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Abstract: This work presents a vision based navigation system for an autonomous drone that
is capable of recognizing and locating wind mills. WindMillNet, a Deep Neural Network created
for this purpose was specially trained to recognize wind mills on camera images using transfer
learning techniques. The drone powered by WindMillNet scans the horizon to find wind mills,
and after perceiving a wind mill, navigates towards it, with the goal of performing its inspection.
A hierarchical control system, implemented in the drone provides stability and control of its
movements. Our framework was designed using a cyber-physical systems approach using high-
level abstractions in modeling, communication, control and computation.
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1. INTRODUCTION

In the recent years the application of various drone plat-
forms has attracted a huge interest due to their versatility
of use in the industry and in the commercial market, where
the quad-copter is one of the most popular types of drones.
The industry sees great potential in the application of this
technology and has invested up to 127 billion dollars in
2015, according to Raconteur (2016). Most of the current
applications of drones rely on human pilots to perform
specific tasks. The drones include automatic controllers
in hardware and software that control their altitude and
position, keeping the pitch and roll angle at 0 degrees and
achieving system stability at a specific height, horizontal
and vertical positions Bristeau et al. (2011), Hua et al.
(2013), Smolyanskiy et al. (2017).

The ultimate goal of this research is to create a drone
platform capable of navigating autonomously in offshore or
onshore wind farms, to inspect wind mills, looking for po-
tential defects. As of 2016 in the North Sea, 7% of the off-
shore wind-mill inspections were done by remotely piloted
drones, Jamieson (2018). According to Deign (2016), one
such inspection costs up to 800 USD per wind mill, where
this price includes a pilot and a data analysis technician.
However this price does not include the cost of renting a
ship to carry the drones, the pilot and crew to reach the
wind mill, which according to other sources ranges from
6000-8000 euros. Automating the process of inspection for
a full wind mill farm has thus a large economic impact. To
address this problem we use a combination of state of the
art supervised machine learning and control techniques.
Deep neural networks are used for object recognition and
control systems for stability and movement control. This
combination resembles the way humans use their visual
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perception capabilities to search for objects within a space,
in order to determine the movements needed to reach
them. However, the reliable implementation of a visual
recognition system for wind mills is one of the most chal-
lenging tasks for autonomous inspection. Therefore the
focus of this work is in the implementation of a vision
based system for navigation and localization of wind mills
within an offshore or onshore environment.

Visual-based navigation of unmanned vehicles has been
been extensively researched. Some of the approaches that
employ neural network techniques are Pomerleau (1989),
Pomerleau (1991), Bojarski et al. (2016), Giusti et al.
(2016), Smolyanskiy et al. (2017), Loquercio et al. (2018),
Drews et al. (2018). In Pomerleau (1991) a video cam-
era captures images of the environment ahead of the
autonomous vehicle that are fed into a neural network
(NN), with an input layer consisting of an array of 30 x 32
neurons, with 5 hidden layers fully connected to a output
layer consisting of 30 neurons, which represent the vehicles
direction, left right and straight ahead. A similar approach
was reported in an earlier work by Pomerleau (1989), with
the addition of a range finder and a road intensity feedback
unit to the input layer. NVIDIA’s Car in Bojarski et al.
(2016) uses three cameras located on the car’s dashboard
to collect training data for three different directions, where
the trained system computes the correct steering direction
in order for the vehicle to travel in the middle of a lane.
The approach described in Giusti et al. (2016) is based on
a deep neural network (DNN) used for visual perception of
forest trails, where a monocular image is the input and the
output consists of three values which are the probabilities
of the three classes [Turn left, Go straight, Turn right]. The
training data-set was collected via three head-mounted
cameras. The solution was implemented on two quad-rotor
platforms and the results were mixed, as a poor camera
quality was reported to cause issues in high contrasted
images. The performance, however was good in well lit
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forest trails, where a monocular image is the input and the
output consists of three values which are the probabilities
of the three classes [Turn left, Go straight, Turn right]. The
training data-set was collected via three head-mounted
cameras. The solution was implemented on two quad-rotor
platforms and the results were mixed, as a poor camera
quality was reported to cause issues in high contrasted
images. The performance, however was good in well lit
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1. INTRODUCTION

In the recent years the application of various drone plat-
forms has attracted a huge interest due to their versatility
of use in the industry and in the commercial market, where
the quad-copter is one of the most popular types of drones.
The industry sees great potential in the application of this
technology and has invested up to 127 billion dollars in
2015, according to Raconteur (2016). Most of the current
applications of drones rely on human pilots to perform
specific tasks. The drones include automatic controllers
in hardware and software that control their altitude and
position, keeping the pitch and roll angle at 0 degrees and
achieving system stability at a specific height, horizontal
and vertical positions Bristeau et al. (2011), Hua et al.
(2013), Smolyanskiy et al. (2017).

The ultimate goal of this research is to create a drone
platform capable of navigating autonomously in offshore or
onshore wind farms, to inspect wind mills, looking for po-
tential defects. As of 2016 in the North Sea, 7% of the off-
shore wind-mill inspections were done by remotely piloted
drones, Jamieson (2018). According to Deign (2016), one
such inspection costs up to 800 USD per wind mill, where
this price includes a pilot and a data analysis technician.
However this price does not include the cost of renting a
ship to carry the drones, the pilot and crew to reach the
wind mill, which according to other sources ranges from
6000-8000 euros. Automating the process of inspection for
a full wind mill farm has thus a large economic impact. To
address this problem we use a combination of state of the
art supervised machine learning and control techniques.
Deep neural networks are used for object recognition and
control systems for stability and movement control. This
combination resembles the way humans use their visual
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perception capabilities to search for objects within a space,
in order to determine the movements needed to reach
them. However, the reliable implementation of a visual
recognition system for wind mills is one of the most chal-
lenging tasks for autonomous inspection. Therefore the
focus of this work is in the implementation of a vision
based system for navigation and localization of wind mills
within an offshore or onshore environment.

Visual-based navigation of unmanned vehicles has been
been extensively researched. Some of the approaches that
employ neural network techniques are Pomerleau (1989),
Pomerleau (1991), Bojarski et al. (2016), Giusti et al.
(2016), Smolyanskiy et al. (2017), Loquercio et al. (2018),
Drews et al. (2018). In Pomerleau (1991) a video cam-
era captures images of the environment ahead of the
autonomous vehicle that are fed into a neural network
(NN), with an input layer consisting of an array of 30 x 32
neurons, with 5 hidden layers fully connected to a output
layer consisting of 30 neurons, which represent the vehicles
direction, left right and straight ahead. A similar approach
was reported in an earlier work by Pomerleau (1989), with
the addition of a range finder and a road intensity feedback
unit to the input layer. NVIDIA’s Car in Bojarski et al.
(2016) uses three cameras located on the car’s dashboard
to collect training data for three different directions, where
the trained system computes the correct steering direction
in order for the vehicle to travel in the middle of a lane.
The approach described in Giusti et al. (2016) is based on
a deep neural network (DNN) used for visual perception of
forest trails, where a monocular image is the input and the
output consists of three values which are the probabilities
of the three classes [Turn left, Go straight, Turn right]. The
training data-set was collected via three head-mounted
cameras. The solution was implemented on two quad-rotor
platforms and the results were mixed, as a poor camera
quality was reported to cause issues in high contrasted
images. The performance, however was good in well lit

10th IFAC Symposium on Intelligent Autonomous Vehicles
Gdansk, Poland, July 3-5, 2019

Copyright © 2019 IFAC

Vision Aided Navigation of a Quad-Rotor
for Autonomous Wind-Farm Inspection

Petar Durdevic ∗ Daniel Ortiz-Arroyo ∗ Shaobao Li ∗

Zhenyu Yang ∗

∗ Aalborg University, Department of Energy Technology, Niels Bohrs
Vej 8, Esbjerg, Denmark (e-mail: pdl@et.aau.dk, doa@et.aau.dk).

Abstract: This work presents a vision based navigation system for an autonomous drone that
is capable of recognizing and locating wind mills. WindMillNet, a Deep Neural Network created
for this purpose was specially trained to recognize wind mills on camera images using transfer
learning techniques. The drone powered by WindMillNet scans the horizon to find wind mills,
and after perceiving a wind mill, navigates towards it, with the goal of performing its inspection.
A hierarchical control system, implemented in the drone provides stability and control of its
movements. Our framework was designed using a cyber-physical systems approach using high-
level abstractions in modeling, communication, control and computation.

Keywords: Quad-copter,Control,Artificial Intelligence,Vision,Neural Networks

1. INTRODUCTION

In the recent years the application of various drone plat-
forms has attracted a huge interest due to their versatility
of use in the industry and in the commercial market, where
the quad-copter is one of the most popular types of drones.
The industry sees great potential in the application of this
technology and has invested up to 127 billion dollars in
2015, according to Raconteur (2016). Most of the current
applications of drones rely on human pilots to perform
specific tasks. The drones include automatic controllers
in hardware and software that control their altitude and
position, keeping the pitch and roll angle at 0 degrees and
achieving system stability at a specific height, horizontal
and vertical positions Bristeau et al. (2011), Hua et al.
(2013), Smolyanskiy et al. (2017).

The ultimate goal of this research is to create a drone
platform capable of navigating autonomously in offshore or
onshore wind farms, to inspect wind mills, looking for po-
tential defects. As of 2016 in the North Sea, 7% of the off-
shore wind-mill inspections were done by remotely piloted
drones, Jamieson (2018). According to Deign (2016), one
such inspection costs up to 800 USD per wind mill, where
this price includes a pilot and a data analysis technician.
However this price does not include the cost of renting a
ship to carry the drones, the pilot and crew to reach the
wind mill, which according to other sources ranges from
6000-8000 euros. Automating the process of inspection for
a full wind mill farm has thus a large economic impact. To
address this problem we use a combination of state of the
art supervised machine learning and control techniques.
Deep neural networks are used for object recognition and
control systems for stability and movement control. This
combination resembles the way humans use their visual

� This work was sponsored by the Department of Energy Technology
at Aalborg University Denmark. In addition, we would like to
acknowledge the support extended by Aerodyne AtSite.

perception capabilities to search for objects within a space,
in order to determine the movements needed to reach
them. However, the reliable implementation of a visual
recognition system for wind mills is one of the most chal-
lenging tasks for autonomous inspection. Therefore the
focus of this work is in the implementation of a vision
based system for navigation and localization of wind mills
within an offshore or onshore environment.

Visual-based navigation of unmanned vehicles has been
been extensively researched. Some of the approaches that
employ neural network techniques are Pomerleau (1989),
Pomerleau (1991), Bojarski et al. (2016), Giusti et al.
(2016), Smolyanskiy et al. (2017), Loquercio et al. (2018),
Drews et al. (2018). In Pomerleau (1991) a video cam-
era captures images of the environment ahead of the
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layer consisting of 30 neurons, which represent the vehicles
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the addition of a range finder and a road intensity feedback
unit to the input layer. NVIDIA’s Car in Bojarski et al.
(2016) uses three cameras located on the car’s dashboard
to collect training data for three different directions, where
the trained system computes the correct steering direction
in order for the vehicle to travel in the middle of a lane.
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a deep neural network (DNN) used for visual perception of
forest trails, where a monocular image is the input and the
output consists of three values which are the probabilities
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conditions. The system was not equipped with obstacle
detection which resulted in frequent crashes. The work in
Smolyanskiy et al. (2017) is based on trail following using
a DNN called TrailNet, which determined the orientation
[facing left, facing center, facing right] and lateral offset
[shifted left, centered, shifted right] within the terrain,
computing a pose which is used for control of the drone.
The system is coupled with a visual odometry component
for obstacle avoidance.

In Loquercio et al. (2018) a similar approach was taken
where a shared residual Convolution Neural Network
(ConvNet) named DroNet was fed with a 200 x 200 pixel
gray-scale image. The output of this network is a steering
angle and the probability of collision, which is then used
as a feedback parameter to determine the drone’s forward
velocity. If the probability of collision is high the forward
velocity will be zero, otherwise the drone will fly at max-
imum speed. More recently in Drews et al. (2018) deep
learning-based road detection was combined with particle
filters and MPC for control and navigation of an RC off-
road four wheeled vehicle on a dirt track.

In all of these works the terrain was well defined, with
either a road, a forest trail or a track. However, as is
mentioned in Giusti et al. (2016) forest and dessert roads
represent a more challenging perception problem than
paved roads as their appearance changes and their shape
is not constrained as is the case with the city landscape,
which in most cases follows regulatory codes. In our case
the perception task is even more challenging, since our aim
is to find a wind mill and navigate towards it in spaces
where there are no landmarks available that can be used
for navigation. The use of GPS may partially help in this
regard but its relatively low precision restricts its use in
this environment.

State of the Art in Deep Neural Networks Deep Neural
Networks (DNNs) are one of the most successful machine
learning techniques we have today. DNNs achieved remark-
able results in solving one of the key problems in artificial
intelligence and computer vision: the problem of object
recognition in images. A DNN consists of a deep stack
of multiple neuron layers, where each layer is capable
of learning a partial representation of the features of an
object. The architecture of modern DNNs employs a com-
bination of ConvNets that filter out simple object features,
pooling layers that merge semantically these features to
recognize more complex patterns, normalization layers to
avoid the problem of vanishing gradients and fully inter-
connected layers that provide weight distribution. DNNs
also commonly use Rectified Linear Units (ReLUs) and
regularization techniques such as dropout together with
the stochastic gradient descent and back propagation al-
gorithm for training. Finally, a softmax function calculates
the probability that an image belongs to a predefined
category of objects.

DNNs with 16 to 30 layers are commonly used in some
of the leading image recognition models such as AlexNet,
described in Krizhevsky et al. (2012). However, as we
add more layers, DNNs have the problem of degradation
in accuracy. Deep Residual Networks like ResNet were
proposed in He et al. (2016) to avoid this problem. More
recently the combination of a residual network with more

traditional architectures such as the Inception network
has shown even better results in Szegedy et al. (2016),
achieving shorter training times. Finally, the Squeeze and
Excitation network in Hu et al. (2017) combining fully
connected, residual and inception networks has achieved
the highest performance in the ILSVRC 2017 image clas-
sification contest, with only 2.5% misclassification rate.

One of the main drawbacks of DNNs is that they require
millions of labeled images for training. The use of these
big data-sets produces long training times, even if DNNs
are trained in high performance graphics processing units
(GPU). To address this problem, transfer learning tech-
niques were proposed in Razavian et al. (2014). In transfer
learning the initial layers of a pre-trained DNN model are
kept unchanged but the last layers are substituted to adapt
the network to a new image classification task. The goal
is to reduce the number of training examples needed by
keeping the weights associated to the basic pre-learned
patterns contained in most objects such as simple edges
and contours. The network is then trained again with a
new data-set, to learn the more complex features of new
objects using new layers and weights. The modified DNN is
trained again by either, fixing the weights in the first layers
or using a low learning rate. This is done with the goal of
preventing the network to “forget” the pre-trained weights
when high learning rates are used. Additionally, in transfer
learning, it is also common to use data augmentation.
In data augmentation, artificial transformations such as
translations, scaling and rotation of images are performed
in memory. This is done for two reasons, firstly to increase
the size of the data-set used for training and testing, and
secondly to avoid over-fitting the network.

2. PROBLEM FORMULATION

The autonomous navigation of a quad-copter or any other
robot introduces several challenges. Firstly, commercial
drones such as DJI Matrice 600, DJI (2018), have limited
capabilities in processing and power consumption. Sec-
ondly, the quad-copter must first perceive its surroundings,
find a target and then react to it in an intelligent manner.
Object recognition can be implemented with specialized
DNNs, but due to the complexity of its structure, DNNs
have high computational costs. To address this issue,
training and inference of DNNs are commonly performed
on GPUs containing thousands of CUDA cores. Recent
advancements in dedicated low power hardware for DNNs,
such NVIDIA Jetson TX2, Xavier AGX cards or the ’Mo-
vidius Neural Compute Stick’, Intel (2019), may be also
used to perform inferences locally in the drone.

Our current prototype employs a distributed architecture
consisting of a Ground Control Station (GCS) that per-
forms the heavy computations required for training and
inference on a high performance GPU. A client in the
drone sends images from the camera and receives a proba-
bility value indicating if the image contains a wind mill or
not. This approach is flexible but has the disadvantage
of reducing the level of autonomy and requires a high
bandwidth wireless connection to send the images from
the camera installed on the drone and to receive commands
from the GCS. Streamlining this process will be attend to
in future work.
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Wind Mill Inspection Our proposed approach for wind
mill inspection can be briefly described as follows: 1)
The quad-rotor takes off at a random location 2) The
perception algorithm based on DNN searches for the wind
mill; 3) When the windmill is found the quad-rotor flies
towards the desired trajectory.

However, the ultimate goal in wind mill inspection is
that the drone could recognize a landmark within the
windmill (such as the center of the mill) to make this the
initial condition and apply a localization algorithm such
as simultaneous localization and mapping (SLAM). SLAM
could then be used to scan the whole windmill for faults
by constantly calculating its current position within the
wind mill space.

3. PERCEPTION-BASED NAVIGATION

This section first describes the DNN and how it was
trained, followed by a detailed explanation of the vision
based navigation technique.

3.1 Wind Mill Recognition Network

Training of DNNs requires the use of large data-sets
to allow them to accurately recognize multiple objects.
For instance, AlexNet is able to recognize 1000 different
objects, but was trained with millions of images. To avoid
this issue, we used transfer learning, adapting AlexNet to
make it capable of recognizing wind mills. We called our
DNN model, WindMillNet. Figure 1 shows partially the
architecture of WindMillNet. For a detailed explanation
of all layers in AlexNet see Krizhevsky et al. (2012).
WindMillNet has 22 layers including a combination of
ConvNets, ReLUs, dropout, polling, fully connected and
softMax functions layers.

The last 3 layers of AlexNet were replaced to adapt
them to the new wind mill classification task. These
layers; are a fully connected network layer, a softmax
layer and a classification layer. The fully connected layer,
multiples the pre-trained weights associated to the basic
features learned by previous layers and adds an offset. The
softmax layer applies the softmax function to its inputs
to produce a value in the range [0, 1] that represents the
probability P (l) ∈ [0, 1] that an image corresponds to a
specific object. Finally, the classification layer calculates
the cross entropy loss, a step normally performed in
multi-classification problems where the multiple classes are
mutually exclusive. To train WindMillNet we used a small
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Fig. 1. Architecture of WindMillNet

data-set of 50 wind mills and 50 images representing our
testing environment that included different images of our
experimental setup room. For data augmentation we used

synthetic reflexions and translations to get a total of 300
images; 70% of these images were used for training and
30% for validation. The first layers of the network were
trained with stochastic gradient decent using a batch size
of 10 and a low learning rate of 0.0001. The last layers
were trained with a fast weight learning and bias rate of
20 so that they could learn the new features of wind mills
faster.

Figure 2 shows the training progress of the network in 20
epochs with 9 iterations per epoch. WindMillNet reached
an accuracy of 96.46% after being trained on a GPU with
1152 CUDA cores.
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Fig. 2. Accuracy progress in validation

3.2 Vision based navigation using DNN

After taking off, the drone is set to scan the horizon for
a windmill by rotating in the yaw direction, during which
images are captured by the camera and sent to the GCS.
These images are fed to WindMillNet, that classifies them
and calculates in real-time the probability P (l) that a wind
mill appears in an image. The vision based navigation is a
type of event based control, a detailed explanation follows.

Since the drone keeps moving while searching for a wind
mill, P (l) will change over time. P (l) will be maximum
when the whole wind mill appears in the field of vision
of the drone’s camera. When that probability is above a
threshold value, i.e. P (l) > threshold, the drone stops
scanning, and the event that moves the drone towards
the windmill is triggered. The forward movement event
is stopped when the drone reaches a safe distance from
the wind mill.

We did not consider the use of optical zooming to increase
this probability. In this scenario the effect of the initial
distance from the drone to the wind mill on WindMillNet’s
accuracy should be taken into account. If the wind mill
is initially placed too far away from the drone, it will
have a relatively small size on the camera that could
confuse WindMillNet to mistakenly classify it as part of
the environment. To reduce this effect, once the initial
scanning of the environment is performed and no windmill
has been detected (i.e. if P (l) < threshold), our vision
system splits the image into equally sized smaller segments
and calculates in parallel using four copies of WindMillNet,
the probability that each segment may contain a wind mill,
with individual probabilities, P (l)ij , where i and j are the
row and column of the segmented image. This is shown in
Figure 3. We call this aCompounded Eye vision system,
which draws its inspiration from a fly’s eye, where each
segment is analogous to a fly’s lens Srinivasan (2011). This
strategy increases the probability of detecting a wind mill
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testing environment that included different images of our
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synthetic reflexions and translations to get a total of 300
images; 70% of these images were used for training and
30% for validation. The first layers of the network were
trained with stochastic gradient decent using a batch size
of 10 and a low learning rate of 0.0001. The last layers
were trained with a fast weight learning and bias rate of
20 so that they could learn the new features of wind mills
faster.

Figure 2 shows the training progress of the network in 20
epochs with 9 iterations per epoch. WindMillNet reached
an accuracy of 96.46% after being trained on a GPU with
1152 CUDA cores.
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3.2 Vision based navigation using DNN

After taking off, the drone is set to scan the horizon for
a windmill by rotating in the yaw direction, during which
images are captured by the camera and sent to the GCS.
These images are fed to WindMillNet, that classifies them
and calculates in real-time the probability P (l) that a wind
mill appears in an image. The vision based navigation is a
type of event based control, a detailed explanation follows.

Since the drone keeps moving while searching for a wind
mill, P (l) will change over time. P (l) will be maximum
when the whole wind mill appears in the field of vision
of the drone’s camera. When that probability is above a
threshold value, i.e. P (l) > threshold, the drone stops
scanning, and the event that moves the drone towards
the windmill is triggered. The forward movement event
is stopped when the drone reaches a safe distance from
the wind mill.

We did not consider the use of optical zooming to increase
this probability. In this scenario the effect of the initial
distance from the drone to the wind mill on WindMillNet’s
accuracy should be taken into account. If the wind mill
is initially placed too far away from the drone, it will
have a relatively small size on the camera that could
confuse WindMillNet to mistakenly classify it as part of
the environment. To reduce this effect, once the initial
scanning of the environment is performed and no windmill
has been detected (i.e. if P (l) < threshold), our vision
system splits the image into equally sized smaller segments
and calculates in parallel using four copies of WindMillNet,
the probability that each segment may contain a wind mill,
with individual probabilities, P (l)ij , where i and j are the
row and column of the segmented image. This is shown in
Figure 3. We call this aCompounded Eye vision system,
which draws its inspiration from a fly’s eye, where each
segment is analogous to a fly’s lens Srinivasan (2011). This
strategy increases the probability of detecting a wind mill
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in cases where its initial relative distance or position from
the drone is too far away.

Fig. 3. Parallel DNNs probability calculation for each
segment

A similar method is applied to recognize objects in other
image segmentation methods. In some of these methods
a sliding window is placed on an image and shifted con-
tinuously. The window’s content is analyzed by a DNN
looking for objects similar to the ones used when training
it with manually labeled images. Other approaches start
with a small window that is increased incrementally as the
probability for finding a known labeled object increases.

4. DRONE DYNAMICS AND NAVIGATION
CONTROL

Fig. 4. Kinetic variables and coordinates describing the
drone’s dynamic.

In this section, a series of PID controllers are designed
aiming at stabilizing the quad-rotor and enable its motion
towards the wind mill. The quad-rotor is a 6-DOF under-
actuated system, whose dynamics are modeled based on
the works of Dikmen et al. (2009), Bolandi et al. (2013),
Choi and Ahn (2015) as follows:

mξ̈ = FRe3 −mge3, (1)

Iη̈ = τ − C(η, η̇)η̇. (2)

where ξ = [x, y, z]T are the translational positions of the
quad-rotor in the inertial frame, η = [φ, θ, ψ]T are the
Euler angles, m is the mass of the quad-rotor, R is the
rotation matrix from body-fixed frame of the quad-rotor
to the inertial frame, C(η, η̇) is the Coriolis matrix, F is the
translational force in the inertial frame, τ = [τφ, τθ, τψ]

T

are the control torques in roll, pitch and yaw, I is the
inertial matrix and e3 = [0, 0, 1]T . The coordinates of the
quad-rotor are shown as in figure 4.

The control input of each motor of the quad-rotor is a
PWM pulse from 0 to 1. Therefore, the control forces

(F, τ) need to be further transformed into the PWM values
of motors, which is denoted by [u1, u2, u3, u4]. According
to the balance of motor moments, the linear mapping
between control forces and PWM values of motors can
be given by
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 , (3)

where Ff is the maximum force of each motor with
PWM at 1, lφ is the distance between motors F1 and F2
to the center of the quad-rotor along forward/backward
direction as shown in figure 4, lθ is the distance between
motors F1 and F3 to the center of the quad-rotor along
sideways direction, and T is the motor torque constant. It
is noted that the mapping matrix in equation 3 between
the control forces and motor moments is invertible and
thus [u1, u2, u3, u4]

T can be uniquely determined by the
control force [F, τφ, τθ, τψ]

T .

Since the Coriolis matrix is highly nonlinear and thus
difficult to determine accurately, we propose a series of
PID controllers using inner-outer loop control strategy,
where the outer loop is for translational motion control and
the inner loop is for attitude control. The structure of the
control system of the quad-rotor is shown in figure 5. When
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Fig. 5. Structure of navigation control system.

the quad-rotor recognizes the wind mill, it generates the
desired position, (xd, yd, zd) and yaw angle ψd, that keeps a
safe distance from the wind mill. Three PID controllers are
designed for the outer loop to track the desired position,
where the PID controller in z direction generates the
translational force for altitude motion, while the other
two PID controllers in x and y directions generate the
desired pitch θd and roll φd angles, respectively. Then the
desired Euler angles (φd, θd, ψd) are further sent to the
inner loop to generate the control torques in roll, pitch
and yaw by three more PID controllers. The parameters
of PID controllers are experimentally tuned.

5. IMPLEMENTATION

The implementation was done on Quanser’s Autonomous
Vehicles Research Studio (AVRS) Quanser (2018). This
setup consists of a quad-rotor drone based on the Intel
Areo platform, providing a Linux based operating system
running on a quad core Intel atom chip and Intel RealSense
R200 Camera Intel (2018). The RealSense consists of 3
cameras, a RGB camera and stereoscopic IR to produce
depth. For this work we only take advantage of the
RGB camera, which allows us to capture images with a
resolution up to 1920x1080 pixels at 30 fps. In this work
Intel’s RealSense image processing library was not used.
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Fig. 6. Block diagram of GCS and drone’s main compo-
nents

The platform communicates with the GCS via wireless
communication using the TCP/IP protocol, through a hi-
speed router. The GCS is a windows desktop computer
running Matlab/Simulink and Quanser’s Quarc Software,
Quanser (2018). A block diagram of the implementation
is shown in figure 6. For our experiments the video is cap-
tured in RGB, VGA resolution and sent to the GCS. The
images that are received are rescaled on the GCS, since the
WindMillNet takes an image of size 227x227x3 pixels. The
GCS is equipped with a CUDA capable GPU, the Nvidia
TI-1050 GPU. WindMillNet is generated using Matlab
GPU coder which generates optimized CUDA code, and
is executed as a Simulink S-function. In addition, the
system is equipped with six Opti-Track flex 13 cameras,
which allow for precise tracking of the drone’s movement
(calibration reports a precision below 0.5 mm).

6. RESULTS

The results section consists of two parts, the first part tests
the vision based navigation algorithms and the second
investigates the compounded eye algorithm.

6.1 Image Detection and Localization

To evaluate the implemented control strategy, a small
experiment was performed, where the drone was set to
scan for a windmill printed on a sheet of paper attached
to the wall. The experiment was filmed from the ground
and drone’s perspective. Three images are shown in figure
7, which show how the drone is scanning for the wind
mill (image 1), and when it finds it (image 2), it moves
towards it (image 3). The positions of the drone have been

Fig. 7. Snap Shots of the drone scanning the horizon for
the windmill, three images show how the drone is
scanning and navigating towards the photo of a wind
mill

plotted in figures 8 and 9. From figure 8 it is clear how the
drones yaw movement occurs for π rad, until the windmill
is detected. After this, the drone moves in the x direction
towards the wind mill. In this experiment, the drone was

set to move to a safe distance from the windmill, 1 m, and
then stop.
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Fig. 8. Position of the drone during the experiment
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Fig. 9. Position of the drone in 3D, during the experiment

6.2 Segmented Image

The following experiment evaluates our Compounded eye
algorithm. Each image from the camera was segmented
into 4 parts. Each part was fed into an instance of
WindMillNet and the probability that the segment may
contain a wind mill was calculated in parallel. This is
shown in Figure 3. We performed an experiment moving
the drone around the wind mill image circularly in a
counterclockwise fashion. Figure 10 shows how the prob-
ability for each segment changes, being maximum when
the windmill is appearing sequentially in the quadrants
[1, 1], [1, 2], [2, 1], [2, 2] with probabilities P (l)11, P (l)12,
P (l)21, P (l)22 respectively. The corresponding images from
the camera are shown in figure 11.
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Fig. 10. Probability of segments in the segmented image
using the compounded eye, experiment is performed
in real-time with video feed of 30 fps

7. CONCLUSIONS

In this work we have used transfer learning to create
an image recognition network called WindMillNet that
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6.2 Segmented Image

The following experiment evaluates our Compounded eye
algorithm. Each image from the camera was segmented
into 4 parts. Each part was fed into an instance of
WindMillNet and the probability that the segment may
contain a wind mill was calculated in parallel. This is
shown in Figure 3. We performed an experiment moving
the drone around the wind mill image circularly in a
counterclockwise fashion. Figure 10 shows how the prob-
ability for each segment changes, being maximum when
the windmill is appearing sequentially in the quadrants
[1, 1], [1, 2], [2, 1], [2, 2] with probabilities P (l)11, P (l)12,
P (l)21, P (l)22 respectively. The corresponding images from
the camera are shown in figure 11.
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In this work we have used transfer learning to create
an image recognition network called WindMillNet that
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Fig. 11. Four images from the camera feed, showing the
view for time 30s 34s 37s 41s, with respect to figure
10

detects wind mills. The output of WindMillNet was used
as a feeding parameter to our event based controller for
a quad-rotor drone, which aided in finding a wind mill.
WindMillNet analyzes images from a live video-stream
while the drone is flying. Our experiments showed that
we were able to successfully detect and fly toward a model
of a wind mill. This method was extended to include what
we call the compounded eye method, where an image is
segmented and each segment in processed in parallel, in
order to increase the likelihood of locating a windmill
within an image.

In our future work we will use the 2D spacial informa-
tion obtained from the compound eye to control drone’s
movements. This will allow us to navigate autonomously
to a wind mill, independent of the initial position of the
drone. We will also work on changing the architecture
of WindMillNet and the way it is trained to improve its
accuracy.
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