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Abstract—This paper presents the details of a holistic frame-
work designed for wildfire inspection and estimation of its
geolocation. The system is built around a low-cost, commercial
quadcopter, and the main areas of interest we address in this
paper are the semi-autonomous navigation of the drone, the
training and classification of fire using deep convolutional neural
networks, the estimation of the size and location of the wildfire
and the real-time feedback and communication with the user.
The evaluation of the functionality of the system demonstrates
that with the combination of the proposed techniques we can
successfully detect and classify fire in video streams at 19.2 FPS
while we can calculate the size and location of the fire with an
accuracy of 60.76%.

Index Terms—wildfire inspection, quadcopter navigation,
deep convolutional neural networks

I. INTRODUCTION

As the frequency of extreme weather phenomena increases
rapidly [1], and their violent nature escalates due to climate
change [2], the initial attack success rate of wildfires even-
tually raises as well [3], [4]. Emergency response personnel,
across the globe, struggle to contain the increase of wildfire
size, numbers and severity. In the summer of 2018, California
experienced the largest wildfire in the state’s history, [5]
in Sweden emergency personnel were overwhelmed by the
numbers of forest fires, [6], [7] and in Greece, two violent
fires left 250 injured and 105 dead. Considering the above,
emergency services are investigating how flying robotic
technologies can facilitate a faster and more accurate data
gathering procedure from wildfires, to increase the efficacy
of firefighting operations [8], [9].

The needs of the firefighters and requirements for timely
response to a wildfire were determined through a collab-
oration with the Danish Emergency Management Agency
(DEMA) and interviews with Evan Bek Jensen, the second in
command of the Herning drone unit. Discussing the potential
of a new product versus current available methods, it became
evident that accurate information about the location, size,
intensity and direction of a wildfire were essential for better
allocation of their resources.

The backbone of the proposed framework is based on the
integration of a low-cost, commercially available quadcopter

with an off-the-shelf RGB-D camera and DCNNs that enable
semi-autonomous navigation, inspection of the wildfire and
remote control via a handheld device. The contribution of
this work lies in the holistic combination of the presented
technologies to collect, process and transmit the data acquired
from the area of interest to the user providing the emergency
services with a quick and accurate overview of a wildfire.

A. Related Works

A number of systems have been developed in order to
triangulate the location of a wildfire. Most of these include
multiple sensors in order to acquire an accurate location of
the fire. Martinez-de Dios et al. recorded the same fire pattern
or smoke from different angles and compared the position of
the sources recording the fire and key terrain features to each
other using four sensors, two UAVs and two ground based
cameras [10]. Merino et al. used multiple sensors, mounted
on three UAVs, and compared the location according to each
of the UAVs while recorded the contour of the fire, in order
to predict the direction of the fire spread [11]. In our case,
we only utilise a single quadcopter equipped with an off-the-
shelf RGB-D camera and on-board altitude and GPS sensors
to identify the properties of the fire in the area of interest.

Studies in regards to fire recognition have been presented
via a consumer grade monocular camera system. Lum et al.
were able to detect wildfire, but also predict its development
with regards to vegetation or burned area [12]. Furthermore,
Yuan et al. showed that detecting fire can be based not only
on the fire palette, but also on the optical flow of the moving
flames [13]. In our work, we estimate the size and location
by utilising edge and BLOB detection to detect the edges of
the fire inside the area of interest provided by the firefighter.

Firefighters have been using quadcopters for gathering data
during the last decades, and accommodate a wide range of
quadcopter sizes, sensors and classification approaches [14].
In order to distinguish fire from other objects, that is within
the same color spectrum, such as fire trucks or firefighter
uniforms, DCNNs can be utilized in order to classify the
BLOBs within the same color spectrum [15]. In our work, we
train the DCNNs with video streams instead of single static
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Fig. 1. Hardware setup used for the proposed framework

images and we achieve a classification accuracy of 60.76%
in a relatively high frame rate of 19.2 FPS.

II. PROPOSED FRAMEWORK

The hardware used for this work relies on an open-
source quadcopter, the Intel Aero Ready-To-Fly quadcopter
coupled with the Intel Realsense R-200 RGB-D camera, as
depicted in Fig. 1. In order to have the required computational
power to process the acquired data, a computer acts as a
master, although the system is controlled by an intuitive
user interface on the handheld device. Fig. 2 illustrates the
framework’s main functionalities. Upon arriving at the site
of an emergency, the operator of the quadcopter works in
collaboration with the incident commander, to assess the
situation and identify in which area the quadcopter must be
put into action (Fig. 2a). Utilising the GUI on the tablet, the
operator is presented with a topological map, to select an

(a) The firefighter arrives on site and (b) The firefighter selects the area of
assess the situation interest

& &

(c) The quadcopter scans the se- (d) The operator receives a visual
lected area feedback of the fire’s size and loca-
tion

Fig. 2. Infographic of the stepwise process on the use of the developed
framework

area of interest (Fig. 2b). The quadcopter autonomously flies
to this area and begins to search the area for signs of a fire
(Fig. 2c¢), flying in a snake pattern (Fig. 4). The quadcopter
streams the collected data to the master computer for further
processing, and in the event that a wildfire is recognized,
calculates its location and size. This information is then
overlaid onto the topological map of the GUI, providing data
visualization for the firefighters to consider when allocating
resources (Fig. 2d).

III. SYSTEM OVERVIEW

The proposed framework can be separated into three main
pillars, which are described in the following subsections.
Fig. 3, illustrates an overview of the subsystems. The process
starts with the operator interacting with the GUI on the
tablet and provide the area of interest. The coordinates are
transmitted to the drone which autonomously navigates and
inspects the area. Potential features are extracted and DCNNs
assist with the their classification to different classes related
to wildfire. Based on this data, the size and location of
the fire is calculated and the quadcopter later transmits the
coordinates and video video stream of the search area to the
operator’s tablet.

A. Autonomous Area Navigation

In order for the quadcopter to acquire and process the
footage of the fire, an area navigation algorithm was devel-
oped to autonomously cover the area around the wildfire. To
begin with, the quadcopter receives the message from the
master computer containing the user’s input. This message
features a set of two coordinates and two lengths to determine
the edges of the rectangle where the area navigation is to be
performed. This is then implemented into the autonomous
flying algorithm. An area sweep is performed inside the
designated rectangle following a snake pattern, as shown in
Fig. 4. The pattern is followed alongside the Fire Detec-
tion Algorithm, described in subsection III-B. Once a fire
is detected an alarm is sent which stops the quadcopter
from moving forward. This occurs to stop the quadcopter
from flying inside a smoky environment that will potentially
damage the on-board sensors.

B. Feature Extraction and Classification

In order for the feature extractor and classifier to be
lightweight and provide a close to real-time data processing
performance, the initial search of wildfire is contained within
the fire color spectrum by masking the input frame. The
BLOBs extracted from this color spectrum search, can be
seen in Fig. 5a and 5b. A region of interest is created
surrounding these BLOBs and they are later passed forward
to a deep convolutional neural network where the rest of the
image is cropped.

A custom built database was used for the training and vali-
dation of the DCNNS5 using an image scraper that contains the
keywords listed in Table I, running through Google, Yandex
and Bing search engines. Furthermore, this database is built to
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Fig. 5. Results of the feature extraction process in data from the search area

be continuously evolving as every 100" frame of the video
input, when the quadcopter is in operation, will be passed
onto the database, with a label depending on the classification
at that moment. Moreover, as a collaboration with DEMA
was established, operational footage was provided which is
also integrated into the database. In order to establish which
CNN architecture would best suit this system, six different
CNN architectures were trained and tested on the data from
the built database. These are: VGG16 [16], DenseNet [17],
Inception v3 [18], MobileNet v2 [19], ResNet 50 [20] and
NASNetMobile [21]. These architectures where primarily

TABLE 1
IMAGE SCRAPPER KEYWORDS

Keywords for Fire Keywords for Firetrucks

Fire Firetruck
Forest Fire Firetrucks
Forest Wildfire Fire Truck

Wildfire
Wildfire Drone Footage
Wildfire from Above
Wildfire Top View

Fire Trucks

chosen as they are lightweight models, while VGG16 will
serve as a reference of performance. Their respective perfor-
mance in our classification task is compared in Table II.

C. Wildfire Size and Location

Due to the collaboration with DEMA, video footage of
real firefighting operations in Denmark, was obtained as
Fig. 6 depicts. This is footage from Dokkedal, Denmark,
where a real fire in a field is shown. DEMA operates with
thermal imagery, and scans the area within a range of 80-
800° Celsius, in order to eliminate any noise.

In order to estimate the location and size of the fire, the
algorithm first determines the edges of the scanned area
by applying Canny edge detection. The presented image is
required to be in grey scale, while the algorithm detects
differences in intensity, which can be adjusted by a threshold.
Finally it sets the edge pixels to 1 while non-edge to 0.

Once the edges have been identified, the second part of
the algorithm calculates the distances to the edges, compared
to the quadcopter’s GPS position, in order to calculate the
size of the fire. Fig. 7 illustrates a general approach of this,
visualized viewing from the side to highlight how this is
calculated. The height of the quadcopter is represented with
H which is provided from the quadcopter’s altitude sensor.
Knowing two angles, and the altitude of the quadcopter, L2 —
L1 represents the fire size and can be calculated by 1.

L2 — L1 =tan(A2+ A1) x H —tan(Al)x H (1)

Based on 1, an algorithm was developed to calculate the

Fig. 6. Snippet of thermal imagery from Dokkedal, captured by DEMA
quadcopter unit.



location and the size of the detected wildfire, and determine
the optimal way of combating the wildfire. This algorithm
is based on the camera’s lowest FOV point aimed straight
down from the quadcopter’s position. Therefore, the entire
FOV of the camera can be used rather than only half, from
the standard front-facing mount of the camera. This is also
done due to the necessity to address the error that arises near
the horizon of the input image.

The algorithm uses the angle of the camera and ratios to
calculate the size and position of wildfire accurately. In 2 we
calculate a ratio of where the wildfire’s initial position is, in
relation to the height of the image, given as a percentage.

FireEdgeStart

FireStart = 100 —
restar ImageH eight

* 100 2)
Where, FireEdgeStart is the position of the pixel at which
the fire starts and ImageHeight is the entire height of the
input image. This value is subtracted from 100 to find the
ratio from the bottom of the image instead of the top. This
is necessary because the origin of pixels in the image is in
the top-left corner. Eq. 2 is applied twice to find the initial
and final position of the fire. Using these ratios, the angles
related to the two points can be calculated with 3.

FOV
100

Where, FireStart is the value of 2 and FOV is the field of
view of the camera. This calculation is also performed twice.
The results are angles in degrees from the bottom of the
image, which represents the point at which the fire starts
and ends. After these two calculations have been completed,
the distance to each point can be established applying the
trigonometric functions as shown in 4.

FireStartDeg = FireStart

(©))

FireDistStart = tan(FireStartDeg) * Height 4

Where, FireStartDeg is the result of 3 and Height is the
altitude of the quadcopter when the input image was taken.

Fig. 7. Side view of the fire size calculation algorithm

D. Graphical User Interface

In order for the operator to interact intuitively with the
handheld device, simple GUI was designed. The GUI acts
as a command unit for the quadcopter and it acts as the
main means of communication and visualization between the
operator and the quadcopter. It sends the coordinates for the
delimited area of navigation and displays the output feedback
sent from the quadcopter. It is a Python-based interface
combined with Google Maps API, to display the topological
map and overlay the rectangle for the desired area.

Fig. 8 illustrates the main display of the GUI and show-
cases the functionalities of the GUI. This includes a pop
up window featuring the RGB footage streamed from the
quadcopter while the acquired footage from the fire is shown
with a bounding box set by the fire detection algorithm.

An editable rectangle in the middle of the screen allows
the user to delimit the area where they want the navigation
to be performed. A new message will be sent to the master
computer every time that the rectangle is changed, containing
(i) the length of the north/south direction, set in meters and
(ii) the east/west direction in meters are set to establish how
much the quadcopter should move to either side, before the
quadcopter moves back along the north/south direction.

IV. COMMUNICATION

Communication between the operator and the quadcopter is
essential in emergency cases such as wildfire identification.
Therefore, a special subsystem is designed to organize the
communication to be established among the different parts of
the system. This consists of managing what information and
channels are established between the quadcopter, the master
computer and the handheld device, as seen in Fig. 9.

The first step requires the establishment of a constant
stream between the quadcopter and the master computer to
enable stable transmission of the video stream, GPS Location,
altitude measurements and orientation data. This is then
relayed from the master computer onto the tablet to keep the
telemetry readers updated for the user in real-time. After this
point, the communication follows the steps of the process
as described in the block diagram in Fig. 3. The master

Fig. 8. Illustration of the Graphical User Interface
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Fig. 9. The main communication channels of the proposed framework

computer acts as an intermediate point during the entirety
of the connection. This is done to process the footage and
run the feature extraction and classification algorithms.

The handheld device transmits the coordinates based on the
square boundaries set by the operator. The quadcopter uses
these coordinates as inputs for performing the autonomous
navigation of the desired area whilst running the fire de-
tection algorithm. Once the pixels in the video match the
RGB threshold, the classification algorithm will determine
the nature of the detected objects. This triggers the master
computer to send a new flight pattern in order to avoid flying
directly on top of the fire, which could potentially damage the
on-board sensors. The quadcopter then proceeds with flying
around the fire while running the size and location estimation
algorithm and relaying this information back to the tablet.
Finally, the tablet overlays a graphic of the identified fire on
the topological map for the user to see.

V. EVALUATION

To evaluate the functionality of the framework, a series
of tests were performed following the steps of the block
diagram in Fig. 3. Initially, multiple tests performed to
evaluate the ability of the system to transmit successfully
the coordinates of the area of interest. As every test resulted
to a drawn rectangle around a certain area in the map and
the coordinates saved into external files of the northeast
and southwest corners and transmitted to the drone, this
subsystem is considered that performs adequately every time.
Regarding the autonomous navigation, the quadcopter was
able to fly following the snake pattern inside a rectangle of
60x 80 meters at an altitude of 30 meters in every test.

The fire identification algorithm was able to successfully
detect the right RGB threshold and draw a bounding box
around the fire objects in the video stream. According to
the results presented in Table II, MobileNet v2 performed
optimally as it was able to differentiate both fire and non-fire
objects, having the smallest amount of parameters compared
to the validation accuracy and loss and able to run faster than
the rest at 19.2 FPS. Lastly, numerous tests for the fire size

algorithm were performed showing that it could successfully
calculate the location and size of the fire with an average
accuracy of 60.76%.

VI. CONCLUSIONS

This paper describes a framework for identification of
wildfires using an autonomous quadcopter, image processing
algorithms and classification based on DCNNs. The main
outcome of the performed tests shows that the system can au-
tonomously navigate through an area of interest, successfully
detect and accurately classify a suspicious area as wildfire
and then calculate its size and location in correlation to the
quadcopter’s GPS position. The framework’s performance
provides significant edge during the decision making on
allocating resources when combating wildfires by providing
a deeper understanding of the current situation.

Further development of this system will integrate a thermal
camera, in order to enhance the detection capabilities of
the vision system and increase the accuracy of the size
and calculation of the fire. Moreover, as this framework is
based on the premises that the area of interest is flat, future
development of the algorithm will consider 3D areas and
inclined areas with multiple heights and occlusions. Lastly,
as the frames utilised here should always contain the whole
area of the fire, there is a potential interest in adapting the
framework to detect the same location of the fire when only
fragments of the area of interest are provided.
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