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Abstract

The Yukawa interaction describes Coulomb screening in several physical systems. We investigate
bound quantum states of the Yukawa potential in low-dimensional structures as a model of e.g.
excitons in semiconductor nanostructures. Diagonalization, perturbation, variation, and resumma-
tion methods are all applied to the problem and their accuracy is compared. For moderate positive
screening, all methods are found to be applicable and, in particular, the variational approach is highly
accurate except near the threshold for bound states. In contrast, only hypergeometric resummation
captures the correct behaviour in the negative (antiscreened) regime. We also determine the
dimensional dependence of the critical screening, above which bound states cease to exist. As an
application, the critical screening is used to compute critical doping levels for the existence of bound
excitons in quantum wells.

1. Introduction

The Yukawa (or screened Coulomb or Debye—Hiickel) potential V (r) = —e™*"/r has played a prominent role
in physics since its original introduction as a model of nucleon interactions [ 1]. The coefficient in the exponent
k (henceforth called the ‘screening’) truncates the range of the bare Coulomb potential. This situation arises
whenever screening by mobile charges modifies the Coulomb interaction. Important examples include plasma
interactions, electrolytes, and electron-hole pairs, i.e. excitons, in semiconductors [2—11]. Hence, although the
Yukawa model as introduced in a very different context, it has been widely applied in condensed matter physics.
It plays a significant role in semiconductor physics [4]. In particular, following the pioneering work by Gay [5],
exciton screening due to free carriers from doping or intense excitation has frequently been treated using
Yukawa potentials [5—11] or the closely related Hulthén model [6, 12]. Fundamentally, exciton screening is a
dynamical process but a static approximation is frequently adopted due to the inherent simplicity. Nonetheless,
excellent agreement with density-dependent exciton absorption in GaAs [6] and ultrafast screening dynamics of
ZnO excitons has been found [10]. Moreover, the static Yukawa model has been applied to screening of excitons
in one- and two-dimensional semiconductors [7, 8, 11] as well as bulk materials [5, 6, 9, 10].

Bound states of quantum particles interacting via the Yukawa potential have been studied for many decades
and their properties in three dimensions are well understood. Several studies applying finite difference equation
[13], numerical diagonalization [ 14], perturbation theory [15-17], 1/N expansion [ 18], variational approaches
[19,20], Padé resummation [15, 21], or pseudospectral methods [22] have been reported. A particularly
interesting feature of the three-dimensional Yukawa model is that bound states cease to exist when the screening
exceeds a critical value kK > K¢ & 1.19061 in atomic units [17, 19, 21]. Similarly, a few studies have considered
the mathematical properties of the Yukawa model in two dimensions [18, 23]. In this case, no critical screening
exists and bound states are always found. Comparatively few analytical results are known, however, and a general
analysis of the low-dimensional Yukawa model is lacking. For excitonic models, such low-dimensional
geometries are highly relevant. For instance, electron-hole pairs in narrow quantum wells are approximately
two-dimensional. Moreover, several such geometries are best described using fractional dimensions. Thus,
quantum wells have effective dimensions 2 < D < 3[24] and carbon nanotubes have dimension D =~ 1.7 [25].

©2019 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Yukawa potentials with normal (positive) screening (red line), vanishing screening (black line), and antiscreening (blue line).

Consequently, it is relevant to study electron-hole pairs bound by screened Coulomb potentials in fractional
dimensions. In particular, the dependence of . on D is an open problem. It should be noted that an accurate
model of exciton screening in low-dimensional structures such as nanotubes [26] and monolayer
semiconductors [27] is itself a complicated problem. As mentioned above, dynamical effects are of importance
and screening affects a range of material properties other than excitons [28]. One such property is band gap
renormalization. In the present work, however, we only consider the exciton binding energy, i.e. energy relative
to the band gap, and consequently band gap renormalization plays no role for the results. Hence, the statically
screened Yukawa interaction model can only be seen as a simplistic approximation to the full problem. The
virtue of the model, however, lies precisely in the simplicity, which allows for analytical or semi-analytical results
as well as transparent physics.

In the Stark problem, (low-dimensional) excitons exposed to a constant electrostatic field shift their energy
and may dissociate with a characteristic field-dependent decay rate I'. The computation of I" is a complicated
non-perturbative problem [29] but accurate numerical values can be extracted from the complex-scaling
approach [30]. However, a computationally much simpler alternative is resummation based on a few terms of a
perturbation series. Recently, a highly efficient hypergeometric resummation method has been proposed
[31-33] and applied to low-dimensional Coulomb-bound systems. Excellent agreement with complex scaling
has been demonstrated for Stark-type cases but evidence from a wider class of problems is needed to establish the
broad applicability of the method. In fact, the Yukawa model shares several properties of the Stark problem.
Thus, if negative screening £ < 0, i.e. antiscreening cf figure 1, is allowed, bound states become resonances that
will decay in time. It follows that the Yukawa potential can also facilitate a testbed for hypergeometric
resummation. Hence, similarly to the screened model, the antiscreened version is a highly simplistic model of
e.g. exciton ionization, whose virtue lies in its simplicity and applicability as a testbed for calculations of
resonances.

In this paper, we consider the low-dimensional Yukawa potential for geometries with dimension 1 < D < 3
We will compare four approaches: (1) numerical diagonalization, (2) perturbation expansion, (3) variational
estimates, and (4) Padé and hypergeometric resummation. Specifically, the screening x dependence of the
D-dimensional ground state energy will be investigated. Also, the dependence of k;; on dimension will be
obtained from both diagonalization, variational, and resummation approaches. Finally, we compare numerical
complex scaling results for the unstable antiscreened case with hypergeometric resummation. In the next
section, the theoretical framework behind all four approaches is established. Subsequently, in section 3, a
numerical comparison of all methods is presented. Then, we apply the model to bound excitons in quantum
wells in section 4. A summary and conclusions are offered in the last section.

2. Theoretical framework

Our starting point is the Schrodinger equation in natural units using the reduced mass £ of the two-particle
system as the unit of mass: e = 4me, ¢y = h = pu = 1with ¢, the relative dielectric constant of the ambient
medium. Hence,
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{_%v,g +V(r) } ¢ = Ep. )

Here, V3 is the D-dimensional Laplacian V2 = 82/8r2 + (D — 1)r~19/8r — r—2L” with L the angular
momentum operator [24], and the Yukawa potential given by

e " e’ ikt

1
V()= — =——4+ K- —+
r r 2 6 24

+ O(K?). (2

We have provided the Taylor series of the potential for later reference. Note that the radial part of the Laplacian
interpolates linearly between the known 1D, 2D, and 3D limits. Moreover, the radial integration measure is
rP=1dr [24]. Throughout, we restrict the analysis to rotationally-symmetric states with vanishing angular
momentum, which include the ground state. In the following, we describe four distinct methodologies applied
to compute the ground state.

2.1. Numerical diagonalization

The eigenvalue problem equation (1) can be solved to arbitrary precision using an expansion in a complete basis.
Since we focus on the ground state, we need only include states with vanishing angular momentum, i.e.
spherically symmetric ones. To this end, we apply a radial Gaussian basis |i) = exp (—a;r?) with matrix
elements

o)

F(g + l)aia]-

o . L2
ilj) = ——=—, (il — =Vplj) = —,
(il 2t ) (il = 3Vblj) @
qe 'O -1 D 3 2
(i1 5—1j) = ————= ( )QU ! 3)
r 2P(a; + a))> 22 4(a; + a5)

Here, Uis the confluent hypergeometric function. In the numerical results below, exponents are selected
accordingto a; = 3 - 107> x 2’ with integer iin therange i € [1,34].

2.2.Perturbation theory

For small values of x, alow-order expansion of the ground state energy may be sufficient. This expansion is
partially captured by first order perturbation theory. Thus, we use the hydrogen ground state for the unscreened
potential [24]

1 4 D/2
( ) e—2r/(D—=1) 4)

0= Fo\ Do

00

with energy Ey = —2/(D — 1)% This state is radially normalized f gpé (r)rP~'dr = 1.1In this manner, the
0

first order correction becomes

o _ 4D _ 1-D
E(k) :fo a1 — e yrP=2dr = 4—4 (4(_D|— SDl)z k)

K_D@—DM+D@—DM%H%%_MD—W@+D@+DM+OM
96 1536

This contribution to the full expansion of the energy is exact to third order but the second order perturbation
correction leads to contributions of order ' and higher. Looking at the Taylor series in equation (2), the relevant
perturbationis AV = —k?r/2. We apply Dalgarno-Lewis perturbation theory [35] to compute the exact second
order contribution. Hence, writing ¢ = ¢, + ¢, + ... with the subscript indicating order in x°, we proceed by
collecting all terms of order #” in the exact eigenvalue problem leading to

1 1 rK? DD -1
R e ©

Here, the right-hand side represents the x* term in E, (). The solution is readily found to be
0 = %(D — 1)K?*r%p,. We then find

). €)

DD — 1)
8

_D(D~1)4(D+1)Fu4

512 @

[ee) 2
Ey (k) =f0 <p0(r)<pl(r)[—% + ]rDldr:
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In total, collecting zeroth, first, and second order corrections,

2 DD — 1)
E(K)~Ey+ Ef(k) + Ex3(k) = —————— 4+ — —— 242
(9 B+ Fa9) + Ba() = =5 -
ETY 1) _
n D(D — D)*(D + 1)/{3 _ DD - 1)’(D+ H(AD 1)54 4O, ®)
96 1536
For integer dimensions, we find
2 3 4
D=3 E() = —+ 4= 8 UV ),
2 4 2 16
kK K 7kY
D=2E(k)=-24+K— —+ — —— + 0. 9
(%) , 6 % (x”) O]

The first of these agrees with the perturbation series in [15].

2.3.Variational ansatz
The variational approach has previously been applied to the three-dimensional problem with success [19]. We
therefore attempt to adapt it to the D-dimensional case. We choose the same ansatz as the one applied in [19], i.e.

o(r) = %(e-“’ ety (10)

with a and b variational parameters. This form resembles the one applied successfully to the two-dimensional
exciton problem in [36]. Note that the hydrogen solution equation (4) is contained in the ansatz since

lim ¢(r) /(b — a) = e~ . From the variational ansatz, we estimate the energy using E = (T — U) /N with
b—a

normalization integral N = (|}, kinetic energy T = (@I—%V%I@,andpotential energy U = (p| e /1|¢).
With equation (10), these become
N =2[2""Pa?"P 4 21"Pp2=P — (a + b)>"PII'(D — 2),

_ 2PD@* P+ b+ Py + b)P — a* — b* — 2(D — 1)a*h? — Dab(a* + b?) _
I'= D—H@a+b)P I'D - 2),

U=1[Qa+ r)>P —2a+b+ kPP + b+ k)P PITD — 3). (11)

The parameters a and b are determined by a numerical binary search for the minimum of the variational estimate E.

2.4.Padé and hypergeometric resummation
Resummation is a technique designed to convert a finite perturbation series, such as equation (8), to a higher (or
infinite) order approximant. Prominent examples include Padé approximants that have, in fact, been applied to
the three-dimensional Yukawa potential [15, 21]. The approximant is formulated as a function F of the
‘coupling’, i.e. x in the present case. This function contains a number of parameters that are determined by
Taylor expanding F and matching to the perturbation series order by order. The fourth-order series equation (8)
then allows for matching of five parameters. Hence, a[1, 3] Padé approximant of the form

h+ e

E = 12
) 1 + hsk + hyr* + hsi? (12

can be constructed. In this case, the parameters h; ... ks are fixed by matching the Taylor series of equation (12)
toorders ° ... k* in equation (8) and become
2 _ 3(—64 + 139D — 101D? + 24D%)

T D-127 8D — 1)(24 — 35D + 13D?)

~ —=55D + 136D* — 113D° + 32D*

T 16(24 — 35D + 13D?)
hy = —7D + 32D? — 60D? + 58D* — 29D° + 6D°® )
32(24 — 35D + 13D?)

_ (D — 1)*(12D + 7D? — 49D° + 28D*)
B 768(24 — 35D + 13D?) '

1=

>

hs

(13)

However, Padé resummation suffers from a number of weaknesses in problems characterized by branch cuts,
such as the antiscreened regime of the Yukawa potential model. Fortunately, for these problems several
alternative schemes exist. In [32], hypergeometric resummation was applied to the Stark effect in low-
dimensional hydrogen. The choice in that case was a Gauss hypergeometric function ,F, of the form

hyk X 2Fy(hy, hy, by + hy + 1, 1 + h3k), where b ... hy are undetermined parameters. The integer / > 4isa
constant adjusted to the particular problem at hand, for which I = 30 was chosen in [32]. In the present case, it is

4



10P Publishing

J. Phys. Commun. 3 (2019) 035021 T G Pedersen

05 Y T d T T T

1s state:

D =3.0

0.0

> -0.5 i
18}
2

Mk -1.0F i

1.5} Y i 2sstate | |

c ; ‘ 00 - 02 04 06|

..2.0 1 e L . . 2 - 3
1 2 3 4 P

Screening x

Figure 2. Comparison of diagonalization, perturbation, and variational methods for a few characteristic dimensions D. Main panel
shows ground (1s) state while the inset shows first excited (2s) state.

found that thelimit | — oo is well suited, which leads to a confluent hypergeometric function
: h3 )hl l: h3 ]
E(k)=——+ rw|—=]| Ulh, hy, = | 14
R T (H b oy = (14)

The Taylor expansion of this form agrees by construction with the first two terms of equation (8) and b ... hs are
fixed by matching to orders 2 ... k* in equation (8), which leads to

_ —41+ 22D + V1681 — 604D — 764D>

h - b

' 50 — 52D b 96 )
. _ 25— 26D + 1681 — 604D — 764D’ 25 — 51D + 26D?

: 25 — 26D :

In the next section, we numerically compare the four methodologies described in sections 2.1-2.4.

3. Numerical results

We now compare diagonalization, perturbation, variational, and resummation approaches to the Yukawa
problem for various characteristic dimensions. We wish to establish the regime of validity of these different
methods. For k > 0, all four methods are, in principle, applicable. In contrast, for £ < 0 the variational approach
fails because the problem is not bounded from below. In figure 2, the ‘exact’ numerical diagonalization,
perturbative, and variational approaches are compared for D = 2.0, 2.5, and 3.0. In the unscreened Coulomb case
K = 0, the energy in all methods is —2/(D — 1)*. The fourth-order perturbation series deviates markedly from the
exactresultaround k = 0.5 for D = 3.0 and fares slightly better in lower dimensions. Conversely, the variational
estimates are barely distinguishable from the exact curves except for the largest values of «. Thus, the variational
approach apparently provides accurate results for a wide range of dimensions and screenings. However, close to the
threshold k = k. the relative accuracy is rather poor and, in particular, variational predictions for k; itself are
not generally reliable, as described below. In contrast to perturbation and variational estimates, the diagonalization
approach also provides accurate results for excited states. As an example, the inset in figure 2 shows diagonalization
results for the 2s excited states. These are seen to follow a dimensional dependence similar to the ground state. For
the 2s state, however, a critical screening exists even for D = 2.

The numerical diagonalization approach also applies to the unstable (antiscreened) x < 0 case. However, it
is necessary to adjust for the fact that real-valued eigenvalues become complex resonances if x switches from
positive to negative. The imaginary part I' = —2ImE provides the decay rate corresponding to ‘tunneling’ into
the ionized state. A highly efficient way of dealing with such resonances is through complex scaling [30, 33, 37],
in which one rotates the Schrodinger equation into the complex plane 7 — ™7 (we take @ = 0.5 in practice).
This complexified problem can, of course, also be solved in the stable £ > 0 situation and one then findsI" = 0
and areal part equal to the usual eigenvalue.

In figure 3, complex scaling results are compared to resummation approximants for a range of characteristic
dimensions. Both Padé (dotted lines) and hypergeometric (dashed lines) approximants are considered. Several
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Figure 3. Hypergeometric (dashed lines) and Padé (dotted lines) resummation approximants compared to numerical complex scaling
results (solid lines). Red and black lines show energy and decay rate, respectively.

important conclusions can be drawn from this comparison. The Padé approximant is generally excellent for

k > 0.Inthe unstable regime x < 0, however, it completely fails to capture the correct behavior. It has an
identically vanishing imaginary part and, due to the rational form equation (12), a pole at a characteristic
negative . For instance, a pole at k &~ —1.0is observed in the three-dimensional case. In contrast, the
hypergeometric approximant equation (14) provides a good approximation for both positive and negative . In
particular, the correct decay rate behavior is observed in the unstable regime. Mathematically, thisisa
consequence of the branch cut z € (—o00, 0) of the confluent hypergeometric function U [a, b, z]. This
property ensures a correct behavior for negative x provided the real part agrees with the perturbation series
neark = 0.

An important feature of the Yukawa potential is the existence of a critical screening k., beyond which no
bound states exist. A critical screening can be defined for both ground and excited bound states but here we
exclusively consider the ground state. It is well-established that k., &~ 1.19061 for D = 3.0 [19]. Numerically,
Kerit can be determined from the first zero-crossing of the energy. For accurate results using the diagonalization
approach, it is necessary to add very small exponents to the basis set, however. The variational ansatz also
provides a critical screening that, incidentally, coincides with a vanishing exponent b in equation (10) (assuming
b < a).Finally, the Padé approximant equation (12) yields an analytical estimate k. & —h; /h, given by

16(24 — 35D + 13D?)
3(D — 1)(—64 + 139D — 101D? + 24D3%)

(16)

Rerit =

AtD = 3.0, the Padé approach gives ki A 24/23 = 1.0435... whereas the variational estimate is found as the
root f (ki) = 0 of the function

S 7 et ey
F(k) =8 — 3k + 64 T r(r — 48) + 161n{8“[8 NGt R 48] (17)
[8 + K + 64 + k(k — 48) 1

so that Ky & 1.19021... in excellent agreement with the exact value. In figure 4, we plot the dimensional
dependence of the critical screening obtained from diagonalization, variation, and Padé resummation. Again,
excellent agreement between the former two is noted near D = 3.0 Significant deviations, however, are seen for
lower dimensions. In fact, for sufficiently low dimensions, the Padé result is superior. None of the two
approximate method correctly capture the divergence k. — oo inthelimit D — 2, though. The variational
ansatzatD = 2.0leadsto kg = 4/(21n 2 — 1) =~ 10.355 whereas the Padé approximant incorrectly yields
Keie = 16 and divergesat D &~ 1.893. For the intermediate dimension D = 2.5, the ‘exact’ value is £ &~ 2.976
while both approximations underestimate this.
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Figure 4. Critical screening obtained using numerical diagonalization and approximate methods.

4. Application to quantum wells

We will now apply the above theoretical framework to quantum wells with a finite thickness L that is allowed to
vary between small and large values. We assume ideal confinement corresponding to hard-wall boundary
conditions. Thus, by varying L we probe an electronic system, which effectively varies between two-and three-
dimensional limiting cases. Specifically, we consider excitons confined to such structures. This setting has
previously been described using fractional dimensions with success [24]. By restricting the analysis to quantum
wells,i.e. 2 < D < 3, we cover the range, for which a critical screening exists, cf figure 4. Note that, in the
present natural units, the unit of length corresponds to the exciton Bohr radius. Hence, two- and three-
dimensional behavior is expected whenever L < 1and L > 1, respectively. Below, we investigate structures
with L varying in the range L € [0, 10]in order to cover the transition between the limiting cases. The confining
direction is taken as the z-axis. Due to translational symmetry, exciton states are described by the in-plane radial
coordinate p as well as electron and hole z-coordinates z, and z;,. We assume equal effective electron and hole
masses m, = my, = 2 (in units of the reduced effective mass) so that the exciton Hamiltonian reads

e gz 1d& 1& eXP{_N\/pZ'F(Ze_Zh)Z}.

2 ’ 4 dZe2 4 th2 Jpz + (z, — Zh)z

This Hamiltonian must be supplemented by boundary conditions requiring vanishing wave functions
whenever one of the z-coordinates coincides with the end points of the quantum well region z € [0, L]. We
stress that this model is significantly more complicated than the fractional-dimensional one equation (1). In
particular, equation (1) is effectively one-dimensional for s-states, whereas equation (18) implies a truly three-
dimensional problem. We consequently obtain the eigenstates of equation (18) by expansion in a three-
dimensional basis. A suitable basis for s-type exciton states, including the ground state, consists of the
functions

(18)

G 200 20) = sin (7 ) sim ("5 ) exp { — By /7 + (20 — 20)* ) (19)

with n, m integer and 3, a set of suitably chosen exponents. Tractable expressions for the required overlap and
Coulomb matrix elements are readily derived, whereas the kinetic energy leads to a rather complicated result. In
the numerical applications, we take 1, m between 1 and 6 and 3, = 2'~? with integer p between 0 and 4. We then
determine the critical screening by numerical identification of the first zero-crossing of the ground state binding
energy.

We aim to compare the finite quantum well model to the much simpler fractional-dimensional one. To this
end, we therefore need to find the effective quantum well dimension as a function of thickness L. There is no
unique way of achieving this, but one useful and simple approach consists in matching the ground state energies
of effective and full models [25]. In the case of carbon nanotubes, it is known that the full model [38] agrees with
experiments [39]. Thus, the energy matching approach ensures accurate exciton energies in the effective model
as well. In the D-dimensional model, the ground state exciton binding energy in the absence of screening is
Ey = —2/(D — 1) Byidentifying this expression with the numerically computed energy E,_, from the
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Figure 5. Ground state energy E,._, effective dimension D, critical screening £, in the effective D-model (solid line) and full model
(symbols), and critical Fermi level Eg calculated for an exciton confined to a quantum well with a thickness L.

Hamiltonian equation (18) with k = 0, the effective dimension can be extractedas D = 1 + /2/|E—¢| - In
turn, the diagonalization result illustrated in figure 4 enables us to find the critical screening for each choice of
quantum well thickness. The outcome of this analysis is shown in figure 5. As expected, the energy varies
between E,._qg = —2and E,_y ~ —1/2 asthe thickness L is increased, while the effective dimension varies
between D = 2and D = 3.In particular, a fractional dimension of D = 2.5is obtained at L = 1.64 and
increasesto D = 2.75at L ~ 3.9.In turn, the critical screening diverges in the 2D limit L = 0 and decreases
monotonically towards the 3D limit k. ~ 1.19 as Lincreases.

Next, we use the full model equation (18) with finite x to determine the critical screening. In this case, the
results shown by the symbols in figure 5 are obtained. They are seen to follow the same monotonically decreasing
trend as the D-dimensional model. Some disagreement between the quantitative values is noted, however.
Hence, K in the full model initially decreases very steeply with L and then flattens out and crosses the D-
dimensional results near L & 1. For even thicker quantum wells, the critical screening of the full model is
consistently higher than that of the effective model. Thus, we conclude that the simple and intuitive
determination of the effective dimension via energy matching leads to a qualitatively correct behavior.
Quantitatively, however, the accuracy of k; within this approach is limited.

Having obtained the dimensional dependence of k., we can now turn to the physical conditions required
to reach criticality. Since k. diverges in the strict 2D limit, excitons are predicted to remain bound under all
conditionsif D = 2.For D > 2, however, conditions for which no bound states exist, can be identified. To this
end, we follow [40] in order to relate screening to the Fermi level Er of free carriers. Considering doping by
electrons in the effective mass approximation, one has (in natural units) [40]

—1\dn
D—1 47)0-D/2p (L1 D 20

Here, np is the D-dimensional free carrier density (per D-dimensional volume) that can be found via the density
of states (for E positive)

D/2
Dp(E) = LD(’”—) EP/2-1, Q1)
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Thus, in terms of the Fermi-Dirac distribution fand D-dimensional poly-logarithms Lip »

m,T b/2
277) Lip)a(—exp (Ex/T})

@zﬁm%wwmﬂ=—4

2TP/? exp (Ep/ T} (high T)

. \P/2
~ (j) 2 _gpr (low T). (22)
or(3)
Specializing to the low-temperature regime, we subsequently obtain
(2m, P21 (2=
D1 — £ 2 )EE/ZI- (23)
47 (%)

In three-dimensional materials, the usual result xk* = 67n; /Ep [34] with doping density

ny = (2m,Ep)>/?/(3n?)is recovered. By setting x equal to the critical value, a corresponding critical Fermi level
for a given dimension D can be found from equation (23). We prefer to give the Fermi level rather than the
critical density, as np above is a mathematic construct (carriers per D-dimensional volume) while the Fermi level
is a physical quantity. The result is shown in the bottom panel in figure 5 depicting the critical Ep (in units of
effective Hartrees 11/; x 27.21 eV) versus quantum well thickness. In the 3D limit, Er = 72kl /(32m,) ~
0.077. We note that this value justifies the use of the static screening approximation since the plasma frequency
wp = /4mn3 =2 0.27 exceeds the Fermi level by a sizable factor [10]. In the strict 2D limit L = 0, the exciton
ground state is stable, as mentioned above. However, for L & 2 the critical Fermilevel Er~ 1 is already increased
significantly over the bulk value. Hence, the intermediate case D = 2.5 corresponding to L /= 1.64 is stabilized
to alarge degree compared to the 3D case. It may be checked that the general plasma frequency

wp = /4mnp LP~3 exceeds the Fermi level in these cases, thus validating the static approximation. This analysis
shows that the low-dimensional Yukawa model can be applied to provide concrete predictions for the properties
of actual semiconductor nanostructures.

5. Summary

In summary, we have considered the Yukawa potential in fractional dimensional space in order to assess various
approximations for the ground state energy and the critical screening. Both perturbation and variation methods
have been attempted as well as analytical resummation based on Padé and hypergeometric approximants. For
screening well below the critical value k., a variational ansatz designed for the three-dimensional problem
generally provides an excellent approximation for lower dimensions as well. However, this method fails to
describe the ground state near £ and, in particular, fails to provide an accurate estimate of x . itself. In the
negative or antiscreened regime, the bound states become unstable and eigenvalues are replaced by complex
resonances. We compare numerically exact complex scaling results to the two resummation approximants and
find that only hypergeometric resummation is able to capture the correct behaviour for the decay rate describing
tunnelling ionization. Finally, by applying the model to bound excitons in quantum wells, we calculate the
dimensional dependence of the critical doping level.

Acknowledgments

The author thanks Horia Cornean for useful discussions and the QUSCOPE center funded by the Villum
foundation for financial support.

ORCID iDs

Thomas Garm Pedersen @ https://orcid.org/0000-0002-9466-6190

References

[1] Yukawa H 1935 Proc. Phys. Math. Soc. Jap. 17 48

[2] BonitzM, Henning C and Block D 2010 Rep. Prog. Phys. 73 066501

[3] Hamaguchi§, Farouki R T and Dubin D H E 1997 Phys. Rev. E 56 4671

[4] HaugH and Koch SW 1993 Quantum Theory of the Optical and Electronic Properties of Semiconductors (Singapore: World Scientific)
[5] Gay] G 1971 Phys. Rev. B4 2567

[6] BanyaiLand Koch SW 1986 Z. Phys. B 63 283



https://orcid.org/0000-0002-9466-6190
https://orcid.org/0000-0002-9466-6190
https://orcid.org/0000-0002-9466-6190
https://orcid.org/0000-0002-9466-6190
https://doi.org/10.1088/0034-4885/73/6/066501
https://doi.org/10.1103/PhysRevE.56.4671
https://doi.org/10.1103/PhysRevB.4.2567
https://doi.org/10.1007/BF01303807

10P Publishing

J. Phys. Commun. 3 (2019) 035021 T G Pedersen

[7] Dahl D A 1988 Phys. Rev. B37 6882
[8] Ping EXand Jiang H X 1993 Phys. Rev. B47 2101
[9] Ninno D, Ligouri F, Cataudella V and Iadonisi G 1994 J. Phys.: Condens. Matter 6 9335
[10] Versteegh M A M, Kuis T, Stoof H T C and Dijkhuis J 12011 Phys. Rev. B 84 035207
[11] ZhaiL-X, WangY and LiuJJ 2012 J. Appl. Phys. 112033709
[12] Tanguy C 1999 Phys. Rev. B 60 10660
[13] Rogers FJ, Graboske H C and Harwood D] 1970 Phys. Rev. A1 1577
[14] NufiezM A 1993 Phys. Rev. A 47 3620
[15] Vrscay ER 1986 Phys. Rev. A33 1433
[16] Taseli Hand Demiralp M 1987 Theor. Chim. Acta71 315
[17] Edwards ] P, Gerber U, Schubert C, Trejo M A and Weber A 2017 Prog. Theor. Exp. Phys. 083A01
[18] Kassim H A and Al-Maliky N S 2006 J. Phys. B: At. Mol. Opt. Phys. 39 3057
[19] Garavelli S Land Oliveira F A 1991 Phys. Rev. Lett. 66 1310
[20] Stubbins C 1993 Phys. Rev. A 48 220
[21] Caser S, Piquet C and Vermeulen J L 1969 Nuc. Phys. B14 119
[22] Roy AK 2005 Pramana—]J. Phys. 65 1
[23] Poszwa A 2014 Phys. Scr. 89 065401
[24] HeX-F 1991 Phys. Rev. B43 2063
[25] Pedersen T G 2007 Solid State Commun. 141 569
[26] Ando T 1997 J. Phys. Soc. Jpn. 66 1066
[27] TrolleM L, Pedersen T G and Veniard V 2017 Sci. Rep. 7 39844
[28] Rustagi A and Kemper A F 2018 Nano Lett. 18 455
[29] Jentschura U D 2001 Phys. Rev. A 64013403
[30] HerbstI W and Simon B 1978 Phys. Rev. Lett. 41 67-9
[31] MeraH, Pedersen T G and Nikoli¢ BK 2015 Phys. Rev. Lett. 115 143001
[32] Pedersen T G, Mera H and Nikoli¢ BK 2016 Phys. Rev. A 93 013409
[33] Pedersen T G, Latini S, Thygesen K S, Mera H and Nikoli¢ BK 2016 New J. Phys. 18 073043
[34] MottN F 1968 Rev. Mod. Phys. 40 677
[35] Dalgarno A and Lewis J T 1955 Proc. R. Soc. Lond. A 233 70
[36] PedersenT G 2016 Phys. Rev. B 94125424
[37] Massicotte M et al 2018 Nat. Commun. 9 1633
[38] Pedersen T G 2003 Phys. Rev. B 67 073401
[39] WangF, Dukovic G, Brus L E and Heinz T F 2005 Science 308 838
[40] PandaSand Panda B K 2008 J. Phys.: Condens. Matter 20 485201

10


https://doi.org/10.1103/PhysRevB.37.6882
https://doi.org/10.1103/PhysRevB.47.2101
https://doi.org/10.1088/0953-8984/6/44/014
https://doi.org/10.1103/PhysRevB.84.035207
https://doi.org/10.1063/1.4743005
https://doi.org/10.1103/PhysRevB.60.10660
https://doi.org/10.1103/PhysRevA.1.1577
https://doi.org/10.1103/PhysRevA.47.3620
https://doi.org/10.1103/PhysRevA.33.1433
https://doi.org/10.1007/BF00529103
https://doi.org/10.1088/0953-4075/39/14/013
https://doi.org/10.1103/PhysRevLett.66.1310
https://doi.org/10.1103/PhysRevA.48.220
https://doi.org/10.1016/0550-3213(69)90348-4
https://doi.org/10.1007/BF02704371
https://doi.org/10.1088/0031-8949/89/6/065401
https://doi.org/10.1103/PhysRevB.43.2063
https://doi.org/10.1016/j.ssc.2006.12.015
https://doi.org/10.1143/JPSJ.66.1066
https://doi.org/10.1038/srep39844
https://doi.org/10.1021/acs.nanolett.7b04377
https://doi.org/10.1103/PhysRevA.64.013403
https://doi.org/10.1103/PhysRevLett.41.67
https://doi.org/10.1103/PhysRevLett.41.67
https://doi.org/10.1103/PhysRevLett.41.67
https://doi.org/10.1103/PhysRevLett.115.143001
https://doi.org/10.1103/PhysRevA.93.013409
https://doi.org/10.1088/1367-2630/18/7/073043
https://doi.org/10.1103/RevModPhys.40.677
https://doi.org/10.1098/rspa.1955.0246
https://doi.org/10.1103/PhysRevB.94.125424
https://doi.org/10.1038/s41467-018-03864-y
https://doi.org/10.1103/PhysRevB.67.073401
https://doi.org/10.1126/science.1110265
https://doi.org/10.1088/0953-8984/20/48/485201

