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Abstract 

Recent resting-state fMRI studies associated extensive musical training with increased 

insula-based connectivity in large-scale networks involved in salience, emotion, and 

higher-order cognitive processes. Similar changes have also been found in chronic pain 

patients, suggesting that both types of experiences can have comparable effects on 

insula circuitries. Based on these observations, the current study asked the question 

whether, and if so in what way, different forms of experience-dependent neuroplasticity 

may interact. Here we assessed insula-based connectivity during fMRI resting-state 

between musicians and non-musicians both with and without chronic pain, and 

correlated the results with clinical pain duration and intensity. As expected, insula 

connectivity was increased in chronic pain non-musicians relative to healthy non-

musicians (with cingulate cortex and supplementary motor area), yet no differences 

were found between chronic pain non-musicians and healthy musicians. In contrast, 

musicians with chronic pain showed decreased insula connectivity relative to both 

healthy musicians (with sensorimotor and memory regions) and chronic pain non-

musicians (with the hippocampus, inferior temporal gyrus, and orbitofrontal cortex), as 

well as lower pain-related inferences with daily activities. Pain duration correlated 

positively with insula connectivity only in non-musicians, whereas pain intensity 

exhibited distinct relationships across groups. We conclude that although music-related 

sensorimotor training and chronic pain, taken in isolation, can lead to increased insula-

based connectivity, their combination may lead to higher-order plasticity 

(metaplasticity) in chronic pain musicians, engaging brain mechanisms that can 

modulate the consequences of maladaptive experience-dependent neural reorganization 

(i.e., pain chronification).  
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1. Introduction

Musical training has been widely used as a framework for understanding the 

mechanisms by which experience can modify various aspects of brain function and 

structure (Barrett et al., 2013; Herholz and Zatorre, 2012; Jancke, 2009; Klein et al., 

2016; Lappe et al., 2011; Pantev et al., 2015; Rosenkranz et al., 2007; Schlaug, 2015). 

A common finding is that accumulated musical training leads to several adaptive (i.e., 

beneficial) effects on the brain, meaning that plastic changes in neural systems correlate 

with enhanced performance at behavioral levels (Foster and Zatorre, 2010; Hyde et al., 

2009; Schneider et al., 2002). This principle has also been supported by training 

paradigms with adult non-musicians (Chen et al., 2012; Lahav et al., 2007). In trained 

musicians, however, earlier commencement with skill acquisition coincides with a 

greater extent of neuroplastic changes (Baer et al., 2015; Elbert et al., 1995; Kleber et 

al., 2016; Penhune, 2011; Schlaug, 2015; Steele et al., 2013). On the other hand, 

extensive repetitive sensorimotor training required for mastering a musical instrument 

also has a dark side. Particularly, as extensive practice routines can also lead to the 

development of focal dystonia (Altenmüller, 2003) and chronic pain (Steinmetz et al., 

2015). While compromised motor function in focal dystonia has been attributed to 

maladaptive changes in the brain (Altenmüller et al., 2015; Altenmüller and Muller, 

2013), however, the pathophysiology underlying chronic pain in skilled musicians 

remains unknown. 

Epidemiological studies indicate that about 80% of musicians experience 

musculoskeletal pain syndromes throughout their careers (Cruder et al., 2018; Kok et 

al., 2016; Steinmetz et al., 2015), an incidence rate that is about 60% higher than in the 

general population (Breivik et al., 2006) and that it is even higher in music students 

(Brandfonbrener, 2009; Steinmetz et al., 2012). Etiological factors that have been linked 
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to this above-average occurrence of pain syndromes include age, gender, accumulative 

playing time in combination with repetitive movements and instrument specific 

ergonomics, high-stress performance situations, and psychological traits (Ioannou et al., 

2018; Jabusch et al., 2004; Kenny and Ackermann, 2013; Steinmetz et al., 2015). 

However, a neural explanation is lacking. We propose that the heightened and 

continuous integration of sensory and motor information may facilitate the development 

of pain syndromes, in line with primate genesis models of repetitive strain injuries (Byl 

et al., 1996).  

Neurobiological investigations of pain syndromes have associated the transition from 

acute to chronic pain with maladaptive processes in neural circuits (Kuner and Flor 

2016). This includes altered brain dynamics associated with impaired descending 

inhibition (Gebhart, 2004; Porreca et al., 2002), abnormal brain connectivity patterns 

during resting state (Balenzuela et al., 2010; Baliki et al., 2011; Baliki et al., 2014; 

Ichesco et al., 2014), and maladaptive cortical reorganization (Flor et al., 1997; Flor et 

al., 1995). Within these brain dynamics, the insular cortex is consistently reported as a 

critical network-hub in the processing of both acute and chronic pain (Cottam et al., 

2018; Tan et al., 2017). Specifically, the posterior insula (PI) is associated with pain 

discrimination and the anterior insula (AI) with pain awareness (Craig, 2002; Craig, 

2009b; Segerdahl et al., 2015; Wiech et al., 2014). Increased functional connectivity 

between the insula and other modulatory brain areas (i.e., anterior cingulate cortex, 

ACC, and medial prefrontal cortex, mPFC) has therefore been suggested as a form of 

maladaptive neuroplasticity that contributes to pain chronification (Baliki et al., 2011; 

Cifre et al., 2012; Ichesco et al., 2012; Ichesco et al., 2014). 

On the other hand, recent resting-state fMRI studies with healthy musicians also 

reported increased insula-based connectivity compared to healthy non-musicians, 
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particularly with brain regions involved in body awareness, salience processing, 

executive control, and emotional experience (Luo et al., 2014; Zamorano et al., 2017). 

The insula is also known to support interoceptive awareness (Critchley et al., 2004), 

which seems to be enhanced in musicians and dancers (Christensen et al., 2017; 

Schirmer-Mokwa et al., 2015). An enhancement of sensory awareness following 

sensorimotor training may thus be associated with insula-based plasticity, representing a 

neural correlate for comparable acute pain sensitivity in healthy musicians and chronic 

pain patients relative to healthy non-musicians at the behavioral level (Zamorano et al., 

2014). This suggests that experience-dependent adaptation of the insula at the network 

level could pose a risk for the development of pain-related maladaptive neuroplastic 

processes, for example by provoking the loss of central endogenous pain control 

mechanisms (Bushnell et al., 2013; Ossipov et al., 2014). However, recent studies have 

found that musicians are able to segregate and integrate task-related multisensory 

signals in the presence of sensory perturbations by adaptively regulating insula 

connectivity in order to maintain performance accuracy (Kleber et al., 2017; Kleber et 

al., 2013). A similar strategy could be employed to help regulating sensory inputs and 

pain perception in order to continue musical performance and practice in the presence of 

repetitive strain injuries. 

To address and dissociate these questions, we examined patterns of fMRI resting-state 

brain connectivity in musicians and non-musicians both with and without chronic pain. 

Acknowledging the importance of the insula as a sensory integration hub, we used a 

seed-based approach following the functionally defined tri-partite model of insula sub-

regions provided by Deen and colleagues (2011). We hypothesized that insula-based 

connectivity with posterior (PI), ventral anterior (vAI), and dorsal anterior (dAI) insula 

reflects changes in central processing due to intensive sensorimotor training and chronic 

pain. Following our previous behavioral observations (Zamorano et al., 2014), we 

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Acc
ep

ted
 m

an
us

cri
pt



proposed that healthy musicians and chronic pain non-musicians would demonstrate 

similar patterns of insula co-activation. Given that, both chronic pain and sensorimotor 

music training have been associated with greater insula connectivity (Baliki et al., 2011; 

Cifre et al., 2012; Ichesco et al., 2014; Luo et al., 2014; Zamorano et al., 2017), we 

furthermore expected accumulative effects in neural circuits in chronic pain musicians. 

Alternatively, we also considered the possibility that enhanced regulation of 

multisensory inputs might lead to different insula connectivity patterns in chronic pain 

musicians (Kleber et al., 2017; Kleber et al., 2013). 

2. Materials and methods

2.1. Participants 

Participants with chronic pain consisted of 12 professional classical musicians (chronic 

pain musicians, CPM; mean age 26.4 ± 8.7 yrs) and 14 non-musicians (chronic pain 

non-musicians, CPNM, 31.9 ± 7.8 yrs). All of them suffered from persistent upper back 

pain (neck and/or dorsal back pain) for more than 6 months, of which three participants 

suffered additionally from lower back pain. Healthy participants consisted of 11 

classical musicians (healthy musicians, HM; mean age 32.3 ± 11.4 yrs) and 12 non-

musicians (healthy non-musicians, HNM; 28.1 ± 7.3 yrs), who also participated in our 

previous study (Zamorano et al., 2017). No  participant used opiates, gabapentin, or 

pregabalin for pain treatment. One CPM and three CPNM occasionally used 

nonsteroidal anti-inflammatory drugs (NSAIDs) and/or paracetamol. Medication for 

non-pain related disorders involved birth control and female hormonal drugs (n = 3 

CPM). Three CPNM took benzodiazepine (1-5mg per day), of which one also took 

serotonin reuptake inhibitors. One HM was removed due to fMRI artifacts. Due to 

reported sex differences in the processing of pain (Fillingim et al., 2009), all 

participants were female. Exclusion criteria included the presence of neurological 
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diseases or pregnancy. All participants were verbally informed about the details of the 

study and provided written consent. The study was performed in accordance with the 

Declaration of Helsinki (1991) and approved by the Ethics Committee of the Balearic 

Islands. 

2.2. Musical Expertise 

All musicians were conservatory-trained instrumentalists. CPM consisted of 8 string, 3 

keyboard, and 1 wood-wind players. Seven CPM were musical students and five were 

professional orchestral musicians and soloist. HM consisted of 5 string, 2 piano, and 4 

wood-wind players. Five HM were musical students and the other six were professional 

orchestral and soloist musicians. The average amount of accumulated musical training 

was 19.2 (± 9.4) years for CPM and 20.5 (± 5.9) years for HM. The average hours of 

daily practice was 4.1 (± 1.7) and 3.6 (± 2.2) hours, respectively. The average age at 

commencement with formal musical training was 7.2 (± 2.6) years in CPM and 8.6 (± 

2.9) years in HM. Non-musicians did not receive any kind of formal or informal 

musical training.  

2.3. Psychometric and clinical assessment 

All participants completed the Spanish versions of Beck’s Depression Inventory II – 

BDI (Sanz et al., 2003) and the State-Trait Anxiety Inventory - STAI (Spielberger et al., 

1971). The Edinburgh Handedness Inventory determined handedness (Oldfield, 1971). 

Chi-square tests were adopted for testing the distribution of right and left hand 

dominance in all groups. Participants with chronic pain underwent a semi-structured 

clinical interview, including questions about pain duration, intensity, and location, as 

well as psychosocial factors involved in the maintenance of pain by completing the 

West-Haven Yale Multidimensional Pain Inventory of Pain - WHYMPI (Kerns et al., 

1985). Moreover, subjective ratings of current pain intensity were assessed immediately 
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after the rs-fMRI scan in all participants to control for the possible effects of the scanner 

noise and the restrained posture on discomfort and pain. 

2.4. fMRI image acquisition and preprocessing 

fMRI image acquisition and preprocessing parameters were equal to our previous study 

(Zamorano et al., 2017). Magnetic resonance imaging was performed with a 3 Tesla 

Signa HDx scanner (General Electric, GE Healthcare, Milwaukee, WI). Whole brain 

echo-planar images (n=240) were acquired over a period of 10 minutes with eyes closed 

(32 transversal slices per volume; 3 mm slice thickness; 90 degrees flip angle; repetition 

time [TR]: 2500 ms; echo time [TE]: 35 ms; 64 x 64 matrix dimensions; 200 mm field 

of view). Structural imaging consisted of T1-weighted images (176 slices per volume; 

repetition time [TR]: 7796 ms; echo time [TE]: 2.98 ms; matrix dimensions, 512 x 512; 

240 mm field of view; 1 mm slice thickness; 12 degrees flip angle). Scanner noise was 

decreased by -36db using in-ear hearing protection. In addition, MRI foam-cushions 

were placed over the ears to restrict head motion and to further reduce scanner noise.  

Functional image preprocessing was performed with the Data Processing Assistant for 

Resting-State fMRI (DPARSF; Chao-Gan and Yu-Feng, 2010) based on the Statistical 

Parametric Mapping software package (SPM8; http://www.fil.ion.ucl.ac.uk/spm) and 

the Data Processing & Analysis of Brain Imaging toolbox (DPABI; 

http://rfmri.org/DPABI DPARSF_V3.1_141101). The first 10 volumes from each data 

set were discarded prior to preprocessing. Following slice-time correction and co-

registration, gray and white matter were segmented from co-registered T1 images using 

the unified segmentation model (Ashburner and Friston, 2005). The resulting parameter 

file was used to normalize the functional images (3mm3 voxel size) to standard 

Montreal Neurological Institute (MNI) stereotactic space, subsequently smoothed with 

an isotropic Gaussian kernel (FWHM: 6mm3). Nuisance regression parameters included 
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white matter (WM), cerebrospinal fluid (CSF), and the six head motion parameters. 

WM and CSF masks were generated using SPM’s a priori tissue probability maps 

(empirical thresholds: 90 % for WM mask and 70 % for CSF mask). No global signal 

regression was performed to avoid introducing distortions of BOLD signal (Murphy et 

al., 2009). Head motion was below 2.0 mm maximum displacement or 2.0º of any 

angular motion for all participants. A temporal filter (0.006–0.1 Hz) was applied to 

reduce low frequency drifts and high frequency physiological noise.  

2.5. Voxel-wise functional connectivity analyses 

Six functionally segregated insular subdivisions were provided as template images in 

MNI stereotactic space by Deen and colleagues (2011). They consisted of (left and 

right) posterior (PI), dorsal anterior (dAI), and ventral anterior (vAI) insula (mean 

coordinates are given in Supplementary Table S1). These six regions of interest (ROIs) 

were used as seeds to determine their individual connectivity patterns (averaged time 

course) and were entered into a voxel-wise correlation analysis to generate functional 

connectivity maps. Correlation coefficients were converted into z values using Fisher’s 

r-to-z transformation in order to improve data normality before submitting them to

statistical analyses (Rosner, 2011). 

2.6. Statistical analyses 

2.6.1. fMRI 

Statistical analyses were performed in SPM8 and data entered into a 2 x 2 full-factorial 

ANOVA with the factors MUSICIANSHIP (musicians vs non-musicians) and PAIN 

(chronic pain vs healthy) for each of the six insula sub-divisions, analogous to our 

previous approach (Zamorano et al., 2017). First, we performed post-hoc one-sample t-

tests to validate connectivity patterns per insula subdivision in each group against 
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previously published data (Deen et al., 2011; Uddin et al., 2014; Zamorano et al., 2017). 

For this reason, voxel-based familywise error corrected (FWER) significance threshold 

of p < 0.05 was employed for this test to be maximally comparable with these previous 

studies. 

An F-test assessed main and interaction effects between the factors MUSICIANSHIP 

and PAIN, followed by post-hoc Student’s t tests comparing (i) CPNM with HNM, (ii) 

HM with CPNM, (iii) CPM with CPNM, and (iv) CPM with HM. 

For the aforementioned tests, we used a cluster-extent based thresholding method to 

correct for multiple comparisons. Cluster-extent based thresholding reflects the spatially 

correlated nature of fMRI signal, accounting for the fact that individual voxel 

activations are not independent of the activations of their neighboring voxels in spatially 

smoothed data  (Friston et al. 2000; Heller et al. 2006; Wager et al. 2007). This widely 

used method in fMRI research is more sensitive (i.e., more powerful) to detect true 

activations in studies with moderate sample sizes (reducing Type II errors), while 

effectively controlling for Type I errors (Friston et al. 1994; Smith and Nichols 2009; 

Woo et al. 2014)(Nichols and Hayasaka, 2003). We employed cluster-extent based 

thresholding using Monte Carlo simulation as implemented in DPABI’s instantiation of 

AlphaSim (Cox, 1996; Song et al., 2011; Yan et al., 2016). We used a stringent primary 

voxel-threshold of p< 0.001 and smoothness estimation based on the spatial correlation 

across voxels to reduce the possibility of obtaining false positive clusters (i.e., 

inaccurate FWER correction at p<.05) and/or large activation clusters, which also 

improves the degree of confidence in inferences about specific locations/voxels (Woo et 

al., 2014). Only clusters surviving the FWER probability threshold were used for 

statistical inference.  
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2.6.2. Behavioral 

The effects of age, anxiety, and depression on musicians and non-musicians were 

assessed using analyses of variance (ANOVAs) with the between-subject factors 

MUSICIANSHIP (musicians vs non-musicians) and PAIN (chronic pain vs healthy 

individuals). Age and psychometric test results (STAI and BDI questionnaires) were 

used as dependent variables. Significant interactions were examined using Bonferroni 

corrected post-hoc pairwise comparisons.  

In CPM and CPNM, two-sample t-tests were performed on the variables “pain 

duration”, “pain intensity”, and the “WHYMPI” subscales. In musicians, two-sample t-

tests were also run on music experience data. Statistical significance was set to p < 0.05. 

Analyses were carried out with SPSS (v.19, SPSS Inc., Chicago, IL, USA).  

2.6.3. Regression 

Multiple regression analyses were performed in SPM8 for each insular ROI to assess 

connectivity maps in relation to the amount of years suffering pain and pain intensity in 

CPM and CPNM. In CPM, multiple regressions were also performed with accumulated 

musical training. Cluster-extent FWER correction was applied as detailed above. 

In order to estimate the magnitude of both significant behavioral and functional 

connectivity results, we computed effect sizes for F-tests, multiple regression, and post-

hoc t-tests using the formulas of Cohen's f ̂  (f ̂ = sqrt((dfeffect/N)(Feffect - 1)), Cohen's ƒ2  

(f2=  R2/1-R2), and Cohen's d (d = 2t / sqrt(df)), respectively (Cohen, 2013). In a 

second step, to control for an overestimation of effect sizes due to the moderate sample 

size of our groups, we posteriorly adjusted Cohen’s d by computing the unbiased 

Cohen’s d: dunbiased = d [1 – (3 / 4df -1)] (Fritz et al., 2012). 

Significantly activated peak-voxels refer to MNI coordinates. Anatomical areas were 

assigned using the Anatomy Toolbox whenever possible (Eickhoff et al., 2005). 
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Otherwise, the Automated Anatomical Labeling atlas of Tzourio-Mazoyer was used 

(AAL; 2002).  

2.7. Data availability 

The data that support the findings of this study are available upon reasonable request 

from the corresponding author, [AZ]. The data are not publicly available due to legal 

restrictions, as the containing information could compromise the privacy of research 

participants.   

3. Results 

3.1. Demographic and psychometric data 

Chi-square tests revealed that handedness did not differ in any of the groups formed by 

the factors MUSICIANSHIP and PAIN (X2 (4, N = 48) = 2.244, p =0.523). Likewise, 

ANOVAs (Table 1) revealed no significant differences in age (F(1,44) = 3.07, p = 0.61;  

 = 1.37), anxiety (STAI-state: (F(1,43) = 3.32, p = 0.075;  = 1.45), or depression 

(BDI, (F(1,43) = 1.051, p = 0.311;  = 0.21). Post-hoc t-tests revealed no significant 

differences between CPM and CPNM regarding pain intensity ratings (t(1,23) = 0.424, 

p = 0.521; dunb = 0.17) and pain duration (t(1,23) = 0.987, p = 0.331; dunb = 0.40). In 

contrast, pain interference with other activities (WHYMPI) was significantly different 

between CPM and CPNM for household chores activities (t(1,23) = 3.201, p < 0.005; 

dunb = 1.31), outdoor work (t(1,23) = 2.451, p < 0.05; dunb = 1.00), social activities 

(t(1,23) = 2.237, p < 0.005; dunb = 0.91), and general activity (t(1,23) = 3.396, p < 0.005; 

dunb = 1.39), indicating greater interferences in non-musicians (Table 1). CPM and HM 

did not differ with respect to their total years of training (t(1,20) = 0.447, p = 0.660; dunb 

= 0.19), daily amount of practice (hours) (t(1,20) = 0.132, p = 0.896; dunb = 0.05), and 

age of onset with music training (t(1,20) = 1.196, p = 0.246; dunb = 0.52).  
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Table 1. Psychometric and clinical characteristics of all participants 

 Musicians Non-musicians 

 
Chronic pain 

(n=12) 
Healthy (n=10) 

Chronic pain 

(n=14) 
Healthy (n=12) 

Age (y)  26.4 (8.7)  32.3 (11.4) 31.9 (7.8) 28.1( 7.3) 

Dominant Hand (L/R) 2/10 1/9 1/13 0/12 

Age of onset musical training  7.2 (2.6) 8.6 (2.9) N/A N/A 

Accumulated musical training (years) 19.2 (9.4) 20.5 (5.9) N/A N/A 

Daily music practice (hours) 4.1 (1.7) 3.6 (2.2) N/A N/A 

Average pain intensity (0-10 NRS) 4.1 (2.0) N/A 3.6  (2.0) N/A 

Pain intensity after scan 3.25 (2.4) 0.27 (0.45) 3.76 (2.4) 0 (0) 

Duration of pain (years) 7.2  (3.5) N/A 8.6 (5.8) NA 

Depression 6.7  (5.8) 6.2  (6.7) 9.4  (9.7) 4.6 (3.8) 

State Anxiety  18.4 (10.5) 12.1 (5.4) 10.8 (6.8) 14.2 (11.6) 

Trait Anxiety  17.4 (8.8) 12.4 (3.8) 17.1 (12.2) 13.8 (8.4) 

WHYMPI   

 Interference 

 Support 

 Pain Severity 

 Life-Control 

 Affective Distress 

 Negative Responses 

 Solicitous Responses 

 Distracting Responses 

 Household Chores 

 Outdoor work 

 Activity away from home 

 Social activities 

 General activity  

 

1.8 (1.1) 

3.7 (1.1) 

2.6 (1.2) 

3.7 (1.3) 

2.2 (1.4) 

1.0 (1.5) 

3.5 (0.8) 

3.4 (1.3) 

1.3 (0.9) 

2.9 (0.9) 

2.6 (1.4) 

3.1 (1.7) 

2.5 (0.7) 

 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

 

2.2 (1.6) 

3.1 (1.6) 

2.7 (1.3) 

3.8 (1.2) 

2.5 (1.5) 

0.7 (0.9) 

3.5 (1.5) 

2.9 (1.4) 

2.5 (0.9)** 

3.8 (0.9)* 

3.6 (1.1) 

4.3 (1.1)* 

3.5 (0.7)** 

 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

Abbreviations: L, left; R, right; N/A, not applicable. Pain intensity: 0 = no pain at all and 10 = the strongest imaginable pain. WHYMPI: 

The West Haven-Yale Multidimensional Pain Inventory. All values represent mean and standard deviation (SD) in brackets. * = p<0.05, ** 

= p<0.005.  
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3.2. Voxel-wise functional connectivity of insular subdivisions 

3.2.1. Main connectivity patterns across groups 

Whole-brain connectivity maps for left and right PI, dAI, and vAI in each group are 

shown in Supplementary Figures S1, S2 and S3. Overall connectivity patterns replicate 

those reported previously (Deen et al., 2011; Uddin et al., 2014; Zamorano et al., 2017). 

For the sake of clarity, we only summarize the main patterns for each insula subdivision 

in this section.  

The posterior insular (PI; Figure S1) showed consistent sensorimotor connectivity 

patterns, including bilateral primary motor (M1), primary and secondary somatosensory 

cortices (S1 and S2), as well as the putamen and the globus pallidus. Connectivity also 

involved the supramarginal gyrus (SMG), superior and middle temporal gyrus (STG, 

MTG), the insula (dAI, vAI), the operculae (frontal, temporal, and rolandic), and the 

middle cingulate cortex (MCC). 

The dorsal anterior insula (dAI; Figure S2) showed consistent connectivity patterns 

with bilateral supplementary motor area (SMA proper and pre-SMA), the putamen and 

the globus pallidus. Connectivity also involved the SMG, Heschl’s gyrus, STG, MTG, 

the insula (PI, vAI), the operculae (frontal, temporal, and parietal), the inferior frontal 

cortex (IFC), and the anterior cingulate cortex (ACC).  

The ventral anterior insula (vAI; Figure S3) showed consistent connectivity with 

bilateral frontal and the orbitrofrontal cortices, the insula (PI, dAI), the operculae 

(orbital, frontal, and temporal), the ACC and MCC, premotor cortex (BA6), SMA, 

auditory regions in the STG, and parietal regions. Connectivity also involved the basal 

ganglia (putamen, pallidum, and caudate) and the thalamus. 
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3.2.2. Main and interactions effects for musicianship and chronic pain 

A main effect of MUSICIANSHIP was found in left dAI and bilateral vAI (Figure 1A, 

Table 2). In the left dAI, this involved right middle frontal gyrus (MFG) and right 

pregenual ACC (pgACC). In the left vAI, this involved left pgACC and in the right 

vAI, the right superior frontal gyrus (SFG) and pgACC.  

A main effect of PAIN was found in bilateral PI and right vAI (Figure 1B, Table 2).  

In the PI, this involved the cerebellum (bilateral Lobule VII and left vermis). In the 

right vAI, this involved the right cuneus.  

An interaction effect was found between PAIN and MUSICIANSHIP in all insula 

subdivisions except the left dAI (Figure 1C, Table 2).  

In the left PI, this involved left orbitofrontal cortex (OFC) and in the right PI, the left 

OFC, temporal pole, and SMA.  

In the right dAI, this involved bilateral OFC and right temporal pole.  

In the left vAI, this involved right superior frontal gyrus (SFG), right SII, SMG, left 

thalamus, right putamen, and hippocampus and in the right vAI, the left SFG, right SII, 

SMG, anterior MCC, SMA, and SPL (BA5).  

Post-hoc comparisons revealed a consistent pattern, indicating increased connectivity in 

CPNM and HM, and decreased connectivity in CPM and HNM (Fig. 2, Tables 3 & 4).  
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Table 2. Main effects and interaction of musicianship and chronic pain 
Seed  Left Insula  Right Insula 

Connectivity region         (area) 

 
Cluster 

size 

Coordinates 

MNI  
 

Cluster 

size 

Coordinates 

MNI 

   x y z F  x y z F 

Main Effect of Musicianship 

dAI              

 SFG                           (BA6) R 51 30 6 54 18.90 4.01  - - - - - - 
 pgACC                          - R 45 12 36 18 22.20 4.32  - - - - - - 
vAI               
 SFG                               - R - - - - - -  36 24 27 51 19.03 4.02 
 pgACC                          -  R 46 3 42 18 19.69 4.10  79 6 39 15 23.91 4.54 
                

Main Effect of Chronic Pain 

PI               

 Cerebellum               
 Lobule VIIa R - - - - - -  75 21 -78 -48 24.51 4.42 
 Lobule VIIb  R 52 12 -72 -

 

19.38 3.91  - - - - - - 
 Vermis R 39 6 -90 -

 

21.49 4.13  - - - - - - 
                

vAI               

   Cuneus R - - - - - -  37 12 -87 39 17.92 3.75 
                

Interaction between Musicianship and Chronic Pain 

PI               

   OFC                           (Fo3) L 86 -42 24 -9 25.92 4.77  132a -42 24 -12 16.96 3.82 
   Temporal pole         (BA38) L - - - - - -  132a -45 18 -21 21.60 4.34 
   SMA                              - L - - - - - -  38 -6 24 45 19.25 4.09 

dAI               

   OFC                           (Fo3) L - - - - - -  64 -39 21 -15 32.96 5.40 
   OFC                 (Fo3/BA47) R - - - - - -  56a 36 27 -18 27.50 4.92 
   Temporal pole           

 

R - - - - - -  56a 45 18 -18 22.16 4.40 
vAI               
   SFG                                - R 51 21 12 45 22.23 4.41  - - - - - - 
   SFG                                - L - - - - - -  53 -21 12 45 18.11 3.96 
   aMCC                            - R - - - - - -  57a 6 15 33 19.15 4.07 
   SMA                         (BA6)               R - - - -  - -  57a 3 12 45 20.73 4.25 
   SPL                  (5ci / BA5) R - - - - - -  46 3 -30 45 18.78 4.03 
   SII                   (PF & OP1) R 53 54 -36 15 17.47 3.88  76a 51 -27 12 16.31 3.74 
   SMG                         (hlP1) R 64 51 -42 30 26.61 4.84  76a 63 -36 15 20.56 4.23 
   Hippocampus           (CA2) R 67a 33 -12 -15 18.33 3.98  - - - - - - 
   Putamen                           - R 67a 33 -12 0 12.83 3.29  - - - - - - 
   Thalamus                 (P&S) L 55 -23 -21 3 20.44 4.22  - - - - - - 
                
MNI coordinates and local maxima of whole-brain differences (t-contrasts) in insula-based network connectivity during resting state 

between chronic pain non-musicians (CPNM), chronic pain musicians (CPM), and healthy non-musicians (HNM). The comparison 

between healthy musicians (HM) and CPNM yielded no significant differences. Only results that survived a cluster-extent based 

threshold of p<0.05 (FWER correction) are shown. T-values of significantly activated peak-voxels refer to MNI coordinates (a = same 

cluster). Brodmann Areas (BA) labeling was performed using the Automatic Anatomic Labeling toolbox (AAL; 2002). Probabilistic 

cytoarchitectonic maps for structure–function relationships in standard reference space were assigned using the Anatomy Toolbox 

(Eickhoff et al., 2005). Abbreviations: PI, posterior insula; dAI, dorsal anterior insula; vAI, ventral anterior insula; aMCC, anterior 

middle cingulate cortex, pgACC, pregenual anterior cingulate cortex; ITG, inferior temporal gyrus; SFG, superior frontal gyrus; SMA, 
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Figure 1. Results from a linear contrast (F-test), showing significant main and interaction effects of insula 
connectivity during resting-state. Significance thresholds for between-group differences were set at p>0.05 (FWER), 
using a cluster-extent based thresholding method. (A) Main effect of musicianship. (B) Main effect of chronic pain. 
(C) Interaction effect between musicianship and chronic pain. Bar graphs show contrast estimates and 90% 
confidence intervals. The direction of this interaction was identical across regions. Colors indicate connectivity with 
insula subdivisions: green = posterior insula (PI); yellow = dorsal anterior insula (dAI); red = ventral anterior insula 
(vAI). Right side represents right insula connectivity and left side represents left insula connectivity. Abbreviations: 
SMG, supramarginal gyrus; SMA, supplementary motor area, SFG, superior frontal gyrus; aMCC, anterior middle 
cingulate cortex; pgACC, pregenual anterior cingulate cortex; SFG, superior frontal gyrus; OFC, orbitofrontal cortex; 
SII, secondary somatosensory cortex; TP, temporal pole; VII-VIII, cerebellar lobules. 
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3.2.3. Difference connectivity maps between CPNM and HNM   

Increased insular connectivity was found in CPNM compared to HNM (Figure 2A, 

Table 3) between the following regions: 

The left vAI with the right pgACC and the right vAI with the right SMA, anterior 

MCC, pgACC, and insula.  

The reversed contrast yielded no significant differences. 

 

Table 3.  Post-hoc comparisons of connectivity patterns: CPNM vs HNM and CPM vs CPNM 

Seed  Left Insula                  Right Insula 

Connectivity region         (area) 
 

Cluster 
size 

Coordinates 
MNI  dunb 

Cluster 
size 

Coordinates 
MNI 

 
dunb 

 x y z t  x y z t 
Contrast CPNM vs HNM 

vAI              

   pgACC        (Area 33/BA24) R 39 6 30 15 3.93 1.16  68 6 30 15 4.83 1.43 
   aMCC                       (BA32) R - - - - - -  56a 6 12 38 3.43 1.01 
   SMA                         (BA32) R - - - - - -  56a 12 9 51 4.96 1.47 
   vAI                            (BA13) R - - - - - -  36 36 12 -15 5.15 1.52 
                

Contrast CPM vs CPNM 

PI               

   Cerebellum             (Vermis) R - - - - - -  109 0 -51 -3 -5.07 1.50 

dAI               

 ITG                             (BA8) L - - - - - -  91 -57 -18 -27 -4.32 1.27 
 Hippocampus             (CA2) R 46 30 -12 -15 - 4.13 1.22  96 30 -12 -15 -4.86 1.43 
 Cerebellum             (Vermis) R 39 6 -45 -9 - 4.55 1.35  - - - - - - 

vAI               

 Hippocampus             (CA2) R 47 30 -12 -15 - 4.61 1.36  35 30 -12 -15 -4.14 1.22 
                

MNI coordinates and local maxima of whole-brain differences (t-contrasts) in insula-based network connectivity during 
resting state between chronic pain non-musicians (CPNM), chronic pain musicians (CPM), and healthy non-musicians (HNM). 
The comparison between healthy musicians (HM) and CPNM yielded no significant differences. Only results that survived a 
cluster-extent based threshold of p<0.05 (FWER correction) are shown. T-values of significantly activated peak-voxels refer to 
MNI coordinates (a = same cluster). Brodmann Areas (BA) labeling was performed using the Automatic Anatomic Labeling 
toolbox (AAL; 2002). Probabilistic cytoarchitectonic maps for structure–function relationships in standard reference space 
were assigned using the Anatomy Toolbox (Eickhoff et al., 2005). Abbreviations: PI, posterior insula; dAI, dorsal anterior 
insula; vAI, ventral anterior insula; aMCC, anterior middle cingulate cortex, pgACC, pregenual anterior cingulate cortex; ITG, 
inferior temporal gyrus; SFG, superior frontal gyrus; SMA, supplementary motor area. 
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Figure 2. T-maps showing significant group differences in functional insula connectivity during resting-state. 
Significance thresholds for between-group differences were set at p>0.05 (FWER), using a cluster-extent based 
thresholding method. (A) Chronic pain non-musicians (CPNM) showed increased connectivity compared to healthy 
non-musicians (HNM). (B) Chronic pain musicians (CPM) showed decreased connectivity compared to CPNM. (C) 
CPM showed decreased connectivity compared to healthy musicians (HM). Colors indicate connectivity with 
respective insula subdivisions: green = posterior insula (PI); red = ventral anterior insula (vAI); yellow = dorsal 
anterior insula (dAI). Right side represents right insula connectivity and left side represents left insula connectivity. 
Abbreviations: SMG, supramarginal gyrus; SPL, superior parietal lobe; STG, superior temporal gyrus; MTG, middle 
temporal gyrus; ITG, inferior temporal gyrus; aMCC, anterior middle cingulate cortex; pgACC, pregenual anterior 
cingulate cortex; SFG, superior frontal gyrus; OFC, orbitofrontal cortex; M1, primary motor cortex; S1, primary 
somatosensory cortex; VII-VIII, cerebellar lobules. 
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3.2.4. Difference connectivity maps between HM and CPNM 

Significant differences between HM and CPNM were limited to the tertiary visual 

cortex with the left dAI (coordinates: -6, -90, 33, t = 3.88), the right dAI 

(coordinates: -6,-90, 33, t = 4.77), and the right vAI (coordinates: -6, -90, 33, t = 3.49).  

3.2.5. Difference connectivity maps between CPM and CPNM 

Decreased functional connectivity was found in CPM compared to CPNM (Figure 2B, 

Table 3) between the following regions:  

The right PI with the vermis in the cerebellum. The left dAI with the right 

hippocampus and the vermis, and the right dAI with the right hippocampus and the left 

inferior temporal gyrus (ITG). The bilateral vAI with the right hippocampus.  

The reversed contrast yielded no significant differences. 

3.2.6. Difference connectivity maps between CPM and HM  

Decreased connectivity was found in CPM compared to HM (Figure 2C, Table 4) 

between the following regions: 

The left PI with bilateral ITG, left OFC, left hippocampus, and right cerebellum 

(Lobule VI, VII, and VIII), and the right PI with bilateral OFC, right SFG and left 

MFG, right ACC, left SPL, left rectus gyrus, and right cerebellum (Lobule VI and VII).  

The left dAI with right ITG and the cerebellum (lobule VI, VII and VIII), and the 

right dAI with bilateral inferior temporal gyrus (ITG), left MTG, right hippocampus, 

left thalamus, right OFC, and the cerebellum (Lobule VI).  

The left vAI with right SMA and the right vAI with right S1, bilateral MCC, right 

SMG, and the cerebellum (Crus 1 and Lobule VII).  

No differences were found for the reversed contrast. 
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Table 4. Post-hoc comparisons of connectivity patterns: CPM vs HM 

Seed  Left Insula                  Right Insula 

 Connectivity region      (area) 

 
Cluster 

size 

Coordinates 

MNI  dunb 
Cluster 

size 

Coordinates 

MNI 

 

dunb 

 
 x y z t  x y z t 

PI               

   SFG                            (BA8) L 62 -42 21 -12 -4.31 1.27  67 24 27 51 -5.03 1.49 
   OFC                  (Fo3/BA47) R - - - - - -  108 -36 30 -21 -4.86 1.43 
   OFC                          (BA47) L - - - - - -  50 38 27 -18 -4.23 1.25 
   OFC                   (Fo2/BA11) R - - - - - -  81 15 21 -15 -4.09 1.21 
   sgACC                         (s24) R - - - - - -  100 5 21 -9 -3.79 1.22 
   pACC                        (BA32) L - - - - - -  199a 9 43 12 -4.35 1.28 
   SMA                            (BA6) L 70 -5 33 42 -4.83 1.43  199a 6 27 42 -4.21 1.24 
   M1                                  (4a) L - - - - - -  193a -1 -33 51 -4.11 1.21 

    PCC                                   - L - - - - - -  193a -3 -42 21 -3.99 1.18 
   Hippocampus                (DG) L 37 -27 -27 -12 -4.58 1.35  - - - - - - 
   ITG                                    - L 41 -39 12 -42 -4.17 1.23  - - - - - - 
   ITG                              (FG2) R 49 57 -63 -27 -3.91 1.15  - - - - - - 
   Cerebellum                
 Lobule VI R 44 3 -78 -15 -3.56 1.05  119 6 -84 -24 -4.59 1.35 
 Lobule VIIb R 36 12 -75 -57 -4.83 1.43  - - - - - - 
 Lobule VIIa R - - - - - -  181 18 -78 -48 -5.18 1.53 
 Lobule VIIIa L 46 -24 -60 -45 -3.97 1.17  - - - - - - 
                

dAI               

 OFC                          (BA47) R - - - - - -  36 38 27 -18 -4.42 1.30 
 MTG                         (BA21) L - - - - - -  54 -

 

-30 -15 -5.10 1.51 
 ITG                                - L - - - - - -  55 -

 

-15 -30 -4.60 1.36 
 ITG                   (FG2/BA37) R 41 54 -57 -21 -4.02 1.19  51 51 -63 -21 -4.34 1.28 
 Thalamus              (Parietal) L - - - - - -  39 -

 

-33 -6 -4.69 1.39 
 Hippocampus    (Subiculum) R - - - - - -  153 24 -21 -18 -4.61 1.36 
 Cerebellum                
 Lobule VI R 111a 36 -51 -30 -4.48 1.32  153 33 -42 -27 -5.33 1.57 
 Lobule VIIa R 111a 33 -57 -36 -4.16 1.23  - - - - - - 
 Lobule VIIIb L 57a -

 

-48 -48 -4.34 1.28  - - - - - - 
                

vAI               

 S1                         (BA2 & 3) R - - - - - -  38 30 -39 51 -4.37 1.29 
 SPL                       (BA5/5m) L - - - - - -  75a -6 -36 45 -4.58 1.35 
 SPL                       (BA5/5ci) R - - - - - -  75a 3 -30 45 -4.27 1.26 
 SMG                                - R 98 48 -42 27 -4.55 1.34  40 48 -42 30 -3.90 1.15 
 Cerebellum                
 Lobule VIIa R - - - - - -  78 33 -60 -45 -4.07 1.20 

                
MNI coordinates and local maxima of whole-brain differences (t-contrasts) in insula-based network connectivity during resting 
state. Only clusters that survived the FWER probability threshold are shown. Only results that survived a cluster-extent based 
threshold of p<0.05 (FWER correction) are shown. T-values of significantly activated peak-voxels refer to MNI coordinates (a = 
same cluster). Brodmann Areas (BA) labeling was performed using the Automatic Anatomic Labeling toolbox (AAL; 2002). 
Probabilistic cytoarchitectonic maps for structure–function relationships in standard reference space were assigned using the 
Anatomy Toolbox (Eickhoff et al., 2005). Abbreviations: PI, posterior insula; dAI, dorsal anterior insula; vAI, ventral anterior 
insula; aMCC, anterior middle cingulate cortex;  pgACC, pregenual anterior cingulate cortex;  ITG, inferior temporal gyrus;  M1, 
primary motor cortex; MTG, middle temporal gyrus;  OFC, orbitofrontal cortex;  PCC, posterior cingulate cortex; S1, primary 
somatosensory cortex;  SFG, superior frontal gyrus;  SMA, supplementary motor area;  SMG, supramarginal gyrus;  SPL, superior 
parietal lobe; VII-VIII, cerebellar lobules. 
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3.3. Regression Results 

Among individuals with chronic pain (CPNM and CPM), multiple regression allowed 

us to determine which regions involved in the insula-based networks (Table 5) 

corresponded to chronic pain intensity ratings, the duration of chronic pain symptoms, 

and years of accumulated music training.  

In CPM, the duration of chronic pain symptoms did not correspond to insula 

connectivity patterns. Chronic pain intensity ratings corresponded with both increased 

and decreased connectivity patterns in insula-based networks (Figure 3A, Table 5): 

In the right dAI, higher pain intensity was linked to increased connectivity with 

bilateral pgACC and right dorsolateral prefrontal cortex (DLPFC).  

In the right vAI, higher pain intensity was linked to decreased connectivity with 

right subgenual ACC. 

Accumulated musical training corresponded with patterns of increased insula 

connectivity (Figure 3B, Table 5): 

In the left and right PI greater musical experience was linked to increased 

connectivity with bilateral ventrolateral prefrontal cortex (VLPFC).  

In the left vAI, more experienced CPM participants showed increased connectivity 

with left primary auditory cortex.  
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Table 5. Correlations between insula connectivity maps with pain duration, pain intensity, and accumulated 

music training 

Seed  Left Insula                   Right Insula  

Connectivity region  (area) 

 
Cluster 

size 

Coordinates 

MNI  R f2 

 
Cluster 

size 

Coordinates 

MNI 

 

R f2 

 x y z t  x y z t 

 Pain Intensity (CPM)  

dAI                

   DLPFC              - R - - - - - - -  39 48 21 27 14.13 0.617 0.61 
   pgACC              - R - - - - - - -  43a 3 30 12 18.09 0.620 0.62 
   pgACC              - R - - - - - - -  43a -6 45 9 10.13 0.610 0.59 

   vAI                   
   sgACC                                

 

R - - - - - - -  34 0 33 -9 -12,11 -0.612 0.60 
 Accumulated Musical Training (CPM)  

PI                 

  VLPFC L 56 -51 33 6 10.33 0.667 0.80  32 -48 39 -9 11.66 0.668 0.80 
  VLPFC  R 90a 54 36 -6 16.36 0.667 0.80  76 51 39 -3 16.55 0.675 0.83 

vAI                 

   A1   L 62     -51 -15 0 13.48 0.664 0.78  - - - - - - - 
                  
 Pain Duration (CPNM)  

dAI                 

 Precuneus L - - - - - - -  40 -3 -66 45 9.04 -0.771 1.46 
 M1                (Area 4a) R - - - - - - -  39 0 -39 69 5.05 -0.744 1.23 
vAI                 
 Precuneus L - - - - - - -  43 -6 -66 42 -9.34 -0.766 1.42 
 M1                (Area 4a) L - - - - - - -  39 0 -39 69 -5.05 -0.738 1.19 
   Calcarine-RSC L - - - - - - -  123 -16 -58 10 -6.86 -0.740 1.21 
                  
 Pain Intensity (CPNM)  
dAI                 
 RVM R - - - - - - -  38 6 -33 -42 - 8.97     -0.559 0.45 
                  
 MNI coordinates and local maxima of from regression analyses testing for correlations between each insular subdivision 

connectivity map with the amount of years suffering clinical pain, the clinical pain intensity, and accumulated musical 

training (musicians only). Correlations with pain duration yielded no significant effect in CPM. Only results that survived a 

cluster-extent based threshold of p<0.05 (FWER correction) are shown.  T-values of significantly activated peak-voxels refer 

to MNI coordinates (a = same cluster). Abbreviations: A1, Primary auditory cortex; CPNM, chronic pain non-musicians; 

CPM, chronic pain musicians; PI, posterior insula; dAI, dorsal anterior insula; vAI, ventral anterior insula; DLPFC, 

dorsolateral prefrontal cortex; M1, primary motor cortex; pgACC, pregenual anterior cingulate cortex; RSC, Retrosplenial 
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In CPNM, multivariate regression revealed a correspondence between both the duration 

of chronic pain symptoms and pain intensity with patterns of decreased insula 

connectivity:  

Pain duration (Figure 3C, Table 5):  

In the right dAI, longer duration of chronic pain was related to decreased connectivity 

with regions involved in the Default Mode Network (DMN; left precuneus) and 

Sensorimotor Network (SMN; right M1, Area 4a). 

In the right vAI, longer duration of chronic pain symptoms was related to decreased 

connectivity within regions of the DMN (left precuneus and retrosplenial cortex) and 

the SMN (M1, Area 4a).  

Pain intensity (Figure 3D, Table 5): 

In the right dAI, higher pain intensity was related to decreased connectivity with the 

rostral ventromedial medulla (RVM).  
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Figure 3. Results from multiple regression analyses for each insular ROI to assess connectivity maps in relation to the amount of 
years suffering pain and pain intensity in CPM and CPNM. In CPM, multiple regressions were also performed with accumulated 
musical training. A.) Pain intensity in chronic pain musicians (CPM). Insula connectivity maps did not correlate significantly with 
chronic pain duration in this group. B) Amount of accumulated music training in CPM. C) Pain intensity chronic pain non-
musicians (CPNM). D. Pain intensity in CPNM. Significance thresholds were set at p>0.05 (FWER), using a cluster-extent based 
thresholding method. Detailed information is provided in Table 5. Colors indicate connectivity with respective insula subdivisions: 
green = posterior insula (PI); red = ventral anterior insula (vAI); yellow = dorsal anterior insula (dAI). Right side represents right 
insula connectivity and left side represents left insula connectivity. Abbreviations: RSC, retrosplenial cortex; M1, primary motor 
cortex; RVM, rostroventral medulla; DLPFC, dorsolateral prefrontal cortex; pgACC, pregenual ACC; sgACC, subgenual ACC.  
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4. Discussion 

In the present study, we used resting-state fMRI to investigate insula-based connectivity 

patterns in musicians and non-musicians both with and without chronic back pain. The 

principal findings that emerged from this study where (i) that both extensive 

sensorimotor training in healthy musicians and chronic pain in non-musicians can 

trigger similar changes within neural networks involved in multisensory processing, 

whereas (ii) insula connectivity was significantly decreased in CPM compared to both 

HM and CPNM. This novel finding suggests that although both intensive musical 

training and chronic pain, taken in isolation, have been associated with increased insula-

based connectivity, the presence of chronic pain in professional musicians appears to 

produce the reversed pattern.  

4.1. Insula connectivity in chronic pain non-musicians 

The insula is implicated in a large number of widely different functions, ranging from 

pain, interoception, language, and sensorimotor processes to salience detection, 

homeostasis, emotions, empathy and higher-order cognitions (Craig, 2011; 

Nieuwenhuys, 2012). Specifically, the insula participates as a centrally located brain 

region in the switching between networks states involved in the detection of salient 

events, including sensory and pain processes (Brooks and Tracey, 2007; Cauda et al., 

2011; Cottam et al., 2018; Menon and Uddin, 2010; Seeley et al., 2007; Segerdahl et al., 

2015; Uddin, 2015; Uddin et al., 2014; Wiech et al., 2010). Hierarchically organized 

along a posterior-to-mid-to-anterior integration scheme (Craig, 2002; Craig, 2009b), 

pain discrimination has been associated with the posterior insula (PI) (Segerdahl et al., 

2015; Wiech et al., 2014), and pain evaluation with the mid/dorsal anterior insula (dAI; 

cognitive), as well as the ventral anterior insula (vAI; affective) (Ploghaus et al., 1999; 

Ploner et al., 2011; Wiech et al., 2010).  
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Resting-state fMRI studies have demonstrated distorted neural communication in 

different types of chronic pain, characterized as distinct patterns of neural 

reorganization (Baliki et al., 2014; Cottam et al., 2018) that involve increased insula 

connectivity with the ACC, mPFC, and bilateral insula (Baliki et al. 2011; Cifre et al. 

2012; Ichesco et al. 2014). In accordance with these data, the comparison of CPNM and 

HNM in the current study confirmed increased connectivity between bilateral vAI and 

pgACC (affective evaluation), and between right vAI with aMCC, SMA (motor 

guidance), and the ipsilateral insula (Figure 2A, Table 3).  

This pattern coincides with higher pain-related inferences in CPNM with daily 

activities, indicating that alterations in brain circuits are related to behavioral and 

motivational consequences of chronic pain (Wiech and Tracey 2013). Both animal and 

human studies highlight a role of the pgACC in the affective evaluation of pain states 

(Bliss et al., 2016; Johansen et al., 2001) and the corresponding regulation of autonomic 

outputs (Vogt, 2005). Together with the insula, the pgACC is involved in the encoding 

of emotional and motivational aspects of pain, thus contributing to the development of 

chronic pain (Baliki and Apkarian, 2015; Bliss et al., 2016). The aMCC is moreover 

associated with pain avoidance behavior (Vogt, 2005) and related adaptive control 

(Shackman et al., 2011), encompassing a network that involves the anterior insula and 

SMA (Cauda et al., 2011; Hoffstaedter et al., 2014). In the same line of evidence, longer 

duration of chronic pain was associated with decreased connectivity with the motor 

cortex and regions of the DMN, whereas higher ratings of pain intensity were linked to 

decreased connectivity with the RVM, suggesting altered descending pain modulation 

(Lee et al. 2008).  
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4.2. Insula connectivity in healthy musicians  

In a previous resting-state fMRI study, we found enhanced insula-based connectivity in 

HM compared to HNM with key constituents of large-scale networks involved in 

salience, executive, and affective processing (Zamorano et al., 2017). Although a 

specific role of the insula in music perception and production has not yet been 

established, insula functions support music by contributing to our sense of time (Craig, 

2009a; Wittmann et al., 2010), the integration of sound (Bamiou et al., 2003; Remedios 

et al., 2009; Wong et al., 2004), as well as the emotional and cognitive evaluation of 

music (Altenmüller et al., 2014; Koelsch, 2014). Structure and function of the anterior 

insula have been linked to the perception of internal bodily states (i.e., interoception; 

Critchley et al., 2004), which is enhanced in classically trained musicians and dancers 

(Christensen et al., 2017; Schirmer-Mokwa et al., 2015). Such skills likely support 

music production, which depends on a highly developed capacity to segregate and 

integrate sensory information with the planning and execution of motor actions (Brown 

et al., 2015; Chen et al., 2012). Particularly, the right anterior insula has been identified 

as a key region that supports motor accuracy by gating multisensory signals of salience 

as a function of musical expertise (Kleber et al., 2017; Kleber et al., 2013).  

Considering that both musical training and chronic pain drive behaviorally relevant 

changes in perceptual systems (Herholz and Zatorre, 2012; Kuner and Flor, 2016), we 

hypothesized that enhanced integration of multisensory information is a common 

characteristic underlying corresponding reorganization within insula-based networks. 

Consistent with this notion, we found no evidence for differences in insula connectivity 

patterns between HM and CPNM (Figure S1, S2, and S3), except for the tertiary visual 

cortex (V3). We speculate that both extensive sensorimotor training in musicians and 

chronic pain in non-musicians may trigger comparable adaptations within neural 

networks involved with multisensory processing, thus confirming analogous behavioral 
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results in which similar pain sensitivity was found in HM and CPNM relative to HNM 

(Linari-Melfi et al., 2011; Zamorano et al., 2014).  

Indeed, a comparison of connectivity patterns of CPNM versus HNM in the current 

study and HM versus HNM in a previous study (Zamorano et al., 2017) indicates partly 

overlapping (between right vAI with right ACC and MCC) but also distinct patterns of 

increased connectivity, the latter being mainly related to sensorimotor regions involved 

in music performance. This could reflect evidence for shared neural correlates between 

HM and CPNM related to the relative salience of sensory inputs (Uddin, 2015; 

Zamorano et al., 2014). In fact, non-nociceptive and nociceptive stimulation engage not 

only overlapping brain areas (Iannetti et al., 2008; Mouraux and Iannetti, 2009) but non-

nociceptive signals also activate nociceptive pathways (Legrain et al., 2011; Valentini et 

al., 2012). Specifically, the posterior and anterior insula respond equally to pain 

perception and non-nociceptive stimulation (Liberati et al., 2016), thus lending support 

to our hypothesis.  

4.3. Insula connectivity in chronic pain musicians: Evidence for Metaplasticity  

Metaplasticity refers to the “plasticity of synaptic plasticity” (Abraham and Bear, 1996), 

which can broadly be defined as synaptic correlates of an individual’s learning history 

(Muller-Dahlhaus and Ziemann, 2015). This concept has recently been applied to a 

musical framework, in which early experience-dependent optimization of neural 

functions can modulate subsequent neuroplasticity of the nervous system in ways that 

may either facilitate or prevent maladaptive changes (Altenmüller and Furuya, 2016). 

Based on above’s hypothesis that HM and CPNM may share common mechanisms of 

sensory perception and related insula-based connectivity (Zamorano et al., 2017; 

Zamorano et al., 2014), we initially expected that chronic pain would further aggravate 
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these form of neuroplasticity in musicians (Baliki et al., 2014; Kuner and Flor, 2016). 

However, the opposite was the case.  

Decreased insula connectivity was found in CPM relative to both HM and CPNM. 

Compared to CPNM, this involved regions implicated in memory and learning 

(hippocampus and ITG), and sensorimotor characteristics of pain (cerebellum) (Figure 

2B, Table 3), whereas decreased insular connectivity compared to HM (Figure 2C, 

Table 4) was focused on brain regions associated with sensorimotor processing (S1, M1, 

SMG, ACC, MCC, and cerebellum), reward (OFC), and memory (hippocampus, ITG 

and MTG). These regions were also identified in an interaction effect between PAIN 

and MUSICIANSHIP, perhaps indicating a form of metaplasticity. 

Sensory perturbation studies with healthy musicians suggest a close relationship 

between insula activation patterns and task-related modulation of sensory inputs during 

motor performance (Kleber et al., 2017; Kleber et al., 2013). Specifically, when 

somatosensory input was perturbed during singing via anesthesia of vocal fold mucosa, 

right anterior insula activity was down-regulated and its connectivity with bilateral 

primary auditory cortex (A1), S1, and M1 decreased in trained singers. Conversely, 

when auditory feedback was masked with noise, right anterior insula activity was up-

regulated and its functional connectivity with inferior parietal, frontal, and voice-

relevant somatosensory-motor areas was increased. Importantly, this pattern was mirror-

reversed in non-musicians and did not support vocal performance. We speculate that 

musicians may employ similar strategies to dissociate movements from pain perception, 

perhaps as an intrinsically developed pain coping mechanism (Fields, 2004; Wiech and 

Tracey, 2013; Zeidan et al., 2015).  

In the current study, regression results in CPM showed that higher pain intensity 

correlated with increased connectivity between the right dAI and the pgACC (i.e., 
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similar to CPNM vs HNM) but also with decreased connectivity between the right vAI 

with the subgenual ACC. Interestingly, activity in this region is inversely related to pain 

relief in chronic pain patients (Schweinhardt et al., 2006; Zeidan et al., 2015) and may 

be linked to lower pain-related interference with other activities, which we observed in 

CPM compared to CPNM in the current study. The latter findings are remarkable, 

considering the comparable levels pain intensity between CPM and CPNM on one hand 

yet the same amount of musical practice between CPM and HM on the other hand. 

Based on these data, we propose that professional musicians cope more efficiently with 

pain to continue playing their instrument (Gasenzer et al., 2017; Steinmetz et al., 2015) 

and may experience less fear of pain-related movements (Picavet et al., 2002).  

4.4. The role of appraisal and motivation in CPM 

Among the common regions that showed decreased connectivity with the anterior 

insular in CPM relative to both HM and CPNM were the hippocampus and the ITG. 

Both are associated with pain reappraisal, emotional coping, as well as the learning and 

consolidation of emotional memories (Ji et al., 2003; Tracey and Mantyh, 2007; 

Vachon-Presseau et al., 2016). When pain becomes chronic, increased connectivity 

between the hippocampus and the posterior insula can be observed (Mutso et al., 2014), 

whereas hippocampal dysfunctions have been linked to diminished pain perception (Gol 

and Faibish, 1967), despite a preserved capacity to detect light touch (Liu and Chen, 

2009). Decreased connectivity of the insula with the hippocampus and ITG could 

therefore reflect emotional coping mechanisms (Pecen et al., 2017; Zeidan and Vago, 

2016)  

Brain areas central to reward and motivated behavior are critical for the modulation of 

acute pain and the mediation of chronic pain (Navratilova and Porreca, 2014), 

suggesting that the brain’s (mesocorticolimbic) emotion circuitry is not only affected by 
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but also crucially involved in the control and coping of persistent pain (Vachon-

Presseau et al., 2016). In this context, it should be mentioned that musicians often 

describe pain as an inherent and inevitable characteristic of high-level musical 

performance practice (Dommerholt, 2009; Gasenzer et al., 2017), following a “no pain, 

no gain” model that is associated with positive expectations, appetitive motivational 

states, and the conscious or subconscious choice to ignore pain (Fields, 2004, 2014; 

Quarrier, 1993). As emotional satisfaction can profoundly reduce or even reverse brain 

activation patterns during painful stimulation (Colloca and Benedetti, 2006; Kamping et 

al., 2016), motivational aspects of playing an instrument may engage protective factors 

that can help musicians to cope with pain (Fields, 2004; Tracey and Mantyh, 2007). 

4.5. Limitations 

Several limitations must be considered in this study. First, only female participants were 

tested due to reported sex-differences in the processing of pain (Fillingim et al., 2009). 

Therefore, we cannot make inferences regarding the effects of pain and sensorimotor 

training on insula-based functional connectivity in male musicians. Second, the small 

sample size of this study presents an additional limiting factor for generalizing our 

results. Third, we did not perform acute pain sensitivity tests, which prevents us from 

making more behaviorally relevant conclusions. However, we found similar behavioral 

patterns in a previous study with HM and CPNM (i.e., comparable tactile and pain 

sensitivity; Zamorano et al., 2014), which supports the current results. Likewise, 

although three CPNM reported using centrally acting medication, the overall results in 

this group are in line with previously published effects of pain on brain networks. 

Moreover, no CPM used centrally acting drugs, therefore excluding the possibility that 

reduced insula connectivity in this group could be explained on this basis. Another 

limitation of resting state fMRI that should be taken into account is the exposure to 
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scanner noise, which can reduce the robustness and the replicability of functional 

connectivity findings within the somatosensory, auditory, and motor networks (Andoh 

et al., 2017). However, prior rs-fMRI studies have not revealed significant differences 

in auditory network activation between musicians and non-musicians due to scanner 

noise (Palomar-Garcia et al., 2017). Moreover, we found no evidence for altered pain 

ratings due to discomfort related to body position or scanner. Future studies may also 

consider alternative strategies for estimating resting state networks as a function of 

chronic pain and musicianship, such as high-density EEG (Klein et al., 2016). 

4.6. Conclusions 

To the best of our knowledge, this is the first study investigating interactions between 

chronic pain and extensive sensorimotor training (i.e. musical training) in the brain. The 

observed patterns of decreased and increased insula connectivity between professional 

musicians and non-musicians with and without chronic pain indicates that the effects of 

chronic pain on professional musicians and non-musicians are inversed. In conclusion, 

our data suggest that unnatural postures may be a necessary but not a sufficient 

explanation for the above-average prevalence of pain syndromes among professional 

musicians (Steinmetz et al., 2015). Instead, we propose that heightened sensory 

awareness facilitates the transition to chronic pain in combination with peripheral 

overuse injuries, which may occur as a consequence of individual practice routines 

(Dommerholt, 2009; Williamon and Valentine, 2000). Furthermore, insula connectivity 

patterns in professional musicians with chronic pain suggest novel mechanisms of pain 

modulation, which may be related to multisensory integration and motivational factors 

that can have important implications for the assessment and treatment of pain. 
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Figure Captions 

Figure 1 

Results from a linear contrast (F-test), showing significant main and interaction effects 

of insula connectivity during resting-state. Significance thresholds for between-group 

differences were set at p>0.05 (FWER), using a cluster-extent based thresholding 

method. (A) Main effect of musicianship. (B) Main effect of chronic pain. (C) 

Interaction effect between musicianship and chronic pain. Bar graphs show contrast 

estimates and 90% confidence intervals. The direction of this interaction was identical 

across regions. Colors indicate connectivity with insula subdivisions: green = posterior 

insula (PI); red = ventral anterior insula (vAI); yellow = dorsal anterior insula (dAI). 

Right side represents right insula connectivity and left side represents left insula 

connectivity. Abbreviations: SMG, supramarginal gyrus; SMA, supplementary motor 

area, SFG, superior frontal gyrus; aMCC, anterior middle cingulate cortex; pgACC, 

pregenual anterior cingulate cortex; SFG, superior frontal gyrus; OFC, orbitofrontal 

cortex; SII, secondary somatosensory cortex; TP, temporal pole; VII-VIII, cerebellar 

lobules. 

 

Figure 2 

T-maps showing significant group differences in functional insula connectivity during 

resting-state. Significance thresholds for between-group differences were set at p>0.05 

(FWER), using a cluster-extent based thresholding method. (A) Chronic pain non-

musicians (CPNM) showed increased connectivity compared to healthy non-musicians 

(HNM). (B) Chronic pain musicians (CPM) showed decreased connectivity compared 

to CPNM. (C) CPM showed decreased connectivity compared to healthy musicians 

(HM). Colors indicate connectivity with respective insula subdivisions: green = 
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posterior insula (PI); red = ventral anterior insula (vAI); yellow = dorsal anterior insula 

(dAI). Right side represents right insula connectivity and left side represents left insula 

connectivity. Abbreviations: SMG, supramarginal gyrus; SPL, superior parietal lobe; 

STG, superior temporal gyrus; MTG, middle temporal gyrus; ITG, inferior temporal 

gyrus; aMCC, anterior middle cingulate cortex; pgACC, pregenual anterior cingulate 

cortex; SFG, superior frontal gyrus; OFC, orbitofrontal cortex; M1, primary motor 

cortex; S1, primary somatosensory cortex; VII-VIII, cerebellar lobules. 

 

 

Figure 3 

Results from multiple regression analyses for each insular ROI to assess connectivity 

maps in relation to the amount of years suffering pain and pain intensity in CPM and 

CPNM. In CPM, multiple regressions were also performed with accumulated musical 

training. A.) Pain intensity in chronic pain musicians (CPM). Insula connectivity maps 

did not correlate significantly with chronic pain duration in this group. B) Amount of 

accumulated music training in CPM. C) Pain intensity chronic pain non-musicians 

(CPNM). D. Pain intensity in CPNM. Significance thresholds were set at p>0.05 

(FWER), using a cluster-extent based thresholding method. Detailed information is 

provided in Table 5. Colors indicate connectivity with respective insula subdivisions: 

green = posterior insula (PI); red = ventral anterior insula (vAI); yellow = dorsal 

anterior insula (dAI). Right side represents right insula connectivity and left side 

represents left insula connectivity. Abbreviations: RSC, retrosplenial cortex; M1, 

primary motor cortex; RVM, rostroventral medulla; DLPFC, dorsolateral prefrontal 

cortex; pgACC, pregenual ACC; sgACC, subgenual ACC.  

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Acc
ep

ted
 m

an
us

cri
pt


