
 

  

 

Aalborg Universitet

Abstract Dependency Graphs and Their Application to Model Checking

Enevoldsen, Søren; Larsen, Kim Guldstrand; Srba, Jiri

Published in:
Proceedings of the 25th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS'19)

DOI (link to publication from Publisher):
10.1007/978-3-030-17462-0_18

Creative Commons License
CC BY 4.0

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Enevoldsen, S., Larsen, K. G., & Srba, J. (2019). Abstract Dependency Graphs and Their Application to Model
Checking. In L. Zhang, & T. Vojnar (Eds.), Proceedings of the 25th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS'19) (pp. 316-333). Springer. Lecture Notes in
Computer Science Vol. 11427 https://doi.org/10.1007/978-3-030-17462-0_18

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            ? You may not further distribute the material or use it for any profit-making activity or commercial gain
            ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: December 02, 2020

https://doi.org/10.1007/978-3-030-17462-0_18
https://vbn.aau.dk/en/publications/8aceb746-c233-4663-82c0-cb469847df88
https://doi.org/10.1007/978-3-030-17462-0_18


Abstract Dependency Graphs and Their
Application to Model Checking

Søren Enevoldsen, Kim Guldstrand Larsen, and Jǐŕı Srba(B)
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Abstract. Dependency graphs, invented by Liu and Smolka in 1998, are
oriented graphs with hyperedges that represent dependencies among the
values of the vertices. Numerous model checking problems are reducible
to a computation of the minimum fixed-point vertex assignment. Recent
works successfully extended the assignments in dependency graphs from
the Boolean domain into more general domains in order to speed up the
fixed-point computation or to apply the formalism to a more general set-
ting of e.g. weighted logics. All these extensions require separate correct-
ness proofs of the fixed-point algorithm as well as a one-purpose imple-
mentation. We suggest the notion of abstract dependency graphs where
the vertex assignment is defined over an abstract algebraic structure of
Noetherian partial orders with the least element. We show that existing
approaches are concrete instances of our general framework and provide
an open-source C++ library that implements the abstract algorithm. We
demonstrate that the performance of our generic implementation is com-
parable to, and sometimes even outperforms, dedicated special-purpose
algorithms presented in the literature.

1 Introduction

Dependency Graphs (DG) [1] have demonstrated a wide applicability with
respect to verification and synthesis of reactive systems, e.g. checking behavioural
equivalences between systems [2], model checking systems with respect to tem-
poral logical properties [3–5], as well as synthesizing missing components of sys-
tems [6]. The DG approach offers a general and often performance-optimal way
to solve these problem. Most recently, the DG approach to CTL model checking
of Petri nets [7], implemented in the model checker TAPAAL [8], won the gold
medal at the annual Model Checking Contest 2018 [9].

A DG consists of a finite set of vertices and a finite set of hyperedges that
connect a vertex to a number of children vertices. The computation problem is
to find a point-wise minimal assignment of vertices to the Boolean values 0 and
1 such that the assignment is stable: whenever there is a hyperedge where all
children have the value 1 then also the father of the hyperedge has the value 1.
The main contribution of Liu and Smolka [1] is a linear-time, on-the-fly algorithm
to find such a minimum stable assignment.
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Recent works successfully extend the DG approach from the Boolean
domain to more general domains, including synthesis for timed systems [10],
model checking for weighted systems [3] as well as probabilistic systems [11].
However, each of these extensions have required separate correctness arguments
as well as ad-hoc specialized implementations that are to a large extent similar
with other implementations of dependency graphs (as they are all based on the
general principle of computing fixed points by local exploration). The contribu-
tion of our paper is a notion of Abstract Dependency Graph (ADG) where the
values of vertices come from an abstract domain given as an Noetherian par-
tial order (with least element). As we demonstrate, this notion of ADG covers
many existing extensions of DG as concrete instances. Finally, we implement
our abstract algorithms in C++ and make it available as an open-source library.
We run a number of experiments to justify that our generic approach does not
sacrifice any significant performance and sometimes even outperforms existing
implementations.

Related Work. The aim of Liu and Smolka [1] was to find a unifying formalism
allowing for a local (on-the-fly) fixed-point algorithm running in linear time.
In our work, we generalize their formalism from the simple Boolean domain to
general Noetherian partial orders over potentially infinite domains. This requires
a non-trivial extension to their algorithm and the insight of how to (in the general
setting) optimize the performance, as well as new proofs of the more general loop
invariants and correctness arguments.

Recent extensions of the DG framework with certain-zero [7], integer [3] and
even probabilistic [11] domains generalized Liu and Smolka’s approach, how-
ever they become concrete instances of our abstract dependency graphs. The
formalism of Boolean Equation Systems (BES) provides a similar and indepen-
dently developed framework [12–15] pre-dating that of DG. However, BES may
be encoded as DG [1] and hence they also become an instance of our abstract
dependency graphs.

2 Preliminaries

A set D together with a binary relation � ⊆ D × D that is reflexive (x � x for
any x ∈ D), transitive (for any x, y, z ∈ D, if x � y and y � x then also x � z)
and anti-symmetric (for any x, y ∈ D, if x � y and y � x then x = y) is called a
partial order and denoted as a pair (D,�). We write x � y if x � y and x �= y.
A function f : D → D′ from a partial order (D,�) to a partial order (D′,�′) is
monotonic if whenever x � y for x, y ∈ D then also f(x) �′ f(y). We shall now
define a particular partial order that will be used throughout this paper.

Definition 1 (NOR). Noetherian Ordering Relation with least element (NOR)
is a triple D = (D,�,⊥) where (D,�) is a partial order, ⊥ ∈ D is its least
element such that for all d ∈ D we have ⊥ � d, and � satisfies the ascending
chain condition: for any infinite chain d1 � d2 � d3 � . . . there is an integer k
such that dk = dk+j for all j > 0.
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We can notice that any finite partial order with a least element is a NOR;
however, there are also such relations with infinitely many elements in the
domain as shown by the following example.

Example 1. Consider the partial order D = (N0 ∪ {∞},≥,∞) over the set of nat-
ural numbers extended with ∞ and the natural larger-than-or-equal comparison
on integers. As the relation is reversed, this implies that ∞ is the least ele-
ment of the domain. We observe that D is NOR. Consider any infinite sequence
d1 ≥ d2 ≥ d3 . . . . Then either di = ∞ for all i, or there exists i such that
di ∈ N

0. Clearly, the sequence must in both cases eventually stabilize, i.e. there
is a number k such that dk = dk+j for all j > 0.

New NORs can be constructed by using the Cartesian product. Let Di =
(Di,�i,⊥i) for all i, 1 ≤ i ≤ n, be NORs. We define Dn = (Dn,�n,⊥n) such
that Dn = D1 ×D2 ×· · ·×Dn and where (d1, . . . , dn) �n (d′

1, . . . , d
′
n) if di �i d′

i

for all i, 1 ≤ i ≤ k, and where ⊥n = (⊥1, . . . ,⊥n).

Proposition 1. Let Di be a NOR for all i, 1 ≤ i ≤ n. Then Dn = (Dn,�n,⊥n)
is also a NOR.

In the rest of this paper, we consider only NOR (D,�,⊥) that are effec-
tively computable, meaning that the elements of D can be represented by finite
strings, and that given the finite representations of two elements x and y from
D, there is an algorithm that decides whether x � y. Similarly, we consider
only functions f : D → D′ from an effectively computable NOR (D,�,⊥) to an
effectively computable NOR (D′,�′,⊥′) that are effectively computable, mean-
ing that there is an algorithm that for a given finite representation of an element
x ∈ D terminates and returns the finite representation of the element f(x) ∈ D′.
Let F(D, n), where D = (D,�,⊥) is an effectively computable NOR and n is a
natural number, stand for the collection of all effectively computable functions
f : Dn → D of arity n and let F(D) =

⋃
n≥0 F(D, n) be a collection of all such

functions.
For a set X, let X∗ be the set of all finite strings over X. For a string w ∈ X∗

let |w| denote the length of w and for every i, 1 ≤ i ≤ |w|, let wi stand for the
i’th symbol in w.

3 Abstract Dependency Graphs

We are now ready to define the notion of an abstract dependency graph.

Definition 2 (Abstract Dependency Graph). An abstract dependency
graph (ADG) is a tuple G = (V,E,D, E) where

– V is a finite set of vertices,
– E : V → V ∗ is an edge function from vertices to sequences of vertices such

that E(v)i �= E(v)j for every v ∈ V and every 1 ≤ i < j ≤ |E(v)|, i.e. the
co-domain of E contains only strings over V where no symbol appears more
than once,
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A

B ∨ (C ∧ D)

B

1

C

1

D

E ∧ F

E1 F E ∧ D

(a) Abstract dependency graph

A B C D E F

A⊥ 0 0 0 0 0 0
F (A⊥) 0 1 1 0 1 0
F 2(A⊥) 1 1 1 0 1 0
F 3(A⊥) 1 1 1 0 1 0

(b) Fixed-point computation

Fig. 1. Abstract dependency graph over NOR ({0, 1},≤, 0)

– D is an effectively computable NOR, and
– E is a labelling function E : V → F(D) such that E(v) ∈ F(D, |E(v)|) for each

v ∈ V , i.e. each edge E(v) is labelled by an effectively computable function f
of arity that corresponds to the length of the string E(v).

Example 2. An example of ADG over the NOR D = ({0, 1}, {(0, 1)}, 0) is shown
in Fig. 1a. Here 0 (interpreted as false) is below the value 1 (interpreted as true)
and the monotonic functions for vertices are displayed as vertex annotations. For
example E(A) = B ·C ·D and E(A) is a ternary function such that E(A)(x, y, z) =
x ∨ (y ∧ z), and E(B) = ε (empty sequence of vertices) such that E(B) = 1 is
a constant labelling function. Clearly, all functions used in our example are
monotonic and effectively computable.

Let us now assume a fixed ADG G = (V,E,D, E) over an effectively com-
putable NOR D = (D,�,⊥). We first define an assignment of an ADG.

Definition 3 (Assignment). An assignment on G is a function A : V → D.

The set of all assignments is denoted by A. For A,A′ ∈ A we define A ≤ A′

iff A(v) � A′(v) for all v ∈ V . We also define the bottom assignment A⊥(v) = ⊥
for all v ∈ V that is the least element in the partial order (A,≤). The following
proposition is easy to verify.

Proposition 2. The partial order (A,≤, A⊥) is a NOR.

Finally, we define the minimum fixed-point assignment Amin for a given ADG
G = (V,E,D, E) as the minimum fixed point of the function F : A → A defined
as follows: F (A)(v) = E(v)(A(v1), A(v2), . . . , A(vk)) where E(v) = v1v2 . . . vk.

In the rest of this section, we shall argue that Amin of the function F exists by
following the standard reasoning about fixed points of monotonic functions [16].

Lemma 1. The function F is monotonic.

Let us define the notation of multiple applications of the function F by
F 0(A) = A and F i(A) = F (F i−1(A)) for i > 0.
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Lemma 2. For all i ≥ 0 the assignment F i(A⊥) is effectively computable,
F i(A⊥) ≤ F j(A⊥) for all i ≤ j, and there exists a number k such that
F k(A⊥) = F k+j(A⊥) for all j > 0.

We can now finish with the main observation of this section.

Theorem 1. There exists a number k such that F j(A⊥) = Amin for all j ≥ k.

Example 3. The computation of the minimum fixed point for our running exam-
ple from Fig. 1a is given in Fig. 1b. We can see that starting from the assignment
where all nodes take the least element value 0, in the first iteration all constant
functions increase the value of the corresponding vertices to 1 and in the second
iteration the value 1 propagates from the vertex B to A, because the function
B ∨ (C ∧ D) that is assigned to the vertex A evaluates to true due to the fact
that F (A⊥)(B) = 1. On the other hand, the values of the vertices D and F keep
the assignment 0 due to the cyclic dependencies between the two vertices. As
F 2(A⊥) = F 3(A⊥), we know that we found the minimum fixed point.

As many natural verification problems can be encoded as a computation
of the minimum fixed point on an ADG, the result in Theorem 1 provides an
algorithmic way to compute such a fixed point and hence solve the encoded
problem. The disadvantage of this global algorithm is that it requires that the
whole dependency graph is a priory generated before the computation can be
carried out and this approach is often inefficient in practice [3]. In the following
section, we provide a local, on-the-fly algorithm for computing the minimum
fixed-point assignment of a specific vertex, without the need to always explore
the whole abstract dependency graph.

4 On-the-Fly Algorithm for ADGs

The idea behind the algorithm is to progressively explore the vertices of the
graph, starting from a given root vertex for which we want to find its value
in the minimum fixed-point assignment. To search the graph, we use a waiting
list that contains configurations (vertices) whose assignment has the potential of
being improved by applying the function E . By repeated applications of E on the
vertices of the graph in some order maintained by the algorithm, the minimum
fixed-point assignment for the root vertex can be identified without necessarily
exploring the whole dependency graph.

To improve the performance of the algorithm, we make use of an optional
user-provided function Ignore(A, v) that computes, given a current assignment
A and a vertex v of the graph, the set of vertices on an edge E(v) whose current
and any potential future value no longer effect the value of Amin(v). Hence,
whenever a vertex v′ is in the set Ignore(A, v), there is no reason to explore the
subgraph rooted by v′ for the purpose of computing Amin(v) since an improved
assignment value of v′ cannot influence the assignment of v. The soundness
property of the ignore function is formalized in the following definition. As before,
we assume a fixed ADG G = (V,E,D, E) over an effectively computable NOR
D = (D,�,⊥).
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Definition 4 (Ignore Function). A function: Ignore : A × V → 2V is
sound if for any two assignments A,A′ ∈ A where A ≤ A′ and every i such that
E(v)i ∈ Ignore(A, v) holds that

E(v)(A′(v1), A′(v2), . . . , A(vi), . . . , A′(v|E(v)−1|), A′(v|E(v)|))
= E(v)(A′(v1), A′(v2), . . . , A′(vi), . . . , A′(v|E(v)−1|), A′(v|E(v)|)).

From now on, we shall consider only sound and effectively computable ignore
functions. Note that there is always a trivially sound Ignore function that
returns for every assignment and every vertex the empty set. A more interesting
and universally sound ignore function may be defined by

Ignore(A, v) =

{
{E(v)i | 1 ≤ i ≤ |E(v)|} if d ≤ A(v) for all d ∈ D

∅ otherwise

that returns the set of all vertices on an edge E(v) once A(v) reached its maximal
possible value. This will avoid the exploration of the children of the vertex v once
the value of v in the current assignment cannot be improved any more. Already
this can have a significant impact on the improved performance of the algorithm;
however, for concrete instances of our general framework, the user can provide
more precise and case-specific ignore functions in order to tune the performance
of the fixed-point algorithm, as shown by the next example.

Example 4. Consider the ADG from Fig. 1a in an assignment where the value of
B is already known to be 1. As the vertex A has the labelling function B ∨ (C ∧
D), we can see that the assignment of A will get the value 1, irrelevant of what
are the assignments for the vertices C and D. Hence, in this assignment, we can
move the vertices C and D to the ignore set of A and avoid the exploration of
the subgraphs rooted by C and D.

The following lemma formalizes the fact that once the ignore function of a
vertex contains all its children and the vertex value has been relaxed by applying
the associated monotonic function, then its current assignment value is equal to
the vertex value in the minimum fixed-point assignment.

Lemma 3. Let A be an assignment such that A ≤ Amin . If vi ∈ Ignore(A, v)
for all 1 ≤ i ≤ k where E(v) = v1 · · · vk and A(v) = E(v)(A(v1), . . . , A(vk)) then
A(v) = Amin(v).

In Algorithm 1 we now present our local (on-the-fly) minimum fixed-point
computation. The algorithm uses the following internal data structures:

– A is the currently computed assignment that is initialized to A⊥,
– W is the waiting list containing the set of pending vertices to be explored,
– Passed is the set of explored vertices, and
– Dep : V → 2V is a function that for each vertex v returns a subset of vertices

that should be reevaluated whenever the assignment value of v improves.
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Input: An effectively computable ADG G = (V,E,D, E) and v0 ∈ V .
Output: Amin(v0)

1 A := A⊥ ; Dep(v) := ∅ for all v
2 W := {v0} ; Passed := ∅
3 while W �= ∅ do
4 let v ∈ W ; W := W \ {v}
5 UpdateDependents (v)
6 if v = v0 or Dep(v) �= ∅ then
7 let v1v2 · · · vk = E(v)
8 d := E(v)(A(v1), . . . , A(vk))
9 if A(v) � d then

10 A(v) := d
11 W := W ∪ {u ∈ Dep(v) | v /∈ Ignore(A, u)}
12 if v = v0 and {v1, . . . , vk} ⊆ Ignore(A, v0) then
13 ”break out of the while loop”

14 if v /∈ Passed then
15 Passed := Passed ∪ {v}
16 for all vi ∈ {v1, . . . , vk} \ Ignore(A, v) do
17 Dep(vi) := Dep(vi) ∪ {v}
18 W := W ∪ {vi}
19 return A(v0)
20 Procedure UpdateDependents(v):
21 C := {u ∈ Dep(v) | v ∈ Ignore(A, u)}
22 Dep(v) := Dep(v) \ C
23 if Dep(v) = ∅ and C �= ∅ then
24 Passed := Passed \ {v}
25 UpdateDependentsRec (v)

26 Procedure UpdateDependentsRec(v):
27 for v′ ∈ E(v) do
28 Dep(v′) := Dep(v′) \ {v}
29 if Dep(v′) = ∅ then
30 UpdateDependentsRec (v′)
31 Passed := Passed \ {v′}

Algorithm 1. Minimum Fixed-Point Computation on an ADG

The algorithm starts by inserting the root vertex v0 into the waiting list. In
each iteration of the while-loop it removes a vertex v from the waiting list and
performs a check whether there is some other vertex that depends on the value of
v. If this is not the case, we are not going to explore the vertex v and recursively
propagate this information to the children of v. After this, we try to improve
the current assignment of A(v) and if this succeeds, we update the waiting list
by adding all vertices that depend on the value of v to W , and we test if the
algorithm can early terminate (should the root vertex v0 get its final value).
Otherwise, if the vertex v has not been explored yet, we add all its children to
the waiting list and update the dependencies. We shall now state the termination
and correctness of our algorithm.
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Lemma 4 (Termination). Algorithm 1 terminates.

Lemma 5 (Soundness). Algorithm 1 at all times satisfies A ≤ Amin .

Lemma 6 (While-Loop Invariant). At the beginning of each iteration of the
loop in line 1 of Algorithm 1, for any vertex v ∈ V it holds that either:

1. A(v) = Amin(v), or
2. v ∈ W , or
3. v �= v0 and Dep(v) = ∅, or
4. A(v) = E(v)(A(v1), . . . , A(vk)) where v1 · · · vk = E(v) and for all i, 1 ≤ i ≤ k,

whenever vi /∈ Ignore(A, v) then also v ∈ Dep(vi).

Theorem 2. Algorithm 1 terminates and returns the value Amin(v0).

5 Applications of Abstract Dependency Graphs

We shall now describe applications of our general framework to previously stud-
ied settings in order to demonstrate the direct applicability of our framework.
Together with an efficient implementation of the algorithm, this provides a solu-
tion to many verification problems studied in the literature. We start with the
classical notion of dependency graphs suggested by Liu and Smolka.

5.1 Liu and Smolka Dependency Graphs

In the dependency graph framework introduced by Liu and Smolka [17], a
dependency graph is represented as G = (V,H) where V is a finite set of
vertices and H ⊆ V × 2V is the set of hyperedges. An assignment is a func-
tion A : V → {0, 1}. A given assignment is a fixed-point assignment if (A)(v) =
max(v,T )∈H minv′∈T A(v′) for all v ∈ V . In other words, A is a fixed-point assign-
ment if for every hyperedge (v, T ) where T ⊆ V holds that if A(v′) = 1 for
every v′ ∈ T then also A(v) = 1. Liu and Smolka suggest both a global and a
local algorithm [17] to compute the minimum fixed-point assignment for a given
dependency graph.

We shall now argue how to instantiate their framework into abstract depen-
dency graphs. Let (V,H) be a fixed dependency graph. We consider a NOR
D = ({0, 1},≤, 0) where 0 < 1 and construct an abstract dependency graph
G′ = (V,E,D, E). Here E : V → V ∗ is defined

E(v) = v1 · · · vk s.t. {v1, . . . , vk} =
⋃

(v,T )∈H

T

such that E(v) contains (in some fixed order) all vertices that appear on at least
one hyperedge rooted with v. The labelling function E is now defined as expected

E(v)(d1, . . . , dk) = max
(v,T )∈H

min
vi∈T

di
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mimicking the computation in dependency graphs. For the efficiency of fixed-
point computation in abstract dependency graphs it is important to provide an
Ignore function that includes as many vertices as possible. We shall use the
following one

Ignore(A, v) =

{
{E(v)i | 1 ≤ i ≤ |E(v)|} if ∃(v, T ) ∈ H.∀u ∈ T.A(u) = 1
∅ otherwise

meaning that once there is a hyperedge with all the target vertices with value
1 (that propagates the value 1 to the root of the hyperedge), then the vertices
of all other hyperedges can be ignored. This ignore function is, as we observed
when running experiments, more efficient than this simpler one

Ignore(A, v) =

{
{E(v)i | 1 ≤ i ≤ |E(v)|} if A(v) = 1
∅ otherwise

because it avoids the exploration of vertices that can be ignored before the root
v is picked from the waiting list. Our encoding hence provides a generic and
efficient way to model and solve problems described by Boolean equations [18]
and dependency graphs [17].

5.2 Certain-Zero Dependency Graphs

Liu and Smolka’s on-the-fly algorithm for dependency graphs significantly ben-
efits from the fact that if there is a hyperedge with all target vertices having
the value 1 then this hyperedge can propagate this value to the source of the
hyperedge without the need to explore the remaining hyperedges. Moreover, the
algorithm can early terminate should the root vertex v0 get the value 1. On the
other hand, if the final value of the root is 0 then the whole graph has to be
explored and no early termination is possible. Recently, it has been noticed [19]
that the speed of fixed-point computation by Liu and Smolka’s algorithm can
been considerably improved by considering also certain-zero value in the assign-
ment that can, in certain situations, propagate from children vertices to their
parents and once it reaches the root vertex, the algorithm can early terminate.

We shall demonstrate that this extension can be directly implemented in our
generic framework, requiring only a minor modification of the abstract depen-
dency graph. Let G = (V,H) be a given dependency graph. We consider now a
NOR D = ({⊥, 0, 1},�,⊥) where ⊥ � 0 and ⊥ � 1 but 0 and 1, the ‘certain’
values, are incomparable. We use the labelling function

E(v)(d1, . . . , dk) =

⎧
⎪⎨

⎪⎩

1 if ∃(v, T ) ∈ H.∀vi ∈ T.di = 1
0 if ∀(v, T ) ∈ H.∃vi ∈ T.di = 0
⊥ otherwise

so that it rephrases the method described in [19]. In order to achieve a compet-
itive performance, we use the following ignore function.
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Ignore(A, v) =

⎧
⎪⎨

⎪⎩

{E(v)i | 1 ≤ i ≤ |E(v)|} if ∃(v, T ) ∈ H.∀u ∈ T.A(u) = 1
{E(v)i | 1 ≤ i ≤ |E(v)|} if ∀(v, T ) ∈ H.∃u ∈ T.A(u) = 0
∅ otherwise

Our experiments presented in Sect. 6 show a clear advantage of the certain-
zero algorithm over the classical one, as also demonstrated in [19].

5.3 Weighted Symbolic Dependency Graphs

In this section we show an application that instead of a finite NOR considers an
ordering with infinitely many elements. This allows us to encode e.g. the model
checking problem for weighted CTL logic as demonstrated in [3,20]. The main
difference, compared to the dependency graphs in Sect. 5.1, is the addition of
cover-edges and hyperedges with weight.

A weighted symbolic dependency graph, as introduced in [20], is a triple G =
(V,H,C), where V is a finite set of vertices, H ⊆ V × 2(N

0×V ) is a finite set
of hyperedges and C ⊆ V × N

0 × V a finite set of cover-edges. We assume the
natural ordering relation > on natural numbers such that ∞ > n for any n ∈ N

0.
An assignment A : V → N

0 ∪ {∞} is a mapping from configurations to values.
A fixed-point assignment is an assignment A such that

A(v) =

⎧
⎨

⎩

0 if there is (v, w, u) ∈ C such that A(u) ≤ w

min
(v,T )∈H

(
max{A(u) + w | (w, u) ∈ T})

otherwise

where we assume that max ∅ = 0 and min ∅ = ∞. As before, we are interested in
computing the value Amin(v0) for a given vertex v0 where Amin is the minimum
fixed-point assignment.

In order to instantiate weighted symbolic dependency graphs in our frame-
work, we use the NOR D = (N0 ∪ {∞},≥,∞) as introduced in Example 1
and define an abstract dependency graph G′ = (V,E,D, E). We let E : V →
V ∗ be defined as E(v) = v1 · · · vmc1 · · · cn where {v1, . . . , vm} =

⋃
(v,T )∈H⋃

(w,vi)∈T {vi} is the set (in some fixed order) of all vertices that are used in
hyperedges and {c1, . . . , cn} =

⋃
(v,w,u)∈C{u} is the set (in some fixed order) of

all vertices connected to cover-edges. Finally, we define the labelling function E
as

E(v)(d1, . . . , dm, e1, . . . , en) =
{

0 if ∃(v, w, ci) ∈ C. w ≥ ei

min(v,T )∈H max(w,vi)∈T w + di otherwise.

In our experiments, we consider the following ignore function.

Ignore(A, v) =

{
{E(v)i | 1 ≤ i ≤ |E(v)|} if ∃(v, w, u) ∈ C.A(u) ≤ w

{E(v)i | 1 ≤ i ≤ |E(v)|, A(E(v)i) = 0} otherwise



326 S. Enevoldsen et al.

struct Value {
bool operator ==( const Value &);
bool operator !=( const Value &);
bool operator <(const Value &);

};

struct VertexRef {
bool operator ==( const VertexRef &);
bool operator <(const VertexRef &);

};

struct ADG {
using Value = Value;
using VertexRef = VertexRef;
using EdgeTuple = vector <VertexRef >;
static Value BOTTOM;
VertexRef initialVertex ();
EdgeTuple getEdge(VertexRef& v);
using VRA = typename algorithm:VertexRefAssignment <ADG >;
Value compute(const VRA*, const VRA**, size_t n);
void updateIgnored(const VRA*, const VRA**, size_t n, vector <bool >& ignore );
bool ignoreSingle(const VRA* v, const VRA* u);

};

Fig. 2. The C++ interface

This shows that also the formalism of weighted symbolic dependency graphs
can be modelled in our framework and the experimental evaluation documents
that it outperforms the existing implementation.

6 Implementation and Experimental Evaluation

The algorithm is implemented in C++ and the signature of the user-provided
interface in order to use the framework is shown in Fig. 2. The structure ADG is
the main interface the algorithm uses. It assumes the definition of the type Value
that represents the NOR, and the type VertexRef that represents a light-weight
reference to a vertex and the bottom element. The type aliased as VRA contains
both a Value and a VertexRef and represents the assignment of a vertex. The
user must also provide the implementation of the functions: initialVertex
that returns the root vertex v0, getEdge that returns ordered successors for a
given vertex, compute that computes E(v) for a given assignment of v and its
successors, and updateIgnored that receives the assignment of a vertex and its
successors and sets the ignore flags.

We instantiated this interface to three different applications as discussed
in Sect. 5. The source code of the algorithm and its instantiations is available at
https://launchpad.net/adg-tool/.

We shall now present a number of experiments showing that our generic
implementation of abstract dependency graph algorithm is competitive with
single-purpose implementations mentioned in the literature. The first two experi-
ments (bisimulation checking for CCS processes and CTL model checking of Petri
nets) were run on a Linux cluster with AMD Opteron 6376 processors running
Ubuntu 14.04. We marked an experiment as OOT if it run for more than one
hour and OOM if it used more than 16 GB of RAM. The final experiment for
WCTL model checking required to be executed on a personal computer as the
tool we compare to is written in JavaScript, so each problem instance was run on

https://launchpad.net/adg-tool/
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Size ]BM[yromeM]s[emiT
DG ADG Speedup DG ADG Reduction

Lossy Alternating Bit Protocol – Bisimilar

3 83.03 78.08 +6% 71 58 22%
4 2489.08 2375.10 +5% 995 810 23%

Lossy Alternating Bit Protocol — Nonbisimilar

4 6.04 5.07 +19% 25 18 39%
5 4.10 5.08 −19% 69 61 13%
6 9.04 6.06 +49% 251 244 3%

Ring Based Leader-Election — Bisimilar

8 21.09 18.06 +17% 31 23 35%
9 190.01 186.05 +2% 79 71 11%

10 2002.05 1978.04 +1% 298 233 28%
Ring Based Leader-Election — Nonbisimilar

8 4.09 2.01 +103% 59 52 13%
9 16.02 15.07 +6% 185 174 6%

10 125.06 126.01 −1% 647 638 1%

Fig. 3. Weak bisimulation checking comparison

a Lenovo ThinkPad T450s laptop with an Intel Core i7-5600U CPU @ 2.60 GHz
and 12 GB of memory.

6.1 Bisimulation Checking for CCS Processes

In our first experiment, we encode using ADG a number of weak bisimulation
checking problems for the process algebra CCS. The encoding was described
in [2] where the authors use classical Liu and Smolka’s dependency graphs to
solve the problems and they also provide a C++ implementation (referred to
as DG in the tables). We compare the verification time needed to answer both
positive and negative instances of the test cases described in [2].

Figure 3 shows the results where DG refers to the implementation from [2]
and ADG is our implementation using abstract dependency graphs. It displays
the verification time in seconds and peak memory consumptions in MB for both
implementations as well as the relative improvement in percents. We can see
that the performance of both algorithms is comparable, slightly in favour of our
algorithm, sometimes showing up to 103% speedup like in the case of nonbisim-
ilar processes in leader election of size 8. For nonbisimilar processes modelling
alternating bit protocol of size 5 we observe a 19% slowdown caused by the differ-
ent search strategies so that the counter-example to bisimilarity is found faster
by the implementation from [2]. Memory-wise, the experiments are slightly in
favour of our implementation.

We further evaluated the performance for weak simulation checking on task
graph scheduling problems. We verified 180 task graphs from the Standard Task
Graph Set as used in [2] where we check for the possibility to complete all tasks
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Name VerifyPN ADG Speedup
VerifyPN/ADG Best 2

Diffusion2D-PT-D05N350:12 OOM 42.07 ∞
Diffusion2D-PT-D05N350:01 332.70 0.01 +3326900%

VerifyPN/ADG Middle 7

IOTPpurchase-PT-C05M04P03D02:08 4.15 2.13 +95%
Solitaire-PT-SqrNC5x5:09 340.31 180.47 +89%
Railroad-PT-010:08 155.34 83.92 +85%
IOTPpurchase-PT-C05M04P03D02:13 0.16 0.09 +78%
PolyORBLF-PT-S02J04T06:11 2.66 1.67 +59%
Diffusion2D-PT-D10N050:01 168.17 110.59 +52%
MAPK-PT-008:05 454.50 325.24 +40%

VerifyPN/ADG Worst 2

ResAllocation-PT-R020C002:06 0.02 OOM −∞
MAPK-PT-008:06 0.01 OOM −∞

Fig. 4. Time comparison for CTL model checking (in seconds)

within a fixed number of steps. Both DG and ADG solved 35 task graphs using
the classical Liu Smolka approach. However, once we allow for the certain-zero
optimization in our approach (requiring to change only a few lines of code in the
user-defined functions), we can solve 107 of the task graph scheduling problems.

6.2 CTL Model Checking of Petri Nets

In this experiment, we compare the performance of the tool TAPAAL [8] and
its engine VerifyPN [21], version 2.1.0, on the Petri net models and CTL queries
from the 2016 Model Checking Contest [22]. From the database of models and
queries, we selected all those that do not contain logical negation in the CTL
query (as they are not supported by the current implementation of abstract
dependency graphs). This resulted in 267 model checking instances1.

The results comparing the speed of model checking are shown in Fig. 4. The
267 model checking executions are ordered by the ratio of the verification time
of VerifyPN vs. our implementation referred to as ADG. In the table we show
the best two instances for our tool, the middle seven instances and the worst two
instances. The results significantly vary on some instances as both algorithms
are on-the-fly with early termination and depending on the search strategy the
verification times can be largely different. Nevertheless, we can observe that on
the average (middle) experiment IOTPpurchase-PT-C05M04P03D02:13, we are
78% faster than VerifyPN. However, we can also notice that in the two worst
cases, our implementation runs out of memory.

1 During the experiments we turned off the query preprocessing using linear program-
ming as it solves a large number of queries by applying logical equivalences instead
of performing the state-space search that we are interested in.
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Name VerifyPN ADG Reduction
VerifyPN/ADG Best 2

Diffusion2D-PT-D05N350:12 OOM 4573 +∞
Diffusion2D-PT-D05N350:01 9882 7 141171%

VerifyPN/ADG Middle 7

PolyORBLF-PT-S02J04T06:13 17 23 −35%
ParamProductionCell-PT-0:02 1846 2556 −38%
ParamProductionCell-PT-0:07 1823 2528 −39%
ParamProductionCell-PT-4:13 1451 2064 −42%
SharedMemory-PT-000010:12 21 30 −43%
Angiogenesis-PT-15:04 51 74 −45%
Peterson-PT-3:03 1910 2792 −46%

VerifyPN/ADG Worst 2

ParamProductionCell-PT-5:13 6 OOT −∞
ParamProductionCell-PT-0:10 6 OOT −∞

Fig. 5. Memory comparison for CTL model checking (in MB)

In Fig. 5 we present an analogous table for the peak memory consumption of
the two algorithms. In the middle experiment ParamProductionCell-PT-4:13 we
use 42% extra memory compared to VerifyPN. Hence we have a trade-off between
the verification speed and memory consumption where our implementation is
faster but consumes more memory. We believe that this is due to the use of
the waiting list where we store directly vertices (allowing for a fast access to
their assignment), compared to storing references to hyperedges in the VerifyPN
implementation (saving the memory). Given the 16 GB memory limit we used
in our experiments, this results in the fact that we were able to solve only 144
instances, compared to 218 answers provided by VerifyPN and we run 102 times
out of memory while VerifyPN did only 45 times.

6.3 Weighted CTL Model Checking

Our last experiment compares the performance on the model checking of
weighted CTL against weighted Kripke structures as used in the WKTool [3].
We implemented the weighted symbolic dependency graphs in our generic inter-
face and run the experiments on the benchmark from [3]. The measurements for
a few instances are presented in Fig. 6 and clearly show significant speedup in
favour of our implementation. We remark that because WKTool is written in
JavaScript, it was impossible to gather its peek memory consumption.
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Instance Time [s] Satisfied?
WKTool ADG Speedup

Alternating Bit Protocol: EF [≤ Y ] delivered = X

B=5 X=7 Y =35 7.10 0.83 +755% yes
B=5 X=8 Y =40 4.17 1.05 +297% yes
B=6 X=5 Y =30 7.58 1.44 +426% yes
Alternating Bit Protocol: EF (send0 && deliver1 ) ‖ (send1 && deliver0 )
B=5, M=7 7.09 1.39 +410% no
B=5, M=8 4.64 1.60 +190% no
B=6, M=5 7.75 2.37 +227% no

Leader Election: EF leader > 1
N=10 5.88 1.98 +197% no
N=11 25.19 9.35 +169% no
N=12 117.00 41.57 +181% no

Leader Election: EF [≤ X] leader
N=11 X=11 24.36 2.47 +886% yes
N=12 X=12 101.22 11.02 +819% yes
N=11 X=10 25.42 9.00 +182% no

Task Graphs: EF [≤ 10] done = 9
T=0 26.20 22.17 +18% no
T=1 6.13 5.04 +22% no
T=2 200.69 50.78 +295% no

Fig. 6. Speed comparison for WCTL (B–buffer size, M–number of messages, N–number
of processes, T–task graph number)

7 Conclusion

We defined a formal framework for minimum fixed-point computation on depen-
dency graphs over an abstract domain of Noetherian orderings with the least
element. This framework generalizes a number of variants of dependency graphs
recently published in the literature. We suggested an efficient, on-the-fly algo-
rithm for computing the minimum fixed-point assignment, including perfor-
mance optimization features, and we proved the correctness of the algorithm.

On a number of examples, we demonstrated the applicability of our frame-
work, showing that its performance is matching those of specialized algorithms
already published in the literature. Last but not least, we provided an open
source C++ library that allows the user to specify only a few domain-specific
functions in order to employ the generic algorithm described in this paper. Expe-
riential results show that we are competitive with e.g. the tool TAPAAL, winner
of the 2018 Model Checking Contest in the CTL category [9], showing 78%
faster performance on the median instance of the model checking problem, at
the expense of 42% higher memory consumption.
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In the future work, we shall apply our approach to other application domains
(in particular probabilistic model checking), develop and test generic heuristic
search strategies as well as provide a parallel/distributed implementation of our
general algorithm (that is already available for some of its concrete instances [7,
23]) in order to further enhance the applicability of the framework.

Acknowledgments. The work was funded by the center IDEA4CPS, Innovation
Fund Denmark center DiCyPS and ERC Advanced Grant LASSO. The last author
is partially affiliated with FI MU in Brno.
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Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.
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