos’ Local Boundary Detection Model (LBDM) (Cambouropoulos,
1997, 2001). The rules in these models address changes in both local parameters and
longer-term averages. Similarly, wavelet filters could be used to represent melodic
movements at different scales, leading to different levels of localization on the time-
axis for deriving group boundaries. Conklin (2006) also stresses the importance
of melodic analysis on segmentation. He additionally demonstrates the effect of
different symbolic melodic representations called viewpoints at different time scales
(note, beat, bar, phrase and piece level) in the context of style discrimination.

As shown in Fig. 12.1, the Segmentation phase of our method is split into three
subphases: Preliminary segmentation, Comparison and Concatenation. Each of these
subphases will now be described.

12.2.2.1 Preliminary Segmentation

In this study, we explored three strategies for producing a preliminary segmenta-
tion: constant-duration segmentation; segmentation at zero crossings in the wavelet
coefficient and absolute wavelet coefficient representations; and segmentation at
local maxima in the absolute wavelet coefficient representation. The lower three
graphs in Fig. 12.4 show three of the possible combinations of representation and
segmentation.

The simplest segmentation strategy that we explore is constant-duration segmen-
tation in which the signal is chunked into segments of constant duration (with the
possible exception of the final segment which could be shorter than the other seg-
ments). The second graph in Fig. 12.4 shows an example of this type of segmentation
combined with a normalized pitch signal representation.

We also experiment with zero-crossings segmentation in the wavelet-based repre-
sentations, where segment boundaries are set at time points with value zero in the
representation. Zero-crossings occur when the inner product between the melody
and the Haar wavelet is zero. This means that the average pitch in the first half of the
scale period is equal to the average pitch in the second half of the scale period.

The third segmentation strategy we use is absolute maxima segmentation, where
segment boundaries are set at time points corresponding to local maxima in the
absolute wavelet coefficient representation. These maxima occur when the inner
product of the wavelet and the signal is locally maximal. In our case, this corresponds
to time points when there is a maximal positive or negative correlation between the
shape of the melody and the Haar wavelet. These points occur when there is a locally
maximal fall or rise in average pitch content at the scale of the wavelet used. The
absolute maxima of a real wavelet such as the Haar wavelet are a special case of the
modulus maxima of a wavelet transform in general. The latter were used by Muzy
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Fig. 12.4 Segmentation approaches used in the method, from top to bottom: a raw pitch signal
without segmentation; normalized pitch signal and constant-duration segmentation at a scale of 4 qn;
wavelet coefficient representation filtered with the Haar wavelet at a scale of 1 qn and segmented
at zero-crossings at a scale of 4 qn; absolute wavelet coefficient representation filtered at a scale
of 1 qn and segmented at absolute maxima at a scale of 4 qn. Note that the wavelet scales used
to generate the representations shown in the third and fourth graphs are different from those used
to produce the segmentations. The segmentation points therefore do not necessarily coincide with
zero-crossings or maxima in the wavelet coefficient representations shown

et al. (1991) to show the structure of fractal signals and by Mallat and Hwang (1992)
to indicate the location of edges in images. The bottom graph in Fig. 12.4 shows
an example of absolute maxima segmentation of an absolute wavelet coefficient
representation.

The segments obtained using these three strategies generally have different dura-
tions. However, in order to measure similarity between them using standard metrics
such as city block or Euclidean distance, it is necessary for the segments to be the
same length. We achieve this by defining a maximal length for all segments and
padding shorter segments as necessary with zeros at the end.

12.2.2.2 Comparison

Segments are compared by building an m×m distance matrix, H, giving all pair-wise
distances between segments in terms of normalized distance. m is the number of
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segments. We use three different distance measures: Euclidean distance, city block
distance and dynamic time warping (DTW). For city block and Euclidean distances,
the segments compared must be of equal length and in these cases the normalization
consists of dividing the pairwise distance by the length of the smallest segment
before segment-length equalization by zero padding. When using DTW, which is an
alignment-based method, it is not necessary to equalize the lengths of the segments
being compared. In this case, therefore, the normalization consists of dividing the
distance by the length of the aligned segments.

We use the Euclidean distance dE(x,y) between two segments, x and y, which is
defined as follows:

dE(x,y) =

√
n

∑
j=1

(x[ j]− y[ j])2 , (12.3)

and the city block distance dC(x,y) between x and y:

dC(x,y) =
n

∑
j=1
|x[ j]− y[ j]| . (12.4)

The dynamic time warping distance (DTW), dD(x,y), is the minimal cost of a warping
path between sequences x and y. A warping path of length, L, is a sequence of pairs
p = ((n1,m1), ...,(nL,mL)), where ni is an index into x and mi is an index into y.
p needs to satisfy several conditions which ensure that it can be interpreted as an
alignment between x and y that allows skipping elements in either sequence (see
Müller, 2007, p. 70). The DTW distance, dD(x,y), is then defined to be the total cost
of a warping path, defined to be the sum of a local cost measure, c(x[ni],y[mi]), along
the path:

dD(x,y) =
L

∑
i=1

c(x[ni],y[mi]) , (12.5)

where, here, c(x[ni],y[mi]) is defined to be simply the absolute difference, |x[ni]−
y[mi]|.

Having computed all the pairwise distances in the matrix, H, these values are
then normalized in the range [0,1] by dividing each pairwise distance by the largest
distance in the matrix for that distance type.

12.2.2.3 Concatenation of Segments

The final subphase of the segmentation phase is to concatenate consecutive segments
found in the preliminary segmentation to form larger units that are then compared,
clustered and ranked in the subsequent phases of the method.

The first subphase of the segmentation phase gives a preliminary segmentation of
the melody. It is preliminary, as it may be the case that a repeated (or approximately
repeated) segment discovered in the preliminary segmentation only occurs as part
of a longer repeated segment, such that a paradigmatic relation is found. In such

104



312 Gissel Velarde, David Meredith, and Tillman Weyde

cases, one would generally only be interested in the longer repeated segment (this
relates to the concept of “closed patterns” (see Lartillot, 2005, and Chap. 11, this
volume) and Meredith et al.’s (2002) concept of “maximal translatable patterns” (see
also Chap. 13, this volume). One would only want to report the shorter segment
if it also occurred independently of the longer segment. In the third subphase of
the segmentation phase, we therefore concatenate, or merge locally, the preliminary
segments derived in the preliminary segmentation into generally longer units, that
are then passed on to the later phases of the method.

Segments are concatenated based on their similarity. We therefore set a threshold,
τ , that defines the level of similarity between preliminary segments required to allow
concatenation. The m×m distance matrix, H, is therefore binarized as follows:

H(i, j) =

{
1, if H(i, j)≤ τ ,
0, otherwise,

(12.6)

for 1≤ i≤ m and i≤ j ≤ m (note that we use 1-based indexing in this chapter).
Segments are concatenated to form units based on the information contained in

the upper triangle including the leading diagonal in the binarized similarity matrix, H,
scanning the matrix horizontally and diagonally. A unit, (i, j), i≤ j, consists of the
concatenated segments i, . . . , j, and we use two concatenation processes to generate
units.

A process of horizontal concatenation generates units that consist of consecutive
occurrences of the “same” segment (i.e., corresponding to horizontal sequences of
consecutive 1s in the binarized similarity matrix, H). The units, (i,k), generated by
this process are those for which hor(i,k) is true, where

hor(i,k) ⇐⇒ (hor(i,k−1)∧H(k−1,k) = 1) ∨ (i = k) . (12.7)

A process of diagonal concatenation generates units that are repeated in the piece,
and dia(i, j) must be true, where

dia(i, j) ⇐⇒ (dia(i, j−1)∧∃`,k | `− k = j− i∧dia(k, `−1)∧H( j−1, `−1) = H( j, `) = 1)

∨ ( j− i = 1∧∃` | H(i, `−1) = H( j, `) = 1) . (12.8)

Any hor(i, j) or dia(i, j) that is not a strict subset of another generates a unit (i, j).
Subsets will be identified as trivial units.

When these two concatenation processes are carried out on the matrix in Fig. 12.5,
horizontal concatenation generates the unit (9,10) and diagonal concatenation gener-
ates the units (1,2), (4,5) and (7,8).

The concatenation method presented here is similar to the one described by
Aucouturier and Sandler (2002).
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Fig. 12.5 Upper triangular matrix, grey means 1 and white 0. It corresponds to the binarized distance
matrix H of the sequence v1 = abxabyabzz

12.2.3 Comparison and Clustering of Units

In this second comparison, the units constructed in the previous concatenation step
(Sect. 12.2.2.3) are compared using the same process of similarity measurement
as that described in Sect. 12.2.2.2. Any two units (`, j) and (p,r) obtained by con-
catenation, will then be units x and y respectively, to be compared in this second
comparison.

Having obtained values for the pairwise similarity between units, these similarity
values are then used to cluster the units into classes. To achieve this, we use a
simple hierarchical agglomerative clustering method called single linkage, or nearest-
neighbour, which produces a series of successive fusions of the data, starting from N
single-member clusters that fuse together to form larger clusters (Everitt et al., 2011;
Florek et al., 1951; Johnson, 1967; Sneath, 1957). Here, the distance matrix obtained
from the comparison as described in Sect. 12.2.3 is used for clustering. Single linkage
takes the smallest distance between any two units, one from each group or cluster.
The distance D(X ,Y ) between clusters X and Y is described as

D(X ,Y ) = min
x∈X ,y∈Y

d(x,y) , (12.9)

where clusters X and Y are formed by the fusion of two clusters, x and y, and d(x,y)
denotes the distance between the two units x and y (Everitt et al., 2011). Consider
the case of five units or clusters v, w, x, y and z, as shown on the left in Fig. 12.6 as
points in a Euclidean space. The minimal distance occurs for x and y, and for z and
w. Then, two new clusters are formed, a cluster s consisting of x and y and a cluster t
consisting of z and w. The next minimal distance occurs for v and t, forming a new
cluster u consisting of v and t. Finally, clusters s and u are grouped together into a
cluster c. The right plot in Fig. 12.6 shows a dendrogram of the formed clusters. The
y-axis corresponds to the distances between clusters; for instance, clusters x and y
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Fig. 12.6 Example of the hierarchical clustering of units or clusters v, w, x, y and z. Left plot shows
the units in a Euclidean space. Right plot shows a dendrogram of the formed clusters

have a distance of 1, and clusters t and u have a distance of 2.2. In this example, the
number of clusters ranges from 1, where all units form a single cluster, to 5, where
each cluster contains just one unit. The number of clusters can be set to be three,
having clusters s, t and u or it can be set to two, giving clusters s and u. Finally, the
number of clusters is set to yield the best classification results.4

12.2.4 Ranking

In general, if X and Y are two parts of some object, then one can describe X ∪Y in
an in extenso fashion simply by specifying the properties of each atomic component
in X and Y . Alternatively, if there exists a sufficiently simple transformation, T , that
maps X onto Y , then it may be possible to provide a compact description of X ∪Y by
providing an in extenso description of X along with a description of T .5

In the current context, each cluster generated by the previous stage of the method
contains units (i.e., parts of a melody) that are similar to each other. If every member
of a cluster can be generated by a simple transformation of one member (e.g., if all
the units within a cluster are exact repeats of the first occurrence), then the portion
of the melody covered by the cluster (i.e., the union of the units in the cluster) can
be represented by giving an explicit description of the first occurrence along with
the positions of the other occurrences. If the members of the cluster do not overlap,
then such a representation can be compact because the starting position of a unit can
usually be specified using fewer bits than explicitly describing the content of the
unit. This would give a losslessly compressed encoding of the part of the melody

4 When preliminary experiments were performed on the JKU PDD, using between 3 and 10 clusters,
the best classification results were obtained using 7 clusters. We therefore used 7 clusters in the
experiments reported in Sect. 12.3 below.
5 This idea is discussed in more detail in Chap. 13, this volume.
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covered by the union of the units in the cluster. This is the essential idea behind the
compression-driven geometric pattern discovery algorithms described by Meredith
(2006, 2013) and Forth (2012). If we represent the music to be analysed as a set of
points in pitch-time space and if a cluster (or ‘paradigm’), C, only contains the exact
occurrences of a pattern, p, then the compression ratio achieved is

CR(C) =
|⋃q∈C{q}|
|p|+ |C|−1

, (12.10)

where | · | denotes the cardinality of a set. Here, however, the units within a cluster are
not necessarily exact repetitions of some single pattern. This means that the degree
of compression achievable with one of the clusters generated in the previous sections
will not, in general, be as high as in (12.10).

Collins et al. (2011) have provided empirical evidence that the compression ratio
achievable in this way by a set of occurrences of a pattern can be used to help predict
which patterns in a piece of music are heard to be noticeable and/or important. In the
method presented in this chapter, we therefore adapt (12.10) to serve as a measure
of importance or noticeability for the clusters generated in the previous phase of the
method. Here, we define the “compression ratio”, CRk, of cluster k as follows:

CRk =
∑nk

i=1 Si

(nk + S̄k)
, (12.11)

where nk is the number of units in cluster k, Si is the length in sample points of unit i
in cluster k, and S̄k is the mean length of a unit in cluster k. Clusters are ranked into
descending order by this value of “compression ratio”. All clusters are kept in the
final output.

12.3 Experiments

The method described above was evaluated on two tasks: discovering repeated themes
and sections in monophonic music; and identifying the parent works of excerpts from
J. S. Bach’s Two-Part Inventions (BWV 772–786). The methods used and results
obtained in these experiments will now be presented.

12.3.1 Experiment 1: Discovering Repeated Themes and Sections
in Monophonic Music

Various computational methods for discovering patterns in music have been devel-
oped over the past two decades (see Janssen et al., 2013, for a recent review), but
only recently have attempts been made to compare their outputs in a rigorous way.

108



316 Gissel Velarde, David Meredith, and Tillman Weyde

Notable among such attempts are the two tasks on discovering repeated themes and
sections that have been held at the Music Information Retrieval Evaluation eXchange
(MIREX) in 2013 and 2014 (Collins, 2014). In these tasks, algorithms have been
run on a set of five pieces and the analyses generated by the algorithms have been
compared with ground truth analyses by expert analysts. A number of measures
were devised for evaluating the performance of pattern discovery algorithms in this
competition and comparing the output of an algorithm with a ground truth analysis
(Collins, 2014). Collins has also provided a training database, the JKU PDD, which
exists in both monophonic and polyphonic versions. The JKU PDD consists of the
following five pieces along with ground truth analyses:

• Orlando Gibbons’ madrigal, “Silver Swan” (1612);
• the fugue from J. S. Bach’s Prelude and Fugue in A minor (BWV 889) from Book

2 of Das wohltemperirte Clavier (1742);
• the second movement of Mozart’s Piano Sonata in E flat major (K. 282) (1774);
• the third movement of Beethoven’s Piano Sonata in F minor, Op. 2, No. 1 (1795);

and
• Chopin’s Mazurka in B flat minor, Op. 24, No. 4 (1836).

The monophonic versions of the pieces by Beethoven, Mozart and Chopin were
produced by selecting the notes in the most salient part (usually the top part) at each
point in the music. For the contrapuntal pieces by Bach and Gibbons, the monophonic
encodings were produced by concatenating the voices (Collins, 2014).

We used the JKU PDD as a training set for determining optimal values for the
parameters of the analysis method described above. Heuristics based on knowledge
gained from previous experiments (Velarde et al., 2013) were used to start tuning
the parameters. Then, in an attempt to approach optimal values, all parameters were
kept fixed, except one which was varied along a defined range to find an optimal
adjustment. This process was repeated for all parameters. Finally, the method was
run on the JKU PDD with 162 different parameter value combinations, consisting of
all possible combinations of the following:

• 1 sampling rate: 16 samples per qn
• 3 representations: normalized pitch signal, wavelet coefficients filtered at the scale

of 1 qn, absolute wavelet coefficients filtered at the scale of 1 qn
• 3 segmentation strategies: constant-duration segmentation, segmentation at zero-

crossings, segmentation at absolute maxima
• 2 scales for segmentation: 1 qn and 4 qn
• 1 threshold for binarizing the similarity matrix: 0.001
• 3 distances for measuring similarity between segments on the first comparison:

city block (CB), Euclidean (Eu) and dynamic time warping (DTW)
• 3 distances for measuring similarity between segments on the second comparison:

city block (CB), Euclidean (Eu) and dynamic time warping (DTW)
• 1 strategy for equalizing the lengths of segments for comparison: segment length

normalization by zero padding
• 1 clustering method: Single linkage (nearest neighbour)
• 1 value for the number of clusters: 7
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• 1 criterion for ranking clusters: compression ratio

12.3.1.1 Results

We used the monophonic version of the JKU PDD with the evaluation metrics
defined by Collins (2014) and Meredith (2015), which we computed using Collins’
Matlab implementation.6 The evaluation metrics consist of a number of variants on
standard precision, recall and F1 score, designed to allow algorithms to gain credit for
generating sets of occurrences of patterns that are similar but not identical to those in
the ground truth. The standard versions of the metrics are not adequate for evaluating
pattern discovery algorithms because they return 0 for a computed pattern even if it
differs from a ground truth pattern by only one note.

The more robust versions of the precision, recall and F1 score are designed to
measure (1) the extent to which an algorithm finds at least one occurrence of a pattern
(establishment recall/precision/F1 score); (2) the extent to which an algorithm finds
all the occurrences of a pattern (occurrence recall/precision/F1 score); and (3) the
overall similarity between the set of occurrence sets generated by an algorithm and
the set of occurrence sets in a ground truth analysis (three-layer precision/recall/F1
score). As these different metrics reveal different aspects of the method’s strengths
or weaknesses, we decided to evaluate our method based on the standard F1 score,
where P is precision and R is recall

F1 =
2PR

P+R
(12.12)

and on the mean of establishment F1 (F1 est), occurrence F1 at (c=.75)
(F1 occ(c=.75)), occurrence F1 at (c=.5) (F1 occ(c=.5)) (Collins, 2014), and three-
layer F1 (F1 T L) (Meredith, 2015):

F1 mean =
F1 est +F1 occ(c=.75)+F1 occ(c=.5))+F1 T L

4
. (12.13)

Figure 12.7 shows the highest mean F1 scores (F1 mean) for each combination,
considering segmentation scale, representation type and segmentation type. The left
plot shows nine combinations where the segmentation scale was 1 qn, while the
right plot shows the scores of nine combinations where the segmentation scale was
4 qn. For each plot in Fig. 12.7, there are 3 bars grouped for each segmentation
method, where the grey tones (dark grey, light grey and white) indicate the three
representation types, and finally, the distance measures associated with the first
and second comparison (e.g., “EU,EU”, “CB,CB”, etc.). Figure 12.8 shows the
corresponding standard F1 scores for the same combinations. Finally, Fig. 12.9 shows
the runtimes in seconds obtained with our implementations of the method, associated
with each combination.

6 https://dl.dropbox.com/u/11997856/JKU/JKUPDD-Aug2013.zip. Accessed on 12-May-2014.
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Fig. 12.7 Mean F1 score (F1 mean)

We ran the experiment twice, the first time keeping trivial units and the second time
discarding trivial units. Figures 12.7, 12.8 and 12.9 show the results when keeping
trivial units. A Wilcoxon signed rank test indicated that keeping or discarding trivial
units did not significantly affect the results of mean F1 scores (Z = −1.2439, p =
0.2135), standard F1 scores (Z =−1.633, p = 0.1025), or runtimes (Z =−0.8885,
p = 0.3743), for a segmentation scale of 1 qn. Similarly, no difference was found
in the results when keeping or discarding trivial units for a scale of 4 qn for mean
F1 scores (Z = 1.007, p = 0.3139), standard F1 scores (Z = 0, p = 1), or runtimes
(Z =−0.53331, p = 0.5940). Therefore, only the results of the first run are shown
and explained in the following paragraphs.

Fig. 12.8 Standard F1 score
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Fig. 12.9 Runtimes in seconds obtained using our implementation of the method. The implementa-
tion was programmed using Matlab 2014a and run on a MacBook Pro using MAC OS X with a 2.3
GHz, Intel Core i7 processor and 8 GB 1600 MHz DDR3 RAM

According to the parameters tested, we observe that the segmentation scale used
in the preliminary segmentation phase has a greater effect on the results. Figures 12.8
and 12.9 show that using a smaller segmentation scale of 1 qn as opposed to 4 qn was
in general slower but produced better results. A Wilcoxon signed rank test indicated
there is a statistically significant difference between the use of a smaller and larger
scale (Z = 2.6656, p = 0.007), suggesting that a scale of 1 qn should be used in the
preliminary segmentation phase, for higher (mean or standard) F1 scores.

In terms of mean F1 score (Fig. 12.7), the normalized pitch signal representation
worked slightly better than the wavelet representations when constant-duration seg-
mentation was used. We speculate that only with additional pattern data containing
greater variation between occurrences would the benefit of wavelet over normalized
pitch representations emerge (see Sect. 12.3.2.1 for more discussion on this point).
DTW was used less frequently than Euclidean or city block distance in the best-
performing combinations. It seems possible that DTW might have proved more useful
if the input representations had included temporal deviations such as ritardando or
accelerando such as might occur in an encoding generated from a live performance.

From Figs. 12.7, 12.8 and 12.9 it is not possible to determine whether the running
time is more dependent on the segmentation approach or on the distance measure
used. Tables 12.1 and 12.2, show the highest mean F1 scores of combinations using
the same distance measure for both comparison phases, averaged by representation
approach. From Table 12.1, it is possible to observe that when using a scale of 1 qn for
the preliminary segmentation phase, Euclidean and city-block distances have similar
performance, and their F1 scores are higher than the ones delivered when using DTW
distance. However, this gap becomes smaller when the scale is 4 qn. The results in
Table 12.2 show that the running times using DTW are more than 8 times slower
than those obtained using Euclidean or city-block distances. Evaluating runtimes
according to segmentation approaches, it is possible to observe that for the smaller
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Table 12.1 Mean F1 scores averaged over representations, combinations of same distance measure
for both comparisons. The rows correspond to the different combinations of distances (CB = city-
block, Eu = Euclidean and DTW = dynamic time warping), while the columns correspond to the
segmentation approaches (CS = constant-duration segmentation, ZC = zero-crossings segmentation,
and AM = absolute maxima segmentation). Mean and standard deviation values are shown per row
and per column

Segmentation scale 1 qn Segmentation scale 4 qn
CS ZC AM Mean SD CS ZC AM Mean SD

CB-CB 0.74 0.69 0.75 0.73 0.03 0.65 0.60 0.70 0.65 0.05
Eu-Eu 0.73 0.68 0.72 0.71 0.03 0.63 0.59 0.70 0.64 0.05
DTW-DTW 0.57 0.64 0.60 0.60 0.04 0.59 0.61 0.66 0.62 0.03
Mean 0.68 0.67 0.60 0.62 0.60 0.69
SD 0.10 0.03 0.08 0.03 0.01 0.03

Table 12.2 Corresponding mean running times in seconds of the combinations in Table 12.1

Segmentation scale 1 qn Segmentation scale 4 qn
CS ZC AM Mean SD CS ZC AM Mean SD

CB-CB 24.3 60.8 17.9 34.32 23.17 2.2 5.4 5.2 4.23 1.80
Eu-Eu 24.4 57.1 17.8 33.10 21.02 2.1 5.3 5.1 4.16 1.79
DTW-DTW 664.4 2248.2 720.1 1210.91 898.77 21.5 61.5 67.4 50.14 25.01
Mean 237.69 788.70 251.93 8.58 24.04 25.92
SD 369.56 1263.98 405.44 11.17 32.44 35.97

Table 12.3 Mean F1 scores averaged over representations, when the concatenation phase is not
performed. The rows of the Table indicate the distances used for comparison (CB = city-block, Eu
= Euclidean and DTW = dynamic time warping), while the columns correspond to the segmentation
approaches (CS = constant-duration segmentation, ZC = zero-crossings segmentation, and AM =
absolute maxima segmentation). Mean and standard deviation values are shown per rows and per
columns

Segmentation scale 1 qn Segmentation scale 4 qn
CS ZC AM Mean SD CS ZC AM Mean SD

CB 0.10 0.18 0.11 0.13 0.04 0.22 0.23 0.18 0.21 0.03
Eu 0.10 0.14 0.10 0.11 0.02 0.22 0.21 0.16 0.20 0.03
DTW 0.10 0.09 0.11 0.10 0.01 0.22 0.20 0.18 0.20 0.02
Mean 0.10 0.14 0.11 0.22 0.21 0.18
SD 0.00 0.04 0.01 0.00 0.02 0.01

scale of 1 qn in the preliminary segmentation phase, the runtimes of constant-duration
segmentation and wavelet absolute maxima segmentation are similar and about twice
as fast as the runtimes of the zero-crossings segmentation. On the other hand, for
a larger scale of 4 qn in the preliminary segmentation phase, constant-duration
segmentation is three times faster than wavelet segmentation approaches.

Table 12.3 shows the effect of not using the concatenation phase: melodies un-
dergo the preliminary segmentation phase, but skip the first comparison and the
concatenation phases, such that all preliminary segments are used for the comparison,
clustering and ranking phases. The results in Table 12.3 show that omitting the con-
catenation phase severely reduces the performance of the method on this task. In this
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case, when segments are not concatenated, a segmentation scale of 4 qn is, in almost
all combinations, twice as good as a segmentation scale of 1 qn. On the other hand,
as seen in Table 12.1, a preliminary segmentation phase with a finer segmentation
scale, helps to improve the identification of patterns in this dataset.

12.3.1.2 Comparison with Other Computational Methods

The other computational methods addressing the MIREX task on Discovery of
repeated themes and sections, included geometric approaches (Meredith, 2013),
incremental mining methods (Lartillot, 2014) and methods based on audio techniques
(Nieto and Farbood, 2013, 2014).7 For comparison, we selected our submission VM1,
as this configuration was also selected for comparison in the published results of the
task. The details of the parameters settings of VM1 are described by Velarde and
Meredith (2014).

Table 12.4 shows the results obtained by the different algorithms in the 2014
MIREX task on the monophonic version of the JKU Patterns Test Database (PTD).
As can be seen in this table, our method ranked highest at discovering at least one
occurrence of each ground truth pattern (F1 est) as well as being the fastest method.
Lartillot’s method (OL1) performed better at finding inexact occurrences of patterns
(F1 occ(c=.75)) but is considerably slower. VM1 and OL1 performed at a similar
level with respect to finding exact occurrences of the patterns, and, in both cases,
the standard deviation was high. The addition of more pieces to training and test
databases over time will enable researchers to investigate the generalizability of their
methods.

Table 12.4 Results on the JKU test set. NF1 (Nieto and Farbood, 2014), OL1 (Lartillot, 2014),
VM1 (Velarde and Meredith, 2014) and DM10 (Meredith, 2013)

F1 est F1 occ(c=.75) T L F1 F1 Runtime

NF1 Mean 0.50 0.41 0.33 0.02 480.80
SD 0.14 0.27 0.12 0.05 558.43

OL1 Mean 0.50 0.81 0.43 0.12 35508.82
SD 0.17 0.12 0.13 0.13 52556.11

VM1 Mean 0.73 0.60 0.49 0.16 100.80
SD 0.14 0.09 0.14 0.15 119.18

DM10 Mean 0.55 0.62 0.43 0.03 161.40
SD 0.06 0.09 0.08 0.04 194.87

7 Results of the annual MIREX competitions on Discovery of Repeated Themes and Sections can
be found on the MIREX website at at http://www.music-ir.org/.
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Fig. 12.10 Notation and pitch-signal representations of the first ground truth pattern for the third
movement of Beethoven’s Piano Sonata in F minor, Op. 2, No. 1 (1795)

12.3.1.3 Comparing Patterns Discovered Automatically with Patterns
Identified by Experts

In this section, we present the output of the computational method compared to the
JKU PDD ground truth analysis of the monophonic version of the third movement
of Beethoven’s Piano Sonata in F minor, Op. 2, No. 1 (1795). In order to visualize
the ground truth and computationally discovered patterns and their occurrences, we
will present them as pitch signals rather than in notation. To help with understanding
the correspondence between the pitch signal representation and notation, Fig. 12.10
shows both representations of the first ground truth pattern.

The ground truth analysis for this piece identifies seven patterns and their occur-
rences as shown in Fig. 12.11. In this figure, plots on the left correspond to patterns,
while plots on the right correspond to pattern occurrences. Each pattern occurrence
is marked with vertical dotted lines in the graphs on the right side of the figure. All
pitch signals have been shifted to start at time 0. The patterns are ordered, from top
to bottom, in decreasing order of salience. The lengths of these seven ground truth
patterns range from 12 to 119 qn. Some occurrences of the patterns overlap as is the
case for the occurrences of pattern 1 and pattern 3, or pattern 2 and pattern 5.

The computational analysis of the piece can be seen in Fig. 12.12. The parameters
used are the following:

• 1 sampling rate: 16 samples per qn
• representations: absolute wavelet coefficients filtered at the scale of 1 qn
• segmentation at absolute maxima
• scales for segmentation: 1 qn
• threshold for binarizing the similarity matrix: 0.001
• distance for measuring similarity between segments on the first comparison: city

block (CB)
• distance for measuring similarity between segments on the second comparison:

city block (CB)
• clustering method: Single linkage (nearest neighbour)
• value for the number of clusters: 7
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Fig. 12.11 JKU PDD Ground truth patterns for the third movement of Beethoven’s Piano Sonata
in F minor, Op. 2, No. 1 (1795). Pitch signal representation, with signals shifted to start at time 0.
Plots on the left correspond to the patterns, while plots on the right correspond to the entire piece,
with each pattern occurrence marked with a vertical dotted line at its starting and ending position

• criterion for ranking clusters: compression ratio

In this example, the number of clusters is the same as the number of patterns
in the ground truth. Once again, the salience of patterns can be seen from top to
bottom, where the most salient pattern is shown in the top plot. Six out of seven
pattern shapes match approximately the ground truth pattern shapes (in some cases,
some notes may be missing at the beginning or end of a pattern). The pattern that
has been ranked as the most salient, corresponds to pattern 2 in the ground truth
analysis, and all its four occurrences have been found. The shape of the second most
salient computed pattern, does not resemble the shape of any of the patterns in the
ground truth. Pattern 2 is a short-duration pattern, whose cluster contains several
melodic units, including segments that approximate the occurrences of pattern 1 in
the ground truth (this cannot be seen in Fig. 12.12). The remaining computed pattern
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shapes (patterns 3–7) can be found in the ground truth, each with the same number
of occurrences. The ranking of salience is not exactly the same as in the ground truth,
but it is similar in chunks, such that:

• the first two computed clusters correspond to the first two pattern occurrences in
the ground truth;

• computed cluster 3 corresponds to the occurrences of ground truth pattern 3;
• computed clusters 4–6 correspond to the occurrences of ground truth patterns 4–6,
• and finally the last computed cluster corresponds to the occurrences of the last

ground truth pattern.

The second cluster contains several melodic units. In future work, we would like
to cluster such clusters until they satisfy a given condition and discard clusters that
fail to satisfy the condition. We expect that the effect on such clusters of keeping or
discarding trivial units may be more evident if we carry out this process.

12.3.2 Experiment 2: Classification of Segments from J. S. Bach’s
Two-Part Inventions

We also evaluated the method on a second task where the goal was to recognize
the parent works of excerpts from J. S. Bach’s 15 Two-Part Inventions (BWV 772–
786). In contrast to the first experiment, in this task, all segments were used in the
evaluation, not just concatenated units. Also, whereas in the first experiment there
was room for disagreement about the validity of the ground truth, in this second
task, the ground truth was not controversial—there was no doubt as to which parent
Invention each test excerpt belonged to. The notion that the piece to which an excerpt
belongs can be identified on the basis of the content of the excerpt is based on the
premise that the musical material in the excerpt is motivically related to the rest of the
piece. Specifically, in the case of Bach’s Two-Part Inventions, it is well established
that the opening exposition of each of these pieces presents the motivic material
that is developed throughout the rest of the piece, which is typically divided into
three sections (Dreyfus, 1996; Stein, 1979). In this experiment, we followed the
experimental setup described by Velarde et al. (2013), building the classifier from the
expositions of the pieces and the test set from the three following sections of each
piece. More precisely, an initial, 16 qn segment from each piece was used to build
the classifier, and the remainder of each piece was split into three sections of equal
length which were used to build the test set. We could have attempted to determine
the length of each exposition precisely, but we wanted to avoid making subjective
analytical judgements. We therefore used a fixed length of 16 qn as the length of
each “exposition” section despite the fact that the actual lengths of the expositions in
the Inventions vary. This particular length was chosen because it was the length of
the longest exposition in the pieces, thus ensuring that no exposition material would
be included in the test set.
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Fig. 12.12 Patterns discovered by the method for the third movement of Beethoven’s Piano Sonata
in F minor, Op. 2, No. 1 (1795), JKU PDD monophonic version. Pitch signal representation, with
signals shifted to start at time 0. Plots on the left correspond to the patterns, while plots on the right
correspond to the entire piece, with each pattern occurrence marked with a vertical dotted line at its
starting and ending position

We were also interested in investigating the amount of initial expository material
required to enable the parent works of excerpts to be accurately identified. We
therefore constructed classifiers from the first 4, 8 and 16 qn of the pieces.

Figure 12.13 shows schematically how the classifiers and the test sets were con-
structed. The classifier set C was built from segments sci, j from the expositions of
the 15 Inventions, where each segment could be from either the upper or the lower
voice. sci, j is the jth segment in Invention i. Each test set T was built from segments
st, where each st could be from either the upper or the lower voice. We denote the jth
segment in Invention i by sti, j. To classify a segment st to one of the 15 classes, we
applied 1-nearest neighbour classification (Mitchell, 1997). That is, we computed the
distances between st and all sc in C, and classified st to the class i of the sci, j that had
the smallest distance to st. Each test excerpt was assigned the class most frequently
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Fig. 12.13 Scheme of classifier and test construction based on signal vi

predicted by its segments. In both cases we used the next nearest neighbour to break
ties.

We expected higher classification rates with classifiers built from more exposition
material, similar performance for the different combinations of wavelet-base clas-
sifiers, and higher classification rates in the first section compared to the following
two, as the subject appears in the first section following the exposition at least once
in each part (Stein, 1979).

The following parameters were used in the experiment:

• Sampling rate: 8 samples per qn8

• Representation: normalized pitch signal (WR), wavelet coefficients filtered at the
scale of 1 qn (WR) and absolute wavelet coefficients filtered at the scale of 1 qn
(WRA)

• Segmentation: constant-duration segmentation (CS), wavelet zero-crossing (ZC)
and wavelet absolute maxima (AM)

• Scale segmentation at 1 qn
• Segment length normalization by zero padding
• Clustering: 1-nearest neighbour
• Distance measure: city block

12.3.2.1 Results

Figures 12.14 and 12.15 show the classification accuracy on each section, with the
concatenation phase omitted and included, respectively. Both figures show the effect
of segmentation and representation (columns vs. rows), and the number of qn used
for the classifiers (asterisk, square, and circle markers). As expected, the amount of
material used from the exposition (4, 8, or 16 qn) affects the classification success
rates: the more material used, the higher the success rates. Moreover, segmentation
has a stronger effect on the classification than representation. With respect to the
results between sections, the classification rates for the first section are higher than

8 The sampling rate was chosen to be the same as that used by Velarde et al. (2013).
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those for the second and third sections. Representations associated with constant-
duration segmentation are accurate in the first section after the exposition, where
the subject is presented at least once in one of the voices (Stein, 1979), but far less
accurate in the second and third sections where an increasing degree of variation
of the original material occurs. Also, in sections 2 and 3, segment boundaries may
not fall on whole-quarter-note time points, instead they may be shifted by a small
amount, as an effect of the equal division of the sections. This may result in poor
discriminatory information contained in segments when using constant-duration seg-
mentation. The approach based on wavelet representation and segmentation is more
robust to variation compared to constant-duration segmentation and the unfiltered
pitch signal, resulting in similar classification rates for each classifier among all three
sections.

A Wilcoxon signed rank test indicated that the concatenation phase did not sig-
nificantly affect the results of accuracy per segmentation method (CS: Z = 1.6036,
p = 0.1088, ZC: Z = 0.4472, p = 0.6547, AM: Z = 1.6036, p = 0.1088) or accuracy
per representation type (VR: Z = 1.4142, p = 0.1573, WR: Z = 1.6036, p = 0.1088,

Fig. 12.14 Performance for each section with the classifier based on the exposition
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Fig. 12.15 Performance for each section with the classifier based on the exposition, and the con-
catenation phase included in the segmentation process

WA: Z = 0.8165, p = 0.4142 ) for classifiers built from the first 16 qn. However,
while including the concatenation phase did not significantly affect the results, it
slightly reduced the mean accuracy by 4%. We speculate that this may be a result of
the concatenation phase causing some test-set segments to become much longer than
the classifier segments, which would lead to segments of very unequal length being
measured for similarity. This, in turn, could result in poorer classification accuracies.

12.4 Summary and Conclusions

We have presented a novel computational method for analysis and pattern discovery
in melodies and monophonic voices. The method was evaluated on two musicological
tasks. In the first task, the method was used to automatically discover themes and
sections in the JKU Patterns Development Database. In the second task, the method
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was used to determine the parent composition of excerpts from J. S. Bach’s Two-Part
Inventions (BWV 772–786). We explored aspects of representation, segmentation,
classification and ranking of melodic units. The results of the experiments led us to
conclude that the combination of constant-duration segmentation and an unfiltered,
“raw”, pitch-signal representation is a powerful approach for pieces where motivic
and thematic material is restated with only slight variation. However, when motivic
material is more extensively varied, the wavelet-based approach proves more robust
to melodic variation.

The method described in this chapter could be developed further, perhaps by
evaluating the quality of clusters in order to discard clusters that are too heterogeneous.
Other measures of pattern quality could also be explored for ranking patterns in the
algorithm output, including measures that perhaps more precisely model human
perception and cognition of musical patterns. Moreover, it would be interesting to
study the method’s performance on a corpus of human performances of the pieces in
experiment 1, in order to test, in particular, the robustness of our distance measures.
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ABSTRACT

We propose a method for music classification based on the
use of convolutional models on symbolic pitch–time rep-
resentations (i.e. piano-rolls) which we apply to composer
recognition. An excerpt of a piece to be classified is first
sampled to a 2D pitch–time representation which is then
subjected to various transformations, including convolu-
tion with predefined filters (Morlet or Gaussian) and clas-
sified by means of support vector machines. We combine
classifiers based on different pitch representations (MIDI
and morphetic pitch) and different filter types and config-
urations. The method does not require parsing of the mu-
sic into separate voices, or extraction of any other prede-
fined features prior to processing; instead it is based on the
analysis of texture in a 2D pitch–time representation. We
show that filtering significantly improves recognition and
that the method proves robust to encoding, transposition
and amount of information. On discriminating between
Haydn and Mozart string quartet movements, our best clas-
sifier reaches state-of-the-art performance in leave-one-out
cross validation.

1. INTRODUCTION

Music classification has occupied an important role in the
music information retrieval (MIR) community, as it can
immediately lead to musicologically interesting findings
and methods, whilst also being immediately applicable in,
for example, recommendation systems, music database in-
dexing, music generation and as an aid in resolving issues
of spurious authorship attribution.

Composer recognition, one of the classification tasks
addressing musical style discrimination (among genre, pe-
riod, origin identification, etc.), has aroused more attention
in the audio than in the symbolic domain [13]. Particu-
larly in the symbolic domain, the string quartets by Haydn
and Mozart have been repeatedly studied [10, 12, 13, 24],

c© Gissel Velarde, Carlos Cancino Chacón, Tillman Weyde,
David Meredith, Maarten Grachten. Licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). Attribution: Gis-
sel Velarde, Carlos Cancino Chacón, Tillman Weyde, David Meredith,
Maarten Grachten. “Composer Recognition based on 2D-Filtered Piano-
Rolls”, 17th International Society for Music Information Retrieval Con-
ference, 2016.

since discriminating between Haydn and Mozart has been
found to be a particularly challenging composer recogni-
tion task [24].

In this study, we propose a novel method and evaluate
it on the classification of the string quartet movements by
Haydn and Mozart. The method is based on the use of con-
volutional models on symbolic pitch–time representations
(i.e. piano-rolls). An excerpt of a piece to be classified
is first sampled to a 2D pitch–time representation which is
then subjected to various transformations, including con-
volution with predefined filters (Morlet or Gaussian) and
classified by means of Support Vector Machines (SVM).

2. RELATED WORK

Typically it is seen that computational methods use some
kind of preprocessing to extract melody and harmony. Pre-
vious computational methods addressing composer dis-
crimination of polyphonic works required defining sets of
musical features or style makers, and/or relied on the en-
coding of separate parts or voices [10,12,13,24]. However,
hard-coded musical features require musical expertise and
may not perform similarly on different datasets [24], while
the performance of methods relying on separate encoding
of voice parts could be affected if voices are not encoded
separately or even be unusable.

In order to avoid the requirements of previous methods,
we aim to develop a more general approach studying the
texture of pitch–time representations (i.e. piano-rolls) in
the two-dimensional space. Previous studies did not ad-
dress musical texture as it is proposed here.

Next, we review previous work that employs 2D music
representations (2.1), and briefly sketch the background of
the use of convolutional methods for machine perception
and classification (2.2).

2.1 Representing music with 2D images

Visually motivated features generated from spectrograms
have been successfully used for music classification
(see [5, 28]). This success may be partly due to the fact
that similar principles of perceptual organization operate in
both vision and hearing [8]. The Gestalt principles of prox-
imity, similarity and good continuation, originally devel-
oped to account for perceptual organization in vision, have
also been used to explain the way that listeners organize
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sonic events into streams and chunks [3, 7, 16]. Moreover,
other studies suggest direct interaction between visual and
auditory processing in common neural substrates of the hu-
man brain, which effectively integrates these modalities
in order to establish robust representations of the world
[9, 11, 21].

Graphical notation systems have been used since an-
cient times to transmit musical information [27]. More-
over, most Western music composed before the age of
recording survives today only because of transmission by
graphical notation — as staff notation, tablature, neumatic
notation, etc. Standard graphical musical notation methods
have proved to be extremely efficient and intuitive, possi-
bly in part due to the natural mapping of pitch and time
onto two orthogonal spatial dimensions.

2.2 Convolutional models

Convolutional models have been used extensively to model
the physiology and neurology of visual perception. For
example, in 1980, Daugman [6] and Marčelja [17] mod-
eled receptive field profiles in cortical simple cells with
parametrized 2D Gabor filters. In 1987, Jones and Palmer
[14] showed that receptive-field profiles of simple cells in
the visual cortex of a cat are well described by the real
parts of complex 2D Gabor filters. More recently, Kay et
al. [15] used a model based on Gabor filters to identify nat-
ural images from human brain activity. In our context, the
Gabor filter is equivalent to the Morlet wavelet which we
have used as a filter in the experiments described below.

Filters perform tasks like contrast enhancement or edge
detection. In image classification, filtering is combined
with classification algorithms such as SVM or neural net-
works for object or texture recognition [2, 23].

In the remainder of this paper, we present our proposed
method in detail (3). Then, we report the results of our
experiments (4) and finally, state our conclusions (5).

3. METHOD

Figure 1 provides an overview of our proposed method. As
input, the method is presented with excerpts from pieces of
music in symbolic format. Then, in the sampling phase, a
2D image is derived from each input file in the form of a
piano-roll. After the sampling phase, various tranforma-
tions are applied to the images before carrying out the final
classification phase, which generates a class label for the
input file using an SVM. Details of each phase are given
below. We begin by describing the sampling phase, in
which symbolic music files are transformed into images
of piano-rolls.

3.1 Sampling piano-roll images from symbolic
representations

3.1.1 MIDI note numbers encoding

Symbolic representations of music (e.g. MIDI files) en-
code each note’s pitch, onset and duration. We encoded
pitch as an integer from 1 to 128 using MIDI note num-
bers (MNN), where C4 or middle C is mapped to MNN

60. Onset and duration are temporal attributes measured in
quarter notes (qn).

3.1.2 Morphetic pitch encoding

The pitch name of a note is of the form
<letter name><alteration><octave number>, e.g.
C]4. By removing the <alteration> and mapping all
note names with the same <letter name> and <octave
number> to the same number we reduce the space to
morphetic pitch: an integer corresponding to the vertical
position of the note on a musical staff.

We use a pitch-spelling algorithm by Meredith called
PS13s1 [18], to compute the pitch names of notes. The
PS13s1 algorithm has been shown to perform well on clas-
sical music of the type considered in this study. The set-
tings of the PS13s1 algorithm used here are the same as
in [18], 1 with the pre-context parameter set to 10 notes and
the post-context set to 42 notes. These parameters define a
context window around the note to be spelt, which is used
to compute the most likely pitch name for the note, based
on the extent to which the context implies each possible
key. When transposing a pattern within a major or minor
scale (or, indeed, any scale in a diatonic mode), as is com-
mon practice in tonal (and modal) music, chromatic pitch
intervals within the pattern change although the transposed
pattern is still recognized by listeners as an instance of the
same musical motif [8]. Morphetic pitch intervals are in-
variant to within-scale transpositions. We hypothesize that
preserving this tonal motif identity might improve the per-
formance of our models.

3.1.3 Piano-rolls (p70qn)

Symbolic representations of music are sampled to 2D bi-
nary images of size P × T pixels taking values of 0 or 1,
called piano-roll representations. Our piano-roll represen-
tations are sampled from the first 70 qn of each piece, using
onset in qn, duration in qn and either MNN or morphetic
pitch, with a sampling rate of 8 samples per qn. We de-
note such representations by p70qn. Each note of a piece
symbolically encoded is described as an ordered tuple (on-
set, duration, pitch). The onsets are shifted, so that the
first note starts at 0 qn. The piano-roll image is initialized
with zeros and filled with ones for each sampled note. Its
rows correspond to pitch and columns to samples in time.
For each note, its onset and duration are multiplied by the
sampling rate and rounded to the nearest integer. Note that
since the tempo in terms of quarter notes per minute varies
across pieces in our test corpora, the resulting samples vary
in physical duration.

3.1.4 Piano-rolls (p400n)

As an alternative to the 70 qn piano roll excerpts, p70qn, de-
fined in 3.1.3 above, we also tested the methods on piano-
roll excerpts consisting of the first 400 notes of each piece.

1 We use a Java implementation of the PS13s1 algorithm by
David Meredith that takes MIDI files as input. **kern files are
first converted to MIDI. Then we use the function writemidi seconds
by Christine Smit: http://www.ee.columbia.edu/˜csmit/
midi/matlab/html/example_script1.html#2
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Figure 1. Overview of the method. Music, represented symbolically, is first sampled to 2D images of piano-rolls. Then,
various transformations or processing steps are applied to the images, including convolution with predefined filters. The
order of applying these transformations is from left to right. Finally, the images are classified with an SVM.

Figure 2. Piano-roll representation using MNN (left) and
morphetic pitch (right) of the first 48 qn of Prelude 3 in
C] major, BWV 848 by Bach. Note that the approximately
similar inverted “V” shaped patterns in the left-hand figure
are transformed into patterns of exactly the same shape in
the right-hand figure.

We denote this type of representation by p400n. These
p400n representations were produced by sampling in the
way described in section 3.1.3, but using the first 400 notes
instead of the first 70 qn of a piece and sampling to a size of
P ×T pixels. If a piece has fewer than 400 notes, all notes
of the piece are represented. This representation is used
to approximately normalize the amount of information per
image.

In the next phase of our proposed method with a sin-
gle classifier, as seen in Figure 1, various transformations
or processing steps are applied which will be described as
follows.

3.2 Transformations

We explore the effect of applying transformations or pro-
cessing techniques to the piano-roll images. These trans-
formations are applied in order to find a suitable normal-
ization (i.e., alignment between the images) before classi-
fication, and to test the robustness of the method to trans-
formations of the input data that would not be expected to
reduce the performance of a human expert (cf. [22]). We
now consider each of these transformations in turn.

3.2.1 Pitch range centering (Cb)

Typically, the pitch range of a piece in a piano-roll repre-
sentation does not extend over the full range of possible
MIDI note number values. We hypothesized that we could
improve performance by transposing each piano roll so that
its pitch range is centered vertically in its image. That is,
for a piano-roll image of size P × T pixels, we translated
the image by ys = (P − (yd + yu))/2 pixels vertically,
where yd and yu are the lower and upper co-ordinates, re-
spectively, of the bounding box of the piano roll (i.e., cor-
responding to the minimum and maximum pitches, respec-
tively, occurring in the piano roll). This transformation is
used to test robustness to pitch transposition.

3.2.2 Center of mass centering (Cm)

An image p of size P × T pixels is translated
so that the centroid of the piano roll occurs at the
center of the image. We denote the centroid by
(x̄, ȳ) = (M10/M00,M01/M00), where Mij =∑
x

∑
y x

iyjp(x, y). The elements of the image are
shifted circularly to the central coordinates (xc, yc) of the
image, where (xc = T/2) and (yc = P/2), an amount
of (xc − x̄) pixels on the x-axis, and (yc − ȳ) pixels on
the y-axis. In this case, circular shift is applied to rows
and columns of p. In the datasets used for the experiments,
in 5% of the pieces with MNN encoding, one low-pitch
note was shifted down by this transformation and wrapped
around so that it became a high-pitched note (in one piece
there were four low-pitch notes shifted to high pitch-notes
after circular shift). However, this transformation caused
most pieces to be shifted and wrapped around in the time
dimension so that, on average, approximately the initial 2
quarter notes of each representation were transferred to the
end.

3.2.3 Linear Discriminant Analysis

We apply Linear Discriminant Analysis (LDA) [4] solving
the singularity problem by Singular Value Decomposition
and Tikhonov regularization to find a linear subspace for
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Figure 3. Piano-roll (p400n) morphetic pitch representation (top) of Haydn’s String Quartet in E-flat Major Opus 1, No. 0
and its transformations filtered by the Morlet wavelet at a scale of 2 pixels oriented of 90 degrees (second image), and by a
Gaussian filter of size 9× 9 pixels with σ = 3 (third image). p400n and its filtered versions are each 56× 560 pixels.

discrimination between classes. 2

3.2.4 Filtering

Images are convolved with pre-defined filters (Morlet
wavelet or a Gaussian filter). We apply the continuous
wavelet transform (CWT) [1], with the Morlet wavelet ψ
at fixed scale a and rotation angle θ

ψa,θ(x, y) = a−1ψ(a−1r−θ(x, y)) (1)

with rotation rθ

rθ(x, y) = (x cos θ−y sin θ, x sin θ+y cos θ), 0 ≤ θ < 2π.
(2)

where

ψ(x, y) = eik0ye−
1
2 (ε

−1x2+y2) (3)

with frequency k0 = 6 and ε = 1.
The filtered images are the absolute values of the real

part of the wavelet coefficients. We test a defined set of
scales and angles (see section 4). The selection of scale
and angle of orientation are those that yield the best classi-
fication as in [25].

We also filter images with a rotationally symmetric
Gaussian low-pass filter g:

g(x, y) = e
−(x2+y2)

2σ2 (4)

where x and y are the distances from the origin in the hor-
izontal and vertical axis, respectively.

We test a defined set of filter sizes h and σ values (see
section 4). The selection of the size h of the filter and the
value of σ are those that yield the best classification. As
an example of the effect of filtering, Figure 3 shows the
piano-roll image, p70qn of Haydn’s String Quartet in E-flat
Major Opus 1, No. 0 and the filtered images obtained by
the convolution with Morlet wavelet and Gaussian filter.

2 We use Deng Cai’s LDA implementation version 2.1:
http://www.cad.zju.edu.cn/home/dengcai/Data/
DimensionReduction.html.

3.3 Classification with support vector machines

For classification, we use SVM with the Sequential Mini-
mal Optimization (SMO) method to build an optimal hy-
perplane that separates the training samples of each class
using a linear kernel [19]. Samples are transformed images
of size P×T if they are not reduced by LDA. If LDA is ap-
plied, samples are points in 1D. Each sample is normalized
around its mean, and scaled to have unit standard deviation
before training. The Karush–Kuhn–Tucker conditions for
SMO are set to 0.001.

4. EXPERIMENTS

We used a set of movements from string quartets by Haydn
and Mozart, two composers that seemed to have influenced
each other on this musical form. Walthew [26] observes
that “Mozart always acknowledged that it was from Haydn
that he learnt how to write String Quartets” and, in his late
string quartets, Haydn was directly influenced by Mozart.

Distinguishing between string quartet movements by
Haydn and Mozart is a difficult task. Sapp and Liu [20]
have run an online experiment to test human performance
on this task and found, based on over 20000 responses, that
non-experts perform only just above chance level, while
self-declared experts achieve accuracies up to around 66%.

Classification accuracy—that is, the proportion of
pieces in the test corpus correctly classified—has been the
established evaluation measure for audio genre and com-
poser classification since the MIREX 2005 competition 3

and also for symbolic representations [12, 13, 24].
In our experiments we used the same dataset as in [24]

consisting of 54 string quartet movements by Haydn and
53 movements by Mozart, encoded as **kern files, 4 and

3 See http://www.music-ir.org/mirex/wiki/2005:
Main_Page.

4 http://www.music-cog.ohio-state.edu/Humdrum/
representations/kern.html
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p70qn 65.4 58.9 57.9 53.3 68.2 58.9

Cb(p70qn) 65.4 60.7 47.7 57.9 63.6 51.4

Cm(p70qn) 53.3 60.7 52.3 64.5 59.8 56.1

p400n 67.3 80.4 57.0 63.6 72.9 55.1

Cb(p400n) 62.6 72.9 54.2 61.7 66.4 53.3

Cm(p400n) 65.4 65.4 55.1 66.4 70.1 53.3

M
N

N

p70qn 64.5 67.3 66.4 62.6 66.4 64.5

Cb(p70qn) 70.1 61.7 63.6 67.3 61.7 61.7

Cm(p70qn) 63.6 57.9 57.0 66.4 56.1 54.2

p400n 66.4 69.2 64.5 65.4 63.6 64.5

Cb(p400n) 54.2 64.5 52.3 58.9 58.9 49.5

Cm(p400n) 53.3 62.6 42.1 56.1 63.6 44.9

Table 1. Haydn and Mozart String Quartet classification
accuracies in leave-one-out cross validation for different
configurations of classifiers (NF = no filtering).

evaluated our method’s classification accuracies in leave-
one-out cross-validation as it was done in [24].

Table 1 shows the classification accuracies (mean val-
ues) obtained in leave-one-out cross-validation for images
of size 56× 560 pixels. The standard deviation values are
not presented, as they are not informative. The standard
deviation can be derived from the accuracy in this case
(accuracy of binary classification in leave-one-out cross-
validation). The filters of the classifiers were tuned ac-
cording to their classification accuracy over the different
pitch–time representations. The angle of orientation of the
Morlet wavelet was set to 90 degrees. This orientation was
chosen out of a selection of angles (0, 45, 90 and 135 de-
grees). The scale was set to 2 pixels, selected varying its
value from 1 to 9 pixels. The Gaussian filter was tested
with pixel sizes of 1 to 10 pixels, with values of σ rang-
ing from 1 to 4 pixels. Gaussian filters were set to 9 pixels
and σ = 3. The best classifier using MNN encoding cor-
responds to a classifier operating on pitch–time represen-
tation Cb(p70qn), filtered by Morlet wavelet oriented 90
degrees at a scale of 2 pixels, and LDA reduction. The
best classifier of all reaches state-of-the-art performance
with an accuracy of 80.4%. This classifier corresponds to
a pitch–time representation p400n in morphetic pitch en-
coding, filtered by a Gaussian filter of size 9 pixels and
σ = 3, and LDA reduction. It misclassified 12 movements
by Haydn and 9 by Mozart. The misclassified movements
(mov.) are shown in Table 2. Due to our model section, it
could be that the results present some overfitting.

From the results in Table 1 we observe that filtering
significantly improves recognition at 5% significance level
(Wilcoxon rank sum = 194.5, p = 0.0107, n = 12, with
Morlet wavelet), (Wilcoxon rank sum = 203, p = 0.0024,

Movements by Haydn Movements by Mozart
Op 1, N. 0, mov. 4 K. 137, mov. 3
Op 1, N. 0, mov. 5 K. 159, mov. 3
Op 9, N. 3, mov. 1 K. 168, mov. 2
Op 20, N. 6, mov. 2 K. 168, mov. 3
Op 20, N. 6, mov. 4 K. 428, mov. 3
Op 50, N. 1, mov. 3 K. 465, mov. 2
Op 64, N. 1, mov. 2 K. 465, mov. 4
Op 64, N. 4, mov. 2 K. 499, mov. 1
Op 64, N. 4, mov. 3 K. 499, mov. 4
Op 71, N. 2, mov. 2
Op 103, mov. 1
Op 103, mov. 2

Table 2. Misclassified movements of our best classifier.

n = 12, with Gaussian filter), and it is not significantly dif-
ferent to filter with Morlet or Gaussian filters (Wilcoxon
rank sum = 133, p = 0.3384, n = 12). On the other
side, there is not sufficient evidence to conclude that LDA
improves recognition (Wilcoxon rank sum = 154, p =
0.8395, n = 12).

We study the effect of encoding (MNN vs. morphetic
pitch), transposition (not centering vs. centering with Cb)
and the amount of information (p70qn vs. P400n). The
center of mass centering Cm was not evaluated, as this
transformation may affect human recognition. Consider-
ing all results in Table 1 obtained with filtering and ex-
cluding the ones obtained with Cm, the difference in en-
coding between MNN and morphetic pitch is not signifi-
cant at %5 significance level (Wilcoxon rank sum = 269.5,
p = 0.8502, n = 16), nor are the results significantly dif-
ferent with or without centering Cb (Wilcoxon rank sum
= 311.5, p = 0.0758, n = 16), neither it is significantly
different to use p70qn or P400n (Wilcoxon rank sum = 242,
p = 0.4166, n = 16). These findings suggest that the
method based on 2D-Filtered piano-rolls is robust to trans-
formations such as encoding, transposition, and amount of
information that are considered not to affect human per-
ception.

In Table 3, we list all previous studies where machine-
learning methods have been applied to this Haydn/Mozart
discrimination task. A direct comparison can be made be-
tween the classification accuracy achieved by the method
of van Kranenburg and Backer [24] and our proposed
method, as we used the same dataset. The datasets used
by the other approaches in Table 3 were not available for
us to test our method and make direct comparisons. Hon-
tanilla et al. [13] used a subset of the set used in [24]: 49
string quartets movements by Haydn and 46 string quartets
movements by Mozart [13]. Hillewaere et al. [12] extended
van Kranenburg and Backer’s [24] dataset to almost dou-
ble its size, including several movements from the period
1770–1790. Herlands et al. [10] used a dataset consist-
ing of MIDI encodings of only the first movements of the
string quartets.

Table 3 shows that our best classifier reaches state-of-
the-art performance and that there is no significant dif-

134



Method Accuracy
Proposed best classifier 80.4
Van Kranenburg and Backer (2004) [24] 79.4
Herlands et al. (2014) [10]* 80.0
Hillewaere et al. (2010) [12]* 75.4
Hontanilla et al. (2013) [13]* 74.7

Table 3. Classification accuracies achieved by previous
computational approaches on the Haydn/Mozart discrimi-
nation task. * indicates that a different dataset was used
from that used in the experiments reported here.

ference from the results obtained by van Kranenburg and
Backer at 5% significance level (Wilcoxon rank sum =
11449, p = 0.8661, n = 107). Compared to previous ap-
proaches [10,12,13,24], our method is more general in that
it does not need hard-coded musical style markers for each
dataset as in [24], nor does it require global musical fea-
ture sets as in [12], nor does it depend on the music having
been parsed into separate parts or voices as in [10,12,13].

5. CONCLUSION

We have shown that string quartets by Haydn and Mozart
can be discriminated by representing pieces of music as
2-D images of their pitch–time structure and then using
convolutional models to operate on these images for clas-
sification. Our approach based on classifying pitch–time
representations of music does not require parsing of the
music into separate voices, or extraction of any other pre-
defined features prior to processing. It addresses musical
texture of 2-D pitch–time representations in a more gen-
eral form. We have shown that filtering significantly im-
proves recognition and that the method proves robust to
encoding, transposition and amount of information. Our
best single classifier reaches state-of-the-art performance
in leave-one-out cross validation on the task of discrim-
inating between string quartet movements by Haydn and
Mozart.

With the proposed method, it is possible to generate a
wide variety of classifiers. In preliminary experiments, we
have seen that diverse configurations of classifiers (i.e. dif-
ferent filter types, orientations, centering, etc.) seem to
provide complementary information which could be po-
tentially used to build ensembles of classifiers improving
classification further. Besides, we have observed that the
method can be applied to synthetic audio files and audio
recordings. In this case, audio files are sampled to spectro-
grams instead of piano-rolls, and then follow the method’s
chain of transformations, filtering and classification. We
are optimistic that our proposed method can perform sim-
ilarly on symbolic and audio data, and might be used suc-
cessfully for other style discrimination tasks such as genre,
period, origin, or performer recognition.
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Abstract

We present a novel convolution-based method for classification of audio and symbolic rep-

resentations of music. The method assigns music to a stylistic class. Pieces of music are first

sampled to pitch–time representations (piano-rolls or spectrograms), and then processed with

various techniques including convolution with a Gaussian filter, before being classified by a

support vector machine or by k-nearest neighbours in an ensemble of classifiers. We have eval-

uated the proposed method on the well-studied task of discriminating between string quartet

movements by Haydn and Mozart, obtaining state-of-the art results. Moreover, we performed

experiments on The Well-Tempered Clavier by J. S. Bach to study the method’s capacity to

distinguish preludes from fugues. Our experimental results show that our proposed method per-

forms equally well on both composer and genre classification, and on symbolic representations

and synthetic audio, setting our method apart from most previous approaches that have been

designed for use with either audio or symbolic data, but not both. Additionally, we tested a

convolutional neural network on the task of discriminating between symbolic encodings of string

quartet movements by Haydn and Mozart. The inspection of the filters learnt automatically by

this network allows for an analysis from a more musicological point of view.

Index terms— Classification algorithms, composer classification, genre classification, convolution,

filtering
∗Correspondence: David Meredith, Aalborg University, Department of Architecture, Design and Media Technology,

Rendsburggade 14, Building: 6-314, 9000 Aalborg, Denmark. Email: dave@create.aau.dk.
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1 Introduction

We present a method for the automatic classification of musical styles. Methods modelling style

recognition are of interest in music information retrieval for their applicability in, e.g., music indexing,

recommendation systems, and music generation, as well as in systematic musicology where they can

foster the understanding of music.

From the computational perspective taken in this study, style can be seen as a set of distinctive

features shared among the instances of a style. Perceptually, style is a phenomenon that lets us

characterize artists, genres, periods of composition, etc., on the basis of distinguishing salient features

of works, despite variation or evolution over time (Paul & Kaufman, 2014; Rush & Sabers, 1981).

A challenging style classification task for both humans and computers is the distinction between

string quartet movements by Haydn and Mozart (Sapp & Liu, 2015; van Kranenburg & Backer,

2004). The computational methods proposed to date for classifying between these two composers

have been applied to symbolic representations of music (Herlands, Der, Greenberg, & Levin, 2014;

Hillewaere, Manderick, & Conklin, 2010; Hontanilla, Pérez-Sancho, & Iñesta, 2013; van Kranenburg

& Backer, 2004; Velarde, Weyde, Cancino Chacón, Meredith, & Grachten, 2016). Most of these

methods rely on features designed by experts, making them less general, and/or require each part or

voice to be encoded separately. An exception is the model proposed by Velarde et al. (2016), which

is based on classifying music from two-dimensional representations such as piano-rolls.

The method proposed by Velarde et al. (2016) learns to discriminate between classes of music by

using filtered images of piano-roll excerpts to predict class labels, exploiting the images’ textures.

However, local structures on the level of motifs prove to be very important in melodic similarity (van

Kranenburg, Volk, & Wiering, 2013), and melodic segmentation using small time-scales has been

shown to improve recognition in parent work identification (Velarde, Weyde, & Meredith, 2013). We

hypothesize that style recognition requires the use of both large- and small-scale feature extraction

mechanisms. Locality is desired to detect musical patterns even if translated in time and pitch.

Therefore, in this study we extend the method of Velarde et al. (2016), introducing music segmen-

tation, and test the effect of chunking pitch–time representations into small segments of about 1 or

2 quarter notes for classification. Finally, we experiment with combining classification strategies in

ensembles.
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Figure 1: Diagram of the proposed method for music classification of symbolic or audio representations. The
system receives a piece of music and outputs its computed class label. This system consists of an ensemble of
three classifiers denoted by C1, C2 and C3, more specifically C1A, C2A and C3A for audio and C1S, C2S and
C3S for symbolic music representation. Details on the configurations for each classifier are given in Table 1.

In this paper we make the following contributions:

• We propose a new classification method that can be applied to both audio recordings and

symbolic representations of music.

• We report experimental results showing that our ensemble classifier produces state-of-the-

art composer-identification results on two different datasets of the Haydn and Mozart string

quartets.

• We report experimental results on discriminating between preludes and fugues from The Well-

Tempered Clavier by J. S. Bach.

• We present a related classification approach based on Convolutional Neural Networks and an

initial musicological interpretation of the features that have been automatically learnt.

2 Method

An overview of the proposed method is presented in the diagram in Figure 1. The system receives

a piece of music as input and computes its class label as output. It consists of an ensemble of three

classifiers, denoted by C1, C2 and C3. Depending on the input, we use audio-specific classifiers,

henceforth denoted by C1A, C2A and C3A, or classifiers for symbolic music representations, denoted

141



4

by C1S, C2S and C3S. Each classifier consists of a sampling, a processing and a classification phase.

The predictions of the three classifiers are ensembled by simple majority vote (Kuncheva, 2004) to

predict the final class label.

Figure 2 shows in more detail the possible configurations of the individual classifiers. In each

classifier, a piece of music is first sampled to a two dimensional (2D) piano-roll image if the input

is a symbolic representation of music (e.g., MIDI file), or to a 2D magnitude spectrogram image

if the input is an audio file (e.g., WAV file). After sampling this 2D image, either the processing

excerpt or the processing segments phase follows. The main difference between the two processing

phases is their output: the processing excerpt phase has one output per piece, while the processing

segments phase has several outputs per piece. Finally, there is a classification phase employing a

Support Vector Machine (SVM), a k-Nearest Neighbour (k-NN) algorithm or a Convolutional Neural

Network (CNN). For pieces that follow the processing segments phase, the class label of a piece of

music is the most frequently predicted class of its segments. Modules represented in Figure 2 by

boxes with thick grey borders, are optional processing steps. Details of each phase are given below.

2.1 Sampling

A symbolic music encoding format is one that provides information similar to that given in a score

and in which the atomic component is typically a note; whereas a PCM audio file represents the

sound of a specific performance of a piece in terms of a sampled waveform. The sampling phase

aims to prepare the input in such a way that music is similarly represented as a 2D pitch–time

representation regardless of whether it is a symbolic encoding of a piece or an audio recording.

Symbolic representations of music are sampled to piano-roll images, while audio files are sampled to

spectrograms.

2.1.1 Piano-rolls

As described by Velarde et al. (2016), symbolic representations of music are sampled to piano-rolls,

i.e., 2D binary images representing the pitch-time structures of music. We denote the height of such

an image by P and its width by T . The piano-rolls are sampled using each note’s pitch, onset, and

duration. Onset and duration are encoded in quarter notes (qn). Chromatic pitch is represented by

MIDI Note Number (MNN). MNN represents pitch as integer numbers from 0 to 127, C4 is mapped
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Figure 2: Diagram of the possible configurations of individual classifiers. An individual classifier receives
a piece of music, which is first sampled, processed and finally classified. Modules represented by boxes
with thick grey borders, are optional processing steps. In the sampling and classification phases, vertically
aligned boxes are exclusive processing steps, such that only one module can be activated. If the sampled
piece follows the processing excerpt phase, it will not follow the processing segments phase, and vice versa.
In the processing excerpt phase all three modules are optional, while in the processing segments phase, the
segmentation module is always activated.

to MNN 60. Alternatively, pitch is encoded as morphetic pitch (Meredith, 2006, p. 127), which is a

function only of the vertical position of the note-head of a note on a staff and the clef in operation

on the staff at the position where the note occurs. We compute morphetic pitch from MIDI files

using a pitch spelling algorithm called PS13s1 that requires parameters for defining a tonal context

window around the note to be spelt (Meredith, 2006). The pre-context parameter is set to 10 notes

and post-context is set to 42 notes, as these values performed best in Meredith’s (2006) evaluation.

These parameter values were also used by Velarde et al. (2016). Morphetic pitch intervals are within-

scale transposition-invariant, while chromatic pitch intervals are not (cf. Velarde et al., 2016). The

sampling rate for piano-rolls of full-length pieces, denoted pfl, is 8 samples (i.e., pixels) per qn.

Piano-rolls of excerpts are sampled with a sampling rate of 8 samples per qn from the first 70 qn

of each piece. We denote a representation of this type by p70qn. Alternatively, we use piano-rolls

representing the first 400 notes of each piece, denoted by p400n. p400n piano-rolls are first sampled

with a sampling rate of 8 samples per qn and then resized by nearest-neighbour interpolation (de

Boor, 1978) to reach the size of P × T pixels. In this case, the sampling rate might vary for each

image.
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Figure 3: Pitch–time representations of an excerpt of the first 400 onsets of the Prelude in C major, BWV
846, from J. S. Bach’s Well-Tempered Clavier. The upper image shows a piano-roll, while the second and
third show spectrograms of a synthesized audio rendering using a horn sound. The fourth and fifth images
show spectrograms of a piano recording by Kimiko Ishizaka.

144



7

2.1.2 Spectrograms

Spectrograms are used to present spectral information over time and have previously been used

successfully for music classification (Costa, Oliveira, Koerich, Gouyon, & Martins, 2012; Wu et al.,

2011). We use 2D greyscale images of spectrograms, generated from mono audio signals. Spectro-

grams are images of size P × T pixels taking values that fall in the interval [0, 1]. The audio signals

we use are either recordings of human performances or synthesized from symbolic representations.

The synthetic audio files are generated from the first 400 notes of each piece encoded in symbolic

format, using a horn sound approximated by frequency modulation synthesis, with a sampling rate

of 22050Hz.1 The audio recordings correspond to excerpts of approximately the first 400 notes. The

stereo recordings are converted to mono by taking the average of the left and right channels.

Spectrograms are obtained using the short-time Fourier transform (STFT) or the variable-Q

transform (VQT) (Schörkhuber, Klapuri, Holighaus, & Dörfler, 2014).2 STFT spectrograms are

computed with a Hamming window, the window size is 1024 samples as used by Wu et al. (2011).

VQT spectrograms are computed with 48 frequency bins per octave and the parameter γ = 20,

which is used to increase the time resolution in the lower frequency range (cf. Schörkhuber et al.,

2014).

Figure 3 shows examples of the types of pitch–time representation that we use, including a piano-

roll sampled from an excerpt of a MIDI file, along with spectrograms of recorded and synthesized

audio. Both STFT and VQT spectrograms are plotted with a logarithmic scale for frequency.

2.1.3 Size of images

Piano-roll images of excerpts p70qn or p400n are all 56× 560 pixels. Piano-rolls of full-length pieces

are denoted pfl; the size along the time axis varies according to the length of each piece. In audio,

we use only spectrograms of excerpts of music, denoted by sp400n. Due to the spectral content in

spectrograms, we use a higher resolution than piano-rolls, i.e., 150 pixels on the pitch axis. To

approximately preserve the same amount of information as piano-rolls, we sacrifice the temporal

resolution of spectrograms, downsampling them to 200 pixels, such that all spectrograms have a size
1We use the SYNTHTYPE function of the Matlab MIDI Toolbox (Eerola & Toiviainen, 2003). The horn sound

was used as it was the best choice of the two available sounds in the toolbox that we used for rendering (the alternative
was Shepard tones).

2Toolbox accessed from http://www.cs.tut.fi/sgn/arg/CQT/ on 28 August 2015.
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of 150×200 pixels. STFT spectrograms were downsampled from 344×398 pixels to 150×200 pixels

using bicubic interpolation (Keys, 1981). VQT spectrograms were generated using the resolution of

150× 200 pixels.

2.2 Processing phase

Once the piece is sampled, it can be processed as an excerpt or as segments as seen in Figure 2.

Only one of the two processing phases is used in any one classifier. The input for the processing

phases is a 2D pitch–time image of size P × T , either a piano-roll or a spectrogram as described

above.

2.2.1 Processing excerpt

The processing excerpt phase has three modules in the following order: centring (2.2.2.3), filtering

(2.2.2.1), and Linear Discriminant Analysis (LDA) (2.2.2.4) (as in Velarde et al., 2016) (see Figure 2).

Each of these three modules can be activated or deactivated depending on the given configuration,

e.g., according to the selection of the parameters an image will be centred/not centred, filtered/not

filtered, processed/not processed with LDA. All pitch–time images entering this phase have the same

input size of P × T pixels, and correspond to excerpts of music consisting of either the first 70 qn

or the first 400 notes of a piece. The output of this phase is a transformed image which preserves

its input size if LDA is switched off, or it is reduced to a real number if LDA is switched on.

2.2.2 Processing segments

The processing segments phase has three modules in the following order: filtering (2.2.2.1), segmen-

tation (2.2.2.2) and centring (2.2.2.3) as seen in Figure 2. Unlike the processing excerpt phase, where

all modules can be activated, in this processing phase, the segmentation module is always active. If

the centring module is switched on, each segment is centred individually. The processing segments

phase outputs several segments, which are sent to the classification phase (2.3).

2.2.2.1 Filtering

It is well-established that filtering (and convolution in particular) is ubiquitous in the perceptual

systems of animals (Snowden, Thompson, & Troscianko, 2012). For example, local processing aspects
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of visual perception can be effectively described as a form of filtering or convolution (Murdock Jr.,

1979; Pribram, 1986). It is therefore not surprising that this process can also form the basis of

artificial methods for recognising and classifying objects. For example, in experiments involving

functional neuroimaging, Gabor filters have been used to identify natural images from activity in

the visual cortex (Kay, Naselaris, Prenger, & Gallant, 2008). Audition has been modeled with

bandpass filters (Daubechies & Maes, 1996; Karmakar, Kumar, & Patney, 2011). Machine learning

approaches use filtering combined with support vector machines (SVMs) or neural networks for

image classification tasks (Bengio, Courville, & Vincent, 2013; LeCun, Kavukcuoglu, & Farabet,

2010; Tuia, Volpi, Mura, Rakotomamonjy, & Flamary, 2014)

In music classification, filtering has been shown to significantly improve recognition (Velarde et

al., 2016). For the filtering module of the processing phase, we convolve pitch–time images with a

rotationally symmetric Gaussian filter g:

g(x, y) = e
−(x2+y2)

2σ2 (1)

where (x, y) is the position of a point relative to the origin. The Gaussian filter is of size 9×9 pixels

and the standard deviation of the Gaussian distribution is σ = 3 (as in Velarde et al., 2016).

2.2.2.2 Segmentation

We introduce a segmentation phase, as local processing has been found to be fundamental in mod-

elling melodic similarity for music classification (van Kranenburg et al., 2013; Velarde et al., 2013).

We use constant-length segmentation, which chunks each image into segments of equal length. Given

a pitch–time image of size P × T pixels, this image is segmented along the time dimension into seg-

ments with a constant length of L pixels, such that after segmentation each segment’s size is P ×L

pixels. Let n = dT/Le. If T mod L 6= 0, the width of the last segment, i.e., the nth segment, is less

than L, so we pad it to the left with L− (T mod L) columns from the (n− 1)th segment to ensure

that the final nth segment has width L. Depending on the amount of overlap between the padded

nth segment and the (n−1)th segment, we replace the (n−1)th segment with the nth segment using

the following procedure: if T mod L 6 0.3L, then the nth segment replaces the (n− 1)th segment,

and the output number of segments is n− 1, otherwise the output number of segments is n.
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Figure 4: Excerpt of Haydn’s String Quartet in E-flat Major Opus 1, No. 0, in four pitch–time representations,
from the top to the bottom: Piano-roll (p400n) morphetic pitch representation, followed by its convolution
with a Gaussian filter (second image), VQT spectrogram of the same excerpt synthesized with a horn sound
(third image), and finally the filtered version of the VQT spectrogram (fourth image).

2.2.2.3 Centring

We use the pitch range centring technique (as in Velarde et al., 2016). Pitch range centring is

equivalent to pitch transposition, such that the pitch range of the image is centred vertically using

a bounding box.

2.2.2.4 Linear Discriminant Analysis

LDA aims to find a linear subspace of discriminatory features between classes (Cai, He, Hu, Han,

& Huang, 2007). The singularity problem is solved by Singular Value Decomposition and Tikhonov

regularization.3

2.3 Classification

The input to the classification phase can be one sample if it comes from the processing excerpt phase,

or several samples (processed segments) if they come from the processing segments phase. In the
3We use the LDA implementation by Deng Cai version 2.1: http://www.cad.zju.edu.cn/home/dengcai/Data/

DimensionReduction.html.
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Figure 5: Architecture of the convolutional neural network used for classification.

latter case, the predicted class label of a piece of music is the most frequently predicted class of its

segments.

In the classification phase we restricted ourselves to using an SVM, k-NN or a CNN as shown

in Figure 2, even though other classification algorithms could have been used, e.g., decision trees or

logistic regression.

We train a linear SVM with Sequential Minimal Optimization (SMO) with Karush–Kuhn–Tucker

conditions set to 0.001, with samples normalized around the mean, and scaled to have unit standard

deviation (as in Velarde et al., 2016). The k-NN classifier is used with Euclidean distance and the

next nearest point to break ties. The number of nearest neighbours was set empirically. In the next

section, we describe the CNN that we use.

2.3.1 Classifying with a convolutional neural network

We use a CNN (LeCun et al., 2010) as illustrated in Figure 5. This CNN consists of two convolutional–

pooling stages, and a third stage of dense layers as a classifier, making a total of 6 layers. The first

stage has a convolutional layer (l = 1) with 9 filters of size 9 × 9 followed by a max-pooling layer

(l = 2) with a pool size of 2 × 2; while the second stage has a convolutional layer (l = 3) with 5

filters of size 5× 5 followed by a max-pooling layer (l = 4) with a pool size of 2× 2. Dropout is used

after this stage. The third stage consists of a dense layer (l = 5) with 256 rectified linear units, and

a dense layer (l = 6) with 2 softmax units as a classifier.

The network architecture and hyper-parameters were selected empirically. The CNN parameters

are initialized using the method proposed by Glorot and Bengio (2010). The network is trained using

RMSProp (Dauphin, de Vries, Chung, & Bengio, 2015), a mini-batch variant of stochastic gradient

descent that adaptively adjusts the learning rate by dividing the gradient by an average of its recent
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Classifier Representation Sampling Processing Filter Centring LDA Classification
C1S p400n Morphetic Excerpt Gaussian No Yes SVM

C2S pfl or p400n Morphetic Segments,
L = 8 pixels Gaussian Pitch range No k-NN,

k = 15

C3S pfl or p400n MNN Segments,
L = 16 pixels Gaussian No No k-NN,

k = 3

C1A sp400 VQT Excerpt Gaussian No No SVM

C2A sp400 STFT Segments,
L = 4 pixels Gaussian No No k-NN,

k = 15

C3A sp400 STFT Segments,
L = 8 pixels Gaussian No No k-NN,

k = 3

Table 1: Details of the configurations of individual classifiers. Classifiers C1S, C2S and C3S are used for
symbolic representations of music. C1A, C2A and C3A are used for audio files.

magnitude. Additionally, we use Nesterov’s method for accelerating gradient descent (Sutskever,

Martens, Dahl, & Hinton, 2013). In order to avoid overfitting, l2-norm weight regularization, early

stopping and dropout is used. Early stopping was performed by monitoring the loss function on the

validation set. The learning rate for RMSProp is 10−5, Nesterov’s momentum is 0.5, the probability

of dropout is set to 0.5, the regularization coefficient is 0.01 and the batch size is 2.

We evaluated the CNN in leave-one-out cross-validation. In each run of the leave-one-out cross-

validation, we used 80% of the data for training, 20% for validation, and a single piece for testing.

All networks were trained for a maximum of 1000 epochs.

2.4 The ensemble of classifiers

In the design of the ensemble, our goal is to have the same structure of individual classifiers for

audio and symbolic representations: one classifier extracting features at large scale (C1), and two

classifiers extracting local features at two different small time scales (C2 and C3), as seen in Figure 1.

Classifiers C1S, C2S and C3S are used for symbolic representations. Correspondingly, C1A, C2A

and C3A are used for audio. Details on the configurations of each classifier are given in Table 1.

We use different configurations for each classifier expecting to have diversity in their predictions

when ensembled. C1A was selected as it was the best performing classifier reported by Velarde et al.

(2016). To select C2S and C3S, we tested different representations, number of nearest neighbours

and length of segments. We then selected the best performing classifiers, which also worked best

when combined in the ensemble of three classifiers.

We noticed that k-NN worked better than SVM when pieces went through the processing seg-
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ments phase, indicating the presence of several clusters of small musical patterns. However, we did

not obtain results for using different values of k in our k-NN classifier when using the processing

excerpt phase. We intend to explore this in future work.

For symbolic representations we used morphetic pitch or MNN, while in audio, morphetic encod-

ing would have required the system to have some kind of transcription module, which we avoided.

Instead, we used two sampling methods VQT and STFT. As the time dimension of spectrograms

was downsampled to almost half the size of the piano-roll time dimension, the segment length of

C2A is half that in C2S. The same holds for classifiers C3A and C3S. None of the classifiers used for

audio included centring or LDA when processing because of performance reasons. For spectrograms,

we experienced that LDA worked better without filtering and vice versa. We assume that filtering

influenced the way that LDA extracted features, presumably not being able to distinguish between

musical patterns and short-term spectral patterns. We used centring for classifier C2S, but not for

C2A as it had a negative effect on its performance. In piano-rolls the top and bottom regions are

very uniform (mostly pixels with value 0), such that shifting bounding boxes up or down does not

cause much change in the texture at the periphery. However, in spectrograms this is not the case,

and we did not apply a technique to preserve the texture at the top and bottom of the images after

centring. Therefore, centring spectrograms might have introduced noise into the data.

3 Experiments

First, we present two experiments: the first experiment evaluates the performance of our method

on composer recognition, while the second experiment shows results on genre classification. In both

cases, we used both audio recordings and symbolic representations of music. Finally, we present

a third experiment on symbolic representations only, using a CNN where the filters were learnt

automatically.

The task of classifying string quartet movements by Haydn and Mozart has been extensively

studied on symbolic representations of music (Herlands et al., 2014; Hillewaere et al., 2010; Hontanilla

et al., 2013; van Kranenburg & Backer, 2004; Velarde et al., 2016), which enables us to benchmark our

proposed method for composer classification. The second experiment on genre classification focuses

on discriminating between preludes and fugues from The Well-Tempered Clavier by J. S. Bach. We
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could not find any relevant previous work on this task. The datasets of the two experiments were

selected so that the first contained pieces in the same genre by different composers, while the second

contained pieces in different genres by the same composer. By doing so we can test the two aspects

independently.

For the first and second experiments, we perform five-fold cross-validation with a partitioning

scheme of 80% for training and 20% for testing. Moreover, we also perform leave-one-out cross-

validation on the string quartet movement classification task, to compare our methods with the

state-of-the-art approaches (Hillewaere et al., 2010; van Kranenburg & Backer, 2004) that use this

validation strategy.

3.1 Experiment 1: Classifying string quartet movements by Haydn and Mozart

3.1.1 Dataset

A string quartet is a multi-movement work for two violins, viola and cello. The earliest string

quartets were written in the 1760s by composers such as Joseph Haydn and Franz Xaver Richter,

with Wolfgang Amadeus Mozart writing his earliest quartets during the 1770s. The number of

movements in early quartets varied and it was only with Haydn’s op.9 (1769–1770) that a stan-

dard four-movement scheme became established, consisting typically of a sonata-form movement, an

adagio, a dance-like movement (often a minuet and trio), and a lively finale (Eisen, Baldassarre, &

Griffiths, n.d.).

Three datasets have been used to evaluate computational methods on the recognition of the string

quartet movements by Haydn and Mozart. These datasets were introduced by van Kranenburg and

Backer (2004), Hillewaere et al. (2010) and Herlands et al. (2014). For our experiment, we used the

two datasets available to us, which we denoted by HM107 and HM207:

• HM107. This dataset, introduced by van Kranenburg and Backer (2004), consists of 107

movements: 54 string quartet movements by Haydn and 53 movements by Mozart, encoded

as **kern files.4

• HM207. This dataset, introduced by Hillewaere et al. (2010), extends the HM107 dataset
4http://www.music-cog.ohio-state.edu/Humdrum/representations/kern.html
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(I) Symbolic representations (full length).
Classifiers

C1S-p400n C2S-pfl C3S-pfl Ensemble

HM107 Mean 0.731 0.625 0.729 0.758
SD 0.072 0.042 0.067 0.053

HM207 Mean 0.628 0.734 0.725 0.768
SD 0.062 0.078 0.030 0.069
(II) Symbolic representations (excerpts).

Classifiers
C1S-p400n C2S-p400n C3S-p400n Ensemble

HM107 Mean 0.731 0.702 0.702 0.760
SD 0.072 0.128 0.095 0.089

HM207 Mean 0.628 0.672 0.657 0.701
SD 0.062 0.073 0.063 0.055

(III) Synthetic audio files (excerpts).
Classifiers

C1A-sp400n C2A-sp400n C3A-sp400n Ensemble

HM107 Mean 0.654 0.683 0.682 0.721
SD 0.069 0.141 0.088 0.126

HM207 Mean 0.691 0.653 0.623 0.705
SD 0.105 0.062 0.053 0.047

Table 2: Haydn and Mozart String Quartet classification accuracies in five-fold cross-validation using symbolic
representations of music and synthetic audio files. Each classifier’s mean and standard deviation (SD) are
reported over the five folds of the cross-validation. In blocks (I) and (II), C1S is given piano-roll excerpts
of 400 notes. In block (I), C2S and C3S are given piano-rolls of full-length pieces. In block (II), the three
classifiers (C1S, C2S, C3S) are given piano-roll excerpts of 400 notes. Finally, in block (III), the classifiers
(C1A, C2A, C3A) are given spectrogram excerpts of 400 notes. The highest accuracies per dataset are
highlighted in bold type.

to 207 movements consisting of 112 string quartet movements by Haydn and 95 string quartet

movements by Mozart, encoded as MIDI files.

For the experiments on audio data, datasets HM107 and HM207 were rendered to WAV format,

synthesized as described in section 2.1.2.

3.1.2 Classification results

Table 2 presents classification accuracies in five-fold cross-validation of the classifiers shown in Ta-

ble 1. First, we evaluated whether classifiers C2S and C3S would perform differently with less

information, such that instead of processing full-length pieces, they would be given excerpts of mu-

sic. At the 5% significance level, we found no significant difference between the performance of C2S

and C3S, on either dataset (HM107 and HM207), when less information was used (Wilcoxon signed
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Classifiers
C1S-p400n C2S-pfl C3S-pfl Ensemble V-2004 H-2010

HM107 0.804 0.664 0.729 0.785 0.794
HM207 0.614 0.696 0.696 0.725 0.754

Table 3: Haydn and Mozart String Quartet classification accuracies in leave-one-out cross-validation. The
table presents the classification accuracies obtained by each individual classifier C1S-p400n, C2S-pfl and C3S-
pfl and their ensembles. It also shows accuracies reported by van Kranenburg and Backer (2004) (V-2004),
and Hillewaere et al. (2010) (H-2010). The highest accuracies per dataset are highlighted in bold type.

C1S-p400n C2S-pfl C3S-pfl Ensemble
HM107 (van Kranenburg & Backer, 2004) 0.905 0.002 0.095 0.811
HM207 (Hillewaere et al., 2010) 0.000 0.063 0.063 0.334

Table 4: P -values from a two-tailed binomial test for different accuracies in leave-one-out cross-validation
comparing the proposed classifiers (see Table 3) and the methods presented by van Kranenburg and Backer
(2004) and Hillewaere et al. (2010).

rank = 47, z = −1.397, p = 0.162, n = 20), see blocks (I) and (II) in Table 2. For this experiment,

we observe that ensembling has a positive effect, and makes the predictions more consistent across

datasets. Then, we evaluated the performance of ensembles on symbolic representations and audio.

On the results of both datasets HM107 and HM207, we found no significant difference in the perfor-

mance of the ensembles when classifying music represented symbolically or as audio files (Wilcoxon

signed rank = 10, p = 0.563, n = 10), see blocks (II) and (III) in Table 2.

Table 3 presents the accuracies of our proposed classifiers on composer recognition in leave-one-

out cross-validation, and the approaches proposed by van Kranenburg and Backer (2004) and Hille-

waere et al. (2010). The method proposed by van Kranenburg and Backer (2004) is based on the

use of style markers (mostly counterpoint characteristics), dimensional reduction and k-NN, which

achieves a classification accuracy of 0.794 on HM107, slightly below that of our best model, the

C1S-p400n. Hillewaere et al. (2010) propose a language model that builds an n-gram model of mono-

phonic parts of the string quartet movements, reaching a classification accuracy of 0.754 on HM207,

slightly above that of our ensemble model. The approaches reported by Hontanilla et al. (2013)

and Herlands et al. (2014) are not considered in this comparison, as their test datasets were different

from the ones used here.

We tested the differences in accuracies achieved by our proposed ensemble classifiers and the

previous approaches of van Kranenburg and Backer (2004), and Hillewaere et al. (2010) for statistical

significance with a two-sided binomial test. From the p-values in Table 4, we observe that the
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C1S-p400n C2S-pfl C3S-pfl
HM107 0.350 0.004 0.114
HM207 0.001 0.204 0.204

Table 5: One-tailed, binomial test p-values testing the hypotheses that the accuracies (see Table 3) obtained
by the ensemble in leave-one-out cross-validation are higher that those obtained by each individual classifier
on both datasets (HM107 & HM207) of the Haydn and Mozart string quartets.

classification accuracies of van Kranenburg and Backer (2004) and Hillewaere et al. (2010) are not

significantly better than the accuracy of our proposed ensemble of classifiers and C3S-pfl, which

can therefore be claimed to have reached state-of-the-art performance on both datasets. Note that

Hillewaere et al. (2010) only evaluated their method on the HM207 dataset, which is an extended

version of the HM107 dataset.

Finally, we tested the differences between our ensemble of classifiers and each of the individual

classifiers in the ensemble using a one-sided binomial test. The p-values are shown in Table 5. They

show that the ensemble is only in some cases significantly better than the individual classifiers (i.e.,

p < 0.05).

3.2 Experiment 2: Classifying preludes and fugues by J.S. Bach

3.2.1 Dataset

The Well-Tempered Clavier by J. S. Bach consists of two books (published in 1722 and 1742), each

containing 24 preludes and fugues, one in each of the 12 major and 12 minor keys. According

to Stein’s (1979) analysis, preludes elaborate around a short motivic subject through harmonic

exploration, but are heterogeneous in form. Some preludes are imitative and sectional in Invention

form (Book I, Nos. 3, 4, 9, and 11), others in Toccata style, free in form and style (Book I, Nos. 2, 4,

6). On the other hand, fugues are imitative contrapuntal works, typically built upon a single main

theme called the subject. The voices in a fugue start in succession by stating the subject followed by

a secondary theme called the countersubject, designed to be played simultaneously with the subject,

which then starts another voice. A fugue usually consists of a series of entries of the subject stated

in one or more voices, alternating with episodes in which motivic material derived from the subject

and countersubject is developed.

For this experiment we used two datasets, which we called JSB96 and JSB48:
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• JSB96. This dataset consists of MIDI encodings of all 48 preludes and 48 fugues from Bach’s

Well-Tempered Clavier , Books I and II, provided in the MuseData collection.5 For experiments

on audio, JSB96 was rendered to WAV format, synthesized as described in section 2.1.2.

• JSB48 This dataset consists of 24 preludes and 24 fugues from Book I of The Well-Tempered

Clavier in MP3 V0 audio format, performed by pianist Kimiko Ishizaka.6

.

In a fugue, the voices enter one after the other over the course of the exposition, which imparts

a highly distinctive textural character to the beginnings of these pieces. We hypothesized that this

feature (the initial texture) could be used to reliably distinguish a fugue from a prelude. We therefore

removed the initial segments of all images. The removed segment size for all piano-rolls corresponded

to about the first 8 qn, more precisely the first 60 pixels, so that the size of each piano-roll became

56×500 pixels. For spectrograms, we removed the first 20 pixels, as our spectrograms have less time

resolution than piano-rolls. The size of the spectrograms after removing the first 20 pixels became

150×180 pixels. We found that including the initial notes improved the mean classification accuracy

of C1S (over the five folds) from 0.761± 0.042 to 0.936± 0.045, while the classification accuracies of

C2S and C3S where not affected. Table 6 shows the classification accuracies for The Well-Tempered

Clavier by J.S Bach in five-fold cross-validation, where the initial 60 pixels (for piano-roll) or 20

pixels (for spectrograms) were removed.

3.2.2 Classification results

On the symbolic dataset JSB96 (Table 6) the single C1S-p400n classifier performed better than the

ensemble, in contrast to the results of Experiment 1 (Table 2). In general, we observe that the

classification accuracies obtained on composer recognition are similar to those obtained on genre

classification (see Table 6 and Table 2).

We compared performance of the classifiers on synthetic and human performed audio represen-

tations of Book I of The Well-Tempered Clavier (JB96, JB48) as shown in Table 6 (lower part). The

results reported on these small datasets should be considered preliminary. Nevertheless, C1S seems

to work better than C2S, C3S and the ensemble. We expected that audio performances would be
5http://www.musedata.org/encodings/bach/bg/keybd/. Accessed on 23 February 2015.
6http://music.kimiko-piano.com/album/bach-well-tempered-clavier-book-1. Accessed on 7 August 2015.
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Classifiers
C1S-p400n C2S-p400n C3S-p400n Ensemble

JSB96 (symbolic representations) Mean 0.761 0.708 0.731 0.741
SD 0.042 0.035 0.067 0.063

C1A-sp400n C2A-sp400n C3A-sp400n Ensemble

JSB96 (synthetic audio) Mean 0.729 0.748 0.658 0.718
SD 0.120 0.066 0.059 0.034

JSB96, Book I (synthetic audio) Mean 0.771 0.684 0.627 0.687
SD 0.178 0.158 0.166 0.212

JSB48, Book I (audio recordings) Mean 0.751 0.522 0.584 0.564
SD 0.048 0.175 0.162 0.165

Table 6: Classification accuracies for discrimination between preludes and fugues from The Well-Tempered
Clavier using symbolic representations of music, synthetic audio files and audio recordings. Each classifier’s
mean and standard deviation (SD) are reported over the five folds of the cross-validation. Initial 60 pixels
removed from piano-rolls. Initial 20 pixels removed from spectrograms.

Datasets CNN-p400n C1S-p400n p-value
HM107 0.776 0.804 0.286
HM207 0.560 0.614 0.070

Table 7: Comparison of the accuracies obtained in leave-one-out cross-validation by classifiers CNN-p400n
and C1S-p400n on two datasets of the Haydn and Mozart string quartet movements.

more difficult to classify than synthetic audio, but the differences so far are rather small. However

there is not enough evidence to draw any conclusions on this.

It is noteworthy that the ensemble classifiers did not perform better than individual classifiers in

this experiment. The differences are however not significant. It is possible that a more sophisticated

ensemble method could achieve better results here.

3.3 Experiment 3: Experiments using a convolutional neural network

For experiments with a CNN, the pieces of music were sampled as morphetic piano-roll excerpts

p400n and then classified without using any of the processing modules in the processing excerpts

phase.

Table 7 shows the classification accuracies obtained by the CNN and the C1S classifiers, both

using piano-rolls p400n, along with the p-values obtained with a one-tailed binomial test comparing

their accuracies. Although the accuracies for C1S are higher than those obtained using a CNN, the

difference is not significant at the 5% level. For practical purposes, however, the computational cost

of C1S is considerably lower than that of the CNN. C1S can be seen as a single filter, single layer,
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convolutional classifier, while the proposed CNN has a deeper architecture with several filter layers

as proposed by LeCun et al. (2010).

The CNN is interesting because the filters in the network adapt to the data. Figure 6 shows

the Gaussian filter used in all experiments, and the filters learnt by the first convolutional layer of

the CNN when trained on Haydn and Mozart string quartet movements. In these greyscale images,

lighter shades represent higher values. Vertical distances represent pitch intervals in diatonic steps

(e.g., seconds, thirds, fourths). This enables the observation of pitch and rhythm patterns.

For example in Figure 6 (b), the filter in the middle row, left column shows triad chord structures

(sets transpositionally equivalent to {C,E,G}, {D,F,A}, {F,A,C}, etc.). The filter in the bottom

row, middle column shows for example {D,F} followed by {E,G}. In general, we observe that the

filters shown in Figure 6 (b) show thirds. In Figure 6 (c), middle column, top row, the filter shows

the interval of a sixth (e.g., {C,A}). The filters in the lower two rows are dominated by a single

voice. The top-left filter shows an interval of a second (e.g., {E,F}). These patterns may relate to

observations such as that by Herlands et al. (2014) about a predilection for the use of certain intervals

in the string quartets by Mozart which made the melodic lines of the first violin less virtuosic than

those of Haydn. However additional analysis is needed to understand this relation.

Since the CNN performs well at distinguishing the string quartet movements by Haydn and

Mozart, we hypothesize that these patterns play a role in distinguishing their styles. However, how

the patterns in the first and second layer contribute, and what their musical relevance is, is not yet

well understood and deserves further analysis in the future.

4 Discussion

In music classification, there are only a few methods that have been designed for and evaluated

on audio and symbolic representations of music. For example, Tzanetakis, Ermolinskyi, and Cook

(2003) demonstrated the use of pitch histograms for genre classification in both domains (audio

and symbolic); and Cataltepe, Yaslan, and Sonmez (2007) and Lidy, Rauber, Pertusa, and Iñesta

(2007) combined symbolic and audio features to improve their classifiers on genre recognition. In

this study, our aim was to design a general method for music classification applicable to symbolic

representations and audio recordings.
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Figure 6: (a) Gaussian filter with σ = 3. (b) Filters learnt by the first convolutional layer of the CNN (l = 1
of p400n), trained on the string quartet movements by Haydn and Mozart (HM107). (c) Filters learnt by the
first convolutional layer of the CNN (l = 1 of p400n), trained on the string quartet movements by Haydn and
Mozart (HM207). Each filter is 9× 9 pixels.

The experiments presented in this work suggest that robust style recognition can be achieved

by a combination of feature extraction at large and small time scales. We observed that ensembling

seemed to contribute towards making consistent predictions across datasets. However, the ensemble

was not significantly more accurate than individual classifiers.

The effect of convolution with a Gaussian filter may highlight musical contour, making structures

more discriminative after filtering.

While most audio datasets for music classification usually contain 30-second audio clips, we

sampled pitch–time representations from 400 notes. Velarde et al. (2016) showed that the classifier

based on excerpts (C1S) is robust to the amount of information used: either using excerpts of

music of 70 quarter notes or containing 400 onsets. Moreover, in Experiment 1 (3.1) we found that

classifiers using segments (C2S and C3S) performed similarly when the input was an excerpt of

music or the full-length piece.

In Experiment 3, we tested a deep learning architecture that has proven to be state-of-the-art

for image classification, e.g., in applications such as digit recognition. Somewhat unexpectedly, the

CNN was not better than C1S in our evaluations. We suspect that for the CNN to show a significant

improvement over the state-of-the-art, we would need to train it on a larger dataset, as is normally

the case in image classification tasks. It could also be possible that the task of discriminating
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between string quartet movements by Haydn and Mozart has reached a so-called “glass ceiling”. In

our experiments, one advantage of the CNN over C1S and most of the previously published methods

on this task (Hillewaere et al., 2010; Hontanilla et al., 2013; van Kranenburg & Backer, 2004; Velarde

et al., 2016) is the potential for gaining musical insight by exploring the information in the filters

learnt by the CNN. In the future, we would like to evaluate the performance of the CNN when pieces

follow the processing segments phase, and evaluate the CNN on audio and on larger datasets before

drawing further conclusions.

5 Conclusions

We have introduced a novel convolution-based method on pitch–time representations for classification

using both symbolic and audio representations of music. The effect of convolution with a Gaussian

filter may highlight musical contour, making structures more discriminative after filtering. We have

shown that the performance of individual classifiers based on excerpts of music is comparable to

the performance of individual classifiers using small time-scale segments, and that their outputs

can be complementary for ensembling. Our proposed classifiers perform well on both composer and

genre classification, as well as on symbolic representations and synthetic audio, and have proven

to be state-of-the art when evaluated on two datasets of the Haydn and Mozart string quartets.

Additionally, we evaluated our proposed classifiers on The Well-Tempered Clavier by J.S Bach,

demonstrating the versatility and effectiveness of our method. Our experiments were conducted

on baroque and classical music, but we expect our classifiers to generalize to other styles of music,

periods of time and classification tasks. Additionally, we presented the potential of a convolutional

neural network to provide musical insight, based on the filters that it learns automatically. In the

future, we are interested in evaluating our method on larger datasets and multi-class recognition

problems.
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