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ABSTRACT

Fundamental frequency estimation is an important task in speech
and audio analysis. Harmonic model-based methods typically have
superior estimation accuracy. However, such methods usually as-
sume that the fundamental frequency and amplitudes are station-
ary over a short time frame. In this paper, we propose a Kalman
filter-based fundamental frequency estimation algorithm using the
harmonic model, where the fundamental frequency and amplitudes
can be truly nonstationary by modeling their time variations as first-
order Markov chains. The Kalman observation equation is derived
from the harmonic model and formulated as a compact nonlinear
matrix form, which is further used to derive an extended Kalman
filter. Detailed and continuous fundamental frequency and ampli-
tude estimates for speech, the sustained vowel /a/ and solo musical
tones with vibrato are demonstrated.

Index Terms— Fundamental frequency estimation, extended
Kalman filter, harmonic model

1. INTRODUCTION

The fundamental frequency can be described as the lowest rate for a
periodic signal to repeat itself. Fundamental frequency information
for voiced speech or audio signals has various applications, such
as speech enhancement [1], voice disorder detection [2], automatic
speech recognition [3] and music processing [4]. A very large num-
ber of fundamental frequency estimation algorithms have been pro-
posed in the past, including those that could be broadly described as
non-parametric and parametric methods. Here we will define non-
parametric methods as those which are based on the autocorrelation
function obtained within a specified time frame; examples include
Yin [5] and RAPT [6]. These methods are computationally simple
but they are prone to observation noise and subharmonic error (that
is, misidentifying multiples of the actual fundamental frequency,
a.k.a. octave error). To reduce this subharmonic error problem, a
recently devised method – the sawtooth waveform-inspired pitch es-
timator (SWIPE) [7], and variants – use the cross-correlation func-
tion against a sawtooth signal combined with frequency-domain in-
formation. By contrast, examples of parametric methods are har-
monic models which use nonlinear least squares (NLS) model pa-
rameter estimation [8]. Under appropriate assumptions, such NLS
estimators are optimal from a statistical perspective but are very
computationally costly to run in practice. To lower this computa-
tional cost, recently a fast NLS has been proposed which exploits
the matrix structure using a recursive matrix solver [9]. Most para-
metric harmonic models, as with non-parametric methods, assume

∗This work was funded by the Danish Council for Independent Research,
grant ID: DFF 4184-00056.

signal stationarity at least over short time frames, but in practice
this assumption is unrealistic. To account for the non-stationarity
of voiced speech signals, a harmonic chirp model for voiced speech
has been proposed, and the fundamental frequency and chirp rate
parameters are obtained iteratively [10]. Another parametric model,
the adaptive quasi-harmonic model [11] has been proposed to at-
tempt to capture time variation in both frequency and amplitude of
voiced speech signals. All of the above methods are on a segment-
by-segment basis. Recently, instantaneous fundamental frequency
estimation algorithms based on the harmonic model which use non-
linear recursive filters have been proposed [12]. As the model
parameter update results in a nonlinear state equation, classical
extended (EKF), unscented and particle Kalman filters have been
proposed to perform the parameter estimation in this time-varying
model. Continuous variations in fundamental frequency are ob-
tained. However, the size of the state space in [12] is 3K+1, where
K is the harmonic order, leading to high computational effort.

In this paper, we propose to use the harmonic model to fit voiced
speech and music signals. A first order Markov chain is used to cap-
ture non-stationarity in fundamental frequency and amplitude. By
exploiting linear relationships between the phases of different har-
monics, the size of the state space is decreased toK+2 compared to
previous Kalman filtering approach. The resulting nonlinear obser-
vation equation is formulated in compact matrix form, and finally
an extended Kalman smoother is applied to track instantaneous fun-
damental frequency and amplitudes.

2. HARMONIC MODEL ESTIMATION

Consider the following general signal observation model

yn = sn + vn, (1)

where yn is the observation signal and vn denotes zero mean Gaus-
sian noise with variance rv , and n is the integer time index. We
assume that the voiced speech or audio signal sn is produced by a
time-varying harmonic model, i.e.,

sn =

K∑
k=1

An,kcos(θn,k), (2)

θn,k = kωnn+ θ0,k, k = 1, · · · ,K, (3)

where An,k is the instantaneous amplitude of the kth harmonic at
time instant n, θn,k is the instantaneous phase, ωn = 2πfn/Fs is
the instantaneous normalized digital radian frequency, Fs = 1/Ts
is the sampling rate, Ts is the sampling period, and θ0,k is the ini-
tial phase, and K is the number of harmonics. Our objective is
to estimate the fundamental frequency ωn and amplitudes An,k,
1 ≤ k ≤ K, simultaneously.
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Assume that the fundamental frequency and amplitudes are
time-invariant in a short time frame with a length N , and thus the
time index n can be ignored, i.e. ωn = ω0 and An,k = Ak,
1 ≤ k ≤ K. Combining (1), (2) and (3), and using Euler’s for-
mula, we obtain

yn =

K∑
k=1

(
akz

k
n + a∗kz

−k
n

)
+ vn, (4)

where the superscript ∗ denotes complex conjugation, the complex
amplitude ak is defined as ak = Ak

2
ejθ0,k , and zn = ejω0n. Col-

lectingN observation signals into a vector and writing (4) in matrix
form yields

y = Za + vn, (5)

where yn = [y1, y2, · · · , yN ]T and vn is defined in the same
form, a = [a1, a

∗
1, a2, a

∗
2, · · · , aK , a∗K ]T , and where Z =

[z(1), z(−1), z(2), z(−2), · · · , z(K), z(−K)] with z(k) defined
as z(k) = [zk1 , z

k
2 , · · · , zkN ]T . With i.i.d. Gaussian noise as-

sumptions on the elements of vn and fixed fundamental frequency
ω0, the maximum likelihood (ML) estimate of the complex am-
plitude vector a can be found using the normal equations, â =(
ZHZ

)−1
ZHy [8]. Replacing a in (5) with the ML estimate â,

the ML estimator of the fundamental frequency can be formulated
as the least squares problem

ω̂0 =arg min
ω0

∥∥∥∥y − Z
(
ZHZ

)−1

ZHy

∥∥∥∥2
2

=arg max
ω0

yTZ
(
ZHZ

)−1

ZHy, (6)

where ‖·‖22 is the squared 2-norm. The above NLS maximization
problem is solved by a coarse grid search followed by a gradient
ascent refinement process.

3. KALMAN FILTER-BASED FUNDAMENTAL
FREQUENCY ESTIMATION ALGORITHM

We now proceed to consider the time-varying fundamental fre-
quency and amplitude scenario. We first formulate the state and
observation equations based on the time-varying harmonic model
(2) and (3), and the observation model (1), respectively. Then, the
extended Kalman smoother framework is applied to solve the non-
linear observation equation problem.

3.1. State and observation equations

Assuming that the continuous phase can be written as Θt,k =
kΩtt + Θ0,k, at a typical sampling rate Fs, we obtain that the in-
stantaneous frequency of the kth harmonic is

kωn = kΩtTs|t=nTs =
Ts∂Θt,k

∂t
|t=nTs

≈ Ts
ΘnTs,k −ΘnTs−Ts,k

Ts

= θn,k − θn−1,k, (7)

where Ωt is the continuous radian frequency, ωn = ΩnTsTs and
θn,k = ΘnTs,k.

We collect the frequency, amplitudes and phase θn−1,1 − θ0,1

as a (K + 2)× 1 state vector

xn = [ωn, An,1, · · · , An,K , θn−1,1 − θ0,1]T . (8)

From (7) and (8), we can further derive that the phases of different
harmonics for n ≥ 1 are related by

θn,k =θn−1,k + kωn

=θ0,k + k

n∑
i=1

ωi

=θ0,k + k(θn−1,1 − θ0,1 + ωn)

=kxn,1 + kxn,K+2 + θ0,k, k = 1, · · · ,K, (9)

where xn,i denotes the ith component of the vector xn. Substituting
(8) and (9) into (2), the harmonic model can be re-formulated as

sn =
K∑
k=1

xn,k+1cos(kxn,1 + kxn,K+2 + θ0,k). (10)

We assume the frequency and amplitudes are changing in time ac-
cording to a first order Markov chain random walk model

xn,k = xn−1,k +mn,k, k = 1, · · · ,K + 1, (11)

where mn,k are K zero mean, i.i.d. Gaussian processes. Moreover,
based on the phase update (7) and definition (8), we have

xn,K+2 =θn−1,1 − θ0,1
=θn−2,1 + ωn−1 − θ0,1
=xn−1,K+2 + xn−1,1. (12)

Based on (11) and (12), we can write the state equation in matrix
form

xn = Fxn−1 + Γmn, (13)

where F is a (K + 2) × (K + 2) lower triangular Toeplitz ma-
trix with first column [1, 0, · · · , 0, 1]T , Γ is a (K + 2)× (K + 1)
Toeplitz matrix with first column [1, 0, · · · , 0]T and the first row
as [1, 0, · · · , 0], and the state noise vector is defined as mn =
[mn,1,mn,2, · · · ,mn,K+1]T with a covariance matrix Qm. Com-
bining (1) and (10), we can write the observation equation in matrix
form

yn = (Gxn)T cos(Bxn + θ0) + vn, (14)

where G is a K × (K + 2) Toeplitz matrix with first column as a
zero vector and first row as [0, 1, 0, · · · , 0], B is aK×(K+2) zero
matrix except that the first and last columns are [1, 2, · · · ,K]T , and
θ0 = [θ0,1, θ0,2, · · · , θ0,K ]T .

3.2. Linearization via Taylor approximation

We linearise the nonlinear observation equation (14) using the first-
order Taylor expansion around estimate xn = x̂n|n−1

yn ≈ h(x̂n|n−1) + Hn(xn − x̂n|n−1) + vn, (15)

h(x̂n|n−1) = (Gx̂n|n−1)T cos(Bx̂n|n−1 + θ0), (16)
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Algorithm 1 Extended Kalman smoohter for fundamental fre-
quency estimation

1: Initiate harmonic order K, state vector x1 and initial phase θ0

with the NLS and Amp-LS algorithms
2: Choose initial state covariance P1|1, state noise covariance Qm

and background noise variance rv
3: Filtering step (forward, online):
4: for n = 2, 3, · · · , N do
5: xn|n−1 = Fxn−1|n−1

6: Pn|n−1 = FPn−1|n−1F
T + ΓQmΓT

7: Calculate Hn based on (17)
8: Kn = Pn|n−1H

T
n (HnPn|n−1H

T
n + rv)−1

9: Obtain h(x̂n|n−1) based on (16)
10: xn|n = xn|n−1 + Kn(yn − h(x̂n|n−1))
11: Pn|n = Pn|n−1 −KnHnPn|n−1

12: end for
13: Smoothing step (backward, offline):
14: for n = N,N − 1, · · · , 2 do
15: Sn−1 = Pn−1|n−1F

TP−1
n|n−1

16: xn−1|N = xn−1|n−1 + Sn−1(xn|N − xn|n−1)

17: Pn−1|N = Pn−1|n−1 + Sn−1(Pn|N −Pn|n−1)STn−1

18: end for

where Hn is a 1× (K + 2) Jacobian matrix

Hn =
∂(Gxn)T cos(Bxn + θ0)

∂xTn

∣∣
xn=x̂n|n−1

=

[
· · · , ∂(Gxn)T cos(Bxn + θ0)

∂xn,k
, · · ·

] ∣∣
xn=x̂n|n−1

=[· · · , iTkGT cos(Bx̂n|n−1 − θ0)

+ (Gx̂n|n−1)T (sin(Bx̂n|n−1 + θ0)�B·,k), · · · ]

=cos((Bx̂n|n−1 + θ0)T )G

− (Gx̂n|n−1)T diag(sin(Bx̂n|n−1 + θ0))B, (17)

where ik is a zero vector except that the kth element is 1,� denotes
the element-wise product, B·,k denotes the kth column of the ma-
trix B, diag(z) denotes converting a column vector z to a diagonal
matrix with the (i, i)th diagonal element set as the ith element of z.

3.3. Kalman-based fundamental frequency estimation

We use the extended Kalman filter (EKF) smoother to estimate
the mean and covariance of the state vector xn. The filtering and
smoothing steps of the EKF are shown in Algorithm 1. For real-
time applications, the forward filtering step should be used without
the backward smoothing step. Using only the forward filtering step
leads to larger uncertainty over the parameter estimates [13]. This
algorithm can be initialized with the NLS estimate and the complex
amplitude estimator using least-squares (Amp-LS) [4]. For Kalman
filter parameter tuning we refer the reader to [14] and [15].

4. RESULTS

In this section, we test the performance of the proposed Kalman-
based fundamental frequency tracking algorithm for real speech and
music signal.
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Figure 1: Fundamental frequency estimates of the speech signal
“Why were you away a year, Roy?”, number of harmonics K = 5.

4.1. Speech signal analysis

First, the proposed approach is tested on a speech signal of the spo-
ken sentence “Why were you away a year, Roy?” uttered by a fe-
male speaker and sampled at 8000 Hz. The spectrogram of the clean
speech signals, fundamental frequency and amplitude estimates are
shown in Figure 1, where K = 5, rv = 104, the SNR for Gaussian
white noise is set to 10 dB, Qm and P1|1 are set to the identity
matrices. As can be seen, the proposed algorithm generates con-
tinuous pitch estimates. Large amplitude estimates for harmonics
k = 2, k = 3 and k = 5 are obtained in the high energy time-
frequency area around 0.4 s, 1.51 s and 1.88 s. However, note that a
clear delay in frequency estimate can be seen around 0.3 s (see the
4th and 5th harmonic tracks) due to the fixed harmonic order and rv
we used here. One approach to mitigating this delay is to re-initiate
the algorithm with estimated harmonic order K and rv based on a
segmentation approach [16].

Second, the performance of the proposed approach with differ-
ent harmonic orders is compared with the SWIPE and Fast-NLS
algorithms on a sustained /a/ signal from a female with Parkinson’s
disease [17]. The estimated ground truth fundamental frequencies
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Figure 2: Fundamental frequency estimates of a sustained /a/ signal
from a female patient with Parkinson’s disease, number of harmon-
ics K = 4, noise variance rv = 105.

Table 1: Performance of the fundamental frequency estimation al-
gorithms for a real, sustained /a/ voice signals of 1 second duration
from a female with Parkinson’s disease. Performance results here
are averaged over 90 frequency values from 60 to 950 ms in steps
of 10 ms. MAE: mean absolute error, MRE: mean relative error,
RMSE: root mean squared error.

Algorithms MAE (Hz) MRE (%) RMSE (Hz)

EKF, K = 4 0.97 0.64 1.26
SWIPE 0.80 0.53 1.05

Fast NLS 0.80 0.53 1.05
EKS, K = 1 0.72 0.47 0.95
EKS, K = 2 0.71 0.47 0.92
EKS, K = 3 0.66 0.44 0.87
EKS, K = 4 0.63 0.42 0.86

in 10 ms time frames are extracted from the electroglottography
(EGG) and thus referred as EGG-F0. People with Parkinson’s tend
to exhibit increased vocal breathiness, tremor and roughness, and
this presents a challenge for fundamental frequency estimation al-
gorithms. The frequency estimates and the corresponding error
measures of mean absolute error (MAE), mean relative error (MRE)
and root mean squared errors (RMSE, see definitions in [17]) are
obtained, where smaller values of error measures are better (see
Figure 2 and Table 1). For the proposed EKS and traditional EKF,
the noise variance rv is set to 105 and the fundamental frequency
estimates are averaged over every 10 ms segment. As can be seen
from Figure 2, the proposed EKS with K = 4 achieves the closest
approximation to the EGG-F0. Also, from Figure 2 and Table 1 the
performance of SWIPE and Fast NLS is similar and tends to ob-
tain a smooth estimate of the fundamental frequency. Furthermore,
when K = 4, the performance of the proposed EKS is better than
for other choices of K.
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Figure 3: Fundamental frequency estimate of vibrato notes of a flute
decreasing from B5 to C5 (eight notes of C-Major scale), number
of harmonics K = 2.

4.2. Music signal analysis

The sound of a musical instrument (flute) decreasing in frequency
from note B5 to C5 from the University of Iowa Musical Instrument
Samples [18] database is tested. The spectrogram of the signals and
frequency estimates are shown in Figure 3, with 10 dB SNR for
Gaussian white noise. The other parameters have the same settings
as in Figure 1. As can be seen, the proposed EKS can obtain a rea-
sonably good estimate of fundamental frequency. Although, the fre-
quency tracks continues almost unchanged when there is no/weak
fundamental frequency during transition periods from one note to
another (a limitation of the 2-norm based linearized Kalman filter-
ing method), larger frequency uncertainties are obtained there.

5. CONCLUSIONS

In this paper, we have proposed a fundamental frequency estimation
algorithm based on a parametric harmonic model. Non-stationary
temporal evolution of frequency and amplitude are modeled as first-
order Markov chains. Compact nonlinear matrix forms of state
and observation equations based are formulated, and an extended
Kalman smoother for the problem is derived. The size of the state
space is lowered by exploiting the linear relationships between the
phases of different harmonics. Continuous fundamental frequency
and amplitudes estimates for sustained vowels are compared to
ground truth estimates from the EGG, showing that this new al-
gorithm outperforms existing algorithms in terms of accuracy.
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