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Virtuosity in music performance is often associated with fast, precise, and efficient

sound-producing movements. The generation of such highly skilled movements involves

complex joint and muscle control by the central nervous system, and depends on

the ability to anticipate, segment, and coarticulate motor elements, all within the

biomechanical constraints of the human body. When successful, such motor skill should

lead to what we characterize as fluency in musical performance. Detecting typical

features of fluency could be very useful for technology-enhanced learning systems,

assisting and supporting students during their individual practice sessions by giving

feedback and helping them to adopt sustainable movement patterns. In this study, we

propose to assess fluency in musical performance as the ability to smoothly and efficiently

coordinate while accurately performing slow, transitionary, and rapid movements. To this

end, the movements of three cello players and three drummers at different levels of skill

were recorded with an optical motion capture system, while a wireless electromyography

(EMG) system recorded the corresponding muscle activity from relevant landmarks. We

analyzed the kinematic and coarticulation characteristics of these recordings separately

and then propose a combined model of fluency in musical performance predicting music

sophistication. Results suggest that expert performers’ movements are characterized by

consistently smooth strokes and scaling of muscle phasic coactivation. The explored

model of fluency as a function of movement smoothness and coarticulation patterns was

shown to be limited by the sample size, but it serves as a proof of concept. Results from

this study show the potential of a technology-enhanced objective measure of fluency

in musical performance, which could lead to improved practices for aspiring musicians,

instructors, and researchers.
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1. INTRODUCTION

Themovements of an expert musician typically appear as smooth

and graceful, with highly complex tasks seeming to come at a
minimum of effort (Altenmüller and Schneider, 2009; Jørgensen
and Hallam, 2008). This quality of smoothness and flow of
movement can be defined as fluency (Whiting et al., 1987; Kerr
et al., 2013). In the case of music performance, fluency relates

to the perceived ability to perform complex sound-producing
movements with both accuracy and efficiency. Fluency is often
focused on by practitioners, teachers and physiotherapists to
evaluate whether the movement patterns of a student or patient
are developing in the right direction (Van Dokkum et al., 2012;
Kerr et al., 2013; Volta et al., 2018). In the context of technology

enhanced learning, a way to accurately quantify and measure
such fluency would be very useful, for instance in automated
systems for feedback to music students. The right type of
feedback is most relevant when students are practicing at home,

without the presence of a teacher to guide them. And since
fluency is relevant for many kinds of motor skills, implementing
this in systems for home practice could make it useful for several
different kinds of instrument practice.

The foundations and handcraft that enable expertise
and fluency is particularly interesting from an educational
perspective. Metcalf et al. (2014) proposed a model of skill
acquisition as a spectrum for indexing the level of complex
hand dexterity. At the lowest end of the defined spectrum is the
impaired, while higher levels span the progression of expertise
from novice to practitioner, expert, and finally: virtuoso.
Although intended for hand dexterity, the proposed spectrum
of Metcalf et al. (2014) is a useful model for discussing skill
acquisition in general, and for music skill in particular. The
goal from a didactic perspective is to enable a music student to
progress from novice to expert. And importantly, the training
should also avoid factors leading to impairment such as misuse,
excessive overuse, and straining repetition of movements
(Metcalf et al., 2014). Since music training often has a particular
focus on the produced sound and timing patterns rather than
the movements, there is a potential risk that students develop
less optimal movement patterns (Visentin et al., 2008). This,
in combination with the often extensive training needed for
musical performance, can create problems later on in the career
path of musicians, leading to strain, pain, or even development
of dysfunctional movement patterns such as those seen in focal
dystonia (Altenmüller and Jabusch, 2010).

Performance achievement in various fields can be related to
the amount and quality of practice (Ericsson, 2013). Researchers
studying skill acquisition of top chess players, medical surgeons,
top-athletes, and musicians have generally found that the ways
in which the experts in each domain practice are highly similar
(Ericsson et al., 2018). High levels of performance achievement
in various fields can primarily be explained by the amount and
quality of practice, implying that so-called talent is over-rated.
According to Ericsson (2014), Ericsson and Pool (2016), effective
skill acquisition is based on the extent to which we: (a) identify
and concentrate on the relevant aspects of performance, (b)
get relevant and immediate feedback, and (c) gradually refine

skill through repetition and problem solving. Hence, adequate
feedback on movement patterns during musical performance
would help to guide the students along their learning path.

In our present exploratory study, we aim at characterizing
fluency in music performance as the ability to efficiently make
smooth and precise movements, and to do so both slowly
and rapidly. The objective is to explore movement fluency by
quantifying end-effector movement smoothness and assessing
motor coordination patterns through principal component
analysis. As a proof of concept that the approach could be
valid for different kinds of movements, we recorded and
analyzed movements and relevant muscle activity of cello players
and drummers of varied expertise. The paper is organized as
follows: In section 2, we give an overview of the characteristics
of musicians’ movement skills and different approaches in
technology assisted teaching of these skills. In section 3, we
define how fluency can be measured, and how generic movement
types making comparisons across performances on different
instruments are possible. In sections 4, 5, and 6, we outline
the details and results of of our exploratory study. Finally, in
section 7, we discuss these results within the framework of music
skills acquisition and music practice, aimed at contributing to
the development of updated teaching, assessment, and scientific
research methods.

2. ACHIEVING MOVEMENT FLUENCY

For several decades, we have seen the publication of a number
of works presenting methods for proper instrumental practice
(e.g., Auer, 1960; Leimer andGieseking, 1972), with an increasing
number of studies investigating musicians’ motor skill. The focus
of these studies have primarily been on piano performance (e.g.,
Ortmann, 1962; Halsband et al., 1994; Engel et al., 1997; Jabusch
et al., 2009; Furuya and Altenmüller, 2013; Goebl and Palmer,
2013; Metcalf et al., 2014; Furuya et al., 2015; Goebl, 2018), but a
number of works also exist for bowed instruments such as violin,
viola, cello, and double bass (e.g., Guettler, 1992; Winold and
Thelen, 1994; Baader et al., 2005; Kazennikov andWiesendanger,
2009; Schoonderwaldt and Demoucron, 2009; Kelleher et al.,
2013; Verrel et al., 2013), wind instruments (e.g., Bejjani and
Halpern, 1989; Cossette et al., 2008; Palmer et al., 2009; Albrecht
et al., 2014), and percussion (e.g., Trappe et al., 1998; Dahl, 2004,
2018; Fujii et al., 2009a,b; Chen et al., 2016).

A general conclusion from this body of work is that movement
patterns differ considerably, not only between players of different
instruments, but also between players of the same instrument
(Winold and Thelen, 1994; Dahl, 2004). This is to be expected
considering the anatomical differences (Ortmann, 1962) and the
many possible ways in which the motor system can achieve
a particular end goal (e.g., pressing a piano key, Furuya and
Altenmüller, 2013). Despite intrinsic differences in movement
patterns, skilled performers generally appear to display:

• Timing stability and accuracy (Drake and Palmer, 2000; Fujii
et al., 2011; Goebl and Palmer, 2013)

• Inter-joint coordination (Winold and Thelen, 1994; Furuya
et al., 2011)
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• Reduced limb load by proximal to distal movement
organization. (Furuya and Kinoshita, 2007, 2008; Furuya
et al., 2011; Goebl and Palmer, 2013; Verrel et al., 2014;
Eriksen et al., 2018).

• Faster (and more brief) recruitment of motor units Lai et al.,
2008; Fujii et al., 2009a,b).

Knowledge on biomechanical functions (as those listed above)
can be objectively characterized and used to inform music
performance pedagogy. In an effort to do this, Visentin et al.
(2008) recorded joint angles and muscle activity for violinists’
legato bowing at different tempi, and outlined different motor
control phases displaying (1) increased bow acceleration and
exertion; (2) constant bow acceleration and constant workload;
and (3) approach of the physiological limits. After examining
load patterns in joints and muscles, Visentin et al. (2008)
concluded that both load quality and duration are important
factors, and call for more research on how practice time can be
optimized without inducing injury.

One way to assist and motivate a learner during practice
time is through technology enhanced learning applications. In
a survey on computer assisted musical instrumental tutoring
(Percival et al., 2007) note the importance of making the students’
individual practice time more efficient by helping the students
with the task of self-analysis. A considerable number instrument
tutoring systems have appeared during the past decades with
approaches such as gamification (e.g., Klapuri et al., 2017) as
well as augmented instruments (Pardue, 2017). Typically systems
have a score based approach and often focus on only one type
of instrument. The Imutus system (Schoonderwaldt et al., 2004)
aimed at providing new learners of the recorder with lessons
and automatic feedback on basic performance skills based on
the audio signal. The framework was extended in its follow-
up Vemus (Tambouratzis et al., 2008) to include more wind
instruments and support for collaborative learning and group
practice. These systems perform audio analysis and give feedback
on whether the learner is producing the right note, tempo,
phrasing and similar. Other systems extend this by providing
feedback on the movements that produce the notes, such as
fingering in violin playing (Dalmazzo and Ramirez, 2017) or
the hand used in drumming (Kanke et al., 2017). In addition to
the score based exercises, some systems employ haptic actuators
to indicate which limbs or fingers the student should move
(Holland et al., 2010; Lee and Choi, 2014), even providing
“passive learning” of movement sequences (Huang et al., 2008).

Notably, most systems still largely focus on the score and
the associated errors, with feedback related to muscle activation
(Montes et al., 1993) or posture (Mora et al., 2006) being
more rare. The overall focus on correctness of notes rather
than overall musicianship and expression has been criticized
by Xiao and Ishii (2016). Laying out a different kind of
framework, (Xiao and Ishii, 2016) argue that rather than the
focus on the basic technical movements (such as fingering or
bowing) and the quantitative representations, system developers
should emphasize the qualitative and first person perspective in
their design. MirrorFuge (Xiao and Ishii, 2011) is an example
of such an embodied approach, where users imitate video

recordings of skilled piano performers projected on the piano.
While MirrorFuge does not record or give feedback on users’
movements, the system taps into the action-perception loop of
the learner through imitation and copying of highly coordinated
movements.

Among the systems and projects that target sound producing
movements many have been focusing on violin playing (e.g., Yin
et al., 2005; Ng et al., 2007; Schoonderwaldt andWanderley, 2007;
Ng and Nesi, 2008; Van Der Linden et al., 2011; Ramirez et al.,
2018). The Digital ViolinTutor system (Yin et al., 2005) aimed
at supporting the learner in the home practice situation through

a combination of audio, instructor video and 3D animation of
the playing movements. The system animates sequences from
the score and the user can select sections of notes and parts of
the movements (such as fingering on the board or bowing) to

study more closely. Without input of the learner’s movements,
the feedback is based on pitch and timing of the notes produced.
More extensive feedback on violin bowing movement is found in
i-Maestro project (Ng and Nesi, 2008), and its implementation of
an “Augmented mirror” (Ng et al., 2007). Using motion capture
of the player, violin and bow, the augmented mirror shows the

player with added visualizations of bowing trajectories, angles
and where the bow is in contact with the string. A similar
approach, also including measurement and visualization of
bowing force, is used in the Hodgson plot (Schoonderwaldt and
Wanderley, 2007). TheMusic Jacket (Van Der Linden et al., 2009,
2011) also captures the players’ bowing movements using motion
capture of the upper body, but instead of visualization, it provides
the player with vibrotactile feedback to guide into proper violin
position and development of bowing arm coordination. User tests
showed some promise, although the effect was only persistent for
some of the players post-tests. More recently, the Telmi project
(Dalmazzo and Ramirez, 2017; Ramirez et al., 2018; Volta et al.,
2018) aims to integrate both kinematic features as well as higher
level features including sway and postural tension.

From the work reviewed, we note that systems that include
movement instruction and feedback tend to concentrate on

one instrument. Such an approach is practical for development
purposes, considering the very different movement patterns
between instruments and players. However, a more generic

approach that could be used for multiple instruments would be

an attractive solution for teachers and students alike, as this could

offer amore comprehensive understanding of bodily effort and its
relation to musical features.

As a general point, Percival et al. (2007) argue that targeting
resources into helping the students with the task of self-analysis,

i.e., helping students analyze what works and what needs

improving, is likely to pay off better. Percival et al. (2007) suggest
to focus on technical exercises and state that music students
find it hard to judge their own performance. In this context,
technology enhanced self-testing tools can be useful, however,
real-time feedback to the learners might not be necessary. Rather,
several authors (Percival et al., 2007; Van Der Linden et al., 2011)
caution against distracting the students during playing. In view
of the research reviewed one might ask what type of feedback
technology enhanced learning tools should provide that will help
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a student to develop healthy and sustainable movement patterns.
We propose movement fluency as a basis for such feedback.

3. MEASURING FLUENCY

As a qualitative feature of movement, the characteristics of
fluency are perhaps easier to judge by observers than calculated
from measured data. Van Dokkum et al. (2012) defined fluency
as gracefulness and ease of movement and assessed this for post-
stroke patients by observers rating movement fluency. Whiting
et al. (1987) referred to fluency as a qualitative parameter, but
chose to measure it as the cross-correlation between a generated
“ideal” velocity curve and the actual produced. While not
specifically mentioning fluency, studies on music performance
have used advanced musicians as “ground truth” when trying
to characterize the kinematic features of skillful music playing.
For instance, Chen et al. (2016) used qualitative ratings of
percussion students’ playing movements (including muscular
relaxation) and resultant sound to evaluate a k-Nearest Neighbor
classification of different timpani strokes. Volta et al. (2018)
found a strong positive correlation between an aggregatemeasure
of shoulder dynamics (including kinetic energy of shoulder and
the first derivative of shoulder and elbow angles) and perceived
violin playing skills as rated by expert violin teachers.

Most commonly, studies have attempted to characterize
movement skill by estimating smoothness, as well as minimal
effort and jerkiness (Nelson, 1983; Whiting et al., 1987; Hogan
and Sternad, 2009). Rasamimanana and Bevilacqua (2008)
applied the models for economical movement suggested by
Nelson (1983), and correlatedmeasured velocity and acceleration
profiles during violin bowing with models of minimum cost.
These cost functions either minimized acceleration transients
(discrete and cyclical minimum jerk) or the area under the
curve (minimum impulse). For repeated dtach strokes in an
accelerando/decelerando task, they found a trapezoidal model
best fitting the slowest strokes while the best fit for the
fastest strokes was minimum jerk models. Rasamimanana and
Bevilacqua (2008) concluded that the slow and faster parts of
these tasks are best described by different optimization: while the
slowest movements tend to optimize velocity variation, the faster
ones optimized acceleration smoothness.

In a different approach, Kerr et al. (2013) proposed to
deconstruct fluency as consisting of three parts: hesitation,
coordination, and smoothness. While movement hesitation
appears to be less relevant to our case of feedback during
musical performance, we propose to quantify fluency as a
combination of coordination and smoothness. Coordination
related to movement optimization can contain several parts. As
discussed above, the generation of highly skilled movements
such as those in music performance, involves complex joint and
muscle control by the central nervous system (Sosnik et al., 2004;
Fujii et al., 2009b; Sakaguchi et al., 2014; Furuya et al., 2015;
d’Avella, 2016). More specifically, these control challenges have
been shown to depend on the ability to anticipate, segment,
and coarticulate motor elements, all within the biomechanical
constraints of the human body.

• Coarticulation can be generally defined as the integration and
fusion of otherwise separate and distinct sequential movement
elements into single units (Sosnik et al., 2004; Klein Breteler
et al., 2006; Winges et al., 2013; Godøy et al., 2017). As
movement skill and task refinement increases, sequences of
individual motor elements are shaped toward a common “end

goal”, with the ending of each element fitting with the start of
the following one (Grafton and Hamilton, 2007). The amount
of coarticulation is largely governed by the duration and rate
of movement events. The fusion of events in coarticulation

is also determined by anticipation of subsequent movement
events, i.e., due to preparatory motion for upcoming events.
For instance, violin players have been shown to adjust their

fingering depending on whether a finger controls note onsets
or pitch (Baader et al., 2005), and drummers can start the
upward wrist movement in preparation for a louder stroke
already during the preceding stroke (Dahl, 2004).

• Proximal to distal movement organization. A number of
studies have rendered evidence on the fundamental kinematics

of skilled music performance, showing that experienced
musicians reduce limb load by making use of proximal joint

motion, while novice performers tend to employ distal joint
motion (Furuya et al., 2011; Goebl and Palmer, 2013; Verrel
et al., 2014). Providing additional evidence of such patterns,
Verrel et al. (2013) showed that novice cello players make

use of proximal joint movement, while advanced performers
tend to exploit distal joints during bow reversal exercises. In
another field of musical performance, Furuya et al. (2011),
investigated interjoint coordination in pianists through upper

limb kinematics and muscular activity patters. Expert pianists
were shown to have smaller movement range from distal
joints and greater muscular activity from extrinsic upper

limb muscles when compared against novice pianists. With
increasing tempo, expert pianists were found to consistently
make use of proximal rather than distal joints.

Until now, the underlying features of coarticulation of
neuromuscular control and kinematics in music performance

have primarily been studied independently and for single
instruments. By combining these different components of

fluency, assessment of movement skill can be made more
standardized. One such general element is smoothness. Although
perceptually very salient and linked to both motor skill
acquisition and degeneration, finding a measure of movement
smoothness that enables comparisons between subjects and
tasks, is not straightforward (Rohrer et al., 2002; Hogan and
Sternad, 2009; Djioua and Plamondon, 2010; Balasubramanian
et al., 2012). Most commonly, measures of smoothness use the
third derivative of position, “jerk” (e.g., Nelson, 1983; Hogan
and Sternad, 2009; Larboulette and Gibet, 2015). A jerky motion
would display a jagged velocity profile corresponding to less
smooth movement. However, one concern with jerk-based
measures is that calculated jerk vary depending on movement
duration and how many sub-movements the motion consists
of, making comparisons between different movers and studies
difficult. Hogan and Sternad (2009) compared different jerk-
based measures of movement smoothness with respect to
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their dependence on movement duration and components,
finding evidence of higher reliability of dimensionless jerk-based
measures. More recently, Balasubramanian et al. (2012, 2015)
concluded that among jerk-based measures, only dimensionless
jerk and the log dimensionless jerk are robust enough to be
useful. Balasubramanian et al. (2012, 2015) further compared
these jerk-based measures of smoothness to a measure based
on the Spectral Arc Length (SAL, see Supplementary Material)
of the movement velocity profile. The benefit of computing
smoothness from the frequency spectrum of the velocity
profile are reduced sensitivity issues derived from variability
in movement amplitude and duration (Balasubramanian et al.,
2012). However, SAL is not able to overcome issues related to
number of movement components. Repetitive and rhythmic
movements (such as bowing or drumming) by nature contain
several movement components and (Balasubramanian et al.,
2015) therefore conclude that smoothness measures cannot be
applied to a rhythmic movement in its entirety, but suggest
to calculate an aggregated smoothness across the individual
movement components.

3.1. Movement Components
For the purpose of this study, it is useful to define the main
movement categories that can be identified in a musician
movement repertoire, and preferably also see them as generic,
i.e., as applicable to performances on different instruments and
in different types of music. We shall here present the main
categories of impulsive, sustained, and iterative movements (see
Godøy, 2006 for the sources of these terms), and also indicate
how these are linked together:

• The basic feature of impulsive movements is that they are
discontinuous, consisting of a short burst of effort followed
by relaxation, such as in hitting, kicking, or rapid stroking.
Sometimes referred to as “ballistic” motion in contexts of
sports and everyday movement, impulsive movements are
very common in music. In particular, percussion instrument
performance display impulsive movements, but they can also
be used for keyboard (c.f. Goebl et al., 2014) and string
instruments, in the latter case with abrupt and fast motion
such as with accented “martellato” bowing (Rasamimanana
and Bevilacqua, 2008). Impulsive movements typically result
in what we call impulsive sounds, such as that of percussion
instruments and of the piano. Impulsive sounds typically have
abrupt onsets immediately followed by decays, with the length
of the decays dependent on the reverberant features of the
instrument (Godøy et al., 2017).

• Sustained movements require a more or less continuous
transfer of energy from the human body to the instrument (or
to the human vocal apparatus), such as in continuous bowing,
blowing, whistling or singing. Sustained movements result in
what we refer to as sustained sounds, meaning sounds that are
relatively stable in their overall loudness, pitch, and timbre,
although there may be more minute variations in the sounds,
such as by vibrato or in timbral fluctuations within the overall
stationary appearance of the sounds (Nymoen et al., 2013;
Godøy et al., 2017).

• Iterative movements consist of rapid alternations between
effectors, such as in trills, or rapid back-and-forth movements
of effectors such as in tremolos. Iterative movements are
distinct from the two other categories in that they are neither
sustained nor singular impulsive, but rather continuously
fluctuating. Iterative movements typically use wrist tilting or
wrist shaking, enabling very rapid motion with a minimum
of effort, hence quite distinct from the other categories also
in terms of effort and motor control (see e.g., Rasamimanana
and Bevilacqua, 2008; Fujii et al., 2009a,b; Schoonderwaldt and
Altenmüller, 2014). The sound output of iterative movements
is very common in music, such as in drumrolls and other
percussion textures, as well as in various ornaments on string
and keyboard instruments (Godøy et al., 2017).

Changes in duration and rate of motion during sound-
producing actions lead to interactions between these three
motion categories, as well as to phase transition events (Haken
et al., 1985). For instance, we may see a phase transition from
impulsive to iterative movements if the movement event rate
is increased, and conversely, a phase transition from iterative
to impulsive movements if the motion rate is decreased (see
e.g., Rasamimanana and Bevilacqua, 2008). Similarly, we may
see a phase transition from sustained to impulsive movement
if the duration of the sustained movement is shortened beyond
a certain threshold. The importance of phase transition events
for fluency in music performance lies in the need to fuse
otherwise discontinuous movements into superordinate and
smooth movement chunks, or conversely, the splitting up of
continuous and smooth movement chunks into smaller and
more discontinuous movements entities. Phase transition events
are also useful to highlight stability in bimanual movements.
Fujii et al. (2010) investigated stability of movement phase
between hands from drummers and non-drummers during rapid
bimanual drumming. Not surprisingly, the drummers showed
greater stability in their bimanual coordination compared to
non-drummers.

For our purpose of characterizing fluency in music
performance, we categorize movements in music performance
as impulsive, sustained, and iterative, allowing the comparison
of skill across different instrumental families. For instance,
the sound producing movements used to excite the vibrating
structures differ in cello and drum playing (sustained vs.
impulsive). However, while these players display different kinds
of movement repertoire, iterative movements are frequent in
both drumming and cello bowing.

A useful technology assisted learning system for music
performance also needs to be able to assess fluency across various
levels of skill. One way would be to assess howmovement control
differs for different playing tempi. If we imagine a space of tempi
and dynamic range, each player has a “playability area” where
playing is manageable (c.f. Dahl, 2006; Visentin et al., 2008).
For novices, the area is fairly small (slow tempo, medium to
loud sound level) wheareas advanced performers are able to
stretch it to include also faster tempi. However, also experts
will have difficulties to maintain stable performance for extreme
combinations of tempo and dynamic level (Dahl et al., 2011).
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To summarize, increasing and decreasing movement tempi
for basic movements in drumming and bowing are likely to
display differences in movement fluency (and organization)
between trained and untrained players while providing simple
tasks that also new students are able to do. To investigate such
manifestations of fluency, we recorded and analyzed movements
of cello players and drummers of varied expertise playing at
gradually accelerating and decelerating tempi. Furthermore, we
quantifed the end-effector movement smoothness, and evaluated
coordination from movement and muscle activity data using
principal component analysis.

4. MATERIALS AND METHODS

We recorded cello bowing and drumming movement data for
players of varying skill. During the experiment we captured
full body motion capture for a number of tasks. In this paper,
however, we concentrate on motion from the right hand effectors
in a transition task of accelerando followed by decelerando bow
and drum strokes, respectively.

4.1. Participants and General Apparatus
One advanced and two apprentice drummers (3 male, all right-
handed, age mean = 29.67 years, age SD = 10.97), and one
advanced and two apprentice cello players (2 male, 1 female,
all right-handed, age mean = 20.67 years, age SD = 13.61)
took part in the study. Advanced players had at least 15 years
of instrument experience and were teaching their instrument
professionally, while apprentices were students at a music
academy. All participants gave their written informed consent
prior to the experiment and answered a brief questionnaire
about musical training experience, age, handedness as well
as an online survey giving their Ollen Musical Sophistication
Index (OMSI,1 Ollen, 2006), shown in Table 1. The OMSI score
is a number between 0 and 1,000 indicating the probability
(percent × 10) that a respondent would be classified as “more
musically sophisticated” by a music expert. Participants’ years of
instrumental practice and OMSI scores are shown in Table 1.
Participants were informed that their participation was voluntary
and that they could withdraw from the study at any point in time.
The study obtained ethical approval from the Norwegian Center
for Research Data (NSD), with project number 59876.

Recordings took place in a motion capture lab at Department
of Musicology, University of Oslo. We recorded participants
movements using a twelve-camera optical motion capture system
(Qualisys Oqus, Sweden) at a frame rate of 400 Hz, tracking
the three-dimensional positions of reflective markers attached to
each participant’s body and instrument. For this paper, however,
we focused on smoothness of trajectories of end-effectors from
the markers on the cellists’ right hand and the drummers’
drumstick in our analysis. Future studies will look into body
segments, posture, and angular characteristics of movement from
the data gathered.

Muscle activity was recorded at 2,000 Hz as surface EMG
using Delsys Trigno (Boston, MA). An analog trigger unit was

1marcs-survey.uws.edu.au/OMSI/

TABLE 1 | Instrumental practice and Ollen Musical Sophistication Index (Ollen,

2006) for players.

Participant Instrument Years of instrument practice OMSI score

D1 Drums 24 755

D2 Drums 7 58

D3 Drums 10 153

C1 Cello 16 984

C2 Cello 10 124

C3 Cello 2 46

used to synchronize both motion capture and EMG acquisitions
in time. Details on the electrode placement for each instrument
groups is given in the following sections while we present details
on the data processing in Supplementary Materials.

4.2. Drums Setup and Task
The drumming motion data was recorded in a pre-defined
capture volume including and surrounding the drum kit and
in the laboratory global coordinate system defined through
calibration. The drummers were seated on a drum throne and
played a basic drum kit consisting of a hi-hat, a snare drum,
and a bass drum as shown in Figure 1. The drummers could
adjust the height of the drum throne as well as the stands to the
appropriate height. Passive markers were located in the following
anatomical landmarks as seen in Figure 1: 1, front head; 2, right
back head; 3, left back head; 4, right shoulder; 5, left shoulder; 6,
spine; 7, middle of the sacrum; 8, left elbow; 9, right elbow; 10, left
ulna; 11, right ulna; 12, left hand-dorsal; 13, right hand-dorsal;
14, left knee; 15, right knee; 16, left heel; 17, right heel; 18, left
foot-fifth toe; 19, right foot-fifth toe. Two markers were placed
on each of the player drumsticks (located approximately at 1/4
and 3/4 of the length of the stick). Wireless EMG electrodes were
placed on the location of the upper trapezius, triceps, forearm
flexor and extensor, and gastrocnemius following suggestions
from SENIAM 2.

The drumming task selected for analysis consisted of single
strokes with alternating hands gradually accelerating in tempo,
producing a single stroke roll. Figure 2 shows an example
score of the task. Players started at a slow, comfortable tempo
and gradually increased tempo until reaching maximum speed,
after which they gradually decelerated to a comfortable slow
tempo.

4.3. Cello Setup and Task
The recording of cello players’ movements was similar to that
of drummers. The calibrated capture volume included and
surrounded the cello player and the instrument. The system
recorded the positions of 15 passive markers placed on player
and bow, of which we selected the right hand marker for analysis.
15 passive markers were located at: 1, front head; 2, right back
head; 3, left back head; 4, right shoulder; 5, left shoulder; 6,
spine (T1); 7, middle of the sacrum; 8, left elbow; 9, right elbow;

2seniam.org
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FIGURE 1 | Experimental setup and 3D reconstruction of markers from motion capture data for the cello (Left) and drums (Right) tasks, with the right arm 3D

reconstruction shown in green and blue, respectively. The bass drum is covered with black cloth to minimize reflections interfering with the tracking of optical markers.

Note the placement of the markers on the drum sticks which is some distance away from the tip so as not to interfere with playing. Written informed consent was

obtained from participants for publication of images.

10, left ulna; 11, right ulna; 12, right hand-dorsal; 13, left index
finger middle phalanx; 14, left ring finger middle phalanx. The
implemented marker set and the resulting 3D model can be seen
in Figure 1.

Surface EMG electrodes were placed on the location of the
middle deltoid, upper trapezius, triceps, and forearm flexor and
extensor, again following suggestions from SENIAM for skin
preparation and optimal placement identification.

Similarly to the transition task for the drummers, the cello
players were asked to perform right-hand plain sixteen notes,
starting at a comfortable tempo and gradually accelerate until
maximum tempo and then decelerate. A transcript of the score
used to instruct participants can be seen in Figure 2.

5. ANALYSIS

Our analysis focused on smoothness calculation from the
velocity of the right effector in combination with estimating
coarticulation patterns as measured by principal component
analysis of surface electromyography. While fluency and
smoothness are likely to be visible anywhere in the movement
chain, we made slightly different choices as to what part to use
for the analysis depending on the instrument played. For the
cello bowing we concentrated the analysis to the velocity of the
marker on the hand, whereas the stick marker was chosen for the
drumming. For the drumming movements, we instead selected
the velocity of the drumstick marker. For percussion, the striking
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FIGURE 2 | Score from the Accelerando cello exercise. Symbols above the

notes denote up and down bows. For the drumming task the score would be

the same but with the symbols exchanged for R and L, indicating right and left

hand respectively.

velocity has been related to the produced sound level and has
been linked both to type of stoke played as well as expertise (Dahl,
2011; Chen et al., 2016).We here briefly explain the analysis made
and refer to the Supplementary Material for more details on
both kinematic and EMG analysis.

5.1. Kinematic Analysis
Three-dimensional position data from the cello and drumming
trials was processed using the MoCap toolbox for Matlab (Burger
and Toiviainen, 2013). We calculated the velocity profile (i.e.,
magnitude of the linear velocity) for both bowing and drum
strokes, applying a second order Butterworth smoothing filter.
We then segmented the strokes based on identified peaks
in the velocity profile and calculated the inter-onset interval
(ioi) between strokes. From the normalized Fourier magnitude
spectrum of each individual stroke we then obtained the
spectral arc length (SAL) (Balasubramanian et al., 2012, see also
Supplementary Material). In essence, the smoother the bowing
or drumming stroke, the more positive SAL. For the movements
used in this paper SAL stayed negative throughout.

We defined the different phases during the accelerando-
decelerando task based on the tempo expressed in ioi as: slow
(> 0.6 s); transition (0.4–0.6 s); fast (0.2–0.4 s); and very fast

(< 0.2 s). Since we here only include right arm, the calculated iois
for drummers include one stroke, while those for cellists includes
both up- and down bows, halving iois. However, since the
drummers were striking with both hands the temporal regions
are comparable with respect to number of notes played. The
series of calculated SALmetrics for the phases of each participant

were then used as a basis to compare smoothness of players’
movements.

5.2. EMG Analysis
Details on the data treatment of muscle activity signal from
selected muscles on the dominant arm for each participant can
be found in the Supplementary Material. In brief, we segmented
the signal using the temporal locations identified from the
segmentation of kinematic data and computed a single smoothed
and normalized EMG signal for each participant, muscle, and
identified stroke.

We then applied time-varying Principal Component Analysis
(PCA) (see Supplementary Material and Santello et al., 2002;
Klein Breteler et al., 2006;Winges et al., 2013) in order to evaluate
coarticulation from burst patterns across strokes during the
exercises. The PCA results in a number of principal components
(PCs) which are ranked in terms of the amount of variance in
the data explained by each component (see Santello et al., 2002).
Each stroke can then be computed as its mean EMG amplitude
plus the sum of the ranked PCs (with PC1 explaining the most
variance, PC2 the secondmost variance etc.). For each participant
and playing phase, we then get a set of PCs, each representing the
combined muscle activation pattern during a stroke. Due to the
limited number of strokes for some playing phases for the cellists,
the activation patterns for cello players included both up- and
down strokes. This means that muscle activation patterns were
calculated across different phases of the movement which would
weaken the outcome of the PCA, but it was a necessary choice to
allow us to calculate the PCA for all phases. We set an arbitrary
threshold of 60% of cumulative variance accounted and used this
threshold in subsequent analysis, with the number of PCs needed
to achieve the 60% used as input to a regression model explained
in the results section.

6. RESULTS

As an illustration of the playability area discussed at the
end of section 3, we plotted the measured peak velocity of
each individual bow and drum stroke during the acceleration-
deceleration task against the measured inter-onset interval (ioi)
between strokes. Figure 3 shows the produced peak velocities at
different stroke duration for players of different skill. Similarly
to Visentin et al. (2008) we also indicate the phases. Linear
regression lines were fitted to velocity data for iois in “slow” and
“fast” temporal regions, respectively. The lines were extended
past their data regions to illustrate the transition where the
regions intersect. In addition to the playability area for players,
Figure 3 also reveal differences in how the players interpreted
the instructions. Specifically, some players moved very quickly
from one phase to another, which resulted in very few strokes
in the slow phase for several players. Since a minimum number
of strokes are needed to compute the input matrix for the PCA,
we therefore opted to include both up- and down strokes in
order to increase the number of data points. Although each
point represents one movement, the actual onset between events
differ since the drummers used two hands, producing events with
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FIGURE 3 | Measured peak velocity vs. inter onset intervals with fitted linear lines to illustrate the playability regions for the drummers (Top) and cellists (Bottom).

Note the smaller values in ioi for the cellists due to the separation of up- and down bows in ioi. For drummers D1 and D3 (top), the decrease in peak velocity when

accelerating from slow to fast (going from right to left along the ioi-axis) is clearly seen. Player D1 is able to push the limit of “break down” further than the students.

For the cellists the different phases are mainly seen for player C1 since students C2 and C3 had difficulty performing at faster tempi.

double density. In the following we present the results for each
instrument in more detail.

6.1. Drums
The top panel in Figure 3 shows the individual peak velocities
vs. ioi for drummers D1-D3. As can be seen, the range of iois
across the task is roughly 0.12–1 s, with gradually decreasing
peak velocity for faster strokes. The decrease in peak velocity
is expected, as there is little time to accelerate the stick during
fast playing. Notably drummer D2, who was struggling with the
exercises, display an overall low level in peak velocity also for
longer iois.

An example of the gradual reduction of peak velocity for
faster playing can be seen in the bottom panel of Figure 4. The
figure displays measured velocity of the drums stick marker for
participant D1 during the single roll task (bottom panel) with

the computed SAL in the top panel. The drum stick velocity
profile from participant D3 was consistent with the acceleration-
deceleration nature of the task, with higher values for the slow
tempo during for the first 10 s and clear decrease in peak velocity
for the shorter iois. Throughout the exercise SAL varied with peak
drum stick velocity from a minimum of −6.46 to a maximum of
−2.63 (mean =−3.97, sd =±0.96).

Figure 5 displays box plots showing median and ranges of
SAL across drummers and phases. As can be seen, smoothness
tended to increase at faster tempi (medianSALD1 = −2.76,
medianSALD2 = −2.76, medianSALD3 = −2.86 for the
very fast phase; medianSALD1 = −5.18, medianSALD2 =

−7.04, medianSALD3 = −5.17 for the slow phase). One
explanation for this is the general higher peak velocity produced
for strokes at slower tempi (see Figure 3). Moreover, differences
between participants were clearer during the fast and slow phases
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FIGURE 4 | Top: Drum stick spectral arc length metric evolution from participant D3 during the single roll task. Bottom: Drum stick velocity profile from participant D3

during the single roll task.

FIGURE 5 | SAL metric for the three drummers computed across different phases: Very fast (top left panel), fast (top right panel), transition (bottom left panel), and

slow (bottom right panel). Each box displays the range of upper and lower quartile values with the median as a red line in the middle. Whiskers are showing maximum

and minimum values. As can be seen, SAL decreases with decreasing inter-onset intervals for all players but more so for D2. The lower SAL at slower tempi is

explained by the sharper velodicty curve at impact for the more separated strokes (see Figure 4).

[Kruskal–Wallis χ2
(2) = 12.2, p = 0.002, and χ2

(2) = 10.21, p
= 0.006, respectively], while smoothness during the transition
phase was observed to be more consistent [χ2

(2) = 1.05, p =

0.592]. Higher peak velocity at impact results in a less smooth
movement curve due to the abrupt changes of direction for the
stick. With increase in tempo however, movement amplitude
decreases and with less runway the striking velocity, and resulting
sound level is reduced.

The contribution of each of the first 10 principal components
and their cumulative variance for each playing phase can be
seen in Figure 7. In most cases the first few PCs contribute
with the main part but as expected there are differences across
the players and tempi. In particular, the number of PCs needed
to explain 60% of the variance in muscle activity increases
for all players during the fast phase, but more evidently for
player D2.
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In Figure 9, the waveforms from the PCs are shown for each
muscle and player during the fast phase. The waves are centered
around the impact of the stroke (velocity peak) at 150 ms. For
all players, the central region of PC1 was dominated by bursts
of activity in the trapezius, with the later part of the component
dominated by bursts from the triceps and lower activity from

FIGURE 6 | SAL metric for the three cellists computed across different

phases: Fast (Top), transition (Middle), and slow (Bottom). Each box

displays the range of upper and lower quartile values with the median as a red

line in the middle. Whiskers are showing maximum and minimum values.

the wrist flexor. For participant D1, PC2 waveforms showed
high frequency bursts from the three analyzed muscles, reaching
maximum amplitude toward the last segment of the PC. Activity
from participant D2 in PC2 was characterized by dominance of
bursts from the triceps toward themiddle section of the PC, while
waveforms from D3 exhibited anticipated activity from trapezius
followed by coinciding bursts from flexor and triceps.

The PCA waveforms from drummers D1-D3 in the transition
phase are shown in Figure 10. Waveforms from PC1 showed
consistent patterns across participants, with dominant burst from
trapezius and triceps toward the second half of the stroke.
Activity from participants D1 and D3 was characterized by
initial bursts from triceps. PC2 from D1 and D3 showed high
frequency bursts across the stroke, with amplitude maximum
from the flexor toward the second half of the stroke. Participant
D3 exhibited a series of trapezius bursts across the stroke and
initial burst from flexor, with triceps activating in the final 100ms
of the stroke.

The waveforms from PC1 and PC2 for the slow phase revealed
inconsistent patterns across participants, as shown in Figure 11.
For participant D1, PC1 was characterized by predominant
sustained activity from the triceps preceding the peak of the
stroke, while waveforms from participant D2 showed bursts
from trapezius throughout the whole stroke duration and lower
amplitude bursts from the triceps. In participant D3 U-shaped
waveforms characterized activity from both trapezius and triceps.
Waveforms from PC2 in participants D1 and D2 exhibited high
frequency activity from all three muscles reaching maximum
amplitude toward the final part of the stroke.

6.2. Cello
The bottom panel in Figure 3 displays themeasured peak velocity
vs. ioi for the three cellists, C1-C3. The differences in variability
and playability area between players is clearly seen. Note that

FIGURE 7 | Principal component (PC) analysis results for drummers D1-3 for the different playing phases: fast (top panel), transition (middle panel), and slow (bottom

panel). Each panel shows the percentage of variance accounted for by PCs 1-10 for players D1 (blue), D2 (red), and D3 (gray).
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FIGURE 8 | Principal component (PC) analysis results for participants C1-3 for the different playing phases: very fast (top left panel), fast (top right panel), transition

(bottom left panel), and slow (bottom right panel). Each panel shows the percentage of variance accounted for by PCs 1-10 for players D1 (blue), D2 (red), and D3

(gray).

FIGURE 9 | Waveforms showing the two principal components of muscle activation across the trapezius (blue), triceps (orange), and wrist flexor (yellow) muscles for

drummers D1-3 in the fast phase (top right panel in Figure 7). Each panel shows the activation pattern centered around stroke onset (150 ms). The difference in

activation patterns across players is clearly seen.

the the bottom panel in Figure 3 includes both up- and down
bows and consequently have iois in half the range compared to
that of the drummers (top panel). Since only player C1 was able
to achieve very fast tempo during the exercise, we restricted the
analysis to the slow, transition, and fast phases for the cellists.
Furthermore, as can be seen by the number of points within
the slow phase, cellist C1 started the transition phase almost
immediately, resulting in only three strokes qualifying for the

slow phase. In order to make a comparison possible between
cello and drumming participants across all phases we decided to
include both up- and down bows. Median and ranges of SAL
across cellists and phases are shown in Figure 6, with greater
smoothness of bow movement at faster tempi for all participants
[Kruskal–Wallis χ2

(2) = 64.5, p < 0.001,medianSALC1 = −2.46,
medianSALC2 = −2.76, medianSALC3 = −2.80]. The transition
phase was characterized by smaller differences in SAL values
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FIGURE 10 | Waveforms showing the two principal components of muscle activation across the trapezius (blue), triceps (orange), and wrist flexor (yellow) muscles for

drummers D1-3 in the transition phase (bottom left panel in Figure 7). Each panel shows the activation pattern centered around stroke onset (150 ms).

FIGURE 11 | Waveforms showing the two principal components of muscle activation across the trapezius (blue), triceps (orange), and wrist flexor (yellow) muscles for

drummers D1-3 in the slow phase (bottom right panel in Figure 7). Each panel shows the activation pattern centered around stroke onset (150 ms).

across participants [χ2
(2) = 15.13, p < 0.001, medianSALC1 =

−3.04, medianSALC2 = −2.97, medianSALC3 = −3.14], while
the slow phase displayed less smooth movements for participants
C2 (medianSAL = −3.21) and C3 (medianSAL = −3.43)
compared to participant C1 [medianSAL = −2.067, χ2

(2) =
32.25, p < 0.001].

Results from the PCA for the cello exercises are shown
in Figure 8, displaying the contribution of each of the
first 10 principal components to bowing strokes for each
playing phase for each participant (C1-C3). Participant
C1 exhibited greater consistency across phases, with PC1
accounting for over 50%, and PC1 and PC2 cumulative
variance exceeding 60% in all three phases. During the fast
phase, the first two PCs accounted for over 60% of the

variance in the EMG patterns across bow strokes for all
participants.

PC waveforms from participants C1 and C2, shown in
Figure 12, exhibited consistent activity patterns from the deltoid
in PC1, starting at the middle of the stroke. For all three
participants PC1 was characterized by bursts from triceps, with
activity from participant C3 made of consecutive high frequency
bursts. PC2 in participant C1 was dominated by bursts from
trapezius in the middle section of the bowing stroke, while triceps
was the dominant muscle toward the end of the stroke for both
participants C1 and C2.

During the transition phase, PC waveforms across cellists
showed consistent patterns from participants C2 and C3, but
distinctive high frequency bursts from participant C1. PC1 from
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FIGURE 12 | Waveforms showing the two principal components of muscle activation across the deltoid (blue), trapezius (orange), triceps (yellow), and wrist flexor

(purple) muscles for cellists C1-3 in the fast phase (top panel in Figure 8). Each panel shows the activation pattern centered around bow onset (150 ms).

C1 was characterized by bursts from trapezius in peaking at
the center of the stroke, followed by bursts from triceps and
deltoid as seen in Figure 13. Participants C2 and C3 exhibited
dominant muscle activity from trapezius and from triceps
respectively in PC1. PC2 from C1 displayed high frequency
activity from all four muscles under analysis, while waveforms
from participant C2 showed alternating bursts from trapezius
and deltoid. Unlike participants C1 and C2, muscle activity
patterns from participant C3 in PC2 are dominated by flexor
bursts.

Figure 14 shows the waveforms from PC1 and PC2
for all three cellists during the slow phase. A distinct
burst from trapezius around 150 ms characterized PC1
from participant C1. Participants C2 and C3 exhibited
regular activity across the bowing stroke in PC1 from
trapezius and triceps, respectively. Waveforms from PC2
are characterized by deltoid bursts in all three cellists, with
participant C2 exhibiting a dominant deltoid burst toward
the middle section of the stroke. A sequence of deltoid and
trapezius bursts characterized PC2 from participant C1.
Interestingly, variability in flexor activity is observed only from
participant C3.

6.3. Contribution of Smoothness and
Coarticulation
After investigating the individual components of fluency
separately and for each instrument, we proceeded to explore
how they combine to explain musical performance skill.
Assuming that movement fluency is an integral part of expert
music performance, we therefore propose a model where
musical skill, as measured by the OMSI score, is predicted by
movement smoothness (SAL) and coarticulation (number of PCs
contributing to EMG variance).

Acknowledging the limited sample in our study, we include
the a predictor for effects related to individual player and

performed a multiple regression analysis for each phase, using
the model

OMSI = α + β1Player + β2SAL+ β3#PC

where OMSI is the measure of musical sophistication, α is the
intercept coefficient, and β1−β3 weights for the predictors Player
(player), SAL (median SAL across strokes), and #PC (number of
PCs for 60%).

The best fitting equations for the different playing phases were
Slow: Predicted OMSIslow = 1379.4–129.13 Player −22.28 SAL
−168.42 #PC, [F(3, 2) = 2.110, p = 0.34], with an adjusted R2

of 0.40.
Transition: Predicted OMSItrans = −489.1 to −410.49 Player
−673.60SAL −90.21#PC, [F(3, 2) = 23.430, p = 0.04], with an
adjusted R2 of 0.93.
Fast: Predicted OMSIfast = −4119.8 to −684.80Player −2304.41
SAL −107.50 #PC, [F(3, 2) = 1.459, p = 0.43], with an adjusted
R2 of 0.22.

Without correcting for multiple tests the equation for the
transition phase would just be significant on the .05 level, but
the predictions from the equations should be interpreted with
general caution. An additional effect of the very limited sample
size was non-normally distributed residuals for the slow and
transition phases, making it impossible to generalize from the
models.

7. DISCUSSION

The objective of this investigation was to explore the
quantification of fluency as a combination of coordination
and smoothness for drumming and cello bowing at different
tempi. We therefore recorded movement kinematics and
muscle activation data for a restricted sample of musicians
of differing skill, which we assessed via the Ollen Musical
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FIGURE 13 | Waveforms showing the two principal components of muscle activation across the deltoid (blue), trapezius (orange), triceps (yellow), and wrist flexor

(purple) muscles for cellists C1-3 in the transition phase (middle panel in Figure 8). Each panel shows the activation pattern centered around bow onset (150 ms).

FIGURE 14 | Waveforms showing the two principal components of muscle activation across the deltoid (blue), trapezius (orange), triceps (yellow), and wrist flexor

(purple) muscles for cellists C1-3 in the slow phase (bottom panel in Figure 8). Each panel shows the activation pattern centered around bow onset (150 ms).

Sophistication Index (OMSI). Arguably, the sample size is
very small but serves as a proof of concept. The results show
some promise and indicate that the approach can be useful to
assess movement performance and generalize across players
of different instruments and skill. Something that makes the
approach attractive for use in technology assisted instrument
pedagogy. In the following we will discuss our results along with
some of the limitations of the study.

Our choices for measures of coordination and smoothness
included motion capture and recording of muscle activity in a
laboratory setting. One possible objection could be that currently
these tools are not normally available for use by a music student
during practice. While the development of an actual system for
computer assisted tutoring is outside the scope of this paper,

we argue that soon it will indeed be possible for such systems
to record surface EMG as well as movement information. The
rapid development of real-time tools for image processing (e.g.,
EyesWeb3 and OpenPose4), as well as the decreasing price of
sensors (e.g., Myo5) makes the outlook for kinematic and EMG
supported feedback very promising.

Some other methodological choices deserve discussion. We
divided and analyzed data according to the temporal phases in
the tempo acceleration - deceleration task which we identified as
slow, transition, fast, and very fast. These playability areas for

3infomus.org/eyesweb_ita.php
4github.com/CMU-Perceptual-Computing-Lab/openpose
5https://support.getmyo.com/hc/en-us
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each player in Figure 3 illustrate how peak velocity varies with
phase for each player. While the transition phase show clear
changes in peak velocity for some players, the distinction is
less clear for others. The critical points, identified by Visentin
et al. (2008) as separating the phases of motor control for
violinists, were distinguished by combined changes in both
bowing distance, speed, and acceleration for professional players.
In our study, the same break points can be discerned for player
C1, but not for the less trained players.

Figure 3 also shows how the number of strokes available for
analysis are unevenly distributed across the different phases.
While the skilled players were able to play at very fast tempi,
something the less trained students were unable to do, the slow
phase did not always contain enough strokes. Specifically, player
C1 only produced three strokes in total in before moving to the
transition phase. This uneven distribution limited our options for
statistical analysis. In particular, statistical comparisons between
participants must be observed with caution. Kruskal–Wallis test
comparisons were performed due to the non-normal distribution
of data, however, the dependent nature of consecutive drumming
and bowing strokes make it difficult to argue for independence
of data points. Furthermore, in order to have enough data for
the PCA for all players and phases, we included both up- and
down strokes, increasing the number of data points. This limits
the interpretation of the PCA waveforms for the cello strokes.
To avoid similar problems in future studies, larger samples
of participants should be instructed to remain at the slow,
comfortable tempo until a minimum number of strokes have
been collected before commencing the accelerando.

7.1. Movement Smoothness
In this study, we applied spectral arc length (SAL) as a metric
for movement smoothness for strokes in drumming and cello.
Spectral arc length has been tested against previously developed
smoothness metrics, mostly aiming at clinical applications,
evaluating hand movement from stroke and healthy individuals.
Although our application of the metric differs somewhat
compared to earlier studies, SAL has been proved to have
superior sensitivity to changes in movement and reduced
noise levels compared to previously developed jerk-based and
peak metrics. Moreover, it was originally thought to be used
to infer not only motor recovery, but also motor learning
(Balasubramanian et al., 2012). Specifically, we here use SAL to
compare movement smoothness between musicians of varying
expertise across different instruments and movement duration.
In this sense, the measure is here used for healthy movements
where the velocity profile is expected to vary with tempo, and
the results are expected to reflect expertise across movement
temporal phases.

In the drumming task, SAL was shown to be mostly consistent
across participants and phases, with the largest differences
occurring during the slow phase. Drummers were shown
to increase stroke smoothness at faster tempi and decrease
smoothness at slow tempi. This is in correspondence with the
higher peak acceleration for strokes at slow tempi reported
by Dahl et al. (2011). Notably, for the slow phase participant
D2 exhibited the lowest SAL values across all participants

(see Figure 5), perhaps consistent with the lower musical
sophistication index for this player (58, lowest OMSI score
among drummers). Similarly, smoothness analysis of the cello
task revealed consistent SAL values during the fast and transition
phases, and larger differences between participants during the
slow phase. Differences in OMSI score between participants
seemed to be highlighted during the slow playing phase, as
participant C1 exhibited the smoothest strokes when compared
with C2 and C3. However, the number of strokes during the slow
phase are too few to generalize.

A relationship between SAL and OMSI score during the
transition and slow playing phases could be an indication of
the degree of difficulty associated with accelerando sequences
and the nature of the experiment, with participants concentrated
on achieving maximum tempo even during the slower phases
of the exercises. In particular, less experienced cellists were
shown to be less able to properly shift between phases since
their control system is not yet ready for performing fast bowing
movements due to the lack of repetition and practice of such
movements over time. Research within deliberate practice finds
that virtuoso movements/advanced technical skills require vast
and varied repetition over time. This is shown on fMRI samples
from violinists and non-violinists (Schwenkreis et al., 2007).
Furthermore, expert participants seemed tomaintain a consistent
movement smoothness across phases, while less experienced
participants showed greater variability. These assumptions are
in line with conclusions by Kerr et al. (2013), where hesitation
in whole body movement (measured as drop in measured initial
velocity) and smoothness were proposed as underlying factors of
movement fluency. Following findings in Kerr et al. (2013), we
could argue that the predicting power of smoothness in a fluency
model during slow and transition phases will in part be linked
to greater hesitation from less experienced players. Moreover,
measures of smoothness have been shown to accurately reflect the
ability of a performer on a specific task, assessing skillful motor
control and execution with high sensitivity to familiarity to tasks
and environments (Balasubramanian et al., 2015). In this sense,
the use of smoothness toward skill prediction in our proposed
model could lead to a more precise identification of proficiency
development.

7.2. Muscle Coarticulation
We performed principal component analysis aiming at rendering
additional evidence of variability of coarticulation patterns in
expert and novice musicians across temporal phases and at using
such coarticulation variability as input to a proposed model of
fluency. Our results showed relatively consistent EMG patterns
between cellists and drummers, with musicians with the highest
OMSI score exhibiting less variability across temporal phases,
and, in general, with fewer principal components accounting for
the majority of the EMG variance.

While Winges et al. (2013) found that expert and amateur
pianists show similar patterns of muscle activity to balance
striking and non-striking digits while playing excerpts of musical
pieces, we found differences across skill levels when musicians
were asked to play tempo-changing exercises. Results from our
study could be partially supported by findings by Parlitz et al.
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(1998), in which amateur pianists were shown to use greater force
to achieve higher tempo when compared with professionals. In
our study, variance in muscle activity in cellists with lower OMSI
score was explained by a greater number of principal components
during the transition and slow phases. On the other hand, PC
patterns between drummers were less clear, although variability
between phases was greater for participants with lower OMSI
score.

In order to further examine patterns of coarticulation and
their role in differences in skill levels between musicians and
across temporal phases, we extracted the waveforms from each
of the first two principal components for each participant. EMG
patters from drummers in PC1 were relatively consistent in
the fast and transition phases, with predominant bursts from
trapezius alternated with bursts from triceps for all participants.
Interestingly, bursts from participants D1 and D3 were shown to
scale down as tempo decreased, while this trend is not observable
in participant D2. These results could be supported by previous
studies that have found coarticulation to be largely dependent on
the duration and rate scaling of movement events, with muscles
anticipating subsequent movement events (Sosnik et al., 2004;
Klein Breteler et al., 2006; Winges et al., 2013; Godøy et al., 2017).

The variability in EMG patterns across cellists and across
phases could be attributed to traces of such shaping of muscle
contributions to adapt to specific goals, with waveforms in PC1
from participant C1 showing deltoid and triceps bursts scaling
down in width as tempo decreased. In particular, PC1 during
the transition phase displayed phasic coactivation of trapezius,
triceps, and deltoid, while transition waveforms from participants
C2 and C3 were mostly consistent activity from one muscle.
These observed phasic muscular coactivation has been shown
to modulate joint stiffness during time-varying force production
tasks (Franklin andWolpert, 2011;Winges et al., 2013), as was the
case for the transition phase in our study. Moreover, the observed
high frequency phasic coactivation from participant C3 during
the fast phase might suggest joint stiffness partly due to lack of
skill and experience. The coactivation for participant C1 in the
fast phase was considerably smaller.

For our model of fluency, we selected the number of PCs
required to explain 60% of variance but other measures of
muscle activity that distinguish experts from novice performers
are available. For instance Fujii et al. (2009b) measured the
activity of agonist and antagonist muscles (flexor and extensor)
for drummers and non-drummers and contrasted onset and
offset times for bursts as well as co-contraction. Rather than
focusing on agonist and antagonist muscles, we were interested
to study the muscle activation from proximal to distal. Related
theories on muscle modularity have proposed that bursts of
fixed duration frommultiple muscles make up synergistic control
during complex sustained human movement, while variations in
tempo have been shown to be related to scaling of the duration
of EMG bursts (Flanders, 2002; d’Avella, 2016). Future research
could therefore include the assessment of bursts timing.

7.3. Fluency
We aimed at exploring movement fluency not as a subjective
measure of skill and function, but as an objective metric

that can be measured through its underlying components.
We speculated that the characteristics commonly attributed to
fluent movements (such as graceful and effortless movement
execution) can be assessed from the measurement of movement
and motor control patterns in relation with music playing skill.
Consequently, we used ameasure of music sophistication (OMSI,
Ollen, 2006) as our reference for musical performance skill,
and computed linear regression models explaining OMSI as
a function of smoothness and coarticulation. several studies
have developed and validated objective measures of skill
and movement quality, mainly based on kinematics, whereas
fewer attempts have been made toward developing a robust
and encompassing metric of movement fluency that takes
into consideration other aspects of human movement and
skill acquisition. Our proposed approach builds on efforts by
Kerr et al. (2013), individually measuring aspects associated
with movement fluency, although aiming at skill acquisition,
performance, and assisted learning. As explored through
regression analysis, the combination of SAL and number
of PCs could contribute to explain some of the variability
in the musical sophistication index, as measured by OMSI.
However, due to the small sample size and the unbalanced
number of observations between participants, the model should
be interpreted with caution. A larger group of participants
of different musical sophistication would allow the testing
of a more robust and generalizable model and presumably
also exclude “Player” as a predictor. Despite the limited
number of participants in our study, we consider the span
(46–984) in OMSI satisfactory. OMSI>500 indicates a high
probability that the player would be rated as having high
musical sophistication by an expert. Players C1 (984) and D1
(755) achieve high OMSI, which, together with their roles
as professional instrumental teachers, support their status as
“experts” in our study. However, we here make the assumption
that the musical sophistication measured by OMSI is indicative
of movement fluency. Although our assumption appears likely,
based on the research reported in section 3, it remains an
assumption without qualitative ratings of movement fluency
directly, e.g., from point light representations of movement data.
Such ratings could accompany a future study including more
participants.

8. CONCLUSION

In our present exploratory study, we characterized fluency in
music performance as a combination of movement smoothness
and coarticulation, reflecting effort minimization through
coordination strategies. Analysis of kinematic and muscle
activation data of cello players and drummers of varying skill
served as a proof of concept that the approach can be used
for different kinds of movements, valuable for generic use
in technology assisted music pedagogy. Although lacking the
robustness and statistical validity to render conclusive evidence,
the suggested model predicting a musical sophistication index
(OMSI) can be further validated in future studies involving more
players.
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While a number of studies have investigated specific features
of skilled movement in music performance, there are still open
questions regarding individual differences due to anatomical and
technical variance. We therefore see our contribution as a first
step to objectively quantify a phenomenon that for years has
been considered subjective and observational. We make use of
measures and analysis techniques that have been shown to inform
on performance related features, and discussed on the relevance
of such features in order to fully understand the skill acquisition
process in musical training. Furthermore, the analysis of sound
producing actions might inherently require investigating the
properties of the produced sound in order to fully assess
the complex nature of music performance. Future studies will
aim at the statistical validation of the proposed features and
models of fluency in music performance, overcoming some of
the methodological limitations of the present work, as well as
diversifying instruments, techniques, and expertise levels.
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