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Abstract

Spherical motion generator is a type of multi-degree-of-freedom devices to
generate pure rotational motions and they can be found in many potential
applications such as machine tools, solar panels, orientating devices and
medical instruments. A spherical motion generator can be built by means
of either spherical motors or spherical mechanisms. While many designs of
spherical motion generators have been proposed, existing spherical motion
generators show limitations in their large volume and weight and perfor-
mances. New spherical motion generators characterized with simple and
compact structure, low inertia and high accuracy are desirable, for which an-
alytical modeling and advanced control techniques are requisite to support
the development work.

This thesis aims to develop novel electromagnetic driven spherical motion
generators. The focus is on the system modeling and analysis of integrated
mechanism and electromagnetics design for the new motion generator. Kine-
matics, dynamics, analytical magnetic and torque modeling and control are
covered in this thesis.

The thesis introduces first the integrated design of the new electromag-
netic driven spherical motion generator. The design combines the kinematics
of the spherical parallel manipulator and the electromagnetic driven princi-
ple of the permanent magnet spherical actuator, which features with a simple
structure and low inertia.

The kinematics and dynamics of the new design is studied, addressing
the kinematic Jacobian matrix, singularity and workspace analysis and dy-
namic modeling etc. Analytical magnetic and torque models are obtained for
further study of electromagnetic actuation.

The thesis describes finally high-accuracy control of the spherical mo-
tion generator. The dynamic model of the spherical motion generator in
task space will be established, with which the model uncertainties and ex-
ternal disturbances are duly considered. Addressing the uncertainties in the
model, a robust adaptive switching learning control algorithm is developed
which can improve the tracking performance of the spherical motion gener-
ator. A co-simulation platform by Matlab/Simulink and ADAMS was devel-
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oped, with simulations conducted to reveal the dynamic performance of the
motion generators.

The thesis contributes to the state-of-the-art of spherical motion generator
design and modeling. A design which integrates spherical parallel manipu-
lator and electromagnetic motors was for the first introduced and developed.
The highly integrated electromechanical design can bring the system into a
more compact and flexible structure. Compared with the conventional com-
bination of single motors to implement multi-dof rotations, multi-dof actu-
ation by an integrated electromagnetic driving component greatly improves
the performance of the system. Moreover, analytical models are investigated
including kinematic and dynamic analysis, magnetic field and torque model-
ing and high-precision control design, which constitutes the whole systematic
modeling.



Resumé

En sfeerisk bevaegelsesgenerator er en type beveagelsesenhed, som, gennem
kombination af elektromagnetisk aktuering og parallelmekanisme, kan ak-
tuere rotationsbevaegelse med 3 frihedsgrader. Der er mange potentielle
anvendelser af en sidan enhed, f. eks. i veerktejsmaskiner, solpaneler, og
medicinske instrumenter. En sfeerisk bevaegelsesgenerator kan bygges ved
hjeelp af enten sfaeriske motorer eller aktuerede sfeeriske mekanismer. Der
eksisterer idag mange forskellige designs af sfeeriske bevaegelsesgeneratorer.
Deres anvendelse er imidlertid begreenset pa grund af deres store volumen,
vaegt og ydeevne. Der er derfor behov for nye sfaeriske beveegelsesgenera-
torer, der er karakteriseret ved en enkel og kompakt struktur og tilgodesér
lav inerti og hej nejagtighed. Dette behov skal understettes igennem ana-
lytisk modellering og brug af avancerede styrings- og reguleringsteknikker.

Dette PhD-projekt sigter mod at udvikle nye elektromagnetiske drevne
sfeeriske beveegelsesgeneratorer. Fokus er pa systemmodellering og pa anal-
yse af et integreret mekanisk og elektromagnetisk design af den nye bevaegelses-
generator. Kinematik, dynamik, analytisk modellering af elektromagnetiskak-
tuering og mekanisk moment samt styring er deekket i denne afhandling.

Indledningsvis introduceres det integrerede design af den elektromag-
netisk drevne sfeeriske beveegelsesgenerator. Designet kombinerer kinematikken
i en bestemt sfeerisk parallel-manipulator og det elektromagnetiske drev i en
sfeeriske aktuator med permanentmagneter, der har en enkel struktur og lav
inerti.

De kinematiske og dynamiske egenskaber af de nye design analyseres.
Dette indebeerer bla en opstilling af Jakobianten, en analyse af singulariteter
og arbejdejdsomrade, samt en opstilling af en dynamisk model. Der opstilles
analytiske modeller for elektromagnetisk aktuering og mekanisk moment.

PhD-rapporten beskriver ligeledes hvorledes en ngjagtig styring af den
sfeeriske beveaegelsesgenerator kan realiseres. Den dynamiske model for den
sfeeriske beveegelsesgenerator opstilles i arbejdsomradet, med hensyntagen til
modelungjagtigheder og eksterne forstyrrelser. For at kompensere for mod-
elungjagtighedererne er der udviklet en robust adaptiv styringsalgoritme,
der kan forbedre bevaegelsesgeneratorens ydelse. Til simulering af de dy-



namiske egenskaber af den udviklede bevaegelsesgenerator er der udviklet
en integreret simuleringsplatform med Matlab/Simulink og ADAMS.

PhD projektet bidrager til state-of-art inden for design og modellering
af sferiske beveaegelsesgeneratorer. Et design, der kombinerer en sfeerisk
parallel mekanisme med elektromagnetiske aktuering er introduceret og ud-
viklet. Det integrerede elektromekaniske design muligger en mere kompakt
og fleksibel struktur. Derudover opnas, sammenlignet med konventionelle
lpsninger, en veasentlig forbedring af systemets ydelse. Yderligere bidrager
projektet med en reekke analytiske modeller som understotter en samlet sys-
temisk analyse, herunder kinematiske og dynamiske modeller, magnetisk
felt- og momenttmodellering, samt design af styring med henblik pa hgj prae-
cision.
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Chapter 1

Introduction

The research work presented in this thesis aims at developing an integrated
design of a new 3-degree-of-freedom (dof) spherical motion generator. The
novel electromagnetic driven spherical motion generator integrates the 3-
RRR (Revolute-Revolute-Revolute joint) spherical parallel manipulator with
electromagnetic driving principle of permanent magnet spherical actuators.
Modeling and control of the multi-dof manipulator will be focuses of the
study to achieve the objectives. Analytical magnetic field and torque models
are proposed for the electromagnetic actuation of the spherical motion gener-
ator and control strategies are established for the spherical motion generator.
Numerical simulations and experiments are designed to compared with the
analytical models. Results are obtained to verify the integrated system.

1.1 Background

A spherical motion generator is a device that generates multi-degree of pure
spherical rotations. Spherical motion generators can be found widely po-
tential applications in medical apparatus [1, 2] and robotic applications [3],
which require flexible spherical motion with large workspace in high accu-
racy and simple structure. Spherical motion generators can be implemented
by two major ways, namely, spherical manipulators of serial and parallel con-
figurations and spherical actuators [4, 5], as reviewed in Sec. 1.2.

A 3-dof spherical parallel manipulator is a closed mechanism constructed
with three identical serial chains in parallel. It is characterized that all the
links intersect at a common rotational center, which can implement a 3-dof
pure rotational movement. Compared with conventional serial mechanisms
and 6-dof parallel manipulators, the spherical parallel manipulators have the
advantages of compact structure, high precision and good stability, which
shows wide potential applications in high-accuracy machining, aerospace po-
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sitioning system and robotic system. However, there is no effective solutions
to the actuation of spherical parallel manipulators. Generally, the parallel
manipulators are driven by single motors and corresponding connectors that
are attached to each joints. On the one hand, the gears and transmission
gears increase the hysteresis errors; on the other hand, the attached motors
bring extra weight to the system, which influences the dynamic performance
seriously and increases the power loss. Finally, the movement accuracy of the
spherical parallel manipulator cannot be guaranteed.

Alternatively, spherical actuators can generate multi-dof spherical move-
ment in one unit. A spherical actuator is generally constructed by perma-
nent magnet rotor arrays and a series of stator coils which interact with
each other to produce different electromagnetic forces in order to actuate
the end-effector in 3D spherical movement. Nonetheless, the applications of
the spherical actuators are confined due to its complex machining and the
lack of high-precision and real-time position detection methods.

In the light of the abovementioned considerations, spherical motion gen-
erators that have the advantages of both the coaxial spherical parallel mech-
anism and the electromagnetic driving principle of spherical actuators are
required. To achieve this goal, an integrated electromagnetic driven spheri-
cal motion generator is proposed in this thesis, which will be investigated in
several aspects including electromechanical integrated design, kinematic and
dynamic modeling, analytical magnetic modeling and high-precision control
algorithms.

1.2 Reviews of spherical motion generators (SMG)

Spherical motion generators can be implemented by different principles and
realizations, as shown in Fig. 1.1. From the point of mechanism, the spher-
ical motion can be produced by conventional serial mechanism or multi-dof
spherical parallel manipulators. From the perspective of actuation principle,
the spherical motion generator can be designed as spherical actuators includ-
ing spherical motors, actuated spheres which have been applied in spherical
robots [6, 7].

1.2.1 Spherical parallel manipulators (SPM)

A spherical motion generator can generate spherical motion either in one,
two or three degree of freedoms. One-dof spherical four-bar linkages are in-
vestigated in [9, 10]. Two-dof spherical motion generators are developed for
applications such as pointing devices [11] and pitch-roll wrist [12]. However,
most spherical motions are required in three degree of freedoms. Spherical
motion can be realized by spherical mechanisms, either in serial or parallel
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configurations, driven by ordinary single-axis motors. Spherical motion gen-
erators developed with serial configurations were reported in [13-15], shown
as Fig. 1.2. The serial mechanism is characterized with the advantages of sim-
ple structure, low cost and large workspace. However, the driving motors are
attached with each joints, which leads to the increment of the inertia of mov-
ing parts. In addition, the errors will be accumulated and amplified at the
end-effector, which cannot meet the high-precision application requirement.

Figure. 1.3. Stewart platform Figure. 1.4. Delta robot

Many spherical motion generators are designed as the type of spheri-
cal parallel manipulators. Compared with the serial ones, spherical parallel
manipulators offer larger load capacity, better accuracy, greater rigidity and
mass-reduction design. Spherical parallel manipulator pertains to the par-
allel robots, which have been studied extensively for many years. Parallel
robots are used mainly in industrial fields. In recent years, parallel robot
applications in other areas such as medical and service systems are also in-
creasing. Stewart platform and the Delta robot are two of the most widely
used parallel manipulators of different dofs. The Stewart platform [16] is a
parallel mechanism with six degrees of freedom firstly designed for the flight
simulator (Fig. 1.3), which has been extended for docking system and robotic
crane [17], etc. The Delta robot [18] is developed by Clavel, which can per-
form fast positioning as shown in Fig. 1.4. As one example, the Delta robot
has been used as the actuator of 3D printer called Rostock [19].

In recent years, spherical parallel manipulators [20-22], shown in Fig. 1.5,
attract much more attention. Spherical parallel manipulators can implement
pure rotations with the advantages of larger workspace and less interfering
between components, which shows widely potential applications.

The spherical parallel manipulator is firstly introduced by Asada and
Granito in 1985 [23], which is shown in Fig. 1.6. It is constructed by a closed
loop mechanism in which an output shaft and three coaxial input shafts are
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Figure. 1.5. 3-dof spherical parallel manipulators

Figure. 1.6. SPM by Asada Figure. 1.7. SPM by Gosselin and Angeles
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connected by three intermediate links. It can obtain limited pitch and yaw
rotations and unlimited spinning motion around the spherical center O. An-
other type of spherical parallel manipulator is developed by Gosselin and
Angeles in 1989 [4]. This kind of spherical parallel manipulator is generally
constructed with two rigid platforms that are connected by three identical
serial chains, shown as Fig. 1.7. One platform is the base which is attached
to the fixed reference frame. The other one is the mobile platform that can
rotate in its workspace. The links of each serial leg are usually connected
with each other by spherical joints, revolute joints or prismatic joints. The
actuation of the spherical parallel manipulator is implemented by attaching
motors to each joints that are fixed on the base platform. The spherical paral-
lel manipulators are best known for the Agile Eye applied in camera orienting
devices [4, 24], and the Agile Wrist that is widely used in robotics and med-
ical apparatus [25], as shown in Figs. 1.8 and 1.9, respectively. Compared
with general 3-dof parallel manipulators, they can achieve more flexible ro-
tations in a workspace with a torsion angle of £30° and a conic angle of
140°, which can meet most occasions of spherical movement. Nevertheless,
general spherical parallel manipulators are confined when they are applied
in the fields such as robots and underwater vector propulsion devices which
require large-scale spherical motion and infinite spinning motion [26, 27].
For example, a thruster is a crucial component of the underwater robot. The
single propeller can produce propulsion along the axial direction, and an
extra vectored thruster is needed to generate multi-dimensional propulsion
to implement different steering motion. The steering motion is convention-
ally accomplished by the serial mechanism or 6-dof Stewart robots, however,
only 3-dof rotational movement is required. Therefore, 3-dof coaxial spher-
ical parallel manipulators provide new solution for the vectored propulsion
technique, which can implement the propeller rotation and the adjustment of
spatial attitude.

A 3-RRR spherical parallel manipulator with virtual coaxial shafts is de-
veloped by Bai [28], shown as Fig. 1.10(a). It is kinematically equivalent to the
SPM by Asada and Granito, which can achieve unlimited spinning motion.
Each sliding unit is attached with a motor which can move around the cir-
cular guide by gear transmission. Moreover, Bai analyzed the 3-RRR coaxial
spherical parallel manipulator from the aspects of kinematics, dynamics and
optimum design to improve its performance [29, 30]. Another spherical par-
allel manipulator with circular prismatic pairs is proposed by Li [31], with a
prototype displayed in Fig. 1.10(b). Sudki et al. [32] apply the coaxial spher-
ical parallel manipulator into marine propulsors as shown in Fig. 1.11(a).
Tursynbek [33] developed a 3-dof spherical parallel manipulator by 3D print-
ing technology and implemented its position control (Fig. 1.11(b)). Enferadi
et al. [34] analyzed the workspace optimization and singularity of the spher-
ical parallel manipulator with coaxial input shafts for the high-precision po-

6
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Figure. 1.8. The Agile Eye Figure. 1.9. The Agile Wrist

(a) SPM designed by Bai (b) SPM designed by Li

Figure. 1.10. Spherical parallel manipulator with virtual coaxial shafts



Chapter 1. Introduction

sitioning and rehabilitation applications, as illustrated in Fig. 1.11(c).

Gears for
actuation

(a) SPM designed by Sudki (b) SPM designed by Tursynbek

(c) SPM designed by Enferadi

Figure. 1.11. Spherical parallel manipulator with coaxial shafts

Above all, the actuation of spherical parallel manipulators is usually re-
alized by separate driving motors. In Fig. 1.10, the motors are attached with
the moving active links, and the motors’” movement are transmitted to the
end-effector of the SPM with virtual coaxial shafts by gear transmissions.
The symmetric design simplifies the mechanism and fabrication. However,
the attached gears and driving motors increase the weight and volume of
the mechanism seriously, which will further influence the performance of
the system. From Fig. 1.11, the driving motors are fixed at the base, and
the coaxial input shafts are actuated by the gear or belt transmission, which
causes hysteresis errors. Moreover, the elastic deformation and nonlinear
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friction will influence the performances of dynamics. Therefore, in addition
to the kinematics problems and dynamic modeling, another crucial issue of
the spherical parallel manipulators is the actuation.

1.2.2 Spherical actuators

Alternatively, multi-dof spherical motion can be implemented by spherical
actuators which are a new type of electromagnetic devices similar to the
human joints. A spherical actuator is designed in a compact structure with
advantages of low inertia moment, rapid response and high energy density.

Figure. 1.12. Spherical stepper motor Figure. 1.13. PM spherical actuator

The first 2-dof spherical motor was developed by Williams et al. in the
1950s [35]. Since then, spherical motors with different structure and working
principles have been designed [36—40]. Chirikjian et al. [41-43] introduced
a spherical stepper motor as depicted in Fig. 1.12. The rotor of the spheri-
cal stepper motor consists of 80 rare-earth permanent magnets placed on the
internal surface of a 12-in-diameter hollow plastic sphere. A number of sta-
tor coils with soft iron cores are distributed in a spherical cap for obtaining
a large range of spherical movement. Wang et al. [44—46] developed 3-dof
permanent magnet (PM) spherical actuators (Fig. 1.13). The spherical rotor
consists of two pairs of permanent magnet quarter-spheres. Four sets of coils
are housed within the spherical stator. This design contributes to simplify-
ing the magnetic torque modeling and the design of control algorithms. As
the rotor rotates within the spherical stator on a low friction surface coating,
long-lasting wear of the coating cannot ensure the stability and accuracy of
the system.

Lee et al. reported a variable-reluctance (VR) spherical motor [47], as
shown in Fig. 1.14(a). A number of stator windings are housed in a hemi-
sphere evenly. The permanent magnets are distributed on the rotor surface.
The stator is connected with the permanent magnet rotor by means of gim-
bals. The end-effector of the rotor can roll freely on the gimbals. By varying
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rotor assembly
with PMs

\ stator assembly
with EMs

(a) VR spherical motor (b) SWM (c) PM spherical actuator

Figure. 1.14. Spherical actuators by Lee et al.

the input currents of the stator windings, there will be a 3-dof rotational
movement at the end-effector of the rotor. However, the additional friction
between the slide track and the rotor influences the system performance se-
riously. Controllers were developed to improve the precision [48]. In [49],
a computed torque method which is widely used in the robotic area, was
utilized for the control of VR spherical motor. Lee and Son designed a spher-
ical wheel motor (SWM) [50, 51]. It consists of 20 stator air-core coils and 16
cylindrical PMs as illustrated in Fig. 1.14(b). A distributed multipole model
(DMP) was proposed which was originated from the concept of a magnetic
dipole. The typical orientation detection is usually to use the mechanical
links with attached encoders, which increases the frictional torque greatly.
The DMP method was then exploited to develop a two-dof orientation sen-
sors to measure the orientation of the SWM in real-time control [52]. Lee and
Bai investigated a 3-dof permanent magnet spherical actuator (Fig. 1.14(c)) by
introducing the direct field-feedback control (DFC) for real-time controlling
without orientation sensing system, which was applied in conformal printing
of curved electronics [53, 54]. Toyama and Mashimo developed spherical ul-
trasonic motors which adopted the ultrasonic vibration to drive the spherical
motor [55-57]. It can be designed in compact size and large movable range as
shown in Fig. 1.15. The friction drive principle improves the responsiveness
of the system. However, it influences the position precision and durability.
To improve the performance of the PM spherical motors, in-depth study
on the PM rotor array is conducted. Yan designed the permanent magnet ro-
tor arrays in 3D structure (Fig. 1.16), and employed the spherical harmonics
(SH) to study the 3D rotor array for further control implementation and pa-
rameter optimization [58]. Xia presented a Halbach permanent magnet array
for the spherical actuator in Fig. 1.17, to obtain a magnetic field with a kind
of sinusoidal distribution [59]. Chen et al. proposed a high-precision and
real-time orientation detection system for the PM spherical actuators [60]. As
shown in Fig. 1.18, a passive spherical joint is introduced to connect the ro-
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Figure. 1.15. Spherical ultrasonic motors  Figure. 1.16. PM spherical motor with 3D array

Figure. 1.17. PM spherical motor with Halbach
rotor array

11
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tor with the base. The rotor orientation is measured by the spherical joint
with which the rotary encoder and two-axes tilt sensor are incorporated. In
addition, corresponding trajectory tracking control algorithms were devel-
oped [61, 62].

(a) PM spherical actuator prototype (b) Spherical joint
Figure. 1.18. A PM spherical actuator with position detection system [60]

A PM spherical actuator consists mainly of a spherical permanent magnet
rotor array and a series of stator coils evenly housed in a spherical shape. PM
spherical actuators have the advantages of rapid response, compact structure
and high energy density. Nevertheless, due to the limitation of mechanical
design, the maximum tilting angle is confined [62]. The spherical motors are
subjected to relatively large size and heavy mass because of the utilization
of the permanent magnet array and the supporting holder [63]. In addition,
owing to uncertainties and nonlinearities in the dynamic models, the real-
time control for the PM spherical actuators is also a challenging problem.

1.3 A new concept of integrated spherical motion
generators

New designs of 3-dof spherical motion generators will be studied in this
work. The new designs allow an integration of the spherical parallel me-
chanics and permanent magnet spherical actuators” driving principle for an
actuator with high performance. A concept of integrated design of the elec-
tromagnetic driven spherical motion generator is proposed [64]. The multi-
dof electromagnetic driven approach will be applied for the spherical motion
generator.

The new concept was developed on the spherical parallel manipulators
with virtual coaxial shafts proposed by Bai [28], which suggests a promising
approach for performance improvement. The spherical parallel manipulator
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1.3. A new concept of integrated spherical motion generators

uses a circular guide with three free-moving sliding units as the base platform
in Fig. 1.10(a). The sliding units are made of permanent magnets and used as
rotors. There are a series of stator coils distributed evenly around the rotors.
The end-effector will be actuated by the interaction between the rotor sliding
units and the stator coils, as shown in Fig. 1.19(a). Compared with heavy
rotor of permanent magnet spherical actuators, the sliding unit of low mass
can be easily driven by the electromagnetic force.

1735 Q; =
12/36 @I f@mzs

. |
Stator coil 5, m

14738 @

Housing

T3 Attt

15139 >\;\\ C, /;2347 —
- C, v Repel
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18/42 19/43 20/44 layer

(a) Conceptual design (b) Working principle

Figure. 1.19. Concept of the electromagnetic driven SMG

Figure 1.19(b) depicts the working principle of the spherical motion gen-
erator. Every sliding unit is consisting of two stagger permanent magnets
with opposite magnetization in two layers, namely, an upper layer and a
lower layer. The stator coils are distributed uniformly in two layers outside
the rotor. The upper permanent magnet is mainly interacted with stator coils
in the upper layer, in the same way, the lower permanent magnet is interacted
with the stator coils in the lower layer. Then the sliding units will be actuated
by the electromagnetic forces between the permanent magnet poles and the
stator coils. All the stator coils are involved in the actuation of each sliding
unit, which can be regarded as a multi-dof actuating method.

The spherical motion generator can operate in two type of motions, namely,
a pure spinning motion and a general spherical motion. For the pure spin-
ning motion, the three sliding units are driven in synchronous movement
with equal torques simultaneously, then the mobile platform will rotate about
its own central axis. For the general spherical motion, the three sliding units
are actuated by different torques, then sliding units” relative motions will
generate a 3D rotational movement at the end-effector of the mobile plat-
form.

An embodiment of the spherical motion generator is displayed in Fig. 1.20.
In the embodiment, the three sliding units are mounted on the circular guide
through three identical links. The circular guide is composed of a pair of
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(a) Overall design (b) Internal view with housing removed

Figure. 1.20. Embodiment of the electromagnetic driven SMG

HCR guides from THK, which can obtain a high-precision movement of the
sliding units. A symmetric layout of every sliding unit is adopted to keep the
balance of the rotor.

Compared with conventional motor-driven spherical parallel manipula-
tors and permanent magnet spherical actuators, the newly designed electro-
magnetic driven spherical motion generator brings some advantages. The
non-contact electromagnetic driving principle eliminates the utilization of
motors and gears, which brings out less mechanical wear and no backlash.
The new design is advantageous due to a more compact and flexible struc-
ture. Moreover, the spherical motion generator has a larger workspace than
the spherical actuators, and can implement 360° spinning motion superior to
typical parallel manipulators.

1.4 Research challenges

In this section, a brief state-of-art on the developed methodologies is intro-
duced, particularly emphasizing on issues that are relevant to the research of
the electromagnetic driven spherical motion generators.

1.4.1 Kinematics and dynamics modeling

Extensive research on kinematics and dynamics analysis has been carried
out for spherical parallel manipulators [65-68]. Gosselin and Lavoie investi-
gated the kinematic design of spherical parallel manipulators with different
types [69]. Gosselin et al. developed a method for the type synthesis of non-
overconstrained spherical parallel manipulators based on screw theory [70],
and proposed a linear invariants (LI) of the rotation matrix for workspace
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analysis [71]. Bai and Angeles analyzed the input-output equation of a spher-
ical four-bar linkage by combining two closure equations of single individual
limbs, which is applied for further modeling of the spherical parallel ma-
nipulators [72, 73]. Gregorio solved the kinematic model of a 3-URC wrist
with all equal legs, moreover, the position and mobility analysis were pro-
posed [74]. In [75], a "tilt-and-torsion angles" representation was introduced
as a useful analytical methodology to determine the workspace boundaries
of general symmetrical spherical parallel manipulators. By using geometric
approach and an appropriate set of coordinates, direct and inverse kinematic
models of spherical parallel manipulators are obtained [76].

Dynamics of spherical parallel manipulator is essential for high-precision
control. To obtain the dynamic equations of motion for the parallel manip-
ulators, the methods such as Newton-Euler method [77], Lagrange formu-
lation and the virtual work principle are exploited. In [4], Newton-Euler
method was utilized to analyze the dynamics and a complete simulation has
been developed to determine the forces and torques for any given trajec-
tory. A dynamic model was developed to optimize the structural and ge-
ometric parameters with the classical Lagrange multipliers approach which
is widely used for dynamic modeling of parallel mechanism with geometry
constraints [29]. The virtual work principle was introduced to solve the in-
verse dynamic problem of a 3-RRR Agile Wrist spherical parallel robot [78].
Gibbs-Appell method was derived for a spherical parallel robot, which con-
tributes to a simple form of dynamic model [79]. By combining D’ Alembert’s
principle and Kane’s method, an enhanced approach was designed to reduce
the computational time during the dynamic calculation [80].

1.4.2 Analytical magnetic modeling methods

The actuation of the spherical motion generator is based on the working prin-
ciple of the permanent magnet spherical actuator. Therefore, in this study, the
rotors designed as either sliding units or cylindrical arrays are constructed by
permanent magnet poles.

The permanent magnet poles are mainly manufactured in tile shape or
cylindrical shape. A cylindrical-shaped permanent magnet with axial magne-
tization has the advantages of easy magnetization and fabrication. The cylin-
drical PMs can be applied in the rotor structure of actuators, which can de-
crease the inertial moment in order to improve the dynamic response [81, 82].
However, compared with cylindrical permanent magnets, the tile-shaped per-
manent magnets contribute to a more compact rotor structure which can
avoid the increase of the air gap between the neighbouring cylindrical per-
manent magnets and enhance the magnetic field in the air. The conventional
numerical method, finite element method can obtain good accuracy in view
of nonlinear factors and complicated geometry shapes. However, it is de-
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ficient in the computational efficiency, which is not favourable for the opti-
mization design and further real-time control. Therefore, analytical magnetic
field and torque models with better accuracy are quite necessary, which is a
challenging work.

Magnetic field modeling

Up to now, several methods have been studied on the magnetic modeling,
such as spherical harmonics, distributed multipole, magnetic equivalent cir-
cuit, the charge and current models. Spherical harmonics are special func-
tions defined on the surface of a sphere, which is employed to study the mag-
netic field distribution of spherical actuators analytically in [58, 59, 83, 84].
Distributed multipole method is generally used to calculate the magnetic
field distribution of cylindrical-shaped permanent magnets, in which the
permanent magnets are equivalent to magnetic dipoles [51, 52]. Magnetic
equivalent circuit is a method that can analyze the magnetic field by meshing
the device geometry into elements with reasonable precision and computa-
tional complexity [85]. The charge and current models are alternative meth-
ods, which can be applied for the permanent magnets efficiently by virtue of
some special functions or approximation deformation of the magnet struc-
ture [86-89].

Torque modeling

The electromagnetic torque model is formulated analytically in terms of the
analytical magnetic field models, which includes Lorentz force law, virtual-
work method, moment principle and so on. The conventional Lorentz force
law can seriously increase the calculation complexity due to the multiple
integration, which can be usually applied for simple structure [90]. In the
virtual-work method, a force is derived by evaluating the magnetic potential
energy in the framework of the finite element method [91-93]. Dipole mo-
ment principle was introduced by Lim and Son, which simplified the compu-
tational process greatly to obtain the resultant torque generated by spherical
actuators [94, 95].

1.4.3 Control algorithms

On account of the uncertainties and nonlinear behavior of the dynamic sys-
tem, accurate tracking is a challenging work to implement. To improve the
trajectory tracking performance of the actuators, many control algorithms
have been developed.

As a classic control algorithm, the proportional-derivative (PD) controller
is typically applied to yield a better trajectory tracking performance with
the asymptotic stability by adjusting the control gains [50]. Nonetheless, PD
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controller cannot ensure the stability in high-speed applications, and the pre-
cision cannot be guaranteed by PD controller without the compensation for
the uncertainties and disturbances of the dynamic systems [96]. Computed
torque model (CTM) is a model-based control scheme which has been widely
employed to eliminate the strong coupling and nonlinearities in the manip-
ulator dynamics [97-99]. Compared with controllers such as PID [100] and
augmented PD control, CTM can achieve an ideal control performance by
overcoming the external disturbance [101].

Intelligent control algorithms are studied in recent years, such as neural
networks, adaptive, robust controllers and so on [102, 103]. Neural networks
and adaptive controllers can compensate for the uncertainties at the expense
of computation efficiency, which are restricted to real-time control [104, 105].
Iterative learning control (ILC) has a strong robustness to the modeling un-
certainties, thus it is appropriate for devices with repetitive tasks [106, 107].
Moreover, hybrid control algorithms that integrate ILC, adaptive and robust
controllers are investigated, which are advantageous to the combined control
methods [108-110].

1.5 Objectives and scope of the work

The PhD project is aimed at developing an electromagnetic driven spherical
motion generator for the robot manipulator to generate accurate spherical
movement in 3-dof rotation. The integrated system of the spherical motion
generator can be implemented in an open-loop scheme and a closed-loop
scheme, as displayed in Fig. 1.21. The objective of the open loop is to study
the working principle of the SMG. Defining a desired trajectory of the end-
effector, the desired torques can be obtained from the inverse kinematics and
dynamics. The magnetic field and electromagnetic torque models are then
utilized to compute the current inputs corresponding to the calculated de-
sired torques. The obtained currents can be used to actuate the SMG to
produce a 3-dof spherical motion. To investigate the control system which is
essential for the practical use of SMG, a closed-loop system is designed. The
control task is to determine the torques to ensure that the real motion tracks
the desired trajectory.
The following objectives will be achieved in the project:

1. to design an integrated electromagnetic-mechanical actuator;
2. to establish the actuating models and analyzing the working principle;

3. to develop actuation control strategies to achieve efficient movement at
the end-effectors.

To achieve these goals, this project will deal with the following research
problems based on Fig. 1.21:
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Figure. 1.21. Integrated system design

Closed loop

Kinematic analysis of coaxial spherical parallel manipulators. The 3-dof
spherical motion is generally implemented by multi-dof spherical parallel
manipulators. Conventional spherical parallel manipulator with fixed bases
can obtain various spatial motion on the sphere, however, the workspace of
the parallel manipulators is confined, particularly in the applications such as
the underwater vector propellers that require unlimited spinning motion and
a wide range of attitude motion. In addition, the nonlinearities and coupling
among the kinematic chains increase the system complexity. 3-dof spheri-
cal parallel manipulators with coaxial shafts can realize spherical movement
with unlimited spinning motion. Thus, for high-precision and high-speed ap-
plications with large-scale workspace, this study will investigate and improve
the coaxial spherical parallel manipulators from the perspective of mecha-
tronic design to develop an integrated spherical motion generator. The kine-
matics of the spherical motion generator will be studied and the Jacobian
matrix will be derived for further singularity and workspace analysis.

The integrated multi-dof electromagnetic actuation. The actuation of the
coaxial spherical parallel manipulators are mainly implemented by the com-
bination of the single-axis motors and gear transmission, which influences the
performance of the system due to the hysteresis errors. Therefore, an innova-
tive electromagnetic actuation will be the focus of this work. The highly inte-
grated electromagnetic driven design will avoid the problems caused by gear
transmission. The novel actuator incorporates the spherical actuator principle
with the spherical parallel manipulator to generate 3-dof rotations. In par-
ticular, ferromagnetic materials such as permanent magnets can be used as
the rotor of spherical motor. A number of stator coils which are equally dis-
tributed around the circular guide can interact with the permanent magnets
to actuate three permanent magnet sliding units in respective movement.
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Analytical and numerical modeling. Analytical and numerical models of
the magnetic field distribution and torque will be developed to study the ac-
tuation. The magnetic charge model is used to study the spatial magnetic
field distribution. In the charge model, the permanent magnet poles of the
rotor array can be equivalent to a spatial distribution of “magnetic charges”
which are applied as a source term in the magnetostatic field equations. The
complete solution for the magnetic flux density of the rotors can be calcu-
lated by the superposition of the magnetic flux density generated by each
permanent magnet pole. The torque model can be obtained by Lorentz force
law or the dipole moment principle. To simplify the control of the motion
generator, the stator coils are constructed with non-ferromagnetic cores so
that the torque output is proportional to the current output. The complete
torque produced by multiple coils can be obtained by superposition principle.
The analytical models are then compared and validated with the numerical
Ansoft models and experiments.

Actuation control strategy. The torque is generated by the interaction of
the permanent magnet rotor and the surrounding stator coils. The end-
effector of the spherical motion can produce 3-dof rotational motion within
the workspace through varying the current inputs of stator coils. Therefore,
the current control is the premise of the position control. The current control
strategy will be developed to realize that the separate rotors are controlled
respectively by the stator coils. Moreover, the dynamic model of the spherical
parallel manipulator is a complex system with the characteristics of nonlin-
earity and coupling, which will reduce the kinematic accuracy of the system.
Besides, the uncertainties including the manufacturing errors, external dis-
turbances and so on, are also key issues of the spherical parallel manipula-
tors. Thus, another research emphasis is to design a hybrid control algorithm
which can contribute to improving the trajectory tracking performance.

Prototyping and experiments. A prototype will be built based on the con-
ceptual mechanical design. The experiment system which includes hardware
design and software design will also be developed to control the spherical
motion generator. The experiments will be performed to verify the modeling
of the integrated spherical motion generator.

In summary, it is a great challenging work to design a novel integrated
spherical motion generator which can combine the advantages of both the
mechanical structure of spherical parallel manipulator and the innovative
actuation principle of the spherical actuators. This thesis will investigate
the electromagnetic driven spherical motion generators from several aspects
including the structure design, kinematic and dynamic analysis, magnetic
modeling and high-accuracy control.

19



Chapter 1. Introduction

1.6 Outline of thesis

The thesis consists of six chapters. The outline of the thesis is introduced as
follows.

Chapter 1 provides necessary background and a summary of the state-of-
art of spherical motion generators, mainly focusing on the spherical parallel
manipulators and spherical actuators. The research challenges of electro-
magnetic driven spherical motion generators are analyzed, which initiated
this study.

Chapter 2 introduces the analytical modeling of the spherical motion gen-
erators. Mathematic theory of integrated systems are described in detail for
further study, including kinematics and dynamics, analytical magnetic meth-
ods, and analytical magnetic torque calculation.

Chapter 3-6 are the selected and representative publications through which
the thesis subjects are treated specifically.

Chapter 3 describes the systematic design and modeling of an integrated
spherical motion generator. The integrated design is constructed by a spher-
ical parallel manipulator with virtual coaxial shafts and a multi-dof electro-
magnetic actuating unit. The integrated system is analyzed from several as-
pects: the kinematics and dynamics, the analytical magnetic field and torque
modeling and preliminary trajectory tracking control with PD and computed
torque methods, which evaluates the validity and rationality of the integrated
design.

Chapter 4 presents a robust adaptive switching learning PD control algo-
rithm for the integrated spherical motion generator to improve its trajectory
tracking performance. The stability of the hybrid control algorithm is proved
in details. A co-simulation platform is designed. The control algorithm is
implemented by Matlab/Simulink and the virtual prototype is established
and defined with parameters in ADAMS. Finally, the developed algorithm is
verified effectively.

Chapter 5 describes analytical magnetic modeling and torque modeling
of an integrated spherical motion generator with multi-layer electromagnetic
actuations. The analytical magnetic model is developed based on the charge
model and the transformation methods. The analytical torque model is es-
tablished on the basis of the dipole moment principle which greatly simpli-
fies the computation compared with the conventional integral calculation of
Lorentz force law. Furthermore, these models are validated by numerical
finite element methods and experiments.

Chapter 6 concludes this thesis, with a summary of observations from the
project study and contribution. Future work is also suggested.

20



Chapter 2

Integrated analytical
modeling

This chapter introduces the theoretical basis of the spherical motion genera-
tor, including the kinematics, dynamics, analytical magnetic field and torque
modeling, followed by an example of an integrated SMG with multi-layer
actuation.

2.1 Kinematics and dynamics of the spherical mo-
tion generator

The spherical parallel manipulators can be categorized into three types, gen-
eral spherical parallel manipulators, spherical parallel manipulators with
coaxial shafts, advanced spherical parallel manipulators with virtual coaxial
shafts. Figure 2.1(a) displays the general type that was introduce by Gos-
selin and Angeles. By defining the parameter y = 0 in Fig. 2.1(a), the three
proximal links will form a coaxial structure at the joints connected to the
base, which contributes to the reduction of the base platform. As a result,
it can generate an unlimited spinning motion at the end-effector as depicted
in Fig. 2.1(b). Based on the coaxial spherical parallel mechanism, a spher-
ical parallel manipulator with virtual shafts was introduced by Bai [72] by
using the sliding units to replace the proximal links. By introducing the cir-
cular guide along which the sliding units can move separately as shown in
Fig. 2.1(c), the design is improved in enhanced stiffness and high symmetry.
In this study, the mechanical design of the spherical motion generator is base
on a 3-RRR spherical parallel manipulator with coaxial shafts.
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a
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(c) SPM with virtual coaxial shafts

Figure. 2.1. Kinematic models of spherical parallel manipulators
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2.1. Kinematics and dynamics of the spherical motion generator

2.1.1 Orientation representation

Figure. 2.2. Coordinate system conversion

In this work, X-Y-Z Euler angles are utilized to express the orientation of
the mobile platform with respect to the global fixed coordinate system [111].
As shown in Fig. 2.2, the complete transformation matrix from the mobile
coordinate system to base coordinate system is derived. The X-Y-Z coordinate
system is rotated first about the X-axis by an angle ¢, and then is rotated
about the new y!-axis by an angle 6. Finally the new coordinate system is
rotated about the newest z2-axis by an angle ¢. The resulting rotating matrix
R can be constructed by three transformation matrices

1 0 0 cosf 0 sinf cosc —sino 0
R(P:[O cos ¢ —sinq)]Rg:[ 0 1 0 ]Ra:[simf cos o 0]
0 sing cos¢ —sinf 0 cos® 0 0 1
(2.1)
Thus, the rotation matrix can be formulated as

2.1.2 Kinematics modeling

The kinematic model of the spherical motion generator is derived from the
kinematics of a spherical parallel manipulator [112, 113], as shown in Fig. 2.1(b).
The axes of the revolute joints are denoted by unit vectors u;, v; and w;, re-
spectively, where i represents the link number, i = 1,2,3, and all the unit
vectors point to the spherical center O. The unit vectors, u;, are parallel to
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z-axis, which can be formulated as
w=[0 0 —-1]" (2.3)

The unit vectors, w;, expressed in the stator coordinate system, are related to
the actuated-joint angles 6;,

(C(Wi)S(Qi) — S(Wi)c(ei))S(Dél)
w; = (5(77i)5(9i) +C(771‘)C(9i))5(0c1) (2.4)
—c(a)

where 17; = 2(i —1)7r/3,i = 1,2,3. Transferring the unit vector v} of the top
revolute joint axis from its local coordinate to the global coordinate system
by the rotation matrix R, the unit vectors, v;, are expressed as

T
vi=[ v vy vz | =Ry} @5
with T
vi =] —sing;sinf cosysinf cosp |

The intermediate joint w; and the revolute joint of the mobile platform v;
are connected together by the distal link B;C; with a fixed central angle «;.
Therefore, the constrained function can be expressed as

w;-v; =cosap, 1=1,2,3 (2.6)

that is,
Wiy * Vix + Wiy - Viy + Wiz - Vjz = COS Ay (2.7)

Substituting Egs. (2.4) and (2.5) into Eq. (2.7), the new equations produce
D;sinf; + E;cosf; = F, i=1,2,3 (2.8)

with
D; = vjy cos1j; sinay + v, siny; sinag
E; = —vjy siny;sinay + vy, cos 17; sinaq (2.9)

F; = cosa1v;, + cos ay

Lett; = tan(@), then the following functions can be found
sinf; = i, cosf; = ﬁ (2.10)
1+ 1+
Substituting Eq. (2.10) into Eq. (2.8), the equations are obtained as
(Ei+ F)? 4+ 2Dit; —E; +F;=0,i=1,2,3 (2.11)
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Then the unknown parameter ¢; can be solved by

D;+/D? — E? 4 F?
t; = ,i=1,2,3 (2.12)

b Ei+F

Thus, the inverse kinematics of the spherical parallel manipulators is ob-
tained.
By differentiating Eq. (2.7), the Jacobian matrix can be obtained,

w,-vi+w;-v;=0,i=1,23 (2.13)

with
wW; = Qiui X Wi, Vi =W X V; (214)

wherew = [ wx w, w; }T is the angular velocity of the mobile plat-
form. Utilizing vector product,

Qi(ui X W,‘) Vi =W - (Wi X Vi) (215)
the Jacobian matrix J; is obtained as
0=jw (2.16)
where
Js =T, (2.17)
with

T
{]a—[wlxw Wy X V) W3><V3]

Jp =diag|[ (u; xwy)-vi (upxwy) vy (uzxwsz) vz |

2.1.3 Dynamics modeling

Considering that a spherical parallel manipulator is a constrained multi-body
system, the dynamics of the spherical parallel manipulators can be formu-
lated by generalizing the Hamilton’s principle by means of Lagrange multi-
plier technique [29, 114], as follows

d (oL\ oL .
5 (%) - Sercir-an 218)

where q = [ qu Qe ]T, @w=1_[6 6 6 ]T is the vector of input
joint angles, qo = [ ¢ 6 ¢ ]T is the vector of the end-effector. Q.y =
[T 0 }T is the vector of generalized external forces, and vector T =

T .
[ m ™ 1 | characterized the actuated torques.
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Moreover, A = [ A1 Ay A3 }T is a vector of Lagrange multipliers.
Matrix C; is the system’s constraint Jacobian, which can be found from
Eq. (2.17),

C,q=0 (2.19)

withCy=1[J, —J.® ]T, where ® is the transformation matrix between

the angular velocity w and angle rates. L = T — V is the Lagrangian function.
T is the kinematic energy of the system, which can be described as

T=24"™(q)q (220)

where M is the mass matrix of the system. Thus,

d (JL | WA
a4 (aq) — Mg + Mg 21)
and
AL 9T oV

ﬂ‘@‘@‘%”f"q (2.22)

Therefore, the dynamics of the spherical parallel manipulators can be ob-
tained

[ M(q) G } [ 4 ]: [ TG—M(‘E)quZTq—Vq (223)

2.2 Analytical magnetic methods

2.2.1 Review of Maxwell’s equations

Maxwell’s equations govern the electromagnetic fields between the interac-
tions of charge and current sources, which provides a fundamental of gen-
eral electromagnetic phenomenons [115]. The differential forms of Maxwell’s
equations are described as follows

VxH=J+%, (2.24)
V-B=0, (2.25)
VxE=-28, (2.26)
V-D=p (2.27)

where the sources terms, J and p, are the free current density with unit of
(A/m?) and the free charge density with unit of (C/m?), respectively, and
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Table 2.1. Descriptions of fields

Field Description

Magnetic field intensity (A/m)
Electric flux density (C/ mz)
Magnetic flux density (T)
Electric field intensity (V/m)
Magnetization (A/m)

Il = B w R

Polarization (C/m?)

the fields H, D, B and E are defined as listed in Table 2.1. In Egs. (2.24)-(2.27),
all the fields can be functioned as vector-valued equations of space and time,

W= Wx(x/y/z)f(‘FWy(x/y/z)y‘l‘wz(x/yzz)i (228)

where W can be substituted by the fields H, D, B or E. Due to that each field
is consisting of three components, the overall equations become a system of
12 unknown field components. By combining the divergence of Eq. (2.24)
and the time derivative of Eq. (2.27), the continuity equation is obtained

do _
V)t o =0 (2.29)

These two curl Egs. (2.24) and (2.26) can be applied to obtain the divergence
Egs. (2.25) and (2.27). Additionally, the following constitutive relations are
required for completing the mathematical theory,

B = uo(B+H) (2.30)

D =¢E+P (2.31)

where the constant g is the permeability of free space, yg = 471 x 10~"Tm/A,

the constant € is the permittivity of free space, €y = 8.854 x 10712F/A, and
the fields M and P are noted in Table 2.1.

In stationary, linear, homogeneous and isotropic media, the constitutive
relations in Egs. (2.30) and (2.31) are reformulated as

B = uH (2.32)
D = ¢E (2.33)

An additional constitutive law that presents the relation between J and E is
introduced
J=0E (2.34)
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where p and € are the permeability and permittivity of the media, respec-
tively, and ¢ is the conductivity with the unit of (A/V -m). In a nonlinear,
inhomogeneous or anisotropic media, Eqs. (2.32)-(2.34) will be modified by
replacing the constants with nonlinear terms, u(H), e(E) and ¢ (E).
Maxwell’s equations can be alternatively written in integral forms which
are applicable for highly symmetrical geometry [116]. By applying Strokes
theorem to left-hand side, the curl Eqs. (2.24) and (2.26) are formulated in
the surface integral form over an open surface S bounded by a contour C,

$eHAl = [((J+ 2) - ds, (2.35)
$-Edl = — [ 9B .ds (2.36)

Equation (2.35) is stated as Ampere’s circuital law. It presents that the mag-
netic field intensity around any closed curve equals the free current flow-
ing through the surface S bounded by the curve C. Equation (2.36) is Fara-
day’s law of electromagnetic induction, which describes that the electromo-
tive force around a closed path is equal to the negative time rate of the in-
crease of the magnetic flux enclosed by the path.

By using the Divergence theorem to the left-hand side, the integration of
the divergence Egs. (2.25) and (2.27) over a volume V with a closed surface S
can be obtained as

V-B=0, (2.37)
V-D = [, pdv (2.38)

Equation (2.37) expresses the outward magnetic flux of a magnetic field B
over a closed surface S is equal to zero, which implies there is no existence
of magnetic monopole. Furthermore, Eq. (2.38) is known as Gauss’s flux
theorem which describes the outward electric flux of the electric field D over
a closed surface S is equal to the total charge enclosed within the volume V
bounded by S.

In summary, the differential and integral forms of Maxwell’s equations are
reviewed in this section. The Maxwell’s equations for the magnetostatic field
will be applied to analyze the magnetic field model of permanent magnets.

2.2.2 Magnetic field models for permanent magnets

In this study, the rotor array of the spherical motion generator is constructed
by a series of permanent magnets in a certain arrangement. The permanent
magnets are selected as the common tile or cylindrical shapes. To investigate
the magnetic field of the permanent magnet rotor array, two basic methods,
namely, the current model and the charge model, respectively, are used. For
example, Fig. 2.3(a) shows a cylindrical permanent magnet with axial paral-
lel magnetization. In the charge model, a permanent magnet is equivalent to
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2.2. Analytical magnetic methods

a distribution of “magnetic charges” as shown in Fig. 2.3(b). In the current
model, the permanent magnet is replicated as a distribution of equivalent
current as shown in Fig. 2.3(c). Both the equivalent current and the magnetic
charge can be then input into the magnetostatic field equations as a source
term, and the field is obtained using standard methods [117]. With regard to

Surface charge

/\ F+++++ /\
++ 4+ + 4+
v +++++ \_/

M ~_ 7

Surface current

N

(a) Physical PM (b) Magnetic charge (c) Equivalent current

++

Figure. 2.3. Analytical magnetic modeling of a permanent magnet

the permanent magnets, the derivation of both methods start with the mag-
netostatic field equations of the Maxwell’s equations for current-free regions,

VxH=0 (2.39)
V-B=0 (2.40)

The equivalent current model

In the current model [118], the magnetic flux density, B in Eq. (2.40) can be
formulated as the curl of the vector potential field A,

B=VxA (2.41)

Substituting Eq. (2.41) into Eq. (2.39) and taking into the constitutive relation
in Eq. (2.30), this yields

VZA-V(V-A)= -V xM (2.42)
Considering the Coulomb gauge condition V - A = 0, Eq. (2.42) is simplified,

VZA = —1p(V x M) (2.43)
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Chapter 2. Integrated analytical modeling

Introducing the definition of an equivalent magnetic volume current density,
Jn = V x M, the potential A can be obtained as

V2A = —poJm (2.44)

By imposing the free-space Green’s function,

1

/
Glrr) = 4mjr— 1|

(2.45)
where r represents the position vector of the observation point P and r’ is the
position vector of the source point P/, Eq. (2.44) can be formulated in integral
form

AG) = o [ In(0) 4y (2.46)

4 ) |r—v|

According to Eq. (2.41), we obtain the magnetic flux density B

/J’" s X (=) (2.47)

r/|3

If the magnetization M is confined to a volume V, and falls abruptly to zero
outside of V, Egs. (2.46) and (2.47) become

_ Ho Ji(r') /. Ho ?{ jm(r') .,
A(r) = yp Y \r—r’]dv + yp= 2 \r—r/\ds (2.48)
and
B(r / udV’ %]m _ )ds’ (2.49)
|r _ /|3 1‘ _ I./|3

respectively, where S is the surface of the magnet. J,;, and j,; are equivalent
volume and surface current densities, respectively, which are defined as

Jn=V'xM (A/m?)

. o (2.50)
jm =Mxd (A/m)

where d’ is unit normal vector of the permanent magnet surfaces.

The charge model

In the charge model [64, 119], the magnetic field strength, H in Eq. (2.39) can
be expressed as the divergence of the magnetic scalar potential ¢

H=-V.¢ (2.51)
Substituting Egs. (2.51) and (2.30) into Eq. (2.40), this yields
Vigp=V-M (2.52)
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2.3. Electromagnetic force modeling

By using the free-space Green’s function, Eq. (2.52) can be formulated in
integral form in the absence of boundary surfaces,
1 V-M _,
p(r) = v de (2.53)
If the magnetization M is confined to a volume V (of permeability 1), and
falls abruptly to zero outside of V, Eq. (2.53) reduces to

1 Jmn (1) 1 jm(t')
go(r)—E V|r—r’|dv+E |r—r’|ds 54)

where S is the surface of the magnet. J,, and j,, are equivalent volume and
surface current densities, respectively, which are defined as
Ju=-V'-M (A/m?)

N (2.55)
jm=M-d (A/m)

where d is the unit surface normals. The permanent magnet is in free space
with the condition, B = yoH. From Egs. (2.51) and (2.54), we have

r— r
/ udv’ f’m E ds’ (2.56)

2.3 Electromagnetic force modeling

The actuation of the spherical motion generator is implemented by the elec-
tromagnetic torques generated by the interaction between the permanent
magnet array and the stator coils. In this chapter, the electromagnetic torque
model will be studied [64, 117].

For a particle of charge g moving through an external magnetic field B, it
will experience a Lorentz force which is formulated as

F = g(u X Bext) (2.57)

Extending to the case of currents, a volume current density J is defined
that p, charges per unit volume move with the velocity u, J = p,u. The force
density f which states the force per unit volume can be described as

f =J X Bext, (N/m?) (2.58)

Therefore, the total force generated on a conductor with current density J can
be obtained by the integration of f over the volume of conductor,

F— /V fdo (2.59)
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Moreover, the torque is determined by
T= / r x fdo (2.60)
1%

where r is the vector from a point at which the torque is required to be
computed.

dF = 1dl x Bext

Figure. 2.4. Lorentz force law

Appling Egs. (2.59) and (2.60) to the coils with current I, Jdv is equivalent
to Idl as shown in Fig. 2.4. Thus, the equations reduced to

F=1 / d1 X Bex; 2.61)

and
T=1 / £ % (d1 X Bext) (2.62)

where Bey; is the calculated magnetic field distribution from the analytical
current or charge model.

2.4 Example

An example of the integrated modeling of the SMG is included. A multi-layer
SMG is taken for modeling and simulation [119], as shown in Fig. 2.5(a). The
three coaxial input shafts are attached with permanent magnet arrays, and
three layers’ stator coils are evenly distributed around the rotors with the
total number of stator coils, N. = 18. The actuation of each input shaft
is implemented separately by the electromagnetic force generated between
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Mobile platform

Distal curved link

Proximal link

Third layer

Second layer

First layer
(a) Conceptual design (b) Cross-section view
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Cross-section view
% Attract of stator coil

(c) Actuating principle

Figure. 2.5. Spherical motion generators with multi-layer actuation
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Chapter 2. Integrated analytical modeling

its own attached rotor array and the stator coils located on the same layer
as displayed in Fig. 2.5(b). Compared with spherical actuators, the rotor is
divided into three separate parts, which is easy for further control.

Figure 2.5(c) shows each layer’s electromagnetic actuating principle. The
permanent magnet rotor array is consisting of four tile-shaped permanent
poles that are radial-symmetric distributed on cylindrical iron ring. The sta-
tor coils are constructed by six stator air-core windings that are mounted on
a cylindrical stator shell. The rotational motion of the shaft is achieved by the
repelling and attracting forces between the rotor and stator. This spherical
motion generator is also can be divided into two types of motion modes, the
spinning motion and the 3D general motion. In the spinning motion, all the
proximal links are driven by equal electromagnetic forces continuously, and
then the mobile platform will spin about its own axis. In the general spherical
motion, the proximal links are required to be actuated with different torques
through varying the currents of stator coils.

Magnetic field

distribution
Desired
trajectory of Desired input Desired
end-effector | 1verse joint angles Inverse |tordues Inverse Currents
kinematics dynamics torque model

Figure. 2.6. Integrated modeling system

The analytical models of the kinematics, dynamics and the torque are
implemented in Matlab/Simulink. The integrated modeling system is shown
as Fig. 2.6. The parameters of SMG are listed in Table 2.2. The mass and
inertia properties are given in Table 2.3.

24.1 Kinematic and dynamic simulation

The trajectory of the mobile platform in terms of X-Y-Z Euler angles is de-

signed as

T 5 5471 5w 4
= — = 0.1t = —
¢ % sinrtt,0 = 0.1t°, 0 180 360t

which is a spatial trajectory on a sphere as shown in Fig. 2.7. The results
from the kinematic and dynamic models are obtained. The joint angles and
angular velocities are shown in Figs. 2.8 and 2.9, respectively. The solved
joint torques are depicted in 2.10.

(2.63)
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2.4. Example

Table 2.2. Parameters of the SMG

Parameter Value
Arc angle of proximal curve links a1 7 rad
Arc angle of distal curve links a; % rad
Geometry of mobile platform p % rad
Radius of proximal curve links Ry 50 mm
Radius of distal curve links R, 42.5 mm
Inner radius of PM p;;, 24.5 mm
Outer radius of PM poy¢ 27.5 mm
Tilt angle of PM pole & % rad
Inner radius of stator coil p; 2 mm
Outer radius of stator coil p; 9 mm
height radius of stator coil 20 mm
Number of coils N, 18/3 layers
Number of coil turns N; 480

Table 2.3. Mass and inertia properties of the SMG

Parameter Mass Inertia property

(kg) [Lxx Iyy I;] (1074kg mz)

Mobile platform 0.2972 [2.8511 2.8511 2.8511]
Distal links 0.181 [6.0480 0.0749 3.1665]
Proximal links 0.47 [0.1727 0.1796 0.2682]
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Figure. 2.8. Desired joint angles

36



Desired torque 7 (Nm)

Joint velocity 8 (rad/s)

2.4. Example
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Figure. 2.9. Desired joint velocities
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Figure. 2.10. Desired torques
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2.4.2 Torque simulation

The desired torques are the outputs of the inverse dynamic model. The input
joint angles are obtained from the inverse kinematic model. By using the an-
alytical magnetic field and torque models, the required currents are obtained.
Only the currents of the stator coils in the first layer are displayed in Fig. 2.11.

0 . L T 1 T 1 1 1 A

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (s)

-2 1 1 1 1 1 1 1 1 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (s)

Figure. 2.11. Desired currents of the stator coils in the first layer

Above all, the systematic modeling of the electromagnetic driven spher-
ical motion generator is investigated. To generate a spherical trajectory at
the end-effector of the SMG, inverse kinematics and dynamics are utilized to
calculate the input joint angles and the actuated torques, and the results are
then applied in the analytical magnetic and torque models to solve the re-
quired input currents that will be used for further actuating the prototype of
the spherical motion generator system. The example of the multi-layer SMG
simulation evaluates the overall analytical models finally.

2.5 Summary
This chapter described the analytical methods to investigate the modeling of

the electromagnetic driven SMG. The kinematic model of spherical parallel
manipulators is analyzed and the Lagrange multiplier method is used for
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2.5. Summary

the dynamic modeling. The Maxwell equations that are the fundamental of
the magnetic field modeling are reviewed and analytical torque methods are
introduced. To evaluate the analytical methods that constitute the integrated
modeling system, an example of the electromagnetic driven SMG with multi-
layer actuations is proposed.
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Spherical motion generators are increasingly needed for constructing robots, manipulators and pointing
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parallel manipulator. The new motion generator integrates the electromagnetic actuator with the co-
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1. Introduction

A multi-degree-of-freedom spherical motion generator (SMG)
is a device of multi-degrees of pure rotations about their center of
rotation. SMGs can be applied in areas such as machine tools, solar
panels, orientating devices [1,2] and medical instruments [3].

SMGs can be implemented by two major approaches, namely,
spherical motors or spherical manipulators of serial and parallel
configurations. Spherical motors include the spherical ultrasonic
motors [4], spherical induction motors, and permanent magnet
spherical motors. Spherical ultrasonic motors adopted the ultra-
sonic vibration to drive the spherical motor. While the friction
drive principle leads to the advantages of the high responsive-
ness [5], it influences the durability and the positioning accuracy.
A small spherical stepping motor with two degrees of freedom was

* Corresponding author.
E-mail address: shb@mp.aau.dk (S. Bai).

https://doi.org/10.1016/j.robot.2018.04.006
0921-8890/© 2018 Elsevier B.V. All rights reserved.

reported in [6], for which the torque output is limited. A spherical
induction motor was optimized to obtain good performance in
terms of the torque and energetic efficiency for applications in
omnimobile robot [7]. SMGs in the form of permanent magnet
spherical motor (PMSM) are reported in [8,9]. Fig. 1 illustrates
a 3-DOF PMSM which mainly consists of a rotor constructed by
spherical permanent magnet array and a set of multi-layer stator
windings distributed in a spherical shape. PMSM offers advantages
of compact structure, high energy density and rapid response.
However, the maximum tilting angle of the PMSM is small, which
is +15° [10], due to the limitation of its mechanical structure. In
addition, the spherical motors are suffered from relatively heavy
mass and large size due to the use of the permanent magnet array
and the supporting structure [11]. The real-time control methods
for the PMSM are also a challenging problem because of its nonlin-
earities and uncertainties in the dynamic model.

SMG can also be implemented by spherical mechanisms actu-
ated by ordinary motors, either in serial or parallel configurations.
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Rotor

Supporting parts Rotor shaft

Base

Fig. 1. Permanent magnet spherical motor [12].

(b)

Fig. 2. Two spherical parallel manipulators with co-axial input shafts, (a) a design
with virtual co-axial shaft, namely, a circular ring with three slide units [16], (b) a
design with a common shaft for three revolute joints [17].

A SMG designed with serial links was reported in [13]. A two-DOF
gearless pich-roll wrist was designed utilizing differential motion
principle [14]. There are a number of SMGs designed as spherical
parallel manipulators. Compared with the serial ones, spherical
parallel manipulators (SPMs) offer greater rigidity, better accuracy,
larger load capacity and reduction in mass. A common type of SPMs
studied is the 3-RRR (Revolute-Revolute-Revolute joint) spherical
parallel manipulator, exampled by the Agile Eye [2]. A 3-RRR SPM
which can achieve unlimited rolling rotation was reported in [15].
The unlimited rolling rotation is feasible due to its design of co-
axis inputs. Two embodiments of the co-axis input SPM can be
found in [16,17], as shown in Fig. 2. Other types of SPMs include
three PRS (Prismatic-Revolute-Spherical joint) kinematic chains
in parallel [18] and the spherical double-triangle (DT) parallel
manipulator [19], among others.

Compared with the spherical motors such as PMSMs, the 3-RRR
SPM has a more light-weight mechanical structure and is more
flexible in configuration design. However, the SPMs are generally
driven by separated motors, which leads to complex transition
systems and additional heavy structures. Moreover, hysteresis er-
ror exists objectively due to the gear clearance. As time goes on,
the hysteresis error and noise will increase. As a result, precision
will become low. In addition to the inertia of gears, the nonlinear
friction and elastic deformation will also influence the dynamic
performance.

This work proposes a new design of an integrated spherical mo-
tion generator that integrates the spherical parallel manipulator

Mobile platform
Curved link

Housing

Stator coil

Slide unit
Circular guide

Fig. 3. A conceptual design of SMG.

with electromagnetic principle of the permanent magnet spherical
motor. The new design leads to a more compact and light-weight
structure with the advantages of no backlash, high stiffness and
low inertia.

The objective of this work is to develop the mechanical and elec-
tromagnetic models analytically for the newly designed SMG. This
paper is organized as follows. Section 2 describes the conceptual
design and working principle of the spherical motion generator.
Section 3 depicts inverse kinematics and dynamics of the SMG. The
analytical torque model is developed in Section 4, and the inverse
torque model and current optimization is demonstrated. Section 5
introduces the trajectory tracking control, utilizing the developed
dynamics and torque models. Simulation results are presented in
6. An embodiment is described in Section 7. Finally, the work is
concluded in Section 8.

2. Conceptual design of integrated electromagnetic driven SMG

The integrated SMG is shown in Fig. 3, which is built on a con-
ceptual design reported in [15]. The SMG consists of three curved
links connected to a mobile platform which outputs spherical mo-
tions. The slide units in the SMG are permanent magnets (PMs). The
stator coils are mounted on the housing. Under the electromag-
netic forces, the permanent magnets can slide along the circular
guide. Their motions are coupled to the mobile platform by curved
links, thus generating 3-DOF spherical rotations. In this design,
double-layer stator coils are distributed equally on the cylindrical
housing. Accordingly, every slide unit consists of two PM poles in
two layers, namely, a lower and an upper layer as shown in Fig. 4.
This guarantees a smooth motion with a limited number of stators.
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Fig. 4. Working principle of the SMG.

Through varying the current inputs of the double-layer stator coils,
every single slide unit can rotate independently around the circle.
3-DOF rotational motion within the workspace will be produced in
the end-effector due to slide units in different positions.

The SMG can operate with two motion modes, namely, a pure-
spinning mode and a general 3D motion mode. In the pure-
spinning mode, these three slide units are actuated with equal
torques continuously, thus the end-effector can spin about its own
axis. In the 3D motion mode, the slide units are driven by different
torques separately and relative motions between the slide units
will produce the 3D motion at the mobile platform.

Compared with PMSMs and SPMs, the new design brings some
new features as follows

o The new design integrates the parallel mechanism and the

motor in a more compact and flexible structure.

The rotor structure is much simpler and more light-weight.

The miniaturization of the manipulator can be realized.

e The SMG inherits the kinematic properties of 3-RRR SPM and
thus has a larger workspace than the PMSMs.

e The non-contact electromagnetic driven principle elimi-

nates the use of motors and gears, and leads to no backlash

and less mechanical wear.

As the SMG requires only two layers’ stators and three

pairs of permanent magnets, the material use is significantly

reduced, compared with the PMSMs.

3. SMG kinematics and dynamics
3.1. Inverse kinematics

The kinematics of the SMG is essentially identical to a co-axial
3-RRR SPM. A 3-RRR SPM is shown in Fig. 5. The SPM consists
of three revolute joints, whose axes are denoted by unit vectors
u;, v; and w;, i = 1, 2, 3. All links that are connected to the base
platform and to the mobile platform have identical dimensions of
a1 and a;, respectively. Moreover, 8 defines the geometry of the
regular pyramid of the mobile platform and y defines the geometry
of the regular pyramid of base platform. The SMG kinematics
pertains to a special case of general SPMs for which y = 0. For

given locations of the end-effector, the joint variables are found
by inverse kinematics. The method presented in [15] was adopted
for this purpose. The solution of the inverse kinematics can be
reviewed in the Appendix.

3.2. Singularity analysis and workspace

The singularities encountered in spherical parallel manipula-
tors can be classified into three types [20]. The manipulator’s
velocity equation is obtained as

A](d = A20 (])
where w and 0 are the angular velocity of the mobile platform and
the velocity of input joints. Moreover, A and A, are

(wy x vp)

(wy x vp)' (2)
(w3 x v3)"

A=

Ay =diag [(w x wi)-vi (1 xWy)-va (U3 xws3)-v3]  (3)

Singularities occur in configurations where either Ay or A; is sin-
gular.

The first kind of singularity is known to lie on the boundary of
the workspace and appears whenever det(A;) = 0. The conditions
of the occurrence of singularity satisfy the expression

(ll,‘XWi)‘V,‘=0, i=1,2,3 (4)

which states that the vectors u;, w;, and v; are coplanar. When y
equals to zero, the unit vector w; is coincident with z-axis which
is perpendicular to the base platform. As a result, the plane OA;B;
determined by u; and w; is orthogonal to xy-plane as shown in
Fig. 6. In terms of the condition of the first-type singularity, when
the plane OB;C; formed from vectors w; and v; is also orthogonal to
xy-plane, the first type of singularity occurs.

The second kind of singularity occurs when det(A;) = 0. By
definition, vector w; is not coincident with vector v;, the condition
will be satisfied when the three vectors (w; x v;, i = 1,2,3)
are coplanar. In this work, the parameters are designed as oy =
90°, 0 = 90° and B = 60°. Since wy, w, and w3 are coplanar
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Fig. 5. Kinematic model of SPM.
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Fig. 6. Singularity analysis of SMG.

at xy-plane with &y = 90°, the condition can be analyzed in two
cases. (1) The three planes defined by pairs of vectors (w;, v;), i =
1, 2, 3, respectively, are identical, that is, v, v, and vs are coplanar.
Nevertheless, the case would not occur under the condition of 8 =
60°. (2) The three planes intersect at a common shaft. If a; + 8 =
90° and the three links, A;B; (i = 1,2, 3), distribute uniformly
along z-axis, all three links, B;G; (i = 1, 2, 3), will be normal to
xy-plane simultaneously. Consequently, three planes intersect at
z-axis. However, for the set of SMG having o + 8 = 150° in
this work, the workspace of SMG is free of the second type of
singularities.

The third kind of singularity occurs when both matrices Aq
and A are singular simultaneously. This type of singularity is
associated with architecture parameters. As stated above, with
parameters selected for this design, the second type of singularities
is avoided, so does the third type of singularities.

As the first type of singularity appears at the boundary of the
workspace, the workspace of SMG can be obtained by combining
all the singularity surfaces of individual links. When the plane
of the link connected to the mobile platform is perpendicular to
xy-plane, the first-type singularity appears. In addition, with the
condition a7 = a; = 90°, the vector v; is parallel with z-axis, then

the end-effector of SMG reaches its maximum tilting angle 60°
which determined by § as shown in Fig. 6. As the proposed design
is free of the second-type singularity and allows an unlimited
rotation motion, the singularity-free workspace of the SMG is a
pointing cone of 120° opening with 360° full rotation. Compared
with the PMSMs whose maximum tilting angle is £18° [21], the
SMG increases the workspace with the maximum tilting angle
reaching to +60°.

3.3. Inverse dynamics

According to Lagrange equation, the dynamic equation of an
open-chain SPM can be expressed as

M(q)d + N(q, )4 + G(q) = T (5)
where ¢ = [q.] qu]T is the generalized coordinates of the
manipulator, g, = [61 6, 03]T is the vector of actuated joint
angles,and q. = [¢ 6 U]T is the vector of X-Y-Z Euler angles
of the mobile platform. M(q) is the inertial matrix; N(q, q) is the
Coriolis and centrifugal matrix; G(q) includes gravity terms and
other forces which act at the joints; T = [z," 03]T is the vector of
external torques and the vector 7, = [‘[1 17 r3]T characterizes
the actuator torques.

The closed-chain system can be viewed as the open-chain sys-
tem with the loop constraints. The kinematic constraints are con-

sidered independent of time and the kinematic constraint matrix
C(q) is expressed as

Clq)=[A: —A2] (6)

where & is the transformation matrix between the angular velocity
and angle rates. The relation between the angle rates of the actu-
ated joints and the mobile platform can be written as

9 .
qa_Tga:Sqe
e
o 7
9q. = W

where S = A, 'Aj & and W = [§7 E]T, E is the 3 x 3 identical
matrix.

The actuated torque 7, of the closed-chain system required to
generate the same motion can be calculated by

Wr=5"g, (8)
Substituting Eq. (5) into Eq. (8) yields
W (M(q)d +N(q, )4 + G(q)) = 'z, )
Making use of the kinematic constraints

¢~ Wa

a=e (10)
q=Wgq, + Wq,

the dynamic equation of an actuated closed-chain mechanism in
task space is obtained as follows:

M;Ge + N1ge + G, =S"z, (11)
where

M; = W' MW

N; = W MW + W' NW

G =W'G

The inverse dynamic model of SPM can be rewritten as

7o = ()T (MiGe + N1e + G1) (12)
where (ST)t = S(8TS)~! and satisfies S(S")* = E.
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Fig. 7. Rotor structure in the cylindrical coordinate system.

4. Inverse torque model

The inverse torque model of the SMG is to establish the re-
lation between the current outputs of the stator coils and the
required torque calculated in Eq. (12). The driving torque is based
on the solution to the magnetic field distribution of PM slide units.
When the magnetic flux density B produced by the slide units
is known, the torque can be obtained analytically according to
Lorentz force law. The magnetic charge model developed in [22] is
adopted first to analyze the spatial distribution of the magnetic flux
density.

4.1. 3D distribution of magnetic flux density

In this model, a permanent magnet which composes the rotor
slide unit in the SPM structure is considered as an equivalent
spatial distribution of “magnetic charges” that are used as a source
term in the magnetostatic field equations [23]. The complete so-
lution for the magnetic flux density of the rotor slide units can
be obtained by the superposition of the magnetic field distribu-
tion produced by every single permanent magnet. The permanent
magnets distribution of the rotor slider units in the cylindrical
coordinate system is shown in Fig. 7, where r = pe, + ¢e, + ze,
is the position vector of an observation point, r’ is the position
vector to each magnetic source point on the magnetic geometry
surfaces.

According to the charge model [22], the magnetic scalar po-
tential ¢, of one single permanent magnet can be formulated
as

1 Pm ’ 1 Om /
d — ds 13
¢m(r) = 4n/‘,\r7r’| U-'_471 s r—r| 13

where S is the surface of that bound V. Moreover, p, and o, are
magnetic volume and surface charge density, respectively, which
are defined as

(A/m?)
(Afm)
where V indicates differentiation with respect to the unprimed
variables. M is the magnetization vector and n is the outward

unit vector normal to S. Finally, the magnetic flux density at the
observation point outside the magnet is obtained

B(r) = Z—;/ pulONE =) 4y | o

r—r? 47

me—V-M

on=M-n (14)

on(r')(r—1')

g ds’  (15)

r—r

A generic magnet model is shown in Fig. 8, wherein p;;, and
pout 1S the inner and outer radius of the PM, respectively. It is

Fig. 8. Permanent magnet (PM) structure.

assumed that the PM pole is uniformly magnetized with the par-
allel magnetization vector M. Hence the magnetic volume charge
density is zero, that is, o, (r’) = 0. The magnetic flux density at the
observation point in the air outside the magnet can be rewritten as

on(r)r )
B(r) =~ yg T (16)

Ir—1r

The surface of the permanent magnet can be divided into six sub-
surfaces, each with its own unit vector as shown in Fig. 8. These
normal vectors are defined as ny; = +e,, N34 = Fey, N5 =
+e,. For a uniformly magnetized PM, the magnetization vector is
presented as M(r') = M - r, where M = 5em with the remanent
magnetization of the PM, Bye,. The corresponding magnetic surface
charge densities are given by

Omi2 =M -nyy ==+M
o
Om3a =M-nm34=-M- Sin(i) (17)
Omse =M-n56 =0

where « is the range of the tile angle defined in the xy-plane. The
resulting magnetic flux density on the surfaces of the permanent
magnet can be obtained in the cylindrical coordinate system in

Eq.(18).

ro [ Oma(r—r) .,

B, =
YT ), =P
_ MDM
/ / (P = pouin)ep + (¢ — ¢')ey +(z —2')e,
51 (0% + Douin — 20 Poutin COS(¢ — ¢') + (2 — 2/ 2 P12
X Poutinde’dz’
B Ko Om3a(r—1r) (18)
3.4 = T3 B
4 554 IT—T|
M
I/»n m( )
/ /”"“‘ (p—pey + (¢ —g12)ey +(z —2)e, do'dz
(02 + p'> = 2pp’ cOS(¢p — ¢p1.2) + (z — /)22
Bss = Mo Oms6(T — l')d -0

an Ji o Ir—rP?

The total magnetic flux density in the air gap, generated by
one single permanent magnet, is the summation of the individual
magnetic flux densities, hence

B(r)= ZB,- (19)
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4

(a) p-direction. (b) ¢-direction.

(c) z-direction.

Fig. 9. Force activated by three components of the flux density.

The magnetic field distribution produced by all separate slide units
can be calculated by the superposition of all the models of PM in
different positions.

4.2. Formulation of torque model
The torque can be obtained according to Lorentz Force Law
T=7/r><(]xB)dv (20)
v

where the negative sign indicates that the force imposed on the
rotor slide unit is the reaction force of the one exerted by the
magnetic field, and J represents the current density of the stator
coils, defined as

Al AN, -
I AS AS
where |; is the current passing through solid conductor of jth stator
coil, N; is the loop number of the stator coil, and Al is the current
that passes through the sectional area AS.

The direction of the force generated by each component of the
flux density can be determined as shown in Fig. 9. The differential
length dl of the wire is tangent to the cylindrical surface. P is a
plane tangential to the cylindrical surface. By and B, are vectors
on plane P, and B, is normal to plane P. Only B, can produce a
torque to change the rotor orientation, because the action lines of
magnetic forces generated by B, and B, pass through the central
axis z, which does not produce the rotational torque. The torque
model is only based on the radial component B,.

To simplify the computation of the torque output, the
rectangular-shape coil denoted by ABCD can be approximated by a
tile-shaped coil denoted by A'B'C’'D’ in the cylindrical coordinate
system, which has been reviewed in a spherical coordinate in
literature [24].

Fig. 10 shows the differential sectional area of dl which can be
computed by ds = pdpd¢. The current passing through this sec-
tion area is J pdpd¢, where J is the current density in the sectional
area of the coil. According to Lorentz force law, the differential
force on the rotor slide unit caused by the interaction between
magnetic field of the rotor and the current-carrying conductor Idl
is

(21)

dF = —Idl x B,(p, ¢,z)e, = —]pdpdedl x B,(p, ¢, 2)e, (22)

(a) Sectional view.

ds=pdpdd

B Al

B - ._,-:‘..__. ...-‘. - d ":*_ A }) ‘

ey
A L

—c D

'
'
'
P1 f !
'
i

(b) Zoomed view of the cross-section of
a single coil.

Fig. 10. Diagram of coil approximation.

According to Eq. (20), the torque generated by one single coil is
the integration of the differential torque within the entire volume
covered by the coil,

P2 [Pout
o=t [ [ e, 15,006,200, x dtnpaots @3
P1 in C

where jc denotes the line integral of the differential torque along
a rectangular loop of the winding that has a section area of ds.
Moreover, ¢i, and ¢, are two angles defining the shape of the
cross-section, as shown in Fig. 10. The differential length dl which
is perpendicular to e, leads to the relationship, e, x e, x dl =
—dl = dz. As aresult, Eq. (23) becomes

P2 L dout
=t [ [ o800 0. 211 ptpao (24)
P in C

The torque 7;; exerted on the ith slide unit by the jth coil can be
rewritten as

Tij = x(¢u, Z))Ij (25)

where Mg, 2) = = [ [/ { [, pBo(p., b1, 2)dz} pdpdg.

In this model, stator coils are wound on non-ferromagnetic
cores, hence the torque output is proportional to the current out-
put. Therefore, the actuated torque generated by multiple coils can
be obtained by using the superposition of the torque generated by

every single coil, that is,
7, =AM (26)

where I = [11 I, ln]T is the input current vector of the
stator coils, and A is the complete torque matrix, derived by

AMé11,21) M2, 22) (1,0, 2n)
A= |M21,21) M2, 22) A0, Zn) (27)
A¢s1,21)  Ms2,22) (@30, Zn)
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Fig. 11. Computed torque control.
By introducing a weightings matrix R, the inverse torque model can Table 1
be solved by [25] Parameters of the SMG.
Parameter Value
~13 T p—-13T)-1
I=R"A(ARL) "1 (28) Arc angle of proximal curve links o 90°
. - . . . . Arc angle of distal curve links o; 90°
where 7, is the driving torque obtained in the dynamic model. R is Geomegn.y of mobile platform ﬂz 60°
a positive definite matrix in the form of Radius of mid-curve R, 100 mm
Inner radius of PM pj, 85 mm
R = diag [Rl Ry ... Rn] (29) Outer radius of PM pgy 115 mm
Inner radius of stator coil p; 116 mm
where Ry, Ry, ..., R, are positive weightings determined by coil’s Outer radius of stator coil p, 130 mm
resistance. When the calculated currents are within the current Lilt aggle ?ff’!\l/l pole « ‘71"8
H H : H H umber ol colls n
limits, the results could be applied to the coils directly, and the Number of coil turns N, 1600

power consumption of the system is minimized.

If the current input exceeds its saturate current, the desired
torque could not be reached. In this situation, the desired torque
can be calculated by using the principle of minimizing the energy
consumption with the compensation of other coils by current
redistribution. This can be formulated as follows:

Minimize w = I'RI (30)
Subject to T, = Al (31)
l S ll'l'léIX (32)
lmin = I (33)

So far, we have developed all models needed.
5. Task-space trajectory tracking control

The analytical model allows us to develop an effective control
method for motion control, for example, trajectory tracking. In this
section, we include a trajectory control, in which the model is used
in a control method, namely, computed torque control.

The computed torque control has a good trajectory tracking
ability and can overcome the external disturbance to achieve an
ideal control performance [26], compared with other control algo-
rithms like PID [27] and augmented PD control as shown in Fig. 11.
The control law of the computed torque method is

7o = (8T)"(Mi(Gea — Ko€ — K@) + Nige + G1) (34)

where e = q. — qeq, and K, and K, are constant gain matrices.
When Eq. (34) is substituted into Eq. (12), the error dynamics can
be written as

(S")YM, (€ + K& + Kpe) = 0 (35)
Since M; is always positive definite, we have
é+K,e+Ke=0 (36)

This is a linear differential equation which governs trajectory track-
ing control.

Table 2
Mass and inertia properties of the SMG.

Parameter Mass Inertia property
(kg) (s yy 2] (10~ kg m?)

Mobile platform 0.397 [3.85113.85113.8511]
Curve link 0.361 [6.0480 0.1449 6.1665]
Sliding unit 0.94 [0.3527 0.3496 0.5182]

Eq. (34) is called the computed torque control law, which can
be written as two components,

7o = [(S") (M1eq + N1@e + G1)] + [(ST) My (—K, & — Kpe)]
= [tg] + [Tp]

The term zj is the feedforward component, which provides the
amount of torque necessary to drive the system along its nominal
path. The term tp, is the feedback component, which provides
correction torques to reduce any errors in the trajectory of the ma-
nipulator. The computed torque control law converts a nonlinear
dynamical system into a linear one, which is a general technique
known as feedback linearization, where a nonlinear system is
rendered linear via full-state nonlinear feedback.

(37)

6. Simulations

In this section, the analytical models of the kinematics, dynam-
ics and the torque are simulated and compared with the numerical
results, and the computed torque method is validated. The param-
eters of SMG for the simulations are shown in Table 1.

6.1. Simulation of inverse kinematics and dynamics

Based on the inverse kinematics and dynamics, a model is built
toillustrate the motion with Matlab/Simulink. The mass and inertia
properties are given in Table 2.
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Fig. 13. Rotations of three slide units.

The trajectory of the mobile platform in terms of X-Y-Z Euler
angles is designed as

¢ = 2 sin(xt),0 = 0.2t,0 = 0.37 + —¢° (38)
T 18 T m T 72

all with unit of rad. The desired trajectory of the mobile platform
is shown in Fig. 12. The moment of inertia of the mobile plat-
form takes value of [3.885, 3.885, 7.668] (10~* kg m?) as adopted
from [16], which is about one order lower in magnitude, compared
with the moment of inertia of the rotor in PMSM [10] in Fig. 1,
[2.219, 2.176, 2.256] (10~ kg m?). Furthermore, compared with
the SPM with co-axial shafts driven by the three attached motors
in Fig. 2(a), the SMG can generate commensurate torques using the
same parameters of the kinematic chains in Table 1 and the same
mass and inertia properties in Table 2.

The simulation results are shown in Figs. 13 and 14. For com-
parison purpose, an ADAMS model was also developed, with the

2 T T T T -
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7,-desired

151 . B
7y-desired
- - .7,-Adams

Torque 7 [Nm]

15 . . . . .
0 0.5 1 15 2 25 3
Time[s]
Fig. 14. Driving torques of three PM slide units.
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Fig. 15. Analytical results of 3D radial magnetic field distribution B, at p = 116 mm.
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Fig. 16. T, generated by one slide unit and two coils.

same set of parameters of the system and trajectory. The results
from ADAMS model are displayed in Figs. 13 and 14 as well. It is
seen that these two models agree well with each other.

6.2. Simulation of torque model

The magnetic flux density B can be analyzed in three scalar
components in the cylindrical coordinate system, B,, B, and B;.
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The torque that produces the rotation movement is only dependent
on B,. Thus, only the radial magnetic field distribution of one slide
unit which is positioned along the y-axis is shown in Fig. 15.

Fig. 15 shows the 3D distribution of the radial component of
the flux density calculated by the analytical models. It can be seen
that the peak values of B, appear at the centerline of every PM. The
analytical model was validated with a FEM software package from
Ansoft, Maxwell 15, and the error is found about 5.62%, which is
acceptable [28].

Fig. 16 shows the torque calculated from Eq. (24). It shows the
torques produced by one slide unit with one coil and two coils,
respectively. There are three sets of data obtained. They are torques
produced by energizing Coil 1 in current output 3 A alone, torque
by Coil 25 in current output —2 A alone, and torque by Coil 1
and Coil 25 simultaneously. It can be seen from the figure that

the analytical torque model fits the Maxwell results well. It is
noted that the superposition principle is used to obtain the torque
generated by two individual coils in the analytical torque model.
The result fits well with the torque generated by energizing two
coils simultaneously in the Maxwell model.

From the above analysis, the maximum output torque of the
SMG generated by a single coil can reach about 0.8 N m with
maximum input current of 3 A. With the similar size dimensions
and the same input current, the proposed SMG can generate a
larger output torque compared with the PMSM whose maximum
torque generated by a single coil is about 0.3 N m in [11]. The
output torque of the SPMs actuated by separated motors mainly
depends on the size of the conventional motors used, which can
vary significantly.

6.3. Inverse torque model

The simulation examples using the proposed current optimal
algorithm are included and the optimization problem is solved
with the toolbox Yalmip [29]. As all the coils have the same prop-
erty and are evenly spaced, the positive weighting R is normalized
to 1. The desired torque is the output of the inverse dynamic model.
The orientations of three slide units are their joint angles from
the inverse kinematic model. The simulation results are shown in
Fig. 17. Only twelve input currents are presented. The blue line
represents the current inputs without current optimization, and
the red line represents the optimized current inputs. It can be seen
from Fig. 17 that the difference between the redistributed currents
and the original currents is noticeable.

6.4. Trajectory tracking control

We finally include an example of trajectory control by the
computed torque method (CTM) to illustrate the application of
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Fig. 19. Simulation results of CTM.

(a) Overall design.

(b) Internal view with housing removed.

Fig. 20. An embodiment of SMG.

the developed kinematics and dynamics models. A co-simulation
Matlab Simulink/ADAMS model is developed shown as Fig. 18. The
simplified mechanical structure is developed in Solidworks 3D,
and then imported to the ADAMS model. The desired trajectory is
defined in Simulink, the controlled torques from the control system
are treated as the inputs of the ADAMS model and the trajectory of
the mobile platform is then used as the feedback for the control.
By using the co-simulation techniques efficiently [30], the whole
virtual prototype is tested.

The simulation results of CTM are compared with the desired
and CTM results in Fig. 19(a)-(c), and the tracking errors of the CTM
results are shown in Fig. 19(d). The maximum state error of CTM is
0.65%, which is nearly equal to zero.

7. Design of SMG

A design of the SMG is depicted in Fig. 20. In the embodiment,
three slide units are connected to the circular guide of the stator
by using three identical links. The circular guide is constructed by
two sets of HCR guides from THK, which can obtain the slide units’
circular motion with high precision. To keep the balance of the
rotor slide unit, a symmetric layout is adopted.

The control system consists of a PC, a digital signal processor
(DSP), a field programmable gate array (FPGA), a current output
device, a current output device, a current sampling device and
an orientation measurement module, which is shown in Fig. 21.
The DSP is responsible for task scheduling, algorithm computing
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and communicating with the host computer. The FPGA performs
the task of handing the data obtained from three uniformed ro-
tary encoders ECI 119 from Heidenhain and driving the AD5370
and ADS8364 chips. The AD5370 is a D/A chip containing digital-
to-analog converts with 40 channels and 16-bit resolution. The
OPA549 (a power amplifier) is chosen to achieve V/I conversion,
which can convert the analog voltage signals from AD5370 into
current signal. An A/D chip ADS8364 offers 6-channel output with
a 16-bit A/D converting resolution. The whole system of the pro-
totype and control system is being constructed for further experi-
ments.

8. Conclusion

This paper presents a new design of an integrated SMG driven
by electromagnetics. The new design features with a simple struc-
ture and low inertia. In addition, the SMG uses only two layers
of the stator coils, which makes the structure more compact and
light-weight. In this work, the inverse kinematics and dynamics
are studied. The model of output torque is developed by analytical
model based on the calculated 3D magnetic field distribution of the
rotor. The current inputs are optimized based on the principle of
the energy minimization. A dynamic control algorithm, computed
torque method, is used for the trajectory tracking in task space. Fi-
nally, simulations are built to show the validity of all the developed
models.

A major contribution of the work is the development of an
integrated model of the new SMG, which combines the kinematics
of the SPM and the electromagnetic driven principle of the PMSM.
The analytical models allow us for more comprehensive design
analysis and motion control development. The included trajectory
tracking by computed torque method illustrated the application of
the model developed.

While the new SMG brings the above advantageous features
over PMSM and SPMs, it also shows some limitations that could be
improved. First, though the singularity-free workspace of the SMG
is within a cone of 120° theoretically, some mechanical constraints
will influence the real workspace. Second, the resolution of the
electromagnetic actuation is decided by the distribution of the

stator coils. The resolution will be improved with increasing the
number of stator coils. In addition, the output torque of the new
SMG is determined by the electromagnetic force and the generator
dimension. Hence, optimum design for the SMG, including both
the mechanical parameters and the design of the PM and stator
coils, could be considered in the future. Currently, a prototype is
being developed. Furthermore testing will be conducted upon the
available prototype.
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Appendix

The orientation of the mobile platform is described with the
orientation representation of X-Y-Z Euler Angles (¢ — 6 — o),
for which the rotation matrix Q is defined by Eq. (A.1), where
s(-) = sin(-) and c(-) = cos(-).

c(0)c(o) —c(0)s(o) s(6)
Q= {C(@S(o) +5(@)s(0)c(o)  c(P)c(o) —s(¢)s(0)s(o) —S(¢)C(9):|
s(@)s(a) — c(@)s(O)c(o)  s(p)c(a) + c(P)s(B)s(o)  c(¢)e(0)
(A1)
Unit vector u; is derived as
u=[0 0 -1 (A2)

The unit vector w; of the axis of the intermediate revolute joint of
the ith leg is expressed as

(cmisO; — snic6)son
w; = | (smis6; + cnicO;)soq

—CUq

(A3)

where n; = 2(i — 1)7/3,i = 1,2, 3. The unit vector v; of the
top revolute joint is a function of the orientation of the mobile
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platform, which is described as

v; = Qv

where v is the unit vector for the axis of the top revolute joint of
the ith leg when the mobile platform is in its reference orientation,
which is given as

cmisp Bl

Letw = [0y @y ] be the angular velocity of the mobile plat-
form, then the joint velocity @ = [6; 6, 65]" can be obtained

(A4)

v = [—smisB (A5)

by
with Ay, = [31 a as T, a = w x v;and A, =

diag [b; by b3],b; = (w; x w;) - v;, i = 1,2, 3. The Jacobian
is finally obtained as
L=A"A%=0 L kI

. WX
withJ; = W

(A7)
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As the demands for multi-degree-of-freedom actuators increase, novel mechanical-electrical integrated designs
of motion generator are required for robotic applications. In this work, a spherical motion generator integrating
electromagnetic actuators with a 3-RRR spherical parallel manipulator is introduced. The design allows to
generate 3-DOF rotations in a compact structure. In this paper, a complete dynamic model in the task space is
built for the integrated system, with consideration of uncertainties such as modeling errors and external dis-
turbances. Addressing the uncertainties in the model, a robust adaptive switching learning control algorithm is

developed, which can improve its trajectory tracking performance. The stability of the proposed method is
analyzed by using Lyapunov method. A co-simulation platform by Matlab/Simulink and ADAMS was developed,
with simulations conducted. The results show that the proposed control algorithm has better trajectory tracking
performance and robustness to uncertainties.

1. Introduction

A spherical motion generator (SMG) is a type of devices which can
produce 3-degree-of-freedom (3-DOF) rotational motions. The SMGs
have potential applications in machine tools, solar panels, orientating
devices [1,2] and medical instruments [3].

Up to date, SMGs with various structures and working principles
have been investigated. One type of the SMG is the 3-DOF permanent
magnet spherical motor (PMSM) [4,5]. A PMSM consists of a rotor
constructed by spherical permanent magnet array and a set of stator
windings distributed uniformly in a spherical shape, which offers ad-
vantages of compact structure, high energy density and rapid response
[6,7]. Another type of the SMG is in the form of spherical parallel
manipulators (SPM) which are actuated by separate motors. SPMs have
many advantages in terms of accuracy, high stiffness and large load
capacity [8]. A well-known SPM is the Agile Eye developed by Gosselin
et. which is applied for camera orienting [9]. SPMs which can achieve
unlimited rolling rotation were designed in [8,10]. Various problems of
the SPM have been studied including singularity analysis [11], dex-
terity evaluation [12] and design optimization [13,14]. In a recent
work, an electromagnetic direct driven SMG was designed [15,16],
which integrates the parallel mechanism and electromagnetic actuation
in a more compact and simple structure. The integrated design takes
both advantages of the electromagnetic driving principle of PMSMs and

* Corresponding author.
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the parallel kinematics of SPM. In addition, the non-contact electro-
magnetic driven principle eliminates the use of motors and gears, which
leads to no backlash and less mechanical wear. The mechanical and
electromagnetic models have been developed [16]. The dynamic
modeling and trajectory tracking control of the integrated SMG is the
focus of this work.

In trajectory tracking, due to the uncertainties and nonlinear beha-
vior of the dynamic system, accurate tracking is a challenging task to
implement. Many control methods have been developed in this regard.
One of the most popular controllers is the classic proportional-derivative
(PD) controller. PD control scheme can be used for trajectory tracking
with the asymptotic stability with appropriate control gains [17]. How-
ever, PD control scheme is not satisfactory in high accuracy demanded
applications without the compensation for the modeling uncertainties
and external disturbances in the dynamics, and it cannot guarantee the
stability at a high speed [18]. To linearize and decouple the strongly
nonlinear coupling manipulator system, a model-based control scheme,
namely, computed torque method (CTM), can be employed [19,20].
Nonetheless, the CTM is prone to external disturbance and cannot obtain
good trajectory tracking performance [21]. In recent years, intelligent
control schemes such as neural networks control, adaptive control, ro-
bust control [22,23] and etc. are proposed as well. The neural networks
control and adaptive control can cope with the parameter uncertainties
[24,25], however, they both require extensive computation and have
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limitations to real-time control applications. Iterative learning control
(ILC) is applied for robot manipulators of repetitive tasks due to its
simplicity and robustness to modeling uncertainties [26,27]. Hybrid
control schemes which merge ILC with other control schemes are studied
[28,29]. One of hybrid controllers is the adaptive switching learning PD
(ASL-PD) controller which takes advantages of combined control
methods [30]. In this method, a PD control law plus a feedforward
learning control law with the input torque from the previous iteration is
used to compensate for modeling errors and repetitive disturbances.
Furthermore, the gains in the PD feedback law are adapted using the
switching control technique to ensure the fast convergence. In [31], this
method was applied to the control of a spherical motor to deal with
random and nonrepetitive noise.

The objective of this work is to develop a high-accuracy trajectory
tracking control scheme for the novel electromagnetic driven SMG which
is able to compensate for model uncertainties and external disturbances.
The dynamic model of SMG is established in task space with modeling
errors and disturbances considered. Based on the dynamic model, a ro-
bust adaptive switching learning PD (RASL-PD) control algorithm is
proposed. The control method combines ASL-PD controller with a robust
term to decouple the nonlinear dynamic model of SMG and to com-
pensate for various modeling uncertainties and external disturbances in
real time. An accurate trajectory tracking can thus be achieved.

The rest of paper is organized as follows. Section 2 describes the
mechanical structure and working principle of the spherical motion
generator. Section 3 depicts dynamic model of the SMG in task space.
Section 4 introduces the proposed trajectory tracking control, RASL-PD
algorithm, in task space and analyzes its stability based on Lyapunov’s
method. Co-simulations built in Matlab/Simulink and ADAMS are
conducted and the trajectory tracking performances are discussed in
Section 5. Finally, conclusions are made in Section 6.

2. Mechanical structure and working principle

An embodiment of the integrated SMG is depicted in Fig. 1. The
SMG is composed of two parts, a spherical parallel manipulator (SPM)
and an electromagnetic driver. The SPM of the SMG is built on a con-
ceptual design in [14]. As shown in Fig. 2, the SMG is made of three
identical serial chains connecting the mobile platform to the fixed base
circular guide. Each leg is composed of one curve link and a sliding unit
which can rotate independently around the circular guide. All the joints
between the links are revolute, and all the axes of the revolute joints
intersect at a center point. The electromagnetic driven part consists of
permanent magnet rotors and a stator. The rotor structure is con-
structed by three sliding units. Fig. 3 shows the construction of a sliding
unit. Each sliding unit consists of two PM poles in two layers, namely, a
lower and an upper layer. The two PM poles are of parallel magneti-
zation. In Fig. 3, the blue arrow presents the magnetization direction of
the upper PM, and the red arrow presents the magnetization direction
of the lower PM. The PM poles are set in the rotor shell which can
smoothly move around circular guide with the rotation center O
through ceramic bearings. The circular guide is constructed by two sets
of HCR guides from THK, which can also guarantee that the sliding
units’ high-precise rotation. There are 48 coils distributed in two layers
symmetrically about the equatorial plane of the stator.

Fig. 4 shows the working principle of SMG. When the currents of the
stator coils are activated, the three sliding units will be driven by the
electromagnetic force between the PM poles and stator coils to realize
different spherical motion at the end-effector. When all the sliding units
are actuated with equal torques continuously,’ the sliding units can

! The sliding unit is a spherical prismatic joint which is a special form of
revolute joint with rotation center at the sphere center, analog to the planar
prismatic joint, which can be considered as a special form of revolute joint with
rotation center at the infinity [32]. Thus torque can be applied.
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(a) Overall design

(b) Internal view with housing removed

Fig. 1. Embodiment of SMG.
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Fig. 2. Conceptual model of SMG.
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Fig. 3. Construction of the sliding unit.
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Fig. 4. Working principle of integrated electromagnetic driven SMG.

move coherently and the end-effector can spin about its own axis. Al-
ternatively, the sliding units can be driven with different torques, the
SMG will produce 3D motion at the end-effector.
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Fig. 5. Kinematic model of SPM.

3. SMG kinematics and dynamics
3.1. Inverse kinematics

The kinematics of SMG can be modeled as a 3-RRR SPM with coaxial
shafts. The SPM has three revolute joints whose axes are denoted by
unit vectors u;, v; and wy, i = 1, 2, 3. All three links that are connected
to the base platform and mobile platform have identical dimensions of
a; and a,, respectively. Furthermore, 8 defines the geometry of the
regular pyramid of the mobile platform and y defines the geometry of
the regular pyramid of base platform. A general spherical parallel ma-
nipulator is shown in Fig. 5. The SMG kinematics pertains to a special
case of general SPMs for which y = 0.

The kinematic model has been documented in [16], therefore, the
details will not be repeated. In this work, we define thatq = [q] q]"
is the generalized coordinates of the manipulator, with
q,=[61 6, 6;]" being the vector of actuated joint angles, and
q,=[¢ 6 o] being the vector of X-Y-Z Euler angles of the mobile
platform. Let w = [wy w, w,|T denote the angular velocity of the
mobile platform, the relationship between the angular velocity w and
input joint velocity g, = [6; 6, 6;]" can be stated as

B4, = Aw )]
with

(wy x vy
A=|(w,xw)

(ws X v3)f )
B = diag{(w, X w))-vy, (W, X Wp)-vy, (U3 X W3)-v3} 3)

where matrix A is the forward Jacobian matrix of the manipulator, and
B is the inverse Jacobian matrix. In addition, the transformation matrix
between the angular velocity w and the angle rates of mobile platform
q,=[¢ & o' can be described as

@ =®q, (4)
with

10 5(6)
®=(0 c(@) —s@c®

0 s(@) c(@e®)

and s(-) = sin(:) and c(-) = cos(-). If B is nonsingular, the kinematic
Jacobian matrix J is obtained as

J =B'A® (5)
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The velocity relations of the manipulator can be obtained with the help
of the inverse Jacobian matrix,
Jq,

q, Jq, )
ol =177 =sq,
|:qe:| [ qe :| q

where S = [JT I]7, I is the 3 X 3 identity matrix.

q,

q
(6)

3.2. Dynamic model in task space

The mechanical structure of a SMG is shown in Fig. 2. The rotation
is generated by the electromagnetic forces between the coils and the PM
poles. By varying the current inputs of the stator coils, the desired 3-
DOF motion can be achieved within the workspace.

The dynamic model of the SMG with constraints can be obtained by
Lagrange equations as follows

M(@d + N(q, 94+ Gi(q, ) + CGA=7

Ga=o0 ”
where M,(q) is the inertial matrix of the system; N;(q, q) is the cen-
tripetal-Coriolis matrix; G,(q, q) is the gravity term.C, = [B  — A®]is
the constraint Jacobian and 4 =[4, 4 A4]" is a vector of Lagrange
multipliers. 7 = [z]  05]" are the generalized forces of the SMG, and the
vector 7, = [ 7 w]" presents the input actuator torques.

In general, the motion of the SMG is specified with reference to the
end-effector, namely, the trajectory of q.. Therefore, it is better to de-
rive the control algorithm directly in the task space than the joint space.
The dynamic model established in task space can be rewritten as fol-
lowing

M(9)§, + N(q, 9)q, + G(q, @) = 7 (8)
where
M(g = I (@S"(@M(@)S(q)
N(g, 9 = F(@S"(@Ni(q, PS(@ + Mi(@)$(q))
G(q, @) = I (@S"G(q, @)
M(q) is the inertial matrix in task space; N(q, q) is the centripetal-

Coriolis matrix, and G(q, q) is the gravity term in task space. It can be
seen that the dynamic model contains nonlinear terms. Furthermore,
modeling errors cannot be avoided during the dynamic modeling pro-
cess. Considering the effects of the dynamic modeling uncertainties, the
dynamic model in task space is rewritten as

A A A

M(Q)4, + N(q, 99, + G(q, @) = % — 71 — a2 ©)
where IOI(q), 1/\\I(q, q) and é(q, q) are the actual inertial matrix, cen-
tripetal-Coriolis matrix and gravity term, respectively, which are ex-
pressed as

M(q) = M(q) + AM(q)
N(g, §) = N(q, §) + AN(q, @)
G(q, @) = G(q, @) + AG(q, @)

AM(q), AN(q, q) and AG(q, q) are the modeling errors, 74 is the re-
petitive disturbance and 7, represents the nonrepetitive disturbance.
We define

n(q, §, §) = AM(Q)§, + AN(q, 4)q, + AG(q, @)
Eq. (9) becomes
Td2

M(q)§, + N(q, 9)q, + G(q, ) + n(q, 9, §) =74 — 71 — (10)
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4. Robust adaptive switching learning PD algorithm
4.1. Controller design
The dynamic equation in Eq. (10) has the following properties

which can be exploited to design the controller in this section:

Property 1. The inertial matrix M(q) is symmetric, bounded and positive
definite.

Property 2. M(q) — 2N(q, q) is a skew symmetric matrix. Therefore,
x'(M(q) — 2N(q, q))x = 0 holds for any n-dimensional nonzero vector X.

Following assumptions are made:

Assumption 1. The given desired trajectory qq(t) has the third-order
continuity for t € [0, t].

Assumption 2. The initial conditions

4,(0) = q,4(0).

Without losing of generality, we consider the controller processes
the trajectory tracking in its k™ iteration. We linearize the system
Eq. (10) along the desired trajectory (q,q(t), 4,4(t), G,4(t)) and obtain

are q,(0) = q,4(0) and

M(0)&x(r) + (N(2) + Ny(£))é(t) + F(r)ek(r) + ¥ (1)

=H(t) — 75(0) + T (1) + 75(0) + n(D) 11

where k denotes the iteration number, e*(¢) is the position error, &%) is
the velocity error and

M(t) = M(qu(t)
N(@®) = N(gqy(0), 441)
Ni(®) = :_(ilqu(l),%(l)qed(t)"':_‘ilqd(‘l‘ld(‘)
F(t) = %|qd<r>iim(f)+%lqquu)qed(ﬂ

+ a—.G laa(.aq(0

aq,

H(t) = M(){,(t) + N(0q,) + G(gyt), q,0)
n(t) = n(qy®), 4,0, G,(0))
e(0) = q,0 - af®
ek(t) = q,(0) — a5

The term W(£) consists the higher order terms & (), ek(¢), eX(t). For the
k™ and (k + 1) iterations, Eq. (11) can be rewritten as follows, re-
spectively:

M(0)&x(t) + (N(2) + Ny(£))ék(t) + F(r)ek(r) + wk(r)

=H(t) — 75(0) + 10 (0) + 7, (1) + n(b) 12
M(0)&k+1(t) + (N(8) + Ni(£))&k+1(2) + F(£)ek1(r) + Wr+1(r)
=H() — 770 + () + 7570 + n() 13)

To find a control law for the nonlinear SMG system with un-
certainties, we construct the robust adaptive switching learning PD
algorithm as follows:

() = tf + of + i 14)
with
f = Khek(t) + Kke (1)

7f = fsen(@y*HD

where r}‘ is the PD feedback control term, z} is the robust control term
and 757! is the feedforward control term which satisfies the condition
k -
7g (Dlk=—1 = 0.
In Eq. (15), matrices K’; and K& are the control gains of k™ iteration
which are updated by

(15)
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k=1,2,..

k 0
{Kp = BUOKY N

K§ = B)KG (16)
where B(k) is the gain switching factor which is a function of the
iteration number, satisfying the conditions gB(k + 1) > B(k) and
Bk) > 1 for k=1, 2, ..,N. We define that K(;, and K are the initial
proportional and derivative control gain matrices which are both di-
agonal positive definite. Let K = AKY for the initial iteration, y*(t) is
defined as

yh(t) = ek(t) + Aek(r) a7z

where A is the PD control gain. Defining Ay* = y**! — y* and
Aek = ekt1 — ek, Eq. (17) becomes

Ay* = AéF + AdeF (18)

4.2. Convergence analysis

The convergence property of the tracking error with the proposed
controller is guaranteed as proved presently.

Proposition 1. Suppose the SMG in Eq. (11) satisfies Properties 1, 2 and
Assumptions 1, 2. Consider the SMG with repetitive tasks under the
controller (Eq. (14)) and the gain switching rule (Eq. (16)). Then for all
te [0, g, the following should hold g*(t) ‘=~ q,(t) and 4*(6) =" q,(0).

If the controller gains are selected properly, the following re-
lationships hold:

Amin(Kg + 2N; — 2MA) =, > 0 (19)
Amin(KJ + 2N + 2F/A = 2Ni/A) = L, > 0 (20)
IF/A = (N + Ny = AM) |20 < b (21)
f=1ld =0 (22)

where Adt = d¥*! — d¥, d* = 7§, — WK, Apin(+) is the minimum eigen-
value of matrix (-), and ||(-)|| is the Euclidean norm.

It is noted that the inertia matrix M(q), centripetal-Coriolis matrix
N(q, q), gravity matrix G(q, q), matrix N;(t) and F(t) are all bounded,
and there is no conflict among the conditions in Egs. (19)-(21). Thus,
the control parameters in K and f can be easily chosen to satisfy these
conditions.

Define a Lyapunov function as
Vi= [ erry )Ry du > 0 @3)
where p is a positive constant. It can be shown that V! < V¥ in
Eq. (23), as derived in Appendix A. Because K} is a positive definite
matrix, when k — 0, yk — 0. ek(t) and é(t) are two independent vari-
ables, and A is a positive constant. Thus, we can obtain

lime*(r) = 0, limé*(t) = 0,V t € [0, t7]
k—oo k—oo

(24)
Finally, for t€ [0, t;] the following conclusion holds
k—oo
d¢® = q,0
k— o0
4O = 40 (25)

It can be seen that as the number of iterations approaches infinity, the
robust ASL-PD control method can guarantee that the tracking errors
converge to zero.

As a matter of fact, the RASL-PD controller can converge to a very
small error just in a few iterations. This can be observed from the si-
mulations in the following section.
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Table 1

Dimensions of the SMG.
Parameter Value
Link dimension a; Z rad
Link dimension a, % rad
Geometry of mobile platform f g rad
Radius of mid-curve R, 100 mm

5. Co-simulations

In this section, a co-simulation platform is implemented by Matlab/
Simulink and ADAMS.

5.1. Model implementation

The co-simulation platform of SMG can be realized by introducing
Simulink module into the virtual ADAMS prototype in virtue of

Robotics and Computer Integrated Manufacturing 59 (2019) 201-212

Table 2
Mass and inertia properties of the SMG.

Parameter Mass Inertia property

(kg) [Tex Iyy Iz] (10kg m?)
Mobile platform 0.3972 [3.8511 3.8511 3.8511]
Curve link 0.361 [6.0480 0.1449 6.1665]
Sliding unit 0.94 [0.3527 0.3496 0.5182]

ADAMS/Controls module. The simplified components of SPM are first
built in Solidworks 3D, and the dimensions are listed in Table 1. By
importing the Solidworks files into ADAMS/View and specifying the
connectors of various types, the virtual mechanical prototype is then
established as shown in Fig. 6(a). The mass and inertial properties are
specified in Table 2.

By defining the inputs and outputs of SPM in ADAMS, the variables
of SMG can be transfered to control process by ADAMS/Control
module. The calculated torques from the controller are the inputs of the
ADAMS model, and the position and velocity outputs of ADAMS model

(a) ADAMS model

Torque_1

Torque_2

[

Torque_3

ADAMS_tout

UTTo Workspace

ADAMS Plant

ADAMS_yout

Y To Workspace

c

TTo Workspace

o Positon_phi
e Positon_Theta
@ Positon_Sigma
@ Velocity_Phi
e Velocity_Theta
° Velocity_Sigma

(b) Specification of Adams_sub

Input RASL_PD_Ctl

[t teration_num]

Control model

T0 " control_Torque

Actual_ge

Adams_sub

(c) Simulink model

Fig. 6. Block diagram of co-simulation platform by Matlab/Simulink and ADAMS.
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Fig. 7. Trajectory tracking with RASL-PD control at 4" iteration.
are the actual motion information used as the feedback for the control,

which is exported in block form of Simulink shown in the block
adams_sub in Fig. 6(b). The desired trajectory of SMG and the proposed

tracking error (rad)

5
4
b
. ®)
el
e
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Fig. 9. Position tracking errors, (a) with RASL-PD control, (b) with PD control,
(¢) with iterative learning control.

controller are designed in Matlab/Simulink, as shown in Fig. 6(c). The
desired trajectory of the mobile platform in terms of X-Y-Z Euler angles
is designed as

o (rad)

$= 1—’; sin(zt), 6 = 0.5 — 0.5 cos(%t), o =051t

(26)
all with unit (rad). The modeling errors are set as follows
Table 3
: Position tracking errors.
0 (rad) 0 .02  (rad) g
Control algorithm Maximum position tracking errors of [¢, 6, o] (rad)
(b) RASL-PD control [1.2498x 1074, 5.0300x 1075, 0.0011]
. . . . . . . PD control [0.09, 0.01, 0.02]
Fig. 8 Trajectory traﬂfk'mg vtnth other algorithms, (a) PD control, (b) iterative Iterative learning control [2.83x 10-4, 5.46x 10+, 0.0072]
learning control at 4™ iteration.
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Initial iteration

1" iteration
2" iteration

3" fteration

4" iteration

t(s)

Initial iteration}.,
1" iteration
2" iteration

3" iteration

4" iteration

------- Initial iteration

1" iteration

2" iteration
3" iteration

4" iteration

0 05 1 15 2 25 3
t(s)

(c)

Fig. 10. Position tracking performance improvement over iterations, (a) e, (b)
e, (C) €.

AM(q) = ¢{M(q), AN(q, 4) =¢N(q, 4)
AG(q, @) = {G(q, q)

where ¢ = 0.2 is the coefficient of the modeling error, which indicates
the level of uncertainty. The external disturbance is set as

74 = r[cos(mt); exp(—nt); sin(2xt)]

where r is the coefficient of external disturbance which is randomly
distributed in (—0.01, 0.01).

The gain switching rule is set to be
Kf = 2kKY), K§=2kK§ fork=1,2, ..,N

The initial control gains are selected as
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Fig. 11. Position tracking convergence during the iterative procedure.

K = diag{0.1, 0.1, 0.1}, Kj) = AK]

where A = 15. The robust coefficient f is set as 0.02.

5.2. Results and discussion

Fig. 7 shows the tracking performance of the proposed algorithm at
the 4% iteration. It can be seen that the actual trajectory tracking result
of the proposed algorithm fits well with the desired trajectory. For
comparison, simulations with two other methods, namely, PD control
and iterative learning control [33] are included in this work. The tra-
jectory tracking performance under the classic PD control with the
same gains is displayed in Fig. 8(a). The results follow the desired
trajectory with noticeable errors. Fig. 8(b) shows the tracking perfor-
mance of the iterative learning control with the same initial gains. A
better trajectory is obtained than the trajectory with PD method, but
the performance of the algorithm is less better than that of the proposed
RASL-PD control. Fig. 9 shows the position tracking errors of SMG using
RASL-PD control, PD control and iterative learning control, respec-
tively. The maximum position tracking errors of the three control al-
gorithms are presented in Table 3. The maximum position tracking
errors of PD and iterative learning control are 0.09 rad and 0.0072 rad,
respectively. The maximum position tracking error of the proposed
algorithm is 0.0011 rad, which is the smallest. Compared with PD and
iterative learning control algorithms, the RASL-PD algorithm can obtain
much better performance in the presence of model uncertainties and
random external disturbances.

Fig. 10 shows the position tracking performance improvement over
iterations. It can be seen that, at the initial iteration, the position
tracking errors are not converging. However, with the increase of the
iteration number, the proposed algorithm shows a fast convergence.
The position tracking convergence with the iterative process is shown in
Fig. 11, where the maximum position error norm is the maximum norm
of each Euler angle’s position tracking error. At the initial iteration, the
maximum position error norms of e, e and e, are 0.8326, 0.9181, and
3.4412 rad, respectively. After the initial iteration, the maximum po-
sition error norms decrease rapidly, and at the 4™ jteration, they have
been reduced to 9.3445 x 1075, 4.9286 X 10~°, and 0.0014 rad, respec-
tively. It’s noted that the position tracking performance improves as the
iteration number increases.

The actuation torques required are illustrated in Fig. 12. It can be
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Fig. 12. Control torque variation over iterations.

noted that the torques are nearly the same from iteration to iteration
after a few iterations. In this example, the torques vary smoothly and

Appendix A
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approach to the same from the second iteration to the fourth iteration.
Above all, the effectiveness and robustness of the algorithm are verified.

In the presented work, we address the dynamics and control issues
from the control aspect. It is noted that the problem can also be ad-
dressed by means of design to reduce the influence of nonlinear terms in
the dynamic model, which can ease the challenges of control and im-
prove the performance of an integrated system. Examples include the
so-called design for control (DFC) [34], and adjustment of kinematic
parameters (AKP) for real-time controllable robotic mechanisms [35],
etc.

6. Conclusion

This paper presents a dynamic model for an integrated SMG driven
by electromagnetics. The nonlinear dynamic model is established in
task space with model uncertainties considered. A robust adaptive
switching learning PD control scheme is investigated to control the
position of end-effector for high trajectory tracking performance in the
presence of uncertainties including the modeling errors and external
disturbances. The convergence of the control system is also guaranteed
by applying Lyapunov theorem. A co-simulation by Matlab/Simulink
and ADAMS was developed, with results showing that the proposed
algorithm can effectively deal with the modeling errors and dis-
turbances. The significance of the proposed control algorithm is that it
can achieve a fast convergence with easy implementation and good
trajectory tracking performance.

A contribution of the work is the establishment of a dynamic model
in the task space for the SMG, with which the model uncertainty and
external disturbances are duly considered. This model enables further a
robust adaptive switching learning PD control method. In the work, a
co-simulation platform was developed, with which both dynamic model
and control algorithms can be simulated. With the co-simulation plat-
form, three control methods, including the one developed in this work,
are simulated and compared, which justified the performance of the
new control algorithm. This composes another contribution of the
work.

The new motion generator can be used for many potential appli-
cations as pointing and orientating devices. It can also be considered for
vector thrusting systems. In future work, a prototype is being developed
and the proposed algorithm will be applied to the dynamic control of
the prototype. Furthermore, the integrated design of the mechanical
structure and control algorithms will be utilized for depth-study.
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The stability of the system is proved based on the Lyapunov function defined as Eq. (23).

From Eq. (14), we know
7 = KpHleR () + KETe (1) + frsgn((Ay9)) + 7
From Egs. (17) and (27), we have
i — gk = KEHektI(n) + KEHeR() + fsgn((ayh))
= KEHYHL 4+ fosgn((ay9)h)

Egs. (12) and (13) lead to

@7

(28)

208
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M@K — &9 + (N + Np(eFt! — €F) + F(ek+! — ek)
= - @ -+ (@ - dY
On the other hand, Egs. (17), (18) and (29) yield
MAYE = M(EH! — &) + MA(6F*! — €6
= — (N + Nl)(ék+1 — ék) — F(ek+1 — ek) _ (Téﬁl _ ‘L'(f)
+(dk+l —_ dk) + MA(ék+l —_ ek)

Substituting Egs. (18) and (28) into Eq. (30), we have
Kitiyk = gktlgkel _ ghripgk
— (N + NpAék — Faek + Ad¥ + MAAEF — MAy*
—f-sgn((Ay"") - K§'ay*
— (N + N; — MA + K§™)ayk — (F — AN + N, — MA))Aek
—MAy* — f-sgn((ayM)") + adk

Define AVF = VK+1 — V¥, From Eqs. (18) and (23), we obtain

AVFK

S e Ry — (Rl s

S eIy TRIAY: + 2(ay9) Kiy*ldu

1 t
= —PH TR k+1 A4k kT k+1gk
B(k+1)‘/‘; e [(AyH) K HAYF + 2(ayH) K yFldu
Substituting Eq. (31) into Eq. (32), we have Eq. (33).
1 t
Kk — —eu Iy g k+1 A ok Iy Trek+1g k
AVE = ooy o eyt + 208y )TRE Y du
1 t t .
= —ﬁ(k D {-/o‘ e (Ay*) KA Aykdu — 2‘/0‘ e4(Ayk) "MAy*du

-2 f "o (AyTI(N + Ny — MA + K Ayk
+(F — AN + Ny — MA))Aek + f-sgn((ayM)") — Ad¥]du}
Applying the integration by parts and from Assumption 2, one can get
S ey Maykd
= e (ay Y MAYH — [ (ePH(ay) M) Ayidu
= e (Ay")"MAYF + p j[; " e-r(ay") "MAy*du
-f " e (Ay) MAY*du — A " e (Ay9) MAYFdu
Substituting Eq. (34) into Eq. (33) and from Property 2, we obtain Eq. (35).

_1
Blk+1)

t
- ‘/0' e (AyM)T(KET! 4+ 2N, — 2MA)Aykdu

avE = {_efp ‘(ayH)™™MAY* - p fo "ee(ayh) MAykdu

-2 f " e Pr(AY)T(F — A(N + N, — MA))Aekdu

L T T k

=2 [ e Ay [f-sen((AyH)") — ad ]du}
From Eq. (16), we have
jo'[ e Ay K AYRdu = Bk + 1) ‘/0'[ e#(Ay") KYAykdy

13
—PH TR0 AV,
> ./0‘ e PH(Ay*) KyAy*du

Substituting Eq. (18) into Eq. (35) and using Eq. (36), we get Eq. (37)
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(30)

(€29)

(32)

(33)

(34

(35)

(36)
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AVE < m{—e’P’(Ayk)TMAyk -p '/0' " er(Ay)"MAYrdy
_ ‘/;r eP(AD)T(KY + 2N, — 2MA)Aékdu
- ] "ePH(ACNT(KY + 2N, — 2MA)Aékdu
A " e-r(aet)T(KY + 2N, — 2MA)Aekdu
—28 [ e HaeT(F — AN + Ny — MA))Aetdy

-2 f " e PH(AGH)T(E — A(N + Ny — MA))Aekdu
—2 [ e (ay")If-sgn((ay)") - Ad] dﬂ}
o 37)

Using the integration by parts, we obtain
t
jﬂ' e (AeX)T(KY + 2N; — 2MA)Aékdu
= e PH(Ae)T(KY + 2N; — 2MA)Aerf;
13 ’
- jo' (eP#(AeM)T(KY + 2N, — 2MA)) Aekdu
=e P (Aef)T(KY + 2N; — 2MA)Aek
+o f " ei(Aet)T(KY + 2N; — 2MA)Aekdu
t
- jﬂ' e PH(A)T(KY + 2Ny — 2MA)Aekdu
13 . .
— —PHU kT — k
/; e*4(Ae!)T (2N, — 2MA)Aekdu 38

Substituting Eq. (38) into Eq. (37), we have Eq. (39)

AVF {—e*P‘(Ayk)TMAy" -p ./;r e~ (Ayk) "M Ay*du

S #
B+ 1)
— Ae P (AeF)T(KY + 2N, — 2MA)Aek
A " ePE(Aek)T(KY + 2N, — 2MA)Aekdy
-af " e~(AeN)T(2F + 2NA + KA — 2N, Aekdy
-f " eP(AGMT(KY + 2N, — 2MA)Aékdu

-2 f " e PH(AGH)T(E — A(N + N; — MA))Aekdu
—2 [ em(ay [fsgn((ay") - AdY] dﬂ}
0 39)

From Egs. (19) and (20),

1
AVE < —— {—e " (AyH) May*
ﬁ(k+1){ e?(Ay") MAy
-p ‘/0‘[ e P4 (Ay¥)"MAykdu — Ae=F!(Aek)T] Aek
—on ff ' efu(aeR)Th Aekdy — W
2 [ e (ayH Fsen((ayH") - Ad] d/t}
0
(40)
where

w=af " e~f(Aet)T(2F + 2NA + KA — 2N,)Aetdy
t
+ jo' e PH(AE)T(KY + 2N; — 2MA)Aékdu
w2 f "e(ASNT(F — A(N + N; — MA))Aekdy

Let P = F — A(N + N; — MA), therefore
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t
W > j(: e (b |e|? + 2(e)TPet + b ek|?)du

Applying the Cauchy-Schwartz inequality gives

(€TPeX > —[|&¥]|- [IPlmax - l€¥]

Utilizing Egs. (19)—(21), we got

w

> ‘/u‘[ e P (l || €2 — 2[|€X]|-[[Pllmax - lle¥]| + L lle¥|*)du

I ok 1 o) 1o k|2

= ‘/0‘ e ll(”e = EHP”max”e H) + (lz - EHP”max)”e IP | du
>0

From Eq. (22), we can obtain (Ay¥)"Ad* < ||(Ay)"|| - |ad¥|, therefore,
(a9 (F-sgn((Ay")") — AdY) 2 |AYHTI1-(f ~ l1ad)
From Egs. (40), (43) and (44), we have

AVE <0, i.e.,

Vk+l < yk
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This paper presents modeling of an integrated design of an electromagnetic driven spherical motion generator
with multi-layer structure. An analytical method to calculate the complex magnetic field distribution of the rotor
array by combining the equivalent charge model and transformation method is developed, upon which torque
model is further established analytically by using the moment principle. Both the analytical magnetic model and
torque model are validated with the numerical finite element method by Ansoft Maxwell and experimental
measurements. With the model, two different designs of the electromagnetic driven SMGs are analyzed to il-

lustrate the application of the developed model.

1. Introduction

Spherical motion generators (SMG) which can generate multi-de-
gree-of-freedom (DOF) pure rotations are greatly required in many
areas such as robot manipulators [1], orientating devices [2,3] and
aerospace [4].

So far, various designs of the SMGs have been proposed [5-8],
among which spherical parallel manipulators (SPM) and spherical ac-
tuators are two typical structures. SPM is a kind of closed-loop me-
chanism that is consisting of a fixed base and a mobile platform con-
nected by several serial links. SPM is well known for the Agile Eye
developed by Gosselin et al. which is first applied in camera orienting
devices [9]. SPMs with unlimited rotations were designed with coaxial
shafts [10,11]. Compared with the serial mechanism, SPMs have the
advantages of higher rigidity, better accuracy and larger load capacity.
However, the SPMs are usually actuated by separate motors, which
leads to the increment of inertia and the reduction of the feasibility.
Another type is the spherical actuator which can generate 3-DOF ro-
tations in one joint [12,13], in particular, the permanent magnet
spherical actuator (PMSA). A PMSA composes of a spherical permanent
magnet array and a number of stator coils distributed evenly in a
spherical shell. By energizing the stator coils with appropriate current
control strategies [14], the rotor can be actuated to implement a 3-DOF
motion on the sphere. It offers advantages of compact structure, non-
contact and gear-less actuation and rapid response, however, the ap-
plications of PMSAs are limited by the relatively heavy mass and large

* Corresponding author.
E-mail address: shb@mp.aau.dk (S. Bai).

https://doi.org/10.1016/j.jmmm.2019.165707

size of the rotor arrays. To utilize the mechanical structure of the SPM
and the actuating principle of the PMSA, new integrated designs of
electromagnetic driven SMG have been proposed. Recently, an elec-
tromagnetic driven SMG was introduced in [15,16]. This design has a
more compact and light-weight structure with the advantages of no
backlash, high stiffness and low inertia. However, the integrated 3-DOF
actuation brings in a complicated control system. In this work, an al-
ternative design is proposed, which features with a multi-layer elec-
tromagnetic actuation, comparing the single-layer actuation in [15].
The multi-layer design simplifies the control system by separating 3-
DOF actuation into three single-axial electromagnetic drive unit.
Moreover, the torque output is enhanced due to the introduction of
more permanent magnets. On the one hand, the 3-DOF spherical mo-
tion within a large workspace can be used for panorama head, gyro-
scope and so on. On the other hand, the 360° rotational motion can
provide rotary propulsion which is required in applications such as
propulsion devices [17]. To investigate the structure optimization and
further real-time control [18-20], analytical magnetic and torque
modeling of the electromagnetic driven SMG with better precision is
highly necessary and is also a challenging work.

Analytical magnetic modeling has been investigated adopting
methods including spherical harmonics, magnetic equivalent circuit,
distributed multipole and charge models. Spherical harmonics (SH) is a
method for analyzing the magnetic field distribution of permanent
magnet arrays in 3D spherical coordinate [21-23]. Magnetic equivalent
circuit (MEC) is employed by meshing the geometry into elements [24].

Received 25 June 2019; Received in revised form 12 August 2019; Accepted 13 August 2019

Available online 16 August 2019
0304-8853/ © 2019 Elsevier B.V. All rights reserved.



X. Li, et al.

Distributed multipole (DMP) developed by Lee and Son et al. is applied
for rotor array with cylindrical permanent magnets [25,26]. The charge
and current models are another type of analytical methods to analyze
the air-gap magnetic field of the permanent magnets, in which the PMs
are equivalent to a distribution of “magnetic charge” or “current”
[27,28].

The electromagnetic torque model is established analytically based
on the analytical magnetic distribution results [29]. There are also
various approaches that are used for torque analysis. The torque model
can be formulated by the conventional Lorentz force law, however, the
multiple integration increases the calculation complexity seriously
[30]. The virtual-work method analyzes the torque by evaluating the
magnetic potential energy of the system [31]. Lim et al. introduce a
dipole moment principle to describe and determine resultant torque,
which greatly simplifies the computing process [32].

This paper proposes an electromagnetic driven SMG with multi-
layer structure that integrates the mechanical structure of SPM and the
actuating principle of the PMSAs. The actuating part is constructed by
three-layer rotor arrays with 12 tile-shaped PMs in total, and 18 sur-
rounding stator coils. The objective of this paper is to develop analytical
magnetic field and torque models for design analysis of the SMG. The
proposed magnetic modeling method is based on the equivalent charge
model. The torque performance is analyzed by the dipole moment
principle. Compared with the conventional Lorentz force law, the mo-
ment analysis reduces the computational complexity of the integral
function.

The rest of the paper is organized as follows. Section 2 presents the
design and working principle of the SMG. Section 3 formulates the
analytical model of the magnetic field distribution of PM rotor array in
the air gap. Section 4 presents the torque model that is formulated using
the moment principle. Section 5 describes the simulation and experi-
mental results on magnetic field distribution and torque model to va-
lidate the analytical models. The validated models are used to compare
and analyze the performance of the two designs of SMGs. Finally, the
paper is concluded in Section 6.

2. Two designs of SMGs
2.1. Conceptual design of a multi-layer SMG

The conceptual design of multi-layer SMG is shown in Fig. 1. It is
mainly constructed in two parts: a spherical parallel kinematic me-
chanism (SPKM) and an electromagnetic driver. The SPKM is a type of
spherical parallel manipulators with coaxial shafts which is first de-
veloped by Asada [6]. It is a closed loop mechanism consisting of three
serial chains with coaxial input shafts and an output mobile platform.
Each serial chain that is connected to the mobile platform has three
revolute joints whose axe are denoted by unit vectors w;, v; and
w;, i =1, 2, 3. All the joints intersect at the spherical center O as shown
in Fig. 2. The kinematics and dynamics of the spherical parallel ma-
nipulator that have been well-documented in [15,33] will not be re-
peated in detail in this section.

We define the generalized coordinates of the manipulator:

_ [qa]
9= | q, (€3]

where q, = [6; 6, 6;]" is the vector of the actuated joint angles and
q.=[¢ € o] is the vector of X-Y-Z Euler angles of the mobile plat-
form. By actuating the three proximal links with different input joint
angles q,,, a 3-DOF rotation will be generated at the end-effector of the
mobile platform with q,. The actuation of the input joint angles is
implemented by the electromagnetic driving system.

The electromagnetic driven part consists of permanent magnet rotor
arrays and stators in three layers as illustrated in Fig. 1(b), which are
used for actuating three proximal links, respectively. The actuating
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Mobile platform

Distal curved link

Proximal link Encoder
Stator coil
PM roto
Third layer

Second layer

First layer

(b) Cross-section view

Fig. 1. Conceptual design of multi-layer SMG.

principle of the SMG is shown as Fig. 3. For each layer, the rotor array is
constructed by four tile-shaped PMs that are symmetrically distributed
on the rotor surface and there are six stator coils mounted on the outer
stator shell. The proximal link’s rotational motion around the shaft is
generated by the repelling and attracting electromagnetic forces be-
tween the rotor PM poles and the stator coils. When all the proximal
links are actuated with equal torques continuously, the end-effector can
spin about its own axis. Alternatively, the proximal links can be driven
with different torques, the SMG will produce 3D motion at the end-
effector.

2.2. Single-layer SMG design

We briefly describe the design presented in [15]. As shown in Fig. 4,
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Fig. 2. Kinematics of spherical parallel manipulator with coaixal shafts.

3 2

Label of
Coils

— Attract

— Repel

5 6

Fig. 3. Actuating principle of multi-layer SMG.

Circular guide

Fig. 4. Integrated design of single-layer SMG.

the SMG is a single-layer electromagnetic driven spherical motor. For
clarity, we refer hereafter to the two designs with single and multi-
layers as O- and I-shape SMGs, respectively. The SPKM is a special case
of the kinematics in Fig. 2, which is based on the design in [33]. Three
proximal links are replaced by three identical sliding units which can
move smoothly around the fixed circular guide. Generally, the sliding
units are actuated by three attached motors and the motion is trans-
mitted by the gear drive. In our study, every sliding unit is constructed
by PM poles, and double-layer stator coils are distributed equally on the
cylindrical housing. Through varying the current inputs of the stator
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x

Fig. 5. Permanent magnet rotor array.

coils, the sliding units are actuated separately by the shared stator coils.

The multi-layer design of SMG proposed in this work, compared
with the single-layer one, allows higher torque outputs and simpler
control of system. A more detailed comparison can be found in Section
5.3.

3. Magnetic field distribution

The rotor structure is constructed by three layers’ permanent
magnet arrays. Each PM array consists of four tile-shaped permanent
magnets that are distributed equally. The PMs are uniformly magne-
tized with alternative variation of N and S poles as shown in Fig. 5. The
specific magnetization axis of I PM pole in the global rotor coordinate
is given by the unit vector

x| cos(¢)
= [yl] = (=1)] sin(¢)
2 0 (@)

where ¢, = 2T"(l —1), I=1,2, ..L and L is the number of PM poles.
To analyze the air-gap magnetic field distribution of the rotor array at
point P in the global rotor coordinate, every PM pole is modeled se-
parately in its local coordinate system first.

3.1. The equivalent magnetic charge model

The magnetic field of a single PM pole is modeled analytically using
the equivalent magnetic charge method. The derivation of the charge
model starts with the magnetostatic field equations for current-free
regions,

VXH=0 3)
V-B=10 (C))

where H is the magnetic field strength and B is the magnetic flux
density. The magnetic field strength, H in Eq. (3) can be expressed as
the divergence of the magnetic scalar potential ¢

H=-V.p %)
The constitutive relation is

B=u,(H+ M) 6)
Substituting Egs. (5) and (6) into Eq. (4)

V2.9 = V-M 7)

Eq. (7) can be formulated in integral form by using the free space
Green's function
1

G r)=- 4rlr — 'l (€©)]

Then, we obtain
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1 V-M
-1 av’
() A v r - (©)]

where 1’ and r represent the position vector of the source point P’ and
the observation point P, respectively. If the magnetization M is con-
fined to a volume V (of permeability u,), and falls abruptly to zero
outside of V, then Eq. (9) reduces to

P@r) = L‘/‘ In(r') v+ 1 $ Jn () ds’

47 YV Ir — 1l 4y Ir =l (10)

where S is the surface of the magnet, and J,, and j, are equivalent
volume and surface current densities

3, = —V'-M (A/m2), j, = M-d (A/m) an

where d is the unit surface normals. The magnet is in free space,
B = u,H and from Egs. (5) and (10), we have

B Ia@@E 1)
B =" fv dv’

j, @)@ -1’
Ir—r'P o X )dS/

Ho
+ Fo
4 Sf Ir—r'P 12)
3.2. Magnetic field analysis of a single tile-shaped PM pole with parallel
magnetization

The single permanent magnet of the rotor is analyzed using
equivalent charge magnetic method first. To simplify the magnetic
modeling of tile-shaped permanent magnets, an equivalent subdivision
method is introduced. The tile-shaped magnet can be divided into nu-
merous small tile-shaped permanent magnet poles of circumferential
arrangement in space. Each small tile-shaped permanent magnet pole
can be equivalent as two cuboid magnets. Then the magnetic field
distribution of one tile-shaped magnet is obtained by superposition of
magnetic field generated by all the equivalent cuboid PM poles.

The tile-shaped PM poles with parallel magnetization ®M along x;-
axis in its local coordinate is shown in Fig. 6(a), and the magnetization
is formulated as follows:

OM = (—1)"'M,%;, [=1,2.4 13)

From Eq. (11), we obtain that the volume current density is
03, =-v.OM =0 14)

Then the charge model of the PM pole Eq. (12) in I local coordinate
can be reformulated as

04, @)(Or =)
— > as

Mo
OB(Op) =
e as)

a7 g
The PM pole is subdivided uniformly into 2N + 1 small tile-shaped PM
elements, with the specific subdivision schematic shown in Fig. 6(b).
Every PM element is also modeled analytically in its subordinative
frame O — xyz, ,. For simplifying the calculation, the tile-shaped PM
element can be equivalent to cuboid magnets which is easy to be ana-
lyzed using the equivalent charge method. For any PM element, it is
polarized with the magnetization along x;-axis. When the PM is trans-
formed to its subordinate frame, the magnetization along the x-axis of
the I local coordinate can be decomposed into longitudinal magneti-
zation along x; ,-axis and lateral magnetization along y, ,-axis based on
the subordinate frame, which is shown in Fig. 7.
In the subordinate frame, the longitudinal and lateral magnetiza-
tions are defined as

oM, =0 Mcos(g;,) = (—1)D-M; cos(@y,)-Kin = MRy,

(OM, = “OMsin(@,,) = (~1)"M;sin(#,,) 9, =t M3, 16)

To evaluate the surface term ‘"j, , we first evaluate the unit surface
normals
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T 0,

)_ 11 M =~ ~ >
2 —— - — L2NE
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x

(b) View of the PM pole from XY-plane

Fig. 6. A single PM in I local coordinate.

d, = _)A(l,m X =p
x'=p,
¥ &=y, xX=>b

dy = Xy,
d, = —}Allyn, x'=b,
ds = ’Z\l,n, Z'=h
de=-%,, 2'=h a7

From Eq. (17) and the fact that j, = M-a, we have the longitudinal
surface density "j, . = (=1)!=D-Mcos(¢,,)%;» on the front surface
& =p0,), ), = (=1)-Mcos(¢;,)R;,, from the back surface
(X1, = p,). Furthermore, we have the lateral surface density
@m0 = (=D¢D-Msin(g, )3, on the left surface (y,,=b,), and
&m0 = (=1)"-Msin(¢, )3, on the right surface (y;,=by). In the
subordinate frame O — (xyz);,», the distance between the source point P’
and the observation point “P is given by

g, — ¢ = (X, = xRy + (CY, — Y3, + (PPZ, = 22,
as)
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Fig. 7. Equivalent model of a small tile-shaped PM element.

According to Eq. (15), the magnetic field distribution in the air gap can
be obtained:

T
tmp(ny) = Ko g 23 )8, — 1)
4 ; [Emy, — rP
Ln)j 1, —
() ()t = ) ]dsf

1Emy, — ¢

19)

which is further expanded as

(l,n)B((Ln)rp)
_ i Ho j“'l f”l (=1)%- &M, Qe
= 3
o 4m Y by [((l,n)Xp _ pk)z + ((Ln)yp _ y,)z + (([,n)Zp _ Z')Z]Z
2
o Hy ph
dy'de’ — ), -2
Y kz::; 47 '/;2
a (=D5CPM,Qu g
‘/F.Z @) N2 L (L) EZE (Ln) ,szxdz
[(“MX, = x)" + (4MY, = b + (W2, — 2)7]2 (20

where Q, = ((I'")Xp — Pk)'(l'")ﬁ + ((Ivn)yp —y)-ny 4 (("")Zp —z/)-tmzg
and Qg = (¢MX, — x)-¢W% + (EMY, — by)-¢Wy + (t1Z, — 2/).GmZ,
By calculation, the magnetic flux density of the equivalent cuboid PM
poles in the I'" coordinate are obtained:

2N+1

OB, = 0% 3 [“MB(“"ry)cos(d) + “VB,(“ry)sin(#)]
=0 (21)
2N+1

®B, =0 3 E (=M By (tPry)sin(@) + By (“Pry)cos(¢)]
n=0 (22)
2N+1

B, = 0z 3 Gmp (Gnr)
n=0 (23)

3.3. Magnetic field distribution of rotor structure in global coordinate
system

The complete magnetic field distribution of the 3D magnetic array
in global rotor coordinate is obtained by superposition of all PM poles
that are rotated and transformed from corresponding local coordinate
system. The computation of the 3D magnetic flux density in global
coordinate system are described as follows.

First, the position of a point P in global Cartesian coordinate system
is expressed as

X, £,c08(8,)
r,=[Y, | = | psin(g,)
Z Z 24

Afterwards, the global coordinates of P are transformed into the local
coordinate system of the I permanent magnet by rotation matrix from
global frame to I local frame R which is given by

cos(¢,) sin(¢) 0
OR = R,(#) = | —sin(¢) cos(¢) 0
0 0o 1 (25)

The local coordinates of P expressed in the I'" local coordinate system is
obtained

oX, cos(@) sin(g) 0] %
Op = (l)y;7 = (DR.(l)rp = | —sin(¢,) cos(¢) O Y,
(1)ZP 0 0 1]l % (26)

The magnetic field distribution of the point P in /' local Cartesian
coordinate system are formulated according to Egs. (21)-(23). After
that, we calculate the magnetic field distribution of point P in I'" local
cylindrical coordinate system

o B, [O):
OB(Or) = (1)34’ = CMC((%S) (I)By

0B, ®p,

cos(Pg) sin(Pg) 0]| “Bx

= | —sin(®¢) cos(P¢) 0 ®B,
0 0 1[| ®B, @27)

where “M¢ is the transformation matrix from the Cartesian coordinate
system to cylindrical coordinate system.

The magnetic field distribution of the point P by the I'" PM is pre-
sented in global Cartesian coordinate system

By, cos(¢) —sin(¢) 0 ©B,
B = | By | = OR"OB = RI($)PB = | sin(4) cos(¢) 0| PBs
B 0 0 1| 0B,

(28)

Finally, the magnetic field distribution at the point P is obtained by all
the permanent magnets in global spherical coordinate system
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Fig. 8. Current loop for moment calculation.
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Fig. 9. Superposition of resultant torque of a solenoid.
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Fig. 10. Torque calculation by a single coil.

L
B =P X B 29)
N L
Be=d 2 B 30)
R L
Bom i B @1

Above all, the complete magnetic field distribution of each layer’s rotor
array is obtained.
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Fig. 11. A SMG prototype at AAU.

Table 1
Specifications of the SMG’s electromagnetic driver.

Parameter Value

Outer/inner stator radius
tile-shaped PM

Ros = 45 mm, Rjs = 28 mm
Py = 24.5 mm, p, = 27.5 mm, ¥ = 60°

PM material NdFe35

Number of PM poles Np = 12/3 layers
Subdivision number N=30

Outer/inner coil radius Roc = 7.5 mm, Rjc = 2 mm
Height of the coil Hc = 16.5 mm

Number of coil turns N, = 380

Number of coils Nc = 18/3 layers
Maximum driving current In=3A

4. Torque modeling

The moment principle is applied to establish the torque model of
spherical motion generator, which has been verified effectively in [32].
The magnetic dipole moment of a planar wire loop C with current value
of I in Fig. 8, can be defined as

1

m=I¢-r xdl

c 2 (32)
where r; is the source point on the wire loop. It can be seen from Fig. 8
that the vector %rc X dl is equal to an infinitesimal triangular area that
is bounded by r, 1. + dl and dl, with the direction perpendicular to its
plane. Then the magnetic dipole moment of a wire loop is obtained
m = IA A (33)
where A_ is the area of the wire loop and 1 is the unit vector normal to
the wire plane. Considering the wire loop in an external magnetic field
B, the generated torque on account of the magnetic-dipole phenomenon
can be expressed as
7= §r.x (Idr, x B)

£r ¢ 62
where dr, is an infinitely small segment along the curve r. If the
magnetic field B is assumed to be constant and uniform, the torque is as
follows

T=mXxB (35)
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Fig. 12. Magnetic field measurement.

Therefore, applying this principle to a solenoid constructed with a
series of current loops, we can calculate the resultant torque by su-
perposition of all the individual loops as shown in Fig. 9. Based on the
dipole moment method and the superposition principle, the torque
acting on a stator coil with N, turn loops (N; = N;-N;) as shown in Fig. 10
is computed by the following:

NN Nio M
T=101+ Ta2) + T = Z Z Tij) = Z Z mg ) X B(iJJ
j=1 i=1 j=1 i=1 (36)

Above all, the model of the torque generated by one stator coil and one-
layer rotor array is obtained.

5. Model validation

In this section, FEM approach and experiments are employed to
validate the analytical model of the magnetic field distribution and the
torque output. The numerical model is established by using FEM soft-
ware Maxwell Ansoft. A prototype of the SMG is developed as shown in
Fig. 11, and the specification is presented in Table 1. The experimental
platforms are designed based on the prototype.

5.1. Analytical magnetic field distribution validation

A measuring platform is built as illustrated in Fig. 12(a) to measure
the air-gap magnetic field distribution of the 3D PM array. A Gauss
meter (TM-801) produced by KANETEC with a measuring ragne of

0-3000mT and a resolution of 0.01 mT is applied. A Hall probe is
connected to the Gauss meter and it is fixed by a supporting platform.
The rotor array is set on an angle indicator platform. The measuring
scheme is designed as shown in Fig. 12(b). To measure the three
components of the magnetic field, B,, B4 and B,, respectively, the Hall
probe is positioned at different directions. For any component of the
magnetic field, the Hall probe is positioned at p = 28 mm. Then, by
rotating the rotor, the probe can measure the points along the ¢-di-
rection of PM array in the air gap. Varying the z-directional position of
the probe, a series of points that are evenly distributed on the surface
outside the rotor array are measured. Finally, the value of magnetic flux
density can be directly displayed on the Gauss meter panel or trans-
mitted to the computer through USB interface.

The 3D magnetic field distribution calculated by the analytical
method is compared with the numerical model and the experimental
results, which are shown in Figs. 13-15. The comparison shows that the
analytical results agree with the numerical and experimental results
well. As shown in Fig. 13, the radial magnetic flux density B, in the air
gap has four peaks in accordance with the PM arrangement at the same
latitude, and it achieves the peak value around the magnetization axis
of the PM pole in global coordinate system. When flux density is
measured at a point in the air gap along the longitudinal direction that
goes through the center of PM, that is, ¢ = ”T'k(k =0, 1, 2, 3) with
varying z, By is equal to zero. As the measurement points get far from
the PM center along the latitudinal direction, the magnitude of By be-
comes larger and reaches its maximum at the edge of PM as shown in
Fig. 14. Similarly, when flux density is measured in the gap at a point
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Fig. 13. Comparison of the measured radial flux component B, at p = 28 mm
with results obtained from analytical method and numerical method.

along the latitudinal direction that goes through center of the PM, that
is, z = 0 with varying ¢, B, is equal to zero. As the measurement points
get far from the PM center, the magnitude of B, becomes larger along
the longitudinal direction, and reaches its maximum at the edge of the
PM pole as shown in Fig. 15.

To evaluate the accuracy of the model, the normalized root-mean-
square deviation (NRMSD) is applied, which is defined as

)2

R
! =1 x 100%

NRMSD =
lUmax — Umin| N 37

where u; is an experimental value, Unayx and Upi, are the maximum and
minmum of uj, respectively, v; is a calculated result, and N is the
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Fig. 14. Comparison of the measured azimuthal flux component By at p = 28
mm with results obtained from analytical method and numerical method.

number of the data. The NRMSD of the three components of magnetic
flux density B,, By and B, are 3.04%, 3.43% and 3.17%, respectively.
Regarding efficiency, the computing with numerical model takes more
than 10 min each time, nevertheless, it only takes about 1 s to obtain
results by using the analytical method. The comparisons with the nu-
merical model and experimental data further validate the analytical
magnetic model, which implies that the complete magnetic field dis-
tribution can be directly used for torque calculation.

5.2. Analytical torque model validation

In this section, the analytical torque model is verified by numerical
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Fig. 15. Comparison of the measured axial flux component B, at p = 28 mm
with results obtained from analytical method and numerical method.

FEM and the experiments. In this light, a measuring platform is con-
structed, as illustrated in Fig. 16(a). A miniature torque sensor FTE by
Forsentek is selected with range of 0-0.1NM to conduct the experiment.
The stator is installed and can rotate around a scale plate. One of the
rotor array is fixed under a torque sensor. The measuring scheme is
illustrated as Fig. 16(b). By rotating the stator along scale plate from P
to P, with different input currents, the torque is measured by the torque
sensor. A series of experiments are designed to validate the torque
model. First, the torque output is measured by only actuating Coil 1
with current value of 1 A to evaluate the analytical torque model. Then,
the torque output is measured by actuating Coil 1 and 4 with input
current 1 A to evaluate the superposition principle of the torque model.
Finally, the torque is measured again with energizing Coil 1, 2, 4 and 5
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with current 1 A simultaneously. All the values of the torque output can
be displayed on the display screen.

Fig. 17 shows the torque generated by energizing Coil 1 with input
current 1 A, referring to Fig. 3. All analytical, numerical and experi-
mental results are displayed. It can be seen that the analytical torque
model fits with both the numerical and the experimental results well.
Fig. 18 shows the torque produced by energizing Coils 1 and 4 with
input current 1 A. The results illustrate that the validity of the super-
position principle of the torque model.

By energyzing Coils 1, 2, 4 and 5 with input current 1 A simulta-
neously, the analytical torque output is the summation of the torques
generated by all the coils. The results fit well with experimental results
as shown in Fig. 19.

The NRMSD values of the torques from Figs. 17-19 are 4.07%, 2.98%
and 2.73%, respectively, which shows that the analytical model has a
reasonable accuracy.

5.3. Result analysis

The comparisons between the I-shape and O-shape SMGs are listed
in Table 2. The rotor of the O-shape SMG is the sliding unit with two
tile-shape PMs. The parameters of the PM with the inner radius o, = 18
mm and the central angle ¥ = 20°. The outer radius of the PM and the
parameters of the stator are the same with the parameters of the I-shape
SMG.

The O-shape SMG is highly symmetrical and integrated, which is
more light-weight and simple in structure and manufacturing. It is
equivalent to one integrated motor which can actuate the three separate
sliding units simultaneously. In comparison, the I-shape SMG is con-
structed by three non-identical coaxial shafts and the actuation can be
considered as three monoaxial motors in three layers, which is a more
complex structure. However, the I-shape SMG utilizes much less stator
coils and decreases the complexity of the control system. Due to that the
electromagnetic torque by the sliding unit is only generated by two PMs
and their adjacent stator coils, the magnetic distribution of the sliding
unit should be stronger than that of the I-shape rotor array.

To evaluate the torque output, the rotor moves by a certain angle
from point T, to point T, as shown in Fig. 3. For the O-shape SMG, the
torque is evaluated by the interaction between one sliding unit and one
stator coil, and it reaches the maximum value 19.6211 mNM under the
maximum current 3 A. For the I-shape SMG, the rotor array is mainly
driven by two stator coils in the opposite position simultaneously, i.e.
Coil 1 and Coil 4 in Fig. 3, and the maximum torque output is
24.6256 mNM under the current 3 A. Thus, the I-shape SMG can gen-
erate higher torque output than the O-shape one. Above all, the O-shape
SMG is more suitable for the applications in flexible spherical move-
ment and the I-shape SMG can be applied in area requiring large torque
output such as vectored thrust technologies.

6. Conclusion

This paper presents an analytical model to formulate the complex 3D
magnetic field distribution of the SMG in global coordinate. In this work,
an integrated SMG is designed with a three-layer PM rotor array and a
number of stator coils to improve the system performance. The model of
magnetic field is developed analytically based on the combination of the
equivalent charge model and transformation method. Firstly, the analy-
tical model of a single PM is proposed, and then the complete analytical
magnetic field model for the rotor array is formulated by superposition of
all single poles with different magnetization. Upon the analytical mag-
netic model developed, the analytical torque model is obtained using the
moment principle. Finally, both simulations and experiments are carried
out to validate the analytical model.

The contribution of this paper is the experimentally validated
magnetic field distribution and the torque models of the SMG. The
analytical models can be used in the structure optimization and
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Fig. 18. Comparison of the torque generated by Coils 1 and 4 between analy-
tical method and experimental results.
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Table 2

Comparison between O-shape and I-shape SMGs.
Property O-shape I-shape
Symmetry Highly symmetrical ~ Asymmetrical

Number of coils

48/2 layers 18/3 layers

Number of PM poles 6/2 layers 12/3 layers
control system Complex Simple
Weight of single rotor (g) 88.26 159.53
Maximum magnetic flux density (tesla) 0.4499 0.3458
Maximum torque output (mNewtonMeter) 19.6211 24.6256

employed for further study of real-time control implementation.
Control strategies that combine the analytical expression will be the
subject of future work.
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Chapter 6

Conclusions

The main scope of this work is the integrated design, analytical modeling
and controlling of an electromagnetic driven spherical motion generator. The
new spherical motion generator is designed and constructed by combining
the spherical parallel kinematic mechanism and multi-dof electromagnetic
actuation in one device. To investigate the kinematic performance of the
novel integrated system, kinematics and dynamics are analyzed. Analytical
magnetic modeling approaches were developed for the implementation of
the 3-dof electromagnetic actuation. A robust adaptive switching learning PD
control algorithm is developed to achieve a high-precision trajectory tracking
performance.

6.1 Summary of articles

Article I

Article I reports preliminary study of the electromagnetic driven spherical
motion generator, which is equivalent to the multi-dof actuation in one unit,
namely, a single-layer design. The new integrated design which is the ma-
jor contribution is proposed. The new developed spherical motion generator
makes the structure more light-weight and compact. The inverse kinematics
and dynamics of the SMG are studied. The singularity and workspace is an-
alyzed through the Jacobian matrix. In addition, the analytical magnetic field
model and torque model are introduced, which allows us for more compre-
hensive design analysis and motion control development. The input currents
are optimized on the basis of the energy minimization principle. A dynamic
control algorithm, computed torque method, is used for the trajectory track-
ing in task space. A systematic simulation is designed to validate all the
developed models by a co-simulation platform consisting of the analytical
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models implemented in Matlab/Simulink and a virtual prototype developed
in ADAMS.

It can be found that the kinematic and dynamic models are verified ef-
fectively by comparing with the simulated results from the ADAMS model.
The analytical magnetic field model is validated by the numerical models de-
veloped in Ansoft with acceptable error 5.62%. Compared with the perma-
nent magnet spherical actuator, the newly designed SMG is improved with a
higher torque output, which can obtain the maximum torque output 0.8 Nm
with maximum current of 3 A.

Article 11

Article II focused on the high-accuracy trajectory tracking control of the elec-
tromagnetic driven spherical motion generator. Based on the inverse dy-
namics developed in Article I, the dynamic model of the SMG is further
established in task space by taking uncertainties and disturbances into con-
siderations. To improve the position control performance, a robust adaptive
switching learning PD control is proposed and demonstrated in convergence.
Simulations verified that the proposed control algorithm can achieve a fast
convergence with easy implementation and high precision.

The method improves the trajectory tracking performance of the spheri-
cal motion generator effectively. The simulation results show that the pro-
posed control algorithm improves the trajectory tracking performance with
the maximum position tracking error 0.0011 rad which is smaller than the
maximum errors of the conventional PD and iterative learning control, 0.09
rad and 0.0072 rad, respectively.

Article III

Article III extends the work reported in Article I to analyze a different em-
bodiment of the new spherical motion generator, namely, a multi-layer de-
sign. The multi-layer spherical motion generator is actuated by three layers’
electromagnetic actuating units. Compared with the single-layer design in
Article I, the multi-layer design decreases the number of stator coils which
reduce the complexity of the current drive system, and the separate actuating
principle simplifies the design of the controllers. For the developed SMG, an
analytical model is formulated to study the magnetic field distribution of the
permanent magnet rotor array based on the combination of the equivalent
charge model and transformation method. Then, moment principle is ap-
plied to established the analytical torque model on the basis of the analytical
magnetic field model, which greatly simplifies the calculation and improves
the computing efficiency compared with analytical methods developed in Ar-
ticle L. Finally, the magnetic field and torque models of the spherical motion
generator are verified effectively by developing corresponding experiments.
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6.2. Concluding remarks

It shows from the simulation and experimental results that the analyti-
cal models can obtain reasonable accuracy. A normalized root-mean-square
deviation (NRMSD) is applied to evaluate the analytical magnetic models.
With the experimental data, the NRMSD values of the three components
of the magnetic field distribution in cylindrical coordinate are 3.04%, 3.43%
and 3.17%, respectively, which are all within 5%. The NRMSD values of the
torques generated by one coil, two coils and four coils are 4.07%, 2.98% and
2.73%, respectively. Thus the analytical torque model is verified. Compar-
isons between the single-layer and multi-layer designs are further analyzed.
The single-layer design of SMG is highly symmetric with light-weight and
simple structure, which can be applied for areas with requirement of flexi-
ble spherical motion. Nevertheless, the multi-layer design is advantageous of
straightforward actuating principle, which can realize 3-dof spherical motion
with simple control systems. Simulations were carried out to evaluate the
torque performance. With the same input current value of 3 A, the maximum
torque output of the multi-layer SMG is 24.6256 mNM which is higher than
that of the single-layer SMG with the value of 19.6211 mNM. By contrast,
the multi-layer SMG can be used in applications that require large torque
outputs.

6.2 Concluding remarks

A novel design of integrated electromagnetic driven spherical motion gen-
erator was proposed and theoretically investigated. The kinematic model of
the spherical parallel manipulator with coaxial shafts is analyzed for evaluat-
ing the workspace and singularity. Analytical magnetic models including the
3D magnetic field distribution and torque modeling are formulated with rea-
sonable accuracy, and validated by the numerical finite element methods and
experiments, which are applied for actuating strategy of the spherical motion
generator. A hybrid control algorithm that combines adaptive control, itera-
tive learning control and robust control together is developed to improve the
trajectory tracking performance of the spherical motion generator.

Within this PhD thesis, the following contributions are made to the devel-
opment of novel electromagnetic driven spherical motion generators:

1. Spherical motion generators integrated with multi-dof electromagnetic actua-
tion is modeled and made into prototypes. It is the first time that the spheri-
cal parallel manipulator and electromagnetic driven spherical actuators
are integrated together in the spherical motion generator, which brings
benefits of compact and light-weight structure, no backlash and rapid
response.

2. Analytical magnetic models of the spherical motion generators are formulated.

87



Chapter 6. Conclusions

The rotor structure of the spherical motion generator is constructed
by permanent magnet arrays. Magnetic charge model is adopted to
analyze the magnetic field distribution of the rotor array. A torque
model is formulated using the moment principle based on the analytical
results of the magnetic field in 3D coordinate system. Both models are
verified by a numerical finite element software Ansoft and experiments.
The analytical models are then used for the driving implementation of
the spherical motion generator.

3. A robust switching leaning PD algorithm is proposed for the trajectory track-
ing control. The nonlinear dynamics of the newly designed spherical
motion generator is formulated with modeling uncertainties and exter-
nal disturbances. Compared with conventional PD control algorithm,
the robust switching learning PD control can obtain better trajectory
tracking performance, which has been validated by the co-simulation
model established in Matlab/Simulink and ADAMS.

6.3 Future work

The work presented in this thesis was primarily concerned with the inte-
grated design, analytical modeling and dynamic control of the spherical mo-
tion generator in the early stage. No consideration was given to the struc-
ture optimization, integrated control algorithm for the electromagnetic driven
spherical motion generator. Whereas, they are crucial issues for its applica-
tions. Some future works are recommended:

e For the developed spherical motion generators with multi-dof actua-
tion, the stator of actuation is constructed by numerous stator coils,
which increases difficulty of current control. In order to simply the the
current control system and the electric hardware design, the stator coils
could be designed as the sliding units, and the permanent magnet array
could be designed as the stators.

e Control algorithm depends on effective position detecting methods.
High-precision and real-time position detecting systems are required.

e Analytical magnetic modeling for the spherical motion generator has
been developed with reasonable accuracy. These analytical models
could be further applied for the structure optimization to improve the
torque output performance of spherical motion generators, and they
can be combined with position control algorithms to obtain an inte-
grated control strategy to enhance the overall performance of the sys-
tem.
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6.3. Future work

e Several controllers have been designed to improve the trajectory track-
ing performance of the spherical motion generator, and the control al-
gorithms were validated by the co-simulation platform. Experiments
could be developed to verify the algorithm based on the current proto-
type with multi-layer actuation.
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