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ABSTRACT
Accelerated local deployments of renewable energy sources and
energy storage units, as well as increased overall flexibility in local
demand and supply through active user involvement and smart
energy solutions, open up new opportunities (e.g., self-sufficiency
and CO2 neutrality through local renewables) and yet pose new
challenges (e.g., how to maintain the security of supply and get
the best yield) to market players in the lower parts of the energy
system (including prosumers, energy communities, aggregators, and
distribution system operators (DSOs)). One way to cope with the
challenges requires "logical" reorganization of the energy system
bottom-up as a number of nested (maximally) self-sufficient and
interacting cells with their own local (i.e. within a cell) energy
management and trading capabilities. This change necessitates ef-
fective IT-based solutions. Towards this goal, we propose a unified
Flexibility Modeling, Management, and Trading System (FMTS)
that generalizes flexibility modeling, management, and intra-cell
trading in such cellular energy systems. Our system offers differ-
ent flexibility provisioning options (Machine Learning based, and
Model Predictive Control based), activation mechanisms (indirect
and direct device-control), and trading schemes (e.g. flexibility con-
tracts, market-based trading) and suits different cellular system
use-cases. In this paper, we introduce the FMTS, overview its core
functionality and components, and explain how it practically man-
ages, prices, and trades flexibility from a diverse variety of loads.
We then introduce the real-world FMTS instances developed in the
GOFLEX project1 and present experimental results that demon-
strate significantly increased flexibility capacities, user gains, and
balance between demand and supply when an FMTS instance is
used in the simulated cellular energy system setting.
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1 INTRODUCTION
More and more renewable energy sources (RESs), energy storage
units (batteries), and advanced power metering and energy man-
agement solutions are being deployed at the lower levels of the
energy system. This opens up new opportunities at the lower levels
of the energy system to existing and emerging market players (e.g.,
prosumers, energy communities, aggregators). These players can
finally form (virtual or physical)micro-grids by owning, controlling,
and optimizing their local electricity assets to best suit their own
(and not supplier or system operator) needs of, e.g., self-sufficiency,
CO2 neutrality, or increased utilization of the local renewables at
reduced overall cost. This, however, changes the way the tradi-
tional (top-down) energy system works and poses new challenges
(e.g., intermittent RES production) for local system operators (e.g.,
DSOs) to control electricity flows in their local grids, the security
of which they were traditionally responsible for. To cope with this
challenge, the idea of a so-called cellular energy system [16, 20, 40]
has emerged as a new way of organizing and structuring the lower
levels of the existing energy system e.g., (sub-) DSO grid (see Fig-
ure 1a). Similar to the Internet, cellular energy system consists of
a number of cells (sub-networks), where each is defined by a set
of players (roles) operating in the area with their own energy as-
sets and energy management and trading/exchange capabilities.
Cells are organized hierarchically such that cells may reside within
other cells in a manner similar to nesting dolls (see Figure 1a). The
cellular system works bottom-up: the smallest cells (sub-systems)
are commercial and residential buildings, houses and industrial
plants (e.g. performing as micro-grids). The next level corresponds
to the energy communities managing energy within a local area
containing a number of independent or nested cells. The third level
typically corresponds to distribution grids and the fourth level to
transmission grids. At each level, market players such as energy
producers, energy community operators, aggregators, and DSOs are
interlinked and have specific responsibilities (and opportunities).

Typically, each cell has to maintain a balance between electricity
demand and supply, and account for any imbalances generated (like
in the higher levels of the traditional energy system). Maintaining
such a balance might be quite challenging at the lower level cells,
where significant production typically comes from RES. As RES
production is highly volatile, intermittent, and irregular, flexibility
[7, 10, 17, 21, 23, 24, 28, 30, 38] in demand and supply is essential
to counteract. There exist many sources of demand flexibility, e.g.,
electric vehicles (EVs) or a single heat-pump with its own intrinsic
flexibility in time and energy amount [25, 35], as well as sources of
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(a) Grid view.

(b) Flexibility services hierarchy.
Figure 1: Bottom-up cellular energy system.

supply flexibility, e.g., batteries, EVs, traditional generators. Typi-
cally, individual cells may procure and use flexibility for their own
needs (which we denote as self-balancing). When it is more prof-
itable, the cells may be willing to offer excess flexibility to their
neighboring and/or top-level cells (e.g., that of a DSO) to help them
balance the grid. Figure 1b describes a bottom-up energy system in
terms of such a desired flexibility exchange hierarchy.

Such bottom-up cellular energy systems entail a number of high-
level requirements for (the IT infrastructure of) flexibility manage-
ment, which we group and formulate below.
(1) Extensible IT Infrastructure Individual actors within a cell

should be equipped with a flexible and extensible IT infras-
tructure to manage energy demand and supply flexibilities.
It should offer robust inter-operable flexibility provisioning,
management, optimization, and trading tools, which can be
extended and customized for specific actor needs and their
individual business models.

(2) Flexibility Management and Exchange Cell actors need
to be equipped with tools to automatically provision, (dis-
)aggregate, and optimize flexibility from a diverse variety of
unit loads (e.g., EVs), and activate it at desired time, place, and
amount in a scalable and timely manner (before physical gen-
eration and consumption takes place). As flexibility exchange
between cells is desired, the tools have to understand (model)
flexibility in a unified and unambiguous way.

(3) Flexibility Pricing and Trading Cell actors need to be equip-
ped with flexibility trading tools that can (1) offer rigorous

pricing schemes for flexibility and its activation, (2) support
bi-lateral (flexibility) contracts between actors and actor billing,
(3) offer flexibility trading between cells either bi-laterally or
via a market system, (4) support traditional electricity markets
and power exchanges.

This paper presents a Flexibility Modeling, Management, and
Trading System (FMTS) that fulfills these requirements and thus
generalizes flexibility modeling, management, and intra-cell trad-
ing in such cellular energy systems. In general, FMTS equips cell
actors (including prosumers, energy communities, aggregators,
DSOs) with an inter-operable stack of IT tools for extracting, (dis-
)aggregating, optimizing, pricing/billing generalized flexibility from
a variety of loads (unit or aggregated) and allow exchanging flexi-
bility across cell boundaries either bi-laterally and/or via trading
in a local flexibility market. FMTS is novel in terms of the unique
interplay of concepts, techniques, and components, the majority of
which have already been proposed and demonstrated in isolation
in (mostly our) earlier work. The key FMTS concept is a so-called
FlexOffer [1, 2, 9, 22] that generalizes flexibility from a variety of
loads. The three instances of FMTS have been practically deployed
and are currently undergoing real-world trials in three European
cities. This paper takes a holistic view and aims at presenting the
full breadth of this system, primarily focusing on system archi-
tecture and integration aspects, and giving references for detailed
algorithms. The major contributions of this paper include:

(1) Showing how FMTS facilitates the cellular energy systems: pre-
senting the conceptual FMTS architecture and its sub-systems
and explaining how all sub-systems work and should be used
by different actors.

(2) Explaining how the existing concepts and techniques can work
together as a whole in practice: how flexibility portfolios (Flex-
Offers) are generated, priced, (dis-)aggregated, optimized, and
executed using traditional data management, machine learning,
optimization, and specialized techniques.

(3) Discussing the three pilot instances (demonstrations) of FMTS
currently taking place in the GOFLEX project.

(4) Presenting and discussing the results of a large-scale simu-
lation (replicating the demo sites), which demonstrates that
FMTS incurs significant prosumer gains (savings) and yields
substantial reductions of imbalances in scenarios with peer
and nested cells managing typical consumption/generation
flexibility capacities.

The paper is organized as follows. We introduce the FlexOffer
concept in Section 2. Section 3 provides an overview of the system
architecture. Techniques for flexibility extraction and management
is presented in Section 4. We discuss flexibility pricing and trading
in Section 5. Pilots and simulated experiments are presented in
Section 6 and Section 7. Finally, we conclude and discuss future
work in Section 8.

2 THE FLEXOFFER CONCEPT
FMTS relies on the so-called FlexOffer (FO), which offers a com-
mon unified representation of flexibility in electricity demand and
supply. Its initial variant was proposed by the European project
MIRABEL [1, 9, 22] and further refined in the subsequent projects
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and studies [2, 3, 39]. An FO is a data object which explicitly cap-
tures flexibility as a pre-defined set of common constraints (e.g.,
load activation time and amount). This makes it practical to ex-
change flexibility information between different entities. For exam-
ple, in FMTS, FOs are extracted from individual consumption or
production flexible resources, e.g., heat pumps, and then propagated
through a number of FO manager sub-systems of different cells in
the aggregated form, still in the same common FO representation.
To cover a wide range of flexible resources, an FO identifies inherent
dimensions (types) of flexibility and uses common specialized con-
straints to characterize each of them. In general, an FO may include
the following types of constraints (mathematical inequalities):
• Start time constraint – a range defining the earliest and latest
start time of consumption or production of a flexible resource.

• Energy amount constraint – a range defining the minimum
and maximum energy amounts in a given time slice (typically
15 min). An FO typically defines a sequence of such constraints.

• Total energy constraint – a range defining the minimum and
maximum total energy amount within the full active operation
of a flexible resource, e.g., the total amount to charge an EV.

• Dependent energy amount constraint – for loads with the
rebound effect [15] (e.g., heat-pump loads), the dependent en-
ergy constraint captures the minimum and maximum energy
amounts in a given time slice in dependence to the total energy
consumed or produced at preceding time slices of the active
device operation [39].

• Acceptance time constraint – a parameter that sets the dead-
line on when an FO receiving cell should acknowledge success-
ful acceptance or rejection of the FO. An FO rejection may
occur if, e.g., FO constraints or other metadata are invalid or
inappropriate (e.g., quantities are too small, prices are too high).

• Assignment time constraint – a parameter that sets the dead-
lines on when an FO schedule update (assignment) is allowed
to be sent by the FO receiving cell to FO issuing cell. A deadline
can be an absolute timestamp or a relative duration with respect
to the scheduled operation activation time.
Here, start time and energy amount constraints are often suf-

ficient to capture the flexibility of the most common load types.
Given these basic constraints, we define the FlexOffer as follows:

Definition 1. A FlexOffer f is a tuple f = ([tes, tls], p, tds, pds),
where [tes , tls] is a time interval defining the earliest start time (EST)
and the latest start time (LST), in which the device operation has to
start.p is the energy profile given as a sequence of slices ⟨s1, . . . , sd⟩,
where a slice si is a continuous range [eimin, e

i
max ] defined by the

minimum eimin and maximum eimax energy bounds, and d is the
number of slices in p. tds and pds constitute a so-called default
schedule: tds is a time stamp, tes ≤ tds ≤ tls , at which the device is
expected to start by default (e.g., when not overridden by an external
system) and pds =

〈
e1ds , . . . , e

d
ds

〉
, ∀i = 1 : d : eimin ≤ eids ≤ eimax ,

are corresponding energy amounts of this operation.

Figure 2 shows an example of an FO f representing the energy
demand for a single charging event of an EV. The FO in the figure
states that the EV could be charged starting anytime between 4
PM and 12 AM. The FO has an energy profile with five consec-
utive slices: s1 = [0.6, 2], s2 = [1, 3], s3 = [0.9, 2.7], s4 = [0.8, 2. 6],
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Figure 2: A sample FlexOffer from EV.

Figure 3: FlexOffer life-cycle – process view.

and s5 = [0.4, 1.2], where the first and the second elements repre-
sent the height of the light-shaded (emin) and dark-shaded (emax )

bars in the figure, respectively. The start time flexibility of the FO f
is the difference between LST and EST, i.e., tf (f ) = tls− tes = 8 hours.
Further, tle represents the latest end time (LET) of the last slice and
is calculated as tle = tls + d. Similarly, the energy amount flexibility
af (f ) is the difference between max and min energy for each slice,
and total energy flexibility is given implicitly by the sum of the
differences between amount bound of all slices, i.e.,

∑d
i=1 e(max,i)−

e(min, i) = 5.8 kWh. The values captured by an FO largely depend on
the flexibility source. For example, FOs from EV charging stations
and factories are "large enough", and could be directly traded on the
market, whereas FOs from heat pumps and EVs typically represent
small flexible loads and need to be aggregated into larger (macro)
FOs before trading.

2.1 FlexOffer Life Cycle
From generation until execution, an FO goes through several phases
during its life-cycle as depicted in Figure 3 and described below:

(1) Data collection: The first phase involves the collection and
storage of energy consumption data from flexible devices (e.g.,
washing machine, dishwasher, EV, etc.). IoT infrastructure, en-
ergy management systems, and off-the-shelf smart plugs may
be used to collect data at device level, whereas smart energy
meters may be deployed to collect data at house/building level.

(2) Predictive model building and demand prognosis: An FO
is essentially an estimation of a load’s future behavior and its
flexibility, which requires forecasting of the future energy de-
mand and the associated flexibility. Thus, we need to develop
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Figure 4: FMTS architecture.

models to analyze user behavior and predict future energy de-
mand [13, 26]. The predicted energy demand and the associated
flexibility data is used to generate FOs [27].

(3) FlexOffer aggregation/disaggregation: Individual FOs are
combined into large aggregated FOs to make them more useful,
valuable, and computationally tractable [31, 32].

(4) FlexOffer optimization/trading: Aggregated FOs are used
in direct energy optimization and/or traded on the market.

(5) Schedule execution: In response to aggregated FOs, aggre-
gated schedules are generated. Then, these are disaggregated
and forwarded to the corresponding loads.

We explain how FMTS facilitates these phases in Sections 4-5.

3 FMTS OVERVIEW
FMTS is a decentralized system that realizes flexibility (FO) col-
lection, management, and trading, while encompassing all active
cellular energy system players, including flexibility providers (pro-
sumers) and flexibility buyers (e.g., energy community aggregators,
DSOs). In this section, we overview FMTS core functionality, de-
scribing the core components/subsystems and how they interact.

The overall architecture of FMTS is shown in Figure 4. So-called
FlexOffer Agents (FOAs) monitor and control physical loads in
(near) real-time and offer load-type specific flexibility extraction
tools to generate FOs. So-called FlexOffer Managers (FMANs) pro-
cess and continuously optimize such FOs to meet some desired ob-
jective, e.g., minimize cost or make a cell maximally self-sufficient.
This objective is set and can be changed over time depending on the
business needs of a cell-managing actor (e.g., a prosumer). Further,
FMANs also enable inter-cell flexibility transactions. In the nested
configuration, an FMAN exchanges flexibility based on bilateral
contracts between FMAN and/or FOA users of the inner and outer
cells. Flexibility trading between (peer) cells at the same level is han-
dled through a so-called FlexOffer Market (FMAR). FMAR is to be
hosted by a third-party or the actor of the outer level cell (contain-
ing the two cells). For larger cells (and large flexibility capacities),
the FlexOffer Manager can be inter-connected with traditional elec-
tricity markets (e.g., local, national, or regional electricity markets
like NordPool 2), where flexibility can be converted into products
for day-ahead, intra-day, or intra-hour trading. Next, we describe
the three core sub-systems of FMTS in more detail.

2https://www.nordpoolgroup.com/

Figure 5: FOA capabilities and internal architecture.

3.1 FlexOffer Agent (FOA)
FlexOffer Agent (FOA) is an extensible and highly customizable
component of an FMTS that is responsible for the generation and
execution of FOs for one or multiple flexible loads (both produc-
tion and consumption). It forms individual FOs, delivers FOs to
the FMAN, receives disaggregated schedules from the FMAN, and
activates the flexible loads according to the received schedules. The
generic conceptual FOA architecture is given in Figure 5.

In general, FOA is a component that emits FOs and consumes
FO schedules, and acts as a bridge between an FMAN and an en-
ergy management system (xEMS) handling multiple physical loads.
Therefore, as seen in Figure 5, the actual capabilities of the FOA
depend on the available functionality of the xEMS. For example,
the FOA serves only as an FO/schedule gateway (interface) when
the xEMS is an advanced extensible system with built-in energy
prediction and optimization capabilities. When no xEMS is avail-
able on site, the FOA then takes the role of xEMS and integrates
advanced predictive logic and also performs the function of xEMS
(using built-in EMS). In its full configuration, the FOA has four ma-
jor components, i) core component with all common functionality,
ii) generator component for provisioning FOs, iii) xEMS interface
for communicating with an existing xEMS, and iv) built-in EMS
to control the load if there is no existing EMS. It may also offer a
Graphical User Interface (GUI) for administrators (aggregators) and
load owners/users for configuration of load and flexibility parame-
ters. The FOA may be deployed either locally at the site of a single
load or in a cloud, e.g., for controlling 1000s of loads.

3.2 FlexOffer Manager (FMAN)
The FlexOffer Manager (FMAN) is a central component of a cell. It
manages available flexibility, performs energy optimization (e.g.,
demand-supply balancing), and exchanges FOs either within nested
cells (via FMAN of another cell) or trades FOs with other peer cells
(via FMAR). It integrates advanced FO aggregation, disaggregation,
optimization functionalities, and may offer a GUI, which allows its
users analyzing, trading, and shaping available flexibility in near
real-time. In simple cases, the FMAN may operate a cell in isolation
and offer efficient unit FO aggregation and energy optimization
functionalities, e.g., for demand-supply balancing, congestion man-
agement. In more advanced cases, the FMAN may first aggregate
flexibility (FOs) from FOAs and FMANs at lower levels and then
trade the flexibility with other independent adjacent cells through
the FMAR. The FMAN is also responsible for (1) disaggregation
of the schedules received from the FMAR or FMAN at the upper
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level and (2) schedule forwarding to the respective FOAs (or lower
level FMANs) for subsequent handling and execution. Finally, the
FMAN handles contracts, flexibility prices, and billing based on bi-
lateral contracts between the FMAN user and flexibility providers,
as detailed in Section 5.

3.3 FlexOffer Market (FMAR)
FlexOffer Market (FMAR) is a component that realizes the local
flexibility market. It can be run by a third party or an outer level
cell. The FMAR facilitates flexibility trading and exchange between
a number of peer cells belonging to the same shared outer cells.
It natively supports flexibility products defined by FOs. Further,
the FMAR offers various flexibility trading options based on, e.g.,
single-sided pool (for cases when there is a single buyer of flexibil-
ity) or multi-sided pool (for cases when there are multiple buyers
of flexibility). Based on the configuration, the FMAR automatically
matches and selects consumption and production FOs from the pool
of FOs received from FMANs of various cells and then generates
assignments (schedules) for the winning parties. FOs are selected
based on the location of the flexible loads, size, price, and its poten-
tial for catering the market requirements (e.g., avoiding congestion)
[37]. The FMAR is also responsible for forwarding FOs acceptance
status and schedules to the respective FMAN, which is eventually
forwarded to individual loads for execution. If FO schedules are
executed correctly, the involved parties are remunerated based on
respective market transactions.

4 FLEXIBILITY EXTRACTION AND
MANAGEMENT

4.1 Flexibility Extraction
Generating meaningful and accurate FOs is not trivial. For loads
that continuously consume energy (e.g., heat pumps), FOs are typi-
cally generated on an hourly or daily basis, whereas other flexible
loads (e.g., dishwasher, washer dryer) can emit FOs when needed
[25]. Generating FO for a flexible load implies predicting the con-
sumption (or production) of the load while satisfying a given set of
constraints (e.g., comfort temperature interval, load capacity). This
is most often done using a model of the flexible load, the relevant pa-
rameters for the predictions (e.g., temperature, solar radiation), and
environmental and other constraints (e.g., comfort settings). The
model is employed by FOAs to estimate energy and time flexibility
using various techniques as described next.

Human in the loop FO extraction: Human in the loop is the
most basic method of FO extraction, where users are asked to inter-
act with the system and provide flexibility parameters. For example,
a user can use a dedicated application (a part of FOA) to signal
the readiness of the dishwasher or washer dryer for operation. Re-
ceiving the signal, the FO generator utilizes the user configured
parameters to generate FO for the load operation. This approach
is quite accurate but suffers from response fatigue with the users’
response rate decreasing gradually over time.

ML-based techniques: Machine Learning (ML) based FOs gen-
eration relies on user behavior data and predictive models for esti-
mating various FO parameters, which reduces or altogether elim-
inates user interaction [18, 27]. The FO generation process starts
with the gathering of the energy demand time series and available

Figure 6: Examples of energy profiles used to compute sim-
ple FO energy amount bounds.

context information relevant to the flexible load. For example, to
generate an FO for a heat pump, information about occupancy,
house insulation parameters, etc., could be collected. The raw infor-
mation is then preprocessed into a format required for analyzing
and predicting timestamps and values for the FO attributes. After
preprocessing, the first step is the time flexibility extraction which
involves the prediction of timestamps of various actions involved
in the operation of flexible resources (e.g., plug-in and plug-out
time for EVs). The second step is the amount flexibility extraction
which includes the prediction of the number of slices in FOs, i.e.,
the number of time units required for the completion of the defined
task and the minimum and maximum energy bounds for the in-
dividual slices. For example, estimating the state of charge (SOC)
level for EV. The final step combines the outputs of the previous
two steps to generate FOs for the flexible load’s future operations.

Dynamic systemmodeling techniques Dynamic system mo-
deling offers more rigorous techniques to generate FOs. For this, an
FOA implements a typical model predictive control (MPC) scheme
to control an underlying physical load (or process) in real-time. On
top of that, FOA uses the dynamic system model, e.g., state-space
model, with all underlying process constraints natively used by an
MPC controller to estimate available flexibility bounds for inclusion
into an FO. Actual bound estimation technique depends on whether
simple energy amount constraint or dependent energy constraint is
required (see Section 2).

Energy amount constraint: If simple energy amount con-
straint is enabled, FOA periodically (e.g., every 15 mins) solves an
optimization problem, which predicts future energy loads (profiles)
under maximum and minimum power conditions assumed for the
processes in the present state at some time t . As shown in Figure 6,
FO energy amount bounds of the consecutive slices correspond
to maximum and minimum predicted energy amounts of the two
profiles – but only those with valid bounds (t + 1..t + 3).

Dependent energy constraint: If more advanced dependent
energy constraint is enabled, FOA periodically (e.g., every 15 mins)
makes a symbolic rewriting [39] of the model constraints by apply-
ing Fourier-Motzkin variable elimination [11] to produce a system
of equations in a format required by this FO constraint. This tech-
nique allows preserving inherent energy dependencies between
consecutive time intervals (e.g., of a rebound effect [15]) while still
offering scalable FO aggregation (and optimization) [39].

4.2 Aggregation/disaggregation
FOs from individual flexible resources (e.g., heat pumps, EVs) typi-
cally represent small flexible loads. Thus, a single (small) FO has
low impact and is of little interest for peak shaving, electricity trad-
ing, and balancing demand and supply in a cell, where required
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Figure 7: FlexOffer aggregation and disaggregation [29].

balancing capacities are much higher. At the same time, managing
large numbers of individual FOs is tedious and complex. A common
solution is to utilize FO aggregation, where flexibilities from indi-
vidual flexible loads are combined and offered in a more useful and
effective aggregated form [4, 12, 32–34, 37, 39]. The aggregated FOs
have much larger energy amounts and flexibility margins and are
easier to manage. Aggregating large number of FOs, however, is a
computationally hard problem, which requires dealing with many
decision variables and constraints originating from many FOs.

To optimize aggregation, FOs can be grouped based on a similar-
ity measure (e.g., consumption pattern). Aggregation is typically
performed by entities called aggregators using FMANs. An FMAN
receives FOs from individual FOAs (or lower level FMANs) and
then aggregate these FOs. The flexibility of aggregated FOs tends
to be lower than the joint flexibility of the FOs that compose them.
This reduction in flexibility is, however, unavoidable in order to
reduce FOs scheduling complexity and to increase their value (e.g.,
on the flexibility market). After aggregation, schedules are typically
assigned to the aggregated FOs (e.g., based on energy sold on the
market). By respecting all inherent aggregated FOs constraints,
a schedule specifies the exact start times and aggregated energy
amounts assigned to the underlying flexible resources. Such sched-
ules are disaggregated to schedules for each individual FO it is
composed of. This operation is denoted FO disaggregation. Disag-
gregated schedules are finally forwarded to the flexible resources
which initially offered flexibility. The process of FO aggregation,
scheduling, and disaggregation is illustrated in Figure 7 and ex-
plained in greater detail in [32].

4.3 Optimization
Common shared representation of flexibility (FOs) enables highly
robust energy optimization techniques inside FMTS, which are
tailored specifically for FOs. As such, FMTS dynamically chooses
an actual solving technique depending on (1) optimization objec-
tive (e.g., demand-supply balancing, portfolio cost reduction, en-
ergy maximization/minimization within a period), and (2) types
of constraints enabled and used inside FOs. For example, FMTS
uses standard linear programming techniques to generate sched-
ules for simple linear objectives and basic energy amount, total
energy constraint, and dependent energy amount constraints. When
start-time constraint is used inside FOs, FMTS uses mixed-integer
programming (MIP) to find (semi-)optimal schedules with start-time
parameters taking discrete values. Alternatively, the best effort tech-
niques like simulated annealing, hill-climber can be used to cope
with such discrete-value constraints. For more complex planning
objectives and various combinations of FO constraints, a specialized
genetics-inspired technique [33] is used. In all cases, FO aggrega-
tion is performed prior to optimization to reduce the total number
of decision variables and thus the overall planning complexity. This
enables our optimization techniques to converge much faster than

the 15-minute planning period standardized in FMTS. A detailed
discussion on the optimization result quality and the execution
time is provided in [33].

4.4 Scheduling
Once an aggregated FO has been optimized and a schedule assigned
to it, the FMAN disaggregates the schedule of the aggregated FO
into their respective individual schedules denoting the exact time
and amount of energy that has to be consumed by each individual
load. The FOA is responsible for executing the received schedule.
For each received schedule, the FOA first verifies that the schedule
satisfies the constraints encoded in the FO. If the schedule is invalid,
the default schedule is executed, and the issuing component (FMAN
or FMAR) is notified about the event. In case of valid schedule, the
FOA operates the flexible load according to the received schedule.
Depending on the unit type, the schedule can either be stored on
the unit itself or in the cloud instance of FOA.

4.5 Monitoring and Control
The FOAs of FMTS support energy management for various types
of end users (factory, household, EV charging station center). It
basically provides the following two services 1) monitoring of indi-
vidual flexible load operation and 2) control of the individual flexible
load operation according to the needs of both the prosumer and the
flexibility end user (e.g., aggregator). The monitoring includes tasks
such as checking health, recording energy consumption, efficiency,
etc., whereas control includes tasks such as the execution of a sched-
ule and maintaining the normal operation. Often, the monitoring
and control of a flexible load are performed via a third-party xEMS
system, as discussed in Section 3.1.

5 FLEXIBILITY TRADING AND PRICING
Currently, grid actors trade electricity on existing traditional day-
ahead (spot), intra-day, and regulation energy markets [36]. Our
system also utilizes a so-called flexibility market (i.e., FMAR). It
is based on a variation of the product-mix auction [19], in which
the commodities are flexible energy loads for specific geographical
areas. This model is designed to deal with the product mix problem,
in which multiple varieties of a product with different costs are sup-
plied, but with a constraint on the total capacity. Here the product
is flexibility, and the varieties are positive and negative flexibility.
Each bidder can make one or more bids, and each bid contains a set
of mutually exclusive offers. Bids in the flexibility market are in fact
mutually exclusive, since using both negative and positive flexibil-
ity for a given geographical area would not make sense. Two types
of bids can be made, supply bids, offering flexibility, and demand
bids requesting it. The auctioneer then selects the market clearing
price that for each bid gives bidders the greatest surplus. Offers
with a negative surplus are rejected. This is visualized in Figure 8.
In both graphs, a bid is represented by a horizontal segment. The
length of a segment determines the supplied or demanded flexibility
amounts, while its position on the Y-axis shows the associated price.
On the left side, Up Bids correspond to bids for negative flexibility,
while Down Bids are for positive flexibility. The market clearing
price is found at the intersection between demand and supply lines.
Supply bids above this line are rejected, similar to demand.
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Figure 8: Visualization of market clearing price [22].

Figure 9: Pricing of flexibility based on FO contracts. Green
and orange areas represent potential buying and selling
prices, respectively.

FMTS supports two trading modes: delegated and direct:
Delegated Trading: A cell may exchange its flexibility with

another cell (e.g., of aggregator), which will reward the cells based
on a pre-agreed bi-lateral contract. Such contract includes multiple
parameters, which rigorously define howflexibility should be priced.
The cells will only report their flexibility (through FOA or FMAN),
and the actual flexibility price will be calculated by the FMAN of
the delegated cell. This trading mode is to be used by smaller cells
(e.g., of prosumer) with no support for local energy optimization.

Direct Trading: A cell is allowed to actively price its offered
flexibility (through its FOA or an FMAN) before exchanging it with
FMAN. FMAN may decide to reject the offer, e.g. if the price is too
high. This trading mode is to be used by medium and large cells
(e.g., prosumers, aggregators) capable of actively performing local
energy optimization while taking actual energy prices into account.
In direct trading, the price of flexibility is incorporated into an FO
in the form of "V-shaped price curves", described next.

5.1 Flexibility Pricing
As given in Definition 1, an FO includes a default schedule (aka.,
baseline) which expresses the flexibility provider’s (e.g., prosumer’s)
preferred (often locally optimal) energy amounts to be produced or
consumed in the future (e1ds , · · · , e

d
ds ), along with energy bounds

([e1min , e
1
max ], · · · , [e

d
min , e

d
max ]) in which this default schedule can

be varied (overridden) by a flexibility buyer (e.g., aggregator). To
reward the provider for implementing this variation, each FO may
define, a so-called deviation price, which is a minimum price to
be paid for requesting a 1 kWh deviation from the default sched-
ule (baseline). Within the available energy bounds, this yield d
V-shaped price curves (in the linear case) associated with each dis-
crete time interval of active device operation. – see Figure 9. Note,
this deviation price also allows defining maximum buying price in
the case of a buying FO bid issued on the market.

The price not smaller than the deviation price is paid for the
successful activation of flexibility (a deviation from the baseline).

Thus, flexibility can be dynamically priced based on parameters
such as offered time interval, grid location, flexibility type, etc. Al-
ternatively, in the delegated trading case, flexibility may be treated
as an asset and priced in the explicit form (e.g., monthly), where
the flexibility buyer may reward the flexibility provider based on
the number of FOs, total time and energy flexibility, etc. offered.

6 LARGE-SCALE PILOTS AND SIMULATION
6.1 Real-world Pilots
The system is deployed and being tested at three different Euro-
pean pilot sites, where each individual pilot case offers different
aspects of the electricity systems, aiming to include every reason-
ably encountered prosumer and process. In all pilot cases, FMTS is
instantiated at its full scale with a number of FOA instances control-
ling different type of loads (industrial loads, household loads, and
EVs), a number of aggregator instances based on FMAN, and a local
flexibility market based on FMAR. Below, the FMTS configuration
is given for each pilot case.

6.1.1 German Pilot Case. The first pilot site is in the city of Wun-
siedel, Germany, which aims to become self-sufficient by synchro-
nizing and decentralizing energy production and distribution. The
utility company SWW plays the role of both energy provider and
DSO. The pilot case aims to involve all SWW prosumers with PV
production, 4 wind turbines, and several power plants, with the
objective to minimize corrective costs and losses for SWW and
reduce peak loads by utilizing the FMTS solution.

6.1.2 Swiss Pilot Case. The second pilot site is in Valais, Switzer-
land. The utility company ESR serves as both energy provider and
DSO. The pilot case involves over 200 prosumers with PV instal-
lations and flexible loads (such as boilers, heat pumps, etc.). The
pilot objectives include the reduction of corrective costs for ESR
(e.g., using one day-ahead planning to reduce intra-day correction
costs), and using DSM to reduce peak loads.

6.1.3 Cyprus Pilot Case. The third pilot site is located at the Uni-
versity of Cyprus in Nicosia. The pilot case includes various campus
facilities, PV systems, and storage systems, aiming to emulate differ-
ent prosumer types and market activities. As in the previous pilot
cases, the main focus of this pilot case is utilizing the FMTS solution
to maximize self-consumption through intelligent shaping of daily
consumption profiles according to distributed RES generation.

6.1.4 Preliminary Trial Results. The system trials have been going
on for seven months as of May 2019. We only consider prosumers
with no xEMS loads (i.e., connected to Smart Plugs). So far, the
system has 29 such prosumers with 93 flexible loads across the
three pilot sites. Presently, 3.95 FOs are generated per load per day,
which amounts to 0.78 MWh of flexible energy per month. The ratio
of flexible energy to the total energy (from flexible loads) is 11%
under a relatively conservative flexibility extraction strategy. When
the trials run at full scale, the number of prosumers and flexible
loads are expected to exceed 80 and 250, respectively. The total
flexible energy is expected to exceed 3 MWh per month. Similarly,
the ratio of flexible energy to the total energy is expected to be
>20% as a less conservative flexibility extraction strategy is adopted.
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6.2 Simulation
As described in the preceding section, a number of FMTS instances
have already been deployed in three pilot sites. However, at the
time of writing this paper, we have not collected enough data for
extensive evaluation. Accordingly, we test FMTS in a simulated
environment at a large scale with many users and loads, and under
different cell configurations. To simulate all kinds of flexible loads,
we have developed a so-called Flexible Load Simulator (FLS), which
is a client-server-based simulation tool based on Modelica [14].
FMTS sub-systems can connect to FLS to emulate physical loads in a
co-simulation mode with a global clock, where the sub-systems can
access simulated data and control a number of simulated processes
(electric loads) in online fashion. FLS provides the same interface
and load control logic as in the pilot sites, thus providing a replica of
the actual pilot sites to FMTS for realistic evaluation. Internally, FLS
stores the flexible load models as functional mock-up units (FMUs),
which are standard inter-changeable units to store the models of
physical systems [8]. FLS first instantiates all the models (FMUs of
flexible loads) and then starts the real-time simulation of the models.
FOAs may post the desired control signal for forcing a change in
load behavior or changing model parameters. For simplicity, the
simulation engine treats all the system models independently.

For simulation, we use the following two types of loadmodels [6]:

(1) Exponential Decay Model: The power consumption rate of
such loads follows an exponential decay curve, dropping from
the initial surge power ppeak to a stable power pactive at a
decay rate λ. Refrigerators and Freezers usually follow this
model (p(t) = pactive + (ppeak − pactive )e

−λt ) [6].
(2) Heat Pump Model: The heat pump system is modeled as an

ordinary linear time-invariant (LTI) single-input-single-output
(SISO) first order system. Details are provided in [39].

7 RESULTS
In this section, we present the results of the simulated experiments
to evaluate different aspects of FMTS (RES utilization, grid balanc-
ing, and user gains), when the grid is organized as cells with local
consumption and production units and load management.

7.1 Experiment Setup
The experiments have been designed to simulate typical cellular
grid scenarios. We involve three cells: C1 and C2, and C12 which
includes C1 and C2. Each cell is managed by a dedicated FMAN
(hereafter called FMAN1, FMAN2, and FMAN12). C1 and C2 are
configured to have 25 household prosumers distributed across the
cell area, and each prosumer is set to have 5 flexible loads including
two electric heat pumps, one refrigerator, one freezer, and a PV.
These loads are chosen because they are common in the pilot sites.
Table 1 provides the details of each load. In addition, each prosumer
has some inflexible baseload which is derived from the average
electricity demand profile in DK1 region of Denmark [5].

We consider three different cell interaction scenarios:

• Local Cell Optimization: In this baseline scenario, C1 and C2
performs local demand and supply balancing with the objective
tomaximize the self-consumption of RES and reduce imbalances
towards C12.

Load Name Model Parameters
Refrigerator Exponential Decay ppeak=650.5Watt,

pactive=126.2Watt, λ=0.27
Freezer Exponential Decay ppeak=430.0Watt,

pactive=120.1Watt, λ=0.25
Heat Pump Single Input Single

Output (SISO) Lin-
ear System

A=-0.01, B=0.002, C=1, D=0

Solar PV Solar PV System Typical summer day PV pro-
duction profile in Denmark

Table 1: Simulated loads used in the experiment.

Contract Parameter Value
Fixed reward for issuing at least 1 FlexOffer 0.03 Euro
Reward of energy flexibility 0.05 Euro/kWh
Reward for a single unit (15 min) of time-flexibility 0.05 Euro

Table 2: General prosumer contract.

• Peer Cell Trading: In this scenario, C1 and C2 trade flexibility
in a peer-to-peer configuration to mitigate the effect of their
imbalances through the FMAR of C12.

• Nested Cell Trading: In this scenario, C12 activates C1 and
C2 flexibility though bilateral contracts.
The general contract detailed in Table 2 is used to calculate end-

prosumer rewards/profits during the experiment in the case of C1
and C2. The values in the contract are estimated based on average
European residential customer electricity price of 0.21 Euro/kWh 3.

7.2 Local Cell Optimization
First, we demonstrate the effect of local optimization of demand
and supply. In this experiment, both C1 and C2 have flexible loads
and their respective FOAs generate (micro) FOs using ML-based
FO generation techniques discussed in Section 4.1. FMAN1 and
FMAN2 independently aggregate the FOs and make them available
for optimization (and trading). The optimization is done by FMAN1
and FMAN2 for the objective of maximizing RES self-utilization and
minimizing imbalances between local demand and supply. In this
regard, we consider C1 with excess RES production at some hours
of a day, and C2 with RES production always below the demand.
Figures 10-11 show the default (non-optimized) and optimized en-
ergy demand of C1 and C2, respectively. The solid lines show the
default demand, the dashed lines represent the optimized demand,
and the light shaded regions represent supply from RES.

Figure 10 shows that for the particular day, C1 had an excess sup-
ply of 97 kWh over a span of 2 hours (region of the plot where RES
curve surpasses the default demand curve). The self-optimization
of C1 schedules some of the demand from the time period with
lower RES production to the time period with excess RES produc-
tion (dashed line). This results in an increase of 54 kWh in RES
self-consumption, which amounts to 38.2 kg reduction in CO2 emis-
sions 4. This is mainly achieved by exploiting the demand flexibility
from flexible loads, at the cost 4.38 EUR rewarded to prosumers
based on the contract values shown in Table 2 (details in Section 7.5).
On the other hand, the self-optimization of C2 does not reschedule
any energy and the optimized schedule is the same as the default

3https://1-stromvergleich.com/electricity-prices-europe
4https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator
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Figure 10: Local demand and supply balancing for Cell 1.

Figure 11: Local demand and supply balancing for Cell 2.

schedule because RES production is always lower than the demand
(Figure 11) and no (positive) flexibility is available to counter-act.

In both cases, C1 and C2 are still in a state that lead to substantial
imbalances (up to 93 kWh) generated towards C12. Depending on
applicable fees (e.g., electricity prices or imbalance fees), these
imbalances might be acceptable or not to C1 and C2. However, C1
and C2 have the opportunity to mutually clear out those imbalances
and/or generate additional profit for available flexibility through
peer-to-peer cell trading.

7.3 Peer-To-Peer Cell Trading
We consider a local peer-to-peer trading scenario, where C1 chooses
to ignore (potential) imbalances and willing to compensate this im-
balance overhead by selling flexibility (when the expected flexibility
price is greater than the imbalance price); and C2 chooses to reduce
imbalances directly by acquiring additional supply capacity (when
the expected flexibility price is less than the imbalance price). In
this scenario, FMAN1 and FMAN2 generate bids for C1 and C2 in
the form of FOs, respectively, and forward them to the FMAR of C12
every 15 min. The FOs define locally optimized energy amounts
(Figures 10 and 11) and possible deviations along with prices to
be paid to/by C1 and C2 for activating these deviations, taking a
V-shape form as discussed in Section 5.1. For example, in the pe-
riod 09:15 to 09:30 in Figure 10, we can see that even after local
optimization C1 has 12 kWh of excess RES production. FMAN1
converts the excess supply along with flexibility to further increase
RES supply (by reducing demand) to a selling production FO seen
in Figure 12a and forwards it for trading on FMAR. Similarly, as
seen in Figure 11, C2 is exposed to an imbalance of 14 kWh in
this interval, and so FMAN2 generates the buying consumption FO
shown in Figure 12b. It specifies the need to reduce demand in C2
together with the maximum deviation price C2 is willing to pay for
a deviation of 1 kWh.

FMAR continuously matches the bids and generates new sched-
ules based on the deviation prices and energy amounts of the buying
and selling FOs. For example, in this case, the bid FOs shown in
Figure 12 are matched at a C1 deviation amount of -2 kWh (=12
kWh - 14 kWh) and the marginal deviation cost of 0.42 EUR paid
to C1 by C2. The matched energy amounts become firm execution

(a) Selling production FO (C1) (b) Buying consumption FO (C2)
Figure 12: Example of the generated FOs.

Figure 13: Peer cell trading.

schedules for C1 and C2 and will later be used as references for
calculating C1 and C2 imbalance amounts in this time period, while
clearing out the imbalances of 14 kWh both for C1 and C2. As result,
C1 generates additional profit of 0.42 EUR and, at the same time,
spares some demand up-regulation capacity (which can be traded
again), while C2 completely eliminates the (potential) imbalance of
14 kWh for this time interval at the marginal cost of 0.42 EUR.

Figure 13 shows the final demand and supply schedules of C2
after executing 36 FMAR trading cycles in the period 6:00 and 15:00.
The dark shaded area in the figure represents flexibility traded with
C1. Through flexibility trading, C2 is able to decrease its imbal-
ance by 18 kWh (42% of the excess RES from C1), and reduce CO2
emission by 12.7 kg. Finally, C1 is left with a remaining 25 kWh of
flexibility capacity, which could be traded with other cells.

In this scenario, we have considered one flexibility buyer and
one seller. However, we note that FMAR also matches two selling
(or buying) consumption and production FOs when there is no
active flexibility buyer (or seller). This happens at the marginal
deviation cost of 0 Eur, and only if FO energy amounts counter-
act each other, e.g., one FO defines positive and the other defines
negative energy values, like in the case of C1 and C2. In such a
case, imbalance amounts are automatically transferred from one
participant to another at no incurred deviation cost. Thus, the
participants can switch from the role of flexibility buyer to seller
(and vice versa) depending on dynamic real-time conditions.

7.4 Nested Cell Trading
Similar to prosumers offering flexibility to aggregators (through
FOAs), a cell can delegate management (and trading) of flexibility
(through an FMAN) to a higher-level cell in the nested configuration.
After an FMAN performs aggregation and local cell balancing, it
can automatically send (some of) the aggregated FOs to the FMAN
of the higher-level cell. Such aggregated FOs may cover the whole
area of the cell or target some specific point of congestion in the
grid. Activation of such FOs is automatically remunerated based on
the bilateral contract (similar to the one shown in Table 2). Such
flexibility delegation gives additional business opportunities to the
cells, and may be used, e.g., to provide additional reserve capacity
in the nested cell configuration.
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Figure 14: Aggregated C12 flexibility.

Figure 15: Nested cells.

Let’s again consider C1 and C2 residing inside C12. We now run
an experiment to compare C12 load balancing though nested cell
trading with that though peer-to-peer trading, discussed earlier.

We assume that the FMAN of C12, FMAN12, is allowed to utilize
all aggregated C1 and C2 FOs (the total aggregated flexibility in
the two areas). Thus, to balance demand and supply, FMAN12 can
override optimized schedules of FMAN1 and FMAN2 when needed,
expectedly at much higher cost compared to peer-to-peer trad-
ing. To reflect that, we assume C1-C12 and C2-C12 contracts use
contract parameter values 50% higher than those used for the pro-
sumer contracts (Table 2). Thus, we account for additional flexibility
aggregation overhead incurred by C1 and C2.

The results are shown in Figures 14 and 15. Figure14 shows the
overall aggregated flexibility of 10.8 kWh in up-regulation and 9.3
kWh in down-regulation in the period from 09:15 to 09:30 for C12,
the combined area of C1 and C2. Note, this flexibility can, poten-
tially, be traded again by C12 with a higher-level cell bilaterally
or peer cells in a peer-to-peer fashion. Lastly, Figure 15 shows the
overall C12 balancing effect. The dashed line represents 12 kWh
of energy re-scheduled by FMAN12 to match the combined RES
production from C1 and C2. This yields the full utilization of the
RES production in the period 9:00 and 11:00 and a reduction of
68.6 kg in CO2 emissions. To achieve this balance, FMAN12 has
somewhat randomly chosen between relevant C1 and C2 FOs and
did not favour any specific cell when activating flexibility. This
is because we have used identical C1-C12 and C2-C12 contracts.
Setting lower contract values in one automatically favours the FOs
of a respective cell (with cheaper flexibility). Overall, trading in
this nested configuration resulted in 67% improved C12 balance
compared to peer-to-peer trading, but at 90% higher cost. This cost
overhead is 27% and 153% when we set the contract values equal to
1x and 2x over the values in Table 2, respectively. All in all, through
such bilateral contracts and FMAR bids (parameters of which both
can evolve over time), a cell may expose and thus find the best
buyer for its operational flexibility.

7.5 Prosumer Gains
Here, we compare incurred end-prosumer rewards for providing
flexibility. As a reference, we use the local cell optimization sce-
nario (Section 7.2) and the following different flexibility rewarding
schemes: i) only a fixed reward for each generated FO, ii) reward for

Figure 16: Prosumer utility under different scenarios.

time flexibility only, iii) reward for energy amount flexibility only,
iv) reward for both time and amount flexibility. This comparison
can be seen in Figure 16.

The figure shows that average daily reward for the number of
generated FOs is somewhat comparable to the average daily reward
for time and amount flexibility, when the contract values from Ta-
ble 1 are used. This is mainly because we reward the prosumer
regardless of whether or not the generated FO is also activated.
Hence, making the reward conditional to FO activation will signifi-
cantly reduce the rewards under this category. The average daily
fixed, time flexibility, amount flexibility, and combined (time and
amount) flexibility rewards for a typical prosumer are 3.8, 3.7, 4.8,
and 8.4 Euro, respectively. At the same time, this is also an expense
of a higher-level cell player (e.g., aggregator).

8 CONCLUSION AND FUTUREWORK
This paper presented Flexibility Modeling, Management, and Trad-
ing System (FMTS) that offers an extensible IT solution and sup-
porting tools for extracting, (dis-)aggregating, optimizing, pric-
ing/billing generalized flexibility from a variety of loads in FlexOffer
form. The system allows all active flexibility providers, interme-
diaries, and flexibility users to exchange flexibility between cells
either bi-laterally and/or via trading in a local flexibility market.

The paper presented the conceptual architecture of FMTS, its
core functionality, its inherent sub-systems, and explained how the
sub-systems interact and should be used by different actors. It ex-
plained how FlexOffers are generated, (dis-)aggregated, optimized,
and executed using traditional machine learning, optimization, and
specialized techniques. Then, it presented three pilot demonstra-
tions of FMTS, which are currently taking place in the GOFLEX
project. The results of large-scale simulation (replicating the demo
sites) demonstrate that FMTS improves RES self-utilization by 55%
using self-optimization, which is further improved by 19% when
peer cells manage and trade flexibilities. Notably, the system allows
for 100% RES self-utilization within the full extent of the imbal-
ance period in the nested cell configuration but at a higher price
compared to peer-to-peer trading. In all cases, the system yields
significant end-prosumer gains (savings).

Future work will focus on further enriching our techniques for
various tasks such as demand prognosis, cell optimization, market
trading, etc. An open-source reference implementation of FMTS
which includes comprehensive FOA and FMAN implementations
accessing the third-party FMAR web service is available online
under https://www.daisy.aau.dk/flexoffers.
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