Progress in the Rheology of Inorganic Glass-Forming Melts

An invited talk

Yue, Yuanzheng

Publication date:
2010

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.
Progress in the Rheology of Inorganic Glass-Forming Melts

Yuanzheng Yue

Section of Chemistry, Aalborg University, DK-9000 Aalborg, Denmark

In recent years, substantial progress has been made in understanding rheology of glass-forming melts. In my presentation I focus on some of crucial developments in studies of the viscous behavior of inorganic melts. I describe new insights into the correlations among the liquid dynamics, thermodynamics, equilibrium viscosity, non-equilibrium viscosity, and non-Newtonian viscosity. I address the role of the new knowledge about the melt rheology in influencing the glass technology by giving several examples. Furthermore, I attempt to establish the link between the melt fragility and the technological aspects such as the melt workability, fiber spinnability, and glass forming ability. I also briefly mention which of the current viscosity models has both physical foundation and highest accuracy in describing the temperature and deformation dependences of viscosity. The impact of the glass structural anisotropy due to tension on mechanical strength has been demonstrated and elucidated. Finally, I report a recent finding about the dynamics of metallic glass-forming melts.