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Abstract
We focus on the problem of cross-modal data
mapping in a purely unsupervised setting. Our
motivating application is the generation of sound
or music from complex input sensory data (such
as images, video, or text). We present prelimi-
nary empirical results on text-image data associa-
tion and on a realistic musical scenario where the
sonic parameters of a synthesiser (such as tim-
bre, envelope, pitch and volume) are driven by a
transcoded version of input textual data. Exam-
ples of generated sound can be found at http:
//ai.dinfo.unifi.it/transcoder/

1. Introduction
Learning with multimodal data (such as images and text,
or video and audio) has recently received considerable at-
tention, particularly within the deep learning community.
For example Ngiam et al. (2011) trained bimodal deep au-
toencoders to learn joint features of audio and video for
classification purposes. Srivastava & Salakhutdinov (2012)
have applied multimodal deep Boltzmann machines to im-
age tagging. Other authors have worked in the context of
cross-modal retrieval introducing coupled architectures for
multimodal hashing (Masci et al., 2014) or for learning cor-
related features of two data modalities (Feng et al., 2015).

Proceedings of the Constructive Machine Learning workshop @
ICML 2015. Copyright 2015 by the author(s).

All these methods employ some form of supervision in the
learning process, either in the form of class labels or in the
form of known associations between data points belong-
ing to different modalities. In this paper, we focus on the
problem of generating sound from data collected in a dif-
ferent modality such as text, images, or video, in a com-
pletely unsupervised fashion. While our approach is not
suitable where exact denoting and pertinent associations
are required, it finds a natural application in the context
of music generation, where similar representative and ex-
pressive input sensory data should originate similar repre-
sentative and expressive sonic perceptual experiences, but a
precise cross-modal association is unnecessary. This could
find applications in areas such as sound and music compo-
sitional assistive technologies, automatic music generation
in gaming, design of software instruments, generation of
music contents in commercial and public platforms.

2. Cross-modal data transcoding
We are given two data sets Xin ∈ Rnin×pin and Xout ∈
Rnout×pout of examples, where subscripts denote input and
output modalities. No association between input and output
examples is known in our setting. Individual examples are
assumed to be sampled independently from their unknown
distributions. As it is the case in most dimensionality re-
duction settings, we assume that data in both modalities lie
on low-dimensional manifolds of intrinsic dimensionalities
kin � pin and kout � pout. In order to map data points
xin and xout onto their low-dimensional representations
φin(xin) ∈ Rkin and φout(xout) ∈ Rkout , we train two
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Capitolo 4

Transcodifica su Video

Altri esperimenti che coinvolgono video possono essere fatti sul transcoder.
Si potrebbe pensare, infatti, di utilizzare il transcoder per generare numeri
manoscritti partendo da intorni di pixel per ogni frame di un video. Un
video viene rappresentato attraverso le features descritte nel capitolo 3: ogni
frame è diviso in regioni e ad ogni regione è associato un vettore x 2 Rp di
p elementi. Il dataset che è stato scelto per e↵ettuare questi esperimenti è
CamVid1. CamVid è costituito da un video campionato a 1Hz di dimensione
320 ⇥ 240 RGB e rappresenta una scena outdoor a diverse ore del giorno
(cfr. figura 4.1). Ad ogni pixel è associata una classe tra 32 possibili. In

(a) (b)

Figura 4.1: 2 Frame estratti dal dataset CamVid.

questo esperimento però, al fine di rendere paragonabili i risultati con quelli
di [12], si considerano solamente 11 classi associando l’etichetta other alle
restanti 21 (i pixel appartenenti alla classe other verrano esclusi da tutti gli
esperimenti). CamVid è diviso nell’insieme di training, Ctrain, che conta 367
frames e nell’insieme di test, Ctest che conta 233 frames per un totale di 600

1http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/
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Figure 1. Left: input autoencoder; middle: output autoencoder;
right: transcoding pipeline.

deep autoencoders. Stacked RBMs (Hinton & Salakhut-
dinov, 2006) or denosing autoencoders (DAEs) (Vincent
et al., 2010) are possible approaches for this step. We then
learn the mapping between φin(xin) and φout(xout) us-
ing a third transcoding network, as illustrated in Figure 1.
The transcoder’s weights are learned using the Stress-1
loss, commonly used in multi-dimensional scaling (Borg
& Groenen, 2005):

J(WT ) =

∑nin

i<j

(
D

(ij)
in −D(ij)

out

)2
∑nin

i<j

(
D

(ij)
in

)2 (1)

where
D

(ij)
in =

∥∥∥φin(x(i)in )− φin(x(j)in )
∥∥∥ (2)

D
(ij)
out =

∥∥∥φ̂out(x(i)out;WT )− φin(x(j)out)
∥∥∥ (3)

3. Music synthesizer
To demonstrate the relationship between text analysis
and sound generation through transcoding, we developed
an application in the visual programming language Max
MSP (Puckette, 2002). Its core is an additive synthesizer
consisting of 32 sine wave oscillators which are individu-
ally controllable in frequency and amplitude. Such a syn-
thesizer is capable of generating a wide variety of tim-
bres, with the first oscillator producing the fundamental
frequency and the others contributing subsequent partials
to the sound signal (Roads, 1996). In our system, the fun-
damental pitch is defined by the notes of a tempered scale
and the ratio between the frequencies of the oscillators is
adjustable, it can be harmonic as well as inharmonic. The
synthesizer has 34 parameters: the fundamental frequency,
the ratio between the oscillator frequencies, and an ampli-
tude for each of the oscillators. Hence, every sound it can
produce is completely characterized by an array of 34 val-
ues.

4. Experimental results
A proper assessment of the proposed methodology should
involve human subject in order to test their ability to dis-
cern similarities in the musical output due to similarities in
the input signal, and also to verify that the result is emotion-
ally effective. In the field of cross-modal assocation stud-
ies (Deroy & Spence, 2013), several approaches exist in the
literature for this purpose (Parise & Spence, 2012; Chan
& Dyson, 2015). While such a study is beyond the scope
of the current preliminary contribution, in this Section we
also want to provide a quantitative empirical evaluation of
the algorithms, using real data, but in a domain that does
not human judgement to measure performance. In partic-
ular, we aim measure how often similar input signals are
mapped into similar output signals, using output modality
data on which performance can be objectively measured in
terms of (multiclass) classification accuracy.

4.1. Mapping text to digit images

In this experimental evaluation, we use a supervised in-
put data set (Xin, yin) and an output data set Xout where
class labels in yin are used for performance assessment
only and not during training. The goal is to obtain a
pseudo classification accuracy measuring how often in-
put examples of the same class are mapped into output
data points of the same class. Since output data points
are genuinely new, measuring this kind of accuracy would
require human labeling on the generated data. To avoid
this step we use handwritten digits as the output modality,
given that classifiers with human-level accuracy are avail-
able for this type of data. We used 60000 training exam-
ples from the MNIST data set to train the output autoen-
coder. The input modality in this experiment is text and
we used 5954 training documents of ten distinct classes
from the 20-newsgroups dataset. The input and output deep
autoencoders both consisted of stacked RBMs, fine-tuned
by backpropagation (Hinton & Salakhutdinov, 2006). Ge-
ometries were 784-1000-500-250-4 for MNIST and 2000-
500-250-125-6 for newsgroups. The transcoder geome-
try was 6-30-30-4 using ReLU units in the hidden layers.
The overall transcoding pipeline is thus a network with 10
hidden layers. For testing, we fed the whole encoding-
transcoding-decoding pipeline with 3963 test documents,
generated synthetic characters (samples shown in Fig. 2)
and classified them using a state-of-the-art convolutional
network (Goodfellow et al., 2013). A heatmap showing the
contingency matrix of predicted MNIST classes vs. true
newsgroup classes is shown in Fig. 3. The associated mul-
ticlass accuracy (using max-weigthed bipartite matching to
associate classes of the two modalities) is 47.8%. Inter-
estingly, several “errors” occur with documents of similar
categories that cannot be easily distinguished without a su-
pervision signal.
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Figura 2.6: Alcuni campioni di nuovi numeri manoscritti generati dal
transcoder.

Figure 2. Synthetic digits generated from newsgroups documents.
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Figure 3. Transcoding newsgroup documents into digits.

4.2. Music generation

In this experiment we test the ability of the model to map
text (from the same subset of the Newsgroups data set used
in §4.1) to sounds. For sounds, we used a denoising au-
toencoder with 34 input nodes and and 4 nodes in the hid-
den layer of the top the encoder. For training, we manually
assembled a data set of 100 examples each consisting of a
carefully selected assignment to the 34 parameters of the
synthesizer. Ten distinct categories of sound settings were
designed, each starting from a clearly recognizable main
sound with a range of timbral variations. These preserve
a number of characteristics of the main sound, such as the
fundamental frequency, allowing all sounds in a group to
be perceived as belonging to the same sound category. Ten
examples for each category were included in the data set.

Connecting the encoder for the newsgroup documents to
the decoder for the sound settings through a transcoding
network, we obtain a pipeline mapping documents to sound
settings. When text documents are fed to the pipeline, they
generate novel assignments to the synthesizer’s parameters
which are finally used to produce sounds. On the known
sound examples, we measured the discriminability of the
4-dimensional codes using a linear SVM and obtained a
multiclass accuracy of 60%. No performance measure is
available in this case for the sound samples generated by
the whole pipeline.

The mapping lacks a temporal dimension: one document
produces one sound. In order to present experimental re-
sults in way that is musically more interesting, sound files
were generated from sequences of documents. The syn-
thesizer plays the sounds corresponding to the documents
in sequence, for about 10 second each, while slowly mor-
phing from one sound to the next by interpolating between

the values of the parameters in the sound settings generated
from subsequent documents.

5. Conclusions
Cross-modal transcoding is a general unsupervised ap-
proach for generating new data and can be in principled
applied to arbitrary pairs of modality types. Our prelim-
inary results show the viability of the method. An obvi-
ous direction for future work is to take into account the in-
herent temporal structure of both input and output signals
which should enable more interesting applications such as
the generation of music from video.
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