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Abstract
TheYukawa interaction describes Coulomb screening in several physical systems.We investigate
bound quantum states of the Yukawa potential in low-dimensional structures as amodel of e.g.
excitons in semiconductor nanostructures. Diagonalization, perturbation, variation, and resumma-
tionmethods are all applied to the problem and their accuracy is compared. Formoderate positive
screening, allmethods are found to be applicable and, in particular, the variational approach is highly
accurate except near the threshold for bound states. In contrast, only hypergeometric resummation
captures the correct behaviour in the negative (antiscreened) regime.We also determine the
dimensional dependence of the critical screening, abovewhich bound states cease to exist. As an
application, the critical screening is used to compute critical doping levels for the existence of bound
excitons in quantumwells.

1. Introduction

TheYukawa (or screenedCoulomb orDebye–Hückel) potentialV r e rr= - k-( ) / has played a prominent role
in physics since its original introduction as amodel of nucleon interactions [1]. The coefficient in the exponent
κ (henceforth called the ‘screening’) truncates the range of the bare Coulomb potential. This situation arises
whenever screening bymobile chargesmodifies theCoulomb interaction. Important examples include plasma
interactions, electrolytes, and electron-hole pairs, i.e. excitons, in semiconductors [2–11]. Hence, although the
Yukawamodel as introduced in a very different context, it has beenwidely applied in condensedmatter physics.
It plays a significant role in semiconductor physics [4]. In particular, following the pioneeringwork byGay [5],
exciton screening due to free carriers fromdoping or intense excitation has frequently been treated using
Yukawa potentials [5–11] or the closely relatedHulthénmodel [6, 12]. Fundamentally, exciton screening is a
dynamical process but a static approximation is frequently adopted due to the inherent simplicity. Nonetheless,
excellent agreement with density-dependent exciton absorption inGaAs [6] and ultrafast screening dynamics of
ZnO excitons has been found [10].Moreover, the static Yukawamodel has been applied to screening of excitons
in one- and two-dimensional semiconductors [7, 8, 11] as well as bulkmaterials [5, 6, 9, 10].

Bound states of quantumparticles interacting via the Yukawa potential have been studied formany decades
and their properties in three dimensions are well understood. Several studies applying finite difference equation
[13], numerical diagonalization [14], perturbation theory [15–17], 1/N expansion [18], variational approaches
[19, 20], Padé resummation [15, 21], or pseudospectralmethods [22] have been reported. A particularly
interesting feature of the three-dimensional Yukawamodel is that bound states cease to exist when the screening
exceeds a critical valueκ>κcrit≈1.19061 in atomic units [17, 19, 21]. Similarly, a few studies have considered
themathematical properties of the Yukawamodel in two dimensions [18, 23]. In this case, no critical screening
exists and bound states are always found. Comparatively few analytical results are known, however, and a general
analysis of the low-dimensional Yukawamodel is lacking. For excitonicmodels, such low-dimensional
geometries are highly relevant. For instance, electron-hole pairs in narrow quantumwells are approximately
two-dimensional.Moreover, several such geometries are best described using fractional dimensions. Thus,
quantumwells have effective dimensions 2<D<3 [24] and carbon nanotubes have dimensionD≈1.7 [25].
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Consequently, it is relevant to study electron-hole pairs bound by screenedCoulombpotentials in fractional
dimensions. In particular, the dependence ofκcrit onD is an open problem. It should be noted that an accurate
model of exciton screening in low-dimensional structures such as nanotubes [26] andmonolayer
semiconductors [27] is itself a complicated problem. Asmentioned above, dynamical effects are of importance
and screening affects a range ofmaterial properties other than excitons [28]. One such property is band gap
renormalization. In the present work, however, we only consider the exciton binding energy, i.e. energy relative
to the band gap, and consequently band gap renormalization plays no role for the results. Hence, the statically
screened Yukawa interactionmodel can only be seen as a simplistic approximation to the full problem. The
virtue of themodel, however, lies precisely in the simplicity, which allows for analytical or semi-analytical results
as well as transparent physics.

In the Stark problem, (low-dimensional) excitons exposed to a constant electrostatic field shift their energy
andmay dissociate with a characteristic field-dependent decay rateΓ. The computation ofΓ is a complicated
non-perturbative problem [29] but accurate numerical values can be extracted from the complex-scaling
approach [30]. However, a computationallymuch simpler alternative is resummation based on a few terms of a
perturbation series. Recently, a highly efficient hypergeometric resummationmethod has been proposed
[31–33] and applied to low-dimensional Coulomb-bound systems. Excellent agreement with complex scaling
has been demonstrated for Stark-type cases but evidence fromawider class of problems is needed to establish the
broad applicability of themethod. In fact, the Yukawamodel shares several properties of the Stark problem.
Thus, if negative screeningκ<0, i.e. antiscreening cffigure 1, is allowed, bound states become resonances that
will decay in time. It follows that the Yukawa potential can also facilitate a testbed for hypergeometric
resummation.Hence, similarly to the screenedmodel, the antiscreened version is a highly simplisticmodel of
e.g. exciton ionization, whose virtue lies in its simplicity and applicability as a testbed for calculations of
resonances.

In this paper, we consider the low-dimensional Yukawa potential for geometries with dimension 1<D�3
Wewill compare four approaches: (1)numerical diagonalization, (2) perturbation expansion, (3) variational
estimates, and (4)Padé and hypergeometric resummation. Specifically, the screeningκ dependence of the
D-dimensional ground state energywill be investigated. Also, the dependence ofκcrit on dimensionwill be
obtained fromboth diagonalization, variational, and resummation approaches. Finally, we compare numerical
complex scaling results for the unstable antiscreened casewith hypergeometric resummation. In the next
section, the theoretical framework behind all four approaches is established. Subsequently, in section 3, a
numerical comparison of allmethods is presented. Then, we apply themodel to bound excitons in quantum
wells in section 4. A summary and conclusions are offered in the last section.

2. Theoretical framework

Our starting point is the Schrödinger equation in natural units using the reducedmassμ of the two-particle
system as the unit ofmass: e 4 1r 0 pe e m= = = = with εr the relative dielectric constant of the ambient
medium.Hence,

Figure 1.Yukawa potentials with normal (positive) screening (red line), vanishing screening (black line), and antiscreening (blue line).
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Wehave provided the Taylor series of the potential for later reference. Note that the radial part of the Laplacian
interpolates linearly between the known 1D, 2D, and 3D limits.Moreover, the radial integrationmeasure is
r drD 1- [24]. Throughout, we restrict the analysis to rotationally-symmetric states with vanishing angular
momentum,which include the ground state. In the following, we describe four distinctmethodologies applied
to compute the ground state.

2.1. Numerical diagonalization
The eigenvalue problem equation (1) can be solved to arbitrary precision using an expansion in a complete basis.
Sincewe focus on the ground state, we need only include states with vanishing angularmomentum, i.e.
spherically symmetric ones. To this end, we apply a radial Gaussian basis i a rexp i
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Here,U is the confluent hypergeometric function. In the numerical results below, exponents are selected
according to a 3 10 2i

i3= ´-· with integer i in the range i Î [1, 34].

2.2. Perturbation theory
For small values ofκ, a low-order expansion of the ground state energymay be sufficient. This expansion is
partially captured by first order perturbation theory. Thus, we use the hydrogen ground state for the unscreened
potential [24]
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This contribution to the full expansion of the energy is exact to third order but the second order perturbation
correction leads to contributions of orderκ4 and higher. Looking at the Taylor series in equation (2), the relevant
perturbation is V r 2.2kD = - / We applyDalgarno-Lewis perturbation theory [35] to compute the exact second
order contribution.Hence, writing 0 1j j j= + + ¼with the subscript indicating order inκ2, we proceed by
collecting all terms of orderκ2 in the exact eigenvalue problem leading to
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Here, the right-hand side represents theκ2 term in E .1 k( ) The solution is readily found to be
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In total, collecting zeroth, first, and second order corrections,
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Thefirst of these agrees with the perturbation series in [15].

2.3. Variational ansatz
The variational approachhas previously been applied to the three-dimensional problemwith success [19].We
therefore attempt to adapt it to theD–dimensional case.We choose the same ansatz as the one applied in [19], i.e.
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with a and b variational parameters. This form resembles the one applied successfully to the two-dimensional
excitonproblem in [36]. Note that the hydrogen solution equation (4) is contained in the ansatz since
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Theparameters a andb are determinedby anumerical binary search for theminimumof the variational estimateE.

2.4. Padé and hypergeometric resummation
Resummation is a technique designed to convert afinite perturbation series, such as equation (8), to a higher (or
infinite) order approximant. Prominent examples include Padé approximants that have, in fact, been applied to
the three-dimensional Yukawa potential [15, 21]. The approximant is formulated as a function F of the
‘coupling’, i.e.κ in the present case. This function contains a number of parameters that are determined by
Taylor expanding F andmatching to the perturbation series order by order. The fourth-order series equation (8)
then allows formatching offive parameters. Hence, a [1, 3]Padé approximant of the form
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can be constructed. In this case, the parameters h h1 5¼ are fixed bymatching the Taylor series of equation (12)
to orders 0 4k k¼ in equation (8) and become
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However, Padé resummation suffers from anumber of weaknesses in problems characterized by branch cuts,
such as the antiscreened regime of the Yukawa potentialmodel. Fortunately, for these problems several
alternative schemes exist. In [32], hypergeometric resummationwas applied to the Stark effect in low-
dimensional hydrogen. The choice in that case was aGauss hypergeometric function F2 1of the form
h F h h h h l h, , , 1 ,4 2 1 1 2 1 2 3k k´ + + +( ) where h h1 4¼ are undetermined parameters. The integer l>4 is a
constant adjusted to the particular problem at hand, for which l=30was chosen in [32]. In the present case, it is
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found that the limit l  ¥ is well suited, which leads to a confluent hypergeometric function
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TheTaylor expansion of this form agrees by constructionwith the first two terms of equation (8) and h h1 3¼ are
fixed bymatching to orders 2 4k k¼ in equation (8), which leads to
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In the next section, we numerically compare the fourmethodologies described in sections 2.1–2.4.

3.Numerical results

Wenowcomparediagonalization, perturbation, variational, and resummation approaches to theYukawa
problem for various characteristic dimensions.Wewish to establish the regimeof validity of these different
methods. Forκ�0, all fourmethods are, inprinciple, applicable. In contrast, forκ<0 the variational approach
fails because the problem is not bounded frombelow. Infigure 2, the ‘exact’numerical diagonalization,
perturbative, and variational approaches are compared forD=2.0, 2.5, and 3.0. In theunscreenedCoulomb case
κ=0, the energy in allmethods is−2/(D−1)2. The fourth-order perturbation series deviatesmarkedly from the
exact result aroundκ≈0.5 forD=3.0 and fares slightly better in lower dimensions. Conversely, the variational
estimates are barely distinguishable from the exact curves except for the largest values ofκ. Thus, the variational
approach apparently provides accurate results for awide range of dimensions and screenings.However, close to the
thresholdκ=κcrit the relative accuracy is rather poor and, inparticular, variational predictions forκcrit itself are
not generally reliable, as described below. In contrast to perturbation and variational estimates, the diagonalization
approach also provides accurate results for excited states. As an example, the inset infigure 2 shows diagonalization
results for the 2s excited states. These are seen to follow adimensional dependence similar to the ground state. For
the 2s state, however, a critical screening exists even forD=2.

The numerical diagonalization approach also applies to the unstable (antiscreened)κ<0 case. However, it
is necessary to adjust for the fact that real-valued eigenvalues become complex resonances ifκ switches from
positive to negative. The imaginary part E2ImG = - provides the decay rate corresponding to ‘tunneling’ into
the ionized state. A highly efficient way of dealingwith such resonances is through complex scaling [30, 33, 37],
inwhich one rotates the Schrödinger equation into the complex plane r e ri q 

(we take θ=0.5 in practice).
This complexified problem can, of course, also be solved in the stableκ�0 situation and one thenfindsΓ=0
and a real part equal to the usual eigenvalue.

Infigure 3, complex scaling results are compared to resummation approximants for a range of characteristic
dimensions. Both Padé (dotted lines) and hypergeometric (dashed lines) approximants are considered. Several

Figure 2.Comparison of diagonalization, perturbation, and variationalmethods for a few characteristic dimensionsD.Main panel
shows ground (1s) state while the inset shows first excited (2s) state.

5

J. Phys. Commun. 3 (2019) 035021 TGPedersen



important conclusions can be drawn from this comparison. The Padé approximant is generally excellent for
κ�0. In the unstable regimeκ<0, however, it completely fails to capture the correct behavior. It has an
identically vanishing imaginary part and, due to the rational form equation (12), a pole at a characteristic
negativeκ. For instance, a pole atκ≈−1.0 is observed in the three-dimensional case. In contrast, the
hypergeometric approximant equation (14) provides a good approximation for both positive and negativeκ. In
particular, the correct decay rate behavior is observed in the unstable regime.Mathematically, this is a
consequence of the branch cut z , 0Î -¥( ) of the confluent hypergeometric functionU a b z, , .[ ] This
property ensures a correct behavior for negativeκ provided the real part agrees with the perturbation series
nearκ=0.

An important feature of the Yukawa potential is the existence of a critical screeningκcrit, beyondwhich no
bound states exist. A critical screening can be defined for both ground and excited bound states but herewe
exclusively consider the ground state. It is well-established thatκcrit≈1.19061 forD=3.0 [19]. Numerically,
κcrit can be determined from thefirst zero-crossing of the energy. For accurate results using the diagonalization
approach, it is necessary to add very small exponents to the basis set, however. The variational ansatz also
provides a critical screening that, incidentally, coincides with a vanishing exponent b in equation (10) (assuming
b<a). Finally, the Padé approximant equation (12) yields an analytical estimate h hcrit 1 2k » - / given by

D D

D D D D

16 24 35 13

3 1 64 139 101 24
. 16crit

2

2 3
k »

- +
- - + - +

( )
( )( )

( )

AtD=3.0, the Padé approach givesκcrit≈24/23=1.0435Kwhereas the variational estimate is found as the
root f 0critk =( ) of the function

f 8 3 64 48 16 ln
8 8 64 48

8 64 48
17

2
k k k k

k k k k
k k k

= - + + - +
- + + -

+ + + -

⎧⎨⎩
⎫⎬⎭( ) ( )

[ ( ) ]
[ ( ) ]

( )

so thatκcrit≈1.19021K in excellent agreementwith the exact value. Infigure 4, we plot the dimensional
dependence of the critical screening obtained fromdiagonalization, variation, andPadé resummation. Again,
excellent agreement between the former two is noted nearD=3.0 Significant deviations, however, are seen for
lower dimensions. In fact, for sufficiently lowdimensions, the Padé result is superior. None of the two
approximatemethod correctly capture the divergence critk  ¥ in the limitD→2, though. The variational
ansatz atD=2.0 leads to 4 2 ln 2 1 10.355critk » - »( )/ whereas the Padé approximant incorrectly yields
κcrit=16 and diverges atD≈1.893. For the intermediate dimensionD=2.5, the ‘exact’ value isκcrit≈2.976
while both approximations underestimate this.

Figure 3.Hypergeometric (dashed lines) and Padé (dotted lines) resummation approximants compared to numerical complex scaling
results (solid lines). Red and black lines show energy and decay rate, respectively.
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4. Application to quantumwells

Wewill now apply the above theoretical framework to quantumwells with afinite thickness L that is allowed to
vary between small and large values.We assume ideal confinement corresponding to hard-wall boundary
conditions. Thus, by varying Lweprobe an electronic system, which effectively varies between two-and three-
dimensional limiting cases. Specifically, we consider excitons confined to such structures. This setting has
previously been described using fractional dimensions with success [24]. By restricting the analysis to quantum
wells, i.e. D2 3,  we cover the range, for which a critical screening exists, cf figure 4. Note that, in the
present natural units, the unit of length corresponds to the exciton Bohr radius.Hence, two- and three-
dimensional behavior is expectedwhenever L 1 and L 1, respectively. Below, we investigate structures
with L varying in the range L 0, 10Î [ ] in order to cover the transition between the limiting cases. The confining
direction is taken as the z-axis. Due to translational symmetry, exciton states are described by the in-plane radial
coordinate ρ as well as electron and hole z-coordinates ze and z .h Weassume equal effective electron and hole
masses m m 2e h= = (in units of the reduced effectivemass) so that the excitonHamiltonian reads

H
d

dz

d

dz

z z

z z

1

2

1

4

1

4

exp
. 18

e h

e h

e h

2
2

2

2

2

2 2

2 2

k r

r
= -  - - -

- + -

+ -
r

{ ( ) }

( )
( )

ThisHamiltonianmust be supplemented by boundary conditions requiring vanishing wave functions
whenever one of the z-coordinates coincides with the end points of the quantumwell region z L0, .Î [ ] We
stress that thismodel is significantlymore complicated than the fractional-dimensional one equation (1). In
particular, equation (1) is effectively one-dimensional for s-states, whereas equation (18) implies a truly three-
dimensional problem.We consequently obtain the eigenstates of equation (18) by expansion in a three-
dimensional basis. A suitable basis for s-type exciton states, including the ground state, consists of the
functions

z z z z, , sin sin exp 19nmp e h
n z

L

m z

L p e h
2 2e hr b rY = - + -p p( ) ( )( ) { ( ) } ( )

with n,m integer and pb a set of suitably chosen exponents. Tractable expressions for the required overlap and
Coulombmatrix elements are readily derived, whereas the kinetic energy leads to a rather complicated result. In
the numerical applications, we take n,m between 1 and 6 and 2p

p1b = - with integer p between 0 and 4.We then
determine the critical screening by numerical identification of the first zero-crossing of the ground state binding
energy.

We aim to compare thefinite quantumwellmodel to themuch simpler fractional-dimensional one. To this
end, we therefore need tofind the effective quantumwell dimension as a function of thickness L. There is no
uniqueway of achieving this, but one useful and simple approach consists inmatching the ground state energies
of effective and fullmodels [25]. In the case of carbon nanotubes, it is known that the fullmodel [38] agrees with
experiments [39]. Thus, the energymatching approach ensures accurate exciton energies in the effectivemodel
as well. In theD-dimensionalmodel, the ground state exciton binding energy in the absence of screening is
E D2 1 .0

2= - -( )/ By identifying this expressionwith the numerically computed energy E 0k= from the

Figure 4.Critical screening obtained using numerical diagonalization and approximatemethods.
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Hamiltonian equation (18)withκ=0, the effective dimension can be extracted as D E1 2 .0= + k=∣ ∣/ In
turn, the diagonalization result illustrated infigure 4 enables us tofind the critical screening for each choice of
quantumwell thickness. The outcome of this analysis is shown infigure 5. As expected, the energy varies
between E 20 = -k= and E 1 20 » -k= / as the thickness L is increased, while the effective dimension varies
betweenD=2 andD≈3. In particular, a fractional dimension ofD=2.5 is obtained at L≈1.64 and
increases toD=2.75 at L≈3.9. In turn, the critical screening diverges in the 2D limit L=0 and decreases
monotonically towards the 3D limitκcrit≈1.19 as L increases.

Next, we use the fullmodel equation (18)withfiniteκ to determine the critical screening. In this case, the
results shown by the symbols in figure 5 are obtained. They are seen to follow the samemonotonically decreasing
trend as theD-dimensionalmodel. Some disagreement between the quantitative values is noted, however.
Hence,κcrit in the fullmodel initially decreases very steeply with L and thenflattens out and crosses theD-
dimensional results near L≈1. For even thicker quantumwells, the critical screening of the fullmodel is
consistently higher than that of the effectivemodel. Thus, we conclude that the simple and intuitive
determination of the effective dimension via energymatching leads to a qualitatively correct behavior.
Quantitatively, however, the accuracy ofκcrit within this approach is limited.

Having obtained the dimensional dependence ofκcrit, we can now turn to the physical conditions required
to reach criticality. Sinceκcrit diverges in the strict 2D limit, excitons are predicted to remain bound under all
conditions ifD=2. ForD>2, however, conditions forwhich no bound states exist, can be identified. To this
end, we follow [40] in order to relate screening to the Fermi levelEF of free carriers. Considering doping by
electrons in the effectivemass approximation, one has (in natural units) [40]

dn

dE
4 . 20D D D D

F

1 1 2 1

2
k p= G- - -( )( ) ( )( )/

Here, nD is theD-dimensional free carrier density (perD-dimensional volume) that can be found via the density
of states (forE positive)

D E
m

E
2

2
. 21D D

e
D

D

2

2
2 1

p
=

G
-⎜ ⎟⎛

⎝
⎞
⎠( )( ) ( )
/

/

Figure 5.Ground state energy Eκ=0, effective dimensionD, critical screeningκcrit in the effectiveD-model (solid line) and fullmodel
(symbols), and critical Fermi level EF calculated for an exciton confined to a quantumwell with a thickness L.
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Thus, in terms of the Fermi–Dirac distribution f andD-dimensional poly-logarithms LiD 2/

n D E f E dE
m T

E T

m
T E T T

D
E T

2
2

Li exp

2

2 exp high
4

low . 22

D D
e

D

D F
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D
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D F
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2

2

2
2

2

2

ò p

p

= = - -

»
G

¥
⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎧
⎨⎪
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( ) ( ) ( { })

{ } ( )

( ) ( )

/

/

/

/
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/

/

Specializing to the low-temperature regime, we subsequently obtain

m
E

2
. 23D

e
D D

D F
D1

2 1

2

2

2 1k
p

=
G

G
-

-

-( )
( )

( )
( )

/

/

In three-dimensionalmaterials, the usual result n E6 F
2

3k p= / [34]with doping density
n m E2 3e F3

3 2 2p= ( ) ( )// is recovered. By settingκ equal to the critical value, a corresponding critical Fermi level
for a given dimensionD can be found from equation (23).We prefer to give the Fermi level rather than the
critical density, as nD above is amathematic construct (carriers perD-dimensional volume)while the Fermi level
is a physical quantity. The result is shown in the bottompanel infigure 5 depicting the critical EF (in units of
effectiveHartrees 27.21 eVr

2m e ´/ ) versus quantumwell thickness. In the 3D limit, E m32F e
2

crit
4 3p k= »( )/

0.077.Wenote that this value justifies the use of the static screening approximation since the plasma frequency
n4 0.27p 3w p= » exceeds the Fermi level by a sizable factor [10]. In the strict 2D limit L=0, the exciton

ground state is stable, asmentioned above.However, for L≈2 the critical Fermi levelEF≈1 is already increased
significantly over the bulk value.Hence, the intermediate caseD=2.5 corresponding to L≈1.64 is stabilized
to a large degree compared to the 3D case. Itmay be checked that the general plasma frequency

n L4p D
D 3w p= - exceeds the Fermi level in these cases, thus validating the static approximation. This analysis

shows that the low-dimensional Yukawamodel can be applied to provide concrete predictions for the properties
of actual semiconductor nanostructures.

5. Summary

In summary, we have considered the Yukawa potential in fractional dimensional space in order to assess various
approximations for the ground state energy and the critical screening. Both perturbation and variationmethods
have been attempted as well as analytical resummation based on Padé and hypergeometric approximants. For
screeningwell below the critical valueκcrit, a variational ansatz designed for the three-dimensional problem
generally provides an excellent approximation for lower dimensions aswell. However, thismethod fails to
describe the ground state nearκcrit and, in particular, fails to provide an accurate estimate ofκcrit itself. In the
negative or antiscreened regime, the bound states become unstable and eigenvalues are replaced by complex
resonances.We compare numerically exact complex scaling results to the two resummation approximants and
find that only hypergeometric resummation is able to capture the correct behaviour for the decay rate describing
tunnelling ionization. Finally, by applying themodel to bound excitons in quantumwells, we calculate the
dimensional dependence of the critical doping level.
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