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Abstract

The main focus of this thesis is to calculate the electronic structure and opti-
cal response of one-dimensional semiconductors with and without many-body
excitonic effects and the presence of strong external electrostatic fields. To
investigate these effects, several quasi-one-dimensional semiconductors such as
carbon nanotubes (CNTs) and chains, which are important materials in elec-
trical and optical applications.

It is widely known that electron-hole interactions considerably influence the
charge distribution and optical properties of one-dimensional semiconductors.
Recent studies have shown that long carbyne systems can be grown inside CNTs
and new hybrid CNT-carbyne systems are formed, which their electronic struc-
ture, as well as the single-electron and excitonic optical response, are expected
to differ considerably with those of isolated CNT and carbyne systems. CNTs
and carbyne systems interact with each other via the long-range Coulomb in-
teraction. There are direct excitons, which electrons and holes are on either
CNT or carbyne systems, as well as spatially indirect excitons, where electrons
are on CNT and holes are located on carbyne systems or vice versa. In this
thesis, we investigate the electronic structure of CNT-carbyne systems using a
tight-binding calculation fitted against a density functional-based band struc-
ture. Then, the exciton binding energy for above-mentioned exciton types and
the excitonic optical response of these hybrid systems are calculated using the
Bethe-Salpeter and Wannier methods. Alongside excitons on each subsystem in
the hybrid structure, interactions between two subsystems result in new bright
excitons. Also, such interactions cause charge-transfer dark excitons, which are
indirect excitons.

Static electric fields considerably modify the electronic structure and opti-
cal response of semiconductors. These fields in the periodic direction of one-
dimensional semiconductors tilt the potential and break the periodicity, and
transform energy band structure to a localized set of energy states known as
the Wannier-Stark ladder. In this thesis, we present an approach for study-
ing the effect of static electric fields in two- and multiband models of one-
dimensional semiconductors and compare finite and infinite length results. For
infinite length, a novel density matrix method is developed in reciprocal space
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for calculating the non-perturbative Franz-Keldysh effect, which is computa-
tionally much faster than the quantum perturbation method for finite systems.
This infinite method is applied for infinite polyacetylene and graphene nanorib-
bons with various widths and results are compared with those of finite systems.
Moreover, field-induced second-order nonlinear optical response due to the bro-
ken center of symmetry for these systems is studied for both finite and infinite
lengths. Furthermore, the method is extended for two-dimensional semicon-
ductors and convergence of graphene nanoribbons optical response to that of
the two-dimensional graphene is investigated. For graphene nanoribbons, we
also apply DC fields along the perpendicular direction of the infinite direction
in these systems and calculate the electronic structure and optical response.



Resumé

Det primære fokus i denne tese er at udregne den elektroniske stuktur og optisk
respons af endimensionelle halvledere både med og uden many-body eksitoniske
effekter samt under indflydelse af stærke eksterne elektrostatiske felter. For at
undersøge disse effekter, betragtes flere kvasi-endimensionelle halvledere, såsom
kulstof-nanorør og -kæder, som er vigtige materialer med elektroniske og optiske
anvendelsesmuligheder.

Det er alment kendt at elektron-hul interaktioner har betragtelig indflydelse
på ladningsfordelingen og optiske egenskaber af endimensionelle halvledere.
Nye studier har vist at lange carbyn-systemer kan syntetiseres inde i kulstof-
nanorør, hvorved nye hybrid nanorør-carbyn-systemer dannes, som forventes
at have signifikant anderledes elektronisk og optisk respons i forhold til de isol-
erede nanorør og carbyn-systemer. Nanorør og carbyn systemer interagerer
med hinanden via en langtrækkende Coulombinteraktion. Der er direkte eksi-
toner, hvor både elektronen og hullet forefindes enten på nanorøret eller car-
bynet, samt rummeligt indirekte eksitoner, hvor elektronen findes på nanorøret
og huller på carbynet og omvendt. I denne tese undersøges den elektroniske
struktur af nanorør-carbyn-systemer ved brug af tight-binding udregninger,
der er fittet til en båndstruktur udregnet med tæthedsfunktionalteori (DFT).
Derefter beregnes den eksitoniske bindingsenergi og eksitonisk optisk respons
for førnævnte eksiterings-typer ved brug af Bethe-Salpeter ogWannier metoderne.
Sammen med eksitoner på hvert undersystem i hybridstrukturen, forsager in-
teraktionen mellem systemerne nye lysende eksitoner. Derudover forsager in-
teraktionen ladningsoverførsels-eksitoner, der er indirekte eksitoner.

Statiske elektriske felter ændrer markant på den elektroniske struktur og
optiske respons for halvledere. Når feltet peger langs den periodiske retning af
endimensionelle halvledere, tiltes potentialet og periodiciteten brydes, og trans-
formerer båndstrukturen til et lokaliseret set af energitilstande, også kendt som
en Wannier-Stark ladder. I denne tese præsenteres en fremgangsmåde for at
studere effekten af statiske elektriske felter i to- og multibånd modeller af endi-
mensionelle halvledere, samt sammenligner resultater for endeligt og uendeligt
lange strukturer. For uendeligt lange strukturer udvikles en ny tæthedsma-
triksmetode i reciprokt rum for at udregne de ikke-pertuberede Franz-Keldysh
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effekt. Denne metode er beregningsmæssigt meget hurtigere end kvanteper-
turberingsmetoden for endelige systemer. Denne metode for uendelige systemer
benyttes til polyacetylen og grafen nanoribbons med forskellige bredder og re-
sultaterne sammenlignes med resultater for endelige systemer. Derudover stud-
eres det felt-inducerede anden-ordens ikke-linære optiske respons, der forekom-
mer grundet den brudte centersymmetri for disse systemer. Metoden udvides
til todimensionelle halvledere og konvergensen af det optiske respons for grafen
nanoribbons sammenlignes med todimensionelt grafen. For grafen nanorib-
bons påføres også et DC elektrisk felt vinkelret på nanoribbon planet og den
tilhørende elektriske struktur og optiske respons beregnes.



Contents

Abstract iii

Resumé v

Thesis Details ix

Preface xi

1 Introduction 1
1.1 This thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Theory and Methods 13
2.1 Electronic structure . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Density functional theory . . . . . . . . . . . . . . . . . 13
2.1.2 Tight-binding method . . . . . . . . . . . . . . . . . . . 14

2.2 Single-electron optical response . . . . . . . . . . . . . . . . . . 15
2.2.1 Finite system . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Infinite system . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Exciton states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Bethe-Salpeter equation . . . . . . . . . . . . . . . . . . 21
2.3.2 Wannier approximation . . . . . . . . . . . . . . . . . . 22
2.3.3 Excitonic optical response . . . . . . . . . . . . . . . . . 23

2.4 Static electric field and Franz-Keldysh effect . . . . . . . . . . . 24
2.4.1 Transversal DC fields . . . . . . . . . . . . . . . . . . . 24
2.4.2 Longitudinal DC fields . . . . . . . . . . . . . . . . . . . 25
2.4.3 Two-dimensional semiconductors . . . . . . . . . . . . . 29

3 Summary of results 31
3.1 Electronic structure . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Hybrid CNT-carbyne systems . . . . . . . . . . . . . . . 31
3.1.2 Graphene nanoribbons in transversal DC fields . . . . . 33

3.2 Independent-electron optical response . . . . . . . . . . . . . . 35

vii



3.2.1 One-dimensional carbon-based atomic chains . . . . . . 35
3.2.2 CNT-carbyne systems . . . . . . . . . . . . . . . . . . . 36
3.2.3 Graphene nanoribbons and sheet . . . . . . . . . . . . . 37

3.3 Excitonic effects in CNT-carbyne systems . . . . . . . . . . . . 39
3.4 Transversal DC fields in graphene nanoribbons . . . . . . . . . 44
3.5 Longitudinal DC fields in Semiconductors . . . . . . . . . . . . 45

3.5.1 Polyacetylene chains . . . . . . . . . . . . . . . . . . . . 46
3.5.2 Narrow graphene nanoribbons . . . . . . . . . . . . . . . 47
3.5.3 Wide AGNRs and graphene sheet . . . . . . . . . . . . 50

4 Conclusions 53
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

viii



Thesis Details

Thesis title: Optical properties of one-dimensional semiconduc-
tors: Franz-Keldysh and excitonic effects

Ph.D. student: Farzad Bonabi
Supervisor: Thomas Garm Pedersen

The main body of this thesis consists of the following papers:

[I]. F. Bonabi and T. G. Pedersen, “Linear and nonlinear optical response of
one-dimensional semiconductors: finite-size and Franz–Keldysh effects”,
J. Phys.: Condens. Matter. 29, 165702 (2017).

[II]. F. Bonabi, S. J. Brun, and T. G. Pedersen, “Excitonic optical response
of carbon chains confined in single-walled carbon nanotubes”, Phys. Rev.
B 96, 155419 (2017).

[III]. F. Bonabi and T. G. Pedersen, “Franz-Keldysh effect and electric field-
induced second harmonic generation in graphene: From one-dimensional
nanoribbons to two-dimensional sheet”, Phys. Rev. B 99, 045413 (2019).

This thesis has been submitted for assessment in partial fulfillment of the Ph.D.
degree. The thesis is based on the published scientific papers which are listed
above. Parts of the papers are used directly or indirectly in the summary in
the thesis. As part of the assessment, co-author statements have been made
available to the assessment committee and are also available at the Faculty.
The thesis is not in its present form acceptable for open publication but only
in limited and closed circulation as copyright may not be ensured.

ix



x



Preface

This thesis summarizes my research program as a PhD student at the Depart-
ment of Materials and Production (former Department of Physics and Nan-
otechnology), Aalborg University, in the past four years in the period 2015-
2019, under the supervision of Professor Thomas Garm Pedersen. This PhD
program was part of the QUSCOPE research project founded by Villum Foun-
dation.

Moving to Denmark in January 2015 to experience living abroad as a PhD
student and start a challenging and enjoyable research program in condensed
matter physics and theoretical quantum optics was the most important decision
in my life. I am happy that I could fulfill this step with great achievements.
There are several people who have helped and supported me to start and finish
this PhD program. First and foremost, I would like to gratefully thank Thomas
Garm Pedersen who offered this exciting position at his research group and has
continuously supported me during my research. He is very skilled and talented,
not only as a teacher and scientist but also in the wild-life photography and
fishing. I recommend everyone to check out his website for amazing wild-life
pictures. I would also like to thank Mads Lund Trolle. I never forget that
you picked me up from Aalborg Airport when I arrived Aalborg for the first
time and your helpful discussions in my research projects as well as the great
atmosphere in the office. I would like to thank Kristian Bonderup Pedersen,
Alireza Taghizadeh and Fábio Hipólito for their great company in the office
and occasional events we were together. I would like to thank René Petersen
for inviting me to his amazing wedding in Madrid and also his great company in
NANOP Conference 2016 in Paris, Morten Rishøj Thomsen for his always wel-
coming attitude and smiley face in helping occasional programming problems,
and Søren Jacob Brun for his company in the fitness and hanging out plans.
I would like to thank Mads Brincker for his help in passing through the pro-
cedure of buying a computer and accessories for work and my home furniture
from IKEA. I would also like to thank Jonas Have for joining in the refresh-
ing table tennis matches at the basement and also watching Game of Thrones
episodes when we needed a break from extensive coding. I wish to have special
thanks to my parents and siblings for their support during my PhD. Last, but

xi



not least, I would like to thank my fiancé Pegah Bagheri Biglari for her great
support and encouragements, especially in my very absent-minded moments
during my PhD.

Farzad Bonabi
Aalborg University, February 27, 2019

xii



Chapter 1

Introduction

The atomic structure (the arrangement of atoms in a material) has a significant
role in the physical properties of that material. For instance, while diamond
and graphite are both constructed by carbon atoms, they are two different
materials because of their different physical properties. Diamond is an insulator
and very hard material [1], whereas graphite is a semimetal and its hardness
is much smaller than diamond [2]. In solid state physics, crystal structures are
usually categorized by Bravais lattices, in which the physical properties of each
lattice could be different from other lattices. Several parameters such as atomic
bond lengths, angles between atomic bonds and also dimensionality of systems
are responsible in differentiating lattices. In the mentioned example, diamond
is a two inter-penetrated face-centered cubic (FCC) lattices [3], and graphite is
an infinite stack of two-dimensional hexagonal lattices with a two-atomic basis.
Thus, defining the atomic structure is the initial step in the theoretical study
of any material.

Among the mentioned geometrical parameters in the atomic structure of a
lattice, the dimension has crucial importance in defining the physical properties
of that lattice. In the above-mentioned example, graphite is a three-dimensional
structure. If one can isolate only one layer of the graphite honeycomb stack,
the resulting structure is graphene [4]. Graphene is also a semimetal, but its re-
duced dimensionality causes different physical properties compared to graphite
such as high electron mobility [5]. In general, confining charge carriers in one
or more dimensions changes the physical properties of atomic systems. If the
confinement is in one dimension, systems are two-dimensional like graphene.
Two- and three-dimensional confinements lead to one-dimensional materials
like nanowires [6, 7] and quantum dots [8], respectively.

The main focus of this thesis is investigating the optical response of one-
dimensional semiconductors. Hence, before discussing the effect of reducing
the dimensionality on the optical response, the following question should be
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answered: What is the optical response? Optical properties of materials are,
in fact, the result of the interaction of those materials with external electro-
magnetic fields (light). In optical processes, the electric part of external light is
considered to interact with the system by inducing the polarization. As results,
absorption, emission, refraction of light or combinations of them can occur in
the system. These phenomena are the optical response of materials to the ex-
ternal light. The optical response of different types of material are different.
If a material is an insulator, the optical field induces local dipoles in the sys-
tem. For conductors, the external light generates inductive currents, due to the
displacement of charges. In semiconductors, Light can induce dipole moments
and be absorbed when the photon energy is larger than the band gap energy of
the system. The optical response of semiconductors depends not only on the
optical band gap, but also impurities, temperature, electron-hole interactions,
electron-phonon couplings, etc. The band gap of a semiconductor has crucial
importance in the optical response because it defines the minimum energy that
optical photons must possess to interact with the system. Studying the optical
band gap and optical response of semiconductors has practical importance be-
cause many optical devices such as optical diodes [9], solar cells [10] and diode
lasers [11] are based on the optical properties of semiconductors.

Light does not always interact linearly with a material. An experiment by
Franken et al. in 1961 resulted in finding the second harmonic generation (SHG)
in quartz [12], which was a nonlinear process. This experiment has attracted
a lot of attention to the nonlinear optical response of materials. Sufficiently
strong external optical fields are necessary to get a noticeable nonlinear optical
response from a system. Nonlinear optics has a broad range of applications
such as a tool for material characterization [13] and optoelectronics [14].

Studying lower-dimensional semiconductors leads to finding new materials
with remarkable potential in various electrical and optical applications. Re-
ducing the dimensionality of a semiconductor causes modifications in the elec-
tronic structure and the band gap energy, and results in significant changes
in the optical response of the system. For instance, bulk silicon as the most
used semiconductor in electrical applications has an indirect band gap [15].
For materials with the indirect band gap in low temperatures, light absorption
can be a difficult process, however, reducing the dimensionality can modify the
band structure and lead to materials with a direct band gap such as silicon
nanoclusters. Because the direct band gap can facilitate light-matter interac-
tions, silicon nanoclusters, which can be treated as quantum dots [16], are good
candidates in optical devices [17].

The reduced dimensionality in one-dimensional semiconductors changes the
density of states of charge carriers in these materials and results in different op-
tical responses compared to their two- and three-dimensional counterparts [18].
One-dimensional materials can be classified into different groups such as tubes,
wires, belts, chains, ribbons, etc. Most of the materials in these groups are
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Fig. 1.1: The atomic structure of (a) polyacetylene and (b) polymethineimine. The dashed
line with the width of a is the unit cell for each structure.

not, in fact, one-dimensional, i.e., their atomic structure can be two- or three-
dimensional, whereas they show one-dimensional behavior because their struc-
ture is a repeating unit cell in only one direction. Thus, they are often called
quasi-one-dimensional materials. In recent decades, carbon-based semiconduc-
tors have attracted a tremendous amount of attention both theoretically and
experimentally, due to their outstanding potential in various electrical and op-
tical applications. In the following, studied one-dimensional semiconductors in
this thesis are introduced.

Organic carbon-based chains are simple one-dimensional semiconducting
structures. Chemical bonds and structure of these materials can be diverse,
in which they have interesting electronic and optical features [19, 20]. Poly-
acetylene and polymethineimine chains in Fig. 1.1 are two examples of semicon-
ducting carbon chains, which their molecular structure are single and double
carbon-carbon and nitrogen-carbon bonds, respectively, and their free chemical
bonds are passivated by hydrogen atoms.

One-dimensional carbon-based structures can be more complex than sim-
ple atomic chains. Carbon nanotubes (CNTs) are one of good examples of
quasi-one-dimensional carbon-based structures. These materials are, in fact,
graphene sheets that are rolled around a cylinder and can be produced as single-
or multi-walled CNTs. The angle of rolling, which is often referred to as the
chiral angle, determines the metallic or semiconducting behavior of CNTs [21].
Such CNTs are usually classified with chiral indices (n,m). There are sev-
eral methods to synthesize CNTs such as chemical vapor depositions [22] and
arch-discharge techniques [23]. Multi-walled CNTs can also provide a suitable
medium to grow stable long carbon chains such as carbyne [24] because isolated
long carbyne chains are not stable one-dimensional materials. Longer carbyne
chains (more than 300 carbon atoms) can be synthesized inside double-walled
CNTs, in which the inner tubes have the diameter between 0.62-0.85 nm [25].
This encapsulation leads to novel quasi-one-dimensional hybrid CNT-carbyne
systems, which their physical properties are expected to have a combination
of properties from CNT, carbyne, and interactions between two subsystems.
(8,0) and (10,0) CNTs are two semiconducting CNTs that their diameter is
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Fig. 1.2: The atomic unit cell of (a) (8,0) CNT-carbyne (b) (10,0) CNT-carbyne, from the
side and front views. Gray and red atoms are carbon atoms on CNT and carbyne systems,
respectively.

in the range of the optimum CNT diameter to grow long carbyne chains [25].
Figure 1.2 shows a small cut (unit cell) of the atomic structure of (8,0) and
(10,0) CNT-carbyne systems from the side and front views.

Graphene nanoribbons (GNRs) are another type of quasi-one-dimensional
carbon-based materials, which are studied in this thesis. These structures are
two-dimensional graphene sheets, in which they are limited in one direction
and infinite atomic units in the other direction. There are several methods
to synthesize GNRs such as cutting or unzipping multiwalled CNTs [26, 27].
Moreover, they can be fabricated with high precisions by scanning tunneling
microscope (STM) lithography [28] and bottom-up techniques [29]. The width
and edge shape are two important geometrical parameters that change the
physical properties of GNRs. Armchair-edge GNRs (AGNRs) are semiconduc-
tors, while zigzag-edge GNRs (ZGNRs) have metallic properties. Figure 1.3
shows the atomic structure of an AGNR and a ZGNRs limited within hard-
walls shown by the red dashed lines along the width direction. The atomic
structure and physical properties of both AGNRs and ZGNRs converge to the
pristine graphene, provided that they are sufficiently wide. Due to the semi-
conducting behavior of AGNRs, they will be studied in this thesis. Sufficiently

Fig. 1.3: Schematic atomic structure of (a) AGNRs (b) ZGNRs in the x-y plane. The dashed
lines are hard-walls, which define the finite width of structures along y-axis. Structures are
extended infinitely along x-axis.
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wide AGNRs can resemble the properties of the two-dimensional graphene,
which for graphene, both x and y directions are extended infinitely.

The first step in the theoretical study of the optical response for the in-
troduced materials is defining the electronic structure of these systems. The
reason is that in the atomic scale, electrons are mainly responsible for the opti-
cal response. Theoretically, first principal or ab initio methods such as density
functional theory (DFT) and non-ab initio models like the tight-binding (TB)
method are commonly used to define the electronic structure and band gap en-
ergy of semiconductors. Although the TB model estimates the band structure
for these systems with a good accuracy around the band gap energy region,
the DFT method is more accurate quantum mechanical approach than TB
for obtaining the electronic band structure [30], not only for the band gap re-
gion but also for wider energy limits. The DFT method is a self-consisting
method using Kohn-Sham equations, which means that there is no need for
prior information of the system for calculations. There are two problems in
the DFT method: firstly, this method is computationally very demanding, es-
pecially for large systems; secondly, it usually underestimates the band gap
energy [31]. The reason for the second problem is that the traditional DFT
method calculates the ground state of systems. Thus, excited states which
are important in defining the band gap energy are not well described in this
method. Therefore, this method casts problems in the calculation of the optical
response of semiconductors. To solve the band gap energy issue, the GW ap-
proximation on top of DFT corrects the excited states and solves the band gap
energy problem [32–35]. On the other hand, TB is not computationally costly
and capable of obtaining the electronic structure for large systems. The TB
method is also referred to as the linear combination of atomic orbitals (LCAO)
method because it uses atomic orbitals as the basis for TB wave functions. In
contrast with DFT, in the TB method, knowing the orbital basis, as well as
overlap and hopping parameters between neighboring sites, are necessary for
calculations, for which experimental or first-principal methods data are used to
determine these parameters. Moreover, in this approximation, the wave func-
tion of electrons are assumed to be localized on atomic sites of semiconductors.
Hence, wave functions of each site have overlap with few neighboring sites. In
most cases, considering the first nearest neighbor (1NN) for overlapping be-
tween sites, provides a satisfactory approximation of the electronic structure
compared to DFT in the low energy limit.

For carbon-based conjugated polymers, ab initio methods have obtained
the band gap energy, in which this energy depends on the structure and consti-
tutional atoms of the polymer [36]. Experimental techniques such as scanning
tunneling microscopy have been utilized to find the electronic structure and
band gap energy of various single- and multi-walled CNTs and showed that the
band gap energy and metallic or semiconducting behavior of CNTs are strongly
related to their diameter and helicity (chirality) [37–41]. Moreover, theoretical
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methods predict similar results for the electronic structure and band gap en-
ergy with similar conditions as experiments [42–44]. As mentioned earlier, long
carbon chains can be grown inside CNTs. It has been shown that the encap-
sulation of carbyne inside CNTs results in the interaction between these two
systems and reduce carbyne band gap energy [45]. Thus, it is expected that
hybrid CNT-carbyne systems show different electronic structure compared to
isolated CNT and carbyne systems.

For GNRs, the calculation of the electronic structure using the TB method
predicts semiconducting behavior (band gap existence) for type AGNR-(3nd)
and AGNR-(3nd + 1) and metallic behavior for type AGNR-(3nd + 2), which
nd is the row number of carbon-carbon bonds along y-direction in Fig. 1.3, and
all ZGNRs are metallic [46, 47]. In contrast to TB, first principal calculations
predict that all AGNRs and ZGNRs are a semiconductor with a very small band
gap energy for type AGNR-(3nd + 2) and ZGNRs [48, 49]. Experimentally,
the semiconducting behavior of all types of GNRs is observable [50]. All of
these studies, as well as Ref. [51] have shown that the electronic structure and
physical properties of GNRs are strongly related to the width and edge shape
of these systems. With increasing the width of GNR, the band gap shrinks and
a graphene-like behavior is expected.

The optical response of materials can be calculated theoretically using their
electronic structure. For various conjugated polymers, absorption spectra have
been numerically calculated and compared to experimental data [52]. For
GNRs, the linear optical response of various AGNRs and ZGNRs, as well as
plasmonic effects are calculated theoretically [53–58]. Results show that the
optical response and plasmonic effects of GNRs depends on the edge shape and
width of these structures. Narrow AGNRs show considerable optical photons
absorption with the energy of the band gap. Increasing the width reduces the
band gap energy and changes the band structure of GNRs. Moreover, exper-
imental measurements of GNRs optical response have shown agreements with
theoretical results [59]. For graphene sheets, the linear and nonlinear optical
response has been calculated [60, 61]. Graphene has shown strong third-order
nonlinear optical in experimental measurements [62]. For CNTs with various
diameters and chiralities, the DFT and TB methods have been utilized to ob-
tain the electronic structure and the linear optical response for optical fields
along and parallel to the long-axis of CNT [63, 64]. These studies have shown
that the electronic structure and optical response of CNTs depend strongly on
the structural characteristics of CNTs. Moreover, absorption spectra have been
measured experimentally for various CNTs and shown that the diameter is a
very important factor in the optical response of these materials [65].

Theoretical calculations of the optical response in these studies sometimes
fail to predict accurately experimental measurements. The reason is that even
in the most accurate way of obtaining the band structure, i.e., DFT+GW, the
Coulomb interaction between electrons in excited states and holes (lack of elec-
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trons) in ground states are not considered in these approximations. The con-
tribution of electron-hole interactions introduces excited states for electrons,
which often referred to as excitons. Such excitons are chargeless quasiparti-
cles [66] similar to hydrogen atoms that electrons and holes bound together by
Coulomb attractions. The exciton binding energy depends on constitutional
atoms and the dimension of the system, as well as surrounding materials. All
these factors contribute in the dielectric constant and cause a screening in the
Coulomb potential, and result in the reduction of the binding energy. In three-
dimensional crystals such as bulk silicon, the lattice screening is large, and the
exciton binding energy is a few meV, however, including excitonic effects in the
optical response leads to better agreement with experimental data [67]. In the
lower-dimensional materials such as quasi-one-dimensional semiconductors, the
imposed screening by the structure decreases because of the one-dimensional
nature of these materials. Thus, the Coulomb potential increases and the ex-
citon binding energy gets stronger. In the case of CNTs, this energy can be
several hundred meV and depends on the radius, chirality, and surrounding ma-
terials [68–75]. In experimental measurements, similar to theoretical results, it
has been shown that excitonic effects are dominant in the optical response of
CNTs [76]. Also, one-dimensional carbon chains such as polyenes or conjugated
polymers show strong excitonic effects with binding energies varying between
200-900 meV [77–80]. Theoretical implementation of excitons in these studies
following the Bethe-Salpeter equation (BSE) [81] has resulted in the prediction
of exciton states and optical responses in semiconductors with high accuracies
comparable to experimental findings. Since excitonic effects in CNTs and car-
bon chains considerably change their optical response spectra, it is expected
that new hybrid CNT-carbyne systems in Fig. 1.2 to have distinct excitonic
effects in their optical response, which are absent in isolated CNT and carbyne
systems.

External static electric fields in materials can also modify their optical re-
sponse. Modifications of the optical properties of materials with electrostatic
field introduce a new study field so-called electro-optics, which have diverse
applications in optical-based devices such as photodetectors [82], optical mod-
ulators [83] and materials characterization tools [84]. Electrostatic fields should
be strong enough to observe noticeable changes in the electronic structure and
optical response of systems. Thus, the effect of strong DC field should be
treated non-perturbatively in the system. Since Franz [85] and Keldysh [86]
studied modifications of the optical response of bulk semiconductors with the
presence of electrostatic fields, separately, the effect of DC electric fields in
semiconductors are also referred to as the Franz-Keldysh (FK) effect. In the
case of small quantum structures that resemble quantum wells, electrostatic
fields result in the quantum-confined Stark effect [87]. Due to modifications
in the potential of semiconductors under the DC field, electrons and holes can
tunnel into the forbidden energy gap region and an exponential tail in the lin-
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ear optical response below the band gap of semiconductors is seen [85, 86].
Another fingerprint of the FK effect in the optical response of semiconductors
is the appearance of oscillatory peaks in the response above the band gap. The
reason for this can be explained by the Airy function behavior of the optical
response in this energy region [88]. Moreover, DC fields can break the inversion
symmetry for centrosymmetric semiconductors and result in considerable even-
order of nonlinear optical responses, which these orders are dipole-forbidden in
the absence of DC fields. For the second-order nonlinear response, electric
field-induced second harmonic (EFISH) is very important in the investigation
of nonlinear optical response in centrosymmetric semiconductors [89–91].

In one-dimensional semiconductors, experimental measurements for GaN
and CdS nanowires have shown that DC fields cause an exponential tail and
oscillatory peaks in their optical response [92, 93]. Significant FK fingerprints in
the experimental electro-absorption spectra in conjugated polymer chains such
as polydiacetylene [94–96], one-dimensional metallic dioxime complexes [97]
and CNTs [98] show that these materials optical properties are significantly
affected by external DC fields. Also, modulations of the optical response in the
presence of DC fields have been calculated theoretically for various semicon-
ducting quantum wires [88, 99–104].

The effect of external electrostatic fields in semiconducting CNTs and GNRs
depends on the direction of applied DC fields. Fields along the infinite periodic
direction (longitudinal direction) and finite direction (transverse direction) of
these systems have different effects in their optical response. Transverse DC
fields effects on the optical response of single- and multi-layered GNRs and
boron nitride nanoribbons (BNNRs) have been extensively studied. Modula-
tions of the band structure and transformation from metallic to semiconduct-
ing behavior (band gap opening) or vice versa (band gap closing) have been
reported in selected AGNRs and ZGNRs in single- and multi-layered forms,
as well as in BNNRs [105–114]. Furthermore, strong electro-absorption reso-
nances in the optical response of GNRs due to the broken inversion symmetry
under transversal DC fields have been achieved [107]. Despite a decent amount
of research in transversal fields effects, studies for longitudinal fields in GNRs
are rare. Applying periodic DC fields in the longitudinal direction of AGNRs
and ZGNRs results in modifications of their electronic structure and optical
response, which depend on the period and strength of the field [115]. These
periodic fields do not show FK fingerprints in these structures, due to the small
number of chosen unit cells that DC fields are extended over them in that study.
In CNTs with various chiralities, the effect of longitudinal electrostatic fields,
which are extended over a sufficient number of unit cells, show considerable
FK oscillation peaks above the band gap [116]. It can computationally be very
demanding to include a sufficient number of unit cells in these methods to ap-
proach the uniform field, especially when there is a large number of atoms in
the unit cell of the system.
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There are few studies considering the nonlinear optical response of semi-
conductors in the presence of strong DC fields. In Ref. [117], the author has
provided a general N -photon absorption process in semiconductors under ef-
fects of electrostatic fields, in which in the case of the second-order nonlinear
response, FK-like effects, i.e., oscillation peaks above and tunneling-assisted
photon absorptions below every one- and two-photon resonances are expected.
In quantum wires, two-photon absorptions under DC fields show FK-like effects
in this process [118], which is in agreement with results of Ref. [117]. Moreover,
in polyene chains, an agreement between experimental and theoretical EFISH
has been reported [119].

1.1 This thesis

The focus of this thesis is the calculation of the optical response of one-
dimensional semiconductors considering the following cases: (i) applying elec-
trostatic fields on the optical response, and (ii) beyond the independent-electron
picture and calculating the optical response including electron-hole interactions.
To this end, three calculation steps will be followed. Firstly, the electronic
structure of the introduced semiconductors will be calculated. Secondly, the
single-electron optical response under the influence of external optical fields will
be obtained. Finally, the electronic structure and optical response of systems
under the effects of DC fields or excitons will be calculated.

The method for obtaining the electronic structure of systems in this thesis
is the TB model. The reason is that this method is capable of obtaining the
electronic structure with a denser k-points choice, which is necessary for smooth
optical response spectra. For calculating the optical response in the low energy
limit around the band gap in one-dimensional carbon-based semiconductors in
this thesis, a simple model is to take one π-orbital for each carbon atom and
use the 1NN approximation. For carbon chains in paper ??, TB parameters are
based on approximated values for carbon-carbon and carbon-nitrogen bonds.
For GNRs in paper ??, TB hopping parameters for carbon-carbon π-bonds are
extracted from fitting TB band structure against a pseudopotential method
[120]. For hybrid CNT-carbyne systems in paper ??, a DFT calculation is
performed using the ABINIT package to extract TB parameters by fitting a
TB band structure against that of the DFT method.

For calculating the independent-electron linear and nonlinear optical re-
sponse of systems, a quantum mechanical method using the time-dependent
perturbation theory is employed. The effect of external optical fields can be
calculated by adding harmonic-perturbation Hamiltonian term to the unper-
turbed Hamiltonian of the system. This method is comprehensively explained
in various textbooks [121]. The method and obtained linear and nonlinear op-
tical response equations in papers ??, ?? and ?? will be briefly reviewed in the
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next chapter.
The independent-electron optical response enables the study of the mod-

ifications in the response with the presence of excitonic effects. The BSE is
a highly capable method for calculating excitonic states and exciton binding
energies in semiconductors [122]. This approach is used to calculate exciton
binding energies and subsequently excitonic optical response of CNT-carbyne
systems in paper ??. Although theoretical excitonic effects in various CNTs
[69, 70, 123–128] and carbon-based one-dimensional polymer chains [78–80]
have been studied extensively, new hybrid CNT-carbyne systems are expected
to have unique excitonic optical response that differs considerably from iso-
lated CNT and carbyne systems. Four exciton configurations can be found in
the hybrid system, i.e., electrons and holes are on one subsystem, electrons
are on CNT and holes are on carbyne and vice versa. Alongside the BSE for
calculating excitonic effects, the Wannier approximation is also used to com-
pute exciton binding energies and excitonic optical response of CNT-carbyne
systems, and results are compared with BSE results. The Wannier approach
is a simplified version of the BSE method with approximations. Although this
method does not have the complexity of BSE and is computationally faster, it
is not as accurate as BSE and restricted to a two-band model of a semiconduc-
tor, which makes it difficult to obtain the full optical response of systems with
more than two bands in their electronic structure.

Strong external electrostatic fields also modify the electronic structure and
optical response of semiconductors. These modifications for one-dimensional
semiconductors are studied in papers ?? and ??. A novel formalism for cal-
culating DC field effects on two-band one-dimensional semiconductors along
the periodic axis of the system and using the density matrix formalism and
Green’s function method is provided in paper ??. Then, the FK effect on the
linear and nonlinear optical response for polyacetylene chains are calculated.
It is shown that the dipole formalism of finite structures converges to the mo-
mentum method for infinite systems. Therefore, the size effect in the linear
and nonlinear optical response of these systems with and without DC fields
effects are studied. In paper ??, the model is extended to a general multiband
one-dimensional semiconductor, then DC fields are applied in both transver-
sal and longitudinal directions of AGNRs. Transversal fields, which are along
the finite direction of AGNRs, lead to modifications in the band structure and
optical response. Longitudinal fields, which are along the infinite direction of
these systems, cause non-perturbative FK effects. Moreover, fields can break
the inversion symmetry and result in EFISH in AGNRs. In addition, similar
to polyacetylene chains, finite AGNRs optical response with increasing length
is studied. Furthermore, the effect of increasing the width of AGNRs are con-
sidered to study the convergence of the optical response of AGNRs to the
two-dimensional graphene.

Graphene has remarkable potential in electro-optical applications [129, 130].
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It has been shown that electrostatic fields break the band structure of two-
dimensional graphene to a set of energy states referred to as "Wannier-Stark"
(WS) ladder, and optical transitions occur between these states [131]. Be-
cause wide AGNRs show a similar behavior of graphene sheets, in paper ??,
the method for calculating DC fields effects in one-dimensional semiconduc-
tors is extended to two-dimensional semiconductors to obtain graphene optical
response and compare it with wide AGNRs.

The thesis is organized as follows: subsequently in Chap. 2, theories and
methods used for calculations in this thesis are explained. Chap. 3 summa-
rizes the results of calculations in papers. Next, conclusions are provided in
Chap. 4. All papers, which this thesis is based on, are collected at the end of
the thesis.
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Chapter 2

Theory and Methods

This chapter provides theories and computational methods used to obtain re-
sults in this thesis. Most of theories are available in the papers at the end of
the thesis, and complementary descriptions and equations will be presented in
this chapter.

The optical response of systems is based on defining the electronic struc-
ture, where the tight-binding (TB) method is used for this reason. Here, TB
formalism alongside a brief introduction of the density functional theory (DFT)
model, which is used for TB fitting in paper ?? will be presented. Then, the-
oretical methods for obtaining the independent-electron optical response, as
well as excitonic and electrostatic fields effects on the electronic structure and
optical response will be introduced.

2.1 Electronic structure

In the atomic scale, the electronic structure has a central role in defining the
characteristics, as well as optical and electrical properties of materials. The
electronic structure in this thesis is obtained using DFT and TB, which are
two capable theoretical methods for this reason.

2.1.1 Density functional theory

Theoretical calculations of the electronic structure for many-electron systems
such as crystals and bulk materials were successfully implemented using the
DFT method after the advent of modern computers and utilizing their com-
putational power in the middle of the 20th century. DFT is based on two
theorems [30]: first, the ground state of a system uniquely depends on the
electron density of that system, which extensively reduces the complexity of
many interacting-particle systems, and second, the correct ground state is a
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unique functional of the electron density, which minimizes the total energy of
the system. This model was further improved by replacing particle-particle
interactions using "exchange-correlation" terms [132], despite the exact func-
tional form of exchange-correlation terms is unknown. Hence, these functionals
can be approximated by the density at any evaluated point, which is called as
local density approximation (LDA).

In this thesis, DFT is used to calculate the electronic structure of hybrid
CNT-carbyne systems by the ABINIT software package [133]. As mentioned
earlier, DFT underestimates the band gap energy for semiconductors. There-
fore, a GW correction on top of DFT can compensate the band gap energy
problem. The GW method is computationally very demanding and complex,
hence in this thesis, a scissors shift based on previous GW calculations is ap-
plied to obtain a more accurate band gap for the system.

2.1.2 Tight-binding method

Compared to DFT, TB is a simpler quantum mechanical method to obtain
the electronic structure of semicondutors with much less computational costs.
The electronic structure for both bulk semiconductors and finite molecules can
be calculated using the TB formalism. In this method, the potential energy
of atomic sites is considered to be sufficiently strong, in which electrons are
localized on those sites. Thus, Hamiltonian of the system can be approximated
by atomic Hamiltonian on each atomic site with atomic Schrödinger equation
Hatψn(r) = Enψn(r), where ψn and En is the atomic wave function and en-
ergy, respectively. If a finite structure without electron-electron interactions
is considered, the total wave function of the system ψ(r) in the TB model
can be approximated by a linear combination of atomic orbitals (LCAO) via
ψ(r) =

∑
n,i anφi(r −Rn), with i is the type of orbital φ, a is the expansion

coefficient and Rn is the position of atom n in the structure. From Schrödinger
equation for the system, Hamiltonian H and overlap S matrix elements in the
Dirac notation are

Hin,jm =
〈
φi(r −Rn)

∣∣H(r)
∣∣φj(r −Rm)

〉
,

Sin,jm =
〈
φi(r −Rn)

∣∣φj(r −Rm)
〉
. (2.1)

Choosing the orbital basis depends on the atomic structure and target energy
interval in the calculation. For carbon-based structures, the sp3 basis can de-
scribe the electronic structure for a broad energy region. For the considered
energy region and the atomic structure of materials in this thesis, the orthogo-
nal atomic basis is utilized, i.e., overlap matrix elements are taken as Kronecker
delta δij . Moreover, instead of the sp3 orbital basis, one π-orbital per atom is
considered. This choice has a benefit of reducing unnecessary computational
costs. Choosing a proper orbital basis and using Eq. (2.1), Hamiltonian and
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overlap matrices are constructed to solve the eigenvalue problem(↔
H − E

↔
S
)
·→a = 0, (2.2)

where E is the energy of the system.
Infinite systems are infinite repeating atomic units that are called unit cells.

If N is the number of unit cells and φi is an atomic orbital with i as the orbital
type, then the electron wave function in the structure can be expanded in terms
of Bloch functions of that orbital

Φik(r) =
1√
N

∑
R

eik·Rφi(r −R), (2.3)

where R is the position of each unit cell, which summed over all unit cells and
k is the wavevector. This function satisfies the Bloch’s theorem Φk(r + R′) =

e(ik·R
′)Φk(r). Thus, crystal wave function Ψk(r) is a linear combination of

Bloch functions, considering all atomic orbitals

Ψk(r) =
∑
i

aiΦik(r). (2.4)

After defining atomic orbitals, Hamiltonian and overlap matrix elements are
constructed as follows

Hij =
1

N

∑
RR′

eik·(R−R
′)
〈
φi(r −R′)

∣∣H(r)
∣∣φj(r −R)

〉
=
∑
R

eik·Rtij(R),

Sij =
1

N

∑
RR′

eik·(R−R
′)
〈
φi(r −R′)

∣∣φj(r −R)
〉

=
∑
R

eik·Rsij(R). (2.5)

Because there are terms R −R′ in these equations, one R-summation is per-
formed to simplify the equations, which results in the appearance of a factor
N . TB parameters tij(R) and sij(R) are hopping and overlap matrix elements
between atomic orbitals located in neighboring sites, respectively, which can
be obtained by either experiments or fitting against ab initio calculations like
DFT. To obtain the band structure of crystals, the orbital basis and num-
ber of interacting neighbors that atomic orbitals extend over them must be
defined. Then, an eigenvalue problem similar to Eq. (2.2) is constructed, in
which eigenvalues of this equation result in the band structure of any periodic
system.

2.2 Single-electron optical response

External electromagnetic fields induce polarization in semiconducting materi-
als. Electric polarization P (t) is the response of the system to the electric field
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part Ft (optical field) by a response function χ, which is referred to as the elec-
trical susceptibility. Therefore, in the linear regime at any time t, polarization
is the integration of the response knowledge of all times t′ prior to t via

P (t) = ε0

∫ t

−∞
χ(t− t′)Ft(t′) dt′, (2.6)

where ε0 is the vacuum permittivity. Here, vector parameters are written as
scalers to simplify the notation for obtaining the optical response in one direc-
tion. Hence, response functions are scalers instead of tensors. Also, the electric
dipole approximation is considered, in which the susceptibility is independent
of the position in the system. Therefore, Eq. (2.6) which is in the time domain
can be convoluted to the frequency domain

P (ω) = ε0χ(ω)Fω. (2.7)

When the optical field is weak, the linear response can satisfactorily describe
the response of the system. For stronger fields, the full response of the system
is not in a simple linear form. Therefore, Eq. (2.6) is expanded as a power
series of the optical field

P (t) = ε0

{∫ t

−∞
χ(1)(t− t′)Ft(t′) dt′

+

∫ t

−∞

∫ t

−∞
χ(2)(t− t′1, t− t′2)Ft(t

′
1)Ft(t

′
2) dt′1dt

′
2

+

∫ t

−∞

∫ t

−∞

∫ t

−∞
χ(3)(t− t′1, t− t′2, t− t′3)Ft(t

′
1)Ft(t

′
2)Ft(t

′
3) dt′1dt

′
2dt
′
3 + · · ·

}
,

(2.8)

where χ(1) is the linear, χ(2) and χ(3) are the second and third order nonlinear
optical susceptibility, respectively. Similar to Eq. (2.7), the Fourier transfor-
mation can convert Eq. (2.8) to the frequency domain

P (ω) = P (1)(ω) + P (2)(ω) + P (3)(ω) + · · ·,

P (1)(ω) = ε0χ
(1)(ω)Fω,

P (2)(ω) = ε0χ
(2)(ω = ω1 + ω2)Fω1Fω2 ,

P (3)(ω) = ε0χ
(3)(ω = ω1 + ω2 + ω3)Fω1

Fω2
Fω3

. (2.9)

In the following, the response function will be obtained using the time-dependent
quantum perturbation theory for both finite and infinite one-dimensional semi-
conductors.
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2.2.1 Finite system

The response function in this thesis is obtained by a semi-quantum mechani-
cal approach, in which one-dimensional materials are considered as quantum
systems with the x-axis as their long direction and optical fields as classical
fields along this axis. The optical field Hamiltonian Ĥ1 = ex̂Ft, which e is the
electron charge and x̂ is the position operator along the x-axis, perturbs the
stationary Hamiltonian Ĥ0 of the system. Thus, the total Hamiltonian is

Ĥ = Ĥ0 + Ĥ1. (2.10)

The optical field Hamiltonian can be treated harmonically Ĥ1 = 1/2{ĥ1e−iωt+
h.c.} with ω as the frequency of the optical field and h.c. is the hermitian
conjugate. Using Hamiltonian (2.10), the time-dependent Schrödinger equation
is constructed, considering ψ ≡ ψ(x, t) as the wave function, which defines the
state of the system

i~
∂ψ

∂t
= Ĥψ. (2.11)

This equation can not be solved because of the unknown wave function ψ. To
solve the problem, the wave function is written in a complete set of known
energy states of the system

ψ =
∑
n

an(t)ϕne
−iωnt, (2.12)

where an(t) is time-dependent expansion coefficients and ϕn is stationary states
of the system with the eigenvalue equation Ĥ0ϕn = Enϕn and energy eigen-
states of En = ~ωn. Thus, the exact equation form of an(t) yields defining the
state ψ of the system. To this end, Eq. (2.12) is replaced into Eq. (2.11) and
the orthogonal condition between energy states 〈ϕn|ϕm〉 = δnm is considered

∂am(t)

∂t
=

1

2i~
∑
n

an(t)
{〈
ϕm
∣∣ĥ1∣∣ϕn〉e−iωt + c.c.

}
eiωmnt, ωmn = ωm − ωn.

(2.13)
To find an(t) from Eq. (2.13), the power series of perturbation an(t) = a

(0)
n (t)+

a
(1)
n (t) + a

(2)
n (t) + · · · is introduced. Since

〈
ϕm
∣∣ĥ1∣∣ϕn〉 has one power of the

perturbation, Eq. (2.13) results in the following equation for an arbitrary order
p

a(p)m =
1

2i~
∑
n

∫
dt a(p−1)n

{〈
ϕm
∣∣ĥ1∣∣ϕn〉e−iωt + c.c.

}
eiωmnt. (2.14)

From Eq. (2.14), it can be concluded that ∂a(0)n (t)/∂t = 0, i.e., the zeroth order
of the expansion coefficient is a constant value in time. Also, the zeroth order
can be interpreted as the lack of perturbation in the system. The orthogonality
of ϕns and normalization of the wave function 〈ψ|ψ〉 = 1 result in

∑
n |a

(0)
n |2 =
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1. |a(0)n |2 can be interpreted as the probability of the unperturbed system to
be in state ϕn. Thus in the thermal equilibrium, f(En) = |a(0)n |2, with f(En)

is the energy-dependent probability distribution function. The first and second
orders of expansion coefficients can be derived from Eq. (2.14) after performing
the time integration

a(1)m = −1

2

∑
n

a(0)n

{〈
ϕm
∣∣ĥ1∣∣ϕn〉e−iωt
Emn − ~ω

+

〈
ϕm
∣∣ĥ†1∣∣ϕn〉eiωt

Emn + ~ω

}
eiωmnt, (2.15)

a(2)m =
1

4

∑
n,l

a(0)n

{〈
ϕm
∣∣ĥ1∣∣ϕl〉〈ϕl∣∣ĥ1∣∣ϕn〉e−2iωt

(Emn − 2~ω)(Eln − ~ω)
+

〈
ϕm
∣∣ĥ†1∣∣ϕl〉〈ϕl∣∣ĥ1∣∣ϕn〉

(Eln − ~ω)Emn

+

〈
ϕm
∣∣ĥ†1∣∣ϕl〉〈ϕl∣∣ĥ†1∣∣ϕn〉e2iωt

(Emn + 2~ω)(Eln + ~ω)
+

〈
ϕm
∣∣ĥ1∣∣ϕl〉〈ϕl∣∣ĥ†1∣∣ϕn〉

(Eln + ~ω)Emn

}
eiωmnt. (2.16)

Since the system tends to decay back to the ground state, in these equations,
a damping term i~Γ is added to the optical field energy ~ω to compensate
the ignored system losses. Obtaining higher orders of expansion coefficients
an from Eq. (2.14) are skipped to explicitly be derived because the first and
second-order nonlinear optical response is only considered in this thesis for
calculations.

Knowing different orders of expansion coefficients an, a time-dependent
physical observable X(t) can be calculated by evaluating the expectation value
of the response observable X(t) = 〈ψ|X̂|ψ〉

X(t) =
∑
m,n

〈ϕn|X̂|ϕm〉(a(0)∗n a(0)m + a(0)∗n a(1)m + a(1)∗n a(0)m

+a(2)∗n a(0)m + a(0)∗n a(2)m + a(1)∗n a(1)m + · · · )e−iωmnt. (2.17)

The first term inside the parentheses is a(0)∗n a
(0)
m = f(En)δnm, which shows

the state of the system without the optical field perturbation. The second
and third terms correspond to the linear part of the observable X(t). The
next three terms reflect the second-order nonlinear part of X(t). Higher orders
are skipped to explicitly be written in Eq. (2.17) because of deriving optical
response equations up to the second order in this thesis.

Before deriving final expressions for the linear and nonlinear optical re-
sponse, Fourier decomposition is used to convert the time-dependent response
into frequency components up to the second order

X(t) ≈ 1

2

{
X(0) +X(1)(ω)e−iωt +

1

2
X(2)(ω)e−2iωt + c.c.

}
, (2.18)

where the first term is the static contribution, in which there is no perturba-
tion in the system. The second term and its corresponding complex conjugate
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term give the linear contribution. The last term and its corresponding com-
plex conjugate results in the second-order nonlinear response. Therefore, from
Eqs. (2.15)-(2.18)

X(1)(ω) = −
∑
m,n

fnm

〈
ϕm

∣∣∣ĥ1∣∣∣ϕn〉〈ϕn∣∣∣X̂∣∣∣ϕm〉
Emn − ~ω

, (2.19)

X(2)(ω)=
∑
m,n,l

〈
ϕn

∣∣∣X̂1

∣∣∣ϕm〉〈ϕm∣∣∣ĥ1∣∣∣ϕl〉〈ϕl∣∣∣ĥ1∣∣∣ϕn〉
Emn − 2~ω

{
fml

Eml − ~ω
+

fnl
Eln − ~ω

}
,

(2.20)
where fnm = f(En)− f(Em) is the population difference between states n and
m. Defining the perturbation Hamiltonian and response function leads to ob-
taining the exact form of the response of the system. The frequency-dependent
optical field perturbation Hamiltonian ĥ1 = ex̂Fω causes polarization P in the
system. Polarization is the total dipole moment of the system per unit volume,
so the response operator is the dipole moment operator X̂ = −ex̂/L, which L is
the length of the one-dimensional system. Applying these into Eqs. (2.19) and
(2.20) and using the relation between the induced polarization and optical field
from Eq. (2.9) result in the linear and nonlinear optical susceptibility function
χ(ω), respectively. After some manipulations

χ(1)(ω) =
2e2

ε0L

∑
m,n

f(En)|xnm|2
Emn

E2
mn − (~ω)2

, (2.21)

χ(2)(ω) =
e3

ε0L

∑
m,n,l

xlmxmnxnl
Eml − 2~ω

{
fln

Enl − ~ω
+

fmn
Emn − ~ω

}
, (2.22)

where xnm = 〈ϕn|x̂|ϕm〉 is dipole moment matrix elements. These equations
can be numerically calculated by obtaining energy levels En and vectors ϕn
by solving the eigenvalue problem in Eq. (2.2). Instead of the polarization,
the current density J(ω) can be chosen as the response of the system to the
external field. Choosing this response and using the equation J(ω) = σ(ω)Fω
result in the linear optical conductivity σ(ω). Current density is simply the
time derivative of the polarization J(t) = ∂P (t)/∂t, which in the frequency
domain J(ω) = −iωP (ω). Thus, the susceptibility can be converted to the
conductivity via σ(ω) = −iωε0χ(ω).

2.2.2 Infinite system

For infinite systems, states of the system are in the form of ϕnk with H0ϕnk =

Enkϕnk. Here, Enk is the unperturbed energy of the system for the quantum
wavenumber k in the quantum band number n. The electron wave function in
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a periodic system is in the form of the Bloch function, which consists of a plane
wave multiplied by a periodic function. These are explained comprehensively
in textbooks [134]. Thus, Eqs. (2.21) and (2.22) are modified for the infinite
response equations by including band indices

χ(1)(ω) =
2e2

ε0L

∑
m,n,k,k′

f(Enk)|xnk,mk′ |2
Emk′,nk

E2
mk′,nk − (~ω)2

. (2.23)

Solving Eq. (2.2) for an infinite system results in the energy band structure
Enk and states ϕnk. The remaining problem in solving Eq. (2.23) is that
the operator x̂ is ill-defined for infinite structures. Therefore, dipole mo-
ment matrix elements cannot be evaluated. To solve this issue, well-defined
momentum matrix elements pnk,mk′ are used from the equation xnk,mk′ =

~pnk,mk′/imEnk,mk′ , where xnk,mk′ = 〈ϕnk|x̂|ϕmk′〉, pnk,mk′ = 〈ϕnk|p̂|ϕmk′〉
and Enk,mk′ = Enk − Emk′ . This equation is obtained from the commutator
relation between the unperturbed HamiltonianH0 and the position operator via
〈ϕnk|[H0, x̂]|ϕmk′〉 and only valid for interband contributions (n 6= m). Using
the momentum instead of the dipole moment and considering only interband
transitions

χinter
1 (ω) =

2e2~2

ε0m2L

∑
m,n,k
m 6=n

f(Enk)
|pnmk|2

Emnk(E2
mnk − (~ω)2)

, (2.24)

where pnmk = 〈ϕnk|p̂|ϕmk〉 and Emnk = Emk − Enk. Similar modifications
can be applied for the nonlinear response in Eq. (2.22) to obtain the second-
order nonlinear optical susceptibility for infinite systems. If pure interband
contributions are considered, the following equation is obtained from Eq. (2.22)

χinter
2 (ω) = − 2ie3~3

m3ε0L

∑
m,n,l,k

m6=n,m 6=l,n6=l

plmkpmnkpnlk
ElmkEmnkEnlk(Emlk − 2~ω)

×

{
flnk

Enlk − ~ω
+

fmnk
Emnk − ~ω

}
. (2.25)

If intraband contributions (n = m) are considered, it is not allowed to use
equation xnk,mk′ = ~pnk,mk′/imEnk,mk′ . Therefore, another method is intro-
duced by dividing the position operator x̂ into two interband x̂e and intraband
x̂i parts. Following the procedure in Ref. [135], the second-order nonlinear
susceptibility for mixed inter- and intraband contributions is

χmixed
2 (ω) =

3ie3

m2ε0L

∑
m,n,k
m6=n

f(Enk)
pnmk(pmnk);k

(E2
mnk − (2~ω)2)(E2

mnk − (~ω)2)
, (2.26)
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where (pmnk);k is the generalized derivative of momentum matrix elements
with respect to k, which is (pmnk);k = ∂pmnk/∂k − ipmnk(Ωmmk − Ωnnk) and
Ωmnk = i/Vuc

∫
u∗mk(r)∂unk(r)/∂kdr is the Berry connection between bands

n and m. Vuc is the unit cell volume and unk(r) is the periodic part of the
Bloch wave function ψnk(r) = 1/

√
Nunk(r)exp(ikx).

2.3 Exciton states

Up until now, theoretical methods for obtaining the electronic structure and
optical response of atomic systems in the independent-electron picture have
been introduced. Both TB and DFT methods result in the electronic structure
of semiconductors in unperturbed energy states or the ground state. Then,
these results are used to obtain the linear and nonlinear optical response of the
system. In the presence of optical fields, electrons can be excited into excited
states of the system. Therefore, relying on the ground state electronic struc-
ture sometimes fails miserably describing such excitations in semiconductors.
To better describe the optical response in the system, especially for lower-
dimensional semiconductors, it is necessary to obtain the electronic structure
beyond the independent-electron model. To this end, many-body excited states
or excitons are considered in these materials.

2.3.1 Bethe-Salpeter equation

The ground state of a N0-particle system can be constructed by the Slater
determinant |0〉 =

∣∣|v1〉, |v2〉, · · · , |vN 〉∣∣, where |vi〉 is an occupied single-electron
valence state. To simplify the notation, up and down spins are skipped to be
written. A single excitation means that a single valence state |vi〉 excites into
a single excited state |cj〉, which is shown by the state |vi→cj〉. Considering
spin, in fact, results in a singlet state |vi→cj〉 ≡ |vicj〉 = {|vi↑ → cj↑〉 +

|vi↓ → cj↓〉}/
√

2 with the total spin of zero. Many-body excited states can be
constructed by a linear combination of these singlets

|exc〉 =
∑
i,j

A(exc)
vi,cj |vicj〉. (2.27)

Now, the problem is setting up the Hamiltonian equation using this exciton
basis to obtain unknown expansion coefficients A(exc)

vi,cj and corresponding ener-
gies Eexc. Following the procedure in Ref. [135] results in an equation known
as the Bethe-Salpeter equation (BSE)(

Ecj − Evi
)
A(exc)
vicj −

∑
i′,j′

〈
vicj

∣∣VC − 2Vx
∣∣vi′cj′〉A(exc)

vi′cj′
= E(exc)A

(exc)
vicj . (2.28)
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Here, Ev and Ec are quasiparticle valence and conduction energy levels, re-
spectively, which can be obtained by DFT or TB. 〈VC〉 and 〈Vx〉 are screened
Coulomb and unscreened exchange terms.

Before explaining the obtained terms in the BSE (2.28), proper modifica-
tions in this equation must be applied to write it for infinite systems, which are
periodic structures. For such systems with the periodicity in one direction as
mentioned in Sec. 2.2.2, single-particle states have a band index (v or c) and
wavenumber k as quantum numbers. Thus, excitonic states will be in the form
of |vck〉 ≡ |vk→ck〉. In optical excitations, there might be phonon-assisted op-
tical excitations, where the k-number for a valence band is different from that
of a conduction band. Although these kinds of optical processes are essential
for studying the optical response in indirect-band semiconductors, direct opti-
cal excitations are considered in our notation, where the ground and excited
states have an identical k-number. Thus, Eq. (2.28) is rewritten as(
Eck−Evk

)
A

(exc)
vck −

∑
v′,c′,k′

〈
vck
∣∣VC − 2Vx

∣∣v′c′k′〉A(exc)
v′c′k′ = E(exc)A

(exc)
vck . (2.29)

Coulomb potential between electrons at position r and holes at position r′ is
v(r − r′) = e2/4πε0|r − r′|. This potential is screened for Coulomb matrix
elements by a dielectric function ε, which depends on the structure and sur-
rounding materials. In contrast, exchange matrix elements are constructed via
bare Coulomb potential [136]. Coulomb and exchange matrix elements can be
obtained from following expressions〈
vck
∣∣VC∣∣v′c′k′〉 =

1

ε

∫∫
ψ∗ck(r)ψc′k′(r)v(r − r′)ψvk(r′)ψ∗v′k′(r

′)drdr′, (2.30)

〈
vck
∣∣Vx∣∣v′c′k′〉 =

∫∫
ψ∗ck(r)ψc′k′(r

′)v(r − r′)ψvk(r)ψ∗v′k′(r
′)drdr′. (2.31)

Here, ψαk(r) (α = v or c) is Bloch sums similar to Eq. (2.4) for electrons in
conduction bands and holes in valence bands. By constructing Coulomb and
exchange matrix elements in Eqs. (2.30) and (2.31) and applying them into
BSE (2.29), excitonic states A(exc) and energies E(exc) can be calculated.

2.3.2 Wannier approximation

Calculating exciton states using the BSE is complicated and computationally
very demanding. A proper alternative to avoid this complexity is using the
Wannier model, which is a simplified BSE by a set of approximations. The
first approximation is that this method is limited to a two-band model of a
semiconductor. Second, the exchange term is ignored in this model. Next, the
effective mass dispersion is applied for both valence and conduction bands

Eck ≈ Eg +
~2k2

2me
, Evk ≈ −

~2k2

2mh
, Eck − Evk ≈ Eg +

~2k2

2µ
,
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where me, mh and µ are electron, hole and electron-hole effective mass, respec-
tively, and Eg is the energy gap between valence and conduction bands. The
final approximation is taking the following equation

Iαk,α′k′ ≡
1

Vuc

∫
u∗α′k′(r

′)uαk(r)dr ≈ δαα′ .

Using these approximations and BSE (2.29) and Eq. (2.30), as well as perform-
ing an inverse Fourier transform to convert the k-space to the real space, result
in the following equation in the Hartree units{

Eg −
1

2µ
∇2 − 1

ε
v(r)

}
ψW
exc(r) = Eexcψ

W
exc(r). (2.32)

This Schrödinger-like equation is called as the Wannier equation and can be
solved by defining a basis function for ψW

exc(r) and attractive screened Coulomb
potential between electrons and holes 1/εv(r). It should be noted that this
equation depends on the relative motion of electron-hole pair with the distance
of r between them.

2.3.3 Excitonic optical response

Results of excitonic states calculated using either the BSE or Wannier model
can be used to obtain the excitonic optical response. Although higher orders
of the excitonic optical response can be evaluated, the response is restricted to
the linear regime in this thesis. The starting point is obtaining many-body mo-
mentum matrix elements Pexc = 〈0|P̂ |exc〉. P̂ is the many-body momentum
operator, which is the total momentum of single-electron momentum opera-
tors for a N0-particle system P̂ =

∑N0

n p̂n. Solving exciton problem from the
BSE (2.29) results in exciton eigenstates Aexcvck. Thus, excitonic momentum
matrix elements are simply

Pexc =
∑
vck

A
(exc)
vck pvck.

Now, the optical susceptibility function can be obtained using many-body mo-
mentum matrix elements and exciton energy states via

χ(1)(ω) =
2e2~2

ε0m2L

∑
exc

|Pexc|2

Eexc(E2
exc − (~ω)2)

. (2.33)

In the Wannier approach, momentum matrix elements are different from
those of the BSE. As a simplification, the dependency of the single-particle
momentum matrix elements pmnk to the wavenumber k is omitted, and these
elements are considered as a fixed value p0 for each valence and conduction
band pair evaluated at a k-point corresponding to the minimum gap between
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these two bands. Then, many-body momentum matrix elements can be written
as

Pexc = 〈0|P̂ |exc〉 =
√

2
∑
k

ψW
k p0 =

√
2Lp0ψ

W
exc(0),

where, ψW
exc(0) is the Wannier exciton wave function evaluated at the origin.

Hence, the linear optical susceptibility is

χ(1)(ω) =
4e2~2|p0|2

ε0m2

∑
exc

|ψWexc(0)|2

Eexc(E2
exc − (~ω)2)

. (2.34)

2.4 Static electric field and Franz-Keldysh effect

This section covers methods used in the calculation of the linear and nonlinear
optical response of one-dimensional semiconductors under the effect of strong
electrostatic fields. Many-body excitonic effects are excluded because the pur-
pose of this section is only to show the effect of DC fields on the electronic
structure and optical response of semiconductors. Different directions for elec-
trostatic fields have different effects in quasi-one-dimensional semiconductors.
Here, these fields are applied in two directions: (i) along with the long-axis
of one-dimensional semiconductors, which is called the longitudinal direction,
and (ii) perpendicular to the long axis, which is entitled as the transverse
direction. Moreover, both finite and infinite semiconductors will be studied.
Furthermore, methods will be extended to two-dimensional semiconductors to
study the behavior of wide one-dimensional semiconductors compared to their
two-dimensional counterparts.

2.4.1 Transversal DC fields

Transversal fields perturb the system by inducing dipole moments in the field
direction and cause changes in the electronic structure and subsequently in the
optical response of one-dimensional semiconductors. If the DC field is taken in
y-direction in Fig. 1.3 as F yDC, then the DC field Hamiltonian is ĤDC = eŷF yDC.
Thus, the system Hamiltonian before applying the optical field perturbation is

Ĥ = Ĥ0 + ĤDC.

This Hamiltonian is used to construct the eigenvalue equation. Evaluated eigen-
values and eigenvectors of this equation are used to construct transition energies
and dipole moment matrix elements between energy states for finite systems,
as well as transition energies and momentum matrix elements between bands
for infinite systems. Then, these results are substituted into Eqs. (2.21) and
(2.22) for finite systems and Eqs. (2.24)-(2.26) for infinite systems to obtain
the linear and nonlinear optical susceptibility.
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Fig. 2.1: The effect of DC fields in the x-direction on the energy structure of a semiconductor
with the optical gap of Eg . Ec, Ev and EF are conduction, valence and Fermi energy states,
respectively. Tilted red states are the result of the DC field effect on the energy structure of
the system. Electron and hole states are shown in blue waves. Et is the transition energy
resulted from the field-induced tunneling across the gap.

2.4.2 Longitudinal DC fields

For DC fields along the longitudinal direction, e.g., x-direction in Fig. 1.3, the
field direction is along the periodic direction of the system. Thus, it is expected
to obtain different results compared to the transversal field direction. If a finite
system is considered, the procedure of calculating electrostatic fields effects
on the electronic structure and optical response is similar to the transversal
fields, in which the DC field Hamiltonian ĤDC = ex̂F xDC perturbs the system.
If an infinite system is considered, one way to calculate the DC field effects
is to include the periodic field, which extends over several unit cells of the
system [115]. Taking a sufficient number of unit cells to calculate the Franz-
Keldysh (FK) effect requires a heavy usage of computational resources. Thus,
this method is not an efficient calculation method. In the following, a method
will be introduced to avoid such a demanding computational method. Before
continuing the calculation method, a brief description of DC fields effects on
periodic systems is provided.

DC fields along the periodic direction tilt the potential of semiconductors
and change the electronic structure as shown schematically in Fig. 2.1. As a
result, the wave function of electrons and holes can penetrate to the forbidden
gap region. Hence, optical transitions can occur with energy Et, which is
smaller than the gap energy Eg. Therefore, an exponential tail in the optical
response below the band gap in semiconductors is seen [88]. Also, under the
influence of longitudinal DC fields, the electron and hole wave function behaves
like the Airy function. As a result of such behavior, the optical response of
semiconductors shows oscillatory peaks above the band gap resonance [88].

DC fields lift the energy degeneracy in periodic structures and result in
the localization of electron states in each lattice site. These localized states
are referred to as the Wannier-Stark (WS) ladder and separated in space with
the Hamiltonian ĤDC [137]. Also, field-induced couplings between bands are
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ignored because there are no degenerate bands in the studied systems in this
thesis [138]. Taking this approximation into account enables writing equations
for a single valence and conduction band pair (n,m). The remaining problem
is solving the WS Hamiltonian equation HWSψ

(p)
mnk = E

(p)
mnψ

(p)
mnk. p is the index

of WS states in valence and conduction bands with the corresponding wave
function ψ(p)

mnk and energies E(p)
mn. Considering this band pair, the Hamiltonian

can be written as

HWS = Emnk + ieF xDC

{ d

dk
+ i(Ωmmk − Ωnnk)

}
, (2.35)

where Emnk is the energy difference between valence and conduction band
pair. The WS Hamiltonian equation can be used for setting up the eigenvalue
problem and solving it by introducing the following WS wave function

ψ
(p)
mnk =

1√
K

exp

{
− 1

eF xDC

(
E(p)
mnk −

∫ k

0

Emnk′dk
′

)}
, (2.36)

where K is the extent of the Brillouin zone along the DC field direction. Sub-
stituting this WS wave function into the WS Hamiltonian equation (2.35) and
applying the Bloch boundary condition ψ(p)

mnk = ψ
(p)
mn(k+K), WS energy states

are obtained

E(p)
mn =

2πpeF xDC

K
+

1

K

∫ K

0

{
Emnk + i(Ωmmk − Ωnnk)

}
dk. (2.37)

Under strong longitudinal DC fields, Eq. (2.37) shows that energy bands of a
semiconductor are discretized into WS ladder.

For obtaining the DC optical response, a density matrix formalism is intro-
duced using the Hamiltonian Ĥ = Ĥ0 + Ĥ1, where Ĥ1 = e(Ft + F xDC)x̂ is the
total external perturbation caused by optical and DC fields. Here, DC fields
effects in the system are treated non-perturbatively. The commutator between
density matrix ρ and Hamiltonian H can be written by the Liouville equation
−i~∂ρ̂/∂t = [ρ̂, Ĥ]. To solve this equation, the position operator x̂ is divided
into inter- x̂e and intraband x̂i parts. It can be shown that the inter- and
intraband parts of the position operator in the crystal are [139]

xemnk = Ωmnk, [x̂i, ρ̂]mnk = i(ρmnk);k.

Using the inter- and intraband parts of position operator and the Liouville
equation, density matrix elements are

−i~∂ρmnk
∂t

+ Emnkρmnk = −ieF (ρmnk);k

+eF
∑
l

{
ρmlkΩlnk δ̄ln − Ωmlkρlnk δ̄ml

}
, (2.38)
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where F = Ft+F xDC is the total electric field and δ̄mn = 1−δmn is 0 for m = n

and 1 for m 6= n. Because of the ignored field-induced couplings between
energy bands [140], terms F xDCΩmnk are ignored. Therefore, Eq. (2.38) can be
rewritten as

−i~∂ρmnk
∂t

+HWSρmnk = −ieFt(ρmnk);k

+eFt
∑
l

{
ρmlkΩlnk δ̄ln − Ωmlkρlnk δ̄ml

}
. (2.39)

Density matrix elements can be obtained by introducing the following Green’s
function equation

− i~∂Gmn(k, k′)

∂t
+HWSGmn(k, k′) = δ(k − k′)δ(t− t′). (2.40)

Upon performing a Fourier transformation, frequency-dependent Green’s func-
tion can be derived in the Lehmann spectral representation

G(ω)
mn(k, k′) =

∑
p

ψ
(p)
mnkψ

(p)∗
mnk′

E
(p)
mn − ~ω

. (2.41)

Different orders of density matrix elements can be obtained from Eqs. (2.39)-
(2.41). The zeroth order is defined as ρ(0)lnk = f

(0)
nk δln, for which there is no

external perturbation in the system. Thus, f (0)nk is the population of band
n. Knowing the zeroth order, the first order is obtained using the harmonic
behavior of both density matrix and optical fields, i.e., ρ(1)mnk = 1/2(ρ

(ω)
mnke

−iωt+

ρ
(ω)∗
mnke

iωt) and Ft = 1/2(Fωe
−iωt + F ∗ωe

iωt)

ρ
(ω)
mnk = −eFω δ̄mn

∫
G(ω)
mn(k, k′)Ωmnk′f

(0)
nmk′dk

′, (2.42)

where f (0)nmk is the population difference between bands n and m. For obtaining
this equation, a cold and clean system is considered, i.e., df (0)nk /dk ≈ 0. Upon
performing another iteration in Eq. (2.39), the second-order density matrix el-
ements can be derived using the harmonic behavior of density matrix elements,
i.e., ρ(2)mnk = 1/4(ρ

(2ω)
mnke

−2iωt + ρ
(2ω)∗
mnk e

2iωt + ρ
(DC)
mnk )

ρ
(2ω)
mnk = −e2F 2

ω

∫
G(2ω)
mn (k, k′)

[
i

∫ {
G(ω)
mn(k′, k′′)Ωmnk′′f

(0)
nmk′′ δ̄mndk

′′
}

;k′
+

∑
l

{
Ωlnk′ δ̄ln

∫
G

(ω)
ln (k′, k′′)Ωmlk′′f

(0)
lmk′′ δ̄mldk

′′

−Ωmlk′ δ̄ml

∫
G

(ω)
ml (k′, k′′)Ωlnk′′f

(0)
nlk′′ δ̄lndk

′′
}]
dk′. (2.43)
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Non-diagonal density matrix elements (ρmnk, m 6= n) correspond to the
coherence between bands m and n, whereas diagonal elements (ρnnk) are the
population of band n. Using Eq. (2.39) for diagonal elements, the first order is
f
(ω)
nk = 0 and the second order is

f
(2ω)
nk = −e

2F 2
ω

~ω
∑
l

{
Ωlnk

∫
G

(ω)
nl (k, k′)Ωnlk′f

(0)
lnk′ δ̄nldk

′

−Ωnlk

∫
G

(ω)
ln (k, k′)Ωlnk′f

(0)
nlk′ δ̄lndk

′
}
. (2.44)

The expectation value of any physical observable X is obtainable using the
density matrix via 〈X̂〉 = Tr(ρ̂X̂). Therefore, the expectation value of the
induced current is

j(t) = − e

πm

∑
mn

∫
pnmkρmnkdk. (2.45)

The Fourier transformation for the first and second orders of the current is
j(1)(t) = 1/2(j(ω)e−iωt+j∗(ω)eiωt) and j(2)(t) = 1/4(j(2ω)e−2iωt+j∗(2ω)e2iωt+

j(DC)), respectively. The linear and second-order nonlinear parts of the re-
sponse function, which in this case is the optical conductivity can be obtained
via expressions j(ω) = σ1(ω)Fω and j(2ω) = σ2(ω)F 2

ω , respectively. To simplify
the optical conductivity expressions, the following WS notation is introduced

P (p)
mn =

∫
ψ
(p)
mnkpmnkdk, O

(p)
mn =

∫
ψ
(p)∗
mnkΩmnkf

(0)
nmkdk,

Q(pq)
mn =

∫
ψ
(q)∗
mnk(ψ

(p)
mnk);kdk, M

(pq)
mn =

∫
ψ
(q)∗
mnk(ψ

(p)
mnk)Ωmnkdk, (2.46)

Then, the linear optical conductivity is

σ1(ω) =
e2

πm

∑
m,n
m 6=n

∑
p

P
(p)
nmO

(p)
mn

E
(p)
mn − ~ω

. (2.47)

For the second-order nonlinear conductivity, two expressions can be obtained

σ
(eeie)
2 (ω) =

ie3

πm

∑
m,n
m 6=n

∑
p,q

P
(p)
nmO

(q)
mnQ

(pq)
mn

(E
(p)
mn − 2~ω)(E

(q)
mn − ~ω)

. (2.48)

σ
(iiee)
2 (ω) =

e3

πm

∑
m,n,l

m 6=n,n6=l,m6=l

∑
p,q

{
P

(p)
nmO

(q)
mlM

(pq)
ln

(E
(p)
mn − 2~ω)(E

(q)
ml − ~ω)

−
P

(p)
nmO

(q)
ln M

(pq)
ml

(E
(p)
mn − 2~ω)(E

(q)
ln − ~ω)

}
. (2.49)
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2.4.3 Two-dimensional semiconductors

In this section, a simple method for extending one-dimensional optical response
expressions obtained in Sec. 2.4.2 to two-dimensional semiconductors is intro-
duced. The DC field is considered in the x-direction F xDC. Since the k-space is
a two-dimensional grid of k-points for these systems and the DC field is taken
along the x-direction, for each ky-point, obtained expressions in Eqs. (2.47)-
(2.49) are valid, where integrations in Eq. (2.46) are performed in the kx-
direction. Hence, the linear optical conductivity for two-dimensional systems
can be obtained by performing a ky-integration in Eq. (2.47) as follows

σ1(ω) =
e2

πm

∑
ky

∑
m,n
m6=n

∑
p

P
(p)
nmky

O
(p)
mnky

E
(p)
mnky

− ~ω
. (2.50)

Similarly, for the second order nonlinear conductivity

σ
(eeie)
2 (ω) =

ie3

πm

∑
ky

∑
m,n
m6=n

∑
p,q

P
(p)
nmky

O
(q)
mnky

Q
(pq)
mnky

(E
(p)
mnky

− 2~ω)(E
(q)
mnky

− ~ω)
. (2.51)

σ
(iiee)
2 (ω) =

e3

πm

∑
ky

∑
m,n,l

m 6=n,n6=l,m6=l

∑
p,q

{
P

(p)
nmky

O
(q)
mlky

M
(pq)
lnky

(E
(p)
mnky

− 2~ω)(E
(q)
mlky

− ~ω)

−
P

(p)
nmky

O
(q)
lnky

M
(pq)
mlky

(E
(p)
mnky

− 2~ω)(E
(q)
lnky
− ~ω)

}
. (2.52)
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Chapter 3

Summary of results

This chapter presents results in this PhD project and discusses them. Most
of the results can be found in the papers at the end of the thesis. First, the
electronic structure of CNT-carbyne systems and graphene nanoribbons in pa-
pers ?? and ?? will be presented. Then, results of independent-electron optical
response from papers ??, ?? and ?? will be presented and discussed. Next, re-
sults of excitonic effects on the optical response of CNT-carbyne systems from
paper ?? will be discussed. Finally, DC fields effects on the optical response
of one- and two-dimensional semiconductors from papers ?? and ?? will be
presented.

3.1 Electronic structure

3.1.1 Hybrid CNT-carbyne systems

For systems consisting carbyne encapsulated inside single-walled CNTs in this
thesis, density functional theory (DFT) and tight-binding (TB) are used to cal-
culate their band structure. First, the band structure of hybrid (8,0) and (10.0)
CNT-carbyne systems is obtained using DFT. Then, the DFT band structure
is used to fit the TB band structure and obtain TB parameters. For calculating
the band structure, it is necessary to define the unit cell of the hybrid system.
There is a mismatch between the CNT unit cell (0.426 nm [21]) and the car-
byne unit cell (0.256 nm [25]). Therefore, a supercell consisting five unit cells
of carbyne and three unit cells of CNT is chosen with the length of 1.278 nm,
resulting in a marginal mismatch of 0.16% between unit cells of the two subsys-
tems. For the compensation of this mismatch, carbyne system is compressed
in size to match the size of 1.278 nm. Then, eigenstates of two mentioned
hybrid systems are calculated using the ABINIT package [141–144] with the
Perdew-Burke-Ernzerhof generalized gradient approximation functional [145].
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Fig. 3.1: Nearest neighbor TB band structure of (8,0) CNT-carbyne system without band
hybridization.

The TB method enables one to obtain the electronic structure for a denser
k-points choice with much less computational costs compared to DFT. First,
two subsystems in (8,0) and (10,0) hybrid CNT-carbyne systems are consid-
ered without any interaction, and their band structure is obtained using the
nearest neighbor TB method. In this model, single π-orbital for CNT and
two perpendicular π-orbitals for carbyne are considered. For obtaining TB pa-
rameters by fitting the TB band structure against that of the DFT method,
the electron-hole effective mass at high-symmetric k-points of the DFT band
structure is calculated, then the TB parameters at those k-points are tuned to
obtain similar effective masses. As results, the hopping parameters for (8,0)
CNT-carbyne system are γCNT = 2.6 eV for carbon-carbon bonds in CNT, as
well as γ1car. = 3.56 eV and γ2car. = 4.3 eV for single and triple bonds of carbyne,
respectively. For (10,0) CNT-carbyne system, the hopping parameters are sim-
ilar to the (8,0) CNT-carbyne, except γ2car. = 4.15 eV. Figure 3.1 shows the
band structure of (8,0) CNT-carbyne system without considering interactions
between two subsystems.

Interactions between CNT and carbyne systems in the energy range close
to the band gap are obtained by hybridizing the first conduction band of CNT
ECNT with that of carbyne Ecar., using the k-independent hybridized parameter
h via the following determinant∣∣∣∣ ECNT − E h

h Ecar. − E

∣∣∣∣ = 0,

Eigenvalues of this equation are E± = (ECNT +Ecar.)/2± ((ECNT −Ecar.)
2 +
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Fig. 3.2: Band structure of hybrid (8,0) CNT-carbyne system calculated by the DFT and
TB methods. Arrows are different possible transitions around the band gap of the system.

4h2)1/2/2. The hybridized parameter h = 0.16 eV is also obtained from fitting
the TB band structure against that of the DFT method. (8,0) CNT-carbyne
band structure using DFT and fitted TB is shown in Fig. 3.2. The TB band
structure has a good agreement with that of the DFT method, especially in
the high-symmetric k-pints. E11 = 1.22 eV and E22 = 2.15 eV are energies
resulting from the transitions between valence and conduction bands of isolated
(8,0) CNT, and E33 = 1.48 eV is obtained from isolated carbyne. Hybridization
of CNT and carbyne systems results in two extra transitions E44 = 1.29 eV
and E55 = 1.76 eV in the energy region around the band gap. Moreover,
Hybrid (8,0) CNT-carbyne system has an indirect band gap with the energy of
Eindirect = 1.17 eV. It is noteworthy to mention that E11 ≈ 0.6 eV in our DFT
calculation. It has been shown that a quasi-particle GW correction can open
the band gap of (8,0) CNT up to 1.8 eV [146]. Here, a scissors shift of 0.6 eV
is applied to the DFT band gap, yielding the agreement between the TB and
DFT band gap energy.

With a similar method for (10,0) CNT-carbyne system, transition energies
are E11 = 0.91 eV, E22 = 1.99 eV, E33 = 1.18 eV, E44 = 1.29 eV, E55 = 1.83 eV
and Eindirect = 0.52 eV.

3.1.2 Graphene nanoribbons in transversal DC fields

In this section, the band structure of narrow armchair graphene nanoribbons,
i.e., AGNR-3 and AGNR-9 is calculated with and without the effect of apply-
ing DC fields along the perpendicular direction of the GNRs long-axis. Here,
AGNR-nd notation is used, which nd is the number of carbon-carbon dimer
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Fig. 3.3: Atomic structure of AGNRs up to nd = 9 rows of carbon atoms (gray atoms),
which chemical edge bonds are saturated with hydrogen atoms (red atoms).
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Fig. 3.4: Band structure of (a) AGNR-3 and (b) AGNR-9 with and without transversal DC
field F y

DC.

bonds in the structure, and edge carbon atoms are passivated by hydrogen
atoms as shown in Fig. 3.3. Similar to CNT-carbyne systems, the nearest
neighbor TB method is used for calculations, considering single π-orbital per
atomic site. First, the band structure of AGNR-3 and AGNR-9 is calculated
without the presence of external electrostatic fields. Then, F yDC = 3.6 V/nm
for AGNR-3 and F yDC = 1.2 V/nm for AGNR-9 is applied to calculate their
electronic band structure. The spectra in Fig. 3.4 show that including external
transversal DC fields results in lifting degeneracies in the band-crossing points,
which is the result of diagonal DC field energy terms eyF yDC in the Hamiltonian
matrix. Changes in the band structure depend on the width of AGNRs and the
intensity of the DC field. For a fixed DC field strength, the effect of DC fields
in wider AGNRs is more prominent, due to the larger dipole moment along the
width of these structures. Hence, larger DC field strength is used for AGNR-3
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Fig. 3.5: (a) The imaginary part of the linear polarizability of polyacetylene and (b) real
and imaginary parts of second-order nonlinear polarizability of polymethineimine, considering
both finite and infinite lengths.

compared to AGNR-9 to obtain considerable changes in the band structure of
this system.

3.2 Independent-electron optical response

This section presents the optical response of semiconducting carbon-based
chains, graphene nanoribbons and sheets, as well as CNT-carbyne systems un-
der external optical fields perturbation and neglecting many-body effects. Note
that the long-axis of studied systems is taken along the x-axis and the opti-
cal response is calculated for optical fields polarized along this axis. Diagonal
elements of the linear and nonlinear optical response tensors are considered,
i.e., xx and xxx components for the linear and second-order nonlinear tensors,
respectively.

3.2.1 One-dimensional carbon-based atomic chains

The optical response of finite and infinite polyacetylene and polymethineimine
chains as shown in Fig. 1.1 are calculated using the quantum perturbation
theory in paper ??. Choosing TB parameters 0, -2 eV and -3 eV for on-site
energy, single- and double-bond hopping energy, respectively, results in the op-
tical band gap of 2 eV for polyacetylene. For polymethineimine chains, TB
parameters are 0.5 eV, -2 eV and -2.5 eV, and the optical band gap is 1.41 eV.
In Fig. 3.5, the linear and nonlinear polarizability α per unit cells number N of
polyacetylene and polymethineimine chains are plotted, using the calculation
methods in Sec. 2.2.1 for finite and Sec. 2.2.2 for infinite systems. With increas-
ing the length of the finite system, the response of finite systems converges to
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Fig. 3.6: The imaginary part of the linear optical susceptibility in the single-electron pic-
tures for (a) (8,0) CNT-carbyne and (b) (10,0) CNT-carbyne, with and without interactions
between CNT and carbyne systems.

that of infinite systems. In Fig. 3.5 (a), the major peak at 2 eV corresponds
to electron transitions with absorbing photons with the energy of the band
gap. Also, the response for the N = 50 system shows noticeable oscillations
because of the energy difference between valence and conduction states are
much larger than the broadening energy. The broadening is taken as ~Γ = 50

meV throughout the calculations in this thesis, except the obtained result for
the nonlinear polarizability of polymethineimine in Fig. 3.5 (b), which is taken
as ~Γ = 100 meV. With increasing the length of the system, the energy dif-
ference between valence and conduction states gets smaller and results in the
vanishing oscillation peaks for long chains. Polyacetylene chain in this study
has inversion symmetry, so there is no even-order nonlinear optical response
for this system. For this reason, polymethineimine chain is chosen to calculate
the second-order nonlinear polarizability instead. The imaginary parts of the
spectra in Fig. 3.5 (b) show two distinct resonances at 1.41 eV and 0.705 eV,
which are one- and two-photon resonances with the energy of the band gap,
respectively.

3.2.2 CNT-carbyne systems

Both CNT and carbyne systems are optically very active materials because
of their one-dimensional nature. Hence, the optical response of CNTs with
various size and chirality are extensively studied theoretically and experimen-
tally [59, 63–65]. Unlike CNTs, isolated long carbyne chains are not stable
materials to study their optical response. It has been recently shown that the
encapsulation of carbyne chains inside CNTs provide a good medium to grow
long carbyne chains [25]. Therefore, this encapsulation produces new hybrid
systems, which reflects the properties of isolated CNT and carbyne systems,
as well as interactions between them. Based on the electronic structure of two
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Fig. 3.7: The real part of the linear optical conductivity of (a) AGNR-3 and (b) AGNR-9,
for finite systems with N = 50− 400 unit cells and infinite systems N =∞.

hybrid CNT-carbyne systems in Sec. 3.1.1, the single electron optical response
of these systems are calculated using the method in Sec. 2.2.2. Figure 3.6 shows
the imaginary part of the linear optical susceptibility χ from Eq. (2.24) for both
(8,0) and (10,0) CNT-carbyne systems. The red and blue curves are the linear
optical susceptibility for CNT and carbyne systems without and with interac-
tions between them, respectively. Despite a relatively large distance between
CNT and carbyne systems, the interaction between these two systems causes
considerable changes in the optical response, in which the height of peaks are
decreased and new peaks are introduced in the spectra. These peaks are ex-
plainable by looking into the band structure of (8,0) CNT-carbyne system in
Fig. 3.2. Without the interaction, there are three peaks, which correspond to
the transitions with energies E11, E22 and E33. Including the interaction intro-
duces two more optical transitions E44 and E55 and results in extra features in
the blue curves. Both (8,0) and (10,0) CNT-carbyne systems have an indirect
band gap (Eindirect), which in our considered conditions (without external heat
and phonon contributions) are optically inactive.

3.2.3 Graphene nanoribbons and sheet

Obtaining the optical response of GNRs have attracted a lot of attention in
the past two decades, due to the one-dimensional nature of these materials.
Figure 3.7 shows the real part of the linear optical conductivity for AGNR-3
and AGNR-9 per length Na, where N is the number of unit cells and k-points
for finite and infinite systems, respectively. The figure is plotted for AGNRs
with various lengths from N = 50 unit cells to N = 400, using the dipole
moment formalism introduced in Sec. 2.2.1, and N =∞ using the momentum
matrix elements explained in Sec. 2.2.2, in which the equations are converted
to the optical conductivity σ instead of the optical susceptibility χ. The real
part of the linear optical conductivity shows the absorption of external photons
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Fig. 3.8: (a) Atomic structure of AGNRs and graphene sheet. nd is the row number of
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conductivity for AGNRs with various width (nd = 45−390) compared to the graphene sheet
nd =∞ in the units of graphene DC conductivity σ0.

by the system. Both AGNRs spectra show that the optical response of finite
systems converges to that of the infinite systems in the limit of sufficiently long
finite structures. The lowest energy peak in each spectrum corresponds to the
absorption of external field photons with the energy of the band gap. Also, the
large symmetrical peak is the result of the optical transition between the flat
valence and conduction bands in Fig. 3.4. AGNR-9 spectrum has more peaks
compared to AGNR-3, which is the result of more allowed optical transitions
between valence and conduction bands for this system. Similar to the atomic
chains in Sec. 3.2.1, short AGNRs such as the N = 50 system have oscillation
peaks in their optical response, which is the reason of a large energy spacing
between transitions compared to the chosen broadening for these sizes.

The optical response of graphene sheets has been already studied previ-
ously, e.g., Ref. [60]. It is expected that the optical response of sufficiently
wide GNRs shows similar features as the two-dimensional graphene. There-
fore, four various widths, i.e., AGNR-45, AGNR-90, AGNR-240, and AGNR-
390 are chosen to calculate their linear optical conductivity with the similar
method used for the narrow AGNRs. For two-dimensional graphene (nd =∞)
as shown in Fig. 3.8 (a), a two-dimensional k-space is considered in the lin-
ear optical response equation in Sec. 2.2.2. The first Brillouin zone for such
a two-dimensional k-space is shown as the green hexagon in Fig. 3.8 (a) with
the yellow triangle as the irreducible Brillouin zone. Figure 3.8 (b) shows the
real part of linear optical conductivity for wide AGNRs with various widths
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between nd = 45 − 390 compared to the two-dimensional graphene nd = ∞.
The response is plotted in the graphene DC conductivity units σ0 = e2/4~. In
Fig. 3.8 (a), A is the area of the red diamond and hexagons between the two
dashed lines for graphene and AGNRs, respectively. The spectra in Fig. 3.8 (b)
show that increasing the width of AGNRs results in the convergence of their
optical response to that of the two-dimensional graphene. As the optical field
energy reduces, the response of graphene and wide AGNRs converges to a min-
imum value, corresponding to the DC optical conductivity of graphene σ0. It
should be noted that a small band gap of 0.02 eV is added to the graphene
electronic structure (by adding on-site energies with opposite signs to the two
sublattices) to avoid the divergence in the zero frequency of the optical field in
our notation.

3.3 Excitonic effects in CNT-carbyne systems

In Sec. 3.2.2, the single-electron linear optical response of CNT-carbyne sys-
tems are presented and shown that the interactions between CNT and carbyne
systems have remarkable effects in the optical response. Thus, it is expected
to obtain remarkable excitonic effects in hybrid CNT-carbyne systems, as well.
There are different exciton pairs in the hybrid systems, i.e., electrons and holes
on isolated CNT and carbyne systems, as well as electrons on CNT and holes
on carbyne or vice versa. Here, excitonic effects on the electronic structure
and the optical response of hybrid (8,0) and (10,0) CNT-carbyne systems are
calculated, using the Bethe-Salpeter equation (BSE) introduced in Sec. 2.3.1
and the Wannier method presented in Sec. 2.3.2.

For calculating excitonic effects using the BSE, the electron-hole Coulomb
interaction from Eq. (2.31) is only considered and the exchange term Eq. (2.31)
is ignored for the simplification. The electron-hole Coulomb interaction can be
taken as an Ohno-type potential [124, 136]

v(r − r′) =
U√

( 4πε0
e2 )|r − r′|2 + 1

,

where U is the Hubbard energy parameter and equals to 11.3 eV for π-orbitals
in CNT and carbyne systems, which is the required energy for putting two
electrons (holes) at a similar atomic site under the bare Coulomb potential.
Then, the screening should be defined in the Coulomb expression. For hybrid
CNT-carbyne systems in this study, which are normally synthesized in liquids
such as water, it can be assumed that surrounding materials are mainly re-
sponsible for the Coulomb screening. Therefore, the screening is simply taken
as the dielectric constant of the surrounding materials ε. In our calculations,
the dielectric constant is chosen as ε = 3.5 [70].
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system transition SET (eV) EBS
b (eV) EW

b (eV) µ/me

CNT 1st 1.22 0.46 0.45 0.099
CNT 2nd 2.15 0.47 0.45 0.095

(8,0) CNT-carbyne carbyne 1.48 0.42 0.40 0.028
hyb. band 1.29 0.43 0.49 0.13
indirect 1.17 0.21 0.16 0.003
CNT 1st 0.91 0.35 0.31 0.048
CNT 2nd 1.99 0.49 0.48 0.2

(10,0) CNT-carbyne carbyne 1.18 0.38 0.37 0.023
hyb. band 1.29 0.31 0.35 0.097
indirect 0.54 0.18 0.15 0.003

Table 3.1: Summary of the single-electron and excitonic calculations of hybrid (8,0) and
(10,0) CNT-carbyne systems. SET is the single-electron transition energy, EBS

b and EW
b

are the exciton binding energy in the BSE and Wannier models, respectively and µ is the
electron-hole reduced mass for each exciton divided by the electron mass me.

The Wannier approach can also be used to define exciton states and the
optical response for hybrid CNT-carbyne systems. Unlike the BSE, in this
method, the calculation is restricted to a single valence and conduction band
pair. Therefore to obtain exciton states for the whole system, the Wannier
equation (2.32) should be calculated separately for each band pair. Here,
three different excitons are considered in the Wannier model in the low en-
ergy limit. First, excitons on CNTs, which both electrons and holes are on
the CNT system. For these excitons, two band pairs as shown by transitions
E11 and E22 in Fig. 3.2 are considered. Using Eq. (2.32), the basis function
is taken as ψWm (r) = (1/2

√
2λπrc)Lm(|x|/λ)exp(−|x|/2λ), where λ = 1.25, rc

is the radius of the CNT system, Lm is Laguerre polynomials and x is the
coordinate along the CNT axis. Also, the electron-hole potential is taken as

v(r) = 1/
√

4r2c sin
2(z/2rc) + x2, where z is the the azimuthal coordinate of

the CNT cylinder. Next, for electron-hole pairs on the carbyne system, the
potential is considered as v(r) = 1/

√
l2 + x2, which the length parameter l can

be calculated from the self-energy of π-orbitals in carbyne and equals to 0.3
nm. Finally, if electrons are on CNT and holes are on carbyne or vice versa, a
similar potential can be used with a small difference in the potential equation
v(r) = 1/

√
r2c + x2.

Exciton states can now be calculated using both the BSE and Wannier
methods. Using these methods, the exciton binding energy and effective mass
for different excitons are calculated and results are compared. Table 3.1 sum-
marizes the calculation of exciton binding energies and electron-hole reduced
masses in the (8,0) and (10,0) CNT-carbyne systems. CNT 1st and 2nd are
transitions and exciton states for the first and second valence and conduction
band pairs on CNTs. Hyb. band and indirect transitions are the result of
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Fig. 3.9: The imaginary part of the excitonic linear optical susceptibility calculated by
the BSE for (a) (8,0) CNT-carbyne and (b) (10,0) CNT-carbyne, using different colors for
different excitonic contributions in the response, and the dashed line is the total response. The
subset of each figure shows the excitonic optical susceptibility without the band hybridization
between CNT and carbyne

interactions between CNT and carbyne as shown with E44 and Eindirect in Fig.
3.2, respectively. The numbers in the table show that exciton binding energies
are considerable in hybrid CNT-carbyne systems. Comparing the results of the
Wannier method with those of the BSE in the table, there are good agreements
between these two methods, whereas it should be stressed that the BSE results
are more accurate. In the following, the optical response of hybrid systems with
the consideration of excitonic effects and interaction between two subsystems
are discussed.

Figure 3.9 shows the imaginary part of the linear optical susceptibility for
(8,0) and (10,0) CNT-carbyne systems calculated by the BSE. Subplots of the
figure show the optical response without interactions between the two subsys-
tems. In the energy range below 3 eV in Fig. 3.9 (a), three major peaks are
visible, which peaks at 0.78 eV and 1.68 eV are the direct excitonic optical
response of the first and second transitions in the (8,0) CNT system. The peak
at 1.06 eV belongs to the excitonic optical response of isolated carbyne system.
In the subset of Fig. 3.9 (b), (10,0) CNT peaks are at 0.56 eV and 1.5 eV and
carbyne peak is at 0.8 eV. Comparing these results with non-excitonic results as
shown as the red curves in Fig. 3.6, peaks are more symmetrical and red-shifted
with the corresponding binding energies in Table 3.1. With including interac-
tions between the two subsystems, the excitonic optical response is modified.
In Fig. 3.9, two blue peaks belong to CNT systems. These peaks are similar
to the CNT peaks in the non-interacting CNT-carbyne system as shown in the
subsets of the figure. A new hybridized band as a result of the interaction
between CNT and carbyne is introduced as shown in Fig. 3.2. This hybridized
band results in the excitonic optical response as shown as the red and green
curves in Fig. 3.9. The red curves at 1.06 eV for (8,0) and 0.8 eV for (10,0)
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Fig. 3.10: The imaginary part of the excitonic linear optical susceptibility calculated by
the Wannier method for (a) (8,0) CNT-carbyne and (b) (10,0) CNT-carbyne, using different
colors for different excitonic contributions in the response, and the dashed line is the total
response. The subset of each figure shows the excitonic optical susceptibility without the
band hybridization between CNT and carbyne

CNT-carbyne are similar to the excitonic optical response of isolated carbyne
in the subsets of the figure. The green curves are a new feature in the excitonic
optical response of hybrid systems and correspond to the E44 transitions, in
which electrons and holes are located on CNTs. Another remarkable feature of
the interaction of two subsystems is the presence of spatially indirect excitons
in the hybrid system as shown as the black bar in the figure at the energy of
0.96 eV and 0.36 eV for (8,0) and (10,0) CNT-carbyne, respectively. For these
excitons, electrons are on CNT and holes are located on carbyne. Such excitons
are optically inactive or dark excitons, i.e., they are not visible in the optical
measurements. In Fig. 3.9, these dark excitons are illustrated to show their
energy position compared to the bright excitons. For achieving bright excitons
from these dark excitons, relaxation from initial bright excitations are needed,
in which charge transfer occurs between two separated systems. Such charge
transfers are unlikely because the large separation between CNT and carbyne
systems makes these processes slower compared to electron-hole recombination
processes in each subsystem. Despite the dark exciton in the (10,0) CNT-
carbyne system in Fig. 3.9 (b) has the lowest energy, it is very unlikely to find
electrons in this state without excessive external DC fields or temperatures.

Figure 3.10 shows the excitonic linear optical susceptibility calculated by
the Wannier approach introduced in Sec. 2.3.2. As explained earlier, direct
and indirect excitons are calculated using the basis function and chosen poten-
tial for each system. In the Wannier equation (2.32), it is necessary to obtain
electron-hole reduced mass for each valence and conduction band pair, which
in Table 3.1, the electron-hole reduced mass for different excitons are calcu-
lated. Solving the Wannier equation and plotting excitonic optical response
in Fig. 3.10, results are in a good agreement with the BSE in Fig. 3.9. The
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Fig. 3.11: The exciton probability distributions as a function of the electron position for
different excitons, where holes are fixed at the center unit cell as shown by a black star:
[(a) and (e)] the first exciton on the (8,0) CNT, [(b) and (f)] the exciton on carbyne inside
the (8,0) CNT, [(c) and (g)] the exciton for the hybridized band of the (8,0) CNT-carbyne
system, and [(d) and (h)] the indirect exciton on the (8,0) CNT-carbyne system.

peaks position and height are in comparable with those of the BSE calculation
in Fig. 3.9.

The exciton probability distribution in the system shows that how the
electron-hole interaction in the screened Coulomb potential affects this dis-
tribution. Here, the exciton probability distribution for four different exciton
types in (8,0) CNT-carbyne system is shown in Fig. 3.11. The position of
holes is fixed at the central unit cell of the system as shown by the black star
in the figure, and the exciton probability function |ψexc(r, r′)|2 is calculated
using the exciton wave function obtained from the BSE. The electron prob-
ability distribution around the fixed hole for different excitons are shown in
Fig. 3.11 (a)-(d). The figure shows that electrons are distributed over several
unit cells of the system around the chosen hole position, in which the proba-
bility of finding electrons is higher around that position. The reason for this
is that the Coulomb attraction between the electron and hole is stronger when
the distance between them is smaller. Fig. 3.11 (e)-(h) shows the summation of
the probabilities versus the electron position for each exciton. For direct exci-
tons on the CNT, the total probability of finding electrons at each coordinate x
comes from the summation of electron probabilities on a ring with an identical
x value. For direct excitons on the carbyne system, there are two orbitals per
atomic site. Therefore the total probability of each atomic site is the summa-
tion of the probability of two orbitals on that site. The figure shows that the
total probability of electron is larger around the zeroth unit cell, where the
hole is located on that cell. As the distance gets further from the hole position,
the total electron probability gets smaller. Also, the probability depends on
the exciton binding energy, in which a larger binding energy results in more
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Fig. 3.12: The real part of the linear optical conductivity for (a) AGNR-3 under the transver-
sal DC field F y

DC = 3.6 V/nm and (b) AGNR-9 under F y
DC = 1.2 V/nm, comparing various

lengths of finite systems N = 50− 400 unit cells with infinite systems N =∞.

localized electrons around the hole position. It is also noteworthy to mention
that the probability of electron distribution around the hole is not symmetric.
The reason for this is the atomic positions in both CNT and carbyne systems
are not symmetric around the chosen atomic site of the hole.

3.4 Transversal DC fields in graphene nanorib-
bons

The electronic band structure of AGNR-3 and AGNR-9 in Sec. 3.1.2 shows that
applying transversal DC fields has considerable effects in their band structure.
Therefore, these fields can modify the optical response of these systems. Before
presenting the optical response results, a discussion of AGNR types is provided
here. AGNRs are categorized into three types: AGNR-3nd, AGNR-(3nd + 1)

and AGNR-(3nd + 2), with nd is an integer number showing the row number
of carbon-carbon dimer bonds. In the TB method, AGNR-3nd and AGNR-
(3nd+1) are semiconductors, while AGNR-(3nd+2) has the metallic behavior,
i.e., there is no band gap for this type. All ZGNR types are also metallic in the
TB approach. On the other hand, first principal approaches like DFT predict a
small band gap for metallic GNRs in the TB method [48]. Moreover, the sym-
metrical properties are different for different types of GNRs. Under transversal
DC fields, the inversion symmetry breaks for AGNR-(3nd + 1) and AGNR-
(3nd + 2) types, while this symmetry is preserved for AGNR-3nd type. Since
both AGNR-3 and AGNR-9 in this thesis are AGNR-3nd type, these struc-
tures keep their inversion symmetry under transversal DC fields. Therefore,
even orders of the optical response for our chosen AGNRs with and without
the presence of transversal DC fields are zero.

Now, the optical response of two selected AGNRs under transversal DC
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Fig. 3.13: The real part of the linear optical conductivity of infinite (a) AGNR-3 (b) AGNR-
9, with and without applying the transversal DC field F y

DC.

fields are calculated, considering various lengths of these systems. To this end,
the method in Sec. 2.4.1 is used for calculating the linear optical conductivity
for finite AGNR-3 under F yDC = 3.6 V/nm and AGNR-9 under F yDC = 1.2

V/nm taking 50, 150 and 400 unit cells, as well as infinitely long systems in
Fig. 3.12. Similar to the non-DC results in Fig. 3.7, Fig. 3.12 shows that the
optical response spectra for finite systems converge to those of infinite systems
with increasing the length of finite structures.

Transversal DC fields effects in the optical response of AGNRs can be inves-
tigated by comparing the results in Fig. 3.12 with the non-DC optical response
in Fig. 3.7. In Fig. 3.13, the optical conductivity of infinite AGNR-3 and
AGNR-9 with and without transversal DC fields are presented. Both AGNRs
show considerable changes in their optical response in the presence of DC fields.
The changes are seen as new resonance peaks and modifications in the position
and amplitude of some of the existing resonances. Modifications in the optical
response can be understood from the changes of the band structure in Fig. 3.4
in the presence of the field, where F yDC changes the band structure and lifts
the energy degeneracies in the band-crossing points. Also, the field slightly
modifies the band gap energy of AGNRs.

3.5 Longitudinal DC fields in Semiconductors

This section presents the results of longitudinal DC fields effects on the linear
and nonlinear optical response of one- and two-dimensional semiconductors cal-
culated in papers ?? and ??. For one-dimensional semiconductors, both finite
and infinite polyacetylene chains and narrow AGNRs (AGNR-3 and AGNR-9)
are considered to study the convergence of finite systems results to those of
infinite ones in the limit of long finite systems. For two-dimensional semicon-
ductors, the optical response of gapped graphene compared to wide AGNRs is
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Fig. 3.14: The imaginary part of (a) linear and (b) second-order nonlinear polarizability of
finite and infinite polyacetylene chain under the effect of longitudinal DC field FDC = 0.2
V/nm.

calculated.
Before providing the results, it is necessary to discuss charge transfer con-

ditions under DC fields. In Fig. 2.1, it has been shown that an external DC
field tilts the energy states of the system. For a finite system with the length
L, if the DC field energy is larger than the band gap energy, i.e., eFDCL > Eg,
the charge will be transferred from the ends of such a finite system. In such
circumstances, the Fermi level crosses both valence and conduction bands. It
should be noted that the DC field intensity must be strong enough to have
charge transfer effects in such nanoscale semiconductors. Here, complications
of the charge transfer in the optical response are avoided by restricting the
DC filed energy to be smaller than the band gap eFDCL < Eg. Despite the
condition eFDCL > Eg is always valid for infinite systems and the charge will
be transferred under any DC field, it is interesting to show that how infi-
nite system formalism in k-space can predict finite systems behavior satisfying
eFDCL < Eg. The reason for applying DC fields in infinite systems is that the
calculation of the optical response for these systems are computationally much
efficient compared to the calculations for finite systems, especially when there
is a large number of atoms in their structure.

3.5.1 Polyacetylene chains

Polyacetylene chains have two atoms in their unit cell as shown in Fig. 1.1 (a),
so in the nearest neighbor TB method, they are a two-band model of a semi-
conductor. Therefore, the method introduced in Sec. 2.4.2 can be simplified
for these chains. For instance, a simplified version of the linear polarizability
can be obtained from Eq. (2.47) using the relation between conductivity and
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polarizability via σ(ω) = −iωα(ω)
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Figure 3.14 (a) shows the imaginary part of the linear optical polarizability
for polyacetylene chain under the longitudinal DC field FDC = 0.2 V/nm. The
resonance peak at 2 eV in Fig. 3.5 is slightly blue-shifted under the field. The
oscillatory resonances above the blue-shifted band gap peak are the result of
transitions between Wannier-Stark (WS) states within valence and conduction
bands of the chain. Also, there is a tail in the optical response below the
band gap, which is the result of the tunneling across the band gap under the
DC field as shown in Fig. 2.1. These Franz-Keldysh (FK) fingerprints, i.e.,
the oscillation peaks above and the optical response tail below the band gap
can be explained by the Airy function behavior of the optical response in the
effective mass model in Ref. [88]. Moreover, a considerable optical response
is observable in the low energy limit ~ω < 1.5 eV for long finite and infinite
polyacetylene. This is, in fact, the artifact of the charge transfer in longer
finite (N > 100) and infinite systems because the condition eLFDC < Eg is
not satisfied for these finite lengths. For infinite polyacetylene, such artifacts
are obtainable by including intraband band pairs (v, v) and (c, c) in the above-
mentioned polarizability equation.

Polyacetylene chains have central symmetry in their structure, so there is no
second-order nonlinear optical response for these materials, whereas including
DC fields in this system breaks the symmetry and electric field-induced second-
order nonlinear optical response is expected. In Fig. 3.14 (b), the second-order
nonlinear polarizability is calculated under the effect of FDC = 0.2 V/nm, using
Eq. (2.48) introduced in Sec. 2.4.2. Since polyacetylene chains in this study have
two bands, Eq. (2.49) is zero for these structures. The second-order nonlinear
response has features similar to FK effects in the linear response, in which
oscillation peaks after each one- and two-photon resonances are expected [117].
As Fig. 3.14 (b) illustrates, one- and two-photon resonances at 2 eV and 1 eV
are seen, respectively. These resonances are followed by the oscillation peaks
with different amplitudes and periods. The charge transfer artifact is also
responsible for a huge optical response below 0.5 eV for long finite systems.
Similar to the linear response, including (v, v) and (c, c) band pairs yields such
artifacts for the infinite system. Moreover, as expected, finite system results
converge to those of the infinite system with increasing unit cells number.

3.5.2 Narrow graphene nanoribbons

In this section, longitudinal DC fields effects on the optical response of two nar-
row GNRs, i.e., AGNR-3 and AGNR-9 are calculated. Transversal DC fields
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Fig. 3.15: The real part of the linear optical conductivity of (a) AGNR-3 (b) AGNR-9,
considering various lengths of finite system N = 50 − 400 unit cells and infinite system
N = ∞ under the longitudinal DC field Fx

DC = 0.1 V/nm. Note that the low-energy parts
of the spectra have been down-scaled.

effects in these systems have already been calculated in Sec. 3.4 and shown that
strong fields are responsible for changes in the band structure and optical re-
sponse of these materials. Applying longitudinal fields in these systems, similar
to polyacetylene chains, results in breaking the band structure into localized
WS energy states. Unlike polyacetylene which is a two-band model of a semi-
conductor, both chosen AGNRs are multiband systems, and the calculations
are more complicated.

Equation (2.47) in Sec. 2.4.2 is used to calculated the linear optical con-
ductivity for two selected narrow AGNRs in Fig. 3.15, considering the lon-
gitudinal DC field F xDC = 0.1 V/nm. Each valence and conduction band pair
with momentum-allowed optical transitions between them splits into WS states.
Thus, oscillatory peaks are visible after each resonance peak for both AGNR-3
and AGNR-9 as a result of transitions between these WS states. Comparing
this figure with Fig. 3.7, all peaks are blue-shifted for both AGNRs, which
is similar to the obtained result for polyacetylene in Fig. 3.14 (a). Moreover,
both AGNRs have an optical absorption tail below the band gap, which is the
result of field-induced tunneling across the band gap under the DC field in-
fluence for these structures. The response of both finite AGNRs converges to
that of infinite systems, as the length of the finite systems increases, which for
N = 150 unit cells number, good agreement between finite and infinite results
is observable.

The spectra in Fig. 3.15 are plotted from the zero external field energy to
precisely discuss the low-energy behavior of the results. For finite systems with
N = 150 unit cells and particularity for N = 400, there is a huge optical re-
sponse in the low energy part of the spectra. This response is the result of
charge transfer artifacts in our formalism for these structures because the DC
field energy is larger than the band gap for these systems. Therefore, strong
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Fig. 3.16: The real part of the linear optical conductivity of AGNR-3, considering various
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DC fields in these systems lead to the Fermi level crosses several valence and
conduction states. Unlike the infinite polyacetylene in Fig. 3.14 (a), infinite
AGNRs in Fig. 3.15 do not show any response in the low energy limit because
intraband (v, v) and (c, c) contributions are neglected in the calculations of in-
finite AGNRs to avoid such non-physical charge transfer artifacts in the optical
response.

Up until now, it has been shown that the infinite system modeling can
predict finite systems optical response, and good agreements in the optical re-
sponse of sufficiently long finite and infinite systems have been achieved. The
remaining issue is that the charge will be transferred for long finite systems
with the length L if their band gap energy is smaller than the DC field energy
eLFDC > Eg. Therefore, for practical purposes, it is necessary to investigate
how our infinite system modeling can predict finite systems optical response
satisfying the condition eLFDC < Eg. In Fig. 3.15, it can be seen that N = 50

system satisfies the this condition because there is no charge transfer artifact in
the low energy limit. For this finite system, infinite system result is not satis-
factory enough, however, all the resonance peaks position is predicted correctly.
Thus, it is expected that with decreasing the DC field intensity, longer finite
system satisfying the condition eLFDC < Eg can be studied to achieve a better
convergence between finite and infinite results. Figure 3.16 shows the real part
of the optical conductivity for AGNR-3 under F xDC = 0.3 V/nm. The figure
illustrates that decreasing the DC field intensity enables increasing the system
length up to N = 200 unit cells satisfying eLFDC < Eg. These modifications
result in a good agreement between N = 200 and infinite system results. Thus,
it can be concluded that infinite system modeling is applicable for predicting
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Fig. 3.17: The real part of the second-order nonlinear optical conductivity of (a) AGNR-3
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finite systems behavior under the influence of strong longitudinal DC fields for
practical relevance.

AGNRs are centrosymmetrical materials, which their even orders of nonlin-
ear optical response are zero. Similar to polyacetylene chains, applying longi-
tudinal DC fields breaks the center of symmetry and leads to the second-order
nonlinear optical response. Equation. (2.48) in Sec. 2.4.2 is utilized for obtain-
ing the second-order nonlinear optical conductivity for AGNR-3 and AGNR-9
under the effect of F xDC = 0.1 V/nm in Fig. 3.17. For AGNR-3 in Fig. 3.17 (a),
oscillatory features after one- and two-photon resonances are seen, which are
similar to the features of polyacetylene chains and also in agreement with
Ref. [117]. For AGNR-9 in Fig. 3.17 (b), there are more momentum-allowed
optical transitions compared to AGNR-3, so oscillatory features of one- and
two-photon resonances for each band pair are mixed and not distinguishable as
AGNR-3. The result of both AGNRs shows that the most prominent response
belongs to the two-photon resonance with the energy of the band gap of each
system. Also in Fig. 3.17, considerable optical response close to the zero pho-
ton energy is seen, especially for N = 150 and N = 400 systems, which is the
result of charge transfer artifacts similar to the linear case in Fig. 3.15. For
infinite systems, such unphysical responses are not present because of omitting
(v, v) and (c, c) band pairs in the calculation of Eq. (2.48).

3.5.3 Wide AGNRs and graphene sheet

It has been shown in Fig. 3.8 (b) that increasing the width of GNRs leads to
the convergence of their optical response to that of two-dimensional graphene.
In this section, the DC optical response of wide AGNRs compared to the two-
dimensional graphene is calculated. For wide AGNRs, the similar method used
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Fig. 3.18: The real part of the linear optical conductivity of AGNRs with the width of
nd = 45 − 390 carbon-carbon rows and the two-dimensional graphene nd = ∞ under the
longitudinal DC field Fx

DC = 0.1 V/nm.

for narrow ones in the previous section is used, and for the graphene sheet, equa-
tions in Sec. 2.4.3 are employed. Again, the longitudinal DC fields F xDC = 0.1

V/nm is applied in both wide AGNRs and the two-dimensional graphene to
plot their linear optical conductivity spectra in Fig. 3.18 for AGNR-45, AGNR-
90, AGNR-240, AGNR-390, and the graphene sheet (AGNR-∞). The factor
of nd for the graphene sheet is the number of k-points in the y-direction. The
major response at 5.94 eV belongs to the optical transition with the energy
of the Γ-point in the graphene Brillouin zone. This peak is followed by FK
oscillations, which is similar to the results of one-dimensional semiconductors.
In the calculation method in this thesis in agreement with Ref. [131], it has
been shown that graphene bands are discretized into WS states, similar to one-
dimensional semiconductors. Therefore, the oscillation peaks in graphene are
the result of optical transitions between WS states located within valence and
conduction bands. Below this energy point, the photon absorption between
any momentum-allowed valence and conduction states and corresponding os-
cillations for each transition are mixed. In the case of graphene spectrum, a
continuous response is achieved, which is the result of continuous absorption
between valence and conduction states. In the case of wide AGNRs such as
AGNR-240 and AGNR-390, at each k-point, the separation between energy
states in different valence and conductions bands is very small compared to
narrower AGNRs, which energy states of these wide AGNRs can be considered
as continuous similar to graphene sheets. As the width of AGNR gets narrower
like AGNR-90 and AGNR-45, the distance between energy states gets larger
at each k-point and oscillatory features are prominent, however, these oscilla-
tions have no definite period because they are a mixture of different oscillations
belong to different resonances.
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Fig. 3.19: The real part of the second-order nonlinear optical conductivity of AGNRs with
the width of nd = 45−390 carbon-carbon rows and two-dimensional graphene nd =∞ under
the longitudinal DC field Fx

DC = 0.1 V/nm.

Longitudinal DC fields break the central symmetry in wide AGNRs and two-
dimensional graphene. Hence, the second-order nonlinear optical response of
these systems can be calculated. In Fig. 3.19, the real part of the second-order
nonlinear conductivity for the two-dimensional graphene and wide AGNRs from
45 to 390 rows of carbon-carbon bonds under the effect of the longitudinal DC
field F xDC = 0.1 V/nm is plotted. A dominant resonance below the optical field
energy of 0.5 eV followed by the oscillatory resonances above that point is seen.
This energy region belongs to one- and two-photon resonances between the K
and M points in the graphene Brillouin zone. With increasing the energy toward
3 eV, oscillations get weaken and the oscillation period becomes non-definite,
which can be a result of mixing of one- and two-photon resonances and their
corresponding oscillations in this energy region. At the energy point of 2.97
eV, a distinct response is observed, which belongs to the two-photon resonance
with the energy of the Γ-point in the graphene Brillouin zone. This resonance is
followed by weak oscillations, which again because of the mixture of oscillations
belong to other points of the Brillouin zone. Similar to the linear response in
Fig. 3.17, wider AGNRs (AGNR-240 and AGNR-390) have a good agreement
with the two-dimensional graphene, while in narrower AGNRs (AGNR-45 and
AGNR-90), oscillatory features for the energy region between K and M points
have non-definite periods. Furthermore, increasing the width of AGNR yields
a better convergence to the two-dimensional graphene response.
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Chapter 4

Conclusions

Electronic and optical properties of one-dimensional semiconductors differs con-
siderably with their two- and three-dimensional counterparts. The main focus
of this thesis has been to investigate the optical properties of one-dimensional
semiconductors under the influence of external electrostatic fields and many-
body excitonic effects.

Since long carbyne chains can be fabricated stably inside carbon nanotubes
(CNTs) with the optimum distance of 0.338 nm between the inner wall of CNT
and carbyne systems, the result is quasi-one-dimensional hybrid CNT-carbyne
systems with unique electronic and optical properties. In this thesis, two hy-
brid systems have been considered, i.e., (8,0) and (10,0) CNT-carbyne, which
both are a semiconductor and in the optimum radius range for growing carbyne
systems. Then, a DFT method has been utilized to obtain the band structure
for hybrid systems and tight-binding (TB) parameters by fitting the TB band
structure against the DFT. Encapsulating carbyne inside CNT results in the
interaction between two subsystems and the band structure of hybrid systems
is modified compared to that of two isolated systems. Consequently, the sin-
gle electron linear response of these hybrid systems are modified compared to
isolated CNT and carbyne systems. Moreover, interactions between two sub-
systems have considerable effects in the excitonic states and optical response
of hybrid systems. Exciton states can be formed as direct excitons, where
electron and hole pairs are located on isolated CNT or carbyne systems, as
well as spatially indirect excitons, which electrons are in CNT and holes are
on carbyne systems or vice versa. Therefore, the excitonic optical response
of hybrid systems is the combination of all direct and indirect excitons. Both
Bethe-Salpeter and Wannier approaches have been used to calculate the exciton
binding energy for different excitons and excitonic optical response. Obtained
results have shown a considerable exciton binding energies in the system, which
for direct excitons in CNTs, good agreements with previous studies has been
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achieved. Spatially indirect excitons are dark excitons, which due to the fast
electron-hole recombinations in the optical processes, it is hard to populate
these states. In the case of (10,0) CNT-carbyne system, the indirect exciton
has the lowest transition energy in the system.

The presence of DC fields changes the electronic structure and optical re-
sponse of materials, in which these changes depend on the structure, constitu-
tional atoms, the direction and intensity of applied fields. In semiconductors,
DC fields are responsible for considerable Franz-Keldysh (FK) effects, which
field-assisted tunneling across the band gap results in the optical response tail
below the band gap. Also, DC fields break the periodic band structure of semi-
conductors into localized Wannier-Stark (WS) states, which optical transitions
occur between these states. In the case of atomic chains like polyacetylene and
polymethineimine polymers in this thesis, DC fields along the long-axis of these
systems are responsible for highly non-perturbative FK effects. For obtaining
the optical response with and without DC fields effects, a nearest neighbor
tight-binding model has been used to calculate the electronic structure of both
finite and infinite polymers. For finite systems, the quantum perturbation the-
ory has been used to calculate the linear and nonlinear optical response with
and without the presence of DC fields, utilizing the dipole moment formalism
in the calculation. For infinite systems, the quantum perturbation theory using
momentum matrix elements has been employed for the optical response with-
out DC fields. Under the effect of DC fields, a novel density matrix method
has been developed to obtain WS states of the system and calculate the op-
tical response. Results have shown that the optical response of finite systems
converge to that of infinite ones when sufficiently large finite systems are con-
sidered. Also, FK effects in the linear optical response for polyacetylene chains
have been observed, i.e., the presence of an optical response tail below and the
oscillatory response above the band gap. Moreover, the broken symmetry of
polyacetylene chains has yielded a considerable field-induced second-harmonic
generation in these systems. Since calculations for infinite systems are per-
formed in the k-space, for large finite systems resembling infinite structures, it
is computationally much faster to obtain results for infinite systems.

In graphene nanoribbons (GNRs), the presence of DC fields parallel or
perpendicular to the long-axis of GNR has different effects in the electronic
structure and optical properties of these systems. For the perpendicular di-
rection (transversal direction), strong DC fields lift the energy degeneracies
and result in modifications of the band structure and optical response. These
modifications depend on the field intensity and the width of GNR, in which for
a fixed DC field intensity, the field effect is stronger in wider GNRs because
of a larger induced dipole moment in these systems. The optical response of
two armchair GNRs, i.e., AGNR-3 and AGNR-9 have been obtained for both
finite and infinite lengths. In the limit of long finite systems, a good agreement
between finite and infinite results has been achieved. DC fields can break the
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central symmetry and lead to the field-induced second-order nonlinear optical
response. This symmetry is not broken for the chosen AGNRs in this study,
which are the type AGNR-3nd with nd as the row number of carbon-carbon
bonds.

Similar to polyacetylene chains, DC fields in the parallel direction of the
long-axis of GNR (longitudinal direction) are responsible for highly non-perturbative
FK effects. Both AGNR-3 and AGNR-9 are multi-band semiconductors in
the nearest neighbor TB model. Hence, in this thesis, a general method has
been developed to calculate the optical response of multi-band infinite semi-
conductors. Comparative optical response results for finite and infinite AG-
NRs have shown a good agreement between long finite and infinite systems,
which oscillatory resonances and optical response tail after and before every
momentum-allowed transitions have been obtained. Moreover, due to the bro-
ken symmetry under DC fields, the second-order nonlinear optical response
shows FK-type resonances after each one- and two-photon resonances for both
AGNRs. Calculation of DC fields effects for infinite systems considerably re-
duces the computational costs compared to finite systems in AGNRs. This
model can also reasonably predict the behavior of long finite systems without
the charge transfer effect, for which DC field energies are smaller than the band
gap energy.

GNRs structure and consequently the electronic and optical response con-
verge to the two-dimensional graphene with increasing the width of GNR. The
width of AGNRs has been increased from 45 to 390 carbon-carbon rows yielding
a good agreement between sufficiently wide AGNRs and graphene sheets. For
the optical response in the presence of DC fields, the one-dimensional method
introduced for AGNRs has been extended to two-dimensional semiconduc-
tors to calculate the linear and nonlinear optical response of graphene sheets.
The agreement between the optical response of wide AGNRs and the two-
dimensional graphene has shown that the extended method for two-dimensional
semiconductors is a capable model for predicting the optical response of wide
one-dimensional semiconductors. The two-dimensional model has a benefit of
decreasing the calculation time and computational resources needed for obtain-
ing the results for wide one-dimensional semiconductors.
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