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ABSTRACT 

A use of orthotropic materials such as fibre-reinforced composites can introduce into vibro-acoustic 

performance of structures of canonical shape effects, not feasible when an isotropic material is used. 

In this paper, free and forced wave propagation in cylindrical structures with helically orthotropic 

material properties is analysed to demonstrate these effects. Two models, a thin cylindrical shell and 

a cylindrical beam lattice, are considered and two methods, an analytical method of the thin shell 

theory and a numerical Wave Finite Element method, are used. For both models, the symmetry break 

effect concerned with the location of dispersion curves is captured by means of these methods and 

explained. The influence of the helix angle and of the material parameters on the location of 

dispersion curves is investigated. The Green’s matrix is formulated for rotating forces and the 

forcing problems are solved to highlight some unusual waveguide properties of the helically 

orthotropic cylindrical structures. The results are discussed in view of a possible application for 

control of energy flow in piping systems exposed to rotating excitation.  

 

Keywords: helical structures, wave propagation, dispersion curves, Green’s matrix, rotating forces, 

energy flow 
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1. INTRODUCTION  

Wave propagation in helical waveguides has been a subject of interest since a long time ago, e.g. [1], 

and, as for many other research subjects, many original and interesting studies and applications can 

be found in the literature. Due to difficulties in solving partial differential equations for helical 

structures, in recent years there has been an increased interest in numerical methods for the analysis 

of wave propagation in helical waveguides, in particular, due to developments in structural health 

monitoring techniques. Dispersion curves in helical springs were obtained in [2] applying an 

asymptotic analysis and then the dominant balance method. Natural frequencies in helical spring 

were calculated in [3] using a dynamic stiffness method, while vibrations were studied in [4] 

applying a pseudo-spectral method and in [5] using the Green’s matrix the Boundary Integral 

Method. Several numerical methods based on Finite Element discretization have been also proposed, 

each one showing some advantages or disadvantages with respect to the other. Vibration of helical 

springs with non-uniform ends was studied in [6] using a hybrid Wave Finite Element method. In [7] 

a Semi Analytical Finite Element method, based on translational invariance of curved waveguides, 

was presented, while in [8] dispersion curves were obtained based on the Scaled Boundary Finite 

Element. A Spectral Finite Element method was also recently applied for investigation of wave 

propagation in piezoelectric helical waveguide  [9]. 

Wave propagation in elastic cylindrical shells has been studied in numerous publications. The vast 

majority of those are concerned with shells made of an isotropic material. Orthotropic shells have 

been considered in much fewer publications and the principal directions of tensor of elastic constants 

are customarily taken as coinciding with the cylindrical system of coordinates. It has been shown 

that all qualitative features of dispersion curves known for isotropic shells are preserved with some 

quantitative changes in magnitudes of cut-on frequencies, which, obviously, become dependent upon 

the ratio of elastic moduli in principal directions. A detailed survey of the literature on wave 

propagation in an orthotropic elastic shell lies beyond the scope of this paper, but the state-of-the-art 

in this area can be found in [10]. Recent advances in this area are highlighted in [11]. 

The technology of manufacturing of elastic pipes (cylindrical shells) for some technical applications, 

however, is such that the principal directions of the tensor of elastic constants are turned at a certain 

angle   to the cylindrical system of coordinates. This angle is kept constant along the length of a 

pipe so that fibres in a ply are helically wounded at the cylindrical surface. Often, an orthotropic 

cylindrical shell is made of many plies and the pitch angle for consecutive plies is switched to the 

opposite. By these means, the principal directions of elastic properties become aliened to the 
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cylindrical coordinate system. In the cases, when an odd number of plies is used and this number is 

small, the pitch angle affects the waveguide properties of the shell. Rather surprisingly, just a few 

publications dealing with helical waves and helically orthotropic cylindrical shells have been found 

by the authors. Specifically, helical waves in an isotropic elastic cylindrical shell have been 

considered in [12]. In this reference, the circumferential wave number has been treated as not 

necessarily integral, and, depending upon a chosen direction of propagation of the helical wave, 

dispersion equation has different solutions. References [13-14] are concerned with the wave 

propagation in a helically orthotropic cylindrical shell. However, most of the results of wave 

propagation analysis presented in these referenced are obtained for the axisymmetric wave. Bending 

vibrations are considered only for ‘semi-infinite’ shells. Therefore, we conclude that, to the best of 

our knowledge, propagation of non-axisymmetric waves in elastic cylindrical shells with helical 

orthotropy has not yet been properly analysed and this task constitutes the research goal and the 

novelty of this paper. Furthermore, in various technical applications thin elastic cylindrical shells 

(pipes) are exposed to time-harmonic rotating forces. We are unaware of any publications dealing 

with the analysis of energy flow generated by such forces in a helically orthotropic shell, and 

consider such an analysis as yet another aspect of novelty of our work. 

The paper is structured as follows. Section 2 is concerned with the analytical model of wave 

propagation in a thin helically orthotropic cylindrical shell. In Section 3, this model is validated 

firstly by comparison of the dispersion diagrams with those presented in [11] for ‘conventional’ 

orthotropic shell. Second, the Wave Finite Element model is used for numerical analysis of wave 

propagation in a structure with helical geometry [15] and an agreement between numerical and 

analytical results is demonstrated. Section 3 also presents parametric studies of free waves in 

helically orthotropic cylindrical shells. In Section 4, a lattice beam model featuring the helical 

pattern is analysed to confirm the results obtained in the previous Section. The Green’s matrix for a 

cylindrical shell with helical orthotropy is derived and used for analysis of the energy flow generated 

by a rotating force in Section 5. Novel findings of the paper are summarized in Section 6.   

 

2. THE ANALYTICAL MODEL OF PROPAGATION OF SPINNING WAVES IN A THIN 

HELICALLY ORTHOTROPIC ELASTIC CYLINDRICAL SHELL  

The governing equations of time-harmonic dynamics of a thin elastic cylindrical shell in the 

cylindrical coordinates  ,,rx , with time-dependence taken as  tiexp  and this multiplier being 

omitted, are written following Gol’denweizer-Novozhilov theory [16,17]: 
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The components of deformation in the cylindrical coordinates are  
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The principal directions of orthotropy of shell’s material are turned by the angle   to the in-plane 

coordinates  ,x  and constitute another orthogonal system  ,y , so that x  coincides with y  and   

coincides with   when 0 . It is convenient to write the Hooke’s law in the system  ,y , see 

Eqs. 14.13, p.55 in [18] (note the inverted indices in notations for Poisson ratio): 
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The relations between components of deformation in these systems of coordinates are (see Eqs. 2.72-

2.73, p.74 in [19]): 
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  2 2cos sin cos sin 2 cos siny x x                 (4) 
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  

22 sincos2sincossincos  xxy   

Respectively, the forces and moments in the  ,y  system are related to their counterparts in the

 ,x  coordinates as follows: 

 
  sincos2sincos 22

xxy SNNN 
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  2 2cos sin cos sin 2 cos siny x xS N N S             (5) 

 
  sincos2sincos 22

xxy HMMM 
  

 
  sincos2cossin 22

xx HMMM 
  

 
  

22 sincos2sincossincos  xxy HMMH
  

Eqs. (2, 4-5) are substituted to the constitutive Eq. (3) and solved for  xx SNN ,,  and  xx HMM ,, . 

By these means, the forces and moments in cylindrical coordinates  ,x are expressed via 

displacements and their derivatives in the same system, while the Hooke’s law has been formulated 

in helical coordinates  ,y , see Eqs. 16.2, p.62 in [18] or Eqs. 2.84-2.85, p.77 in [19]. Eventually, 

the forces and moments are substituted to Eq. (1) to yield the governing equations of wave motion in 

an infinite cylindrical shell with helical orthotropy in coordinates  ,x . These equations are very 

cumbersome, and, therefore, not presented here. The derivation has been done in the analytical form 

by means of the symbolic manipulator Mathematica. It has been checked by the same means that 

setting 0  gives conventional equations for an orthotropic cylindrical shell with the principal 

directions coinciding with the coordinate axes. Setting elastic moduli to their values for an isotropic 

material gives equations for an isotropic shell for any value of  . 

This system of differential equations allows solution in the form  

     imikxUxu  exp,   

     imikxVxv  exp,  (6) 

     imikxWxw  exp,   
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Substitution of Eqs. (6) in the governing equations and equating to zero the determinant of the 

system of linear algebraic equations with respect to the amplitudes  WVU ,,  yields the dispersion 

equation in the polynomial form. The polynomial is of the sixth order in the frequency parameter and 

of the eighth order in wavenumber. As soon as 0  it contains both the even and the odd powers 

of a wavenumber, that suggests the difference between the characteristics of waves travelling along 

the shell in opposite directions.  

In Eq. (6), the integral circumferential wavenumber m  may be both positive and negative. With the 

time-dependence in the form  tiexp , positive wavenumbers k  found from the dispersion 

equation for a positive m describe waves travelling in the positive direction of the shell’s axis and 

rotating clockwise. If a negative circumferential wavenumber is plugged in the dispersion equation, 

then positive wavenumbers describe waves travelling in the positive direction of the shell’s axis and 

rotating anti-clockwise. It should also be noted that the conventional solution, which describes waves 

travelling without rotation along the axis of an orthotropic shell, i.e., 

       mikxUxu cosexp,    

       mikxVxv sinexp,   (7) 

       mikxWxw cosexp,    

does not allow separation of trigonometric functions in the governing equations. This separation is 

recovered, when either the elastic parameters describe the isotropic shell, or 0 . Therefore, we 

conclude that standing in the circumferential direction waves cannot propagate in an orthotropic 

cylindrical shell with 0 .  On the other hand, solution in the form (6) for an isotropic cylindrical 

shell allows separation of exponents in circumferential coordinate in the governing equations at any 

 . The resulting dispersion equation remains the same as when the conventional form of solution (7) 

is used. It means that the properties of spinning and standing in the circumferential coordinate waves 

are the same for an isotropic cylindrical shell. It is well-known and reported in classical texts on the 

dynamics of these shells. 

 

3. DISPERSION DIAGRAMS: VALIDATION AND DISCUSSION 

In this section, the model introduced in previous sections is verified, and waveguide characteristics 

of cylindrical shells with helically orthotropic material properties are discussed. In the following, 
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dispersion diagrams are plotted in the non-dimensional form with Rkk dim and 

 

1

21121

E
R





 . 

3.1 Verification of the analytical model of an orthotropic cylindrical shell 

We begin with a validation of the model of an orthotropic shell for the case, when principal 

directions of orthotropy coincide with the cylindrical coordinates, i.e., when 0 . The parameters 

of a shell are taken as in [11], Eq.8, p.25: GPa2071  EEx , GPa52  EE , GPa6.212 GGx

, 25.012  x , 1.0
R

h
, 2m .  

The branches corresponding to propagating waves (purely real wavenumbers) and to the evanescent 

waves (purely imaginary wavenumbers) are marked dark blue and red (in this order). The real parts 

of complex wavenumbers of attenuated waves are marked light blue, and their imaginary parts are 

marked magenta. In [11], Fig. 1, page 26, only purely real wavenumbers are presented. Fig. 1 in this 

paper provides a more detailed dispersion diagram, in which purely imaginary and complex-valued 

wavenumbers are also shown. There is a perfect agreement between characteristics of propagating 

waves in these two Figures. In particular, the cut-on frequencies are exactly the same: 

012026.01,  oncut , 22415.02,  oncut , 34789.03,  oncut . In the case 0 , the dispersion 

equation contains only even powers of wavenumber and features the symmetry of the dispersion 

diagram with respect to the frequency axis. Therefore, the common practice to show only its upper 

part, i.e.,   0Re k ,   0Im k  is followed in Fig. 1.  

 

Fig. 1. Verification in comparison with Fig.1 from [11], Fig.1, p.26. 
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As soon as 0 , the symmetry is broken. This is illustrated in Fig. 2 for a shell with the same 

parameters as in the previous case, but with 
6


  . The colours are used in the same way as in Fig. 

1. It is more convenient to present the dispersion diagram in 3D as is done in Fig. 2(b). 

 

Fig. 2. (a) dispersion diagram for the shell with the same parameters as in [11] and 
6


  ; (b) 3D 

presentation of the dispersion diagram. 

This diagram features the classical veering effect in the frequency range 145.0135.0   and the 

classical locking effect in the frequency range 36.034.0   (see [20,21]), but, more importantly, 

the unevenness of frequency-dependence of wavenumbers, which describe waves moving with anti-

clockwise rotation in the positive and negative directions of the axial coordinate. It manifests itself as 

the non-symmetry of the location of dispersion curves with respect to the plane   0Re k . On the 

other hand, it is straightforward to check that there is the symmetry with respect to this plane 

between the dispersion curves for ( 2m , 
6


  ) and the dispersion curves for ( 2m , 

6


  ). 

b) a) 
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Likewise, the symmetry is preserved for the dispersion curves plotted for ( 2m ,
6


  ) and (

2m ,
6


  ). This is readily explained by the simple observation that the waves travelling in the 

positive direction of the x-axis and rotating anticlockwise are identical to the waves travelling in the 

negative direction of the x-axis and rotating clockwise (if this rotation is viewed from the same 

point) or vice-versa.  

3.2 Comparison of results obtained by means of the analytical model and the wave finite element 

method 

The results, presented in the previous sub-section, have conclusively validated the analytical model 

of an orthotropic cylindrical shell in the case when the principal directions of orthotropy coincide 

with the axes of coordinates. Since no references, which present dispersion diagrams for an 

orthotropic shell with 0 , have been found we choose to validate this model for a helically 

orthotropic shell by calculations of wavenumbers by means of the Wave Finite Element method as 

presented in [15]. 

A pipe with thickness 0.01h  m and mean radius 0.2R  m (that gives 0.05h R  ) is considered. 

Material properties are: GPa89.281  EEx , GPa63.92  EE , GPa128.412 GGx , 

06.012  x  (this implies that 02.021 x ), 
31389kg m  . The angle is 

6


  . To apply 

the WFE approach the FE model of a small periodic segment of the pipe of length 0.002x xL L  m 

is discretised using 5 solid elements; this model allows to obtain accurate results up to high 

frequency  [15].  

We note that the analytical model in Section 2 is based on the classical thin shell theory, whereas the 

finite element model is constructed by means of 3D solid elements in the framework of the 

commercially available software ANSYS. Therefore, the agreement between results obtained by use 

of these so profoundly different models should be regarded as the strong indication of the correctness 

of the both. However, some discrepancies are likely to occur due to the difference between 

modelling methods. The results are presented in Table 1 for two circumferential wavenumbers and 

two excitation frequencies. As seen from this Table, the differences are small and should be 

attributed to the difference in formulations of constitutive relations in the finite element and 

analytical models. The detailed convergence studies and comparison of validity ranges of the models 

do not constitute the goal of this paper. We just note that the closeness of the wavenumbers to each 
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other suggests that both models are applicable to the analysis of wave propagation in helically 

orthotropic cylindrical shells. 

As already mentioned, the remarkable feature of these results is the unevenness of purely real 

wavenumbers (those corresponding to travelling waves) presented in the first two columns of the 

Table. In what follows in this Section, we briefly explore the influence of geometry and material 

parameters on the location of dispersion curves by means of the analytical model. It is a 

straightforward matter to show that the dispersion polynomial at the ‘breathing mode’ 0m   does 

not contain odd powers of the wavenumber for any   regardless the helical orthotropy. The 

difference of wave propagation in a helically orthotropic cylindrical shell from the same shell with 

0  is the coupling purely torsional and longitudinal-flexural axisymmetric deformation. In that 

follows, we do not elaborate on this issue and do not consider this mode any further. On the other 

hand, the performance of a helically orthotropic shell at any other circumferential wavenumber is 

qualitatively the same. Therefore, we restrict our subsequent analysis to the case 1m  .  

3.3 The influence of the geometry parameter    

In Fig. 3(a), the non-dimensional parameters are chosen as 8
1

2 
E

E
, 3.012  35.0

1

12 
E

G
, 05.0

R

h
. 

a) b) 
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Black curves are plotted for 0  blue ones for 
2


   and red ones for 

4


  .  

 

Fig. 3. (a) dispersion diagram for 0 (black), 
4


  (red), 

2


  (blue); (b) the second cut-on 

frequency and associated purely real wavenumber, at which the group velocity is zero versus the 

orthotropy angle. 

 

To begin with, it should be noted that the dispersion diagram is shown in the range of complex-

valued wavenumbers, in which not all eight branches can be seen. In particular, when 
2


  , the 

two curves chopped at   1Im k may be traced to the plane 0  in a broader window 

    kk Im,Re . Only four branches are located within this range of     kk Im,Re  at 0  and 
4


 

. Naturally, at 0  and 
2


   the dispersion diagrams are perfectly symmetric with respect to 

  0Re k  plane, and the second propagating wave cuts on in the standard ‘divergence-type’ manner 

at 0k , 12
,2

1

0.5916cut on

G
n

E
   . This value of cut-on frequency is obtained analytically, and it 

is the same for both 0  and  
2


  . For 

4


  , the scenario of this cut-on is different, and it is 

of ‘flutter-type’, which is well-known in the theory of elastic waves in layers and thin shells. As seen 

from Fig. 3, the transformation of two attenuated waves to two propagating ones occurs at 

4152.0 , 2264.0k  and the lower branch in the frequency range 4693.04152.0   

describes the anomalous (or negative energy) wave, which has the positive phase velocity 0phasec  

and negative group velocity 0groupc . Remarkably, in the analogous symmetric waveguides (say, 

the second branch of symmetric waves in the Rayleigh-Lamb problem, see [22], Figure 5.072, p. 

151) such waves exist in pairs, whereas here, due to the symmetry break, this wave does not have a 

counterpart of similar properties. In Fig. 3, the other branch emerging from 4152.0 , 2264.0k  

has both 0phasec , 0groupc . This result is interesting on its own, but it also has some implications 

regarding solving the forcing problems in general and constructing the Green’s matrix in particular. 

An elaboration on this important issue is presented in Section 5. The evolution of the cut-on 
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frequency for 
2

0


   is illustrated in Fig. 3(b). Effectively, this figure presents a dependence of 

the position of a point  00 , k in the   kRe, -plane, at which 0groupc , upon the angle  . As 

seen (also from Fig. 3), 2,0 oncut , 00 k  at both extreme values  0  and  
2


  . The 

dependence of  00 , k  upon the angle   is not monotonic and, for the given parameters of 

orthotropy, the angle 
4


   does not appear to be the one, at which the dispersion diagram is 

maximally distorted. Fig. 3(b) shows that the second wave at 0755.1 cuts-on when 00 k . 

However, this does not mean that the whole dispersion diagram recovers symmetry, see Fig. 4. 

 

Fig. 4. Dispersion diagram for 0755.1 . 

In this figure, all branches of the dispersion diagram are plotted. Despite conventional ‘divergence’ 

type generation of the second propagating waves, the diagram is lacking symmetry with respect to 

  0Re k  plane. In the considered frequency range, there are two waves propagating in the negative 

direction of the axial coordinate that do not experience any transformations. The situation is different 

with waves travelling in the positive direction: at around 78.0  two propagating waves cut on. 

One of these waves interacts with the first propagating wave in the ‘veering’ manner (see [20]) and, 

due to ‘repelling’, interacts with the second branch in the ‘locking’ manner. Therefore, in the 

frequency range  931.0815.0    this waveguide supports four waves with positive phase 

velocities. Two of these waves have negative group velocities. This result has a potential for tailoring 
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the waveguide properties of helically orthotropic cylindrical shells and, as already mentioned, is 

considered in Section 5, where the problem of excitation of elastic waves in a shell by a rotating 

force is solved. 

3.4 The influence of the parameters of orthotropy 

Obviously, the parameters of orthotropy strongly affect the location of dispersion curves, and 

variation of the angle   adds one more dimension to the space of parameters. Therefore, the analysis 

reported in this subsection is purely illustrative and highlights the influence of the stiffness ratios 

1

2

E

E
 and 

1

12

E

G
 with other ones being fixed to the values used in subsection 3.2: 3.012  , 05.0

R

h
. 

In addition, 
4


  . It is important to observe the limitations on the values of the parameter 

1

2

E

E
, see 

Eq. 7, p. 25, [10]. For 3.012  , the limitation is  11
1

2 
E

E
. In Fig. 5(a), the influence of this 

parameter is illustrated for 35.0
1

12 
E

G
. As expected, the reverse change in the ratio 

1

2

E

E
 tends the 

diagram in the opposite directions. The quantitative differences between cases 8
1

2 
E

E
 and 

8

1

1

2 
E

E
 

are explained by, firstly, the scaling of the frequency parameter with  
1E   in both cases and, 

secondly, by fixation 3.012  . 

 

a) 
b) 
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Fig. 5. (a) dispersion diagrams for 1
1

2 
E

E
 (black), 8

1

2 
E

E
 (red), 

8

1

1

2 
E

E
 (blue); (b) the second cut-

on frequency and associated purely real wavenumber versus 
1

2

E

E
. 

Fully reversed choice of parameters gives the dispersion diagram ‘mirrored’ with respect to the plane 

  0Re k . The dispersion diagram is recovered completely if, in addition to the rescaling of the 

frequency parameter and fixing 
21 , the circumferential wavenumber is set to be 1m . In Fig. 

5(b), the dependence of the position of a point  00 , k  in the   kRe, -plane, at which 0groupc , 

upon the ratio 
1

2

E

E
 is illustrated. 

Finally, we illustrate the influence of the shear stiffness parameter 
1

12

E

G
 in Fig. 6 with other ones 

being fixed to the values used in subsection  4.3: 3.012  8
1

2 
E

E
 05.0

R

h
, 

4


  . This parameter 

also strongly influences the location of dispersion curves and triggers veering and locking interaction 

phenomena.  
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Fig. 6. Dispersion diagram for 35.0
1

12 
E

G
 (red), 5.3

1

12 
E

G
 (green) and 035.0

1

12 
E

G
 (blue) 

To conclude this brief analysis of dispersion diagrams of cylindrical shell with the helical orthotropy, 

we notice that the symmetry of dispersion curves remains preserved with respect to the   0Im k  

plane. In other words, the complex-valued and purely imaginary roots exist only in complex 

conjugate pairs simply because the dispersion polynomial has purely real coefficients in the absence 

of damping. 

 

4. WAVES IN A CYLINDRICAL BEAM LATTICE WITH HELICAL PATTERN 

As shown in the previous Section, wave propagation in a helically orthotropic cylindrical shell is 

associated with spinning and waveguide properties of a shell are different depending upon the 

direction of rotation. Mathematically, it manifests itself as the presence of both even and odd powers 

of wavenumber in dispersion equation. On the other hand, as is well-known, the dispersion equation 

for a helical spring contains only even powers of wavenumber and, therefore, there is the symmetry 

in waveguide properties of an isolated helical fibre. It is realistic to assume that a helically 

orthotropic cylindrical shell is made of a fibre-reinforced composite, which consists of a large 

number of identical helical fibres uniformly embedded into a relatively soft matrix. A simplified 

discrete model of a shell may then be set up as a lattice of beam elements forming helical fibres with 

the matrix between them being modelled as discrete beams of lower stiffness.        

 

a) b) 
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Fig. 7. (a) schematic representation of the cylindrical beam lattice with helical pattern; (b) the 

periodic unit cell. 

In this section complex dispersion curves of an orthotropic lattice structure with helical pattern are 

shown. Lattice structures have been extensively studied due to their application in many engineering 

fields [23], and the investigation and optimization of their properties is still the subject of many 

recent studies. Amongst other studies, as an example, in [24] a homogenization of two-dimensional 

lattice has been presented, directionality behaviour of lattices has been investigated in [25], while in 

[26] stress wave in two-dimensional periodic lattices has been studied. 
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Floquet and Bloch analysis of a unit cell are particularly useful to investigate the behaviour of beam 

lattice structures, and the WFE method [15] can be straightforwardly applied, being the method an 

FE application of wave propagation in periodic structures. Although the interest here is not in 

bandgaps formation of the lattice, e.g. [27], and bandgaps are not showed and discussed in this 

section, these can be also easily investigated using the present approach. Figure 7 shows a schematic 

representation of the helical lattice considered, together with the unit periodic cell assumed for the 

WFE discrestisation [15]. The latter is modelled using beam elements with six degrees of freedom 

per node: displacements and rotations in the x, y and z directions. Orthotropy is assumed such that 

Young’s modulus in the y direction is three time those in the helical direction, that is: '/ 3y xE E . 

The radius of the cylinder is 0.2m and 250 periodic cells are considered around the circumference; 

the beam cross section is square 0.01x0.01m, and the helix angle is   / 4 .  

 

Fig. 8. comparison between the real-valued dispersion curves for the cylindrical beam lattice, first 

circumferential mode m=1: +++ orthotropic cylindrical lattice (rectangular cell); □□□ orthotropic 

helical cylindrical lattice (skew cell). 

The estimation of the differences between the orthotropic cylindrical lattice, viz. rectangular periodic 

cell, and the orthotropic cylindrical helical lattice, viz. skew periodic cell, is shown in Fig. 8, where 

the real valued dispersion curves for the first circumferential mode are compared. Dispersion curves 
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are plotted using the non-dimensional frequency and wavenumber according to Section 3. For the 

orthotropic cylindrical lattice, it can be seen that the curves show symmetry with respect to Re[k]=0 

axis: wavenumbers occurs in pairs k  and waves propagating in positive and negative axial 

direction have the same characteristics in terms of wavenumbers and wavemodes. It can also be 

noticed that quasi-extensional wave modes (the second branch in the plot) propagate below Ω = 1. 

As the frequency increases the structure starts to be less stiff involving radial direction, the 

extensional wave mode changes in the behaviour due to transverse motion of the cross section, and a 

higher order mode asymmetric mode start propagating close to Ω = 1 as expected.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Complex dispersion curves for the helical hortotropic cylindrical beam lattice, first 

circumferential mode m=1:  propagating modes; evanescent modes; : complex 

modes (note that complex modes occur as a pair of complex conjugate modes, and only one of the 

pair is shown here). The inlet figures show the wave modes. 

The figure shows clearly that the presence of the helical orthotropy highly affects the waves 

propagating in the lattice, which leads to changes in the cut-off frequencies and in the wave 

propagation properties as described in the previous sections: the symmetry in the location of 

dispersion curves no longer holds for and waves propagate differently in positive and negative 
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directions provided that the helical rotation is the same. Complex dispersion curves and some of the 

wavemodes for the orthotropic helical lattice are shown in Fig. 9. The latter shows the deformation 

of the lattice under the passage of the corresponding wave.   

5. FORMULATION OF GREEN’S MATRIX AND ENERGY FLOW ANALYSIS 

The analytical model formulated in Section 2 may readily be used for analysis of forced response of 

a cylindrical shell with helical orthotropy. The convenient tool to handle arbitrary excitation 

conditions is the Green’s matrix. Since the studies of free spinning waves have demonstrated their 

unusual properties of non-symmetry, formulation of Green’s matrix is particularly interesting for 

rotating forces, which are typical for various technical applications, such as water-supplying pipes 

with centrifugal pumps, wind turbines and other rotating machinery.   

5.1 The loading cases 

We consider time-harmonic,  tiexp , external forces of unit amplitude concentrated in the axial 

direction (i.e., applied at the cross-section 0xx  ) and rotating in the circumferential direction: 

                               
       imxxxxq nF

m exp, 00  , 4,3,2,1n    (8) 

Forcing at each circumferential wavenumber may be considered individually, and four loading cases 

4,3,2,1n  in Eq. (8) correspond to the action of an axial force, circumferential force, radial force 

and axial bending moment, respectively. Explicit formulas for these forces in the case of isotropic 

cylindrical are well-known and may be found, for instance, in [28], p. 821, Eqs. (6). However, in the 

case of helical orthotropy, the closed form analytical expressions become cumbersome so that we do 

not reproduce them here.  

The derivation of Green’s matrix is based on the modal decomposition on free waves. For an 

orthotropic cylindrical shell with the principal directions of orthotropy coinciding with cylindrical 

coordinates (i.e., for a symmetric waveguide), it is sufficient to formulate four loading conditions. 

These conditions, see [28], Section 4, ensure symmetry of the wave propagation pattern to the left 

and to the right of the loaded cross-section 0xx  . Respectively, four wavenumbers jk  ( 4,3,2,1j ), 

each of which satisfies radiation/decay conditions, are used and the solution ansatz for the radial 

displacement in the loading case 
  ,0xxq nF

m   has the form 
      0

4

1

0 exp xxikAxxw j

j

n

mj

nF

m  


. 

All other state variables (generalised forces and displacements) are expressed in the closed analytical 
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form via amplitudes 
 n

mjA  and wavenumbers jk  using the modal coefficients, for instance,  

      
0

4

1

101 exp xxikAMxxQ j

j

n

mjjm

nF

m  


, see details in [28].   

As soon as the symmetry is broken (the helical orthotropy is considered), all eight wavenumbers 

should be involved in the formulation of Green’s matrix and eight conditions at the loaded cross-

section 0xx   should be formulated. Specifically, each component of the displacement vector and 

three forces are continuous, while the remaining force experiences a unit jump. For the loading case 

3 (rotating radial force) these conditions are:  

     00 33 F

m

F

m ww   ,   
     00 33 F

m

F

m uu   ,   
     00 33 F

m

F

m vv   , 
     00 33 F

m

F

m     

     00 3

1

3

1

F

m

F

m QQ   ,   
     00 3

2

3

2

F

m

F

m QQ   ,   
      100 3

3

3

3  

F

m

F

m QQ ,   
     00 3

4

3

4

F

m

F

m QQ         (9) 

Modal decomposition of the forced response in the region 0xx   is done using free waves with 

wavenumbers which have   0Im 

jk , 4,3,2,1j and, if   0Im 

jk , 0


jdk

d
: 

 
       0

4

1

0 exp xxikAxxw j

j

n

mj

nF

m  



  . 

 In the region 0xx  , wavenumbers with   0Im 

jk and, if   0Im 

jk , with 0


jdk

d
 are used: 

       0

4

1

0 exp xxikAxxw j

j

n

mj

nF

m  



  . 

 As soon as 0  or 
2


  , wavenumbers satisfy the condition 

  jj kk . Then the symmetry is 

recovered and the Green’s matrix for rotating forces acquires the form known for the isotropic 

cylindrical shell.  

5.2 The energy flow 

The scaled energy flow through a cross-section of the shell is formulated as (see [28-30]): 

                *

12

*

11Re
2

1
xvixQxuixQN jF

m

jF

m

jF

m

jF

m

j

m  

              *

14

*

13 xixQxwixQ jF

m

jF

m

jF

m

jF

m    ,   0xx      (10a) 
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                *

12

*

11Re
2

1
xvixQxuixQN jF

m

jF

m

jF

m

jF

m

j

m  

              *

4

*

3 xixQxwixQ jF

m

jF

m

jF

m

jF

m    ,   0xx      (10b) 

In an orthotropic case, when 0  or 
2


  , any force defined as Eq. (8) generates, similarly to an 

isotropic shell, the same energy flow in the regions 0xx   and 0xx  ,
   j

m

j

m NN   . As soon as 0

, the energy input is not split into equal shares between these regions. This effect, introduced by the 

helical orthotropy, may be utilized to control the transmission of vibro-acoustic energy generated by 

rotating forces in various piping systems.  

 

 

Fig. 10. The energy flow in a helically orthotropic cylindrical shell 
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Fig. 11. The purely real wavenumbers at  4.0 as functions of the orthotropy angle  . 

We illustrate this effect for an orthotropic shell with parameters used in subsection 3.3: 3.012  , 

8

1

1

2 
E

E
, 05.0

R

h
, 35.0

1

12 
E

G
. We consider rotating radial force ( 3n ) of unit amplitude with 

1m  at the excitation frequency 4.0 . The scaled energy flow as a function of the angle   is 

shown in Fig. 10, where  is measured in degrees and varies from 0  to 045 with the step of 

01 .  To explain peaks in the energy input at the angles 05  and 017 it is necessary to address 

the dependence of purely real wavenumbers upon  at the frequency 4.0 , see Fig. 11. 

When 05 , there is only one pair of propagating waves, which have almost the same absolute 

values of purely real wavenumbers. Therefore, there is little difference in the energy flow in the 

positive and negative directions. This can be seen in Fig. 12(a), where the contributions to energy 

flow are presented versus the axial coordinate for 03 . It can also be noticed that a pair of 

propagating waves emerges (notably, not at the 0k  axis, but rather following condition 0
dk

d
, 

attained when 0  kk ). Their wavenumbers are pronouncedly different (firstly, in magnitudes 

and, when 08 , in sign) and, therefore, the preferred direction of energy flow (the negative 

direction of axial coordinate) emerges. Partition of energy flow for 012  is illustrated in Fig. 

12(b).  The waveguide properties of the shell are transformed again at 015 . As seen in Fig. 10, 
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the pair of propagating waves emerges (cuts on) and the lower branch (the ‘anomalous’ one 

characterised by the inequality 0
dk

d

k


) ‘collides’ with the branch coming from 0  and this 

pair transforms back (cuts off) to attenuated waves. After this transformation, the preferred direction 

of the energy flow is reversed, as seen in Fig. 10. The partition of energy flow at 018  is shown in 

Fig. 12(c). As seen in Fig. 10, the structure of dispersion curves remains unchanged up to 045 . 

For consistency, the contributions to energy flow at 045  are presented in Fig. 12(d). In Fig. 12, 

each of the four components of the energy flow (10) is presented separately:  

       *3

1

3

11Re
2

1
xuixQN FFu

  ,          *3

1

3

21Re
2

1
xvixQN FFv

  , 

         *3

1

3

31Re
2

1
xwixQN FFw

  ,          *3

1

3

41Re
2

1
xixQN FFw




  .    

 

 

 

 

Fig. 12. Partition of the energy flow between alternative paths at 4.0 . (a): 03  ,(b): 012 , 

(c): 018  , (d): 045 . 

a) b) 

c) d) 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

24 

Detailed analysis of the energy distribution between alternative transmission paths illustrated in Fig. 

12 (a)-(d) lies beyond the scope of this paper, but two remarks should be made. First, the energy 

input of the radial force is distributed to all transmission paths already at the loaded cross-section, 

whereas in the isotropic shell and in the cases 0  or 
2


   the energy is pumped only to the 

directly excited path at 0xx  , and it is redistributed in the near field. Second, the energy distribution 

between alternative transmission paths is not the same in the regions 0xx   and 0xx  .  

The features of the energy transmission are sensitive to the material parameters of a shell and to the 

excitation conditions. Therefore, optimization of material layout in order to control energy flow 

generated by a given rotating force is plausible and may be much beneficial in various applications, 

for instance, for water-supplying pipes equipped with centrifugal pumps operated at constant speed.  

 

6. CONCLUSIONS 

Elastic wave propagation in helically orthotropic cylindrical shells and in helical lattices is studied 

using an analytical approach and a Wave Finite Element model. Both methods are very efficient in 

terms of computational cost, theoretical understanding of the wave characteristics and utilisation of 

the model for parametric studies. Results obtained by these methods are in a good agreement with 

each other, and contain the aspects of novelty in the following:   

1. the analysis of propagation of free waves demonstrates that the symmetry in the location of 

dispersion curves for an orthotropic cylindrical shell with respect to the   0Re k  plane is 

broken as soon as the angle   between the principal directions of anisotropy and the 

cylindrical coordinates depart from its extreme values 0  and 
2


  . Mathematically, it is 

explained by the simple fact that the polynomial dispersion equation contains both the odd 

and the even powers of the wavenumber. However, the symmetry of dispersion curves for an 

orthotropic cylindrical shell with respect to the   0Im k  plane is preserved at any  , 

because the coefficients in the polynomial dispersion equation are purely real so that it may 

have only complex conjugate roots. As soon as the orthotropy angle acquires the limit values 

of the pitch angle 0  or 
2


   the odd power vanish, and the symmetry with respect to 

the   0Re k  plane is recovered. The odd powers also vanish for an arbitrary   if the elastic 
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parameters describe an isotropic material of the shell. Exactly the same features of the 

location of dispersion curves are detected for a helical lattice;  

2. the non-symmetry of dispersion diagrams with respect to the   0Re k  plane is significant 

for applications, where a cylindrical shell is exposed to the excitation by a rotating force. 

Solutions of forcing problems in these excitation conditions show that the angle of orientation 

of principal directions of orthotropy strongly influences partition of the energy flow in the 

positive and the negative directions of the axial coordinate as well as the energy distribution 

between alternative transmission paths in each direction. Therefore, the helical orthotropy 

may be used as a novel efficient tool to tailor the waveguide properties of cylindrical shells in 

the prescribed direction of wave propagation and, therefore, to control energy flow in piping 

systems at prescribed excitation frequencies.  
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TABLE 1: Wavenumbers in 1/m. Frequency is scaled as 
ring




~ ,  
 2112

2

1

1

 


E

R
ring  

Analytical

1m

1.0~   

-2.0088 1.5403 24.71 

+23.94i 

24.71 

-23.94i 

-24.71 

+23.94i 

-24.71 

-23.94i 

0.324 

+1.5218i 

0.324 

-1.5218i 

WFEM

1m

1.0~   

-2.0596 1.6294 25.69 

+25.34 

25.69 

-25.34i 

-25.69 

+25.34 

-25.69 

-25.34 

0.2129 

+1.6209i 

0.2129 

-1.6209i 

Analytical

1m

6.0~   

-7.6834 5.0445 22.08 

+21.58i 

22.08 

-21.58i 

-19.15 

+21.61i 

-19.15 

-21.61i 

1.3071 

+1.7034i 

1.3071 

-1.7034i 

WFEM

1m

6.0~   

-7.6445 4.8194 23.35 

+22.93i 

23.35 

-22.93i 

-19.47 

+23.06i 

-19.47 

-23.06i 

1.2122 

+2.2077i 

1.2122 

2.2077i 

Analytical

2m

1.0~   

-3.1665 2.5961 25.24 

+24.83i 

25.24 

-24.83i 

-19.46 

+25.18i 

-19.46 

-25.18i 

0.3504 

+2.7078i 

0.3504 

-2.7078i 

WFEM

2m

1.0~   

-3.1300 2.7207 26.53 

+26.32i 

26.53 

-26.32i 

-19.26 

+26.79i 

-19.26 

-26.79i 

0.3029 

+2.8874i 

0.3029 

-2.8874i 

Analytical

2m

6.0~   

-12.2693 8.3454 22.27 

+22.83i 

22.27 

-22.83i 

-16.79 

+23.65i 

-16.79 

-23.65i 

2.3289 

+5.0535i 

2.3289 

-5.0535i 

WFEM

2m

6.0~   

-12.1535 8.0039 24.01 

+24.16i 

24.01 

-24.16i 

-16.65 

+25.13i 

-16.65 

-25.13i 

2.0914 

+5.8775i 

2.0914 

-5.8775i 

 


