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English abstract

This thesis deals theoretically with the interaction between light and noble
metal structures on nanoscale. This interaction sometimes involve the exci-
tation of a particular wave, called a surface plasmon polariton (SPP), which
is a wave bound to and propagating along an interface between a metal and
a dielectric. Such an SPP can be found in many different structures, where
the following structures are considered in this thesis: An array of ultrasharp
or rectangular grooves in gold, a dielectric gap located between two parallel
metal walls, and a metal slab sandwiched between different dielectrics.

First a classical model neglecting quantum effects is applied to study the
transition regarding the optics from one to multiple grooves in gold. It is
found that the optical cross sections scale almost linearly with the number
of grooves, thus not explaining why a single groove can be a good scatterer,
while a groove array can be a good absorber with very low reflectance. In-
stead it is found that when the incident field is a narrow Gaussian beam fo-
cused entirely with an array of 20 grooves, the reflectance becomes the same
as for an infinite array illuminated by a plane wave. Here, the reflectance
from an ultrasharp and rectangular groove array becomes low in a broad-
band and narrowband wavelength interval, respectively.

Quantum effects are included afterwards, where the electron density is
calculated using density-functional theory in the jellium model. Studying
SPPs propagating in a dielectric gap between two parallel gold walls, the
plasmon mode index converges to the refractive index of bulk gold in the
limit of vanishing gap width. Thereby it restores the correct physical be-
haviour, and removes the unphysical divergence obtained using a classical
model. Furthermore, the calculated reflectance from an ultrasharp groove
array becomes in much better agreement with previous measurements com-
pared to a classical model.

Next, a metal slab sandwiched between different dielectrics is studied
with quantum effects taken into account. Here it is found that the plasmon
mode index does not diverge in the limit of vanishing slab width, instead
the plasmon mode ceases to exist for slabs below a cut-off thickness in the
subatom range. For larger slabs, quantum effects imply that the imaginary
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part of the mode index is significantly enhanced, and surprisingly, for wide
slabs approaching bulk, the increase is 20 %. This is explained in terms of
strong plasmonic absorption mostly taking place at narrow peaks a few Å
outside the surface. In addition, anisotropy is found to modify the imaginary
part of the mode index for both kinds of plasmon modes, but the relative
increase is much larger for the long-range mode.

Finally, electron-energy loss spectroscopy (EELS) is studied in the non-
retarded limit, where an electron is incident perpendicular or parallel to a
thin metal film. SPPs are excited in the metal when the energy and momen-
tum of the electron and the SPPs are the same, implying that the electron loses
an amount of energy. Surprisingly, the energy loss calculated in a classical
model is in good agreement with that obtained in the random-phase approxi-
mation taking quantum effects into account. This is explained in terms of the
electron motion in the metal, which mainly takes place in the direction par-
allel to the film, where there is no confinement, thus reducing the quantum
effects from the interfaces.



Danish abstract

I denne afhandling undersøges teoretisk hvordan lys interagerer med struk-
turer af ædelmetaller på nanoskala. Denne interaktion kan indbefatte exci-
tationer af en bestemt bølgetype, kaldet overfladeplasmoner, som er bundne
til en overflade mellem et metal og et dielektriaka, og som propagerer langs
overfladen. Sådanne overfladeplasmoner findes i mange forskellige metal-
strukturer, hvor der i afhandlingen fokuseres på følgende strukturer: Pe-
riodiske ultraskarpe eller rektangulære riller i guld, et dielektrika placeret
mellem to parallelle metalvægge og til sidst en metalfilm omgivet af forskel-
lige dielektrika.

Først anvendes en klassisk model uden kvanteeffekter til at studere over-
gangen fra én til mange riller i guld. Det findes at de optiske spredningstværsnit
skalerer stort set lineært med antal riller. Det forklarer altså ikke, hvorfor en
enkelt rille kan sprede lys meget, samtidig med at en uendelig række af den
samme rille absorberer lyset meget, hvilket medfører en meget lav reflektans
fra strukturen. Istedet anvendes et snævert Gaussisk beam som det indsendte
felt, og det findes at når dette beam er fokuseret udelukkende indenfor en
række af 20 riller, så opnås samme reflektans som ved en uendelig række af
riller, når det indsendte felt er en planbølge. Grundet forskellen i geometri på
de ultraskarpe og rektangulære riller, fås en reflektans fra førstnævnte som
er lav for alle synlige bølgelængder, mens reflektansen fra sidstnævnte kun
er lav for en specifik bølgelængde bestemt udfra dybden af rillen.

Dernæst tages kvanteeffekter med, hvor elektrontætheden beregnes udfra
tæthedsfunktionalteori i jellium modellen. Undersøges her plasmoner, som
propagerer i et snævert gab mellem to guldoverflader, findes det at mode
indekset for plasmonen konvergerer mod brydningsindekset i rent guld i
grænsen når gabets tykkelse går mod nul. Dette genopretter den korrekte
fysiske opførsel, og fjerner den ufysiske divergens som findes i klassiske
modeller uden kvanteeffekter. Derudover bliver den beregnede reflektans
fra en række af ultraskarpe riller i guld i meget bedre overensstemmelse med
tidligere målinger, end hvad tidligere fundet i en klassisk model.

Herefter undersøges den modsatte geometri, dvs. en metal film omringet
af forskellige dielektrika. Her findes det at mode indekset ikke divergerer
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når filmtykkelsen går mod nul, istedet ophører plasmonen med at eksistere
når filmen bliver meget tyndere end et enkelt atomlag. For tykkere film,
findes det at imaginærdelen af mode indekset stiger kraftigt som følge af
kvanteeffekter, og at stigningen højst overraskende er hele 20 % for tykke film
som opfører sig som bulk guld. Derudover er responsen generelt anisotrop
da filmen kun er begrænset i én retning. Effekten af anisotropi er tilstede for
begge typer af plasmoner i filmen, men den relative effekt er langt større for
den langtrækkende plasmontype.

Til sidst studeres hvordan en elektron taber energi når den indsendes par-
allelt eller vinkelret på en tynd metal film. Elektronens tab af energy skyldes
at den eksiterer plasmoner på overfladen. Overraskende nok er det bereg-
nede tab i henholdsvis en klassisk model og en fuld kvantemekanisk model i
god overensstemmelse. Dette forklares ved at elektronerne mest bevæger sig
parallelt med filmen hvor den ikke er begrænset, hvilket reducerer kvanteef-
fekterne fra overfladerne.
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Chapter 1

Introduction

Light interacts with matter in many different ways. This results in a wide
variety of optical phenomena, for example the refraction of light in a prism
or a rainbow, and the reflection of light in the sea at sunset. To understand
such optical phenomena, it is necessary to understand the optical properties
of different materials. Metals are a class of materials, and in this thesis it is
studied theoretically how light interacts with noble metals, which are partly
characterized by their high reflectance and thereby shiny surfaces. The di-
electric function of noble metals is to a good approximation described by
the Drude model, where the electrons are modelled as being attracted to the
atomic nucleus by a spring force, which causes them to oscillate out of phase
with a driving electric field, with their motion being damped due to different
scattering mechanisms. When noble metals interact with light, it sometimes
involve the excitation of a particular kind of wave, called a surface plasmon
polariton (SPP). This is an eigenmode of a system consisting of a noble metal
and a dielectric, for example air, and behaves as a wave bound to and propa-
gating along the interface [1].

Letting the x axis be the propagation direction, the wave number compo-
nent kx of the SPP is larger than the free space wave number k0. This implies
that the SPP eigenmode cannot simply be excited by incident light of any
frequency from free space, as the momentum of the incident light will al-
ways be lower than the momentum of the plasmon. Hence in order to excite
plasmons with incident light, the wave number along the interface has to be
increased above its free space value, such that the momentum of the incident
light can equal the momentum of the plasmon [1]. This can be obtained in
the Otto [2] or Kretschmann [3] configurations, where light is incident on a
glass prism, and generates an evanescent field at the backside of the prism.
The evanescent field can then excite plasmons at a nearby interface between
metal and air as illustrated in Fig. 1.1(a,b) from Ref. [1]. The excitation of
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Chapter 1. Introduction
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Fig. 1.1: Different methods to excite plasmons at an interface between metal and air. The
excitation source is evanescent light in the Otto and Kretschmann configutations (a,b), while an
electron incident perpendicular or parallel to the film serves as the excitation source in (c,d). The
panels (a,b) are from Ref. [1].

SPPs can then be seen as minimum in the reflected light for a certain angle θ,
and the results reported in Refs. [2, 3] served as experimental verifications of
SPPs propagating along metal-dielectric interfaces.

Another method for detecting plasmons was proposed by Ritchie in Ref.
[4], whose idea was to shoot fast electrons onto a metal film, thus applying
incident electrons instead of incident light as the excitation source. The mov-
ing electron serves as an evanescent source of radiation, as its point charge
behaviour in real space implies a charge density that is completely delo-
calized in momentum space [5, 6], thereby containing a parallel momentum
necessary to excite a plasmon. The electron can be incident perpendicular or
parallel to the metal film as illustrated in Fig. 1.1(c,d). In general, the elec-
tromagnetic field of an SPP propagating along a metal slab can be bound to
both interfaces of the slab, which will be further elaborated upon below. Fig.
1.1 simply illustrates different methods to excite an SPP, which is shown as
propagating along a single interface. The plasmons can be detected from the
loss in kinetic energy of the electrons, a method which later became known
as electron-energy loss spectroscopy (EELS) [5]. Peaks are found at certain
frequencies in an EELS spectrum, and optical properties of a surface can
thus be determined from the location of the peaks. The method was applied
to detect plasmons in aluminium as reported in Ref. [7], while Refs. [8–10]
reported the same detection in sodium, potassium, and silver. In gold, dif-
ferent damping mechanisms suppress certain peaks, which makes silver a
good candidate for studying the optical properties of noble metal surfaces.
Furthermore, the surface orientation plays a role on the optical properties,
as can be revealed in e.g photoemission experiments, showing a difference
between Ag(111) and Ag(100), as a projected gap is found in Ag(111) but not
in Ag(100) [11]. Using other experimental techniques Refs. [12, 13] measured
the photoelectric yield of Ag(111), where the work function has been lowered
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by placing the silver surface in an electrolyte, while Refs. [14, 15] measured
two-photon photoemission (2PP) in Ag(111), in which the surface states (SS)
due to the projected gap can be observed.

A single planar interface between metal and dielectric is the simplest
physical system that supports plasmons [1]. More complex plasmonic struc-
tures are found in e.g dielectric gaps between parallel metal walls [16–19],
a metal slab surrounded by different dielectrics [20–25], a nanometer size
gap between spherical and triangular nanoparticles [26, 27], and in rectan-
gular or tapered grooves [16, 19, 28, 29]. Here the metal slab supports two
different kinds of plasmonic modes, which are classified as short- and long-
range modes, respectively, with opposite symmetry on the electromagnetic
fields [21–25]. Plasmons are characterized by their parallel wave number kx,
or correspondingly their dimensionless mode index, defined as β = kx/k0.
Refs. [16–29] applied a classical model neglecting quantum effects, and found
that β diverges in the limit of vanishing gap or slab width [16, 20–23, 28]. Es-
pecially for the gap structure, this cannot be correct from a physical point
of view, from which it is expected that a structure consisting of an ultrathin
dielectric gap between metals would behave almost as if there was no gap, i.e
a structure consisting simply of pure metal. Furthermore, calculating the re-
flectance from an ultrasharp groove array using classical models [30, 31], it is
necessary to assume a bottom width of the grooves of only 0.3 nm, (roughly
the same as the diameter of a gold atom) in order to obtain a reflectance in
reasonable agreement with the measured reflectance from Ref. [31]. The exact
bottom width cannot be measured precisely, but is highly unlikely to be only
0.3 nm, and when assuming this bottom width, the calculated reflectance, in
addition, contains oscillations that are not present in the measured spectrum.
This illustrates the limitations of the classical models when pushing the size
of the structure down to atomic scale, where it is now possible to fabricate
structures [32].

Furthermore, the reflectance from a groove array (ultrasharp or rectan-
gular) has been computed using two different methods within the classical
model, where the incident light is p-polarized in both cases. The first method
is based on the propagation of gap plasmons within the grooves using the
stack matrix method [30], while the second method is based on a scatter-
ing problem, where the grooves are treated as scatterers, and the problem
is solved using a full Greens function surface integral equation method (GF-
SIEM) [33]. Importantly, the two methods give the same scattering cross
sections from rectangular groove arrays [29] and the same reflection from
an ultrasharp groove array in gold [28, 30]. The rectangular groove array
is as a narrowband absorber, where the depth of the rectangular grooves
determines which wavelengths that are absorbed [29], which is of particu-
lar interest in selective thermal emitters [34, 35], that can be advantageous
in thermophotovoltaics [36, 37]. The ultrasharp groove array, on the other
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Chapter 1. Introduction

hand, serves as a broadband absorber of light, giving a low reflectance in
the entire visible spectrum, and is therefore called black gold [28, 31]. A pos-
sible application for this is as polarizers for ultrashort laser pulses, where
it is utilized that p- and s- polarized light will be efficiently absorbed and
reflected, respectively [38]. However, the scattering cross section of a single
groove (rectangular or ultrasharp) in gold may actually be larger than the
physical dimension of the groove [29, 39], which implies that a single groove
is a good scatterer, while a groove array is a good absorber (narrowband or
broadband). Hence the optical properties of a periodic array does not follow
straightforwardly from that of a single groove, and it was stated in Ref. [39]
that the low reflectance from the groove array could be due to destructive
interference occurring between light scattered from the individual grooves, a
statement that had not yet been tested.

A way to improve the accuracy of the models when shrinking to atomic
scale is to take quantum effects into account. One of the consequences of
quantum mechanics is the tunnelling effect, which states that an electron can
tunnel through a potential barrier with a certain probability [40], a transi-
tion that is forbidden in classical mechanics. The tunnelling effect implies
that the electron density of the free electrons in the conduction bands be-
comes smooth across an interface between metal and dielectric. The calcu-
lation of the position-dependent free electron density builds upon the pio-
neering work performed by Hohenberg, Kohn, and Sham back in the 1960s
and 70s. In 1964, Hohenberg and Kohn proved the remarkable theorem, that
the ground state energy of a system consisting of N electrons is simply a
functional of the electron density n(~r) [41]. Hence the energy only depends
on the 3-dimensional density, rather than the 3N-dimensional wave function,
thus significantly reducing the complexity of the problem. This implied that
the Hohenberg-Kohn theorem laid the foundation of what became known as
density-functional theory (DFT). A year later, Kohn and Sham applied the
variational theorem on the energy functional and obtained the Kohn-Sham
equations [42]. Here the Kohn-Sham orbitals are found as eigenvalues to a
Hamiltonian whose potential consists of a Coulomb, an exchange, and a cor-
relation term, all given as functionals of the electron density, implying that
the equations have to be solved in a self-consistent way in order to obtain the
density of the free electrons. Where the two first potential terms stems from
operators obtained using rigid quantum mechanics, the correlation term de-
scribes what is missing to obtain the exact ground state energy, and of course
it has no simple analytic expression. It is noticed that DFT is an ab initio
method, meaning that it is, in principle, not necessary to have any prior
knowledge of the system or to fit any value to experiments [43]. In addition,
DFT can be further extended to account for time varying potentials, resulting
in time-dependent DFT (TDDFT) [44].

However, the Hohenberg-Kohn theorem and the Kohn-Sham equations
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do not give any prescription of the actual functionals, which are of course
needed in practice when solving the equations. A method to obtain these
functionals is to apply the jellium model, where it is assumed that the positive
charge density of the ions is smeared out across the metal [45,46], while atom-
istic models include the discrete nature of the positive ions [47–51], which of
course makes the models more complex. To obtain expressions for the ex-
change and correlation potentials, further simplifications have to be made.
In the local density approximation (LDA), the system is approximated by a
homogenous electron gas, which implies that the exchange potential can be
calculated analytically as a functional of the density [44, 45]. The correlation
energy is calculated using quantum Monte Carlo simulations [52,53] for some
specific densities in a wide range, and the correlation potential as a func-
tional of n is obtained by fitting an analytic function to these data. The most
widely used correlation potentials within the LDA are the parametrizations
of Perdew-Zunger [54] and Vosko-Wilk-Nusair [55]. A model beyond the
LDA is the generalized gradient approximation (GGA), where density vari-
ations are also taken into account [56]. Within the GGA, the exchange and
correlation functionals are given in Refs. [57, 58]. It is noticed that DFT cal-
culations only give the density of the free electrons in the conduction bands,
while the bound electrons in the lower lying energy bands have to be treated
separately. In addition, the surface orientation is not considered in the jel-
lium model, as information about the positions of the individual atoms is not
taken into account.

DFT is a widely used method in many aspects of both physics, chemistry,
and biology, and is contained in more than 15.000 papers every year [56],
within topics spanning from interface phenomena [59, 60], condensed matter
physics [61–63], and the modelling of enzyme reactions [64, 65] and chem-
ical properties of molecules [66]. In closer relation to the work presented
in this thesis, DFT has also been applied to calculate the optical cross sec-
tions of metal clusters and spheres [67, 68], metal nanowires [69–71], and
the plasmon resonance of metal dimers [72,73] and semiconductor nanocrys-
tals [74]. Shrinking the size of the physical system down to atomic scale,
quantum effects are found to have a significant impact on the local field in-
tensity in metal nanostructures [75] and the local density of states in metal
gaps and slabs [76]. The latter being in agreement with experimental results
from Ref. [77].

However, it takes a lot of time to calculate the electron density by solving
the Kohn-Sham equations self-consistently, even when applying the LDA and
the jellium model. This implies that DFT is a slow and very computationally
demanding method, which limits its practical use for structures consisting
of more than 100 atoms [78], and has motivated the development of faster
methods. One of these methods is a semiclassical quantum corrected model
(QCM), where a parameter is included to account for electron tunnelling [79–
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Chapter 1. Introduction

81]. The quantum corrected dielectric function becomes similar to the Drude
dielectric function, but with the damping term depending on the tunnelling
parameter and neglecting the response from the bound electrons. The results
obtained using QCM can be in good agreement with those obtained using
TDDFT [79].

Other methods to describe the quantum dielectric function include non-
locality, meaning that the displacement field at a position ~r depends on
the electric field at all other positions in space as ~D(ω,~r) =

∫ ←→ε (ω,~r,~r ′) ·
~E(ω,~r ′)d~r ′. In a local model the dielectric function ←→ε (ω,~r,~r ′) reduces to←→ε (ω,~r)δ(~r−~r ′), implying that ~D(ω,~r) = ←→ε (ω,~r) · ~E(ω,~r). The concept of
nonlocality is, however, treated in two different ways. The hydrodynamical
Drude model (HDM) considers the interacting electron gas as governed by
fluid dynamics described by the Navier-Stokes equation [82], where the trans-
port can be both convective and diffusive [83]. The nonlocality in the HDM
enters in the hydrodynamical pressure described by the velocity β =

√
3/5vF,

where vF is the Fermi velocity [83–85]. A differential equation is derived re-
lating the electric field and the current density, where the classical Ohm’s
law is restored if β = 0. By solving the differential equation, it is found that
nonlocality slightly blue-shifts the plasmon resonances in sodium and gold
dimers [79, 80, 85, 86] and gold cylinders [84, 87], and that the effect of non-
locality is small compared to the effect of spill-out for plasmons propagating
in narrow metal gaps and slabs [76]. Furthermore, the dielectric function is
a tensor in the HDM, where β modifies the longitudinal component, while
the transverse component is still given by the classical Drude model [79, 87].
Here, the response from the bound electrons is in Ref. [76] modelled as a
step function changing abruptly at the jellium edge resulting in a dielectric
function sufficiently far inside the metal in agreement with values obtained
from experiments [88], while the bound electron response has been neglected
in Refs. [79, 80, 83, 84].

A more accurate way to treat the dielectric response is by rigid quantum
mechanical response theory, studying how materials respond when exposed
to an external field. A widely used method is the random-phase approx-
imation (RPA), where the exchange and correlation terms in the potential
are neglected, meaning that the potential is solely described by Coulomb
interactions [89]. Within the RPA, the dielectric response from the free elec-
trons is obtained by perturbing them to first order by a plane wave external
potential, giving rise to an induced charge proportional to the external po-
tential. In a homogeneous medium, the dielectric function is isotropic and
simplifies to

←→
I ε(ω,~r −~r ′), and after a convolution one obtains ~D(Q, ω) =

ε(Q, ω)~E(Q, ω) in reciprocal space, which is related to the real space quanti-
ties through Fourier transforms. Here ε(Q, ω) can be computed as an in-
tegral over the Fermi sphere, and a closed form of the integral was first
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obtained by the Danish professor Jens Lindhard in 1954 [90]. This expres-
sion for the dielectric function was applied by other pioneers in the field
of RPA and the many-electron problem [91–93]. Later, the Lindhard func-
tion was generalized by Mermin in Ref. [94] to include damping while con-
serving the number of electrons, and furthermore contain the desired local
limit as limQ→0 εMermin(Q, ω) = ε(ω), where the latter is the local Drude
dielectric function. The original Lindhard (or Mermin) dielectric function is
only valid in homogeneous media, but is extended in the specular reflection
model (SRM) to account for non-homogeneous media by matching bound-
ary conditions at the interfaces [78, 95]. In addition, Ref. [78] reported that
nonlocality slightly blue-shifts the plasmon resonances in gold dimers, a re-
sult that was also obtained using the HDM in Refs. [79]. For 2-dimensional
(2D) structures with the z axis perpendicular to the structure, the dielec-
tric function is given as an inverse Fourier transform as ←→ε (~Q, ω, z, z′) =
∫ ←→ε (ω,~r,~r ′)e−i~Q·(~R−~R ′) d2~R d2~R ′, where ~Q, ~R, and ~R ′ are in the (x, y) plane,
thus parallel to the structure. Calculating ←→ε (~Q, ω, z, z′) within the RPA, it
consists of a local isotropic Drude term and an anisotropic nonlocal term [93],
where a smooth electron density can be incorporated to account for quantum
spill-out [96, 97]. Such an RPA model has previously been used to calcu-
late the dynamical response in thin films [98,99], the plasmonic properties of
graphene [100] and thin metal films [101], and the loss probability for elec-
trons incident on metal films [5,102,103]. Like in Ref. [76], the response from
the bound electrons was in Refs. [5,100–103] treated as a step function giving
the measured dielectric constant [88] sufficiently far inside the metal regions.

1.1 This thesis

The main goal of this thesis is to obtain a theoretical understanding of plas-
mons propagating in noble metal structures at nanoscale. The structures
of interest in this work consist of ultrasharp and rectangular groove arrays,
dielectric gaps located between parallel metal walls, and metal slabs sand-
wiched between different dielectrics, where the four different structures are
illustrated in Fig. 1.2. The papers I and II apply a classical dielectric func-
tion, while quantum effects are taken into account in the papers III, IV, and
V, as it has turned out that classical models have their limitations when the
structures become small enough.

Classical models

The papers I and II study the optics of a multiple (ultrasharp, rectangular,
and tapered) groove array in metal within a classical model. Such structures
can be considered as a reference structure, consisting of a plane interface be-
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...

Incident light Incident light

...
SPP

Short-range SPP

Long-range SPP

(a) Ultrasharp groove array (b) Rectangular groove array (c) Gap structure (d) Slab structure

Fig. 1.2: Schematic of the different structures studied in this thesis.

tween metal and air, in which the groove array is placed as a scatterer. The
structures are invariant in one spatial direction (Fig. 1.2(a,b)) and p-polarized
light has its magnetic field in the same direction [29]. This implyies that the
optical properties of the grooves can be calculated using the Greens function
surface integral equation method, where the surface is two-dimensional (GF-
SIEM). From the wave equation, an integral equation is constructed relating
the magnetic field and its normal derivative at the boundary of the scatterer,
where the integration kernels consists of a scalar Greens function for the lay-
ered reference structure and its normal derivative. The Greens function is
calculated using a plane wave expansion of the free space Greens function,
where the reflected and transmitted parts are obtained using the Fresnel co-
efficients. By discretizing the structure, the integral equation is written on
matrix form, and solving it gives the magnetic field and its normal deriva-
tive at the boundary of the scatterer [33]. These fields are afterwards used to
calculate the scattered field, from which the scattering and extinction cross
sections can be computed [29].

Recently, the GFSIEM has been applied to calculate the optical cross sec-
tions of a single ultrasharp groove in gold [39] and the reflectance from an
infinite array of ultrasharp grooves [30] when the incident field illustrated by
the arrow in Fig. 1.2(a,b) is a plane wave. For the infinite array, a periodic
Greens function from Ref. [33] was applied. As mentioned above, a single
ultrasharp groove is a good broadband scatterer [39], while an ultrasharp
groove array is a good broadband absorber [30, 31], showing that the optical
properties of an array does not follow straightforwardly from the case of a
single groove. It was stated in Ref. [39] that the low reflectance from the pe-
riodic array could be due to destructive interference between light scattered
from the individual grooves. This statement is tested in paper I, studying
the transition regarding the optics of a single ultrasharp groove to a periodic,
but finite, array of grooves. In addition, a Gaussian beam is applied as the
incident field, and it is examined how the reflectance from a groove array
depends on the width of beam and the number of grooves, the latter being
in order to examine how many grooves that are necessary for the array to
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behave as infinite. At last, it is investigated how the ultrasharp groove ar-
ray reflects, transmits and scatters an incident plasmon. The same method is
applied in paper II for a finite array of rectangular and tapered grooves act-
ing as narrowband absorbers [29], and therefore behaving quite differently
compared to the ultrasharp groove array.

Quantum models

While a classical model is applied in paper I and II, quantum effects are taken
into account in the papers III, IV, and V. Here the electron density of the free
electrons across the metal structures in Fig. 1.2(c,d) is calculated using DFT
in the jellium model, and it becomes smooth across the interfaces between
metal and dielectric due to the effect of quantum spill-out. The free elec-
tron density in the jellium model is an essential part of the thesis, and is
applied to construct a quantum dielectric function, whose level of complex-
ity is increased through paper III, IV, and V. As mentioned, rigid quantum
mechanical response theory within the RPA implies that the quantum dielec-
tric function corresponding to the free electrons consists of a local isotropic
Drude term plus an anisotropic nonlocal term [96]. Here the Drude term
depends on the spatially varying electron density, while the nonlocal term
depends on the wave functions and energies of the discrete quantum states.
All quantities which are obtained within the DFT model. Similarly to several
papers [76, 100, 101, 103], the response from the bound electrons is modelled
as a step function at the jellium edge giving the measured dielectric response
sufficiently far inside the metal regions. Since nonlocality only slightly blue-
shifts the plasmon resonances in different nanostructures [78–80, 84, 87], and
is a small modification compared to the effect of spill-out [76], nonlocality
is simply neglected in paper III. The quantum dielectric function of the free
electrons is therefore described entirely as a local isotropic Drude term with
varying electron density. In this paper, the focus is on plasmons propagating
in a nanometer thin gap of air located between two parallel walls of gold,
where the magnetic field of the plasmon is illustrated by the black curve
in Fig. 1.2(c). Here the plasmon mode index unphysically diverges in the
limit of vanishing gap width when using a classical model neglecting spill-
out [16, 17, 20, 28]. It is expected from a physical point of view, that the
plasmon mode index of an ultrathin gap should be almost the same as the
refractive index of bulk gold, as the structure is almost bulk gold in this limit,
and it is examined in paper III whether this correct physical behaviour can
be restored when quantum spill-out is taken into account. Furthermore, it is
investigated whether the calculated plasmon mode index with spill-out in-
cluded can be applied to obtain a reflectance from an ultrasharp groove array
in better agreement with measurements [31] compared to classical models.

Paper IV studies plasmons propagating in a metal slab sandwiched be-
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tween different dielectrics as illustrated in Fig. 1.2(d). Here the magnetic
field of the two kinds of plasmonic modes are illustrated by the black and
blue curves. The quantum dielectric function in paper IV includes the non-
locality in the direction perpendicular to the slab, while neglecting it in the
parallel direction, thus applying←→ε (~0, ω, z, z′) for the dielectric function. Fur-
thermore, based on symmetry arguments, the nonlocal part of the dielectric
function regarding z and z′ is modelled by an averaging procedure resulting
in a local anisotropic step function, which gives the correct net response from
the slab for both kinds of modes. As for the gap structure, the short-range
plasmon mode index in a classical model diverges in the limit of vanishing
slab width [21–23], and like in paper III, it is examined whether this diver-
gence is removed when quantum spill-out is taken into account. The electron
density is only modified due to spill-out in a narrow region close to the
metal slab, and it is tested how this effect modifies the plasmons propagating
in wide slabs approaching bulk. Furthermore, the effect of anisotropy on the
plasmon mode indices is examined.

Paper V studies EELS in atomically thin metal films, where the electron
can be incident parallel or perpendicular to the film as illustrated in Fig.
1.1(c,d). The incident electron excites plasmons, implying that it loses an
amount of energy described by the loss probability, which is computed in
the nonretarded limit, where the response from the electron is instantaneous.
The response of the film is calculated within the full nonlocal RPA, thus not
simplifying the dielectric function as in paper III and IV. The potential across
the films is described by the same DFT potential as in paper III and IV, as well
as by an atomic layer potential (ALP) based on fitting the work function, the
projected gap, the surface states and the Fermi energy to experimental data
[101, 104]. It is studied how the loss probability depends on the number of
metal monolayers, the kinetic energy of the incident electrons, as well as the
surface orientation. The results obtained using DFT and ALP are compared
to those obtained using classical models, and the plasmon mode indices are
compared to those obtained using the simplified RPA response in paper IV.
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Chapter 2

Theory and methods

This chapter presents the theory and methods that have been used to produce
the results in the thesis. Where the theory has only been briefly explained
in some of the papers, this chapter focuses on explaining it in more detail.
The chapter begins with a short description of the applied method regarding
the optics of multiple grooves in metal applied in paper I and II. The DFT
method in the jellium model, which has been applied to calculate the electron
densities in the papers III, IV, and V, is presented afterwards, along with a
review of the physical concepts behind SPPs. The theory regarding EELS
in thin metal films will, however, not be included here, as it is explained in
detail in paper V.

2.1 Optics of multiple grooves in metal

Paper I and II study the optics of multiple grooves in metal within a classical
model, where the grooves are ultrasharp and rectangular/tapered, respec-
tively. This section contains a description of the method that has been applied
in these two papers. First the theory behind the scattering problem is out-
lined based on Ref. [33], after which the theory for dealing with a periodic,
but finite, array will be explained.

2.1.1 The scattering problem

Fig. 2.1(b) illustrates an array of N identical grooves illuminated by a Gaus-
sian beam of waist radius w0 centered in x0. There is a separation d between
the grooves, and the array has total length L, which is related to the beam
waist through the ratio parameter γ as w0 = γL/2, where the figure shows
the case when γ = 1. SPPs are generated within the grooves and propa-
gate along the interface as illustrated. The structure can be considered as
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Fig. 2.1: (a) shows a schematic of the three different kinds of grooves (ultrasharp, rectangular,
and tapered), while (b) illustrates the array of N grooves illuminated by a Gaussian beam of
width w0. A discretization of a groove is illustrated in (c), and the functions applied in the
linearly varying fields are shown in (d).

a reference structure consisting of a plane interface between metal and air,
in which the grooves are placed as scatterers of air in the metal region, and
Fig. 2.1(a) shows a schematic of the ultrasharp, rectangular, and tapered
grooves. The structure and the magnetic field are invariant in the z direction
(~H(~r) = ẑH(~r)), implying that the Greens function surface integral equation
method (GFSIEM) can be applied. Within that method, it can be shown that
the magnetic field and its normal derivative satisfy the following integral
equations [33]

H(~r) =

{

H0(~r)−
∮

C1
{g1(~r,~r ′)ϕ(~r ′)− H(~r ′)n̂′ · ∇′g1(~r,~r ′)} dl′, ~r ∈ Ω1

∮

C2
{g2(~r,~r ′)ϕ(~r ′)− H(~r ′)n̂′ · ∇′g2(~r,~r ′)} dl′, ~r ∈ Ω2.

(2.1)

Here H0(~r) is the incident field, while ϕ(~r ′) = n̂′ · ∇′H(~r ′) is the normal
derivative of the magnetic field, where the normal vector n̂′ points out of the
scatterer. The regions Ω1 and Ω2 are the reference structure and the scatterer,
respectively, and the curves C1 and C2 lie just outside and inside the scatterer
surface, respectively. The Greens function for the scatterer, i.e for~r ∈ Ω2, is
given by

g2(~r,~r ′) =
i

4
H

(1)
0 (k0n1|~r−~r ′|), (2.2)
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where H
(1)
0 is the Hankel function of zero’th order and first kind, while

k0 = ω/c is the free space wave number, and n1 = 1 is the refractive index
of the scatterer (air). The corresponding Greens function for the reference
structure, g1, is not given given as such a simple analytic expression, but is
instead constructed using a plane wave expansion of the Greens function in
a homogeneous medium. For y, y′ < 0, g1 consists of a direct and an indirect
part due to the reflection at the interface between metal and air, and is given
by [33]

g1(~r,~r ′) =
i

2π

∫ ∞

kx=0

cos(kx(x− x′))
(

eiky2|y−y′ | + r21(kx)e
−iky2(y+y′)

)

ky2
dkx,

(2.3)

where r21 is the reflection coefficient for p-polarized light incident from metal
to air, thus given by [1]

r21(kx) =
ε1kky2 − ε2kky1

ε1kky2 + ε2kky1
, where kyj =

√

k2
0ε j − k2

x, with Im(kyj) ≥ 0. (2.4)

The Greens functions in Eq. (2.2) and (2.3) are the same as in Ref. [29],
and applies for a scatterer of aribitrary shape. A corresponding periodic
Greens function is applied in Ref. [30] to calculate the scattering from the
infinite array. The integration kernels in Eq. (2.1) are constructed from the
Greens functions in Eq. (2.2) and (2.3), and the integral equation can thus be
solved. The solution gives H and ϕ at the boundary of the scatterer, which
are afterwards applied to calculate the scattered field and the reflectance from
the groove array. Notice that the Greens functions are singular when~r =~r ′,
which must be taken care of when integrating the Greens functions, as will
be shown below. Furthermore, the scatterer surface needs to be discretized
in order to solve the integral equation. Here, each groove is divided into Ns

elements as illustrated in Fig. 2.1(c), where the position on the scatterer,~s, is
given by the parameter t moving clockwise around the groove, with the start
and end of element i denoted as t(s,i) and t(e,i), respectively. It is assumed
that H and ϕ are linearly varying within each element, which is accounted
for by introducing the following functions, which are also illustrated in Fig.
2.1(d).

f
(v)
i (t) =











1− (t− t(s,i))/∆ti, t(s,i) < t < t(e,i), v = 0
(t− t(s,i))/∆ti, t(s,i) < t < t(e,i), v = 1
0, otherwise.

(2.5)
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Here ∆ti = t(e,i) − t(s,i) is the length of element i, and H and ϕ along one of
the curves Cu, where u = {1, 2}, can be written as

Hu(~s(t)) ≃
Ns

∑
i=1

1

∑
v=0

Hu,i,v f
(v)
i (t) and ϕu(~s(t)) ≃

Ns

∑
i=1

1

∑
v=0

ϕu,i,v f
(v)
i (t). (2.6)

In general, it is possible to let the fields within an element be varying accord-
ing to a higher order polynomial in order to achieve better convergence [33],
but only the linearly varying fields have been considered in this work. From
the discretization, the integral equation in Eq. (2.1) can now be written on
matrix form. Inserting Eq. (2.6) in Eq. (2.1) and taking the limit where ~r
approaches the surface from both sides (Ω1 and Ω2) gives the discretized
integral equations.

Hs
1,i = H0,i −

Ns

∑
j=1

1

∑
v=0

(

A
(1,v)
i,j ϕ1,j,v − B

(1,v)
i,j H1,j,v

)

(2.7)

Hs
2,i =

Ns

∑
j=1

1

∑
v=0

(

A
(2,v)
i,j ϕ2,j,v − B

(2,v)
i,j H2,j,v

)

. (2.8)

Here the superscript s indicates that it is the field at the start of element i,
and the integration kernels are given by [33]

A
(u,v)
i,j = P

∫

t′
gu

(

~s s
i ,~s(t′)

)

f
(v)
j (t′)dt′ (2.9)

B
(u,v)
i,j = P

∫

t′
n̂′ · ∇′gu

(

~s s
i ,~s(t′)

)

f
(v)
j (t′)dt′ +

δijδ0v

2π
(δu1θi − δu2(2π − θi)).

(2.10)

Here P denotes the principal integral value, meaning that the singular point
when~s(t′) =~s s

i is simply excluded from the integration. The Greens function
itself is only logarithmic singular, implying that there is no contribution to
A
(u,v)
i,j from the singularity. However, the singularity from the normal deriva-

tive of the Greens functions is stronger, and the contribution from it is given
explicitly in the last term of B

(u,v)
i,j . Here the δij’s are the Kronecker delta,

while θi is the inner angle between two elements as illustrated in Fig. 2.1(c).
Eq. (2.7) and (2.8) are now written on matrix form as








(

I − B
(1,0)
− B

(1,1)
DH

) (

A
(1,0)

+ A
(1,1)

Dϕ

)

(

I + B
(2,0)

+ B
(2,1)

DH

)

− ε1
ε2

(

A
(2,0)

+ A
(2,1)

Dϕ

)









·
[

~H(0)

~ϕ
(0)
1

]

=

[

~H0
~0

]

,

(2.11)
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where the vectors have been introduced as ~H(v) = [H1v, H2v, · · · , HNsv]
T ,

~H0 = [H01, H02, · · · , H0Ns ]
T , and ~ϕ

(v)
u = [ϕu1v, ϕu2v, · · · , ϕuNsv]

T with Hjv :=
H1,j,v = H2,j,v as the magnetic field is conserved across the interfaces. Fur-

thermore A
(u,v)

and B
(u,v)

are the matrices containing the elements A
(u,v)
i,j and

B
(u,v)
i,j , respectively. As the end of element i is the same as the start of element

i + 1, the D-matrices are given by

DH =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
1 0 0 · · · 0















, Dϕ =















0 1 0 · · · 0
0 0 −1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
−1 0 0 · · · 0















, (2.12)

and relates the fields in neighbouring elements as ~H(1) = DH
~H(0) and ~ϕ

(1)
u =

Dϕ~ϕ
(0)
u . Here the two -1 in Dϕ are found at elements where θi = 0 according

to Fig. 2.1(c), which means that the normal vector changes sign [33].

2.1.2 From one to multiple grooves

While the theory outlined in the previous section focused on a scatterer of
arbitrary shape, the properties of the finite array of grooves illustrated in
Fig. 2.1(b) will be utilized here. To simplify the notation, the large matrix

in Eq. (2.11) is denoted M :=

[

M11 M12

M21 M22

]

, where each block matrix has

dimension (NNs) × (NNs), and Eq. (2.11) is written as M · ~x = ~b, with
~x = [~H(0), ~ϕ(0)

1 ]T and~b = [~H0,~0]T . Furthermore, each block matrix Mab where
{a, b} = {1, 2} can be further divided into submatrices mab(i, j) of dimensions
Ns × Ns, describing all the interactions from one groove to another, where
i, j = 1, 2, · · · , N.

The Greens functions in Eq. (2.2) and (2.3) can be written as gi(x, x′, y, y′) =
gi(|x− x′|, y, y′) where the y-dependence goes as |y− y′| for the direct term
and y + y′ for the indirect term. As the grooves are found along the x di-
rection, this implies that the interaction between two grooves only depend
on their relative position. However, when computing the integration kernels
in Eq. (2.10), it is noticed that the observation point is chosen to be in the
start of element i, thus at ~s s

i , which implies that there is a small difference

between A
(u,v)
i,j and A

(u,v)
j,i , and that the relative position between two grooves

thereby needs to be calculated with a sign. The submatrices can then be sim-
plified such that mab(i, j) = mab(i − j), implying that each block matrix can
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be written as

Mab =











mab(0) mab(1) · · · mab(N − 1)
mab(−1) mab(0) · · · mab(N − 2)

...
...

...
...

mab(−N + 1) mab(−N + 2) · · · mab(0)











, {a, b} = {1, 2}.

(2.13)

Such a block matrix contains N2 submatrices, but importantly, it is seen that
only 2N − 1 of them are different, which significantly reduces the problem

of constructing M. Clearly a solution to M · ~x = ~b is simply ~x = M
−1
·~b,

which however needs the entire matrix M and not only the 4(2N− 1) different
submatrices mab(i− j). To handle large systems, the limiting parameter will
often be the RAM rather than computational time [105], and a method to
solve the integral equation without using a lot af RAM is to use an iterative
method based on matrix-vector products rather than matrix inversion. These
matrix-vector products are then computed solely from the 4(2N− 1) different
submatrices by simple row-column multiplication, implying that only the
submatrices need to be stored, and not the entire matrix M.

An iterative method tends to minimize the residual~r = ~b−M · ~x where
~x0 is given as an initial guess for the solution. A search direction is chosen
based on the residual, and is used to update the initial guess in every itera-
tion. Hence the method generates a sequence of vectors, the corresponding
residuals, and search directions until convergence is obtained when the norm
of the residual is below some threshold. Several different iterative methods
exist, where some of them depends on whether the matrix M is symmet-
ric, definite, or Hermitian. [106]. The following iterative methods have been
tested in this work: The conjugate gradient (CG) algorithm, the Bi-conjugate
gradient (BiCG), the Bi-conjugate gradient stabilized (BiCGSTAB), the gen-
eralized minimal residual (GMRES), the conjugate gradient squared method
(CGS), and the quasi-minimal residual method (QMR). For a further descrip-
tion of the methods, see Ref. [106]. To solve the integral equation constructed
for multiple grooves, it was found that the GMRES is the fastest. This is
because more memory is built into that method, meaning that the search di-
rection in one iteration is computed based on quantities for multiple previous
iterations. When testing all the methods, the initial guess was chosen to be
~x0 =~b.

The ultrasharp groove illustrated in Fig. 2.1(a) is discretized into roughly
400 elements, where many elements are found near the bottom and corners.
Hence for an array consisting of 40 grooves, the matrix M has dimension
32.000×32.000, thus containing a billion (complex) numbers. However, for
this structure it was still possible to solve the integral equation using matrix
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2.2. Density-functional theory in the jellium model

inversion on a good stationary computer, and this was in fact much faster
than solving it using GMRES.

Solving the integral equation gives the magnetic field and its normal
derivative at the boundary of the scatterer. The scattered field and the cross
sections, when the incident field is a plane wave (γ = ∞), are found us-
ing the method presented in appendix B in Ref. [29], while the method for
computing the reflection from the groove array when the incident field is a
Gaussian beam is found in the appendix in paper I. However, much of the
physics regarding the optical properties of groove arrays can be explained in
terms of gap plasmons propagating within the grooves, and calculating the
reflectance within that formalism gives almost the same results as obtained
using GFSIEM [28–30]. This will be utilized in paper III when calculating
the reflectance from an ultrasharp groove array taking quantum effects into
account.

2.2 Density-functional theory in the jellium model

Hohenberg and Kohn proved in 1964 the remarkable theorem that the ground
state energy E of an N-electron system is simply a functional of the electron
density, thus E = E[n(~r)] [41]. Thereby the problem is reduced from being
3N-dimensional to become only 3-dimensional, as the density n only depends
on the spatial coordinate~r. However, the Hohenberg-Kohn theorem does not
give a prescription for calculating the density or the ground state energy, but
these quantities can be determined when applying the variational theorem
on the energy functional, resulting in the Kohn-Sham equations [42]

{

− h̄2

2me
∇2 + VC(~r) + Vxc(~r)

}

Φi(~r) = EiΦi(~r). (2.14)

Here VC and Vxc are the Coulomb and exchange-correlation potentials, re-
spectively, and me is the electron mass. Eq. (2.14) is an eigenvalue problem,
where the Φi’s are the Kohn-Sham orbitals and Ei’s the energies belonging to
the Hamiltonian in the curly brackets. Having obtained the Φi’s, the density
is calculated as n(~r) = 2 ∑i fi|Φi(~r)|2 [42], where the factor of 2 is due to spin
summation and fi is the Fermi function at zero temperature. The principle in
DFT is to solve the Kohn-Sham equations in Eq. (2.14) and afterwards calcu-
late the electron density. In the next section, explicit expressions are obtained
for the potential terms given as functionals of the density n.

The total potential is denoted V(~r) = +VC(~r) + Vxc(~r), and must account
for electron-electron interactions, which are important in metals due to the
high electron density. However, the electrons in noble metals are highly de-
localized with typical mean free paths of more than 50 times the lattice con-
stant [1, 107], which implies that they do not experience the attractions from
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Chapter 2. Theory and methods

the individual nuclei, but rather from a structure where the nuclear potential
is smoothed out. Thus the ionic charge distribution is assumed to be uniform
within the metal, which is accounted for in the jellium model [45, 46] as il-
lustrated in Fig. 2.2. The positive charge density n+ equals Zn0, where Z is
the number of valence electrons per atom, and n0 is the atomic density. The
latter can be written as n0 = 3/(4πr3

s ), where the Wigner-Seitz radius rs is
the radius of a sphere containing one atom [46]. Gold and silver both have
one valence electron per atom, while rs equals 3.01 Bohr for gold and 3.02
Bohr for silver [107].

(a) (b)

Fig. 2.2: (a) illustrates an atomistic model, where the positive charge is located at the discrete
nuclei of the metal, while (b) illustrates the jellium model assuming that the charge is smoothed
out across the metal.

The present work studies plasmons propagating in nanometer thin gaps
and slabs as illustrated in Fig. 1.2(c,d). Choosing the z axis to be perpen-
dicular to the structures, the total potential is only a function of z, thus
V(~r) = V(z). Thereby the Kohn-Sham orbitals in Eq. (2.14) become sepa-

rable such that Φi(~r) = A−1/2 ϕj(z)e
i~k‖ ·~r‖ and Ei = ε j + h̄2k2

‖/(2me) [96]. Here

A is a normalization area, while i ∈ {j,~k‖},~r‖ = (x, y), and m is the electron
mass. Furthermore, ϕj(z) and ε j satisfy the following Kohn-Sham equations,
where the Hamiltonian and wave functions only depend on z

Ĥ(z)ϕj(z) = ε j ϕj(z), where Ĥ(z) =
−h̄2

2me

d2

dz2 + V(z). (2.15)

The electron density also only depends on z as

n(~r) = 2 ∑
i

fi|Φi(~r)|2 = ∑
j∈occ

|ϕj(z)|2
me

πh̄2 (EF − ε j) = n(z), (2.16)

where the sum is over the occupied states, for which ε j < EF, where EF is
the Fermi energy. Hence, for the gap and slab structures considered in this

18



2.2. Density-functional theory in the jellium model

work, the principle in the DFT method is to solve the eigenvalue problem in
Eq. (2.15) and calculate the electron density using Eq. (2.16).

The geometry is chosen such that the slab in paper IV is located from
z = −d/2 to z = d/2, while the gap structure in paper III is constructed as
two thick slabs, where the gap size is the distance between the slabs, and with
the gap centered at z = 0. This implies that the ionic charge distributions in-
troduced above become n+

slab(z) = n0θ(d/2− |z|) and n+
gap(z) = n0− n+

slab(z)
for the slab and gap structure, respectively. Notice that the slab and gap
geometries are just opposite.

Explicit expressions are needed for the different potential terms in order
to solve the Kohn-Sham equations. Here the Coulomb potential is the sim-
plest and is found by just solving the Poisson equation d2

dz2 VC(z) = ρ(z)/ε0

[108], where ρ(z) = n+(z)− n(z) is the total charge computed as the posi-
tively charged jellium density n+(z) minus the negatively charged electron
density n(z). The sign has been reversed in the Poisson equation, and VC is
therefore the potential acting on the negatively charged electrons. Utilizing
integration by parts, the solution is found to be

VC[n(z)] =
1
ε0

∫ z

−∞
(z− z′)[n+(z′)− n(z′)]dz′. (2.17)

In a symmetric structure, the Coulomb potential is symmetric in z, which will
be utilized below when writing the Kohn-Sham equations on matrix form.

2.2.1 Local density approximation

While the expression for the Coulomb potential in Eq. (2.17) was simply
obtained by solving the Poisson equation, a further simplification is needed in
order to calculate the exchange-correlation potential. In quantum mechanics,
the exchange operator is given by [43]

K̂′jΦ(~r) =
∫

Φ∗j (~r
′)Φ(~r ′)

1
|~r−~r ′| d~r ′Φj(~r), (2.18)

and is non-local in the sense that in order to evaluate K̂′jΦ(~r) in some par-
ticular point ~r, one must know Φ(~r) at all other points ~r ′. In the local den-
sity approximation (LDA), it is assumed that the exchange-correlation energy
of an inhomogeneous electron gas is the same as for a corresponding elec-
tron gas with constant density [44]. The exchange-correlation energy Exc is
then separated into individual exchange and correlation energies, such that
Exc[n] = Ex[n] + Ec[n], and similar for the potential Vxc.

In the LDA, an analytical expression can be obtained for the exchange en-
ergy as a functional of n. Within the Hartree-Fock method [43], the exchange
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energy per electron as function of wave number k can be shown to be

εx(k) =
kF

2π3

(

1 +
1− k2/k2

F

2k/kF
ln
∣

∣

∣

∣

1 + k/kF

1− k/kF

∣

∣

∣

∣

)

, (2.19)

where kF =
√

2meEF/h̄, and the integration over the angular part of ~k has
been carried out. Integrating now over the radial part, the exchange energy
per electron becomes

εx[n(~r)] =
∫ kF

0
k2εx(k)dk = −3

4

(

3n(~r)

π

)1/3

. (2.20)

The mathematical details of the derivation can be found in Ref. [109]. The
total exchange energy for all the electrons is Ex[n(~r)] =

∫

n(~r)εx[n(~r)]d3r,
from which the exchange potential is found as the functional derivative of
Ex[n], giving [42]

Vx[n(~r)] =
∂Ex

∂[n(~r)]
= −

(

3n(~r)

π

)1/3

. (2.21)

It turns out that the Coulomb and exchange potentials are not sufficient
to correctly describe the ground state energy of a quantum system. The re-
maining part is stored in a term called the correlation potential, which of
course has no analytic expression [43]. However, the accurate energy of a
homogeneous electron gas can be calculated using quantum Monte Carlo
simulations [52], and the correlation energy can be fitted to the results. Dif-
ferent parametrizations exist for the correlation energy in the LDA, where
the following Perdew-Zunger parametrization for the correlation energy per
electron has been used in the present work [54]

εc[n(z)] =

{

A ln(rs(z)) + B + Crs(z) ln(rs(z)) + Drs(z), rs(z) ≤ 1
γ/(1 + β1

√

rs(z) + β2rs(z)), rs(z) > 1,
(2.22)

where rs(z) = (3/(4πn(z)))1/3, and the coefficients are for a spin unpolar-
ized electron gas as given in the table in Fig. 2.3(a). Here unpolarized means
that the densities for electrons with spin up and spin down are the same [57].
Fig. 2.3(b) shows εc[rs] together with values obtained from Monte Carlo simu-
lations for a homogeneous electron gas [53]. The data from Ref. [53] contains
the total energy per electron, from which the kinetic and exchange energy
has been subtracted in order to get the correlation energy. The exchange en-
ergy per electron is given by Eq. (2.20), while the kinetic energy per electron
is εkin = 3EF/5 = 35/3π4/3n2/3/10 [107]. The black dots in Fig. 2.3 thus
denotes the correlation energy per electron obtained using Monte Carlo sim-
ulation, and the blue line obtained from the Perdew-Zunger parametrization
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Fig. 2.3: (a) shows the coefficients used in the Perdew-Zunger parametrization in Eq. (2.22). The
black dots in (b) show the correlation energy per electron obtained using Monte Carlo simulation
from Ref. [53], while the blue line shows the corresponding Perdew-Zunger parametrization. The
inset shows the kinetic, correlation, and exchange energy per electron for low rs (high density).

in Eq. (2.22) is seen to perfectly fit the simulation. The inset in the figure
shows the three different energy terms for small rs, as illustrated by the ar-
row, where the correlation energy shown by the blue line is the same as in
the outer figure. In the limit of low rs (high density), the kinetic energy term
is dominant, while the correlation term plays a minor role. The Coulomb
potential vanish in the LDA as n+(z) = n(z), and is therefore not shown in
Fig. 2.3(b).

The corresponding correlation potential is found as the functional deriva-
tive of Ec[n(~r)] =

∫

n(~r)εc[n(~r)]d3r, yielding

Vc[n(z)] =











A ln(rs) + B− 1
3 A + 2

3 Crs ln(rs) +
(

2
3 D− 1

3 C
)

rs, rs ≤ 1

γ
1 + 7

6 β1
√

rs +
4
3 β2rs

(1 + β1
√

rs + β2rs)2 , rs > 1,

(2.23)

where the argument of rs has been omitted. The exchange and correlation
potentials in Eq. (2.21) and (2.23) become symmetric in z, as they are given
as functionals of a symmetric density n(z). Hence the total potential is sym-
metric in z, which will be utilized in the next section, where the Kohn-Sham
equations are written on matrix form.

2.2.2 The Kohn-Sham equations on matrix form

In this section, the Kohn-Sham equations in Eq. (2.15) are turned into a
matrix eigenvalue problem. As the geometry is centered at z = 0, it is chosen
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to expand the wave functions in the following orthonormal base

ϕ(z) =
N

∑
j

cj f j(z), where f j(z) =

√

2
L

sin(k j(z + L/2)). (2.24)

Here k j = jπ/L, and the computational domain is z ∈ [−L/2, L/2], where
its length L being 2 nm larger than the slab width d is sufficient to model the
quantum spill-out correctly. Multiplying Eq. (2.15) from the left by ϕ(z) and
integrating, the following matrix equation is obtained.

H~c = ε~c (2.25)

where ~c = (c1, c2, . . . , cN)
T and the matrix elements in H are given by

Hij =
∫ L/2

−L/2
fi(z)Ĥ(z) f j(z)dz. (2.26)

As the base { f j} is orthonormal, the kinetic energy part is described by the di-

agonal matrix H0 = h̄2/(2me)diag(k2
1, k2

2, . . . , k2
N), while the matrix elements

of the potential matrix V are given by

Vij =

{

2
∫ 0
−L/2 fi(z)V(z) f j(z)dz, for i + j even

0, for i + j odd,
(2.27)

where V(z) = VC(n(z)) + Vx(n(z)) + Vc(n(z)) is the total potential, which
is symmetric in z as utilized in Eq. (2.27). The matrix in Eq. (2.25) is then
written as H = H0 + V, and as this matrix is Hermitian, it is sufficient to
calculate the integrals in Eq. (2.27) for i ≤ j. The energy states ε and the
vector~c are thus found as the eigenvalues and eigenvectors of H, respectively.
The total negative charge of the electrons must equal the total positive charge
of the ions, thus

∫

n(z)dz = n0d. Inserting the density from Eq. (2.16) into
this equation, the following expression is obtained for the Fermi energy [101]

EF =
1
M

(

πh̄2n0d

me
+

M

∑
j=1

ε j

)

, (2.28)

where M is the highest occupied band. From the coefficients {cj}, the wave
functions are calculated from Eq. (2.24), and at last the density is calculated
from Eq. (2.16) using the Fermi energy in Eq. (2.28).

However, the potential V(z) appearing in Eq. (2.27) is only given as a
functional of n. Thus, expressions involving the wave functions ϕ(z) appear
on both sides of Eq. (2.25), which implies that the equation has to be solved
in a self-consistent way.
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2.2. Density-functional theory in the jellium model

2.2.3 Self-consistency

The method for solving the Kohn-Sham equations self-consistently is first to
apply an initial guess of the density, from which the total potential is com-
puted. Then the eigenvalue problem in Eq. (2.25) is solved, and the output
density is calculated from Eq. (2.16). Self-consistency is then obtained only if
the input and output densities are equal [42]. Otherwise, an iterative proce-
dure is started, where the output density can be used as the input density in
the next iteration. However, this method fails as the effect of the exchange-
correlation and Coulomb potential from the previous iteration is too strong.
Instead, these effects can be reduced by applying a mixing of input and out-
put densities in one iteration as the input density in the next iteration. The
simplest form of mixing is just to use a linear combination of input and out-
put densities in the following way [44]

ni+1
in (z) = αni

out(z) + (1− α)ni
in(z), (2.29)

where α ∈ (0, 1) is a mixing parameter, which must be below some threshold
in order for the process to converge. A way to speed it up is to use infor-
mation from earlier iterations when updating the density. Hence, the mixing
parameter is not just constant, but is optimized in each iteration. The method
is called Anderson mixing and does the following [44]

ni+1
in (z) = αn̂i

out(z) + (1− α)n̂i
in(z)

n̂i
p(z) = βni−1

p (z) + (1− β)ni
p(z), where p = {in, out}. (2.30)

Here α is still a constant mixing parameter, but the parameter β is chosen
such that |ni

in− ni
out|2 is minimized, where |h|2 means

∫

h(z)2 dz. After some
algebra, it is found that

β =
〈∆ni(z)|∆ni(z)− ∆ni−1(z)〉
|∆ni(z)− ∆ni−1(z)|2 , (2.31)

where ∆ni(z) = ni
out(z)− ni

in(z) and 〈h|g〉 =
∫

h(z)g(z)dz. In general, the
threshold value for α depends strongly on the size of the system, where a
larger system forces a smaller threshold. An example of how the threshold
value depends on the slab thickness will be given in Sec. 3.2.

The iterative method for obtaining a self-consistent solution of the Kohn-
Sham equations is illustrated by the flow chart in Fig. 2.4. Here, the mixing
function f can be either the simple mixing from Eq. (2.29) or the Anderson
mixing from Eq. (2.30). In practice, the check for self-consistency is per-
formed based on the Fermi energy from Eq. (2.28) rather than the electron
density. Self-consistency is said to be obtained when the difference in Fermi
energy for two consecutive iterations is below 10−7 Ha.
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Initial guess for the electron density

Calculate the total potential

Solve the Kohn-Sham equations

Calculate the electron density

Use mixing scheme 

Self-consistency obtained?

Self-consistent solution obtained

Yes

No

?

Fig. 2.4: Flowchart describing the iterative procedure for obtaining a self-consistent solution of
the Kohn-Sham equations. The mixing function f can be the simple mixing from Eq. (2.29) or
the Anderson mixing from Eq. (2.30). Figure inspired by Ref. [44].

2.3 Surface plasmon polaritons

In this section, the theory regarding surface plasmon polaritons (SPPs) is
presented, which is an essential part of the thesis. First the basic concepts are
explained based on the classical Drude model, while the model is extended
afterwards to include quantum- and non-local effects.

2.3.1 Classical dielectric function

The dielectric function of noble metals is to a good approximation described
by the Drude model ε(ω) = εb −ω2

p/(ω2 + iΓω), where εb is the background
dielectric function stemming from bound electrons in the lower lying d bands,
ωp is the plasma frequency, and Γ is a damping term [1]. For optical frequen-
cies, the real part of ε is negative, while the imaginary part is positive, with
−Re(ε) > Im(ε), and the free electrons oscillate out of phase with the driving
electric field. The quanta of these oscillations in charge density are called
SPPs. The following subsections contain analyses of SPPs propagating in dif-
ferent structures: along a plane interface between a metal and a dielectric, in a
gap between two metals, and in a metal slab sandwiched between dielectrics.
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2.3. Surface plasmon polaritons

Plasmons at plane interfaces

The simplest physical system that supports SSPs is a plane interface between
a metal and a dielectric [1], and this case is studied in detail in this subsection,
as it lays the foundation for the gap and slab geometries to be considered
below.

The reflection and transmission of light when incident on a plane interface
is illustrated in Fig. 2.5(a,b) for p- and s-polarization, respectively, where the
dielectric functions of the two media are ε1 and ε2(ω). Only the fields that

Metal

Dielectric

(a) (b) (c) Propagating SPP

Fig. 2.5: (a,b) Reflection and transmission for p- and s-polarization. (c) The magnetic field of
an SPP propagating along a plane interface between a metal and a dielectric. Figure inspired by
Ref. [1].

are tangential to the interface are illustrated, which is ~H in (a) and ~E in (b).
In both cases ~E is perpendicular to ~H and the propagation direction ~k. For
p-polarization in Fig. 2.5(a) the magnetic field can be written as ~Hp(~r) =
ŷHp(x, z), where

Hp(x, z) = Heikx x

{

e−ikz,1z + reikz,1z, z > 0
te−ikz,2z, z ≤ 0,

(2.32)

where kz,j =
√

k2
0ε j − k2

x, j = 1, 2, and the corresponding electric field is

found from Maxwells equations as ~Ep(x, z) = i~∇ × [ŷHp(x, z)]/(ωε0ε(z)).
The coefficients r and t are found by imposing the boundary condition that
the tangential component of the magnetic field and the normal component
of the displacement field are conserved across the interface. The same can be
done for s-polarization in Fig. 2.5(b), and the following Fresnel coefficients
are obtained [1]

r
p
12(kx) =

ε2kz,1 − ε1kz,2

ε2kz,1 + ε1kz,2
, rs

12(kx) =
kz,1 − kz,2

kz,1 + kz,2
, t12 = 1 + r12. (2.33)

An SPP is a purely bound mode, and for it to exist the fields must be ex-
ponentially decaying away from the interface. Choosing kz,j = iδj, where
Re(δj) > 0, the field in Eq. (2.32) is clearly decaying for z ≤ 0, while it is only
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decaying for z > 0 if the reflected field is much larger than the incident field.
This is obtained when the denominator in r is zero, thus an SPP is found as a
pole in the reflection coefficient [33]. For the single interface in Fig. 2.5 this is
obtained for p-polarization when ε2kz,1 + ε1kz,2 = 0, and by combining with
k2

x,j + k2
z,j = k2

0ε j, the following SPP dispersion relation is obtained relating
the parallel wave number kx and the frequency ω [1]

kx = k0

√

ε1ε2(ω)

ε1 + ε2(ω)
. (2.34)

The corresponding wave number in the z direction within the two media are
given as kz,j = k0

√

ε2
j (ω)/(ε1 + ε2(ω). For the SPP to be bound and prop-

agate along the interface, kx and kz,j have to be purely real and imaginary,
respectively, which is fulfilled if both the sum and product of ε1 and ε2(ω)
are negative. This condition is fulfilled if material 1 is a dielectric and ma-
terial 2 is a metal at optical frequencies. Hence an SPP is found near the
interface between a metal and a dielectric, where its magnetic field is illus-
trated in Fig. 2.5(c). For s-polarization, the denominator in the reflection
coefficient in Eq. (2.33) can never be zero, which implies that SPPs only exist
for p-polarization [33]. It is noticed that SPPs are eigenmodes of the system,
implying that the associated electric field satisfies the homogeneous wave
equation [1]

~∇× ~∇× ~E(~r, ω)− k2
0ε(~r, ω)~E(~r, ω) = 0. (2.35)

To get a deeper understanding of plasmons propagating along a plane
interface, the dispersion relation from Eq. (2.34) is plotted in Fig. 2.6(a,b)
using different models for ε2(ω) while fixing ε1 = 1. In gold the plasma
frequency is h̄ωp = 9.06 eV, while the damping term is h̄γ = 71 meV [88]. For
gold described by the Drude dielectric function with constant background of
εb = 9, the dispersion relation is shown in Fig. 2.6(a), where the light line
ω = ckx is shown by the dotted line. The dispersion relation clearly shows
two branches, called the low-energy and high-energy branch, respectively.
The real part of the metal dielectric function becomes positive for ω > ωb =
ωp/
√

εb, and above this frequency the field propagates through the metal
instead of being bound to the interface. Hence no true SPPs are found in this
high-energy region. In the low-energy region, the metal dielectric function
is negative and true SPPs exist. The dispersion curve converges for large
kx to ωs = ωp/

√
εb + ε1, at which frequency the denominator in Eq. (2.34)

becomes zero, after which it bends back into the high-energy branch. The
limiting frequencies in gold are h̄ωb = 2.84 eV and h̄ωs = 2.71 eV, and these
are called the bulk plasmon frequency and the surface plasmon frequency,
respectively.
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Fig. 2.6: (a,b) show the dispersion relation from Eq. (2.34) with ε1 = 1 and the light line ω = ckx

depicted by the dotted line. In (a) the dielectric function of the metal is described by the Drude
model for gold with h̄ωp = 9.06 eV, h̄γ = 71 meV, and εb=9. The experimental values of the
metal dielectric functions from Johnson & Christy (J&C, Ref. 88) are shown in (c) and have been
applied in (b). The corresponding background dielectric constants εb are shown in (d).

The experimental dielectric constants of gold and silver measured by
Johnson & Christy (J&C, Ref. [88]) are shown in Fig. 2.6(c), where the solid
and dashed lines denote the real and imaginary parts, respectively. The cor-
responding background dielectric constants εb are obtained by subtracting
the Drude part from the experimental values, and Fig. 2.6(d) shows εb(ω),
where the applied Drude parameters for silver are h̄ωp = 9.17 eV and h̄γ = 21
meV [88]. No measurements from J&C are found for h̄ω < 0.6 eV, and εb in
this region is approximated by a constant value taken from h̄ω = 0.6 eV as
seen in Fig. 2.6(d). Using the experimental value from J&C, the dispersion
relation for gold is shown by the black line in Fig. 2.6(b). The reason that
the dispersion does not bends back into the high-energy branch, as in Fig.
2.6(a), is that εb for gold has an imaginary part for h̄ω > 2 eV, as seen in Fig.
2.6(d), which implies that the bending is suppressed by damping. The blue
curve in Fig. 2.6(b) shows the dispersion relation based on the experimental
values for silver, which has the same behaviour as Fig. 2.6(a). This is due
to the fact that the imaginary part of εb in silver is small near the limiting
frequencies, which in silver takes the values h̄ωb = 3.78 eV and h̄ωs = 3.63
eV, respectively, as seen in the figure. Below the surface plasmon frequency,
the dispersion curve is at the right of the light line, implying that SPPs cannot
simply be excited by incident light of any frequency from free space. Instead
the configurations illustrated in Fig. 1.1 can be applied to excite the SPPs.
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Chapter 2. Theory and methods

Plasmons in three-layer structures

Plasmons propagating in layered structures is an essential part of this the-
sis, and the basic theory of the topic is explained in this section, where the
structure consists of 3 layers.

Two different three-layer structures were mentioned in the introduction
and illustrated in Fig. 1.2(c,d) as a gap and slab structure, respectively. For
convenience, they are illustrated again in Fig. 2.7 with more details. As ex-

Dielectric

Dielectric

MetalDielectric

Metal

Metal

Long-range modeShort-range mode

(a) Gap structure (b) Slab structure

ε
1

y
x

z

dw

Fig. 2.7: Plasmons propagating in three-layer structures, where the curves denote the tangential
magnetic fields. The slab structure in (b) supports a short-range and a long-range mode, as
illustrated by the black and blue curve, respectively.

plained in the previous section, plasmons exist only for p-polarization where
the magnetic field is tangential to the interfaces, and for a three-layer struc-
ture, the field in Eq. (2.32) is generalized to

Hp(x, z) = eik0βx H(z). (2.36)

Here β = kx/k0 has been introduced as a dimensionless mode index, and
H(z) is the transverse magnetic field illustrated by the curves in Fig. 2.7 to be
further elaborated upon below. The structures are considered as invariant in
the x- and y-directions, and they are also called metal-dielectric-metal (MDM)
and dielectric-metal-dielectric (DMD) structures. As in the case with plane
interface studied above, the dielectrics are described by constant dielectric
functions, while the dielectric function of the metals depend on frequency.
In addition, the metal dielectric function in the slab structure is in general
anisotropic, as it only has boundaries in the z-direction, implying that the
dielectric function becomes a tensor. The metal regions in the gap structure
are semi-infinite, why their response is isotropic.

As for the case with a plane interface, the SPP solution is found as a
pole in the reflection coefficient for p-polarization. A layered structure can
be described by a structure matrix S, which relates the magnetic field to the
left of the structure to that at the right of the structure. S consists of interface
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2.3. Surface plasmon polaritons

matrices describing reflection and transmission of light across the interfaces,
and of propagation matrices describing the propagation of light within each
layer. The two kind of matrices are given by [110]

Tij =
1
tij

(

1 rij

rij 1

)

, T j =

(

e−ikz,jdj 0
0 eikz,jdj

)

, (2.37)

where dj is the thickness of layer j while rij and tij are the reflection and
transmission coefficients for p-polarization in anisotropic materials given by
[111]

rij =
kz,iε‖,j − kz,jε‖,i
kz,iε‖,j + kz,jε‖,i

, tij = 1 + rij, (2.38)

where kz,i =
√

k2
0ε‖, i− k2

xε‖,i/ε⊥,i with Im(kz,i) ≥ 0. It is seen that the origi-
nal Fresnel coefficients in Eq. (2.33) are restored if the materials are isotropic.
The total reflection coefficient across the structure is given as r = S21/S11. For
three layers the structure matrix is given by S = T12T2T23, and the reflection
coefficient becomes

r =
r12 + r23e2ikz,2d

1 + r12r23e2ikz,2d
, (2.39)

where d is the thickness of the middle layer. Plasmons are found when the
denominator in r is zero, and after some algebra the plasmon dispersion
relation becomes

(

1 +
ε‖,2kz,1

ε‖,1kz,2

)(

1 +
ε‖,2kz,3

ε‖,1kz,3

)

=

(

1−
ε‖,2kz,1

ε‖,1kz,2

)(

1−
ε‖,2kz,3

ε‖,3kz,2

)

e2ikz,2d.

(2.40)

It is noticed that this equation is valid for both the gap and slab geome-
try illustrated in Fig. 2.7. Unlike the case with a single planar interface,
the equation can not be solved analytically, and is instead solved with the
Newton-Raphson method. In the limit of d → ∞, Eq. (2.40) simplifies to
ε‖,2kz,1 + ε1kx,2 = 0 and/or ε‖,2kz,3 + ε3kx,2 = 0, which describe plasmons
bound to the two individual interfaces, as these are decoupled in this limit.
But for smaller d the plasmons bound to the individual interfaces overlap,
and hybridize into two kinds of modes whose electric and magnetic fields
have the opposite symmetry. If the structure is symmetric, ε1 = ε3, the two
modes satisfy the following dispersion relations

long-range : tanh(−ikz,2d/2) = −
ε‖,2kz,1

ε1kz,2
, (2.41)

short-range : coth(−ikz,2d/2) = −
ε‖,2kz,1

ε1kz,2
, (2.42)
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Chapter 2. Theory and methods

where the names will be explained below. It is clearly seen that the two
modes coincide when d→ ∞ as tanh(d) = coth(d)=1 in this limit. But in the
other limit, i.e when d → 0, they behave very different. This is illustrated in
Fig. 2.8(a) showing the solutions of Eq. (2.41) and (2.42) in the low-energy
branch for the slab structure, where ε1 = ε3 = 1 and ε‖,2 is the measured
dielectric constant of silver from J&C. In the figure, the light line is shown
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Fig. 2.8: (a) Dispersion relations of SPPs propagating in a silver slab of thickness d surrounded
by air. (b,c) show the electric field components of the short- and long-range mode for slab widths
of 20 and 50 nm, respectively. The fields are computed at the kx and h̄ω = 3 eV illustrated by
the dots in (a). The decay lengths are shown in (d) as a function of slab width at h̄ω = 3 eV.

by the dotted line while the long- and short-range modes are shown by the
dashed and solid lines, respectively, which are almost the same when d = 100
nm. In this case, the two modes behave almost as two decoupled plasmons
bound to the individual interfaces, and the dispersion relations are almost
the same as the red line in the low-energy branch in Fig. 2.6(b), converging
to h̄ωs before it bends back into the high-energy branch. For smaller d, one
mode is close to the light line, implying that it has a long decay length into
the surrounding air, why it is called a long-range mode. The other mode
has a much larger kx, implying that it decays rapidly into the air, why it is
called a short-range mode. As mentioned, the high-energy branch describes
propagation through the metal and not true SPPs bound to the surface, and
for sufficiently thin films, this branch cease to exist. Instead the long-range
mode converges from above to h̄ωs for large kx, while the short-range mode
converges to the same value from below.

The magnetic fields of the two modes were illustrated in Fig. 2.7(b), and
have the opposite symmetry. The corresponding electric fields for slab widths
of 20 and 50 nm are shown in Fig. 2.8(b,c) for the short- and long-range mode,
respectively. The figures show the x- and z-components of the electric fields,
which are tangential and normal to the interfaces, respectively. The tangential
component is conserved across the interfaces, while the other component
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2.3. Surface plasmon polaritons

jumps in order for the normal component of the displacement field to be
conserved [1]. For both modes, the fields have been calculated at an energy
of h̄ω =3 eV, resulting in kx of 0.0155 nm−1 and 0.027 nm−1, as illustrated
by the dots denoted L and S in Fig. 2.8(a). In the air regions surrounding

the slab, the wave number in the z-direction is computed as kz =
√

k2
0ε1 − k2

x,
from which the decay length is found as 1/Im(kz). For the two modes, the
decay lengths are found to be 45 nm and 175 nm, as can be verified from the
fields in Fig. 2.8(b,c). The decay lengths of the two modes as a function of
slab width is shown in Fig. 2.8(d) at fixed h̄ω = 3 eV. For thin slabs the decay
lengths are very different, and it becomes clear that they are indeed long-
range and short-range, while they become practically the same for a 200 nm
thick slab, as in this case the plasmons behave as bound to a single interface
between silver and air.

For the structure consisting of a dielectric gap located between two paral-
lel metal surfaces, only the mode whose magnetic field profile is illustrated in
Fig. 2.7(a) will be considered. The behaviour and propagation of this mode
is the main topic of paper III.

2.3.2 Quantum dielectric function

Having now explained the basic concepts of plasmons propagating in differ-
ent structures based on a classical description, quantum effects are incorpo-
rated in this section.

In the classical Drude model presented in the previous section, the di-
electric function of the metal is only a function of the frequency, thus with no
spatial dependence. Hence the dielectric function across an interface between
metal and dielectric becomes a step function, taking one value in each layer.
When including quantum effects, the electron density becomes a smooth
function across an interface between metal and dielectric (to be shown in
Fig. 3.4(a)). Furthermore, the corresponding quantum dielectric function is
non-local, and is for a structure that only varies in the z direction (like the
gap and slab structures illustrated in Fig. 2.7), within the random-phase ap-
proximation (RPA) given by [96]

←→ε (~Q, z, z′, ω) =

(

1− e2n(z)

meε0(ω2 + iΓω)

)

δ(z− z′)
←→

I

− 1
2π2ε0h̄ω2 ∑

n,m

∫ fm(|~k‖ − ~Q|)− fn(|~k‖|)
ω + iΓ + ωm −ωn

~jnm(~k‖ − ~Q, z)~jmn(~k‖ − ~Q, z′)d2k‖.

(2.43)

The first line describes a local isotropic Drude term, where the spatially
varying electron density n(z) corresponds to the plasma frequency ω2

p(z) =
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e2n(z)/(meε0), where e is the electron charge. The second line is a non-
local contribution, where n and m denote the quantum numbers. Here
fn(|~k‖|) = θ(EF − h̄ωn − h̄2|~k‖|2/2me), is a Fermi factor at zero tempera-

ture, while ~k‖ and ~Q are parallel to the structure, thus in the (x, y) plane.
Furthermore, the ~jnm’s are matrix elements of the transition current given
by [96]

~jnm(~k‖,~k
′
‖, z) =

ieh̄

2me

(

i(~k‖ +~k ′‖)Anm(z) + ẑBnm(z)
)

, where (2.44)

Anm(z) = ϕn(z)ϕ∗m(z), Bnm(z) = ϕ∗m(z)
∂ϕn(z)

∂z
− ϕn(z)

∂ϕ∗m(z)
∂z

. (2.45)

Here the ϕn(z) are the eigenstates of the Hamiltonian Ĥ(z) from Eq. (2.15)
with corresponding eigenvalues εn = h̄ωn. Hence the quantum dielectric
function depends on εn and ϕn which are calculated using DFT as explained
in Sec. 2.2. Eq. (2.43) shows that rigid quantum mechanical response the-
ory implies that the metal dielectric function consists of a local isotropic
Drude term plus a nonlocal anisotropic term. It has been found in several
papers [77–79,84,87,112], that for metal dimers and cylinders the local Drude
term dominates the response, while the nonlocal term only slightly blue-
shift the plasmon resonances, implying that nonlocality is a relatively small
modification to the dielectric response [76]. The nonlocal term is neglected
in paper III, while paper IV neglects the parallel part of the nonlocality by
setting ~q‖ = ~0, and furthermore use an averaging procedure for the perpen-
dicular part, which implies that the nonlocal term becomes a local anisotropic
step function. A full nonlocal model is applied in paper V.

In general, the dielectric tensor is given by ←→ε = diag(ε‖, ε‖, ε⊥), and
becomes local in both paper III and IV. It is now modified to contain the ef-
fects of substrates and interband transitions. The latter is due to the bound
electrons in the lower lying d-bands of the atom, which also contribute to
the dielectric function [1]. However, in contrast to the free electrons de-
scribed by the spatial varying density n(z), it is assumed that the density
of the bound electrons is constant within the jellium region and zero out-
side. Thus the contribution from the bound electrons is described by a
step function, whose value is given as εbound(ω) = εmetal(ω) − εbulk(ω),
where εmetal(ω) is the measured dielectric constant from J&C, and εbulk(ω) =
1 − e2n0/(meε0(ω

2 + iΓω)) is the Drude dielectric constant of bulk gold.
The same treatment of the bound electrons have been applied in several pa-
pers [5, 76, 78, 100–103]. In paper V, the response from the bound electrons
is included by a screening function to be shown explicitly below. The shape
of the bound electron step function is opposite for the gap and slab struc-
tures due to their opposite geometries. Furthermore, different dielectrics can
be found as substrates and superstrates in the slab structure, and this term
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is described by a step function whose shape is the same as for the bound
electron term in the gap structure. In total, the parallel part of the dielectric
function for the gap and slab structure can thus be written as

ε‖(ω, z) = 1−
ω2

p(z)

ω2 + iΓω
+ εbound(ω)h(z) + g(z), (2.46)

where
{

h(z) = θ(d/2− |z|), g(z) = (εs(z)− 1)θ(|z| − d/2) for the slab structure
h(z) = θ(|z| − w/2), g(z) = 0 for the gap structure.

The gap and slab width w and d were illustrated in Fig. 2.7, and εs(z) is
the dielectric function of the substrate and superstrate. As mentioned in the
previous section, the metal regions in the gap structure are modelled as semi-
infinite and thereby isotropic, thus ε

gap
⊥ (ω, z) = ε

gap
‖ (ω, z), while the response

of the metal slab is anisotropic due to its confinement only in the z direction.
The perpendicular part of the dielectric function for the slab is given by

εslab
⊥ (ω, z) = εslab

‖ (ω, z) + εani(ω, d)θ(d/2− |z|), with (2.47)

εani(ω, d) =
e2

πdε0h̄2(ω + iΓ)2 ∑
m,n

gmn
E2

mn(EF − En)θ(EF − En)

E2
mn − h̄2(ω + iΓ)2

, (2.48)

where gmn = 2me|〈ϕm|z|ϕn〉|2(Em − En)/h̄2 is the oscillator strength. A
derivation of the expression for εani(ω, d) can be found in Appendix B in
paper IV.

Paper V includes the effect from the bound electrons as a screened Coulomb
potential, which in free space (no screening) equals V(~r,~r ′) = 1/|~r −~r ′|.
Fourier transforming along the parallel direction gives
W(~Q, z, z′) =

∫

V(~r,~r ′)e−i~Q·(~R−~R ′) d~R d~R ′ which becomes [5] W(~Q, z, z′) =

2π/Qe−Q|z−z′ |, thus only depending of the norm of ~Q denoted Q. When in-
cluding the bound electrons as a background dielectric function, the screen-
ing function W consists of a direct term and an indirect term describing the
reflections within the background, thus W = WD + W I . For the slab geome-
try in Fig. 2.7, the direct term is given by

WD(Q, z, z′) =
2π

Q
e−Q|z−z′ |























1/ε1, z, z′ > d/2
1/εb, −d/2 ≤ z, z′ ≤ d/2
1/ε3, z, z′ < −d/2
0, otherwise,

(2.49)

where εb is the metal background dielectric function from Fig. 2.6(d). The
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indirect term can be generalized from Ref. [101] and becomes

W I(Q, z, z′) =
2π/Q

(ε1 + εb)(εb + ε3)− (εb − ε1)(εb − ε3)e−2Qd
×




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

















1/ε1

[

(ε1 − εb)(εb + ε3)e
Qd + (ε1 + εb)(εb − ε3)e

−Qd
]

e−Q(z+z′), z, z′ > d/2

2
[

(εb + ε3)e
−Q(z−z′) + (εb − ε3)e

−Q(z+z′+d)
]

, −d/2 ≤ z′ ≤ d/2 < z

4εbe−Q(z−z′), z′ < −d/2, z > d/2

2
[

(εb + ε3)e
Q(z−z′) + (εb − ε3)e

−Q(z+z′+d)
]

, −d/2 ≤ z ≤ d/2 < z′

1/εb

{

(εb − ε1)(εb − ε3)
[

e−Q(z−z′+2d) + e−Q(−z+z′+2d)
]

+

(ε1 + εb)(εb − ε3)e
−Q(z+z′+d) + (εb + ε3)(εb − ε1)e

−Q(−z−z′+d)
}

−d/2 ≤ z, z′ ≤ d/2

2
[

(ε1 + εb)e
−Q(z−z′) + (εb − ε1)e

Q(z+z′−d)
]

, z′ < −d/2 ≤ z ≤ d/2

4εbeQ(z−z′), z < −d/2, z′ > d/2

2
[

(ε1 + εb)e
Q(z−z′) + (εb − ε1)e

Q(z+z′−d)
]

, z < −d/2 ≤ z′ ≤ d/2

1/ε3

[

(ε3 − εb)(ε1 + εb)e
Qd + (εb + ε3)(εb − ε1)e

−Qd
]

eQ(z+z′), z, z′ < −d/2.

(2.50)

It is constructed such that the potential and the normal component of the
displacement field is conserved across the interfaces in z = ±d/2 [1].

Calculating the plasmon modes

In order to calculate the plasmon modes of a structure described by a quan-
tum dielectric function, the structure of interest is discretized along the z
direction as illustrated in Fig. 2.9. The dielectric function is modelled as con-

... ...

2 3 N1 N 1-

Fig. 2.9: Discretization of the dielectric function ←→ε (z) into N layers along z. The matrices
T j describe propagation within each layer, while the matrices Tij describe the reflection and
transmission across each interface, and the arrows illustrate the direction of light propagation.

stant within each layer j as indicated by the dielectric constants ←→ε j, where
scalar values are found in the layers 1 and N, as these materials are modelled
as semi-infinite and thereby isotropic. However, all the dielectric constants
are modelled as isotropic for the gap structure. Within a layer, the electric and
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magnetic fields consist of waves propagating left and right as illustrated by
the arrows. As plasmons are bound to the structure, the fields are decaying
away from the structure, why only out-going waves are found in layer 1 and
N. The matrices T j describe propagation within each layer, while the matri-

ces Tij describe the reflection and transmission across each interface, where
expressions for the matrices were given in Eq. (2.37).

When using a classical dielectric function as in Sec. 2.3.1, the structure
consists of only three layers, which implies that the reflection coefficient is
obtained analytically as in Eq. (2.39). But for the quantum dielectric function,
the structure typically needs to be discretized into more than 1000 layers, and
the reflection coefficient is therefore calculated by a transfer matrix method.
The structure matrix relating the magnetic field to the left of the structure to
that at the right of the structure is given by

S =
N−2

∏
j=1

(T j,j+1T j+1)TN−1,N :=
(

S11 S12
S21 S22

)

, (2.51)

from which the reflection coefficient is found as r = S21/S11, and the plas-
mons are found as poles in r, thus when S11 = 0. The same condition is
obtained when considering the fields which are only out-going left and right
of the slab, where the magnetic field left of the structure is given by

(

0
H−L

)

= S

(

H+
R

0

)

, (2.52)

where + and - denote the direction in which the light propagates, while R
and L denote right and left of structure, respectively. From the equation, it is
clearly seen that S11 = 0. Furthermore, H−L = S21H+

R , and the symmetry of
the mode can thus be determined from the sign of S21, where positive and
negative signs correspond to long- and short-range modes in the slab, re-
spectively. S21 becomes exactly ±1 in symmetric structures (ε1 = ε3) and the
magnetic field of the modes becomes symmetric and antisymmetric, respec-
tively, which will be illustrated in Sec. 3.3. It is noticed that for a structure
consisting of three layers, the condition S11 = 0 is equivalent to Eq. (2.40).

The matrices T j and Ti,j in Eq. (2.51) depend on kx through Eq. (2.38),
which implies that S11 is a function of kx and thereby of β = kx/k0. By
introducing the function f : C → C with f (β) = S11(β), the plasmon mode
indices are found as the roots in f . The numerical procedure of derermining
the roots is first to evaluate f for a range of β in the complex plane. When
sign changes are observed for both the real and imaginary part of f , a region
in C is identified where f is close to zero, and the Newton-Raphson method
is afterwards applied to obtain the exact root.

An example of the numerical procedure is shown in Fig. 2.10 for a gold
slab of width d = 50 Bohr surrounded by air at a wavelength of 775 nm (h̄ω =
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1.6 eV), where the long- and short-range mode indices are shown in (a,b),
respectively. Here the blue and red curves are contour curves illustrating the
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Fig. 2.10: The numerical procedure to obtain the plasmonic modes for a gold slab of width
d = 50 Bohr surrounded by air at a wavelength of 775 nm. In (a,b) the blue and red curves
are contour curves illustrating where the real and imaginary parts of f is zero. Starting the
Newton-Raphson method in the points marked with asterisks lead to the solutions marked with
a square. If the Newton-Raphson method is instead started at some of the points marked with
a circle in (a), it converges to the solution in (b). A colormap of the phase of f is shown in (c),
where the colors correspond to the phase value in the bottom left corner of the rectangles.

roots in the real and imaginary parts of f , respectively, and the proper roots
are thus found where the two curves intersect. The dotted lines divide the
complex plane into smaller rectangles, where f is evaluated in each corner,
and thus changes sign in a specific rectangle only if both the blue and red
contour curves go through it. A root of f thus exists in a certain rectangle
only when this condition is fulfilled, and the Newton-Raphson method is
started where the initial guess is in the center of this rectangle. The initial
guess is illustrated by the red circles in the figures, and it converges to the
exact root illustrated by the black filled circles in 4 iterations.

It is noticed that a very fine grid in the complex plane is necessary to find
the solution of the long-range mode in Fig. 2.10(a), and that this solution is
very close to 1. In fact, if the initial guess in the Newton-Raphson method
is instead in the center of some other rectangle, the iterative method will
instead converge to the short-range solution in Fig. 2.10(b), which is located
relatively far from the long-range solution. The rectangles where this is the
case are marked with black hollow circles, illustrating that it is necesary to
sample f in a very narrow and exact region of the complex plane in order to
find the solution for the long-range mode. The short-range mode is on the
other hand much easier to find, as a rough grid is sufficient to obtain the sign
changes and correct convergence as illustrated in Fig. 2.10(b). In fact, starting
the Newton-Raphson in the center of any rectangle in Fig. 2.10(b) leads to
the correct short-range solution.

Another numerical method to calculate the mode indices is based on the
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phase of the complex function f , where the phase is chosen to be in the inter-
val [−π, π]. Again the function is first evaluated in a region of the complex
plane, but here the phase of f is considered instead of the sign changes in its
real and imaginary parts. The phase of a complex function jumps by a factor
of 2π when going in a certain direction near its root. This implies that a solu-
tion exists in a rectangle only if the magnitude of the phase change is larger
than π in precisely one side of the rectangle [33]. Again the Newton-Raphson
method is apploed to obtain the exact root. The method is illustrated in Fig.
2.10(c) for the short-rage mode, where the phase of f is shown by the col-
ormap in the same region as in Fig. 2.10(b). Here, the color of a rectangle
corresponds to the phase value in the bottom left corner of the rectangle.
Again, the initial guess for the Newton-Raphson method is shown by the red
circle, while the solution is shown by the black filled circle. It is observed
that the phase is ≃ ±π/2 and ≃ π for values close to the blue and red con-
tour curves in Fig. 2.10(b), respectively. The rough resolution applied in the
colormap is sufficient to obtain the correct root of f .

The two numerical methods perform equally, and the method considering
the sign changes has been applied to obtain the results presented in the thesis.
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Chapter 3

Summary of results

This chapter contains selected results from the published papers. Sec. 3.1
contains results from paper I and II regarding the optics of multiple (ultra-
sharp and rectangular) grooves in metal, while Sec. 3.2 shows quantities
calculated using DFT in the jellium model as applied in paper III, IV, and V.
Selected results regarding plasmons propagating in the gap and slab struc-
tures are found in Sec. 3.3, and Sec. 3.4 contains a collection of the results
from paper V regarding electron-energy loss spectroscopy (EELS).

3.1 Optics of multiple grooves in metal

This section contains results regarding the optics of multiple grooves in gold,
where the structure and incident field were illustrated in Fig. 2.1(b). The
dielectric constant of gold in Fig. 2.6(c) (from Ref. [88]) has been applied in
all the calculations in this section.

3.1.1 Plane wave as incident field

By applying the theory outlined in Sec. 2.1 when the incident field is a plane
wave (γ = ∞), the optical cross sections are calculated and shown in Fig.
3.1(a). Here, extinction (EXT) refers to the amount of power removed from
the reflected beam due to scattering and absorption, while OUP is the power
scattered out-of-plane, and SPP (not shown here) is the power scattered into
surface plasmons propagating away from the grooves along the interface.
By normalizing the scattered and extinction powers with the power per unit
area of the incident plane wave, the corresponding cross sections are obtained
[29]. The absorption (ABS) cross section is calculated as the extinction cross
sections minus OUP and SPP cross sections.
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Fig. 3.1: The left y axis in (a) shows the EXT, OUP, and ABS cross sections as a function of the
number of grooves, while the squares on the right y axis denote the OUP per groove. The black
and blue quantities refer to ultrasharp (U) and rectangular (R) grooves, respectively, where λ
and d are specified in the legend. (b) shows EXT spectra, where the U and R grooves scatter
broadband and narrowband, respectively. The arrows indicate the fixed wavelengths applied in
(a). The figures are combined from paper I and II and are reprinted with permission from c©The
Optical Society.

The EXT, OUP, and ABS cross sections are shown on the left y- axis as a
function of the number of grooves, N, and are seen to scale almost linearly
with N. Here the black quantities are for an ultrasharp groove array (U) at
the wavelength λ = 770 nm with d = 10 nm between the grooves (see Fig.
2.1(b)), while the blue quantities are for a rectangular groove array (R) at λ =
660 nm and d = 300 nm. This distance has been chosen as it maximizes the
OUP and EXT as the period for this d is roughly half a wavelength. This will
be further elaborated upon in paper II. It is highly surprising that the cross
sections keep increasing linearly with N, as N = 40 corresponds to a total
groove array length of L ≃ 10 µm which equals more than 13 wavelengths
(for λ = 770 nm). The OUP cross section per groove is shown by the squares
on the right y axis in Fig. 3.1(a), and is larger for multiple grooves than for a
single groove, which will be explained below. For the ultrasharp grooves, the
OUP per groove converges to roughly 1.5 times the top width of a groove.
For a single ultrasharp groove, the OUP cross sections can exceed its physical
dimension [39], but this was not expected for an array of many wavelengths,
especially because an infinite array of ultrasharp grooves illuminated by a
plane wave has a low reflectance [31]. It was stated in Ref. [39] that the low
reflectance could be due to destructive interference between scattered light
from the individual grooves, which would imply that the OUP per groove
would become small when many grooves are found in the array. Fig. 3.1(a)
clearly shows that this statement was wrong, and instead the OUP cross
sections is significantly larger than the physical dimension of the grooves,
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3.1. Optics of multiple grooves in metal

which is the first main result of paper I and II.
While Fig. 3.1(a) showed the cross sections for fixed wavelengths, a spec-

trum of the EXT cross section is shown in Fig. 3.1(b), where again the black
and blue lines refer to an ultrasharp and rectangular groove array, respec-
tively. For both arrays, the EXT scales linearly with N for all wavelengths,
and the same is found for OUP and ABS (not shown). The main difference
between the two types of groove arrays, is that the ultrasharp has cross sec-
tions that oscillate with the wavelength but is large in the entire spectrum,
while the cross sections for the rectangular is only large in a narrow band
of wavelengths. The black and blue arrows in the figure indicate the fixed
wavelengths that was applied in Fig. 3.1(a). Hence the cross sections keep in-
creasing the N, thus not explaining the low reflectance from the infinite array,
which was found both theoretically and experimentally in Ref. [30] and [31],
respectively.

3.1.2 Gaussian beam as incident field

The optical properties of the groove structures are instead investigated when
the incident field is a Gaussian beam with finite beam radius as illustrated in
Fig. 2.1(b). The reflectance from an array is calculated as the total reflected
power divided by the incident power (see the appendix in paper I for details),
and the reflectance from an array of 20 grooves is shown in Fig. 3.2(a) as a
function of γ on a log scale. The colors have the same meaning as in Fig.
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Fig. 3.2: (a) shows the reflectance from an array of 20 grooves as function of γ with correspond-
ing power fraction that hits within the grooves, where the meaning of the colors are specified
in the legend. (b) shows the reflectance spectra from an array of 5, 10, and 20 grooves for fixed
beam radius corresponding to γ = 0.5 for 20 grooves. The reflectance from a planar gold surface
is shown by the gold curve. The figures are combined from paper I and II and are reprinted
with permission from c©The Optical Society.
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3.1(a), but the wavelength for the rectangular groove array has been slightly
modified to 657 nm, as it is the exact maximum for the blue curves in Fig.
3.1(b). The fraction of the incident power that actually hits the grooves is
called PF and equals

PF(γ) =

∫ L
0 e−2(x−x0)

2/w2
0 dx

∫ ∞

−∞
e−2(x−x0)2/w2

0 dx
=

2
∫ 1

0 e−2x̃2/γ2
dx̃

γ
√

π/2
, (3.1)

where the transformation x̃ = 2(x− x0)/L has been applied along with w0 =

γL/2 and
∫ ∞

∞
e−ax2

dx =
√

π/a. The power fraction is shown by the triangles
in Fig. 3.2(a) and converges to 1 when γ ≤ 0.5, as the Gaussian beam in
this limit is so narrow that it is entirely focused within the grooves, and the
reflectance is thus completely due to the grooves, and not the surrounding
planar gold surface. In the other limit, when γ ≥ 500 the power fraction is
almost zero, as the beam is so wide such that it mainly hits the planar gold
surface surrounding the grooves. Thereby the reflectance converges to that of
a planar interface between air and gold, as the contribution from the grooves
become negligible in this limit. Notice that the reflectance and power fraction
in Fig. 3.2 converge in both limits at the same value of γ.

The reflectance as a function of wavelength is shown in Fig. 3.2(b) for
the two types of arrays, where the beam radius is fixed corresponding to γ =
0.5 for 20 grooves, as this ensures that the planar surface does not contribute
to the reflectance. For both types of arrays, the reflectance converges when
20 grooves are present, where the reflectance from ultrasharp and rectangu-
lar grooves is low in a broadband and narrowband spectrum, respectively.
Importantly, the reflectance from the ultrasharp groove array is the same as
obtained theoretically in Ref. [28], where an infinite groove array were illu-
minated by a plane wave. Furthermore, it was shown in Ref. [28] that the
same reflectance can be obtained when using a stack matrix method, where
each layer is modelled by a classical plasmon mode index. Hence it is found
that an array of 20 grooves illuminated by a Gaussian beam that hits entirely
within the grooves behave similarly as an infinite array of grooves illumi-
nated by a plane wave, which is the second main result obtained in paper I
and II.

The energy transportation has been investigated based on the time-averaged
Poynting vector 〈~S〉 = 1/2Re(~E× ~H∗), and it points in the direction of the
power flow with its magnitude describing the power flow per area [1]. The
magnitude of 〈~S〉 is shown on the colormap in Fig. 3.3(a,b,c,d), where the
structure consists of 20 rectangular grooves with d = 300 nm. Here the
length of the array is illustrated by the black horizontal lines in the figures,
the wavelength is 657 nm, and the incident field is a Gaussian beam with
ratios γ of 0.5, 1, 2 and ∞ (plane wave). For γ = 0.5, the magnitude of 〈~S〉
is only non-zero for positions right above the grooves, while more light is
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Fig. 3.3: Magnitude of the time-averaged Poynting vector for a Gaussian beam incident on 20
rectangular grooves with d = 300 nm. The ratio γ is 0.5, 1, 2, and ∞ (plane) wave in (a)-(d),
respectively. (e) shows a schematic of a plasmon incident from the left on a groove array, which
can be reflected, transmitted, and scattered out of the plane. (f) shows these quantities as a
function of the number of grooves, where the inset shows the differential scattered power for
a structure of 20 grooves. The wavelength is 657 nm. The figures are from paper II and are
reprinted with permission.

scattered out of the plane when the ratio is increased.
At last, it is studied how the groove array reflects, transmits, scatters,

and absorbs light incident as a plasmon from the left, as illustrated in Fig.
3.3(e). The quantities are shown in Fig. 3.3(f) at the wavelength 657 nm,
and refers to the scattered, transmitted, and reflected powers divided by the
power of the incident plasmon. Most of the incident light is transmitted
across a single groove, while an array of 20 grooves scatters most of the light
and transmits only a vanishing part. Notice that the absorption level is also
increased when more grooves are present. The inset shows the differential
scattered power on a polarplot, illustrating that most of the light is actually
scattered backwards at an angle of roughly 150◦. The fact that an incident
plasmon can be scattered out of the plane explains why the OUP per groove
for multiple groove is larger than for a single groove in Fig. 3.1(a).

3.2 Density-functional theory in the jellium model

This section shows selected results obtained using the DFT method in the
jellium model presented in Sec. 2.2. This is an important part of the thesis,
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Chapter 3. Summary of results

as the electron densities presented here are fundamental to the papers III, IV,
and V.

3.2.1 Slab structure

The electron density across a gold slab of width d = 50 Bohr is shown in
Fig. 3.4(a) in units of the bulk gold density n0. The ion charge is illustrated
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Fig. 3.4: The electron density in units of the bulk gold density n0 is shown in (a), while the
corresponding potential is shown in (c), where the red horizontal line and black dots depict the
Fermi energy and the discrete quantum states, respectively. The Fermi energy as a function of
number of iterations in the iterative method is shown in (b,d), where α = 0.03 is small enough
for the method to converge in (b), while α = 0.04 is too high and the Fermi energy will never
converge in (d).

by the colored area, and electron spill-out is clearly seen to occur as the
electron density contains an exponential tail stretching ≃ 0.3 nm into the
vacuum region. In addition, Friedel oscillations are found in the metal region
close to the boundaries, in agreement with Refs. 45, 46. The corresponding
potential V is shown in Fig. 3.4(c), where the black dots depict the energies of
the discrete quantum states, while the red horizontal line depicts the Fermi
energy. It is noticed that the oscillations in potential near the boundaries are
smaller than the corresponding Friedel oscillations in Fig. 3.4(a). Practically
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3.2. Density-functional theory in the jellium model

the same electron density and potential are found across a silver film, as the
free electron density in bulk gold and bulk silver is almost the same [107].
The density is calculated in the sine base (Eq. (2.24)), and it is found that 15
basis functions per nm of computational domain are sufficient in order for
the density to converge with respect to the number of basis functions.

As mentioned in Sec. 2.2.3, the mixing parameter α must be below some
threshold value in order for the iterative method to converge. For the slab of
width d = 50 Bohr, the threshold value is found to be 0.03, and Fig. 3.4(b)
shows the Fermi energy as a function of number of iterations for this slab
width. The Fermi energy converges after 252 iterations to EF = −3.33 eV, as
illustrated by the red line in Fig. 3.4(c). An example of the iterative method
for a mixing parameter that is too high is shown in Fig. 3.4(d), where α = 0.04
has been applied. The Fermi energy becomes oscillating into two different
branches: one branch when the number of iterations is even, and another
branch when it is odd, as illustrated by the numbers in Fig. 3.4(d). Clearly,
this Fermi energy will never converge.

The threshold value for the mixing parameter decreases strongly with the
slab width, as illustrated by the blue dots on the left y axis in Fig. 3.5(a). No
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Fig. 3.5: (a) shows the mixing parameter (left y axis) and number of iterations (right y axis) as
a function of slab width. (b) shows real (solid lines) and imaginary (dashed lines) parts of the
quantum dielectric functions for a slab structure of 1 nm. (b) is from paper IV and is reprinted
with permission.

analytic expression exists for the threshold value, which is instead found by
trial and error. First the iterative method is started for some value of the mix-
ing parameter. After a sufficient number of iterations, it is tested whether the
Fermi energy evolves into two branches like in 3.4(d). If this is the case, the
calculation is stopped and a lower mixing parameter is examined. Choosing
a very low mixing parameter will ensure convergence, but according to Eq.
(2.30) this implies that the input density in one iteration is almost the same
as for the previous iteration, thus not utilizing much of the output density.
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This implies that extremely many iterations are needed. Thus, it is desired to
choose the mixing parameter as high as possible, but still below the threshold
value. The corresponding number of iterations is shown by the red dots on
the right y axis in Fig. 3.5(a). Due to the low mixing parameter for wide slabs,
the number of iterations increases significantly with the slab width. Further-
more, both the number of basis functions and discretization points along the
z axis scale linearly with d. This implies that the complexity of constructing
the Hamiltonian using Eq. (2.26) and (2.27), which is the most demanding
part of the flowchart in Fig. 2.4, is O(d3). As the number of iterations in
Fig. 3.5(a) scales faster than linearly, this implies that the complexity in the
DFT method is at least O(d4), illustrating that DFT is not a practical method
when the systems become too large [78]. To compare, the complexity of the
tight binding (TB) method is O(N3) where N is the total number of orbitals
in the model, while models based on the Dirac equation (DE) are scale in-
variant [113]. However, in e.g. graphene and carbon nanotubes the accuracy
of TB and DE is also lower than in DFT [114].

The parallel part of the quantum dielectric function is computed from Eq.
(2.46), and is shown across a slab of width 1 nm in Fig. 3.5(b), where the real
and imaginary part are shown by the solid and dashed lines, respectively.
Quantum spill-out implies that the dielectric function from the free electrons
becomes smooth across the interfaces, while the interband part εbound is seen
as the step function, and the effect of a substrate is illustrated by the blue
lines.

3.2.2 Gap structure

A gap structure has the opposite geometry compared to the slab structure
(see Fig. 1.2), and it consists of a narrow gap of width w located between
two semi-infinite metal surfaces. However, the surfaces are modelled as two
thick slabs of width d separated by the gap width w. It is found that slabs
of widths d = 50 Bohr are sufficient to avoid artefacts from finite-size effects.
Notice that the density across such a slab was seen in Fig. 3.4(a). The density
across three different gaps in units of n0 is seen in Fig. 3.6(a,b,c), where the
gap width is 1 nm, 0.5 nm, and 0.3 nm, respectively, and again the ion charge
is illustrated by the colored areas. For the two smallest gaps, there is no
true vacuum region between the metal surfaces, as the exponential tails from
each surface overlap in the middle of the gap. Remember that the range of
electron spill-out is ≃ 0.3 nm from each slab. This implies that the density in
the middle of the gap of width 0.3 nm only decreases to roughly 9%, while it
decreases to roughly 1% when the gap width is 0.5 nm, as seen in Fig. 3.6(b,c).
Only when the gap width is larger than 0.6 nm, there is a true vacuum region
between the metal surfaces, as clearly seen in Fig. 3.6(a) where the gap width
is 1 nm.
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Fig. 3.6: (a,b,c) show electron densities across three gap structures in units of n0, where the gap
width is 1 nm, 0.5 nm, and 0.3 nm, respectively. The corresponding dielectric function across a
gap of width 0.35 nm is shown in (d), which is from paper III and is reprinted with permission.

The corresponding parallel part of the quantum dielectric function is
shown in Fig. 3.6(d) for a gap width of 0.35 nm. In order for the plasmonic
modes to converge, it is found sufficient to include four periods of Friedel
oscillations near the boundary and to apply the bulk value beyond this range
as illustrated.

3.3 Surface plasmon polaritons

This section contains results dealing with the propagation of plasmons in
gap and slab structure of gold. The dielectric function is calculated from Eq.
(2.46), and was illustrated in Fig. 3.5(b) and 3.6(d).

3.3.1 Plasmon mode index

The plasmon mode indices have been calculated using the transfer matrix
method presented in Sec. 2.3.2 and are shown for the gap structure in Fig.
3.7(a), where the wavelength is 775 nm. The real and imaginary parts without
spill-out (w/o SO), i.e in a classical model, are shown as the blue solid and
dashed lines, respectively, and diverge in the limit of vanishing gap width.
When including spill-out, the exponential tails from the gold regions overlap
and there is no true vacuum region for sufficiently thin gaps (Fig. 3.6). This

47



Chapter 3. Summary of results

0 1 2 3 4 5

0

5

10

15

20

25

30 >

n n

M
o
d
e 

in
d
ex

W
av

el
en

g
th

 (
n
m

)

(a) (b)

Fig. 3.7: (a) shows the real (solid line) and imaginary parts (dashed line) of the mode index for
a gap structure at a wavelength of 775 nm. The horizontal green lines show the refractive index
of bulk gold. (b) shows the ratio between imaginary parts of the mode index with and without
spill-out (SO) on a colorplot. The figures are from paper III and are reprinted with permission.

implies that the plasmon mode index (w SO, red lines) for thin gaps con-
verges to the refractive index of bulk gold, ngold, as shown by the green lines.
The mode index converges when the slab width is 0.35 nm, for which the di-
electric function was shown in Fig. 3.6(d). Hence even though this dielectric
function is quite different from that of bulk gold, it behaves almost as bulk
gold when it comes to the plasmon mode index. Thus, quantum spill-out
implies that the mode index does not unphysically diverge in the limit of
vanishing slabs, instead it converges to the refractive index of bulk gold, thus
restoring correct physical behaviour. This is the first the main result in paper
III.

For gap widths above 1 nm, the real part of the mode index with and
without spill-out is almost the same, while there is a large difference for the
imaginary part. This is further examined in Fig. 3.7(b) showing the ratio
between the imaginary parts with and without spill-out on a colorplot. It
is seen that for gap widths up to 5 nm, there is a significant increase in the
imaginary part of the mode index, even though the spill-out range is only 0.3
nm. The reason to the increased imaginary part due to spill-out will be given
below.

The corresponding short-range mode indices for a gold slab are shown in
Fig. 3.8(a) at the wavelength 775 nm, where the blue and red lines are for gold
surrounded by the glass (gg) and air (aa), respectively. These mode indices
have been calculated using an isotropic response, thus setting εani = 0 in
Eq. (2.47). In general, anisotropy modifies the mode index for both kinds of
modes, while the relative change is much larger for the long-range mode, but
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Fig. 3.8: (a) shows the mode index of a gold slab surrounded by glass (gg) and air (aa). (b) shows
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The red curves are calculated where the response is pure Drude, while the interband term has
been included in the calculations shown by the blue curves. The wavelength is 775 nm and the
response is isotropic. (a) is from paper IV and is reprinted with permission.

all the results in the following are for an isotropic response, while anisotropy
has been included in some of the results in paper IV below. Again, the mode
indices in Fig. 3.8(a) diverges in a classical model neglecting spill-out. To
study whether this divergence is again an artefact, the mode index when
including spill-out is calculated in thinner slabs as shown in Fig. 3.8(b) to
examine how it behaves in the limit of vanishing slab width. The diameter of
a gold atom is roughly 0.3 nm [31], why it is totally unphysical to consider
slab widths below this limit, and Fig. 3.8(b) is therefore highly theoretical.
But as spill-out is included by applying the jellium model, it is possible to
calculate a theoretical electron density for slabs in the subatom range, which
does not simply not exist in an atomistic model.

The results shown in Fig. 3.8(b) are for an isotropic response for a gold
slab surrounded by air at a wavelength of 775 nm. The red curves have
been calculated where only the free electron term is included in the quan-
tum dielectric function, while the interband term (see Eq. (2.46)) has been
included in the results shown by the blue curves. Again the real and imagi-
nary parts are shown by the solid and dashed lines, respectively. The mode
index increases for decreasing slab widths, but for some sufficiently thin slab,
the plasmon mode ceases to exist. At this cuf-off, the electron density has be-
come so delocalized that the dielectric function is everywhere positive. Recall
from Sec. 2.3.1 that a plamon only exists then the metal dielectric function
is negative. The electron density and dielectric function for a slab width of
d = 0.015 nm (≃0.3 Bohr) are illustrated in the inset, where the interband
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part of the dielectric function gives rise to the step function at the interfaces,
such that its value within the slab is roughly 8, clearly illustrating that the
system is unphysical. When applying only the Drude term, the step func-
tion is omitted, and the plasmonic modes exists for slightly thinner slabs as
illustrated by the red lines. The theoretical outcome of this figure is that the
mode index does not diverge in the limit of vanishing slab thickness when
including spill-out, instead the plasmonic modes cease to exist for slabs in
the subatom range. From now on, however, only slab widths larger than 0.3
nm will be considered.

The ratio between the imaginary part of the mode index with and without
spill-out was shown for the gap structure on the colorplot in Fig. 3.7(b). The
corresponding ratio for the slab structure surrounded by glass (gg) is shown
in Fig. 3.9(a,b) for the short- and long-range mode, respectively, where the
ratios between real parts are shown by the solid lines and is practically un-
affected by spill-out. The ratio between the imaginary parts converges to 1.2
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for a gold slab surrounded by glass (gg). The modes are short- and long-range in (a) and (b),
respectively, and the response is isotropic. The figure is from paper IV and is reprinted with
permission.

when the slab width is 200 nm for both kinds of modes. Thus, spill-out gives
rise to an increase in the imaginary part of 20% for relatively thick slabs that
can be fabricated. This is highly surprising as the electron density is only
modified in regions close to the surface. The significant increase in the imag-
inary part of the mode index due to spill-out is the first main result of paper
IV. The increased imaginary part will manifest itself in decreased propaga-
tion lengths in fabricated plasmonic structures as shown in Refs. [115–118].
The inset in Fig. 3.9(a) shows the real part of the magnetic field for a slab
width of 200 nm, and it behaves as two decoupled plasmons bound to the
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3.3. Surface plasmon polaritons

individual interfaces for such a wide slab.

3.3.2 Plasmonic absorption

The physical explanation of the enhanced imaginary part of the mode index
is found in the absorption density. The electric field of the plasmons is found
from the magnetic field in Eq. (2.36) as

~E(x, z) =
i←→ε −1(z)

ωε0
∇× [ŷHp(x, z)], (3.2)

from which the absorption density is calculated as

A(x, z) = Im(~E∗(x, z) · ←→ε (z) · ~E(x, z)). (3.3)

The free electron part of the part of the quantum dielectric function is smooth
across the structure, implying that its real part becomes zero at certain po-
sitions close to the jellium edges (see Fig. 3.5(b)). As the electric field and
absorption density scale as ←→ε −1(z), they contain narrow peaks at these po-
sitions. Notice that the imaginary part of the dielectric function is small
but non-zero at these positions, which ensures that the peaks in absorption
density are finite. The absorption density near a gold slab is shown in Fig.
3.10(a), where the response is isotropic and the kind of substrate and super-
strate slightly shifts the peak positions. In a classical model neglecting spill-
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Fig. 3.10: Absorption density near a gold slab of width 0.3 nm in shown in (a), while it is
illustrated in the bottom of an ultrasharp groove in (b). The wavelength is 775 nm and the
response is isotropic. (a) is from paper IV and is reprinted with permission.

out, absorption can only take place in the gold, and the enhanced absorption
is therefore a consequence of spill-out. The enhanced imaginary part of the
mode index due to spill-out is thus explained in terms of strong plasmonic
absorption taking place at narrow peaks close to the surface, which is the
second main result of paper IV.
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Chapter 3. Summary of results

The free electron part of the quantum dielectric function in a gap structure
is also smooth and its real part for gap widths above a certain threshold is
zero at positions close to the jellium edges. For smaller gaps, the overlap in
electron densities from the gold surfaces implies that the dielectric function
is everywhere negative, see Fig. 3.6(d). A continuous range of gaps between
metal surfaces is found in ultrasharp grooves as illustrated in Fig. 3.10(b),
where the colormap shows the absorption density near the bottom of such a
groove. It shows that absorption mostly takes place near the bottom, but also
in narrow regions close to the jellium edge. As in Fig. 3.10(a), the real part of
the dielectric function is zero at these positions.

The increased absorption density in the ultrasharp groove implies that
the reflectance from such a groove array is lowered. The reflectance from
an array of 20 grooves was calculated using GFSIEM in a classical model
with a narrow Gaussian beam as the incident field as shown in Fig. 3.2(b).
Importantly, as also stated in Sec. 3.1.2, this reflectance is the same as for an
infinite array illuminated by a plane wave. The latter can be calculated using
the GFSIEM with a periodic Greens function, or with a stack matrix method
based on the classical gap plasmon mode index giving the same result [30].
To calculate the reflectance from a groove array when spill-out is taken into
account, the same stack matrix method is applied as in Ref. [30], but with
the gap plasmon mode index calculated with spill-out, see Fig. 3.7(a). Here
the ultrasharp groove is modelled as a staircase as illustrated in Fig. 3.11(a),
where each level i is modelled as having the refractive index equal to the
mode index for a gap of width wi. Hence, the ultrasharp groove is modelled
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as a multilayer structure, and the reflectance is calculated by a simple transfer
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3.4. Electron-energy loss spectroscopy

matrix method [110]. It is found that by applying 500 steps in the staircase,
the structure behaves as the smooth groove illustrated in Fig. 3.11(b).

Fig. 3.11(c) shows the reflectance from an ultrasharp groove array with
and without spill-out, where the dimensions of the grooves are shown in the
inset, and the applied bottom width is b = 0.3 nm. By noticing the very dif-
ferent scaling on the two y-axis, it is clearly seen that spill-out significantly
lowers the reflectance. The calculated reflectance without spill-out for b =
0.3 nm does to some extent agree with the measured reflectance from the
groove array from Ref. [31] shown by the black curve in Fig. 3.11(d). How-
ever, the calculated reflectance contains oscillations which are not present in
the measured spectrum. Furthermore, the exact bottom width is impossible
to measure precisely, but is highly unlikely only the 0.3 nm as assumed in
the calculation shown the blue dashed line. Notice that 0.3 nm is roughly
the diameter of a gold atom [31]. Calculating instead the reflectance when
spill-out is included, and minimizing the root mean square error between
measured and calculated reflectance, it is found that a bottom width of b
= 2.37 nm gives the best reflectance. The reflectance for this bottom width
is shown by the red curve in Fig. 3.11(d) and is close to the measured re-
flectance shown in black. The corresponding reflectance without spill-out for
b = 2.37 nm is shown by the blue solid line and is much higher than the mea-
sured reflectance. Hence, when including spill-out the calculated reflectance
becomes in much better agreement with measurements compared to classical
models neglecting spill-out, and in addition, the bottom width becomes 2.37
nm, which is much more realistic than 0.3 nm as assumed in the classical
model. This is the second main result of paper III.

3.4 Electron-energy loss spectroscopy

The theory regarding electron-energy loss spectroscopy (EELS) in the non-
retarded limit is presented in detail in paper V, and a summary of the results
is found here. Retardation effects being ignored means that the response
from the electron is instantaneous, which is a reasonable approximation as
the considered electron velocities are much smaller than the velocity of light,
and the film thicknesses are much smaller than the optical wavelength [5].

The loss probability ΓEELS can be written in terms of the imaginary part of
the reflection coefficient rp [102]. Within the full nonlocal RPA, rp is calculated
using Eq. (18) in paper V, and its imaginary part is shown on the colorplot
in Fig. 3.12(a,b,c) for a metal film of 10 monolayers (ML) of facet 111 [107],
where the film is surrounded by air and modelled using DFT in the jellium
model (denoted JEL in the following). Here the colorbar is logarithmic, the
ML thickness is a = 0.236 nm for Ag(111) and a = 0.235 nm for Au(111)
[104], and Q has the same meaning as kx in Fig. 2.6(a,b) denoting the wave
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number component parallel to the film. The dispersion relation of an incident
electron travelling with velocity v parallel to the film is ω = vQ, and the
white lines in Fig. 3.12(a,b,c) depict h̄ω = vQ for v = c/10. The background
dielectric function εb applied in Fig. 3.12(a,b) is from J&C for silver and gold,
respectively. Due to the non-zero imaginary part of εb in gold for h̄ω > 2 eV,
the reflection coefficient for such frequencies is suppressed due to damping,
which was also observed in Fig. 2.6(b), where a single interface between gold
and air was studied. The imaginary part of εb is smaller in silver, implying
that the maximum in rp is more pronounced as seen in Fig. 3.12(a), where the
back bending is also visible near the bulk plasmon frequency h̄ωb ≃ 3.78 eV,
around which Im(εb) starts to become non-zero, see Fig. 2.6(d). Setting εb = 1
gives the reflection coefficient shown in Fig. 3.12(c), where the bulk and
surface plasmon frequencies are clearly seen at ωp and ωp/

√
2, respectively.
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3.4. Electron-energy loss spectroscopy

The applied damping rate h̄γ is 21 meV in silver and 71 meV in gold [88].
Several EELS experiments have been performed on silver films in order to
characterize their optical properties [9,10,12,13], and the loss functions shown
below are therefore calculated for silver, while they are shown for gold in Fig.
8 in paper V.

As mentioned, plasmons are found as poles in the reflection coefficient
[33], where their parallel wave number Q (or kx) becomes complex when
the metal dielectric constant is complex. Both components of the plasmon
mode index β = Q/k0 are considered in paper III and IV, and were shown
in Fig. 3.7(a) and 3.8(a) above. When only considering the real part of Q, as
in e.g Fig. 3.12 and Refs. [76, 119], the plasmons are found as maxima, not
poles, in the reflection coefficient. Hence the plasmon dispersion relations are
seen by the yellow curves in Fig. 3.12 denoting the maxima of Im(rp). The
curves are similar if considering |rp| instead. Extending Fig. 3.8(a) to larger
d, the mode index for a slab of 10 ML Au(111) (d = 2.35 nm) is found to be
4.89 + 0.32i at a wavelength of 775 nm. This corresponds to Q = 0.04 nm−1

at h̄ω = 1.6 eV, which is found to be in good agreement with Fig. 3.12(b).
Nonlocal effects have been neglected and included in Fig. 3.8(a) and Fig.
3.12(a), respectively, and the fact that the calculated plasmon mode indices
within the two models are in good agreement illustrates that nonlocality is
a relatively small correction when plasmons propagate in thin slabs, as was
also found in Ref. [76]. This will be further elaborated upon below.

In EELS an electron can be incident parallel or perpendicular to the film,
as illustrated in Fig. 3.12(d). Its velocity v is determined from the kinetic
energy of the electron beam in the relativistic form as [120]

E0 = mec2
(

1√
1− v2/c2

− 1
)

, (3.4)

where c is the speed of light in vacuum. An electron is a moving point charge
in real space, implying that its charge density becomes completely delocal-
ized in reciprocal space [5, 6]. The incident electron can excite plasmons
when their parallel momentum and energy are the same, as first discovered
by Ritchie [4]. He proposed that fast electrons could excite plasmons, which
is an alternative to the Otto or Kretschmann configurations, where an evanes-
cent field from incident light is applied as excitation sources [2, 3]. When an
electron excites a plasmon it loses an amount of energy as described by the
loss function ΓEELS. An electron moving parallel to the film has parallel wave
number Q = ω/v as illustrated by the white lines in Fig. 3.12, which implies
that only the modes right to this line can be excited by a parallel trajectory.
The loss function for this trajectory is given by [102] (Eq. (17) in paper V)

ΓEELS
‖ (ω) =

2e2L

πh̄v2

∫ ∞

ω/v

dQ
√

Q2 −ω2/v2
e−2Qz0Im(rp(Q, ω)), (3.5)
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where L is the length of the parallel trajectory. The loss function contains
a peak at the frequency where the parallel momentum of the electron and
the plasmon is the same, which is where the white lines cross the yellow
curves in Fig. 3.12(a,b,c) [102]. Another peak is found close to the surface
plasmon frequency, at which the plasmon dispersion has a low slope, thus
giving a large contribution from Im(rp) when integrating along Q. These
peaks are observed in Fig. 3.13 showing the loss functions for a film of 10 ML
Ag(111), where εb is specified in each panel, and with the loss functions for
parallel and perpendicular trajectories shown in black on the left y-axis and
in blue on the right y-axis, respectively. The parallel loss has been computed
using z0 = 0.5 nm. The loss for the perpendicular trajectory when εb = 1
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Fig. 3.13: Loss functions for a film of 10 ML Ag(111) modelled using DFT, where εb is from J&C
in (a) and is set to 1 in (b). In both figures, the loss functions for the parallel and perpendicular
trajectories are shown by the black curve on the left y axis and the blue curve on the right y axis,
respectively.

consists also of two main peaks, located at the bulk and surface plasmon
frequencies, respectively. But when using the measured dielectric function
from J&C in Fig. 3.13(a), the loss function consists of a single peak near the
surface plasmons frequency, as the other peak has been suppressed due to
damping caused by the imaginary part of εb.

An example of the integration kernel for the perpendicular trajectory,
ΓEELS
⊥ (Q, ω) (Eq. 13 in paper V) is shown in Fig. 3.14(a) for N = 10 ML

of Ag(111) at a fixed h̄ω = 3 eV and with εb from J&C. The curve consists
of a relatively narrow peak around Q = 0.17 nm−1, as a plasmon is excited
for this particular Q, as seen in Fig. 3.12(a), whereby the electron loses the
energy described by the kernel ΓEELS

⊥ (Q, ω). In order to calculate the correct
energy loss, it is necessary to use a resolution along Q that is fine enough
to capture the narrow peak in Fig. 3.14(a), where the location of the peak
depends on the frequency. In practice, the integration along Q is performed
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by first calculating the kernel using a rough resolution in Q, from which the
location of the peak can be identified. Afterwards, a fine resolution is applied
for Q close to the peak and trapezoidal integration is applied to obtain the
loss function. Same method is applied to calculate the loss function for the
parallel trajectory, where the kernel is the integrand in Eq. (3.5) (Eq. (17) in
paper V).

In order to account for the surface orientation (facet 111) of the silver film,
another model is applied for the potential across the film. It is called an
atomic layer potential (ALP) and is described as an analytic function with
parameters based on fitting the work function, the fermi energy, the surface
states, and the projected gap to experimental data [104]. An explicit expres-
sion for the potential as well as the applied parameters for Ag(111) can be
found in appendix F of Ref. [101]. The potential is shown across a film of
10 ML Ag(111) as the solid line in Fig. 3.14(b), where the corresponding
electron density is illustrated by the shaded area, while the vertical dashed
lines denote the jellium edges. The potential clearly contains stronger oscil-
lations than the DFT potential in Fig. 3.4(c), and they give rise to a projected
energy gap between the highest occupied state and the lowest unoccupied
state. Furthermore, the ALP contains another type of states called surface
states (SS) [101, 104], and their wave functions are concentrated near the sur-
face. Fig. 3.14(c) shows the discrete energy levels in ALP as a function of the
ML in the film, where the red line and green dots denote the Fermi energy EF

and surface states (SS), respectively. However, here the effective mass of the
occupied energy bands have been varied such that m∗j /me = ah̄ε j + b, where
the blue dots in Fig. 3.14(c) denote h̄ε j, and the value a and b are fitted to
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experiments [104,121–124]. The effective mass of the SS and the empty bands
are set to a constant and the electron mass, respectively. The applied values
are shown in Table 1 in paper V. Using a constant effective mass of all the
bands corresponds to setting a = 0 and b = 1. It is noticed that ε j in paper
V, and in the following, denotes a frequency, with h̄ε j corresponding to the
energy ε j as applied in the dielectric function in paper III and IV. The varying
effective mass model leads to a Fermi energy given in Eq. (10) in paper V,
where Eq. (2.28) above is restored if m∗j = me for all j.

The energy bands of a film of 10 ML Ag(111) calculated using ALP are
shown in Fig. 3.15(a,b) when the effective mass is constant and varying,
respectively. In the former, all the bands have the same curvature, which im-
plies that certain resonances are enhanced in the optical response, thus giving
rise to spurious features. This is clearly seen in Fig. 3.15(c) showing the imag-
inary part of the reflection coefficient on a colorplot, where the bands split up
for energies above 3 eV. When the effective mass of the bands is varied, all the
bands have different curvature, as seen in Fig. 3.15(b), which gives rise to the
reflection coefficient shown in Fig. 3.15(d). Here, the splitting of the bands
has been washed out as no resonances are artificially enhanced. Remarkably,
this reflection coefficient is not so different from the one calculated using the
JEL (DFT) potential in Fig. 3.12(a), despite the fact that JEL does not con-
sider the surface orientation, and therefore contains no projected energy gap.
In addition, a constant effective mass has been applied in JEL. Fig. 3.15(e,f)
show the loss functions for the perpendicular and parallel trajectories with
z0 = 0.5 nm, respectively, where the line types refer to the model used for
the effective mass. Here it is seen that splitting of bands in Fig. 3.15(c) imply
a splitting of peaks in the loss functions. Hence, in order to avoid artificial
splitting phenomena when using the ALP, it is necessary to account for the
varying effective mass of the energy bands. This is one of the main results of
paper V.

Having now established the JEL and ALP models, loss functions calcu-
lated using these two models are compared in Fig. 3.16(a,b) and (c,d) for the
perpendicular and parallel trajectories with z0 = 0.5 nm, respectively. Here
the number of layers is fixed and the electron energy varied in (a,c), while the
energy is fixed in (b,d) varying the number of layers. In the perpendicular
case, the classical model refers to the expression derived in Refs. [4, 6, 125],
while it in the parallel case refers to applying Eq. (3.5) with the classical
reflection coefficient fromEq. (2.39). Remarkably, the results obtained using
the classical model are in good agreement with those obtained using the full
nonlocal quantum dielectric response within the RPA. Furthermore, the for-
mer is almost independent of the actual shape of the potential, as ALP and
JEL give roughly the same results. The same was found for the reflection
coefficient above.

The small effect of nonlocality is assigned to the fact that electron motion
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in the film mostly takes place in the direction parallel to the film, as the film
is strongly confined in the perpendicular direction. Here the motion parallel
to the film is described using a free electron model, where the effective mass
is, however, modified in ALP. Hence in thin metal films, there are two direc-
tions in which the electrons behave as (almost) free, implying that the effect
from the strong nonlocality in the third (perpendicular) direction is relatively
small. This is in agreement with Ref. [76] studying plasmons propagating
in thin metal gaps and slabs, finding that nonlocality is a relatively small
correction. In contrast to nano structures like dimers, clusters, and spheres,
which are confined in all spatial directions, and where nonlocality is more
important and blue-shifts the plasmon resonances [78–80, 85, 86]. The small
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effect from nonlocality for plasmons propagating in thin metal slabs, along
with the physical explanation of the phenomena, is another main result of
paper V, and it also justifies the simplified treatment of nonlocality in paper
III and IV.
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Chapter 4

Conclusions

The main goal of this thesis has been to obtain a theoretical understanding of
plasmons propagating in different noble metal structures at nanoscale. The
structures have consisted of arrays of ultrasharp and rectangular grooves in
gold, a dielectric gap between two parallel metal walls, and a metal slab
sandwiched between different dielectrics.

First, a classical model was applied to study the transition from one to
multiple grooves in gold, calculating the optical cross sections and the re-
flectance from the groove array. Here arrays of ultrasharp and rectangular
grooves are good absorbers in a broadband and narrowband wavelength in-
terval, respectively. Surprisingly, it was found that the scattering and extinc-
tion cross sections increase almost linearly with the number of grooves for
all wavelengths. In addition, the out-of-plane scattering cross sections per
groove is actually larger than the physical dimension of a groove, even for
a large structure of more than 13 wavelengths. Hence, the optical cross sec-
tions can not explain why the reflectance from an infinite array can be very
low. Instead a Gaussian beam has been applied as the incident field, and
the reflectance computed as the total reflected power divided by the incident
power. It is found that a narrow Gaussian beam focused entirely within an
array of 20 grooves gives rise to the same reflectance as an infinite array il-
luminated by a plane wave. However, in order for the calculated reflectance
from an ultrasharp groove array to be in reasonable agreement with previous
measurements, it was necessary to assume a bottom width of the groove of
only 0.3 nm, which is roughly the diameter of a gold atom.

Next, quantum effects were taken into account as classical models have
limitations when the size of the structure is shrinked to atomic scale. The
electron density was calculated using density-functional theory in the jellium
model (JEL), and becomes smooth across an interface between metal and air
with a spill-out range of roughly 0.3 nm. Neglecting nonlocal effects in the
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dielectric function, but applying the smooth electron density, the mode index
for plasmons propagating in a thin gap between two parallel gold walls,
was found to converge to the refractive index of bulk gold in the limit of
vanishing gap. Thus restoring the correct physical behaviour, and removing
the unphysical divergence obtained using classical models. Furthermore, the
calculated reflectance from an ultrasharp groove array when quantum spill-
out is taken into account, is in much better agreement with measurements
compared to classical models. In addition, the bottom width of the groove is
fitted to 2.37 nm, which is much more realistic than the applied 0.3 nm in the
classical model.

Furthermore, the opposite geometry, i.e a metal slab sandwiched between
different dielectrics, has been studied taking spill-out into account. Here,
only the parallel part of the nonlocal contribution was neglected, while the
perpendicular part was modelled by an averaging procedure, resulting in a
local, but anisotropic, dielectric function. Anisotropy was found to modify
both kinds of plasmonic modes, but the relative change was much larger
for the long-range mode. Surprisingly, the effect of spill-out significantly in-
creases the imaginary part of the mode index, and for wide slabs approaching
bulk, the increase is 20 %. This is explained in terms of strong plasmonic ab-
sorption taking place at narrow regions close to the surface, as the real part
of the quantum dielectric function is zero at these positions, showing that the
phenomena is a consequence of quantum spill-out. In addition, the plasmon
mode index does not diverge in the limit of vanishing slab width, instead the
plasmonic mode ceases to exist below a cut-off in the subatom range.

Finally, electron-energy loss spectroscopy (EELS) was studied in thin metal
films within the random-phase approximation, thus giving rise to a full non-
local response. Electrons can be incident perpendicular or parallel to the film,
and they excite plasmons when their energy and momentum are the same,
thereby losing an amount of energy. The energy loss calculated within a clas-
sical model is in good agreement with the loss obtained using JEL and ALP,
showing that nonlocality is a relatively small effect for plasmons propagat-
ing in thin metal films. Importantly, in order to avoid spurious features in
the reflection coefficient and loss functions, it is necessary to account for a
varying effective mass of the occupied states within ALP. The small impact
from nonlocality is explained in terms of the electron motion within the film,
which mostly occurs in the direction parallel to the film, where the electrons
behave as almost free. This is in stark contrast to e.g. metal clusters and
spheres, which are confined in all three spatial directions, and where the
effect of nonlocality is larger.
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The optics ofmultiple ultrasharp sub-wavelength grooves inmetal is studied theoretically. Focus is on the transition
from a single groove, where the scattering cross section is significant and can exceed the groove width, to infinitely
many grooves in a periodic arraywith very low reflectance.When themultiple-groove array is illuminated by a plane
wave the out-of-plane scattering is found to be extraordinarily large compared with the expected maximum from a
geometric-optics estimate even for array widths ofmanywavelengths. The out-of-plane scattering is even higher per
groove compared to the single-groove case. This is explained as an effect of surface plasmon polaritons (SPPs)
generated at one groove being scattered out of the plane by other grooves. This is supported by studies of the
transmittance, reflectance, and out-of-plane scattering, when an SPP is incident on multiple grooves. When illu-
minating instead with a Gaussian beam, and observing the limit where the beam is confined well within the multi-
ple-groove array, the total reflectance is very low and practically no scattering occurs. © 2017 Optical Society of

America

OCIS codes: (050.0050) Diffraction and gratings; (240.6680) Surface plasmons; (290.5825) Scattering theory; (260.3910) Metal

optics.
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1. INTRODUCTION

Recently, it has been found that a single sub-wavelength ultra-
sharp groove in metal may have a significant out-of-plane scat-
tering cross section [1]. On the other hand a periodic array of
the same grooves can transform a shiny and highly reflecting
metal into a black material with broadband absorption and thus
very low reflectance of light [2,3]. The optics of the periodic
array of grooves thus does not follow straightforwardly from the
optics of a single groove. It has been suggested in [1] that the
lack of reflection for the periodic array can be explained as an
effect of mutual (destructive) interference between scattered
waves originating from each groove in the array. In this paper
we test this hypothesis and explore the transition from one to
infinitely many grooves. We will show among other things that
in the case of plane-wave illumination of multiple grooves the
out-of-plane scattering actually does not cancel out as previ-
ously hypothesized, while it holds true in the case of illumina-
tion with a Gaussian beam having a width being smaller than
the multiple-groove array.

While we have chosen in this paper to consider ultrasharp
grooves the phenomenon of near-unity absorption of periodic
arrays of grooves in metal also occurs in the case of rectangular
grooves, and for other tapered grooves that are not sharp [4–6].
In those cases, however, the near-unity absorption occurs only
for a narrow band of wavelengths where the groove acts as an

optical resonator. Similar to our case the single groove of this
type in metal may also have a large scattering cross section
(at resonance) [4], and again the optics of the periodic array
does not follow straightforwardly from the optics of a single
groove.

One possible application of arrays of ultrasharp grooves is as
polarizers for ultrashort laser pulses exploiting that one polari-
zation of light will be efficiently absorbed, while the other
polarization will be efficiently reflected, and with negligible
dispersion in the reflection process [7]. The rectangular grooves
or other grooves that are not sharp may on the other hand be
used for selective thermal emitters that predominantly emit
light with narrow bands of wavelengths [8,9], which is of in-
terest for thermophotovoltaics [10,11]. Broadband omnidirec-
tional absorbers and angularly selective emitters can also be
constructed using arrays of tapered grooves in metal [12]. It
is also possible to make broadband absorbers using crossed-
groove arrays that are not tapered much if grooves are made
deep enough [13], while other crossed-groove arrays with
selective absorption can be used for all-metal structural color
printing [14].

The structure of interest in this paper is illustrated in Fig. 1.
Here, an incident p-polarized Gaussian beam with beam waist
radius w0 is centered at x � x0 being in the middle of an array
of N identical ultrasharp grooves, where each groove is char-
acterized by a top width of 240 nm, a depth of 500 nm,
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a bottom groove width of 0.3 nm, and parallel groove walls near
the groove bottom. The bottom of the groove is rounded by a
small circle of radius 0.15 nm. The period of the finite array of
grooves is 250 nm such that edges of neighbor grooves are sep-
arated by a distance d � 10 nm (Fig. 1). Except for a marginal
10 nm difference in the top groove width the grooves are iden-
tical to those considered in [1]. The total length of the finite
groove array is denoted L. The beam waist radius can be related
to the array length as w0 � γL∕2, where γ is a ratio parameter
of beam waist radius to half the length of the grooves. Figure 1
is illustrated with γ � 1. It will be assumed that the structure
and fields are invariant along the z-axis (2D calculations). The
magnetic field thus only has a z-component (H�r� � ẑH �r� �
ẑH �x; y�). The incident light can be either reflected or scattered
upward, absorbed in the metal, or scattered into surface
plasmon polaritons (SPPs), which are electromagnetic waves
bounded to and propagating along the metal surface.

All calculations presented throughout the paper apply the di-
electric constant of gold from [15] and have beenmade using the
Greens function surface integral equation method (GFSIEM)
outlined in Appendix B of [4]. The case of large N was handled
by using the iterative solution method GMRES (see, e.g.,
[16,17] for a further description). The periodic nature of the
structure was taken advantage of when constructing the matrix
equation by using that the coupling between two grooves in the
array only depends on their relative position. This implies setting
up the matrix scales as 2N instead of N 2.

The paper is organized in the following way. In Section 2 the
incident field is a plane wave (w0 � ∞) and the extinction, scat-
tering, and absorption cross sections are presented for a structure
consisting of a varying number of grooves. In Section 3 the case
of a finite beam waist of the incident Gaussian beam is consid-
ered, and the transition to the case of the beam waist diameter
being smaller than the groove array length L is observed. Here,
we instead calculate angular reflection spectra and total out-of-
plane reflected power. In Section 4 the incident field is a plasmon
and the reflectance, transmittance, and out-of-plane scattering is
studied as a function of the number of grooves in the array. We
offer our conclusions in Section 5. Appendix A outlines the
theory applied in the paper.

2. PLANE WAVE AS INCIDENT FIELD

In this section we consider the situation in Fig. 1 in the limit of
infinite beam waist (w0 → ∞), such that the incident field is a
plane wave. Due to scattering by the multiple grooves some
light will be coupled into the SPPs propagating away from
the grooves along the metal surface, some light will be scattered
out of the plane, and some additional light will be absorbed.
The amount of power removed from the reflected beam due
to scattering and absorption by the grooves will be referred
to as extinction (EXT). By normalizing the power scattered into
the SPPs, the power scattered out of the plane, and the extinc-
tion power, with the power per unit area of the incident plane
wave, we obtain the corresponding EXT, out-of-plane scatter-
ing (OUP), and SPP optical cross sections. In addition we will
need the differential out-of-plane scattering cross section being
the out-of-plane scattered power per unit angle again normal-
ized with the incident power per unit area. The total OUP cross
section is obtained by integrating the differential cross section
over all relevant angles. In addition, the absorption cross section
(ABS) can be defined as the extinction cross section minus
out-of-plane and SPP scattering cross sections.

We consider first the EXT, OUP, and ABS optical cross
sections for a fixed wavelength of 770 nm in Fig. 2(a). These
cross sections are almost linear functions of the number of
grooves. In addition, the scattering cross section is larger than
the absorption cross section for this wavelength, while the op-
posite is the case for a wavelength of, e.g., 550 nm. For the case
ofN � 40 grooves the total length of the grooves is L ≈ 10 μm

ε

ε ε

Fig. 1. Illustration of N identical ultrasharp grooves in metal sep-
arated by the distance d . The grooves are illuminated by a normally
incident Gaussian beam with beam waist radius w0 centered in the
middle of the groove array (x � x0).
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OUP cross section per groove. The wavelength is 770 nm in both
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but the OUP cross section is seen to be approximately 15 μm,
and thus exceeds the length L by a factor of approximately 1.5.
This can also be seen from Fig. 2(b) where the OUP cross section
is normalized with the number of grooves. The OUP cross sec-
tion per groove converges to approximately 370 nm, which
is thus approximately 1.5 times the period between grooves.
It should be noted that in the case of infinitely many grooves
arranged in a periodic array, and being illuminated by a plane
wave of the same wavelength, the reflectance will be less than
16% [2], and finding such a large scattering cross section is thus
a surprising and remarkable result. It is not unusual that a sub-
wavelength plasmonic scatterer can have optical cross sections
that greatly exceed the physical width of the scatterer [1].
However, here the physical length L is more than 13 wave-
lengths (for λ � 770 nm), and for a structure of this size it is
normally assumed that geometric optics is applicable. The
observed scattering for the multiple grooves with large L (or N )
is thus extraordinarily large.

The SPP cross section as a function of number of grooves can
be seen by the triangles in Fig. 2(b) and is a damped oscillatory
function.More grooves do not generally imply a larger SPP cross
section, which can be due to two different phenomena: the plas-
mons excited in different grooves can interfere destructively, and
a plasmon excited at one groove can be coupled out of the plane
by another groove as studied in [18–20]. Note that the OUP
cross section per groove is increasing for a small number of
grooves and converges for approximately 12 grooves at a value
that is higher than for a single groove. This can be explained from
SPPs excited at one groove being coupled out of the plane at
other grooves, which leads to an overall increase in the out-
of-plane scattering per groove for the case of multiple grooves.
This out-coupling of SPPs is studied in more detail in Section 4.

Note that if the purpose of the array of grooves would have
been to efficiently excite SPPs with normally incident light this
would require instead a period close to the plasmon wavelength
of interest [21,22]. Furthermore, the dimensions of the indi-
vidual grooves in an array can be optimized as examined in
[23,24] where it was found that most of the incident light
can be excited into SPPs for optimal groove parameters.

While Fig. 2(a) only considered a wavelength of 770 nm,
the EXT cross sections as functions of the wavelength is seen
in Fig. 3(a) for 1, 5, 10, and 20 grooves. The cross section is
found to scale approximately linear with the number of grooves
for all wavelengths. The same applies for the OUP and ABS
cross sections (not shown). Furthermore, the peaks and valleys
in spectra do not shift much when more grooves are present.
The spectra are thus highly similar to that of a single groove
scaled up by a factorN . The SPP cross section spectra for differ-
ent numbers of grooves are seen in Fig. 3(b), and also here
peaks and valleys do not shift much with N . But in general
no scaling occurs as for the other cross sections, as was also
observed in Fig. 2(b). For some other groove dimensions than
considered in this paper the cross sections of a single groove are
studied in detail in [1], establishing several fundamental results.
Based on the linear scaling of cross sections versus number of
grooves observed in Figs. 2(a) and 3(a) for our specific groove
dimensions, we have reason to believe that the same linear
scaling is valid for other groove dimensions.

In Fig. 2(a) it was observed that the OUP cross section in-
creases almost linearly with the number of grooves. To further
study the scattering from multiple grooves, the differential
OUP cross section is shown in Fig. 4. The differential cross
sections for different N have been normalized such that they
all have a maximum of 1. It is clearly seen that the angular
distribution becomes more narrow when more grooves are
present.
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Fig. 3. (a) EXT cross sections for 1, 5, 10, and 20 grooves. (b) SPP
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3. GAUSSIAN BEAM AS INCIDENT FIELD

In this section we consider again the situation in Fig. 1 but now
with a finite beam waist radius w0 � γL∕2. We will consider
the effect of varying the ratio parameter γ and observe the effect
of using beams that are both wider and more narrow than the
structure. Here, we shall no longer use optical cross sections
since the incident field is not a plane wave. Instead the incident
field has a well-defined power, and the same goes for the power
coupled into SPPs, and the total power reflected into the upper
half-plane. Total reflected power refers to the total power
reflected or scattered into any out-of-plane direction θ in the
upper half-plane.

The reflected power per angle [the differential of Eq. (A10)
in Appendix A] is seen in black in Fig. 5 as a function of angle
for a structure consisting of 20 grooves when γ is 0.5, 2, and
100. A relatively wide structure with 20 grooves was chosen
such that these values of γ correspond to paraxial beams. The
spectra have been normalized by the maximum incident power
per angle. This is also equivalent to the maximum of the re-
flected power versus angle when the incident field is reflected
by a perfect mirror. The incident differential power is seen by
the bright lines (blue online) in the same figure for γ � 0.5 and
2. When γ � 100 the beam is so wide that most of the incident
field will be hitting the flat metal surface outside the grooves
and the grooves only marginally change the total reflection. In
this case the incident power is almost the same as the reflected
power shown as the black solid line, except that it peaks at the
value 1, while the black solid line has a smaller peak value due
to the reflectance from gold being slightly below 100%.

The reflectance being the ratio of total reflected and incident
power [Eq. (A12) in Appendix A] can be found as the area
under the black curve divided by the area under the corre-
sponding blue curve, and is found to be 0.153, 0.408, and
0.96 when γ � 0.5, 2, and 100, respectively. The incident field
behaves almost like a plane wave for γ � 100, which is why the
reflected power is very narrow in angular distribution around
90°. When γ gets smaller the angular power distributions
become broader. When γ � 0.5 the Gaussian beam is entirely

focused within the grooves, and the calculated reflectance is
therefore entirely due to the grooves and not the planar inter-
face outside the grooves as is partly the case for a wider
Gaussian beam.

Importantly notice the difference between the spectra in
Figs. 4 and 5. In Fig. 4 the incident field is a plane wave
and only the squared amplitude of the scattered field is shown,
while the incident field is a Gaussian beam in Fig. 5 and the
squared amplitude of the total reflected field is shown, which is
the sum of the scattered field and the reflected field due to the
reference structure [Eq. (A9) in Appendix A].

The reflectance from 20 grooves at a wavelength of 770 nm
as a function of γ is seen by the asterisks in Fig. 6 and is seen to
converge for both small and large ratio. When the ratio gets
small the reflectance converges to the proper reflectance that
is only due to the scattering structure itself, and not the sur-
rounding planar interface, and this is found to be the case when
γ ≤ 0.5. On the other hand, when the ratio gets large the
reflectance converges to that of a planar interface. Notice that
the γ-axis in the figure is on a log scale, and when the ratio is
500 the reflectance is almost the same as for a planar interface
shown by the horizontal line, which was also partly observed for
γ � 100 in Fig. 5.

The geometric fraction of the incident power that hits the
scatterer depends strongly on γ as seen by the triangles in the
same figure. For γ ≤ 0.5 the Gaussian beam is entirely focused
within the groove array and the geometric fraction is practically
1, which implies that the reflectance is only due to the groove
array. On the other hand, for γ ≥ 500 the Gaussian beam is so
wide that the groove array becomes negligible and the geomet-
ric fraction is practically 0, which implies that the reflectance
becomes that of a flat interface. Notice that the reflectance and
power fraction converge for the same γ.

A. Reflectance as a Function of Number of Grooves

This subsection considers the question of how the total reflec-
tance varies with the number of grooves for a fixed beam waist
radius w0, which we shall set to 1250 nm. The reflectance as a

Fig. 5. Normalized differential incident power dPi∕dθ for varying γ
is seen by the bright lines (blue online) while normalized differential
reflected power dPr∕dθ is in black. The scattering structure consists of
20 grooves and the wavelength is 770 nm.

Fig. 6. Reflectance as a function of γ for 20 grooves at a wavelength
of 770 nm, and corresponding geometric fraction of incident power
that hits the grooves. The horizontal line is the reflectance of a planar
gold interface.
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function of number of grooves for λ � 770 nm is seen in
Fig. 7(a) and is seen to have converged when 20 grooves are
present. Here, 20 grooves is equivalent to γ � 0.5. Also shown
is the geometric fraction of the incident light that hits the scat-
tering structure, and this fraction has converged to 1 when 20
grooves are present. Hence, the reflectance converges when all
the incident light hits the grooves and not partly the planar
interface, which was also observed in Fig. 6. Thus, 20 grooves
are sufficient to obtain the same total reflectance as for infinitely
many grooves.

While Fig. 7(a) only considered the reflectance at
λ � 770 nm, the reflectance as a function of wavelength is seen
in Fig. 7(b) for a structure consisting of 5, 10, and 20 grooves,
still with a fixed beam waist radius of 1250 nm. The reflectance
has converged in the case of 20 grooves, as the same reflectance
is obtained using 30 grooves (not shown). In the case of 20
grooves we find the same reflectance as has been previously ob-
tained for a plane wave incident on infinitely many grooves
arranged in a periodic array [2,3]. It should also be noted that
as γ is made large the scattered fields and SPP fields become
identical to those obtained with plane-wave incidence. The
reflectance for several other groove dimensions is also consid-
ered in [2,3], and we have reason to believe that the same phe-
nomena apply for these dimensions, namely that the same

reflectance is found when using a Gaussian beam entirely
focused within a finite number of grooves.

B. Energy Transportation

In this section we consider the time-averaged Poynting vector
hSi � 1∕2Re�E ×H�� defined in terms of its complex electric
field E and magnetic field H of a Gaussian beam of different
beam waist radius being incident on 20 grooves. The wave-
length is fixed at 770 nm. The Poynting vector flux through
a (closed) surface is equivalent to the power flow through
the surface, and the Poynting vector is commonly interpreted
as a vector pointing in the direction of power flow and with a
magnitude describing the power flowing per unit area [25].

The magnitude of the time-averaged Poynting vector is
shown in Fig. 8 for a structure consisting of 20 grooves when
the incident field is a Gaussian beam with ratios 0.5, 1, 2, and
∞ (plane wave). The length of the groove array is illustrated by
the black horizontal lines. Notice that the calculated fields con-
sist of both the reference fields and the scattered fields. When
γ � 0.5 the incident power fraction within the grooves is prac-
tically 1 (Fig. 6), which implies that only a small part of the
incident light is scattered out of the plane. This is clearly seen
in Fig. 8(a) where the magnitude of the Poynting vector is only
non-zero for positions right above the middle of the grooves. As
γ increases more light is scattered out of the plane, which is
clearly seen in Figs. 8(b)–8(d). For an incident plane wave
as in Fig. 8(d) the region with non-zero Poynting vector is
not so different from the case with γ � 2 in Fig 8(c).
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Fig. 7. (a) The reflectance as a function of number of grooves and
the geometrical power fraction within the grooves for a wavelength of
770 nm. (b) Reflectance as a function of wavelength for a scatterer
consisting of 5, 10, and 20 grooves. The beam waist radius is fixed
at 1250 nm in both (a) and (b).

Fig. 8. Magnitude of time-averaged Poynting vector when a
Gaussian beam is incident on a structure consisting of 20 grooves
at a wavelength of 770 nm. The length of the groove array is illustrated
by the black horizontal lines. The ratio is (a) γ � 0.5, (b) γ � 1,
(c) γ � 2, and (d) γ � ∞ (plane wave).
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This is because the part of a plane wave hitting the planar sur-
face far outside the grooves will experience almost 100% reflec-
tance implying a vanishing net power flow there. The angular
distribution of the scattered field for γ � ∞ is broader com-
pared with, e.g., γ � 2. The same phenomenon was partly ob-
served in Fig. 5 as oscillations in the differential power for
angles deviating from 90°.

4. PLASMON AS INCIDENT FIELD

In this section we consider an SPP being incident on multiple
grooves. A schematic of this situation is shown in Fig. 9(a). Part
of the SPP power will be reflected, transmitted, and scattered
out of the plane. The reflectance, transmittance, and out-of-
plane scattering of an SPP incident on multiple rectangular
grooves has previously been considered in [18,19], while the
case of a single groove or ridge of different shapes was consid-
ered in [20], and the case of a rectangular hole in [26]. The case

of short- and long-range SPPs of thin-metal films being inci-
dent on a rectangular metal nanostrip forming a gap-plasmon
resonator together with the metal film has also been consid-
ered [27].

Figure 9(b) shows the reflectance, transmittance, and out-
of-plane scattering for a plasmon being incident on a single
groove as a function of wavelength. The reflectance is below
7% for all wavelengths; thus only a small part of a plasmon
is reflected. The transmittance is much higher implying that
most of the SPP power is transmitted across one groove,
and below 20% is scattered out of the plane. The fact that
a part of the incident plasmon is scattered out of the plane
serves as a qualitative explanation of why the out-of-plane scat-
tering per groove is higher for multiple grooves compared to the
single groove case [Fig. 2(b)]. The groove dimensions are not
optimized as in [23,24]; thus it is likely that another structure
will result in a lower scattering out of the plane and a higher
absorption level. Figure 9(c) shows the reflectance, transmit-
tance, and out-of-plane scattering as a function of number of
grooves at λ � 770 nm. The transmittance through one groove
is 64% but decreases as more grooves are present and is only
5% for 20 grooves, while the out-of-plane scattering has in-
creased to 61%. The reflectance is almost the same for any
number of grooves. However, the out-of-plane scattering
and absorption increase as more grooves are present.

5. CONCLUSION

In conclusion, the optics of multiple ultrasharp grooves in
metal have been studied theoretically in order to investigate
the transition from the case of a single groove to the case of
infinitely many grooves arranged in a periodic array. It is found
that when the incident field is a plane wave the OUP scattering
cross section is almost a linear function of the number of
grooves. Furthermore, for the considered example the OUP
cross section per groove is approximately 1.5 times the period
between grooves, and is thus higher than what could have been
expected from a geometric-optics estimate of the maximum
OUP cross section. Such a result is not unusual for a single
sub-wavelength scatterer but here it is unusual and thus extraor-
dinarily high because the total scattering structure has a width
of many wavelengths.

The low reflectance of infinitely many grooves arranged in a
periodic array and being illuminated with a plane wave can thus
not be straightforwardly explained as an effect of mutual inter-
ference of waves originating from each groove. Instead, as the
number of grooves is increased, an increasing scattered power is
found within a decreasing angular interval. In addition, the
OUP cross section per groove is higher for multiple grooves
than for a single groove. This is explained as an effect of
SPPs generated at one groove being coupled out of the plane
by other grooves, which is supported by studies of the reflec-
tance, transmittance, and scattering when an SPP is incident on
multiple grooves.

When using instead a Gaussian beam as the incident field
the reflectance was found to strongly depend on the width of
the beam. In the case when the incident beam is sufficiently
narrow to be located entirely within a groove array with many
grooves, e.g., 20 grooves, there is practically no longer any

(a)

(b)

(c)

Fig. 9. (a) Schematic of an SPP wave incident from left on multiple
grooves. The incident plasmon can be reflected, transmitted, scattered
out of the plane, or absorbed in the metal. (b) Plasmon reflectance,
transmittance, and scattering in the case of one groove as a function
of wavelength. (c) Plasmon reflectance, transmittance, and scattering
as a function of number of grooves for λ � 770 nm.
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scattering, and low total reflectance is found being practically
identical to the case of a plane wave being incident on the in-
finitely many grooves arranged in a periodic array.

APPENDIX A

In this appendix we will briefly present the theory applied for
calculating the reflectance and optical cross sections.

We consider incident Gaussian beams with a beam profile
H 0;i�x; y � 0� � A exp�−�x − x0�

2∕w2
0� at y � 0, where A is

the amplitude of the beam. By assuming a large enough beam
waist radius w0 that the paraxial approximation can be applied
(k0w0 ≫ 1, where k0 � 2π∕λ is the free-space wavenumber),
and by using the angular spectrum representation [25] the in-
cident magnetic field is found as

H 0;i�x; y� � Aw0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

w2
0 −

2iy
k0n1

s

e−ik0n1y exp

�

−�x − x0�
2

w2
0 −

2iy
k0n1

�

;

y > 0: (A1)

Here n1 � 1 is the refractive index of air. When no grooves are
present the corresponding reflected field will be

H 0;r�x; y� � Ar12w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
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2iy
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s

eik0n1y exp
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2iy
k0n1

�

;

y > 0; (A2)

where r12 � �n2 − n1�∕�n2 � n1� is the reflection coefficient
for p-polarized light incident normal to a planar interface
between air and gold and n2 is the refractive index of gold.
The corresponding transmitted field will be

H t�x; y� � At12w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

w2
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2iy
k0n2

s

e−ik0n2y exp
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0 −

2iy
k0n2

�

;

(A3)

where t12 � 1� r12 is the transmission coefficient from air
into gold.

Hence, the reference field (no grooves) is given by

H 0�x; y� �

�

H 0;i�x; y� �H 0;r�x; y�; for y > 0
H t�x; y�; for y < 0

: (A4)

This reference field is applied in the GFSIEM as presented in
Appendix B of [4] for modeling of the grooves, and applying
the GFSIEM gives first the magnetic field (H ) and its normal
derivative (n̂ · ∇H ) at the boundary of all the grooves, which is
later used to calculate the scattered field. The field outside the
grooves will be given on the form

H �x; y� � H 0�x; y� �H scat�x; y�; (A5)

where the scattered part of the field is obtained as

H scat�r� � −

I

C2

fg�r; r 0�n̂ 0 · ∇ 0H �r 0�

−H �r 0�n̂ 0 · ∇ 0g�r; r 0�gdl 0; (A6)

where n̂ is the outward surface normal vector and the Greens
function is

g�r; r 0� �
i

2π

Z

∞

kx�0

t21�kx� cos�kx�x − x
0��e−iky2y

0�iky1y

ky2
dkx ;

(A7)

with kyi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20εi − k
2
x

p

, and t21�kx� � 2ε1ky2∕�ε1ky2 � ε2ky1�.

The integration path C2 in Eq. (A6) is on the outer surface of
the grooves buried in the gold layer in the limit where the upper
part of the grooves tends to air gold interface. For a further
description see Appendix B in [4].

A far-field approximation (k0r ≫ 1) of the scattered field
valid at large distances above the grooves is available in [4].
The corresponding far-field approximation for the reference
reflected field is found to be

H
f f
0;r �r; θ� ≈ Ar12w0

ffiffiffiffiffiffiffiffiffi

k0n1
2r

r

e−iπ∕4eik0n1re−iδ

× exp

�

−

�π∕2 − θ�2

4
�k0n1w0�

2

�

; (A8)

where θ ∈ �0; π� is the polar angle with x � r cos θ,
y � r sin θ, and δ � k0n1x0 cos θ is a phase accounting for
the fact that the beam is centered at x � x0. The last exponen-
tial in Eq. (A8) implies that the field is largest for θ � π∕2,
which is in the vertical direction in Fig. 1, and decreases fast
for other angles. The total reflected field in the far field is thus
given by

H
f f
tot;r�r; θ� � H

f f
0;r �r; θ� �H

f f
scat�r; θ�: (A9)

The total out-of-plane reflected power is calculated using the
flux of the time average of the Poynting vector hSi �
1∕2Re�Etot;r ×H

�
tot;r� through a semi-circle in the far field,

where � denotes complex conjugation [25], which yields

Pr �
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The incident power is found in the same way:

Pi �
1

2n1
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: (A11)

The total reflectance R of the structure is defined as the ratio
between the total reflected power and the incident power; thus

R �
Pr

Pi

: (A12)

SPPs are excited by the grooves and carry away a power PSPP,
which can be found using the method in Appendix B in [4].
We have checked that there is energy conservation when ab-
sorption losses in the metal are absent (R � PSPP∕Pi � 1),
and when absorption is present R � PSPP∕Pi < 1.

The case of a plane wave being incident is obtained in the
limit w0 → ∞. Here, we instead calculate the out-of-plane scat-
tered power POUP as

POUP �
1

2n1

ffiffiffiffiffi

μ0

ε0

r Z

π

0

jH
f f
scat�r; θ�j

2
rdθ: (A13)

In the case of plane-wave incidence the calculation of the
power removed from the (now very wide) reflected beam
PEXT due to scattering and absorption caused by the grooves
is also given in Appendix B of [4]. The absorbed power is
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PABS � PEXT − POUP − PSPP, and by normalizing the powers
PSPP, POUP, PABS, and PEXT by the power per unit area of
the incident plane wave we obtain the corresponding optical
cross sections.
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Abstract. This paper theoretically studies how the optics of multiple grooves in a metal change

as the number of grooves gradually increased from a single groove to infinitely many arranged in

a periodic array. In the case of a single groove, the out-of-plane scattering (OUP) cross section at

resonance can significantly exceed the groove width. On the other hand, a periodic array of

identical grooves behaves radically different and is a near-perfect absorber at the same wave-

length. When illuminating multiple grooves with a plane wave, the OUP cross section is found to

scale roughly linearly with the number of grooves and is comparable with the physical array

width even for widths of many wavelengths. The normalized OUP cross section per groove

even exceeds that of a single groove, which is explained as a consequence of surface plasmon

polaritons generated at one groove being scattered out of the plane by other grooves. In the case

of illuminating instead with a Gaussian beam and observing the limit as the incident beam

narrows and is confined within the multiple-groove array, it is found that the total reflectance

becomes very low and that there is practically no OUP. The well-known result for periodic arrays

is thus recovered. All calculations were carried out using Green’s function surface integral equa-

tion methods taking advantage of the periodic nature of the structures. Both rectangular and

tapered grooves are considered. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)
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1 Introduction

Optics of grooves in metal has attracted attention due to their interesting scattering and absorp-

tion (ABS) properties. The optical cross sections of a single subwavelength ultrasharp or tapered

groove in metal have been theoretically studied in detail in Ref. 1 establishing several funda-

mental results describing how the cross sections depend on the groove dimension. Here, it was

found that the out-of-plane scattering (OUP) cross section can exceed the physical width of the

groove in a broad wavelength interval. A periodic array of ultrasharp grooves is on the other hand

found to give rise to broadband ABS, thus turning a shiny, highly reflecting surface into a black

surface.2,3 Thus, a single groove and a periodic array of grooves behave quite different, and in

Ref. 1, it was suggested that the very low reflectance of the periodic array was due to mutual

destructive interference between the scattered fields from the individual grooves. This hypothesis

was recently tested in Ref. 4, where the optics of multiple ultrasharp grooves in metal was stud-

ied as the transition from one to infinitely many grooves. Surprisingly, it was found that the

hypothesis was not correct when the incident field is a plane wave. The OUP cross section

was found to scale approximately linear with the number of grooves and to be ∼1.5 times larger

than the physical width of the grooves even for widths of many wavelengths. Instead, it was

found that when illuminating 20 grooves with a Gaussian beam entirely focused within the

grooves, the reflectance is the same as for a periodic array illuminated by a plane wave.

*Address all correspondence to: Enok J. H. Skjølstrup, E-mail: ejs@mp.aau.dk
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In this paper, we explore the same transition as in Ref. 4 but for rectangular and tapered (not

ultrasharp) grooves and show that the same principles apply for these types of grooves when they

are combined in an array of multiple grooves. For these types of grooves, the cross sections are

found to be significantly large only for a narrow band of wavelengths,5–8 and thus, the optical

cross-section spectra are quite different from previous work.

An application for arrays of tapered grooves in metal is to use them in constructing broad-

band omnidirectional absorbers and angularly selective emitters.9 As only p-polarized light will

be efficiently absorbed in the grooves while s-polarized light will be almost perfectly reflected,

an array of ultrasharp grooves can be applied as polarizers for ultrashort laser pulses.10 As the

rectangular and tapered grooves only absorb light for wavelengths close to the resonance, an

application for those grooves is in selective thermal emitters,11,12 which can be advantageous

in thermophotovoltaics.13,14

The structure of interest in this paper is shown in Fig. 1(c), where the grooves can be either

rectangular [Fig. 1(a)] or tapered [Fig. 1(b)]. The rectangular grooves have a depth of 500 nm and

a width of 50 nm, whereas the tapered grooves have a depth of 350 nm, a top width of 100 nm,

and a bottom width of 60 nm, where all the corners are rounded by a circle with a radius of 4 nm

as in Ref. 5, implying that the top width of the rectangular grooves is 58 nm. The incident field in

Fig. 1(c) is a normal Gaussian beam with beam waist radius w0 centered at x ¼ x0 in the middle

of the array ofN identical grooves. There is a distance d between the grooves, and the total length

of the groove array is denoted L. The beam waist radius is related to the array length by

w0 ¼ γL∕2, where γ is a ratio parameter determining the width of the Gaussian beam. The sche-

matic in Fig. 1(c) corresponds to γ ¼ 1. The incident light can be either reflected, scattered

upward, absorbed in the metal, or scattered into surface plasmon polaritons (SPPs), which

are electromagnetic waves bounded to and propagating along the metal surface. As in

Ref. 4 the magnetic field only has a z-component [HðrÞ ¼ ẑHðrÞ ¼ ẑHðx; yÞ], and the structure
is considered invariant in the z-direction, which implies that 2-D-calculations are performed.

Gold is applied as the metal, and the dielectric constant of gold is from Ref. 15. The calculations

are performed using the Green’s function surface integral equation method (GFSIEM) as pre-

sented in Appendix B in Ref. 5. See Ref. 4 for a further description of how the matrix equation is

constructed and solved using the iterative method GMRES.16,17

The paper is organized in the following way: Sec. 2 contains the case with a plane wave

(w0 ¼ ∞) as the incident field, and here, extinction (EXT), scattering, and ABS cross sections

are calculated for a structure of varying N, where the grooves are rectangular with the afore-

mentioned dimensions. A Gaussian beam is used as the incident field in Sec. 3, where the

grooves are still rectangular. Here, the beam waist radius is varied, and angular reflection spectra

and total out-of-plane reflected power are calculated. In Sec. 4, the incident field is a plasmon

and the reflectance, transmittance, and OUP is studied as a function of the number of grooves. In

Sec. 5 the grooves are tapered, and here, both optical cross sections and reflectance as a function

of wavelength are presented.

(a) (b) (c)

Fig. 1 (a) A rectangular groove, (b) a tapered groove, (c) schematic of N identical rectangular

grooves in metal separated by the distance d . The incident field is a normal Gaussian beam

with beam waist radius w0 centered in the middle of the groove array (x ¼ x0).
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2 Plane Wave as Incident Field

In this section, the incident field is a plane wave, which means that the beam waist radius w0 in

Fig. 1(c) tends to infinity. When light is incident on the multiple grooves, scattering occurs and

some light is coupled into SPPs propagating along the metal surface away from the grooves,

some light is scattered out of the plane, and some light is absorbed in the metal. EXT refers to the

amount of power removed from the reflected beam due to scattering and ABS. The correspond-

ing EXT, OUP, and SPP cross sections are obtained by normalizing the respective powers by

the power per unit area of the incident light. The ABS cross section is given by the EXT cross-

section minus the OUP and SPP cross sections. See Appendix B in Ref. 5 for a description of

how the cross sections are calculated using the GFSIEM.

The rectangular shape of the grooves is found to give rise to a narrowband resonant behavior

in all the cross sections.5 For the particular dimensions of the grooves considered here, the cross

sections of a single groove are found to be resonant at a wavelength of 660 nm as will later be

shown in Fig. 5(a). Before multiple grooves are considered, it is chosen to study cross sections

for a structure of only two grooves depending on the distance between them. It is chosen to fix

the wavelength at λ0 ¼ 660 nm, and the EXT, OUP, and SPP cross sections are seen in Fig. 2 as

a function of distance between the two grooves. All the cross sections are oscillating with

certain extreme values to be explained. For the SPP cross section, the first minimum is found

at d ¼ 260 nm. With a top width of a single groove at 58 nm [see Fig. 1(a)], the period of

the structure for this d is 318 nm, which equals a half plasmon wavelength, where

λSPP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðε1 þ ε 0
2
Þ∕ðε1ε

0
2
Þ

p

λ0 ¼ 635 nm, and ε 0
2
is the real part of the metal dielectric constant

ε2.
18 Hence at d ¼ 260 nm, the SPPs generated at the different grooves interfere destructively

implying that the SPP cross section is practically 0. When this happens almost all of the scattered

light is coupled out of the plane, as seen by the fact that the OUP cross section is a maximum at

almost the same d for which the SPP cross section is minimized. When d increases toward

a plasmon wavelength, plasmons generated at the different grooves interfere constructively

implying that scattering into SPPs has a maximum, and at approximately the same d, both

the OUP and EXT cross sections are minimized. At d ¼ 300 nm, the EXT cross section has

a maximum; at d ¼ 600 nm, it has a minimum; therefore, it is chosen to consider these distances

in the following. The inset in Fig. 2 shows the differential OUP cross section for d ¼ 600 nm.

Here, interference similar to a double slit predicts that destructive interference occurs at 60 deg

and 120 deg, which is verified in the inset.19

For multiple grooves, the EXT, OUP, and ABS cross sections are seen at a wavelength of

660 nm in Fig. 3 when the distance d is 300 nm in (a) and 600 nm in (b). Especially in Fig. 3(a),

the cross sections are almost linear functions of the number of grooves, while in Fig. 3(b) the

linear behavior first begins after ∼10 grooves. It is clearly seen that the cross sections in Fig. 3(a)

are much larger than those in Fig. 3(b), and this large difference is not entirely caused by the fact

that the EXTand OUP cross sections are smaller for d ¼ 600 nm than for d ¼ 300 nm according

to Fig. 2. As will later be shown in Fig. 5(b) for d ¼ 600 nm, the resonance wavelength is
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Fig. 2 EXT, OUP, and SPP cross sections for a structure of two grooves with varying distance d

between the grooves. The inset shows the differential OUP cross section at d ¼ 600 nm.

The wavelength is 660 nm.
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blue-shifted from the 660 nm being the resonance wavelength of a single groove and furthermore

a smaller peak occurs around 700 nm. Hence, when the wavelength is 660 nm, as is the case in

Fig. 3, there is no resonance for d ¼ 600 nm, which implies that the cross sections are much

smaller compared with Fig. 3(a). For N ¼ 40 grooves the OUP cross section is ∼12 μm for

d ¼ 300 nm, and here, the total length of the groove array is L ≈ 14 μm. However, the grooves

themselves only occupy approximately one sixth of the length, as the distance d between the

grooves is much larger than the groove width. The OUP cross section per groove is seen in Fig. 4,

where again d ¼ 300 nm in (a) and d ¼ 600 nm in (b). In Fig. 4(a), the OUP cross section per

groove converges to ∼300 nm, which is ∼0.85 times the groove period, but more than five times

larger than a single groove width. For d ¼ 600 nm, the OUP cross section for 40 grooves is

∼1 μm as seen in Fig. 3(b), and the OUP per groove thus converges to ∼25 nm as seen in

Fig. 4(b). This much smaller cross section per groove is again due to the fact that for

d ¼ 600 nm the wavelength at 660 nm is not resonant.

The linear behavior of the EXT, OUP, and ABS cross section as a function of number of

grooves was recently found for ultrasharp grooves in Ref. 4, where the OUP per groove was

found to be ∼1.5 times the groove period. In this study, the grooves had a wide opening at

240 nm in the top and a bottom width of only 0.3 nm with only d ¼ 10 nm between the grooves.

Furthermore, the reflectance of an infinite array of the same grooves illuminated by a plane wave

was found in Ref. 2 to be 16% for this particular wavelength at 770 nm, and the extraordinary

large OUP cross section for a structure consisting of 40 grooves was, therefore, a surprising and

remarkable result. For the rectangular grooves considered in this paper, the OUP cross section

per groove is thus comparable with Ref. 4, but with the difference that it is smaller than
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the groove period (by the factor ≈0.85) but much larger than a single groove width (by

the factor > 5).

The SPP cross section is shown by the triangles in Fig. 4 being a damped oscillatory function

in Fig. 4(a) and an increasing function in Fig. 4(b). According to Fig. 2, the distance d ¼ 300 nm

is close to the minimum where the plasmons generated at different grooves interfere destruc-

tively resulting in a small SPP cross section. Another phenomenon that implies a small SPP cross

section is the fact that a plasmon generated at one groove can be coupled out of the plane by

another groove as examined in Refs. 20–22. This effect will be studied in detail in Sec. 4. In

Fig. 4(b), the distance d is close to the maximum of SPP cross section according to Fig. 2. Here,

plasmons generated at different grooves interfere constructively resulting in an overall increase

in the total SPP cross section. Hence, if the purpose of the structure is to efficiently excite plas-

mons the groove period should be close to the plasmon wavelength as studied in Refs. 23 and 24.

In addition, it was found in Refs. 25 and 26 that the dimensions of the individual grooves can be

optimized in such a way that most of the incident light is excited into SPPs. Furthermore, the

efficiency of SPP excitation from a single and multiple (but finite) rectangular grooves is studied

in Ref. 27, showing that the SPPs can be excited with a significantly higher efficiency when more

grooves are present.

While only a wavelength of 660 nm has been considered so far, the EXT cross section is seen

as a function of wavelength for a structure consisting of 1, 5, 10, and 20 grooves in Fig. 5 for

d ¼ 300 nm in (a) and d ¼ 600 nm in (b). Especially in Fig. 5(a), the EXT cross-section scales

approximately linear with N for all considered wavelengths, and the same is found for the OUP

and ABS cross sections (not shown). Here, the resonance wavelength has slightly changed from

660 nm for one groove into 657 nm for 20 grooves. This change in resonance wavelength is more

pronounced in Fig. 5(b) where it is blue-shifted by ∼30 nm compared with the spectrum for

a single groove, but as N increases, the resonance wavelength slightly red-shifts again.

As in Fig. 5(a) the EXT cross-section scales roughly linear with N at most wavelengths.

However, in Fig. 5(b) the groove period is comparable with the wavelength, which implies

that Rayleigh–Wood anomalies split the resonance wavelength into two peaks instead of

one.28–30 This splitting is more pronounced for N ¼ 20 implying that the linear scaling of

EXT with N fails for wavelengths around 700 nm for N < 20.

The same linear scaling of EXT cross section for many wavelengths was recently found in

Ref. 4 for ultrasharp grooves, where the cross sections were large in a much broader wavelength

interval. Based on this linear scaling for a specific groove dimension, and the study of the cross

sections of a single groove for many different groove dimensions in Ref. 1, it was postulated in

Ref. 4 that the linear scaling will also be valid for other groove dimensions, and Fig. 5(a) con-

firms this for a rectangular groove being a narrowband resonator.

As seen in Fig. 3, the OUP cross-section scales approximately linear with the number of

grooves. To further study the out-of-plane scattering from multiple grooves, the differential

OUP cross section is shown in Fig. 6 for a structure consisting of 1, 5, 10, and 20 grooves
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with d ¼ 300 nm and λ ¼ 660 nm. The differential cross sections have all been normalized such

that they have a maximum of 1. When many grooves are present the angular distribution clearly

becomes much more narrow. Notice that the OUP cross section is found by integrating the

differential OUP cross section from 0 deg to 180 deg.

3 Gaussian Beam as Incident Field

In this section, the incident field is a Gaussian beam with beam waist radius w0 ¼ γL∕2 as shown

in Fig. 1(c) for γ ¼ 1. The same type of calculations as in Ref. 4 is performed, see for example,

the appendix in Ref. 4 for a further explanation of the calculation of relevant terms.

3.1 Reflectance as a Function of Beam Waist Radius

First, it is studied how the incident field and reflected field depend on the ratio parameter γ,

which determines the beam waist radius of the Gaussian beam. A structure consisting of 20

grooves with d ¼ 300 nm between the grooves is considered, and the wavelength is chosen

to be 660 nm. The incident power per angle is seen by the bright lines (blue online) in

Fig. 7(a) for γ ¼ 0.5 and 2, and even for such small γ the beam is still paraxial (meaning

that 2πw0∕λ ≫ 1) as the structure has been chosen to be sufficiently wide such that this is

achieved for γ ≥ 0.5. It is clearly seen that a smaller γ implies that the angular distribution
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online) and the normalized differential reflected power in black at a wavelength of λ ¼ 660 nm.

(b) Reflectance and power fraction as a function of γ for 20 grooves at a wavelength of

λ ¼ 657 nm. The distance d ¼ 300 nm in both (a) and (b).
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is broader. The reflected power per angle is seen in black in the same figure when γ ¼ 0.5, 2, and

100. For γ ¼ 100, the incident field is so wide that it mostly hits the planar surface surrounding

the grooves and the grooves themselves only marginally contribute. Therefore, the incident and

reflected beams are almost the same, why only the reflected field is shown in Fig. 7(a), and it is

very narrow in angular distribution as it behaves almost, such as a plane wave. The reflectance is

found as the area under the black curve divided by the area under the corresponding blue curve

and is found to be 0.03, 0.31, and 0.95 when γ ¼ 0.5, 2, and 100, respectively. Hence, the reflec-

tance strongly depends on γ since a high γ implies that the Gaussian beam also hits the planar

surface and not entirely the grooves. This is found not to be the case for γ ≤ 0.5, why in this case

the calculated reflectance is entirely due to the grooves and not the surrounding planar surface.

The reflectance is thus calculated as a function of γ and is shown by the asterisks as in

Fig. 7(b) for the same structure consisting of 20 grooves with d ¼ 300 nm. Notice that the

γ-axis in the figure is on a log scale.

As mentioned in Sec. 2, the resonance wavelength for the structure consisting of 20 grooves

has slightly changed into 657 nm, why this wavelength has been used in Fig. 7(b) while 660 nm

was the wavelength in Fig. 7(a). The reflectance is seen to converge for both small and large γ,

where it converges to the proper reflectance, which is entirely due to the grooves when γ ≤ 0.5

and converges to that of a flat gold surface when γ is large, as illustrated by the black horizontal

line in the figure. The power fraction illustrated by the triangles in the same figure shows the

geometric fraction of the incident power that actually hits the grooves. This fraction is practically

1 for γ ≤ 0.5 and is practically 0 for γ ≥ 500. Importantly, notice that the reflectance and power

fraction converge for the same γ.

3.2 Reflectance as a Function of Number of Grooves

In this subsection, it is studied how the reflectance depends on the number of grooves for a fixed

beam waist radius w0, which is set to 1715 nm corresponding to γ ¼ 0.5 for 20 grooves. In Fig. 8,

the reflectance as a function of number of grooves is seen for λ ¼ 657 nm and converges to

practically 0 when 20 grooves are present. Thus, it is found that 20 grooves are sufficient

to obtain the same reflectance as a structure consisting of infinitely many grooves. As in

Fig. 7(b), the triangles show the power fraction and it converges to 1 when 20 grooves are present

as was also observed in Fig. 7(b). Hence, Fig. 8 shows that the reflectance converges to the

proper reflectance of the grooves when all the incident light hits the groove array. The same

result was obtained in Ref. 4 for ultrasharp grooves.

Whereas Fig. 8 only considered λ ¼ 657 nm the reflectance as a function of wavelength is

seen in Fig. 9 for 5 to 20 grooves, where d ¼ 300 nm and w0 ¼ 1715 nm. The reflectance of the

structure consisting of 20 grooves is found to be the same as for a periodic array of the same

grooves illuminated by a plane wave as studied in Ref. 5, and the same result was found in Ref. 4

for ultrasharp grooves. The reflectance is shown for 5, 7, 10, and 20 grooves and is low, close to

the resonance wavelength and comparable with that of pure gold for longer wavelengths. Here,

more grooves imply that the reflectance at resonance becomes lower as was also shown in Fig. 8,
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Fig. 8 Reflectance and power fraction as a function of number of grooves for a fixed beam waist

w0 ¼ 1715 nm. The wavelength is 657 nm and d ¼ 300 nm.
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but off resonance the reflectance is almost independent of the number of grooves. The inset in

Fig. 9 shows the reflectance for a smaller wavelength interval close to the resonance wavelength,

and here it is possible to see the difference in reflectance between 10 and 20 grooves. It is

remarkable that the reflectance of 20 grooves when illuminating with a Gaussian beam becomes

practically 0, when the same groove structure illuminated with a plane wave has a very large

OUP cross section as observed in Sec. 2. The same kind of result was found in Ref. 4 for ultra-

sharp grooves, and there, it was postulated to be valid for other groove dimensions as well, and

Fig. 9 confirms this for rectangular grooves.

3.3 Energy Transportation

As in Ref. 4, the energy transportation is investigated based on the time-averaged Poynting vec-

tor hSi ¼ 1∕2ReðE ×H�Þ, where E and H are the complex electric and magnetic field, respec-

tively, and where * denotes complex conjugation. The interpretation of the Poynting vector is

that it points in the direction of the power flow with a magnitude describing the power flow per

unit area.18 Figure 10 shows the magnitude of the time-averaged Poynting vector when

a Gaussian beam with ratios of 0.5, 1, 2, and∞ (plane wave) is incident on a structure consisting

of 20 grooves with d ¼ 300 nm between the grooves and with a wavelength of 660 nm. The

black horizontal lines in the figure illustrate the length of the groove array. When γ ¼ 0.5 the
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Fig. 10 (Color online) Magnitude of time-averaged Poynting vector when a Gaussian beam is

incident on a structure consisting of 20 grooves at a wavelength of 660 nm with d ¼ 300 nm.

The horizontal black lines denote the groove array and the ratios are (a) γ ¼ 0.5, (b) γ ¼ 1,

(c) γ ¼ 2, and (d) γ ¼ ∞ (plane wave).
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incident field is entirely focused within the grooves [see Fig. 7(b)], which implies that there is

almost no light scattered out of the plane. This is clearly observed in Fig. 10(a), where the mag-

nitude of the Poynting vector is zero for all other positions than right above the groove array.

When γ increases, more light is scattered out of the plane as shown in Figs. 10(b)–10(d). When

the incident field is a plane wave, as shown in Fig. 10(d), most of the incident light hits the planar

surface surrounding the grooves where they experience almost total reflectance as pure gold is

almost a perfect mirror at this wavelength. Hence, far outside the grooves, the net power flow is

very low. The angular distribution of the scattered field is broader for γ ¼ ∞ than for γ ¼ 2

[Fig. 10(c)], which was also partly shown in Fig. 7(a) as the oscillations in differential powers

for angles deviating from 90 deg.

4 Plasmon as Incident Field

In this section, we consider an SPP being incident on multiple rectangular grooves with

d ¼ 300 nm between the grooves. A schematic of this situation is shown in Fig. 11(a),

where the SPP is incident from left, thus it can be reflected, transmitted, scattered out of the

plane, or absorbed. The reflectance, transmittance, and OUP of an SPP incident on multiple

rectangular grooves have previously been considered in Refs. 20 and 21 whereas the case of

a single groove or ridge of different shapes was considered in Ref. 22 and the case of a rec-

tangular hole in Ref. 31. The case of short- and long-range SPPs of thin-metal films being

incident on a rectangular metal nanostrip forming a gap-plasmon resonator together with the

metal film has also been considered.32

Figure 11(b) shows the reflectance, transmittance, and OUP for a plasmon being incident on

a single groove as a function of wavelength. Like in Figs. 5(a) and 9(a), clear resonant behavior is

observed with a dip in transmittance relatively close to the resonant wavelength at 657 nm. The

fact that a part of the incident plasmon is scattered out of the plane at resonance serves as

a qualitative explanation of why the OUP per groove is higher for multiple grooves compared

with the single groove case as was observed in Fig. 4(a). Figure 11(c) shows the reflectance,

transmittance, and OUP, as a function of number of grooves at λ ¼ 657 nm. The plasmon trans-

mittance through one groove is almost 50% but decreases as more grooves are present while the

scattering and ABS level increase. When 10 grooves are present less than 1% of the incident light

is transmitted, and therefore, all three curves remain constant hereafter. For ultrasharp grooves, it

was found in Ref. 4 that still 5% of the incident light was transmitted through a structure con-

sisting of 20 grooves (at λ ¼ 770 nm). Hence, the array of rectangular grooves blocks the light of

an incident plasmon better compared with an array of ultrasharp grooves. Notice that the plas-

mon reflectance is highest when two grooves are present, which is due to the fact that the dis-

tance between the grooves is roughly a half wavelength, thus the reflected light from the two
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Fig. 11 (a) Schematic of an SPP wave incident from left on multiple rectangular grooves. The

incident plasmon can be reflected, transmitted, or scattered out of the plane. (b) Plasmon reflec-

tance, transmittance, and scattering in the case of one groove as a function of wavelength.

(c) Plasmon reflectance, transmittance, and scattering as a function of number of grooves for

λ ¼ 657 nm and d ¼ 300 nm. Inset shows normalized differential power for a structure consisting

of 20 grooves.
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grooves interferes constructively resulting in a higher plasmon reflectance. When more grooves

are present, multiple reflections within the groove array imply that the plasmon reflectance

decreases. The inset in Fig. 11(c) shows a polarplot of the normalized differential power

when 20 grooves are present showing that most of the scattered light is actually scattered

obliquely backward at an angle of approximately 150 deg. The plot has been normalized

such that integrating the differential power from 0 deg to 180 deg gives 0.55, which is the

plasmon scattering for 20 grooves.

5 Tapered Grooves

Until now rectangular grooves have been examined as shown in Fig. 1(a). In this section, tapered

grooves are considered with a depth of 350 nm, a top width of 100 nm, and a bottom width of

60 nm as seen in Fig. 1(b). In Ref. 5, tapered grooves are found to give rise to broader resonances

compared with rectangular grooves, which can be understood in terms of the resonator formal-

ism presented therein. The tapered grooves are studied here following the same procedure as for

the rectangular grooves studied in Secs. 2 and 3. Thus first two grooves are studied, and the cross

sections found as a function of distance between the grooves. The result is found to be very

similar to Fig. 2 and with approximately the same d giving rise to the extrema. The EXT

cross section as a function of wavelength is seen in Fig. 12(a) for a structure consisting of

1, 5, 10, and 20 grooves with d ¼ 300 nm between the grooves, where the resonance wavelength

is 704 nm. The spectra are quite similar to those of the rectangular grooves in Fig. 5(a) but with

a broader resonance. Again the EXT cross section scales almost linear with the number of

grooves for the considered wavelengths. The reflectance of the same structure when illuminating

with a Gaussian beam is seen in Fig. 12(b) and follows the same principles as the rectangular

grooves in Fig. 9. Here, the beam waist radius w0 has been fixed at 1925 nm, which here cor-

responds to γ ¼ 0.5 for a structure consisting of 20 grooves. Again the reflectance of the struc-

ture consisting of 20 grooves is the same as for a periodic array of the same grooves illuminated

by a plane wave. Here, the reflectance at resonance is 0.34 even when 20 grooves are present,

illustrating that the grooves have to be sufficiently narrow in order for the reflectance at reso-

nance to be very low. Hence for the tapered grooves considered here, the resonance is broader,

and it is not possible to achieve perfect ABS as for rectangular grooves.

6 Conclusion

The optics of multiple rectangular and tapered grooves in metal has been studied theoretically to

examine the transition from a single groove to infinitely many grooves arranged in a periodic

array. When the incident field is a plane wave the OUP cross section depends approximately
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linearly on the number of grooves, a result that was also recently found for multiple ultrasharp

grooves. The OUP cross section per groove is comparable with the groove period even though

the scattering structure has a width of many wavelengths. Furthermore, the OUP cross section

per groove is higher than for a single groove, which is explained by the fact that an SPP gen-

erated in one groove can be scattered out of the plane by other grooves, and this is supported by

studying the reflectance, transmittance, and OUP when an SPP is incident on multiple grooves.

A structure consisting of infinitely many grooves in a periodic array illuminated by a plane wave

has a very low reflectance at resonance, but this is not due to destructive interference occurring

between the scattered fields of different grooves. Instead, a narrow Gaussian beam focused

entirely within the grooves has to be used as the incident field in order for the reflectance

of multiple grooves to be the same as for an infinite array of grooves illuminated by a plane wave.

When the distance between the rectangular grooves is 300 nm a structure consisting of 20

grooves is found to be a near-perfect absorber for wavelengths close to 657 nm while it, for

longer wavelengths, is a nearly perfect mirror. When the distance between the grooves increases

to 600 nm the reflectance is found to be close to that of pure gold independent on the number of

grooves in the structure. For tapered grooves, the resonance is broader, but the minimal reflec-

tance is found to be 0.34 even when 20 grooves are present, and the tapered grooves considered

here can, therefore, not be used as a perfect absorber.
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Plasmons in ultranarrow metal gaps are highly sensitive to the electron density profile at the metal surfaces.

Using a quantum mechanical approach and assuming local response, we study the effects of electron spill-out on

gap plasmons and reflectance from ultrasharp metal grooves. We demonstrate that the mode index of ultranarrow

gap plasmons converges to the bulk refractive index in the limit of vanishing gap and, thereby, rectify the unphysical

divergence found in classical models. Surprisingly, spill-out also significantly increases the plasmonic absorption

for few-nanometer gaps and lowers the reflectance from arrays of ultrasharp metal grooves. These findings are

explained in terms of enhanced gap plasmon absorption taking place inside the gap 1–2 Å from the walls and

delocalization near the groove bottom. Reflectance calculations taking spill-out into account are shown to be in

much better agreement with measurements compared with classical models.

DOI: 10.1103/PhysRevB.97.115429

I. INTRODUCTION

In the past decade, plasmonic structures have attracted
attention, in part due to their efficiency in absorbing incident
light [1,2] and their ability to squeeze light below the diffraction
limit [3–6]. Furthermore, plasmonic structures can be applied
in, e.g., solar cells, lasers, and biosensors [7–9]. Metal surfaces
support surface plasmon polaritons (SPPs) that are electromag-
netic waves bound to and propagating along the surface, while
deep-subwavelength gaps between metal surfaces may support
gap plasmons, i.e., waves confined to and propagating along
the gap. Such gap plasmons localized in gaps of nanometer
size between spherical and triangular nanoparticles have been
studied in Refs. [3,10]. Furthermore, the propagation of gap
plasmons in wider gaps between two parallel metal surfaces
has been studied in Refs. [11–14], and when propagating in
rectangular or tapered grooves in Refs. [15–17]. In all these
papers, quantum spill-out is neglected, such that the dielectric
function takes one value in the gap region and another value in
the metal, thus changing abruptly at the interfaces.

In this paper, we focus on gaps of a few nanometers
in metals, which can be found in ultrasharp groove arrays
[12,18–21]. In such grooves, nearly parallel metal surfaces
are separated by an ultranarrow gap near the bottom. These
structures are broadband absorbers of light [19,20], and most
of the absorption takes place in the bottom part of the grooves
[22]. In addition, most of the physics can be explained in terms
of gap plasmons propagating back and forth in the grooves. So
far, the modeling of ultrasharp grooves has not taken quantum
spill-out effects into account, and in the extreme limit of
vanishing gap width, the resulting gap plasmon mode index di-
verges [12–16], which is clearly unphysical. Importantly, only
minor oscillations are observed in the measured reflectance
spectra from Ref. [20], which does not match present theories
neglecting spill-out.

*ejs@mp.aau.dk

We show in this paper that by assuming local response
taking quantum spill-out into account leads to a drastically
improved agreement with the measured reflectance from arrays
of ultrasharp grooves in gold films. Furthermore, the mode
index of gap plasmons converges to the refractive index
of bulk gold for vanishing gaps, thus restoring physically
correct behavior. The range of electron spill-out is only about
0.3 nm, implying that when the gap width is below 0.6 nm
the electron distributions from the two gold surfaces overlap,
and electrons can tunnel across the gap, while the surfaces
do not couple electronically for wider gaps. Surprisingly, we
demonstrate in the following that the effect of spill-out also
significantly increases the absorption when the gap width is a
few nanometers, thus far outside the tunnel regime.

II. QUANTUM DIELECTRIC FUNCTION

In a quantum mechanical description of metal surfaces,
the electron density has an exponential tail stretching into the
vacuum region due to tunneling through the surface barrier. A
highly efficient model of such spill-out effects is provided by
density-functional theory (DFT) in the jellium approximation
treating the positive ions as a constant charge density inside the
metal [23,24]. The distribution of free (s,p band) electrons in
this positive background produces an inhomogeneous electron
density with a characteristic spill-out into the vacuum region.

The density of free electrons in the vicinity of a gap between
metal surfaces is found by self-consistently solving the Kohn-
Sham equations [23] within the jellium model. The exchange
and correlation potentials that appear in these equations are cal-
culated applying the local density approximation (LDA) [25],
using the Perdew-Zunger parametrization in the correlation
term [26]. The applied Wigner-Seitz radius for gold is rs =
3.01 Bohr [24]. The electron density is calculated for a structure
consisting of two parallel gold slabs of width d separated by
the gap width w. The width of the slabs must be thick enough
such that artificial finite-size effects are negligible, and we find

2469-9950/2018/97(11)/115429(9) 115429-1 ©2018 American Physical Society
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that d = 2.6 nm is sufficient. The density is calculated using
a standing-wave basis of the form sin(nπ (x/L + 1/2)), where
n = 1,2, . . . ,200 and L = 8 nm, and it has been checked that
the density has converged with respect to the number of basis
functions. A variation in Fermi energy between two iterations
below 10−7 Ha is used as the convergence criterion in the
optimization process, and an Anderson mixing scheme [27]
with mixing parameter 0.005 is applied.

Such a DFT model has in other cases previously been ap-
plied to calculate the optical cross sections of metal nanowires
[28–31], metal clusters and spheres [28,32–34], and the plas-
mon resonance of metal dimers [35,36] and of semiconductor
nanocrystals [37]. In addition, it was shown in Ref. [38] that
electron spill-out has a significant impact on the local density
of states for gap plasmons propagating between two gold
surfaces. In a similar manner, quantum tunneling was found
to have a significant impact on the local field intensity in metal
nanostructures [39]. In Ref. [40] different quantum mechanical
effects in plasmonic structures with subnanometer gaps were
studied, and it was found that spill-out plays a significant role
in the optical cross sections and near-field enhancement factors
of a sodium dimer, which is in agreement with the experimental
results from Ref. [41]. Furthermore, nonlocality was studied in
Refs. [40,42] for sodium and gold dimers, respectively, and it
was found that nonlocal effects slightly blue-shift the plasmon
resonances. A similar result was found in Refs. [43,44] for
gold cylinders, where an analytic estimate of the blue-shift
is found in Ref. [44]. Furthermore, it was found in Ref. [38]
that for plasmons propagating in narrow metal gaps, the spill-
out effect generally dominates compared to nonlocal effects.
Reference [29] studied the optical response of metal nanowires
using time-dependent DFT (TDDFT), as well as classical local
and nonlocal response. It was found that by including screening
as in Refs. [45–47], results for both the local and nonlocal
response become in excellent agreement with results obtained
using TDDFT.

The separation of the optical response into local and
nonlocal effects follows rigorously from quantum mechanical
response theory [48] within the random phase approximation
[25]. Hence, considering surfaces normal to the x axis the
following full dielectric response can be derived from the
electric conductivity in Ref. [48],

ε(x,x ′) =

(

1 −
e2n(x)

meε0ω2

)

δ(x − x ′)

+
i

2π2ε0h̄ω

∫

fnm

jnm(x)jmn(x ′)

ω + iŴ − ωm + ωn

d2k. (1)

Here, n(x) denotes the spatially varying electron density corre-
sponding to a position-dependent plasma frequency ω2

p(x) =

e2n(x)/(meε0) [49], where e and me denote the electron charge
and mass, respectively. In the second line of Eq. (1) jnm is a
matrix element of the paramagnetic transition current between
states n and m with energies h̄ωn and h̄ωm, respectively, and
the integral is over the two-dimensional electron momentum
�k. Also, fnm denotes the difference between Fermi factors for
the states and Ŵ is a damping term.

In Eq. (1), the last term is the nonlocal one responsi-
ble for the blue-shifts in plasmon resonances observed in
Refs. [40–44]. In this paper, similar to Refs. [31–33,37], we

FIG. 1. Schematic of the bottom 30 nm of an ultrasharp groove

with a bottom width of 0.3 nm. The three insets show the electron

density n/n0 at the bottom of the groove and for gap widths of 0.5 nm

and 1 nm. The colored areas in the insets show the position of the

gold surfaces.

neglect such nonlocal effects and thereby treat the dielectric
function as a local response. As a consequence, we can
approximate ε(x,x ′) = ε(x)δ(x − x ′) with the local response
ε(x) ≈ 1 − ω2

p(x)/ω2, i.e., the Drude dielectric function. This
simple expression is modified below to contain damping and
interband effects. It is shown in the next two sections how this
local treatment rectifies the unphysical divergence of the mode
index found in classical models, and leads to a calculated re-
flectance from ultrasharp groove arrays in excellent agreement
with measured reflectance spectra. Hence, most of the physics
regarding plasmons in narrow metal gaps can be explained
using a local model, and it seems sufficient only to include
the quantum effect of electron spill-out and not the nonlocal
effects in order to get reliable results.

A continuous range of widths between metal surfaces can
be found in ultrasharp grooves [12,19,20]. Figure 1 shows
a schematic of the bottom 30 nm of a groove with bottom
width of 0.3 nm in accordance with the geometry considered
in Refs. [19,20]. The three insets show the calculated electron
density n(x,w) in units of the bulk gold electron density n0 at
three different cross sections of the ultrasharp groove corre-
sponding to gap widths w = 0.3, 0.5, and 1 nm, respectively.
The colored areas mark the position of the gold surfaces. Due
to spill-out, the electron density extends a small distance into
the gap and, especially for the smallest gap width of 0.3 nm,
the density only decreases to roughly 9% of the bulk gold
density in the center of the gap, while it decreases to about 1%
when the gap width is 0.5 nm. Hence, there is no true vacuum
region between the gold surfaces for these gap widths. For the
larger gap of 1 nm, the electron density drops practically to
zero 0.3 nm from the gold surfaces, such that the two gold
surfaces do not couple electronically. The range of spill-out
is therefore 0.3 nm, and electrons can tunnel from one gold
surface to the other only when the gap width is below 0.6 nm.
In addition, the electron density inside the metal is also affected
near the surface and shows Friedel oscillations, in agreement
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with previous studies of the electron density across a single
boundary between metal and air [23,24,50].

It is noticed that all the calculated densities only include
spill-out from parallel gold slabs, and these densities are
merged together in a region, where the curvature of the groove
walls is small in order to form the density across the two-
dimensional ultrasharp groove. Electron spill-out also occurs
from the bottom of the groove and affects the density on a
length scale comparable to the spill-out range. However, in
this paper we ignore spill-out from the bottom, an assumption
that will be explained in Sec. IV.

Next, the electron density is applied to compute the di-
electric function ε across the structure as described by the
local Drude model modified to include the inhomogeneous
density as mentioned above. In addition to the free electrons,
bound electrons are found in lower lying d bands, and they
contribute to the interband part of the dielectric function [49].
In contrast to the free electrons, we assume no spill-out of
bound electrons into the gap region, and they are therefore
entirely located in the bulk region. In Refs. [45–47], a thin
surface layer with ineffective screening has been applied to
account for the interband part of the dielectric function, such
that this contribution is a step function changing abruptly a

few Å from the surface at the metal side of the interface.
Applying this model, plasmon resonances in nanometer-size
clusters of gold, silver, and copper are calculated and are in
good agreement with measurements. In this paper, however,
similar to Ref. [38], we ignore this thin surface layer and
assume thereby that the interband part of the dielectric function
is a step function changing abruptly at the interfaces between
air and gold, thus at the same position as the jellium edge. It
is shown in Sec. IV that this simple description of the bound
electrons leads to good agreement with measurements of the
reflectance of an ultrasharp groove array.

In the bulk, the electron density n0 implies a bulk plasma

frequency of ωp,bulk =
√

n0e2/(meε0) and an accompany-
ing Drude response εp,bulk(ω) = 1 − ω2

p,bulk/(ω2 + iωŴ) [49].
Similar to Ref. [38] we include the interband contribution by
requiring the bulk response to equal the measured dielectric
function εgold(ω) from Ref. [51] such that the final dielectric
function is given by

ε(ω,x,w) = 1 −
ω2

p(x,w)

ω2 + iŴω

+ [εgold(ω) − εp,bulk(ω)]θ (|x| − w/2). (2)

This is a modification of the dielectric function introduced
above, as it also contains both damping and interband ef-
fects. Here, the first term describes the local Drude re-
sponse of free electrons with plasma frequency ωp(x,w) =
√

n(x,w)e2/(meε0) determined by the electron density n(x,w)
calculated using DFT. In addition, the damping term in gold is
h̄Ŵ = 65.8 meV [49] and the step function models the abrupt
behavior assumed for the bound electron interband term.

An example of the dielectric function is seen in Fig. 2(a) for
w = 0.35 nm at a wavelength of 775 nm, where the colored
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FIG. 2. (a) Real and imaginary parts of ε(x,w) for w = 0.35 nm,

where the colored areas show the position of the gold surfaces.

(b) and (c) 3D plots of real and imaginary parts of ε(x,y) in the

bottom 25 nm of an ultrasharp groove. The wavelength is 775 nm.
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areas mark the position of the gold surfaces. The real part is
clearly seen to jump according to the step function in Eq. (2)
and the dielectric function equals the bulk value in the gold
regions that are sufficiently far from the air-gold interfaces.
The imaginary part in Fig. 2(a) also jumps, but it is difficult to
see in the figure. The Friedel oscillations in the electron density
(Fig. 1) result in corresponding oscillations in the dielectric
function [Fig. 2(a)].

Figure 2(b) shows a 3D plot of the real part of the dielectric
function ε(x,y) in the bottom 25 nm of the ultrasharp groove
at wavelength 775 nm. The black curve in the xy plane shows
the structure of the groove. A 3D plot of the imaginary part
of ε(x,y) is seen in Fig. 2(c). The imaginary part is small but
nonzero in the entire shown region implying that absorption of
light takes place even in the middle of the gap.

As spill-out from the bottom of the groove is neglected there
is pure gold at positions below y = −500 nm as illustrated by
the blue color in Fig. 2(b) and the red color in Fig. 2(c). As
y increases and the groove width increases one should think
that the effect of electron spill-out would become negligible
as it only occurs very close to the groove walls as observed
in Fig. 1. However, most surprisingly, when it comes to the
mode index and the absorption density, spill-out also has a great
influence for gap widths of a few nanometers, even though they
far exceed the tunnel regime.

III. MODE INDEX AND ABSORPTION DENSITY

OF A PROPAGATING GAP PLASMON

A gap between two metal surfaces supports gap plasmons
propagating in the y direction. Gap plasmons are p-polarized
electromagnetic waves, implying that the corresponding mag-
netic field �H (�r ) = ẑH (x,y) for a constant w is given by [18]

H (x,y) = eik0βyH (x), (3)

where H (x) is the transverse field distribution, β is the complex
mode index, and k0 = 2π/λ is the free space wave number.
Both the transverse field distribution and the mode index
depend strongly on the gap width w.

A gap can also support ordinary waveguide modes, but in
order for the associated wave to be propagating, the gap has to
be larger than half a wavelength, and such wide gaps are not
considered in this paper. For smaller gaps, waveguide modes
can also exist, but then the imaginary part of the mode index
is much higher than its real part, implying that the waves are
exponentially damped in the waveguide [52]. They therefore
play a negligible role compared to the much longer propagating
plasmonic modes.

The mode index is calculated for a fixed widthw by applying
a transfer-matrix method [53]. This is done by dividing the x

axis into N sufficiently thin layers, each modeled as having a
constant dielectric function. For the mode index to converge
it is found that thicknesses of 2.7 × 10−4 nm are sufficient. A
structure matrix S is constructed, which relates the magnetic
field to the left of the structure to that at the right of the structure,

S = Tg1

N−1
∏

i=1

(TiTi,i+1)TNTN,g :=

(

S11 S12

S21 S22

)

. (4)

Here, a matrix with a single index denotes propagation in that
particular layer, a matrix with two indices denotes an interface
matrix, and the subscript g denotes bulk gold. Expressions
for the propagation and interface matrices can be found in
Ref. [53]. The field to the left of the structure is then given by

(

0
H−

L

)

= S
(

H+
R

0

)

. (5)

Here, R and L denote right and left of the structure, re-
spectively, and + and − denote the direction, in which light
propagates. Left and right of the structure there is only light
propagating in the negative and positive direction, respectively.
From Eq. (5) it is found that the matrix element S11 must be
zero. The matrices in Eq. (4) depend on the mode index β,
implying that S11 is a function of β, and to find the roots S11

is evaluated for a range of complex β values. By observing
sign changes in the real and imaginary parts of S11 a region
of β values is identified where S11 is close to zero. The
Newton-Raphson method is then applied to obtain the exact
root. Four periods of Friedel oscillations are found sufficient
in the modeling of the dielectric function near the gold surface
in order for the mode index to converge, c.f. Fig. 2(a), and the
bulk value is applied beyond this range.

Applying this method the mode index of a gap plasmon
has been calculated using the dielectric function from the
previous section. The mode index as a function of w is shown
in Fig. 3(a) for λ = 600 nm and in Fig. 3(b) for λ = 775
nm. In Ref. [38], David and de Abajo studied gap plasmons
propagating between two gold surfaces including spill-out. In
that paper, in particular, the local density of states is calculated,
from which it is possible to obtain a dispersion relation. Hence,
a quantitative comparison with the present work can be made.
From Figs. 3(a) and 3(b) in this paper, it is found that for a gap
width of 1 nm, the real part of the mode index, when including
spill-out, is 20.2 when λ = 600 nm and 13.9 when λ = 775 nm.
These values correspond to parallel wave numbers (identical to
k0β) of 0.21 nm−1 and 0.11 nm−1, respectively, which agree
well with values estimated from Fig. 3(f) in Ref. [38]. The
same accordance is found when neglecting spill-out and also
for a gap width of 0.5 nm, which can be seen by comparing
the values obtained from Figs. 3(a) and 3(b) in this paper with
values estimated from Figs. 3(a), 3(b) and 3(e) in Ref. [38].
Hence, the real part of the mode index calculated in this paper
is in quantitative agreement with Ref. [38]. In the present work,
however, we calculate both components of the complex mode
index exactly and, in contrast to Ref. [38], we show in Figs. 3(a)
and 3(b) how they are explicitly dependent on w.

The red solid and dashed lines are the real and imaginary
parts of the mode index obtained when including electron spill-
out. The horizontal green lines represent the real and imaginary
part of the refractive index ngold from Ref. [51], and the mode
index is seen to converge to this value for sufficiently small w.
It is difficult to see in the figure, but the real part of ngold shown
by the solid green line is positive but very small. The blue lines
show the mode index obtained when neglecting electron spill-
out similar to previous studies [12–14]. Here, the mode index
diverges for w → 0, which cannot be correct from a physical
point of view. The mode index must converge to the refractive
index of bulk gold for small gaps, since in this case the structure
is simply bulk gold. For distances w below 0.35 nm, the mode
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lines show the corresponding mode index when neglecting spill-out.
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imaginary parts of the mode index with and without spill-out (SO).

index of the gap plasmon is almost the same as the refractive
index of pure gold. Hence, even though the dielectric function
for w = 0.35 nm is quite different from that of pure gold [see
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FIG. 4. Absorption density in the bottom 30 nm of an ultrasharp

groove. In the bottom 10-nm absorption takes place across the entire

gap, but as y increases and the groove gets broader, absorption mostly

takes place 0.15 nm from the interfaces. The wavelength is 775 nm.

Fig. 2(a)], the system nevertheless behaves almost as pure gold
when it comes to the mode index of a propagating gap plasmon.
For large w, the mode index both with and without spill-out
converges to

√

εgold/(εgold + 1) [49], as in this case the wave
behaves as an SPP bound to a single interface (not shown).

On the other hand, when the gap width is a few nanometers,
thus far outside the tunnel regime, the real part of the mode
index is almost the same with and without spill-out, as seen
by comparing the red and blue solid lines in Figs. 3(a)
and 3(b). However, there is a large difference between the
imaginary parts of the mode index, as seen by comparing
the corresponding dashed lines. This is further illustrated in
Fig. 3(c) showing the ratio of the imaginary parts of the mode
index with and without spill-out (SO). For gaps of a few
nanometers, the imaginary part of the mode index is seen to
be much higher when including spill-out, especially for long
wavelengths. In the figure, the color is dark red for every value
above 5, but the maximal value is more than 20 which is found
for a gap width of 0.5 nm at a wavelength of 850 nm. Hence
for few-nanometer gaps the effect of spill-out on the imaginary
part of the mode index is significant.

To elucidate the physics behind the increased imaginary
part, the absorption density,

A(x,y) = | �E(x,y)|2Im(ε(x,y)), (6)

is calculated as shown in Fig. 4 in the bottom 30 nm of an
ultrasharp groove at a wavelength of 775 nm, where the colored
areas show the position of the gold. Here, the electric field has
been calculated from the magnetic field in Eq. (3) as [49]

�E =
i

ωε0ε
�∇ × ẑH. (7)

In the bottom of the groove, where the gap width is 0.3 nm, the
absorption density clearly jumps across the boundaries in order
for the normal part of the displacement field to be continuous
across the interfaces [49]. It is noticed that the dielectric
function on the gap side of the interface has a numerically
higher value than on the gold side of the interface, which is due
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to the abrupt jump in the bound electron term [see Fig. 2(a)]. In
order for the displacement field to be continuous, this implies
that the electric field magnitude is correspondingly lower on
the gap side than on the gold side, which explains why the
absorption density in the bottom of Fig. 4 increases across the
interface. If spill-out is neglected, the dielectric function has
a numerically higher value on the gold side of the interface,
which implies that in this case the electric field magnitude
drops across the interface. As y increases and the groove
gets broader, the absorption density mostly consists of two
peaks located about 0.15 nm from the groove walls. At these
positions, the real part of the dielectric function is zero (at
the wavelength 775 nm), while the imaginary part is small but
nonzero, [see Figs. 2(b) and 2(c)], which ensures that the peaks
in absorption density are finite and not diverging.

When neglecting spill-out the dielectric function has zero
imaginary part in the gap and absorption can only take place
in the metal. It is highly surprising that the effect of spill-
out significantly increases the absorption density also for
few-nanometer gaps that far exceed the tunnel regime. How
this affects the reflectance from an ultrasharp groove array is
studied in the next section.

IV. REFLECTANCE FROM AN ULTRASHARP

GROOVE ARRAY

Periodic arrays of ultrasharp grooves absorb light almost
perfectly in a broad wavelength interval, which is utilized in
plasmonic black gold, where the grooves turn a shiny gold
surface into a broadband absorber [19,20]. Rectangular or
tapered (not ultrasharp) grooves may on the other hand absorb
efficiently in a narrow band of wavelengths [17,54–56], which
is advantageous in thermophotovoltaics [57,58]. Hence, the
reflectance spectrum of an array of grooves strongly depends
on the groove shape. Previously the reflectance of a groove
array has only been calculated when neglecting spill-out, but in
this section it is calculated when taking spill-out into account.
This is done by applying the stack matrix method (SMM) of
Ref. [18], where the grooves are divided into layers with a
refractive index corresponding to the gap plasmon mode index.
In Ref. [18], the SMM was applied to calculate reflectance
from ultrasharp groove arrays when neglecting spill-out, and
the results were practically identical to results obtained using
a full Greens function surface integral equation method.

As mentioned in the previous section, the mode index of the
propagating gap plasmon is almost the same as in pure gold
for gap widths below 0.35 nm [see Figs. 3(a) and 3(b)] even
though the dielectric function is quite different from that of
pure gold [see Fig. 2(a)]. By looking at the groove structure in
Fig. 1, it is found that the distance between the groove walls
is below 0.35 nm at the bottom 8 nm of the groove, thus the
gap plasmon behaves almost as pure gold in this region. As
mentioned in Sec. II electron spill-out also occurs from the
bottom and affects the density in a short range from the bottom.
But, as the range of spill-out is much shorter than the 8 nm, it
only influences the dielectric function at positions where the
mode index already behaves almost as pure gold and where
minor variations in dielectric function implies no change in
mode index. This explains why we have reasons to ignore the
spill-out from the bottom of the groove.
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The array of ultrasharp grooves in gold is illustrated in the
inset in Fig. 5. Here the reflectance from an ultrasharp groove
array illuminated by normally incident light is shown for the
wavelength interval 550–850 nm, where the groove height is
450 nm, the top width is 240 nm, and the bottom width is
0.3 nm. Including spill-out leads to the reflectance shown by
the red line on the left y axis in Fig. 5. The same groove
dimensions were applied in Ref. [20] where electron spill-out
was neglected, which gives the reflectance shown by the blue
line on the right y axis in the same figure. By noticing the
very different scale on the left and right axes in the figure, it
is clearly seen that the effect of spill-out significantly lowers
the reflectance from an ultrasharp groove array in gold. This
is expected since the imaginary part of the gap plasmon mode
index is higher when including spill-out [see Fig. 3(c)].

The mode index and, thus, the degree of absorption depends
on how the field profile is distributed between the gap and the
metal regions. It is therefore investigated how spill-out affects
the field profile for a small gap. The electric field of the gap
plasmon in Eq. (7) has both an x and a y component, where
the x component jumps across the interface as observed in
the bottom of Fig. 4. The corresponding magnetic field in
Eq. (3) only has a z component, which is continuous across
the interface [49], and makes the magnetic field preferable for
illustrating the penetration of the field into the metal.

The gap plasmon transverse field magnitude |H (x)| is
shown in Fig. 6(a) for a gap width of w = 0.45 nm both with
and without spill-out at a wavelength of 775 nm. The field
distributions have been normalized by their maximum value.
The blue line shows the field when neglecting spill-out. In this
case the mode index β is high [see blue lines in Fig. 3(b)],

which implies that the imaginary part of kx = k0

√

n2
gold − β2

is also high. The field is therefore partly localized in the air
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(b) Corresponding plasmon penetration length as a function of w with

and without spill-out. Horizontal green line shows the penetration

length of an SPP bound to a single gold surface, i.e., in the limit of an

infinite gap. The wavelength is 775 nm in both (a) and (b).

gap region and the penetration length calculated as 1/Im(kx)
is only 4.8 nm.

When including spill-out for the same w the mode index is
closer to that of pure gold [see red lines in Fig. 3(b)], and kx

is therefore smaller, which yields a more delocalized field as
shown by the red line in Fig. 6(a). Here the penetration length
is 15 nm, and most of the field is therefore located in the pure
gold regions. But as the absorption density for this w consists
of two peaks, as in the upper part of Fig. 4, absorption mostly
takes place 0.15 nm from the interfaces and not in the pure
gold regions, even though the magnetic field in Fig. 6(a) is
mostly located there. The figure shows that when including
spill-out the field profile becomes approximately three times
broader. This effect becomes more pronounced for smaller w,
and for w = 0.35 nm the field is almost 100 times broader,
which is due to the fact that the mode index is almost equal to
the refractive index of bulk gold when including spill-out.
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The penetration length as a function of w is shown in
Fig. 6(b) with and without spill-out at a wavelength of 775 nm.
The blue line shows the case when neglecting spill-out, and
for small w the field is highly localized implying a very short
penetration length, which was also observed in Fig. 6(a). When
including spill-out the penetration length shown by the red
line for small w becomes very high and diverges as shown in
the inset. Thus, the field behaves almost like a plane wave
in the limit w → 0. On the other hand, when w increases
the penetration length becomes almost the same with and
without spill-out. Then, at a first glance, the effect of spill-out
seems to be negligible for gaps of a few nanometers, but
as was found in the previous section significant absorption
takes place in the gap region 0.15 nm from the interfaces. It
is astonishing that even though the field penetration into the
gold surfaces is almost the same with and without spill-out for
few-nanometer gaps the absorption is still much higher when
including spill-out. The horizontal green line in Fig. 6(b) shows
the penetration length of an SPP bound to a single interface
between gold and air [49]. When the gap becomes sufficiently
wide the gap plasmon behaves almost as a single SPP bound
to a gold surface, and the penetration lengths shown by the red
and blue lines are found to converge to the horizontal green
line for large w (not shown).

The bottom width b of an ultrasharp groove is impossible
to measure precisely. In the calculations in Refs. [19,20],
where spill-out was neglected, the bottom width was set
to 0.3 nm, which is close to the gold atom diameter.
This was necessary in order to obtain a reflectance com-
parable to measured values. However, it was found in
Fig. 5 that the reflectance from an ultrasharp groove ar-
ray with this bottom width is significantly lower when
spill-out is included. It is therefore investigated in Fig. 7,
which impact the bottom width has on the calculated re-
flectance of a 450-nm deep ultrasharp groove array with
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top width 240 nm. For bottom widths below 1 nm the re-
flectance is always below 1.3% (not shown), being thus still
significantly lower than both measured and calculated values in
Refs. [19,20]. By adjusting b to minimize the root mean square
error between calculated and measured reflectance, it is found
that the bottom width b = 2.37 nm gives the best reflectance.
The calculated reflectance when including spill-out for this b

is shown by the red line in Fig. 7, and is in excellent agreement
with the measured reflectance from Ref. [20] shown in black
in the same figure.

The blue dashed and solid lines in Fig. 7 show the calculated
reflectance when neglecting spill-out for bottom widths of
0.3 nm and 2.37 nm, respectively. For b = 2.37 nm the
reflectance is now much higher than the measured reflectance.
The result for 0.3 nm, also shown in Fig. 5, is similar in
magnitude to the measured reflectance shown in black but the
oscillations in the calculated reflectance spectrum are clearly
not present in the measured reflectance. On the other hand
such oscillations are not present in the calculation that includes
spill-out, in which case a much better agreement with the
measured reflectance is obtained.

In Ref. [20], the reflectance has been measured for several
different fabricated arrays of ultrasharp grooves. In the theoret-
ical calculations performed in this paper and in Refs. [19,20]
it has been assumed that all the grooves in the periodic array
are identical. This is extremely hard to guarantee in practice
when fabricating the grooves, and SEM and optical microscope

images of the arrays of grooves in Ref. [20] also show that there
are minor variations. The fact that the fabricated groove arrays
are not perfectly periodic may explain some of the deviation
between the calculated reflectance including spill-out and the
measured reflectance.

V. CONCLUSION

Using a quantum mechanical approach and assuming local
response, the properties of gap plasmons in ultranarrow metal
gaps have been investigated. Electron spill-out is found to play
a crucial role for both plasmon propagation and reflectance
from ultrasharp groove arrays. In these geometries, a classical
approach based on bulk optical properties leads to unphysically
diverging mode indices in the limit of vanishing gap width.
We demonstrate, however, that divergencies are avoided when
spill-out is taken into account. Importantly, spill-out also has
a great impact on gaps of a few nanometers, since power is

strongly absorbed in the gap region 1–2 Å from the interfaces.
As a consequence, calculated reflectance spectra are in excel-
lent agreement with measured reflectance spectra for ultrasharp
groove arrays.
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A quantum mechanical approach and local response theory are applied to study plasmons propagating in

nanometer-thin gold slabs sandwiched between different dielectrics. The metal slab supports two different kinds

of modes, classified as long- and short-range plasmons. Quantum spill-out is found to significantly increase the

imaginary part of their mode indices, and, surprisingly, even for slabs wide enough to approach bulk the increase

is 20%. This is explained in terms of enhanced plasmonic absorption, which mainly takes place in narrow regions

located near the slab surface.

DOI: 10.1103/PhysRevB.99.155427

I. INTRODUCTION

Recently, it was found that the effect of quantum spill-out
in nanometer-thin gaps in gold has a significant impact on
the propagation of surface plasmon polaritons (SPPs) in such
structures. In the limit of vanishing gap, the SPP mode index
was found to converge to the refractive index of bulk gold [1],
while classical models neglecting spill-out find a diverging
mode index [2,3]. In addition, it was discovered in Ref. [1]
that spill-out significantly increases the plasmonic absorption
in these gaps. Furthermore, the predicted reflectance from
an ultrasharp groove array is in much better agreement with
measurements [4] than the classical model [5,6].

In this paper, we study the opposite geometry, i.e., a
nanometer-thin gold slab surrounded by different dielectrics.
Such a structure supports long- and short-range SPPs, which
are p-polarized electromagnetic waves bound to and propa-
gating along the slab [7–11]. For a nanometer-thin slab, the
short-range mode is strongly bound, meaning that a large
part of the field profile is located in the slab region, while
the long-range mode is weakly bound with most of its field
profile located in the dielectric regions. The magnetic fields
of the modes are symmetric and antisymmetric, respectively,
if the metal slab is sandwiched between identical dielectrics,
while the symmetry is broken when sandwiched between
different dielectrics [9]. Applications of such SPPs are found
in, e.g., plasmonic lenses for biosensors and as mode couplers
into dielectric or plasmonic waveguides [12,13]. In addition,
plasmonic structures find applications within, e.g., solar cells
[14] and, furthermore, they can be applied to squeeze light
below the diffraction limit [15,16], and can be utilized in
lasers [17].

Plasmons supported by metal slabs have previously
been studied using both classical and quantum models
[7–11,18–21]. Thus, Refs. [7–11] applied a classical model
neglecting quantum spill-out, such that the dielectric function
takes one value in the metal region and another value in the

*ejs@mp.aau.dk

dielectric region, thus changing abruptly at the inter-
faces, while quantum effects have been included in, e.g.,
Refs. [18–21]. Furthermore, gold films with thicknesses down
to 1 nm have recently been fabricated [22].

Here, we examine the effect of quantum spill-out on
plasmons propagating in nanometer-thin gold slabs. Local
response theory is applied to calculate the mode indices
and associated electromagnetic fields. We show that spill-out
significantly increases the imaginary part of the mode index,
even for slabs wide enough to approach bulk. This is explained
in terms of strong plasmonic absorption mainly taking place
a few Å from the slab surface, a phenomenon not found in
classical models.

II. QUANTUM DIELECTRIC FUNCTION

In the vicinity of the gold slab, the electron density and
the effective potential arising from the free electrons (in the
s, p band) are significantly modified due to electron tunneling
through the surface barrier. To capture this effect, we calculate
the electron density using density-functional theory (DFT) in
the jellium model [23,24] (see Appendix A for further descrip-
tion). The optical cross sections of metal nanowires [25–28],
metal clusters, and spheres [25,29–31] have previously been
calculated by applying such a DFT model in the jellium
approximation. Likewise the plasmon resonances of metal
dimers and semiconductor nanocrystals have been calculated
in Refs. [32–34], while Ref. [20] studied the plasmonic prop-
erties of ultrathin metal films. In addition, Ref. [35] examined
the role of electron spill-out and nonlocal effects on the
plasmon dispersion relation for gap plasmons propagating
between two gold surfaces as well as plasmons propagating
in gold slabs surrounded by air. It was found in that paper
that spill-out has a significant impact while the influence from
nonlocal effects was minor. In Refs. [20,35], only the real part
of the parallel wave number (analogous to mode index) was
considered, with no studies of the dependence of the slab (or
gap) width on plasmon propagation. In this paper, in contrast,
we compute both real and imaginary parts of the mode index

2469-9950/2019/99(15)/155427(9) 155427-1 ©2019 American Physical Society
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FIG. 1. (a) Electron density in units of the bulk gold density n0

across a gold slab of width 1 nm. (b) Real and imaginary parts of

the dielectric function ε across the same gold slab at a wavelength of

775 nm, with the shaded areas indicating the surrounding dielectrics.

The solid black (blue) curve is for a slab surrounded by air (glass) on

both sides. The imaginary part is unaffected by the kind of dielectric.

In both figures, the colored areas represent the ion charge.

and, furthermore, investigate in detail how they depend on the
slab width.

The electron density n across a gold slab of width d =
1 nm is shown in Fig. 1(a) in units of the bulk gold density
n0, where the geometry is chosen such that the x axis is
perpendicular to the slab, while the plasmons are propagating
in the y direction. The colored area in the figure shows the
position of the ion charge in the jellium model, and spill-out
is clearly seen to occur as the electron density contains an
exponential tail that stretches ∼0.3 nm into the dielectric
region. In addition, charge is conserved (

∫

n(x)dx = n0d),
and the density inside the slab is thus also affected by spill-out.
In Fig. 1(a) the integrated value of the spilled-out charge is
0.05n0d . As the slab gets wider, the electron density near
the slab boundary contains Friedel oscillations in agreement
with Refs. [23,24,36] where the electron density at a single
interface between gold and air was studied.

The dielectric response function has been studied in several
papers [37–43] using a fully quantum mechanical approach
within the random phase approximation [44]. As the metal
slab is a two-dimensional (2D) material, it only has bound-
aries in the direction perpendicular to the slab, implying that
the response is anisotropic. The tensorial dielectric function
←→ε (x, x′) can be obtained from the electric conductivity in
Ref. [43] as

←→ε (x, x′) =

(

1 −
e2n(x)

meε0(ω2 + iŴω)

)

δ(x − x′)
←→

I

−
1

2π2ε0 h̄ω2

∑

n,m

∫

fmn(�k‖)

×
�jnm(�k‖, x)�jmn(�k‖, x′)

ω + iŴ + ωm − ωn

d2k‖. (1)

Here, the first line is a local isotropic Drude term,
where the spatially varying electron density n(x) corre-
sponds to a position-dependent plasma frequency ω2

p(x) =

e2n(x)/(meε0), where e and me denote the electron charge

and mass, respectively. In the second line of Eq. (1), fnm(�k‖)
denotes the difference between Fermi factors of states with
energies h̄ωn and h̄ωm, respectively, where �k‖ is in the (y, z)

plane, thus parallel to the slab. Furthermore, �jnm is a matrix
element of the transition current (see Appendix B for an
explicit expression) and Ŵ is a damping term. The second
line of Eq. (1) is denoted ←→ε NL(x, x′). Equation (1) shows,
thus, that rigid quantum mechanical response theory implies
a dielectric response function that is separable into a local
isotropic and a nonlocal anisotropic term. The nonlocality has
been studied in several papers [18,21,45–48], and for metal
dimers and cylinders it is found to only slightly blue-shift
the plasmon resonances, illustrating, as in Ref. [35], that
nonlocality is a relatively small modification to the dielectric
response.

For the short-range mode, the x and y components of the
electric field are odd and even, respectively [7,8]. From the
expressions of �jnm in Appendix B this implies that the nonlo-
cal part of the displacement field �DNL(x) = ε0

∫ ←→ε NL(x, x′) ·
�E (x′)dx′ is zero on average across the slab, where the con-
tribution from the x component of the field is zero because
the field is odd, while the contribution from the y component
is zero due to orthogonality of the wave functions applied
in �jnm. For the y component the same applies for the long-
range mode. Based on symmetry arguments, this explains the
physics behind the small impact from the nonlocal effects on
the short-range mode. The same phenomenon has previously
been discussed for other cases in Refs. [18,21,35,45–48].

For the long-range mode, the x component of the field
is almost constant across the slab [7,8], which implies that
the contribution to �DNL, which is nonzero on average, is
reduced to an integral of the x̂x̂ component of ←→ε NL with
respect to x′. In this paper, the nonlocal part of the dielectric
function is taken into account by an averaging procedure,
which leads to an anisotropic step function that gives the
correct net response from the slab for both kinds of modes.
It is modeled as a piecewise constant function taking the
value

∫∫ ←→ε NLdx dx′/d inside the slab and zero outside (see
Appendix B for details). The effect of spill-out is included

155427-2
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in the first line of Eq. (1), while the effects of interband
transitions and dielectric substrates will be incorporated by
modifying the local dielectric function as shown below.

In general, the dielectric tensor is given by ←→ε =
diag(ε⊥, ε‖, ε‖) [49], where the parallel part ε‖ is similar to
the one in Ref. [1]. In the bulk, the electron density n0 implies

a bulk plasma frequency of ωp,bulk =
√

n0e2/(meε0), which
gives rise to a Drude response εp,bulk(ω) = 1 − ω2

p,bulk/(ω2 +
iŴω) [50]. Bound electrons in the lower-lying d bands also
contribute to the dielectric function [50], but in contrast to the
free electrons, we assume, as in Ref. [35], that they are entirely
located in the jellium region, thus not tunneling through
the potential barrier. The response from the bound electrons
is calculated from the experimental response of bulk gold
εgold(ω) from Ref. [51] as εbound(ω) = εgold(ω) − εp,bulk(ω).
The parallel part of the final dielectric tensor in the vicinity of
a gold slab with a jellium region spanning from x = −d/2 to
d/2 is therefore given by

ε‖(ω, x) = 1 −
ω2

p(x)

ω2 + iŴω
+ [εs(x) − 1]θ (|x| − d/2)

+ εbound(ω)θ (d/2 − |x|). (2)

Here, the first term describes the local Drude response of free
electrons with position-dependent plasma frequency ωp(x) =
√

n(x)e2/(meε0) determined by the electron density n(x) cal-
culated using DFT. Also, h̄Ŵ = 65.8 meV has been applied
for the damping term [50]. The dielectric substrate and su-
perstrate, which in general can be different, are described
by εs(x), and the Heaviside step function θ in the first line
makes sure that the dielectric function sufficiently far from the
slab equals the correct values in the substrate and superstrate.
Hence, it has been assumed that the electron density across the
slab does not depend on the kind of substrate and superstrate it
is surrounded by. Lastly, the abrupt behavior assumed for the
bound electron term is modeled with the same step function θ

as used to describe the anisotropic response discussed above.
The perpendicular part of the dielectric tensor is written as

ε⊥(ω, x) = ε‖(ω, x) + εani(ω, d )θ (d/2 − |x|), (3)

where the expression for the anisotropic term εani(ω, d ) is
given in Appendix B. Anisotropy has previously been in-
cluded in Refs. [21,49] but neglected in several other papers
[1,19,20,28–30].

An example of the parallel part of the dielectric function
is seen in Fig. 1(b) for a slab width of 1 nm at a wavelength
of 775 nm. For a gold slab placed on a glass substrate with
air as superstrate, the blue curve to the left and the black
curve to the right of the slab describe the dielectric function
in the glass and air, respectively. The real part of the dielectric
function is clearly seen to jump at the slab boundary due to
the step function in the second line of Eq. (2). Although it is
difficult to see in the figure, the imaginary part of the dielectric
function also jumps across the interfaces. Since the substrate
and superstrate are assumed lossless, the imaginary part of the
dielectric function is unaffected by these materials.

III. MODE INDEX OF PROPAGATING PLASMONS

The magnetic field of the SPPs only has a z component and
is given by [6]

�Hm(�r) = ẑHm(x, y) = ẑ exp(ik0βmy)Hm(x), (4)

where the subscripts m = {l, s} indicate that the field and
associated complex mode index β can be either long range
or short range, respectively, in agreement with Ref. [9]. In
Eq. (4), k0 = 2π/λ is the free-space wave number, and Hm(x)
is the transverse magnetic field distribution. Both the mode
index and the transverse magnetic field depend strongly on
d , especially for the short-range mode, as will be shown
below.

The plasmon mode indices are found as poles in the
reflection coefficient [50,52], which is calculated by a transfer
matrix method relating the magnetic fields to the left and right
of the structure [1] (see Appendix B for the incorporation of
anisotropy and Appendix C for classification of modes).

Figures 2 and 3 show, respectively, the short- and long-
range mode indices as a function of d at a wavelength of
775 nm, where the response is isotropic in Fig. 2. For the
blue and red curves in Fig. 2(a), the geometric structure is
symmetric, while it is asymmetric for the green curves in
Fig. 2(b), as indicated in the text above each subfigure. This
implies that the magnetic fields associated with the blue and
red curves are antisymmetric, while the symmetry of the
associated fields is broken for the corresponding green curves,
which will be demonstrated in the next section.

It is found that the relative effect of anisotropy on both
components of the short-range mode indices is small, why
Fig. 2 only shows the mode indices for an isotropic response.
Mode indices calculated with an anisotropic response are
instead shown for the long-range mode in Fig. 3. The results
in Fig. 2 are in agreement with previous studies [7–9] when
spill-out is neglected. The real parts are almost unaffected by
spill-out, while it plays a significant role for the imaginary
parts, as will be elaborated upon below. A similar calculation
of the mode index with and without spill-out for gap plasmons
propagating in narrow gaps in gold showed that the mode
index when including spill-out converges to the refractive
index of bulk gold in the limit of vanishing gap width [1],
while neglecting spill-out leads to an unphysically diverging
mode index [2,3]. For plasmons bound to the slab, the mode
index when neglecting spill-out also diverges unphysically in
the limit of vanishing slab thickness [7–9]. This is not the
case with spill-out included, as plasmonic modes only exist
when the real part of the metal dielectric constant is negative
in some region along the direction normal to the slab [50]. It
is found that for a slab of subatom thickness (∼0.3 Å), the
electron density becomes so delocalized that the real part of
the dielectric constant is everywhere positive. Hence, with
spill-out included, the mode index does not diverge in the
limit of vanishing slab thickness. Instead, plasmonic modes
cease to exist for slabs below a cutoff thickness in the subatom
range. However, since a gold atom has a diameter of roughly
0.3 nm [4], we only consider slab widths larger than this value.

For an asymmetric structure with glass as substrate and
air as superstrate, the short-range mode index is shown in
Fig. 2(b). Here, it is difficult to see the difference in mode
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FIG. 2. Real (solid and dashed lines) and imaginary (dotted and

dashed-dotted lines) parts of the short-range mode index vs slab

width d at a wavelength of 775 nm. Results are shown for spill-out

(SO) included (solid and dashed-dotted lines) and neglected (dashed

and dotted lines). In (a) the structure is symmetric, and the blue

and red lines are for slabs surrounded by glass (gg) and air (aa),

respectively. In (b) the structure is asymmetric, where the slab is

surrounded by glass and air (ga), and the inset shows a zoom for

d below 1 nm. In both (a) and (b), the response is isotropic.

index with and without spill-out when the slab width exceeds
1 nm. Therefore, the mode index when neglecting spill-out
is only included in the inset showing results for d below
1 nm, where β has the same behavior as for the symmetric
structure in Fig. 2(a). Although it is hard to see in the figure,
the imaginary part is small but nonzero for all slab widths. The
mode index has converged when d = 100 nm, and for such a
wide slab the plasmon behaves as if bound to a single interface
between glass and gold [50].

The asymmetric structure also supports long-range modes,
but only for slab thicknesses above a certain threshold [8]. The
long-range mode is mainly bound to the air-gold interface,
with a mode index that is lower than the refractive index of
the glass substrate. This implies that the normal component
of the wave vector becomes real (with a very small imaginary
part due to loss in the gold) on the glass side of the structure,
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arrows. The black dashed-dotted line shows the imaginary part of the

mode index when the response is anisotropic. (b) Shows a zoom of

the imaginary part in (a) for d below 10 nm, where the line types have

the same meaning as in (a). Inset shows the potential barrier for a slab

of width 4.5 nm, as indicated by the arrow, where the Fermi energy is

shown by the red horizontal line, and all the discrete quantum energy

levels as the dashed blue horizontal lines. A transition between an

occupied and an empty state with energy difference h̄ω is illustrated

by the vertical arrow, and is near resonance at the wavelength

of 775 nm.

leading to a wave propagating in the substrate, thus not a
truly bound mode [10]. Hence, the wave will leak out into
the substrate, where conservation of momentum determines
the leakage angle [52]. However, if the dielectric constants
of the substrate and superstrate are not too different, it is
possible to obtain a long-range mode that is truly bound to
both interfaces (see, e.g., Fig. 3 in Ref. [9]). The phenomenon
of leaky modes can be examined using leakage radiation
microscopy (see, e.g., Refs. [10,53,54]).

Figure 3(a) shows the mode index of the corresponding
long-range mode for a gold slab surrounded by glass, where
the response is isotropic for the blue lines and anisotropic
for the black line. Again, the results are in agreement with
previous studies [7–9] when spill-out is neglected. In this
case, the mode index for an ultrathin slab is very close to
the refractive index of the substrate, which implies that the
mode is weakly bound. The mode is therefore long range
with most of its field profile located in the dielectric regions,
which will be illustrated in the next section. As the slab width
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increases to 200 nm, the mode index without spill-out has
converged to

√

εgoldεglass/(εgold + εglass), which is the mode
index of a plasmon bound to a single interface between gold
and glass [50]. In addition, the corresponding short-range
mode index when neglecting spill-out in Fig. 2(a) converges
to the same value for d = 200 nm (not shown) in agreement
with Refs. [8,9,12]. With spill-out included, the long-range
mode index for small slabs in Fig. 3(a) is also close to the
refractive index of the substrate, and the imaginary part is
very low. As for the short-range mode in Figs. 2(a) and
2(b), especially the real part of the mode index is almost the
same with and without spill-out, as seen by comparing the
solid and dashed lines. But, importantly, spill-out significantly
increases the imaginary part of the mode index, even for slab
widths up to 200 nm, as seen by comparing the dotted and
dashed-dotted lines in Fig. 3(a). When including anisotropy
in the model, it is found that the real part of the mode index
is almost unchanged (not shown), while the imaginary part is
modified. For wide slabs the effect of anisotropy is small, in
agreement with Ref. [49], as can be seen by comparing the
blue and black dashed-dotted lines. The same small effect of
anisotropy for wide slabs is found for the short-range mode
in Fig. 2(a) (not shown). In the other limit when the slab
width is only a few nm, the imaginary part of the long-range
mode index is modified due to anisotropy, as seen in Fig. 3(b)
showing a zoom of the imaginary parts in Fig. 3(a) for d

below 10 nm. As these values are on the order of 10−4, this
mode is relatively much more sensitive to anisotropy than the
corresponding short-range mode in Fig. 2, even though the
absolute change due to anisotropy is comparable for the two
modes. The anisotropic part contains peaks corresponding to
certain resonances in electronic transitions (see Appendix B
for details). For a wavelength of 775 nm, a resonance is found
at a slab width of 4.5 nm, for which the potential barrier
is shown in the inset, where the zero in potential is chosen
to be sufficiently far from the slab. A transition between an
occupied and an empty state with energy difference h̄ω is
illustrated by the vertical arrow. For wider slabs, the individual
energy levels are closer, and become continuous in the bulk
limit, implying that the response tends to become isotropic in
this limit.

Having now briefly accounted for the relative small impact
of anisotropy, we turn to further illustrate the effect of spill-out
in a symmetric structure. Hence, in the remaining part of the
paper, the shown results are all obtained using an isotropic
response. The ratio between mode indices with and without
spill-out is shown in Figs. 4(a) and 4(b) for the short- and
long-range modes, respectively. For both kinds of modes,
the real part of the mode index is almost unaffected by spill-
out, as the ratios shown by the solid lines in Fig. 4 have
converged to 1.0004 when d = 50 nm. For the short-range
mode the ratio between the imaginary parts is approximately
3.0 for a slab width of 0.3 nm, while it converges to ∼1.2
for d = 200 nm. The real part of the normalized magnetic
field profile when spill-out is included is shown in the inset
of Fig. 4(a) for a slab width of 200 nm, as indicated by the
arrow. It behaves as two decoupled plasmons bound to the
interfaces between glass and gold, as the field profiles bound
to the individual interfaces do not interact for such a wide
slab.

(a) Short-range mode

(b) Long-range mode
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FIG. 4. Ratio between mode indices with and without spill-out

at a wavelength of 775 nm for a slab surrounded by glass (gg). In

(a), the mode is short range, and the inset shows the real part of the

transverse magnetic field for d = 200 nm, as indicated by the arrow,

where the colored area represents the ion charge. In (b), the mode

is long range and the inset shows a zoom for d below 1 nm. The

response is isotropic.

For the long-range mode, the corresponding ratio between
the imaginary parts is extremely high for small d as seen in the
inset in Fig. 4(b). However, as d increases, the ratio decreases
monotonically and converges to ∼1.2 when d = 200 nm.
This is an important result showing that quantum spill-out
increases the imaginary part of the mode index by 20%, even
for relatively thick slabs that can readily be fabricated [12,53]
and approach bulk gold. It is highly surprising that spill-out
plays such a significant role for wide slabs, as it only modifies
the electron density in a region very close to the ion charge. In
addition, it is noticed that the ratios between the imaginary
parts of the two modes converge to the same value when
the slab is wide enough, as in this case the field profiles
bound to the individual interfaces are decoupled, similarly
to classical models [8,9,12]. Furthermore, the short-range
mode indices with and without spill-out in the asymmetric
structure in Fig. 2(b) converge to the same values as for
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the long-range mode in Fig. 3(a), as both modes behave as
bound to a single interface between gold and glass. Hence,
spill-out also increases the imaginary part of the mode index
by 20% in an asymmetric structure. The physical meaning
of the enhanced imaginary part is that the plasmon propa-
gation length will be significantly shorter, while the unal-
tered real part implies that the propagation velocity will be
unchanged.

Reference [20] applied an isotropic dielectric function with
components analogous to Eq. (2) to study the effect of spill-
out on plasmons propagating in a magnesium slab (rs = 2.66
bohrs) surrounded by silicon and air. With the present method,
the real part of the calculated mode index agrees well with
values estimated from Fig. 5 in Ref. [20], showing quantitative
agreement between that paper and the method presented here.
Likewise, the mode index calculated in this paper agrees
well with values estimated from Figs. 6 and S9 in Ref. [35]
regarding plasmons propagating in gold slabs surrounded by
air.

IV. FIELD PROFILE AND PLASMONIC ABSORPTION

Once the mode indices have been computed, the magnetic
field from Eq. (4) is calculated using the same transfer matrix
method as described in Refs. [1,55]. In the last part of Ap-
pendix B it is shown how the method is slightly modified to
describe the anisotropy. Applying the same phase convention
as in Ref. [7], the normalized real part of the short-range
transverse magnetic field Hs(x) across a gold slab of 0.3 nm is
shown in Fig. 5(a) at a wavelength of 775 nm. The associated
imaginary parts of the fields are not shown as they are small
compared to the real parts, similarly to classical models [7].

When neglecting spill-out, the slope of the magnetic field,
corresponding to the normal component of the electric field,
becomes discontinuous across the slab surfaces in agreement
with Refs. [7–9]. With spill-out included, the slope is still
discontinuous due to the abrupt change in the bound electron
term in Eq. (2), although it is difficilt to see in Fig. 5(a). But,
in the vicinity of the slab surface, the field profiles behave
more smoothly, and their maximum positions are slightly
shifted into the dielectric region. We have checked that the
appropriate boundary conditions regarding electromagnetic
fields across an interface [50] are satisfied. Further away from
the slab, the field profiles with and without spill-out become
almost identical. Consequently, the decay lengths into the

dielectrics, calculated as 1/Im(kx ), where kx = k0

√

εs − β2

is the wave number in the x direction, are very similar and
both are on the order of a few nm. This illustrates that the
short-range mode is strongly bound to the slab, as it decays
very rapidly into the dielectrics [9], and thereby has a large
part of its field profile located in the slab region. Notice
that as the real part of the mode index is much higher than
its imaginary part, the decay length mostly depends on the
real part of the mode index. Figure 5(a) demonstrates that
the short-range magnetic field is antisymmetric for the two
symmetric structures shown by the blue and red curves, while
this is no longer the case for an asymmetric structure, as
shown by the green curves. When the slab width increases, the
field profile broadens, as shown in the inset of Fig. 4(a) for a
200-nm-wide slab. For such a wide slab, the field profiles with
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FIG. 5. (a) Normalized real part of Hs(x) across a slab of width

0.3 nm. (b) Shows the decay length of the long-range mode for a gold

slab surrounded by glass (gg) with and without spill-out. The inset

shows the real part of the magnetic field profiles for a slab of width

0.3 nm as indicated by the arrow. In both (a) and (b), the colored

areas represent the ion charge, the wavelength is 775 nm, and the

response is isotropic.

and without spill-out are almost identical, and both behave
as two decoupled plasmons bound to the interfaces between
glass and gold. When including anisotropy, the short-range
mode indices were almost unchanged. This also applies for
the magnetic fields, why Fig. 5(a) only shows the fields for an
isotropic response.

As mentioned above, the long-range mode is weakly
bound. Consequently, the electromagnetic fields for a few-nm
slab have decay lengths of several micrometers, as shown for
a gold slab surrounded by glass in Fig. 5(b). As the decay
length mostly depends on the real part of the mode index, the
decay length in Fig. 5(b) is in practice unchanged when the
response is anisotropic. The long decay length implies that
most of the field profiles are located in the dielectric regions.
The field profiles are broader when spill-out is neglected, as
also seen in the inset showing the real part of the magnetic
fields across a slab of width 0.3 nm, i.e., the same slab as in
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FIG. 6. Normalized absorption density for the short-range mode

across a gold slab of width 0.3 nm at a wavelength of 775 nm. The

solid and dashed lines show the absorption density when spill-out

is included and neglected, respectively, where the red and blue lines

are for slabs surrounded by air (aa) and glass (gg), respectively. The

response is isotropic.

Fig. 5(a). Including spill-out effectively implies a broader slab
[see Fig. 1(a)], which means that the fields become slightly
more localized with a shorter decay length. For slabs wider
than 3 nm, the decay lengths with and without spill-out are
very similar, and both converge to the decay length of a
plasmon bound to a single interface between gold and glass
(not shown).

As argued above, spill-out plays almost no role for the
decay length for slabs of a few nm. On the other hand, it
significantly increases the imaginary part of the mode index
as shown in Fig. 4. This leads us to investigate how spill-out
affects the electric field and plasmonic absorption across the
slab. First, the electric field is calculated from the magnetic
field in Eq. (4) as [50]

�Em(x, y) =
i←→ε −1(x, y)

ωε0

�∇ × [ẑHm(x, y)]. (5)

The electric field is subsequently used to calculate the
absorption density defined as

Am(x, y) = Im( �E∗
m(x, y) · ←→ε (x, y) · �Em(x, y)). (6)

By considering the time average of the Poynting vector,
〈�S〉 = 1/2 Re( �E × �H∗) [50], it can be shown that conserva-
tion of energy implies that the plasmonic absorption and the
imaginary part of the mode index are related in the following
way:

Im(β ) =
cε0

∫

Am(x, y)dx

2
∫

Re( �Em(x, y) × �H∗
m(x, y)) · ŷ dx

. (7)

We have checked that this relation is satisfied for both kinds of
modes with and without spill-out. The normalized absorption
density is shown in Fig. 6 for the short-range mode across the
slab of width 0.3 nm at a wavelength of 775 nm. If spill-out

is neglected, absorption can only take place in the gold as
the surrounding dielectrics are assumed lossless. In this case,
the absorption density is almost unaffected by the kind of
surrounding dielectric, why Fig. 6 only shows it for a slab sur-
rounded by air. But, with spill-out included, strong plasmonic
absorption occurs, and the absorption density mostly consists
of two narrow peaks located in the dielectric regions close to
the interfaces. At these positions, similarly to Refs. [1,56], the
real part of the dielectric function is zero (at the wavelength
775 nm), while its imaginary part is small but nonzero, which
ensures that the peaks in the absorption density are finite. The
narrow peaks are found a few Å outside the ion charge, and
the same is found for the long-range mode (not shown). The
contribution from these peaks leads to enhanced plasmonic
absorption, as they are a consequence of electron spill-out, and
therefore not found in classical models. The peaks correspond
to the increase in imaginary part of the mode index observed
in Sec. III. For a slab surrounded by glass, the peaks occur
slightly closer to the slab, as the real part of the dielectric
function has its zero shifted slightly compared to the case
with a slab surrounded by air [see Fig. 1(b)]. The same
phenomenon was found in Ref. [20] for a magnesium slab
surrounded by silicon and air. The peaks in absorption density
due to spill-out were recently discussed in Ref. [1], where
they were found to significantly reduce the reflectance from
an ultrasharp groove array in much better agreement with
measurements [4] compared to classical models [5,6]. Like for
the magnetic field, the absorption density is almost unaffected
by anisotropy, why Fig. 6 only shows results for an isotropic
response.

The increased absorption loss due to spill-out will man-
ifest itself as decreased propagation lengths in fabricated
plasmonic structures. Losses in such structures have been
studied in, e.g., Refs. [57–60], where it was found that the
measured propagation length of plasmons propagating in a
70-nm silver film deposited on glass is significantly shorter
than the one calculated using classical models [59,60]. In
addition, attenuated total reflectance (ATR) has been studied
for a silver film on glass in the Kretschmann configuration.
It is found that the measured reflectance at the Kretschmann
angle [50] is significantly lower than the one calculated using
classical models [61,62], illustrating that the losses are higher
than expected from a classical point of view. Hence, these
works together with Ref. [1] also support the finding that a
classical model is not sufficient to correctly describe losses
occurring in plasmonic waveguides.

V. CONCLUSION

In conclusion, we have applied a quantum mechanical
approach and local response theory to study the propagation of
plasmons in nanometer-thin gold slabs surrounded by differ-
ent dielectrics. The effect of spill-out is found to be small on
the real part of the mode indices but remarkably increases the
corresponding imaginary part, and even for slabs wide enough
to approach bulk the increase is 20%. This is explained in
terms of enhanced plasmonic absorption mainly taking place
in narrow regions located a few Å outside the ion charge. It is
highly surprising that spill-out plays such a significant role for
wide slabs, as it only modifies the electron density in a region
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very close to the ion charge. For slab widths above a few
nanometers, the decay length of the fields into the dielectrics is
almost unaffected by spill-out, as it mostly depends on the real
part of the mode index. By taking anisotropy into account, a
comparable change is found in the imaginary part of the mode
index for both kinds of modes, while the relative change,
however, is much larger for the long-range mode. When the
slab width increases, the effect of anisotropy becomes less
pronounced, and for a 200-nm-wide slab the response is
almost isotropic. Furthermore, in contrast to classical models,
the short-range mode index does not diverge in the limit of
vanishing slab thickness when spill-out is included. Instead,
plasmonic modes cease to exist for slab widths below a cutoff
thickness in the subatom region.

ACKNOWLEDGMENT

This work was supported by the QUSCOPE center spon-
sored by the Villum Foundation.

APPENDIX A: CALCULATION OF ELECTRON DENSITY

In this Appendix, we discuss in more detail how the
electron density is calculated. Within the jellium model it is
assumed that the charge of the gold ions is smeared out, such
that their charge density is constant within the slab [23,24].
The characteristic spill-out, as seen in Fig. 1(a), stems from
the distribution of free electrons in the vicinity of this positive
background. The Kohn-Sham equations [23] are solved self-
consistently within the local density approximation (LDA)
[44], applying the Perdew-Zunger parametrization [63] for the
correlation term. The applied Wigner-Seitz radius for gold is
rs = 3.01 bohrs [24].

It is found that 2500 basis functions on the form
sin (mπ (x/L + 1/2)) are sufficient to describe the density for
slab widths up to 200 nm. The length L is 1 nm larger than the
slab width d , and the slab is centered at x = 0. As in Ref. [1],
the density is said to converge when a variation in Fermi
energy between two iterations below 10−7 Ha is achieved.
Furthermore, in the Anderson mixing scheme [64], the mixing
parameter α must be below a certain threshold which strongly
decreases with d . It is found that α � 5 × 10−4 is necessary
for slab thicknesses up to 20 nm. The potentials for wider
slabs can afterward be constructed from the potential of the
20-nm slab, as the oscillations in potential near its center are
negligible, meaning that the effective potential near the center
can be seen as constant. This constant potential is added in the
central region of wider slabs.

APPENDIX B: ANISOTROPY

In this Appendix, we discuss how the anisotropic term
εani(ω, d ) in Eq. (3) is calculated, and how the transfer matrix
method is slightly modified to describe an anisotropic re-
sponse. As mentioned in Sec. II, we approximate the nonlocal
part of the dielectric tensor by a piecewise constant function
taking the value

∫∫ ←→ε NL(x, x′)dx dx′/d inside the slab and
zero outside. From Ref. [43], the transition matrix elements

used in Eq. (1) are given by

�jnm(�k‖, x) = −
eh̄

2mei
(2i�k‖Anm(x) + x̂Bnm(x)), (B1)

where

Anm(x) = ϕn(x)ϕ∗
m(x),

Bnm(x) = ϕ∗
m(x)

∂ϕn(x)

∂x
− ϕn(x)

∂ϕ∗
m(x)

∂x
. (B2)

Here, the ϕn’s are the wave functions corresponding to the
energies En = h̄ωn in Eq. (1). From Eqs. (B1) and (B2),
the parallel part of the step function is found to be zero
due to the orthogonality of the wave functions. Using
the commutator relation 〈ϕm| p̂x|ϕn〉 = imeEmn〈ϕm|x|ϕn〉/h̄,
where Emn = Em − En, and the oscillator strength gmn =
2me|〈ϕm|x|ϕn〉|

2Emn/h̄2, the perpendicular part describing the
anisotropy can be shown to be

εani(ω, d ) =
e2

πdε0 h̄2(ω + iŴ)2

×
∑

m,n

gmn

E2
mn(EF − En)θ (EF − En)

E2
mn − h̄2(ω + iŴ)2

. (B3)

Here, the energies and number of bands depend strongly on
d . A resonance is found when Emn for a certain transition is
close to the photon energy h̄ω, as illustrated by the vertical
arrow in the inset of Fig. 3(b). When the slab width increases
to 200 nm, the anisotropic term tends to zero, implying that
the response becomes isotropic in this limit.

When describing anisotropy, the reflection and transmis-
sion coefficients in the transfer matrix method are slightly
modified into [65]

ri j =
kx,iε‖, j − kx, jε‖,i

kx,iε‖, j + kx, jε‖,i

, ti j = 1 + ri j, (B4)

where kx,i = k0

√

ε‖,i − β2ε‖,i/ε⊥,i. It is seen that if the ma-
terial is isotropic, ε‖,i = ε⊥,i, the original coefficients from
Ref. [55] are restored.

APPENDIX C: CLASSIFICATION OF PLASMONIC MODES

In this short Appendix, we discuss how the plasmonic
modes are classified. The mode index is calculated by the
same type of transfer matrix method as presented in detail
in Ref. [1]. However, only one kind of plasmonic mode was
studied in that paper, while the classification of modes was
not presented there. A structure matrix S is constructed,
which relates the magnetic fields to the left and right of
the structure, and a mode index is found when the matrix
element S11 is zero, as this condition yields a pole in the
reflection coefficient. The mode is classified by the sign of
S21, where positive and negative signs correspond to long-
and short-range modes, respectively, and S21 is exactly ±1 for
symmetric structures. Expressions for the matrix elements can
be found in Refs. [1,55]. In addition, the x axis is divided into
tiny segments, each modeled as having a constant dielectric
function. Similarly to Ref. [1], we find that segments of
2.7 × 10−4 nm are sufficient to avoid discretization errors.
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We study strongly confined plasmons in ultrathin gold and silver films by simulating electron
energy-loss spectroscopy (EELS). Plasmon dispersion relations are directly retrieved from the
energy- and momentum-resolved loss probability under normal incidence conditions, whereas they
can also be inferred for aloof parallel beam trajectories from the evolution of the plasmon features
in the resulting loss spectra as we vary the impinging electron energy. We find good agreement
between nonlocal quantum-mechanical simulations based on the random-phase approximation and
a local classical dielectric description for silver films of different thicknesses down to a few atomic
layers. We further observe only a minor dependence of quantum simulations for these films on
the confining out-of-plane electron potential when comparing density-functional theory within the
jellium model with a phenomenological experimentally-fitted potential incorporating atomic layer
periodicity and in-plane parabolic bands of energy-dependent effective mass. The latter shows also a
small dependence on the crystallographic orientation of silver films, while the unphysical assumption
of energy-independent electron mass leads to spurious features in the predicted spectra. Interest-
ingly, we find electron band effects to be more relevant in gold films, giving rise to blue shifts when
compared to classical or jellium model simulations. In contrast to the strong nonlocal effects found
in few-nanometer metal nanoparticles, our study reveals that a local classical description provides
excellent quantitative results in both plasmon strength and dispersion when compared to quantum-
mechanical simulations down to silver films consisting of only a few atomic layers, thus emphasizing
the in-plane nearly-free conduction-electron motion associated with plasmons in these structures.

Physics Subject Headings: EELS; Surface plas-
mons; Thin films; Quantum-well states; Nanophotonics;
Nonlocal effects.

I. INTRODUCTION

Surface plasmons –the collective electron oscillations
at material surfaces and interfaces– provide the means
to concentrate and amplify the intensity of externally ap-
plied light down to nanoscale regions [1, 2], where they
interact strongly with molecules and nanostructures, thus
becoming a powerful asset in novel applications [3] such
as biosensing [2, 4, 5], photocatalysis [6, 7], energy har-
vesting [8, 9], and nonlinear optics [10–13].

Surface plasmons were first identified using electron
energy-loss spectroscopy (EELS), starting with the pre-
diction [14] and subsequent measurement of associated
loss features in electrons scattered under grazing inci-
dence from Al [15], Na and K [16, 17], and Ag [17, 18]
surfaces. The main characteristics of surface plasmons in
noble and simple metals were successfully explained us-
ing time-dependent density-functional theory (TD-DFT)
[19] within the jellium model [20, 21], while inclusion of
electron band effects were required for other metals [22].
Interestingly, multipole surface plasmons were predicted

∗Corresponding author:javier.garciadeabajo@nanophotonics.es

as additional resonances originating in the smooth elec-
tron density profile across metal-dielectric interfaces [22–
24], and subsequently found in experiments performed on
simple metals such as K and Na [25], but concluded to
be too weak to be observed in Al [25] and Ag [26]. These
studies focused on the relatively high-energy plasmons
supported by planar surfaces in the short-wavelength
regime. However, plasmons can hybridize with light
forming surface-plasmon polaritons (SPPs) in planar sur-
faces, which become light-like modes at low energies, thus
loosing confinement, as they are characterized by in-plane
wavelengths slightly smaller than those of light and long-
range penetration into the dielectric material or empty
space outside the metal [27–29].

Highly confined plasmons can also be achieved in
sharp metallic tips and closely spaced metal surfaces
[30], where strong redshifts are produced due to the at-
tractive Coulomb interaction between neighboring non-
coplanar interfaces. This effect, which depends dra-
matically on surface morphology, can also be observed
in planar systems such as ultrathin noble metal films
[31, 32] and narrow metal-dielectric-metal waveguides
[12, 31, 33]. More precisely, hybridization takes place in
metal films between the plasmons supported by their two
interfaces, giving rise to bonding and antibonding disper-
sion branches that were first revealed also through EELS
is self-standing aluminum foils [34]; in ultrathin films
of only a few atomic layers in thickness, the antibond-
ing plasmon dispersion is pushed close to the light line,
whereas the bonding plasmon becomes strongly confined
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(reaching the quasistatic limit [31, 32]), as experimentally
corroborated through angle-resolved low-energy EELS in
few-monolayer Ag films [35] and monolayer (ML) DySi2
[36], as well as in laterally confined wires formed by In
[37] and silicide [38], and even in monoatomic Au chains
grown on Si(557) surfaces [39]. Additionally, graphene
has been shown to support long-lived mid-infrared and
terahertz plasmons [40] that can be tuned electrically
[41, 42] and confined vertically down to few nanometers
when placed in close proximity to a planar metal sur-
face [43, 44]. While most graphene plasmon studies have
been performed using far- and near-field optics setups
[45–47], low-energy EELS has also revealed their disper-
sion relation in extended films [48, 49]. Here, we focus
instead on visible and near-infrared plasmons supported
by atomically thin metal films, which have been recently
demonstrated in crystalline Ag layers [32], where they
also experience strong spatial confinement.

In this paper, we investigate plasmons in atomically
thin noble metal films by theoretically studying EELS for
electron beams either traversing them or moving parallel
outside their surface. We provide quantum-mechanical
simulations based on the random-phase approximation
(RPA), which are found to be in excellent agreement with
classical dielectric theory based on the use of frequency-
dependent dielectric functions for both Ag and Au films
of small thickness down to a few atomic layers. This
result is in stark contrast to the strong nonlocal effects
observed in metal nanoparticles of similar or even larger
diameter [50, 51], a result that we attribute to the pre-
dominance of in-plane electron motion associated with
the low-energy plasmons of thin films, unlike the com-
bination of in- and out-of-plane motion in higher energy
SPPs.

II. THEORETICAL FORMALISM

We present the elements needed to calculate EELS
probabilities in the nonretarded approximation using the
linear response susceptibility to represent the metallic
thin film. The latter is obtained in the RPA, starting
from the one-electron wave functions of the system, which
are organized as vertical quantum-well (QW) states, dis-
cretized by confinement along the out-of-plane direction
and exhibiting quasi-free motion along the plane of the
film. We further specify the EELS probability for elec-
tron trajectories either parallel or perpendicular with re-
spect to the metal surfaces.

A. Calculation of EELS probabilities from the

susceptibility in the nonretarded limit

The loss probability ΓEELS(ω) measured through
EELS in electron microscopes must be normalized in such
a way that

∫ ∞

0
dω ~ω ΓEELS(ω) gives the average energy

loss experienced by the electrons. Taking the latter to

follow a straight-line trajectory with constant velocity
vector v parallel to the z axis and impact parameter
R0 = (x0, y0), we can write [52]

ΓEELS(ω) =
e

π~ω

∫

dzRe
{

Eind
z (R0, z, ω) e−iωz/v

}

(1)

as the integral along the electron trajectory of
the frequency-resolved self-induced field Eind

z (r, ω) =
∫

dtEz(r, t)eiωt, which can be in turn calculated by solv-
ing the classical Maxwell equations with the electron
point charge acting as an external source in the presence
of the sample. This equation is rigorously valid within
the approximations of linear response and nonrecoil (i.e.,
small energy loss ~ω compared with the electron kinetic
energy E0).

In the present study, we consider relatively small elec-
tron velocities v ≪ c and films of small thickness com-
pared with the involved optical wavelengths. This allows
us to work in the quasistatic limit and write the field
Eind

z (r, ω) = −∂zφ
ind(r, ω) as the gradient of a scalar

potential, so Eq. (1) can be integrated by parts to yield

ΓEELS(ω) =
e

π~v

∫

dz Im
{

φind(R0, z, ω) e−iωz/v
}

. (2)

We can now express the induced potential in terms of the
induced charge as

φind(r, ω) =

∫

d3r′ ν(r, r′) ρind(r′, ω), (3)

where ν(r, r′) is the Coulomb interaction between
point charges located at positions r and r′. Like-
wise, we write the induced charge as ρind(r, ω) =
∫

d3r′ χ(r, r′, ω)φext(r′, ω), where χ(r, r′, ω) is the lin-
ear susceptibility, φext(r′, ω) =

∫

d3r′ ν(r, r′) ρext(r′, ω) is
the external electric potential generated by the electron
charge density ρext(r, ω) = −e

∫

dt δ(r − R0 − vt) eiωt =

(−e/v)δ(R − R0) eiωz/v, and we use the notation r =
(R, z) with R = (x, y).

In free space one has ν(r, r′) = ν0(r − r′) = 1/|r − r′|,
but we are interested in retaining a general spatial de-
pendence of ν(r, r′) in order to describe the polarization
background produced in the film by interaction with ev-
erything else other than conduction electrons (see below).
Combining these elements with Eq. (2), we find the loss
probability

ΓEELS(ω) =
e2

π~v2

∫

d3r

∫

d3r′ w∗(r)w(r′) (4)

× Im {−χ(r, r′, ω)} ,

where

w(r) =

∫

dz′ν(r,R0, z
′) eiωz′/v (5)

is the external potential created by the electron and we
have made use of the reciprocity property χ(r, r′, ω) =



3

χ(r′, r, ω) to extract the complex factors w outside the
imaginary part. Next, we apply this expression to calcu-
late EELS probabilities from the RPA susceptibility. But
first, for completeness, we note that the integral in Eq.
(5) can be performed analytically for the bare Coulomb
interaction [53] yielding

w(r) = 2K0(ω|R − R0|/v) eiωz/v,

where K0 is a modified Bessel function [53], thus allowing
us to write

ΓEELS(ω) =
4e2

π~v2

∫

d3r

∫

d3r′ cos
[ω

v
(z′ − z)

]

×K0

(ω

v
|R − R0|

)

K0

(ω

v
|R′ − R0|

)

× Im {−χ(r, r′, ω)}
for the loss probability, which we can directly apply to
systems in which any background polarization is already
contained in χ, or when ν is well described by the bare
Coulomb interaction (e.g., in simple metals).

B. RPA susceptibility of thin metal films

We follow the same formalism as in Ref. [33], which is
extended here to account for an energy-dependence of the
in-plane electron effective mass. One starts by writing
χ(r, r′, ω) in terms of the non-interacting susceptibility
χ0(r, r′, ω) through χ = χ0 · (I − ν ·χ0)−1, where we use
matrix notation with spatial coordinates r and r′ acting
as matrix indices, so that matrix multiplication involves
integration over r, and I(r, r′) = δ(r − r′). We further
adopt the RPA by calculating χ0 as [33, 54]

χ0(r, r′, ω) =
2e2

~

∑

ii′

(fi′ − fi)
ψi(r)ψ∗

i (r′)ψ∗
i′(r)ψi′(r′)

ω + iγ − (εi − εi′)

(6)

from the one-electron wave functions ψi of energies ~εi

and Fermi-Dirac occupation numbers fi. Here, the factor
of 2 accounts for spin degeneracy and γ is a phenomeno-
logical damping rate.

We describe metal films assuming translational invari-
ance along the in-plane directions and parabolic electron
dispersion with different effective mass m∗

j for each verti-
cal QW band j. This allows us to write the electron wave
functions as [55] ψi(r) = ϕj(z)eik‖·R/

√
A, where k‖ is

the 2D in-plane wave vector, A is the quantization area,
and the state index is multiplexed as i → (j,k‖). Like-
wise, the electron energy can be separated as ~εj,k‖

=

~ε⊥
j + ~

2k2
‖/2m

∗
j , where ~ε⊥

j is the out-of-plane energy

that signals the QW band bottom. Inserting these ex-
pressions into Eq. (6) and making the customary substi-
tution

∑

i → A
∑

j

∫

d2k‖/(2π)2 for the state sums, we

find [56]

χ(r, r′, ω) =

∫

d2Q

(2π)2
χ(Q, z, z′, ω) eiQ·(R−R′), (7)

which directly reflects the in-plane homogeneity of the
film. We can now work in Q space, where Eq. (6) reduces,
using the above assumptions for the wave functions, to

χ0(Q, z, z′, ω) (8)

=
2e2

~

∑

jj′

χjj′(Q,ω)ϕj(z)ϕ∗
j (z′)ϕ∗

j′(z)ϕj′(z′)

where

χjj′(Q,ω) =

∫

d2k‖

(2π)2

(

fj′,|k‖−Q| − fj,k‖

)

(9)

× 1

ω + iγ −
[

ε⊥
j − ε⊥

j′ + ~

2

(

k2
‖/m

∗
j − |k‖ − Q|2/m∗

j′

)] ,

which only depends on the modulus of Q due to the in-
plane band isotropy. We evaluate the integral in Eq. (9)
assuming zero temperature [i.e., fj,k‖

= θ(EF − ~εj,k‖
),

where EF is the Fermi energy] and taking Q = (Q, 0)
without loss of generality.

Incidentally, simple manipulations of the above expres-
sions reveal a dependence on frequency and damping
through (ω + iγ)2 that is maintained in the local limit
(Q → 0), in contrast to ω(ω + iγ) in the Drude model.
The RPA formalism thus produces spectral features with
roughly twice the width of the Drude model in the lo-
cal limit. This problem (along with a more involved is-
sue related to local conservation of electron number for
finite attenuation) can be solved through a phenomeno-
logical prescription proposed by Mermin [57], which un-
fortunately becomes rather involved when applied to the
present systems. As a practical and reasonably accurate
solution, we proceed instead by setting γ = γexp/2 in the
above expressions (i.e., half the experimental damping
rate, see Appendix A).

We obtain the out-of-plane wave functions ϕj(z) as the
eigenstates of the 1D Hamiltonian −(~2/2me)∂zz +V (z),
using the free-electron mass me for the transversal kinetic
term and two different models for the confining potential
V (z): (i) the self-consistent solution in the jellium (JEL)
approximation within density-functional theory (DFT)
[20, 21]; and (ii) a phenomenological atomic-layer poten-
tial (ALP) that incorporates out-of-plane bulk atomic-
layer corrugation and a surface density profile with pa-
rameters fitted to reproduce relevant experimental band
structure features, such as affinity, surface state energy,
and projected bulk band gap, which depend on material
and crystal orientation as compiled in Ref. [62].

The JEL model corresponds to the self-consistent DFT
solution for a thin slab of background potential and
energy-independent effective mass m∗

j = me [20, 21],
computed here through an implementation discussed
elsewhere [63].

In the ALP model we fit m∗
j to experimental data

(see Table I) and consider an effective electron density
neff . Upon integration over the density of states of the
parabolic QW bands, we can then write the Fermi energy
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Material a(eV−1) b m∗(SS)/me m0/me neff/n0 EF (eV)
Ag(111) -0.1549 -0.5446 0.40 [58] 0.25 [59] 0.8381 -4.63 [60]
Ag(100) -0.0817 0.2116 - 0.40 [61] 0.8710 -4.43 [62]
Au(111) -0.1660 -0.8937 0.26 [58] 0.26 [59] 0.9443 -5.50 [60]

TABLE I: Parameters used to describe the parabolic dispersion of quantum wells (QWs) in Ag(111), Ag(100), and Au(111)
films. We take the effective mass of each QW j to linearly vary as m∗

j /me = a~ε⊥
j + b with band-bottom energy ~ε⊥

j , where
the parameters a and b are taken to match m0 at the highest occupied QW (below the SS) in the semi-infinite surface and
m∗ = me at the bottom of the conduction band. The effective electron density neff , given here relative the bulk conduction
electron density n0, is required to fit the experimentally observed Fermi energy EF and SS energy.

of a N -layer film as

EF =





M
∑

j=1

m∗
j





−1 

neffasN~
2π +

M
∑

j=1

m∗
j~ε

⊥
j



 , (10)

where j = M is the highest partially populated QW band
(i.e., ε⊥

M < EF/~ < ε⊥
M+1) and as is the atomic interlayer

spacing (i.e., the film thickness is d = Nas, with as =
0.236 nm for Ag(111) and Au(111), and as = 0.205 nm
for Ag(100)). This expression reduces to a similar one
in Ref. [33] when m∗

j is independent of j. We adjust
neff for each type of metal surface in such a way that
Eq. (10) gives the experimental bulk values of EF listed
in Table I. Incidentally, although the effective mass of
surface states also varies with energy [64, 65], we take it
as constant because of the lack of data for ultrathin Au
and Ag films; this should be a reasonable approximation
for films consisting of N ≥5 layers, where the surface
state energy is already close to the semi-infinite surface
level.

Conduction electrons interact through the bare
Coulomb potential in simple metals, which in Q space
reduces to ν(Q, z, z′) = (2π/Q)e−Q|z−z′|. However, po-
larization of inner electronic bands plays a major role
in the dielectric response of Ag and Au. We describe
this effect by modifying ν(Q, z, z′) in order to account
for the interaction between point charges in the pres-
ence of a dielectric slab of local background permittiv-
ity fitted to experimental data [66] after subtracting a
Drude term representing conduction electrons (see Ap-
pendix A). We thus adopt the local response approxima-
tion for this contribution originating in localized inner
electron states, whereas conduction electrons are treated
nonlocally through the above RPA formalism. Similar to
Eq. (7), translational symmetry in the film allows us to
write

ν(r, r′) =

∫

d2Q

(2π)2
ν(Q, z, z′) eiQ·(R−R′), (11)

where ν(Q, z, z′) is reproduced for convenience from Ref.
[33] in Appendix A. We note that Eq. (11) neglects the ef-
fect of lateral atomic corrugation in this interaction (i.e.,
the background permittivity is taken to be homogeneous
inside the film).

Finally, we calculate χ(Q, z, z′, ω) from the noninter-
acting susceptibility [Eq. (8)] and the screened interac-
tion by discretizing both of them in real space coordinates

(z, z′) and numerically performing the linear matrix al-
gebra explained above. We obtain converged results with
respect to the number of discretization points and also
compared with an expansion in harmonic functions [33].

C. EELS probability under normal incidence

Direct insertion of Eqs. (7) and (11) into Eqs. (4) and
(5) leads to the result

ΓEELS
⊥ (ω) =

∫ ∞

0

dQΓEELS
⊥ (Q,ω) (12)

with

ΓEELS
⊥ (Q,ω) =

e2 Q

2π2~v2
(13)

×
∫

dz

∫

dz′ I∗
⊥(Q, z)I⊥(Q, z′) Im {−χ(Q, z, z′, ω)} ,

where

I⊥(Q, z) =

∫

dz′ ν(Q, z, z′) eiωz′/v (14)

contains the external electron potential. For com-
pleteness, we note that when ν(Q, z, z′) is the bare

Coulomb interaction (2π/Q)e−Q|z−z′|, Eq. (14) becomes
I⊥(Q, z) = 4πeiωz/v/(Q2 + ω2/v2), so Eq. (13) reduces
to

ΓEELS
⊥ (Q,ω) =

8e2

~v2

Q

(Q2 + ω2/v2)2
(15)

×
∫

dz

∫

dz′ cos [ω(z − z′)/v] Im {−χ(Q, z, z′, ω)} ,

where we have used reciprocity again [i.e., χ(Q, z, z′, ω) =
χ(Q, z′, z, ω)].

In the simulations that we present below, we com-
pare the RPA approach just presented with classical
electromagnetic calculations based on the use of a lo-
cal frequency-dependent dielectric function for the metal.
This configuration has been theoretically studied for a
long time [67], and in particular, we use the analytical
expressions derived in a previous publication for an elec-
tron normally incident on a dielectric slab [68] with the
bulk contribution integrated up to a cutoff wave vector
Q = 5 nm−1.
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D. EELS probability in the aloof configuration

For an electron moving parallel to the film at a distance
z0 from the metal surface, it is convenient to make the
substitutions z → x, R → (y, z), and R0 → (0, z0) in
Eqs. (4) and (5), so combining them with Eqs. (7) and
(11), and retaining R = (x, y) in the latter, we readily
obtain

ΓEELS
‖ (ω) =

e2L

π2~v2

∫ ∞

0

dQy (16)

×
∫

dz

∫

dz′ν∗(Q, z, z0)ν(Q, z′, z0) Im {−χ(Q, z, z′, ω)} ,

where Q =
√

ω2/v2 +Q2
y and L is the electron path

length. Again for completeness, when ν(Q, z, z′) is the
bare Coulomb interaction, Eq. (16) reduces to

ΓEELS
‖ (ω) =

4e2L

~v2

∫ ∞

0

dQy

Q2

×
∫

dz

∫

dz′e−Q(|z−z0|+|z′−z0|) Im {−χ(Q, z, z′, ω)} .

The above expressions can be applied to electron im-
pact parameters z0 both inside or outside the metal, but
they can be simplified when the beam is not overlap-
ping the conduction electron charge [see Fig. 3(a)], so
that z0 > z, z′ in the region inside the above integrals in
which χ(Q, z, z′, ω) is nonzero, and therefore, changing
the variable of integration from Qy to Q, we can write

ΓEELS
‖ (ω) =

2e2L

π~v2

∫ ∞

ω/v

dQ
e−2Qz0

√

Q2 − ω2/v2
Im{rp(Q,ω)},

(17)

where

rp(Q,ω) = − Q

2π

∫

dz

∫

dz′ ν∗(Q, z, z0)ν(Q, z′, z0)

× e2Qz0 χ(Q, z, z′, ω) (18)

is the Fresnel reflection coefficient of the film for p po-
larization in the quasistatic limit. Incidentally, Eq. (18)
is independent of the source location z0 when it does not
overlap the metal because ν(Q, z, z0) then depends on
z0 only through a factor e−Qz0 (see Appendix A). Equa-
tion (17), which agrees with previous derivations from
classical dielectric theory [69], reveals Im{rp(Q,ω)} as a
loss function, which is used below to visualize the surface
plasmon dispersion. We also provide results from a local
dielectric description based on the textbook solution of
the Poisson equation for the reflection coefficient [33]

rclassical
p =

(ǫ2 − 1)
(

1 − e−2Qd
)

(ǫ+ 1)2 − (ǫ− 1)2e−2Qd
(19)

for a metal film of thickness d and permittivity ǫ.
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FIG. 1: RPA description of plasmons in atomically thin
Ag(111) films. (a,b) Effective confining potential for conduc-
tion electrons across a 10 ML film. The conduction charge
density is shows as shaded areas. (d,c) Electronic energies as
a function of film thickness expressed as the number of (111)
atomic layers (blue dots). Red curves and green dots repre-
sent the Fermi energy and the surface states (SSs). (e,f) Loss
function Im{rp} calculated in the RPA [color plot, Eq. (18)],
compared with the plasmon dispersion relation in the local
Drude dielectric model (red curves). Left (right) panels are
calculated in the jellium (ALP) model.

III. RESULTS AND DISCUSSION

We show examples of the two types of confining elec-
tron potentials used in our RPA calculations for Ag films
in Fig. 1(a,b), along with the resulting conduction elec-
tron charge densities. The JEL potential is smooth at the
surface and describes electron spill-out and Friedel oscil-
lations [70]. The phenomenological ALP potential fur-
ther incorporates corrugations due to the atomic planes
in the bulk, which result in strong oscillations of the den-
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10 ML

0

1

-1

2

Distance along z

FIG. 2: Plasmon charge density across a thin 10 ML Ag(111)
film. We plot the real (solid curves) and imaginary (dashed
curves) parts of the induced charge density ρind as calculated
in the RPA for excitation by a source placed to the left of the
film at the plasmon energies ~ω = 3.54 eV and ~ω = 3.47 eV
corresponding to a parallel wave vector Q = 0.5 nm−1 in the
ALP (blue) and JEL (orange) models, respectively.

sity. The computed electron energies ~εj (see Sec. II B),
which correspond to the bottom points of the QW bands
(i.e., for vanishing in-plane momentum), are distributed
with N of them below the Fermi level in a Ag(111) film
consisting of N monolayers [Fig. 1(c,d)]. The band struc-
ture quickly evolves toward the semi-infinite surface for a
few tens of MLs in both models. Additionally, the ALP
potential hosts surface states and a projected bulk gap of
energies fitted to experiment [62]. We note that this gap
depends on surface orientation: it is present in Ag(111)
but absent in Ag(100) at the Fermi level, as revealed by
photoemission measurements [? ] see also Fig. 9(a) in
Appendix B]. Remarkably, despite the important differ-
ences in the details of the potentials and electron bands,
both models predict a similar plasmon dispersion [Fig.
1(e,f), density plots, obtained from Eq. (18)], which is in
excellent agreement with classical theory [Fig. 1(e,f), red
curves, obtained from the poles of Eq. (19)]. Inciden-
tally, we observe the response to also converge toward
the semi-infinite surface limit for a few tens of atomic
layers [see Fig. 10 in Appendix B. Similar good agree-
ment is found in the reflection coefficients of Ag films
computed for different thickness with either of these po-
tentials, with a square-barrier potential, or with a model
potential constructed by glueing on either film side a jel-
lium DFT potential tabulated for semi-infinite surfaces
[20] [see Fig. 11 in Appendix ??.

The transversal distribution of change densities asso-
ciated with thin film plasmons show a clear resemblance
when calculated using the ALP or JEL model potentials,
although one can still observe substantial discrepancies
between the two of them [see for example Fig. 2, where
the ALP model charge appears to be smaller in magni-
tude]. However, this different behavior hardly reflects in

(c)

(a)

0.01

0.02

N = 5

N = 5

N = 10

N = 20

N = 30

0.01

0.03

0.05
ALP
JEL
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(b)

0 1 2 3 4 5 2 3 4

(d)
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v=0.01c

0.05c0.1ccParallel trajectory
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= 1 keV

= 2.5 keV

= 2.5 keV
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= 10 keV

FIG. 3: Aloof EELS in thin Ag(111) films. (a) Scheme show-
ing an electron moving parallel to a N = 5 ML Ag(111) metal
film at a distance z0 from its upper surface. (b) Disper-
sion diagram showing Im{rp} calculated in the ALP model
for the film shown in (a). White solid lines correspond to
ω = vQ for different velocities v, while the dashed horizontal
line shows the classical high-Q asymptotic surface-plasmon
energy ~ωs ≃ 3.7 eV. (c,d) EELS probability per unit of path
length for z0 = 0.5 nm calculated using different models [see
legend in (c)] for (c) different electron kinetic energies E0 with
fixed N = 5 and (d) different N ’s with E0 = 2.5 keV.

the dispersion relation and plasmon strength [Fig. 1]. In-
terestingly, the z-integrated charge is nonzero, revealing
that plasmons involves net charge oscillations along the
in-plane directions for finite wave vector Q.

We conclude from these results that it is the effective
number of valence electrons participating in the plasmons
what determines their main characteristics, irrespective
of the details of the electron wave functions and induced
charge densities.

The loss function Im{rp} provides a convenient way to
represent the plasmon dispersion relation, as plasmons
produce sharp features in the Fresnel reflection coefficient
for p polarization. A weighted integral of this quantity
over in-plane wave vectors gives the EELS probability
under parallel aloof interaction [Fig. 3(a)] according to
Eq. (17). However, the integration limit has a thresh-
old at ω = Qv and the weighting factor multiplying the
loss function in the integrand diverges precisely at that
point. The cutoff condition ω = Qv is represented in Fig.
3(b) for different electron velocities (white lines) along
with the loss function (density plot). As expected, the
points of intersection with the plasmon band produce a
dominant contribution that pops up as sharp peaks in
the resulting EELS spectra [Fig. 3(c,d)]. An increase
in electron velocity (i.e., in the slope of the threshold
line) results in a redshift of the spectral peak [Fig. 3(c)],
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= 1 keV
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0

0.01
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0.03

FIG. 4: Plasmon dependence on crystallographic surface ori-
entation: Ag(111) and Ag(100) films. We compare EELS
spectra calculated in the ALP model under the same condi-
tions as in Fig. 3(c,d) for N = 13 ML Ag(111) and N = 15 ML
Ag(100) films (thickness ratio differing by < 0.1%).

and likewise, thinner films show plasmons moving farther
away from the ω = Qc light line, thus producing shifts
toward higher plasmon energies in the EELS spectra for
fixed electron energy. We remark that RPA and classical
calculations lead to quantitatively similar results for this
configuration, and the former are roughly independent of
the choice of confining electron potential.

The ALP model incorporates experimental informa-
tion on electronic bands, which depend on crystallo-
graphic orientation (see Table I). We explore the effects
of this dependence by comparing aloof EELS spectra ob-
tained from Ag(111) and Ag(100) films in Fig. 4. In
order to eliminate discrepancies arising from differences
in thickness, we consider films consisting of N = 13 and
N = 15 MLs, respectively, so that the thickness ratio is
(2/

√
3) × (13/15) ≈ 1.001. We remind that Ag(111) dis-

plays a projected bulk gap in the electronic bands, in
contrast to Ag(100) [see Fig. 9(a) in Appendix B]; as a
consequence the former supports electronic surface states
unlike the latter [62]. Despite these remarkable differ-
ences in electronic structure, the resulting spectra look
rather similar, except for a small redshift of Ag(100) plas-
mon peaks relative to Ag(111), comparable in magnitude
to those observed in semi-infinite Ag(111) and Ag(110)
crystal surfaces through angle-resolved low-energy EELS
[72], although the actual magnitude of the shift might be
also influenced by electron confinement in our ultrathin
films.

The presence of a dielectric substrate of permittivity ǫs
is known to redshift the plasmon frequency of thin films
by a factor ∼ 1/

√
1 + ǫs due to the attractive image inter-

action [73]. This effect is observed in our calculated aloof
EELS spectra, for which we obtain the combined film-
substrate reflection coefficient by using a Fabry-Perot ap-
proach, as discussed elsewhere [33]. We find again excel-
lent agreement between RPA simulations using the ALP

0 1 2 3 4 5

ALP
classical

(a)

0

0.005

0.01

0.015

0.02

0.025

substrate

Ag(111)

FIG. 5: Substrate-induced plasmon shift. We show EELS
spectra for 2.5 keV electrons calculated in either the ALP
model or the local classical description under the same condi-
tions as in Fig. 3 for a Ag(111) film consisting of N = 5 MLs
supported on a planar dielectric substrate of permittivity ǫs

as indicated by labels.

potential and classical calculations [Fig. 5], and in fact,
the resemblance between the spectral profiles obtained
with both methods increases with ǫs.

In Fig. 6 we examine the way lateral dispersion of QW
states affects the plasmonic properties of ultrathin Ag
films when using the ALP potential. Comparison of the
band structures calculated with [Fig. 6(b)] and without
[Fig. 6(a)] inclusion of an energy dependence in the in-
plane effective mass anticipates a clear difference between
the two of them: the latter shows the same energy jumps
between different bands irrespective of the electron par-
allel wave vector k‖; those energy jumps will therefore
be favored in the optical response, giving rise to spuri-
ous spectral features. In contrast, differences in lateral
dispersion associated with the energy dependence of the
effective mass (described here by fitting existing angle-
resolved photoemission data [58, 59, 61, 74, 75]) should
at least partially wash out those spectral features. This
is clearly observed in the resulting dispersion diagrams
[Fig. 6(c,d)] and aloof EELS spectra [Fig. 6(e,f)]. In par-
ticular, the dispersion relation for constant m∗

j [Fig. 6(c)]
reveals a complex mixture of resonances at energies above
3 eV, which we find to be strongly affected by the HOMO-
LUMU gap energy (not shown); these resonances cause
fine structure in the EELS spectra that disappears when
a realistic energy dependence is introduced in the lateral
effective mass [Fig. 6(e)].

We also analyse EELS spectra for normally impinging
electron beams [Fig. 7]. The momentum- and energy-
resolved EELS probability given by Eq. (13) reveals the
plasmon dispersion in analogy to the loss function [cf.
Figs. 3(b) and 7(b)]. But now, this quantity is directly ac-
cessible under normal incidence by recording angle- and
energy-dependent electron transmission intensities, as al-
ready done in pioneering experiments for thicker Al films
showing both bonding and antibonding plasmon disper-
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FIG. 6: The role of the electron effective mass. (a,b) In-
plane parabolic QW bands of a N = 10 ML Ag(111) film in
the ALP model with (a) constant and (b) energy-dependent
effective mass (m∗

j = me and m∗
j = (a~ε⊥

j +b)me, respectively,
see Table I). The surface state bands (blue curves) have a
mass 0.4 me. Solid (dashed) curves represent bands that are
occupied (unoccupied) at k‖ = 0. The Fermi level is shown
as a horizontal red line. (c,d) Loss function Im{rp} under
the conditions of (a,b), respectively. (e,f) EELS probability
under parallel aloof interaction at a distance z0 = 0.5 nm for
two different electron energies corresponding to the ω = Qv
lines shown in (c,d) and different film thicknesses (see labels)
calculated in the ALP model with constant (dashed curves)
and energy-dependent (solid curves) electron effective mass.

sions [34]. In contrast to the aloof configuration, the
transmission EELS spectra exhibit broader plasmon fea-
tures [Fig. 7(c,d)], which in the thin film limit [69] are
the result of weighting the loss function with a profile
Q2/(Q2 + ω2/v2)2 [see also Eq. (15), where an extra
factor of Q emerges from χ in the small Q limit], rep-
resented in Fig. 7(b) for 2.5 keV electrons and different
energies ~ω (colored curves); these spectra reveal indeed
a broad spectral overlap with the plasmon band. Again,
we observe very similar results from RPA and classical
descriptions, and just a minor dependence on electron
potential in the former.

We conclude by showing EELS calculations for
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FIG. 7: EELS in thin Ag(111) films under normal inci-
dence. (a) Scheme showing an electron normally travers-
ing a N = 5 ML Ag(111) metal film. (b) Momentum- and
energy-resolved EELS probability ΓEELS

⊥ (Q, ω) [Eq. (13)] cal-
culated for E0 = 2.5 keV electrons (v/c ≈ 0.1) in the ALP
model for the film shown in (a). Colored solid curves show
Q2/(Q2 + ω2/v2)2 profiles as a function of Q for different en-
ergy losses ~ω = 2, 3, and 5 eV, while the dashed horizontal
line indicates ~ωs. (c,d) EELS probability calculated using
different models [see legend in (d)] for (c) different electron
kinetic energies E0 with fixed N = 5 and (d) different N ’s
with E0 = 2.5 keV.
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FIG. 8: EELS spectra for gold Au(111) films. We consider for
(a,c) aloof and (b,d) normal trajectories for either (a,b) fixed
electron energy (E0 = 2.5 keV) and varying film thickness
(N = 5-30 MLs) or (c,d) fixed N = 5 and varying electron
energy. Calculations for the same models as in Fig. 3 are
presented. The plasmon dispersion is shown for N = 10 MLs
using the ALP model in the inset of (b).
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Au(111) films in Fig. 8. This noble metal has a similar
conduction electron density as Ag, but the Au d-band
is closer to the Fermi energy, therefore producing large
screening (ǫb ∼ 9 in the plasmonic region) compared with
Ag (ǫb ∼ 4, see Fig. S4 in SI). This causes a shift of the
high-Q surface plasmon asymptote down to ~ωs ≃ 2.5 eV.
Additionally, damping is also stronger (more than three
times larger than in Ag, see Appendix A), which results
in broader spectral features [cf. Fig. 8 for Au and Figs.
3(c,d) and 7(c,d)]. Interestingly, we observe significant
blue shifts in the plasmon spectral features when using
the ALP potential as compared with both jellium DFT
and classical models. This effect could originate in a more
substantial role played by the electronic band structure
in Au(111) because the projected bulk gap extends fur-
ther below the Fermi level, and additionally, the surface
state band is also more deeply bound [see Fig. 9(b) in Ap-
pendix B]. This is consistent with the general dependence
of the optical surface conductivity on Fermi momentum
kF and velocity vF: in the Drude model for graphene and
the two-dimensional electron gas, this quantity is propor-
tional to kFvF and the surface plasmon frequency scales
as ∝

√
kFvF; the situation is more complicated in our thin

films because they have multiple 2D bands crossing the
Fermi level, but the presence of a deeper gap in Au(111)
indicates that the effective band-averaged value of kFvF

(i.e., with kF defined by the crossing of each QW at the
Fermi level and vF as the slope of the parabolic dispersion
at that energy) is larger than in Ag surfaces, character-
ized by the presence of shallower bands near EF; we thus
expect an increase in Drude weight, and consequently, a
plasmon blue shift, in Au(111) relative to Ag; this argu-
ment is reinforced by the small effective mass of surface
states in Au(111) compared with Ag(111), which also
pushes up their associated vF. In summary, the plasmon
blue shifts observed in Au(111) when using the realistic
ALP potential seem to have a physical origin, although
more sophisticated first principles simulations might be
needed to conclusively support this finding.

IV. CONCLUSION

In summary, we have shown that a local classical di-
electric model predicts reasonably well the intensities
and dispersion relations of plasmons in ultrathin silver
films when compared to quantum-mechanical simulations
based on the RPA with different potentials used to sim-
ulate the conduction one-electron wave functions. We
attribute the small effect of nonlocality in the plasmonic
response of these films to the fact that their associated
electron motion takes place along in-plane directions, in
contrast to metal nanoparticles with a similar size as the
film thickness here considered (i.e., electron surface scat-
tering is unavoidable in such particles, thus introducing
important nonlocal effects). We confirm this agreement
between classical and quantum simulations in Ag films
down to a few atomic layers in thickness [33, 63], consis-

tent with previous smooth-interface hydrodynamic the-
ory [76]. Additionally, our quantum RPA simulations are
relatively insensitive to the details of the confining elec-
tron potential, so similar results are obtained when using
either a smooth jellium DFT model or a phenomeno-
logical potential that incorporates atomic-layer corruga-
tion to fit relevant elements of the electronic band struc-
ture. In particular, the latter produces results that are
rather independent of the crystallographic orientation of
the film. Nonetheless, it is important to introduce the
correct energy dependence of the out-of-plane effective
mass in the phenomenological potential model, as other-
wise spurious features show up in the calculated plasmon
spectra. Although these potentials lead to substantially
different plasmon charge distributions, spatial integra-
tion gives rise to similar plasmon dispersion relations.
Interestingly, band effects described in the ALP poten-
tial model are more significant in Au, where they produce
plasmon blue shifts relative to the predictions of classical
and jellium DFT simulations; we attribute this different
behavior in Au(111) relative to Ag(111) and Ag(100) to
the fact that the former surface exhibits a projected bulk
gap that extends further below the Fermi level, and ad-
ditionally, this gives rise to more bound surface states.
We remark that EELS provides the means to access the
dispersion relations of strongly confined plasmons in ul-
trathin metal films, which are too far from the light line
to be measured by means of optical techniques.
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Appendix A: Background screened interaction

We introduce the effect of interband polarization in
the plasmonic spectral region of noble metals through a
dielectric slab of permittivity ǫb(ω) = ǫ(ω) + ω2

p/ω(ω +
iγexp), that is, the local dielectric function of the bulk
metal ǫ(ω) from which we subtract a classical bulk Drude
term representing the contribution of conduction elec-
trons. In practice, we take ǫ(ω) from measured optical
data [66] and use parameters ~ωp = 9.17 eV and ~γexp =
21 meV for Ag, and ~ωp = 9.06 eV and ~γexp = 71 meV
for Au. The resulting ǫb(ω) is plotted in Fig. 12 in Ap-
pendix B. Incidentally, as we explain in Sec. II B, we set
the damping parameter to γ = γexp/2 in the RPA for-
malism in order to fit the experimental plasmon width.
Following previous work [19], we take the background di-
electric slab to have a thickness d = Nas, where N is the
number of atomic layers and as is the interlayer spacing,
so that it extends symmetrically a distance as/2 outside
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the outer atomic plane on each side of the film.
We reproduce for convenience a previously reported

expression [33] for the screened interaction, used here to
account for background polarization in the a self-standing
metal film of thickness d and background permittivity ǫb
contained in the 0 < z < d region:

ν(Q, z, z′) = νdir(Q, z, z′) + νref(Q, z, z′),

where

νdir(Q, z, z′) =
2π

Q
e−Q|z−z′| ×







1, z, z′ ≤ 0 or z, z′ > d
1, 0 < z, z′ ≤ d
0, otherwise

and

νref(Q, z, z′) =
(2π/Q)

(ǫb + 1)2 − (ǫb − 1)2e−2Qd
×























































































(1 − ǫ2b)
(

e2Qd − 1
)

e−Q(z+z′), d < z, z′

2
[

(ǫb + 1)e−Q(z−z′) + (ǫb − 1)e−Q(z+z′)
]

, 0 < z′ ≤ d < z

4ǫb e−Q(z−z′), z′ ≤ 0 and d < z

2
[

(ǫb + 1)eQ(z−z′) + (ǫb − 1)e−Q(z+z′)
]

, 0 < z ≤ d < z′

(1/ǫb)
{

(ǫ2b − 1)
[

e−Q(z+z′) + e−Q(2d−z−z′)
]

+(ǫb − 1)2
[

e−Q(2d+z−z′) + e−Q(2d−z+z′)
]

}

, 0 < z, z′ ≤ d

2
[

(ǫb + 1)e−Q(z−z′) + (ǫb − 1)e−Q(2d−z−z′)
]

, z′ ≤ 0 < z ≤ d

4ǫb eQ(z−z′), z ≤ 0 and d < z′

2
[

(ǫb + 1)eQ(z−z′) + (ǫb − 1)e−Q(2d−z−z′)
]

, z ≤ 0 < z′ ≤ d

(1 − ǫ2b)
(

1 − e−2Qd
)

eQ(z+z′). z, z′ ≤ 0

For completeness, we illustrate the dramatic effects of
interband processes in Fig. 13 in Appendix B by com-

paring calculations obtained for Ag films using either
screened or bare Coulomb interactions.

Appendix B: Additional figures
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FIG. 11: Dependence of the RPA response on model potential. We show (a) the binding conduction electron energies, (b)
the confining potential, and (c) the conduction electron density for a N = 10 ML Ag(111) film, as well as (d-i) the reflection
coefficient rp of Ag(111) films of different thickness N for either (d,f,h) fixed photon energy ~ω as a function parallel wave
vector Q or (e,g,i) fixed Q as a function of ~ω. We calculate rp in the RPA and consider different confining electron potentials,
as indicated by the upper labels: JEL and ALP, defined in the main text; LK, a superposition of the parametrized jellium
DFT potential for semi-infinite surfaces taken from Lang and Kohn [Phys. Rev. B 1, 4555 (1970)] for a one-electron radius
rs = 3 a.u., adopted for each of the film surfaces and glued by hand at the film center; and FBM, a square-well finite-barrier
model potential. Only the ALP incorporates an energy dependence on the lateral effective mass, while the rest of the models
assume m∗

j = me.
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