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Abstract 
The present paper describes a quantitative method for preparing local heat supply strategies. 

Detailed spatial data on heat demand and supply are generated using combined top-down and 

bottom-up modelling for 14 member states of the European Union, which constitute 91% of its heat 

demand in buildings. Spatial analysis is used for zoning of heat supply into individual and collective 

heating. Continuous cost curves are used to model economically feasible district heating shares 

within prospective supply districts. Excess heat is appraised and allocated to prospective district 

heating systems by means of a two-stage network allocation process. Access to renewable energy 

sources such as geothermal, large-scale solar thermal, as well as sustainable biomass, is analysed. 

The result is a comprehensive and detailed set of heat supply strategies in a spatially discrete 

manner. The findings indicate that in the 14 European Union member states, up to 71% of building 

heat demand in urban areas can be met with district heating. Of this, up to 78% can be covered with 

excess heat, while the remainder can be covered with low enthalpy renewable energy sources. The 

conclusion shows the possibility of a largely de-carbonised heat sector as part of a smart energy 

system for Europe. 
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Nomenclature  
 

Cpipe specific investments costs of pipes €/m 

Cw weighted total transmission pipe cost € 

ηDH grid district heating distribution network efficiency [] 

HDDannual annual heating degree days K d 

HDDmonth monthly heating degree days K d 

HDDmonth, min  minimum of monthly heating degree days K d 

k  thermal conductivity of pipe W m
-1

 

K
-1

 
ks thermal conductivity of the insulation W m

-1
 

K
-1

 ��  heat transport capacity of a pipe, heat flow rate MJ/s 

q heat loss in a pipe W/m 

Q loss base baseload induced district heat distribution losses TJ/a 

Q loss seasonal seasonal load induced district heat distribution losses TJ/a 

Qbaseload baseload district heat demand TJ/a 

QDH district heat supply /demand TJ/a 

QDH econ economic district heat demand TJ/a 

QDH gross  gross  district heat demand TJ/a 

qL heat demand density  GJ/ha 

Qseasonal seasonal district heat demand TJ/a 

ri inner pipe radius m 

ro outer pipe radius m  

rs outer pipe insulation radius m 

δbase share of climate-dependent baseload [] 

ta outer temperature K 

ti  inner temperature K 

 

1. Introduction 
Heat is the most important secondary energy in Europe [1]. It comprises 51% of the final energy 

demand in the 28 member states of the European Union (EU28), while space heating and hot water 

account for 30% [2]. Transition to a sustainable heating sector reduces environmental impact from 

emissions; shifts energy economics from fuel import to investments; and addresses social 

sustainability through affordable heating.  

1.1. Existing research 

Research in the heating sector has increased attention and heat is now recognised as vital in the 

European energy system and its transition [3]. In smart and sustainable energy systems [4], it is 

conditional to reduce heat demands (HD). The built environment may see reductions by 25 % [5], 

according to moderate scenarios. In progressive studies, up to 60% may be saved [6]. District heating 

(DH) may be extended to 40-70% of current HD [7]. Low-enthalpy geothermal, solar thermal and 

excess heat sources may cover 30-80% of DH supply [8]. Sectoral integration between renewable 

electricity, heating, and synthetic fuel sectors (i.e. power to gas, electro-fuels) may provide system 
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flexibility while maintaining efficiency [9]. These combined measures need an inclusive information 

base. However, currently no coherent and comprehensive model exists [10], which would allow 

specifying national or regional heat supply strategies as required by the EU Directive on Energy 

Efficiency, Article 14 [11]. What is needed, therefore, is a heat supply planning methodology, which 

addresses these elements all at once. 

Heat generation, transmission, distribution, and consumption are geographical processes. Their 

location and dispersal provide technical and economic constraints; DH requires infrastructure 

investments and causes heat losses. The economics of heat distribution highly depend on linear heat 

density [12]. Excess heat is accessible, where thermal processes release useable heat within 

economical distance to consumers [13].  

Existing research in the Heat Roadmap Europe (HRE) initiative comprises mapping and systems 

analysis. In 2012, Connolly et al. [14] mapped the European heating sector at local level, followed up 

by Connolly et al. in 2013 [6] with a 1km² resolution model of HD. A first 1 hectare resolution model 

of HD and supply was presented in 2015 [15], and further refined in 2017, see Möller et al. [16]. 

Available excess heat has been located and quantified [11]; and heat synergy regions have been 

identified [8]. DH network costs have been assessed at high resolution [17]; and the spatio-economic 

allocation of excess heat to potential DH areas has been discussed in Möller et al., 2017 [18].  

Internationally, few studies exist which aim at mapping HD and supply at similar scale and resolution. 

Set aside numerous papers that map local areas, particular building types, or specific heat supply 

technologies, few attempts of comprehensive and cross-sectoral spatial analysis exist. Sørensen and 

Meibom presented an early global GIS-based energy model [19]. Gils et al. [20] studied DH potentials 

in the USA. For the Middle East, Nematollahi et al. [21] presented a GIS-based mapping approach of 

energy demand and renewable energy supply. Recently the HOTMAPS project published an open 

source heat atlas for Europe [22].  

 

1.2. Objectives  

The present paper presents a coherent approach to re-design European heat supply on secondary 

energy and local levels. A “what-if” approach assumes a “clean slate” and disregards existing DH 

systems, behavioural, organisational, and regulatory constraints. The objective is to provide a 

quantitative benchmark for policymaking, which includes an assessment of where DH is feasible. The 

local economic potential of DH is assessed using a cost-supply approach. Potential sources of DH are 

modelled using temporal and spatial allocations, taking into account HD seasonality, locally limited 

excess heat supply, and transmission. The aim is a techno-economic quantification of local heat 

markets, understood as physical entities of geographically connected areas with HD densities above a 

technical minimum.  

While investment cost calculations for DH are explained in [23], and excess heat activities (EHA) are 

identified in [8], a method for delineating prospective supply districts (PSD) for collective heat 

solutions [16] is presented in [17]. Based on this work, the determination of local, economic DH 

shares, and the allocation of potential excess heat from industrial processes, waste incineration by 

means of waste-to-energy (WtE) plants, and current power-only producers, like proposed in [18], is 

to be addressed in the present paper. Paramount is to allocate appropriately, in time and space, the 

potentially available excess heat. At this scale, excess heat can only be utilised in DH schemes; the 

availability of such heat sinks near EHA needs to be evaluated. The difficulty is the temporal and 

spatial mismatch between demand and supply. Excess heat from industry and waste-to-energy plants 

is constrained by volume, spatially and temporally, as industrial facilities are seldom established and 
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operated considering the opportunities to utilize excess heat. Current thermal power-only plants, on 

the other hand, may merely provide locations for future heat supply clusters if located near HD. 

The paper offers a coherent and consistent methodology by which HD can be met by sustainable 

supply on local levels for all of Europe. Such approach may integrate the heating sector vertically 

(geographically) as well as horizontally (inter-sectorally). The methodology will integrate several tools 

and methods into an epistemologically connected approach for the preparation of local heat supply 

strategies.  

 

1.3. Scope 

The scope of the paper is the techno-economic assessment of potential local heat markets. In these, 

HD is assumed non-elastic and delivered DH is understood as supply in a partial equilibrium. This is 

fulfilled assuming a natural (i.e. without knowing the costs) merit order of supply. Excess heat from 

industry and WtE is capacity and distance constrained. Access to agglomerated DH areas near 

existing power plants (PP) is merely distance constrained because the capacities of these are subject 

to change. Required installations to make excess heat available for DH are excluded at this level.  

A cost-supply relationship is established, providing the basis of a market in the sense that potential 

supply of DH only depends on the investment cost of distribution. Supply means here providing heat 

to buildings, not generating DH from primary energy, which is beyond the scope, as is the direct 

comparison between collective and individual heat supply. Current institutional, organisational, and 

administrative barriers are excluded, as they are believed to be obstacles to reform the heating 

sector.  

A validation of the HD and PSD mapping is extrinsic. References are given in the text. A validation of 

the main findings must be restricted to plausibility and balances by nature.  

The analysis is limited to the 14 EU member states, which comprise the extent of the HRE project: 

Austria (AT), Belgium (BE), the Czech Republic (CZ), Germany (DE), Spain (ES), Finland (FI), France 

(FR), Hungary (HU), Italy (IT), the Netherlands (NL), Poland (PO), Romania (RO), Sweden (SE) and the 

United Kingdom (UK). These represent 91% of the total HD in the EU28 [2]. 

 

2. Methods  
High-resolution HD mapping is used to delineate supply districts, estimate the economic potential of 

district heating within these, and calculate heat distribution losses. Excess heat and renewable heat 

are allocated in time and space to potential DH systems.  

2.1. General considerations 

There is often a spatial mismatch between HD and EHA locations. A preliminary distance analysis 

between the centroids of PSD and EHA located in Persson et al. [17] has been carried out; see Figure 

1, where 96% of HD is located within 50 km straight-line distance from an EHA. At merely 20 km 

distance, 75 % of HD is located. However, simple nearness alone is not sufficient to appraise the 

coverage of HD with excess heat. It is a question of temporal and spatial alignment of demand and 

supply, to be addressed by means of allocation analysis. 
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Figure 1: Distance relationship between cumulative HD [16] in prospective heat supply districts (PSD) of the 14 countries 

represented in the HRE project and the nearest excess heat activity (EHA) [15], measured in planar distance.  

The allocation of excess heat assumes relative nearness of raw materials as production factors, 

formulated in Alfred Weber’s basic industrial location model [24]. Analog to Newtonian gravity, the 

product of mass and distance determines the location of production units. Minimal distance between 

demand and supply provides least cost solutions. Stewart [25] utilised the strong link between 

volume of resources and transport distance in retail planning, laying the basis for mapping 

opportunities of interaction in accessibility modelling [26]. The gravity-based transport problem [27] 

recognises that larger volumes are less costly to transport over long distances than smaller volumes if 

the means of transportation has a positive economy of scale of volume and distance. Heat is 

transported in pipes, and costs occur as investment and operation costs. Investments are the 

required DH pipes and associated fittings; heat recovery at EHA is excluded. Operation costs are 

pumping costs and heat losses. Investment costs Cpipe approximately increase with the heat transport 

capacity ��  (the heat flow rate in MJ/s) as in Equation 1, which has been derived from [12].  

����� ≅ 356	�� �.���	 [€/m] 

Equation 1 

Losses q are a function of �� ; see Equation 2, where heat loss is calculated per metre of pipe length.  

� = 5	 ∙ 	10������.���  [W/m] 

Equation 2 

Gravity allocation models seek to minimise costs over network distances, and therefore give priority 

to high volumes at short distances, subsequently increasing coverage by allocating larger plants in 

the vicinity before extending pipe networks to larger distances. This behaviour favours dense 

clusters. The transport problem seeks to minimise the total costs of all heat volumes transported. A 

sub-problem is related to the location and allocation: the p-median problem aims at minimising the 

total costs for transporting heat from a given number p of EHA to a specified number of PSD. Each 

possible connection i,j between facilities and consumers has a distance-weighted heat transmission 

pipe cost Cw and a local heat demand Qdh [28]: 

������,��� !,��
�,�

 

Equation 3 
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The decision variable of this optimisation problem is	� !,��, i.e. the EHA at a location is either being 

allocated to cover the heat demand in a PSD or not. 

A modification is to maximise capacitated coverage, where the capacity of EHA is limited, and all of 

the capacity is to be utilised while minimizing transport distance. ArcGIS Network Analyst uses Teitz-

Bart heuristics to solve the very large solution space of the p-median problem. For the Maximize 

Capacitated Coverage problem, the so-called Hillsman editing transforms the problem to a p-median 

before applying the heuristic [29]. 

EHA and PSD demand do usually not overlap in time, as HD pertains to the cold months of the year. 

Industrial processes usually have little seasonality; they are considered baseload. The same is 

assumed for waste-to-energy plants, designed to operate at full capacity. Excess heat from PP is 

treated differently. In the year 2015, 66% of all European coal-fired PP had been in operation for 30 

years or more [30]. The largest and oldest will therefore (subject to coal price, carbon price, 

competitive alternatives, and political will) disappear within years. If so, some of them may be 

replaced by CHP units located near HD. Therefore, current PP locations are input to the allocation as 

candidates for future CHP, assuming that location factors such as electric and gas grids exist. Current 

PP will therefore be allocated minimising overall impedance, ranked by estimated transmission 

pipeline costs, and with no capacity limit.  

The flow of modelling is shown in Figure 2. Based on HD density at high spatial resolution, the 

boundaries of PSD are drawn as in [16]. The annualised average investment costs in distribution 

networks are calculated. Then, local cost-supply curves are drawn to define local heat markets. A cut-

off average cost separates the economic from the technical potential. Furthermore, using heating 

degree-day maps, the climatically defined baseload share is mapped to calculate the annual baseload 

HD as the temporal constraint to using excess heat from industry and WtE. A network allocation 

model allocates capacitated baseload EHA to baseload demands. A second network allocation model 

identifies locations of current power generation plants with heat markets in their vicinity by 

minimised impedance. Geothermal heat, solar thermal energy, and local biomass are mapped and 

assigned to the prospective supply districts. Lastly, for each PSD the opportunities for an annual mix 

of heat supply are generated based on natural merit order.  

 

Figure 2: Workflow presented in the paper. A HD raster forms the basis for the formulation of opportunities for local heat 

supply. PSD are formed and heat distribution investment costs calculated in order to arrive at local economic DH potentials 

via cost-supply studies. The supply of potential excess heat to cover gross DH demands is allocated to PSD using a temporal 

and a spatial allocation to arrive at local heat supply strategies. 
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curves
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2.2. Mapping heat demands and prospective heat supply districts 

HD (2015) is mapped at 100m grid resolution using modelled plot ratios for single and multi-family as 

well as service sector buildings. National HD from the FORECAST model [31], have been distributed 

by means of population density per hectare [32] using the modelled plot ratios, and per-capita floor 

areas derived from Eurostat [33]. For a detailed description of the mapping of HD, see Persson et al., 

2017 [17].  

DH may be technically feasible in connected and contiguous areas where HD density is sufficient, and 

where investment costs of DH distribution networks are low. PSD are areas with HD density > 20 

TJ/km² [16] and formed of contiguous cells and coherent settlements likely to represent potential DH 

supply areas. PSD are solely based on technical criteria and do not include a cost assessment. They 

are connected if there is a distance of less than 400m between individual clusters of cells. Larger 

agglomerations of areas are split into smaller units using the NUTS3 (Nomenclature of Territorial 

Units for Statistics, level 3) areas. In addition, PSDs are split into smaller sections of up to 8km² 

because the capacitated coverage allocation tool cannot handle demands that exceed facility 

capacities. 

 

 

Figure 3: Map of PSDs in the area of Brussels and Antwerp. PSDs larger than 8 km² have been split into smaller sections 

because the capacitated coverage allocation tool cannot handle demands higher than facility capacities. 

The result is a total number of 52,112 PSD for allocation, for which HD, DH network efficiency, and 

DH supply are being calculated for the spatial allocation process, see Figure 3.  

The Halmstad University District Heating and Cooling (HUDHC) database [8] contains descriptive 

information about 3,104 DH systems in 2,360 urban areas. The present study omits this data, 

because the point-based HUDHC database is not geo-referenced to the 52,112 PSD polygons 

identified in the present paper: the actual supply areas of current DH systems are not mapped. 
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2.3. Cost-supply relations for DH potential in individual PSD 

Cost-supply (CS) curves show the costs of exploiting cumulative resources, in this case the potential 

to develop DH. CS curves facilitate the analysis of policy scenarios as they relate resources and the 

associated, often spatially defined costs [34]. CS curves can be drawn with marginal costs over 

cumulative HD, or the average costs of utilising a share of the cumulative resource. A CS curve 

therefore tells how much of a resource can be utilised at a given cost. The total cost of utilizing this 

resource is the product of the amount and the average cost.  

CS curves have been produced for all HRE countries, on the level of individual PSD. DH distribution 

capital costs are calculated from HD density and the plot ratio; see [17], as a 100m grid. The cost 

calculations assume a lifetime of 30 years and a discount rate of 3%. 

Practically, the method combines 52,112 PSD with 36 cost values in a geometric sequence in one 

grid. HD was summarised for the resulting 751,344 individual areas of combined PSD code and cost 

code, each with a unique combine-ID. Then, a pivot table summarises HD by costs for each PSD, 

deriving the PSD as well as the cost interval back from the combine-ID via a database relation. In a 

spreadsheet, accumulated HD, accumulated cost, average cost, and economic potentials were 

calculated. The economic DH potential Qdh, econ is here assumed to be the cumulative DH potential at 

average costs below 5 €/GJ annual heat delivered. 

 

2.4. A spatial model of district heating network efficiency 

Specific annual heat losses in a DH grid are related to the linear heat density, i.e. the proportion of 

annual heat sold per trench length. In a pipe, heat loss increases with its diameter according to 

Equation 4 [35], 

�	 = 	 "#�"$
%&	(()(# )
+,- .

%&	((/())
+,-/

  [W/m] 

Equation 4 

where q is the heat loss per meter of pipe, ti the inner and ta the outer temperature, ro the outer pipe 

radius, ri the inner pipe radius and rs the outer pipe insulation radius. k is the thermal conductivity (W 

m-1 K-1) of the pipe (steel) and ks the thermal conductivity of the insulation. Here, ks is assumed 0.023 

W m-1 K-1 (polyurethane).  

Pipe dimensions are correlated to the HD density in an area. Using empirical data on average pipe 

dimensions used for different HD densities [36], Equation 5 was derived by regression to establish a 

relation between pipe radius 0� and the HD density �1. 

�1 = 11.455	3�4,56	7)  [GJ/ha] 

Equation 5 

Finally, the efficiency 89:	;7�  of a DH distribution grid can be estimated using Equation 6, which is 

derived by adjusting parameters q and qL using an estimated factor 20: 

89:	;7� ≅ 1 − (20 ��1) 

Equation 6 

Plotting values of 89:	;7�  against �1, a regression function like Equation 7 can be derived to 

calculate DH grid efficiency as a function of HD density on a cell-by-cell basis.  
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89:	;7� = 0.0586	?�	(�1) + 0.4318 

Equation 7 

The result is a continuous spatial model for the efficiency of DH distribution networks. Efficiencies 

range from 82% in areas with 50 TJ/km² in suburban areas to 98% in highly dense urban centres with 

HD densities of 1,200 TJ/km². This reflects the lower grid losses of modern DH systems with higher 

efficiencies [10]. Subsequently, the efficiency of prospective DH grids will be used to calculate the 

necessary DH supply. 

 

2.5. Temporal allocation of excess heat  

The modelled HD includes space heating and hot water. While hot water consumption is assumed 

constant throughout the year, space HD follows the seasonal variation of heating degree-days. The 

climate-dependent baseload is calculated using a 2.5km monthly average temperature grid [37] to 

arrive at a grid of monthly degree-days. The differences between the monthly mean temperatures 

and a reference temperature of 17°C times the number of days per month result in monthly heating 

degree-days, HDDmonth. The share of climate-dependent baseload HD per cell is the minimum of 

monthly degree-days, HDDmonth, min divided by the annual sum of degree-days HDDannual; see Equation 

8.  

ABCD� =	
12	EFFGHI"!,G�I

EFFCIIJCK  

Equation 8 

This climatic baseload factor, see Figure 4, was then assigned to each PSD to describe the seasonally 

dependent share of space heat to be provided by DH. While large parts of Europe have very low 

baseload demands, the climatic conditions in Scandinavia, on the British Isles and in mountainous 

regions result in high heating baseloads even in summer. These locations prove favourable for using 

baseload excess heat. 

 

Figure 4: Baseload HD shares, understood as the climate-independent percentage of the annual space HD, calculated 

continuously for all of Europe. 
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2.6. Seasonal and baseload district heat delivery and losses 

DH supply, including space heat and hot water demands, that may be delivered from the nearest 

excess heat facilities to PSD with economic DH potential, is composed of baseload and seasonal HD, 

see Equation 9. 

�9: = �BCD�KHC +	�D�CDHICK 
Equation 9 

Baseload DH supply is the share ABCD� of the economic DH potential QDH econ that is fixed throughout 

the year:  

 

�BCD�KHC =	�9:	�LHI ∗ ABCD� 

Equation 10 

Consequentially, the seasonal DH load Qseasonal is: 

 

�D�CDHICK =	�9:	�LHI ∗ (1 − ABCD�) 
Equation 11 

Hot water demand is assumed constant throughout the year and a fraction of the total annual HD, 

derived as the ratio between “Hot water delivered” and “Total heating delivered” on national levels 

from the HRE D3.1 report [2]. Hot water demand is included in the mapped HD, but subtracted from 

the total DH demand before calculating seasonal demands. 

Assuming for simplicity that loss-inducing temperatures are the same throughout the year, losses in 

the DH distribution network are modelled as fractions of baseload as well as seasonal loads: 

�9:,;7HDD =	�BCD�KHC + �KHDD,BCD� + �D�CDHICK +�KHDD,D�CDHICK 
Equation 12 

Accordingly, baseload and seasonal supply to be delivered to the DH system is calculated as follows, 

using the DH grid efficiency calculated in Equation 7: 

 

�BCD�KHC ,;7HDD =	
�9:	�LHI	ABCD�

89:	;7�  

Equation 13 

�D�CDHICK,;7HDD =	
�9:	�LHI	(1 − ABCD�)

89:	;7�  

Equation 14 

These heat loads were calculated for all of the 52,112 PSD and made available for the following 

allocation process. 
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2.7. Spatial allocation of excess heat 

The allocation of excess heat uses two different, sequentially applied allocation methods, which 

follow a merit order of excess heat utilization in energy systems. First, baseload excess heat from 

industry and WtE is allocated with priority given to larger units by assigning the annual capacities as 

weights in the allocation. The results comprise the excess heat of each facility that can be allocated 

to a demand point and hence utilised, and vice-versa the possibility for each prospective DH system 

to cover its baseload demand with excess heat. Second, PSD are allocated to current PP, in heat 

supply clusters, based on minimum cumulative, weighted transmission pipe length required to 

connect to a facility. The allocation therefore comprises a method to systematically match demand 

and supply using an assumed least-cost algorithm that is based on spatial connectedness. 

 

2.7.1. Network allocation data 

The connectivity of DH installations is constrained by topography. Water bodies, mountains, forests, 

and built-up areas affect DH pipe routing in the open landscape. Therefore, as a proxy to DH 

transmission corridors between EHA and PSD, a road network database of primary and secondary 

roads was used. The Global Roads Open Access Data Set, Version 1 (gROADSv1) [38], was estimated 

as appropriate for the purpose, compromising between accuracy and computability.  

The gROADS dataset was converted into an ArcGIS Network Analyst network dataset (ND). 

Connectivity to any vertex of the network features was assumed, which avoids de-routes, and the 

unit for road distance accumulation was set to metres. 615,000 connecting road elements are 

included, as well as 216,000 junctions.  

As a maximum distance for allocation, 50km road network distance was chosen, based on 

experiences from large interconnected DH systems such as in Copenhagen. 

 

2.7.2. Network location data: facilities and demand points 

Facilities are the 2,189 EHA points, of which 1,389 baseload units have a potential of 2,149 PJ, while 

800 seasonal load facilities may deliver up to 4,403 PJ. Demand points are the 23,953 centroids of 

PSD with an economic DH potential of 5,798 PJ in total.  

Results from the allocation are stored in relational tables pertaining to the network data elements 

facilities, demands and lines. An Access database allows for the extract of allocation results by PSD, 

facility type, by MS and other dimensions of interest.  

Figure 5 visualises the allocation of baseload excess heat to PSD in the area of Erfurt, Germany. 

Connecting lines are drawn from EHA to PSD centroids. These lines are imaginary, as the transmission 

pipes are routed along the road network. It shows that while most of the PSD in that area could be 

supplied with extensive DH networks, some of them are beyond the 50km distance. 

Figure 6 visualises the allocation of seasonal HD to current locations of PP in North-West Germany. 

This allocation is not capacitated; however, the costs of transmission pipelines are calculated. 

Maximum annualised transmission costs of 0.5 €/GJ heat delivered are estimated to exclude 

allocations beyond. Green lines are below this threshold, red ones exceed it. 
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Figure 5: Extract from the map that shows the result of the allocation of baseload demand to industrial excess heat and WtE 

plants. The map shows the area around Erfurt (centre left of map), state of Thuringia, Germany.  

 

Figure 6: Extract from the map that shows the result of the allocation of seasonal district HD to locations of current PP. The 

map shows the area of Bremen (centre right), North-West Germany.  
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2.8. Renewable energy sources 

Low-enthalpy renewable heat and marginal biomass are preferred resources for DH systems 

wherever baseload excess heat is not available. Hence, a geographical analysis of these resources 

aims at locating and quantifying available renewable energy sources such as geothermal heat, solar 

thermal energy, and sustainable biomass to PSD. 

 

2.8.1. Geothermal heat 

Geothermal heat resources are difficult to map quantitatively. The accessible heat depends on 

temperature gradient and possible mass flow of hydrothermal water. In addition, the heat rate 

depends on technology and is therefore difficult to allocate quantitatively to specific PSD [39]. 

The GeoDH project [40] presented qualitative maps of geothermal potential across Europe. A simple 

scoring system was developed in the present paper to assign priorities of geothermal potential to 

PSD, see Table 1. Using the GeoDH spatial layers, see Table 1, a score between 1 and 3 was 

associated to the PSD, and geothermal shares of DH were assumed. Areas outside the score were 

given a priority of zero.  

 

Table 1: Scoring system of qualitative geothermal data layers into a prioritisation of available geothermal heat. 

Geothermal property Priority 1 (high) Priority 2 (medium) Priority 3 (low) 

Heat flow density > 90W/m² X   

Hot sediment aquifer X   

Neogene basins X   

Other potential reservoirs  X X 

Temperature gradient of 90°C at 2000m X   

Temperature gradient of 50°C at 1000m X X  

Assumed share in DH supply 30% 20% 10% 

 

 

2.8.2. Sustainable biomass 

Sustainable biomass potentials from the BioBoost project [41], which show the marginal (i.e. 

excluding dedicated energy crops), technically and economically feasible biomass resources on a 

NUTS3-level, were distributed to PSD. Concentrating on the three main sources: straw from 

agriculture, wood from forestry and biodegradable household waste, the available resources in each 

NUTS3-district were distributed to a 100m resolution grid. Straw was distributed to CORINE 2012 

land use Code 12 [42]. Likewise, forest residues were distributed to all CORINE forest areas, not 

discriminating between forest type, age, or management practices. Forests located in NATURA 2000 

areas [43] are excluded. Finally, within each NUTS3-district, biodegradable household waste was 

distributed following population density using the JRC 100m population grid [32].  

Allocating biomass resources to PSD is not trivial. Limited biomass resources should maximise the 

replacement of fossil fuels while minimising environmental impact. However, socio-economics and 

the logistics of biomass need consideration. Transport costs may prioritize the nearest consumers. 

The economy of scale in biomass operations, however, favours long-haul transport of biomass from 

the most productive source areas to the consumers with the highest ability to pay. Nevertheless, as 

the Bioboost data comprise marginal resources, biomass may initially be allocated by Euclidean 

distance to the nearest demand points. Patterns of urban settlement then lead to two main modes of 
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allocation: in rural areas, allocation from a local forest or field to the nearest settlement favours 

small-scale DH. In urbanised areas, the supply of biomass from agriculture and forestry would be 

minimal. Therefore, in allocating biomass resources, the local PSD are prioritised if no alternatives to 

biomass exist and if more than 10% of supply is met. Solar thermal heating is prioritised over 

biomass. Accordingly, biomass is for smaller DH systems in rural areas without alternatives. Finally, 

surplus biomass from the local allocation is made available for large-scale biomass economies.  

 

2.8.3. Solar thermal district heating 

Large-scale solar DH requires sufficient solar radiation, available space, and the absence of 

competing baseload supply. Counter-cyclic behaviour of solar to HD disfavours baseload supply, and 

necessitates significant seasonal storage.  

Adapting and further improving the method applied in [43], using CORINE land use grids of 

agriculture and marginal land use. Natura 2000 areas [44] were excluded. Further, the discrete 

CORINE land use mapping by majority neglects sparse development in the urban fringe, which 

effectively rules out large solar collector fields. Accordingly, cells with more than 10% built-up area 

found in the European Settlement Map 2016 [45] were excluded. 

Available land 200m around each PSD was found by expanding by 2 cells, then summarising the 

suitable area. Mean global horizontal irradiation derived from PVGIS [46] was associated to PSD, and 

the solar potential was calculated using technical and economic parameters as in Trier et al. [43]. 

2.9. Local heat supply strategies 

To provide annual mixes of heat supply from excess heat, potential CHP, marginal biomass, 

geothermal heat, and solar thermal, available supply options were modelled for each PSD where 

economic DH potentials exist.  

Supply strategies are formulated by prioritisation. After allocating baseload excess heat, residual 

baseload DH supply was assigned to the spatial allocation of seasonal demand. However, before 

agglomerating PSD to centralised CHP units, local geothermal supply was investigated. Where neither 

baseload excess heat nor geothermal heat is available, solar thermal DH is assigned, at an annual 

solar share of 40%. At this scale, seasonal heat storages are needed.  

Furthermore, residual supply is allocated to central CHP locations by impedance-minimizing 

allocation. As the pipe cost is a weight in the allocation, the total weighted distance represents the 

pipe costs. Annualised transmission capital costs were calculated assuming the same interest rate 

and life expectancy as for distribution pipes. A simple threshold of 0.50 €/GJ excludes unfeasible 

connections.  

Where none of the supply options above is available, or where local supply is not sufficient, biomass 

is used. Finally, the remainder is being specified, for which alternatives have to be found beyond the 

solutions mentioned. The result is a set of strategies for all 52,112 PSD, defining where DH systems 

may be feasible and supplied by limited excess heat and local renewable sources. The remainder is 

subject to individual heating solutions.  
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3. Results 
At 9,908 PJ, the 14 HRE countries comprise 91% of the EU HD, of which 8,154 PJ (82%) is found within 

PSD, and may be defined as the theoretical maximal DH potential. Applying cost-supply analysis to all 

52,112 PSD, the economic potential of DH at average annualised distribution system investment cost 

of 5 €/GJ is reduced to 5,798 PJ. Table 2 shows the sensitivity to these costs.  Austria, Finland, Italy, 

and Sweden are countries with favourable conditions to develop DH, while Hungary and the UK are 

initially more expensive to develop. Assuming maximally feasible development costs of 9 €/GJ all 

countries except Hungary show DH potentials of 80% or more.  

 

Table 2: Percentages of cumulative 2015 HD within PSD, which can be covered with DH at average annualised DH 

distribution capital costs ranging from 1…9 €/GJ annually delivered heat.  

MS 1 €/GJ 2 €/GJ 3 €/GJ 4 €/GJ 5 €/GJ 6 €/GJ 7 €/GJ 8 €/GJ 9 €/GJ 

AT 3% 43% 57% 64% 69% 73% 76% 79% 81% 

BE 0% 31% 47% 54% 60% 66% 72% 76% 79% 

CZ 0% 31% 64% 75% 80% 84% 87% 88% 90% 

DE 0% 29% 57% 69% 76% 81% 85% 88% 90% 

DK 7% 34% 51% 61% 68% 73% 76% 79% 82% 

ES 0% 27% 60% 77% 85% 89% 92% 93% 95% 

FI 30% 50% 60% 67% 72% 75% 78% 81% 82% 

FR 2% 17% 41% 55% 64% 70% 75% 79% 82% 

HU 1% 21% 36% 42% 46% 50% 53% 56% 58% 

IT 4% 38% 65% 78% 85% 90% 92% 94% 95% 

NL 0% 1% 23% 57% 73% 85% 92% 95% 98% 

PL 0% 29% 62% 72% 77% 81% 84% 86% 87% 

RO 0% 1% 25% 59% 69% 74% 76% 78% 80% 

SE 17% 54% 67% 74% 78% 81% 83% 85% 86% 

UK 1% 12% 29% 41% 53% 65% 76% 85% 91% 

HRE 2% 26% 50% 63% 71% 77% 82% 86% 88% 

 

HD within those 23,976 PSD, where DH is below the cost threshold, is subjected to local baseload 

shares and the local DH network efficiency to calculate gross baseload and seasonal DH supply. By 

means of Maximise Capacitated Coverage Allocation of 1,398 baseload excess heat activities, 1,308 

of such activities were allocated to 15,887 PSD. 580 PJ out of 895 PJ (65%) gross baseload demand in 

these PSD could be covered. The remaining baseload was associated to seasonal excess heat 

locations. Seasonal and non-allocated baseload gross HD in 14,161 PSD (in total 7,325 PJ) was 

allocated to 736 out of 800 locations of current thermal PP. These currently have a theoretical excess 

heat potential of 4,403 PJ, however 5,611 PJ of gross seasonal and -residual baseload demand was 

allocated. This leaves 9,815 PSD with 1,714 PJ in total out of reach for larger, centralised CHP.  

Part of developing heat supply strategies was the utilisation of local renewable energies. If priority is 

given to excess heat, produced at low or zero variable costs, then capital-intensive renewable 

sources may not be competitive. Where connection to larger, centralised DH systems is not feasible, 

biomass may be used. Biomass may comprise a seasonal fuel storage, and be the only choice for 

small-scale DH. 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Table 3: Allocation results per MS. Out of the economically maximal DH potential of 71% of the net HD in 2015, 78% can be 

covered. From one MS to another, DH potentials and coverages by means of excess heat utilization vary significantly.  

MS HD 

within 

PSD 

[PJ] 

Economic 

net DH 

potential 

[PJ] 

Econ. 

DH 

share 

[%] 

DH 

baseload, 

gross 

[PJ] 

DH 

seasonal 

gross 

[PJ] 

Allocated 

baseload 

gross  

[PJ] 

Covered 

baseload 

[%] 

Allocated 

seasonal 

gross  

[PJ] 

Covered 

seasonal 

load 

[%] 

Covered 

total 

gross  

[PJ] 

AT 177   122   69% 15   149   12   82% 119   80% 80% 

BE 275   165   60% 6   219   6   99% 217   99% 99% 

CZ 184   147   80% 37   168   22   61% 153   91% 86% 

DE 2,089   1,589   76% 263   1,884   195   74% 1,605   85% 84% 

ES 413   349   85% 45   432   31   70% 300   69% 69% 

FI 176   126   72% 19   157   4   22% 132   84% 78% 

FR 1,213   779   64% 131   926   92   70% 571   62% 63% 

HU 177   82   46% 7   109   4   55% 74   68% 67% 

IT 1,081   924   85% 64   1,199   49   76% 923   77% 77% 

NL 376   276   73% 33   342   24   71% 314   92% 90% 

PL 442   342   77% 52   427   23   45% 351   82% 78% 

RO 117   81   69% 15   99   4   26% 58   58% 54% 

SE 237   183   78% 47   206   29   63% 157   77% 74% 

UK 1,198   630   53% 134   721   85   63% 637   88% 84% 

HRE 8,154   5,798   71% 867   7,038   580   67% 5,611   80% 78% 

 

Table 4: Summary of local heat supply strategies on country level. The table distinguishes between rural and urban HD. 

Where DH is feasible at distribution capital costs below 5 €/GJ, supply from excess heat, solar thermal, and geothermal has 

been allocated. Where within reach, an urban area may be connected to a central DH system with large-scale CHP. Where 

none of these options is available, small-scale biomass may be used. Finally, the remainder has to be covered with 

alternatives. This way, the table is a summary of potential heat supply strategies derived from spatial allocation of excess 

and renewable heat for 52,112 individual PSD.  

MS Total 

net 

HD 

[PJ] 

HD 

within 

PSD 

[PJ] 

HD 

rural 

[PJ] 

PSD 

DH 

pot. 

 [PJ] 

PSD 

no DH 

[PJ] 

Base 

excess 

[PJ] 

Solar 

therm 

[PJ] 

Geo-

therm 

[PJ] 

Cen-

tral 

CHP 

[PJ] 

Bio-

mass 

[PJ] 

DH 

other 

[PJ] 

DH 

grid 

loss 

[PJ] 

AT 232 177 55 122 55 12 25 2 96 11 18 42 

BE 324 275 49 165 110 6 36 1 129 4 48 59 

CZ 237 184 53 147 37 22 27 11 95 34 16 57 

DE 2,413 2,089 325 1,589 499 195 255 216 1,035 141 305 558 

ES 491 413 78 349 63 31 42 0 298 43 62 127 

FI 226 176 50 126 50 4 12 0 149 26 15 49 

FR 1,.563 1,213 350 779 434 92 144 117 527 39 138 278 

HU 209 177 32 82 95 4 19 11 56 21 4 33 

IT 1,285 1,081 203 924 157 49 126 166 673 77 173 339 

NL 426 376 50 276 100 24 41 63 134 5 109 100 

PL 658 442 216 342 100 23 60 15 294 54 33 137 

RO 183 117 66 81 36 4 15 10 71 12 1 33 

SE 296 237 59 183 53 29 12 0 185 21 4 69 

UK 1,365 1,198 167 630 568 85 127 17 212 27 386 224 

HRE 9,909 8,154 1,754 5,798 2,356 579 942 631 3.954 515 1,283 2,107 
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Table 4 shows national summaries of spatial heat supply based on allocating excess heat and 

renewable energy sources, plus the rural share. While baseload excess heat may deliver 579 PJ (7%) 

to the total gross DH supply of 7,905 PJ, solar thermal may contribute with 942 PJ (12%) where no 

baseload is available, at 40% solar share. Geothermal heat, although difficult to quantify, has been 

assigned at 631 PJ, being 8% of DH supply. Where investments in transmission pipelines allow, urban 

areas may receive 3,954 PJ from central CHP stations, which is 50% of the total DH supply. Biomass 

may contribute with 515 PJ (7%) where no other supply is available. Finally, DH supply of 1,283 PJ 

(16%) is to be covered by other sources. 2,356 PJ of HD in low-density urban areas, as well as the 

rural HD of 1,754 PJ is subject to technologies like heat pumps or individual biomass boilers. The 

mapping of HD is not yet detailed enough to locate small HD clusters, which would allow establishing 

collective heating systems in neighbourhoods.  

 

4. Conclusions  
The present paper describes a coherent and comprehensive methodology to formulate heat supply 

strategies. At local levels, HD density and distribution capital costs of DH are being mapped with a 

raster-based approach of 100m cell size. Coherent and contiguous areas with minimal HD densities, 

the so-called PSD, are being delineated as zones, in which DH systems are technically possible. For 

the first time, a cost-supply analysis describes local heat markets in a spatially explicit manner. A 

major result is that geographic zoning of local heat supply leads to lower potentials than estimated 

by means of national analysis in earlier studies. The reason is that heat markets are local by nature. 

The method of cost-supply curves effectively confines areas, which appear favourable for 

implementing local projects. Accordingly, the economic DH potential for the HRE countries could be 

estimated at 5,798 PJ, equal to 59% of the total HD in 2015. This potential relies on potent policy 

instruments to promote DH as a resource and cost efficient way of heating. It may be higher if heat 

could be supplied at very low costs. 

Hence, one way to improve the cost-effectiveness of DH is the access to low cost excess heat. 

However, not all of the HD matches temporally and spatially with excess heat supply. Consequently, 

the paper proposes a method to allocate temporally the heat supply from EHA. Here, baseload HD in 

DH systems is composed of a climatically induced summer HD, hot water demands, and losses, 

mapped for all PSD. The remainder is the seasonal HD, which varies with climate. While assuming 

that baseload EHA have constrained capacities, seasonal EHA are potential CHP location at current 

PP, possibly obsolete in a future smart energy system. Therefore, it is assumed that current PP 

locations near potential heat markets are prioritised in a spatial allocation. Hence, a two-step 

allocation process, solves baseload EHA as a Capacitated Coverage Allocation problem, while 

seasonal HD is associated to prospective locations of CHP in a least cost manner as a Minimize 

Impedance problem, without capacity constraints.  

Results show that in the HRE countries, 67% of the baseload gross HD can be covered, while 80% of 

the remaining baseload and the seasonal demands can be associated to current locations of PP. 

Combined, this means that 78% of gross HD in potential DH areas can be covered with excess heat 

and central CHP. Assuming a maximum DH share of 71%, this is 55% of the total HD in the HRE 

countries, which can be partly or fully decarbonised. 

A large part of the remaining 22% of the HD in DH areas may be covered with geothermal heat, with 

large-scale solar thermal installations and with biomass where none of the other supply options exist. 

A mere 16% of the DH supply has not been assigned to potential supplies. There is still potential in 

refining the methods to identify potential supply. This includes the areas where DH is not feasible, 
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which contain 41% of all HD. In further studies, individual supply options may estimate the potentials 

to utilise heat pumps, individual biomass boilers etc. based on local conditions.  

One of the strengths of local cost-supply analyses has not been used yet. As the present model 

continuously calculates the distribution costs of DH, the share of DH may be increased where supply 

is available at lower costs, as higher investment costs may be tolerated. An optimization approach 

may be applied here; however, the interaction with Smart Energy Systems [4] may necessitate 

connecting advanced energy systems analysis to this approach.  

 

5. Limitations and Discussion 
The present analysis cannot be done without numerous limitations. First, data quality issues due to 

the absence of comprehensive data on the heating sector may compromise the validity of results. 

Second, costs are derived from empirical studies, and it is uncertain if future costs will be on similar 

levels. Furthermore, the allocation uses methods from operations research, implying crude 

assumptions. Finally, the potentials and availability of excess heat and renewable energy sources are 

based on generic assumptions, which neglect local conditions, primarily temperature levels and 

extraction rates.  

However poor the data basis for carrying out comprehensive and spatially explicit studies of HD and 

supply on the local level may be, the results of the present paper should be seen as a very first 

attempt at mapping a coherent heat sector of Europe. If the reader allows drawing on an analogy, 

the Mercator World map of 1538 only imprecisely showed the newly discovered parts of the World, 

while Europe and the Orient were rather well depicted. Mapping the heating sector is similar. There 

are few countries or parts of those, where tradition, political mandate or energy regulation have 

brought along a comprehensive mapping of heat supply and demand. Meanwhile, in most European 

countries the heating sector remains largely unchartered waters. Mercator’s map has formed the 

basis for the scientifically sound and comprehensive description of the World. It is the hope of the 

authors that maps with the authority of Mercator’s will emerge, to help formulating strategies for 

the future heat sector. 
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Highlights 

 

A comprehensive spatial energy planning model for the European heat sector. 

Cost-supply relationships of district heat and investment costs on local levels. 

Temporal and spatial allocation of excess heat to potential district heating systems. 

Heat supply strategies for 50,000 heat supply districts across Europe. 

 

 

 


