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ESTIMATION OF GUITAR STRING, FRET AND PLUCKING POSITION USING
PARAMETRIC PITCH ESTIMATION
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Audio Analysis Lab, CREATE, Aalborg University, Denmark
{jmhh, mgc}@create.aau.dk

ABSTRACT

In this paper a fast yet effective method is proposed for analyzing
guitar performances. Specifically, the activated string and fret as
well as the location of the plucking event along the guitar string are
extracted from guitar signal recordings. The method is based on a
parametric pitch estimator and is derived from a physically mean-
ingful model that includes inharmonicity. A maximum a posteriori
classifier is proposed, which requires training data captured from
only one fret per string. The classifier is tested on recordings of
electric and acoustic guitar and performs well: the average absolute
error of string and fret classification is 1.5%, while the error rate
varies depending on the fret used for training. The plucking posi-
tion estimator is the minimizer of the log spectral distance between
the amplitudes of the observed signal and the plucking model and
it is evaluated in proof-of-concept experiments with sudden changes
of string, fret and plucking positions, which can be estimated accu-
rately. Unlike the state of the art, the proposed method works on
very short segments, which makes it suitable for high-tempo and
real-time applications.

Index Terms— Physical Modeling, Statistical Signal Process-
ing, Machine Learning, Parametric Pitch Estimation, Music Infor-
mation Retrieval

1. INTRODUCTION

Analysis of musical performances of individual instruments can be
used for many applications, including automatic transcription and
recognition of artists via analysis of stylistic details. Several papers
have studied the analysis and synthesis of plucked string instruments
e.g., acoustic guitar [1, 2] and electric guitars [3]. We are here con-
cerned with the analysis of guitar signals. To date, there are few pa-
pers on extracting information from electric guitar recordings, some
examples being work concerned with classifying the types of effects
used [4] and estimating the decay time of electric guitar tones [5].
Other research involved extracting information from related string
instruments, such as extracting plucking styles and dynamics for
classical guitar [6] and electric bass guitar [7]. Recent papers intro-
duce techniques to model the physical interactions of the player with
the guitar to synthesize a more realistic guitar sound, such as mod-
eling the interactions of the guitar pick [8,9] or fingers [10] with the
string, and the fingers with the fretboard [11].

It is well-known that the plucking position and pickup posi-
tion produce a comb-filtering effect in the spectrum of the guitar
signal [12, 13] and that stringed instruments are not perfectly har-
monic which some of the first theoretical studies on inharmonicity
show [14, 15]. Shankland and Coltman [16] showed how inhar-
monicity is mainly caused by stiffness and deflection, which was
elaborated on in [17]. The well-known piano model of inharmonic-

ity was derived by H. Fletcher in [18] and has been used recently
for string and fret classification; the inharmonicity coefficient has
been proposed for electric guitar string classification contained in a
48-dimensional feature set [7], where the inharmonicity coefficient
was selected as one of the most discriminative features. A string
and fret classification algorithm was proposed in [19], based on a
10-dimensional feature set and a SVM classifier. Large feature sets
are prone to overfitting and rarely contribute to simple and mean-
ingful findings in terms of physical cause and effect relationship.
To overcome this problem, Barbancho et al. [20] proposed an in-
harmonicity and amplitude based method for automatic and accu-
rate generation of guitar tablature; the inharmonicity coefficient was
estimated from the guitar signal, assuming that its fundamental fre-
quency was known. The main parameter for classification of string
and fret was based on counting the number of partials that follow
the piano model, where peak finding in the spectrum was essential.
Based on [20], Michelson et al. [21] proposed to classify string and
fret by modeling each inharmonicity coefficient as a Gaussian dis-
tribution, along with a linear regression model of the inharmonic-
ity trajectory. Both methods [20, 21] operate on multiple segments,
each in the order of 100 ms, which makes them unsuitable for high-
tempo and real-time applications. Papers with studies on estimation
of the plucking location on the guitar string have used frequency-
domain [22–24] and time-domain [25] approaches, but only for open
strings or by assuming a known pitch and string-fret position or the
estimates were obtained with an under-saddle pickup.

In this paper, we consider the fretted string scenario, hence the
estimation of plucking position as well as classification of string and
fret. Thus, the objective is to extract the location of interactions
of both hands of the guitar player when these can be arbitrarily lo-
cated along a string. Generally, the left hand changes the pitch and
the right hand activates the string vibration by plucking as shown in
Fig. 1. We propose a feature set consisting of three physically mean-
ingful parameters that are estimated with a non-linear least squares
(NLS) pitch estimator [26–29], which is extended to include inhar-
monicity. A maximum a posteriori (MAP) string and fret classi-
fier is trained from inharmonicity and pitch estimates, captured from
recordings of only one fret per string, such that a guitar player will
be able to swiftly train a model of a guitar. All this is done on a
segment-by-segment basis and using short segments, as opposed to
existing work, e.g., [20, 21], such that the proposed method is suit-
able for high-tempo and real-time applications.

2. STRING MODEL

We start by modeling string displacement activated by plucking, be-
fore the signal parameters of interest are described. The vibrating
part of the string has length L and is fixed at l = 0 and l = L
with pinned boundaries. For a small displacement y, the motion is



Fig. 1: Right hand controls plucking position and left hand controls
pitch using the fretboard. One pitch is produced in various positions.
Source: Adapted from line drawing [30].

described by the partial differential equation ∂2y
∂t2

= c2 ∂
2y
∂l2

, where
c is the speed of the transverse wave. The well-known ideal string
solution is [13]

y(l, t) =
∑
m

(
Am sinωmt+A′m cosωmt

)
sinκml, (1)

where ω is frequency, κm = ωm/c and Cm =
√
A2
m+A′2m are

the wave number and the amplitude of the mth mode, respectively.
The string is modeled with an initial deflection δ excited at plucking
position P , by the plucking hand with an edge sharp pick at the
P th fraction of its length (0<PL<L). There is no initial velocity
i.e. ∂y

∂l
= ẏ(l, 0) = 0, ∀l and we assume an initial triangular string

shape, i.e.

y(l, 0) =

{
δ
P
l
L
, 0 ≤ l ≤ PL

δ
1−P (1−

l
L
), PL ≤ l ≤ L.

(2)

For a fixed P , the mth Fourier coefficients of this string is

Cm(P )=
2

L

[
δ

PL

∫ PL

0

l sin
mπl

L
dl+

δ

1−P

∫ L

PL

(1− l

L
) sin

mπl

L
dl

]
=

2δ

m2π2P (1− P )
sinmπP, (3)

which explains how timbre changes as a function of plucking posi-
tion. From (3) it is clear that the mth amplitude is scaled by m−2

with a sinusiodal spectral envelope caused by P , independent of
pitch. From an open string length Lopen (from bridge to nut) and
a given fret index f1, the corresponding vibrating string length L1 is

given by L1 = Lopen2
−f1
12 (see Fig. 1).

For an electric or semi-acoustic guitar, the displacement y(l, t) is
measured with an electrical transducer (a pickup), which we assume
is close to the vibrating string in a fixed location (l = λ). For a
discrete time sampled signal at time instance n we define the signal

x(n)|l=λ ∝ y(λ, t), (4)

where x(n) is the guitar signal recorded with the pickup at λ.
We propose to parametrize x(n) with an inharmonic signal model
as explained in the following. At time instance n, the observed
complex-valued signal vector x ∈ CN is represented as x =
[x(0)x(1) · · · x(N − 1)]T , with T denoting the transpose. A com-
plex signal can ease both notation and computational complexity
and a real-valued signal is converted to complex by using the Hilbert
transform [31]. The nth entry of x is modeled as an inharmonic
sinusoidal part and a noise part i.e.,

x(n)=

M∑
m=1

αm exp
(
jψm(ω0, B)n

)
+ v(n), (5)

Fig. 2: Overview of the proposed method.

where ω0 is the fundamental frequency, M is the number of partials,
αm is the complex amplitude of the mth partial, v(n) is noise and
the instantaneous frequency ψm(ω0, B) is derived in [18] as

ψm(ω0, B) = mω0

√
1 +Bm2. (6)

For ease of notation, we denote it as ψm although it is a function of
ω0 and B. The model order M can be estimated [26, 27], while for
the string model, initialized by the triangular shape in (2) we assume
a high M at the onset event. In vector-matrix notation the observed
signal is modeled as

x = Zα+ v, (7)

where the complex sinusoidal matrix Z ∈ CN×M is given by

Z = [z(ψ1) z(ψ2) · · · z(ψM )] , (8)

z(ψm) =
[
1 ejψm ejψm2 · · · ejψm(N−1)

]T
, (9)

whereα = [α1 · · · αM ]T is a vector containing complex amplitudes
and v = [v(0) v(1) v(N − 1)]T contains all noise terms. We denote
the unknown and deterministic parameters with θ, i.e.

θ = {ω0, B,α}. (10)

The amplitudes α can be estimated with the least squares, while the
other parameters ω0 and B are non-linear. The inharmonic pitch
and inharmonicity coefficient estimates {ω̂0, B̂} are sufficient for
classification of string and fret [20, 21] and the estimated amplitude
vector α̂ is used for estimation of the plucking position P̂ .

3. PROPOSED METHOD

Fig. 2 gives an overview of the proposed method. The proposed
method is initialized with a detection of the onset event from which
one segment is extracted and the following estimation is done on
such a segment alone. The feature set in (10) is extracted as maxi-
mum likelihood with the NLS inharmonic pitch estimation method.
{ω̂0, B̂} are applied to a MAP classifier of string and fret. At the es-
timated inharmonic frequencies ψ̂, the complex amplitudes α̂ are es-
timated using least squares. These are used for estimation of pluck-
ing position P̂ . All details are derived in the following. In this study
the onset detection is considered a solved problem which can be ob-
tained with a filter bank method [32].

3.1. Inharmonic Pitch Estimation

The pitch and inharmonicity parameters are estimated by maximiz-
ing the likelihood function

θ̂ = argmax
θ

L(θ|x) = argmax
θ

p(x;θ). (11)



The observed signal distribution is modeled in circular complex
white Gaussian noise with covariance matrix ζ, i.e.,

p(x;θ) =
1

πN det (ζ)
e(−vHζ−1v), (12)

where ζ = σ2I is a diagonal matrix, scaled by an unknown variance
σ2, where I is the N × N identity. By the use of (7) with v =
x− Zα, the log-likelihood function is expressed as

lnL(θ|x) = −N ln(π)−N ln
1

N
||x− Zα||22 −N. (13)

By neglecting all terms that do not dependent on ω0 andB, the max-
imum likelihood solution is the minimizer of the 2-norm error be-
tween the observed signal and the signal model, expressed as

θ̂ = argmax
θ

L(θ|x) = argmin
θ

‖x− Zα‖22. (14)

By substituting α with its least squares estimate

α̂ = (ZHZ)−1ZHx, (15)

the inharmonic non-linear least squares (NLS) pitch estimator is

{ω̂0, B̂} = argmin
ω0,B

||x− Z(ZHZ)−1ZHx||22. (16)

Asymptotically N(ZHZ)−1= I|N→∞ , a computationally efficient
approach can be found as

{ω̂0, B̂} = argmax
ω0,B

xHZZHx = argmax
ω0,B

∥∥∥ZHx
∥∥∥2

2
, (17)

which can be implemented using just one FFT per segment. Since
B<< 1, an initial pitch estimate is obtained with B = 0, and from
that we define a narrow two dimensional search grid for the inhar-
monic pitch (ω0 and B) to ease computational complexity. An op-
timal grid can be selected using [33]. Finally, the amplitudes are
estimated using (15).

3.2. String and Fret Classification

Having found the pitch and the inharmonicity parameters φ =

[ω̂0, B̂]T using (17), the next problem is to classify the observed
signal x as being produced by a string and fret position. We have a
set ofK mutually exclusive classes Γ = {γ1, . . . , γK} representing
all possible string and fret positions. The MAP-optimal classifier
with decision function γ̂(·) :RI→Γ is [34]

γ̂MAP(φ) = argmax
γ∈Γ

p(γ|φ) = argmax
γ∈Γ

p(φ|γ)P (γ). (18)

We model φ as coming from a normal object with class γk, then the
kth conditional probability density is

p(γk|φ)=(2π)−1det(Λk)
−1
2 exp

(
−(φ− µk)TΛ

−1
k (φ− µk)

2

)
, (19)

where the expectation vectorµk and covariance matrix Λk are given
from training. The covariance matrix is here modeled as being class
independent and isotropic, i.e., we have that Λk = σ2I. There are
several reasons for this. First, as we shall see, it proves sufficient for
very accurate classification. Second, it requires very little training
data, something that is important due to the high number of classes
formed by combinations of strings and frets. We also remark that

using a simple statistical model is also desirable in that it makes it
possible to adapt the classifier to specific instruments using a simple
training procedure. Returning now to the classifier, neglecting terms
that do not depend on the class index k yields the following, simple
classification scheme:

γ̂(φ)=γi with i=argmax
k=1,...,K

{
2 lnP (γk)−

‖φ−µk‖
2

σ2

}
. (20)

As can be seen, the classifier in (20) is the minimizer of the Eu-
clidean distance between the observation and its expectation, with
a correction factor of 2σ2P (γk). The prior P (γk) can be specified
from the number of training samples from class γk or be assumed
uniform, in which case it reduces to a maximum likelihood classi-
fier.

The model parameters of each class {µk,Λk}, ∀k, can be found
from a labelled set of I i.i.d. samples {φ}. However, it is in fact pos-
sible to obtain a model for all frets on a string from one such model.
For example, given the parameters Bs(f1) and ω0,s(f1) of the sth
vibrating string for a given fret f1, the corresponding parameter can
be computed for any other fret f2, using the inharmonicity model
derived in [20]

B̂s(f2) = B̂s(f1) 2
f2−f1

6 =
π3Esd

4
s

64TsL2
s(f2)

, (21)

and for the pitch estimates we have that ω̂0,s(f2) = ω̂0,s(f1)2
f2−f1

12 .
Hence, the classifier only need to be trained using audio captured
from one fret per string in order to model the parameters of the
remaining frets. In (21) Es is elastic modulus, ds is core diameter,
Ts is tension, which can be considered constants [17].

3.3. Plucking Position Estimation

As was argued earlier, once the estimate of amplitudes has been
obtained using (15), the plucking position P̂ can be found. More
specifically, the plucking position, P̂ , is found in the proposed
method by minimizing the log spectral (LS) distance between the
observation α̂ and the model C, i.e.,

P̂ = argmin
P

(
dLS(α̂,C(P ))

)
, (22)

where C(P ) = [C1(P ), C2(P ), . . . , CM (P )]T is obtained from
the model in (3) and the log spectral distortion is defined as

dLS(α̂,C(P )) =

√
1

M

∑
m

10 log10

|α̂m|2
|Cm(P )|2 . (23)

We remark that the model C can be more physically meaningful by
combining it with a model of the pickup location, such as e.g.,, [22].

4. EVALUATION

To evaluate the proposed plucking position estimator along with the
string and fret classifier, some experiments have been conducted as
described next. These experiments focus on segment-by-segment
estimation and classification using short 40 ms segments, as this en-
ables high-tempo and real-time applications of the proposed method.
Hence, the experiments aim to demonstrate that this is possible. In
relation to this, we remark that the state of the art [20, 21] operates
on multiple segments, each in the order of 100 ms. As the NLS es-
timator has been shown to reach the Cramér-Rao lower bound [26],
we do not go into further details about this. The proposed method



Table 1: String and fret confusion matrix for the Martin acoustic
guitar. The classification errors are shown for each of the 6 strings.

Labels Est. 6 Est. 5 Est. 4 Est. 3 Est. 2 Est. 1

True 6 1560 0 0 0 0 0
True 5 0 1560 0 0 0 0
True 4 0 0 1560 0 0 0
True 3 0 0 0 1560 0 0
True 2 0 0 0 0 1560 0
True 1 0 0 0 0 0 1560

Table 2: String and fret confusion matrix for the Firebrand electric
guitar. The classification errors are shown for each of the 6 strings

Labels Est. 6 Est. 5 Est. 4 Est. 3 Est. 2 Est. 1

True 6 1536 24 0 0 0 0
True 5 0 1560 0 0 0 0
True 4 0 0 1475 85 0 0
True 3 0 0 76 1455 29 0
True 2 0 0 0 0 1506 54
True 1 0 0 0 0 0 1560

Fret used for training the classifier

E
rr

o
r 

R
at

e 
[%

]

Fig. 3: String and fret classification error rate.

was evaluated on recorded data (44.1 kHz). The data and MATLAB
code is available online1 and we refer to the available code for im-
plementation details. The data consists of guitar recordings of the
electric and acoustic guitar, each labelled with their respective string
and fret combination, namely electric Les Paul Firebrand with Elixir
Nanoweb (.10-.54) strings and an acoustic Martin DR with SP (.12-
.52) strings. The recorded data of each guitar represents 10 line sig-
nal recordings of every string and fret combination from the 0th to
12th, which resembles 720 recordings in total. For experiments, ev-
ery recording is segmented from the detected onset time event in to a
40 ms segment. The classification of the string and fret is tested on
recordings of both guitars. The classifier is trained as described in
3.2, for each fret such that 9360 recordings are classified in total. A
plausibility filter [7] based on the equal tempered scale was applied
and the resulting confusion matrices in Table. 1 and Table. 2 are
shown here for the strings, and we observe that the acoustic guitar
has a very low error rate while for the electric guitar it is on average
3%. The biggest confusion occurs between strings 3 and 4. We have
observed that the amplitudes for m�1 of the acoustic guitar has
much more energy than the electric guitar, which could explain the
difference in accuracy as being related to acoustic qualities of the
guitar and pickup [35]. Fig. 3 shows that the error rate is in the range
from 1% to 5% dependent on the fret used for training the classi-

1https://tinyurl.com/icassp2019
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Fig. 4: String, fret and plucking position estimates with moving
plucking position and fixed string and fret for electric guitar.
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Fig. 5: String, fret and plucking position estimates with moving
plucking position and moving string and fret for electric guitar.

fier. Finally, the estimation of plucking position is tested on two 12
second recordings of electric guitar that resembles realistic playing
with sudden changes of string, fret and plucking position. Since the
ground truth of plucking position is demanding to obtain, the experi-
mental ground truth is based on a continuously moving the plucking
position from the bridge and towards the nut of the guitar. The re-
sult in Fig. 5 represents a case where 6 strings are being played in 6
different frets. Every string and fret combination was correctly clas-
sified, and the plucking position estimates show a clear trend that
follows the ground truth direction. In Fig. 4 results are shown for the
same plucking procedure, but for fixed string and fret combinations,
where we can observe a clear trend in plucking position direction
and it is interesting that spatial aliasing occurs from 7 seconds and
on-wards.

5. CONCLUSION

In this paper a fast method for estimation of guitar string, fret and
plucking position was proposed. The method works on very short
segments (i.e., 40 ms) from which a parametric pitch estimator ex-
tracts the feature set, i.e., pitch, inharmonicity and complex am-
plitudes. This feature set was proved sufficient for accurate MAP
classification of string and fret, even with very little training data
captured from only one fret per string, with an overall error rate
of 1.5% for electric and acoustic guitar recordings. The plucking
position estimator is the minimizer of the log spectral distance be-
tween the estimated amplitudes of the observed signal and the pluck-
ing model. In proof-of-concept experiments we showed that string,
fret and plucking position combinations can be estimated accurately
from recording signals with sudden changes of string, fret and pluck-
ing positions.

https://tinyurl.com/icassp2019
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[25] H. Penttinen and V. Välimäki, “A time-domain approach to es-
timating the plucking point of guitar tones obtained with an
under-saddle pickup,” Applied Acoustics, vol. 65, no. 12, pp.
1207–1220, 2004.

[26] J. K. Nielsen, T. L. Jensen, J. R. Jensen, M. G. Christensen, and
S. H. Jensen, “Fast fundamental frequency estimation: Mak-
ing a statistically efficient estimator computationally efficient,”
Signal Processing, vol. 135, pp. 188–197, 2017.

[27] M. G. Christensen and A. Jakobsen, Multi-Pitch Estimation,
1st ed. Morgan and Claypool, 2009.

[28] M. W. Hansen, J. M. Hjerrild, M. G. Christensen, and J. Kjeld-
skov, “Parametric multi-channel separation and re-panning of
harmonics sources,” in Proc. Int. Conf. Digital Audio Effects,
2018.

[29] M. G. Christensen, P. Stoica, A. Jakobsson, and S. H. Jensen,
“Multi-pitch estimation,” Signal Processing, vol. 88, no. 4, pp.
972–983, 2008.

[30] J. M. Phillips, “Jeffrey phillips design,” http://www.imjeffp.
com/, 2018.

[31] S. Lawrence Marple, “Computing the discrete-time analytic
signal via fft,” IEEE Trans. Signal Process., vol. 47, pp. 2600–
2603, 1999.

[32] O. Lartillot and P. Toiviainen, “A matlab toolbox for musi-
cal feature extraction,” Proc. Int. Conf. Digital Audio Effects,
2000.

[33] J. K. Nielsen, T. L. Jensen, J. R. Jensen, M. G. Christensen, and
S. H. Jensen, “Grid size selection for nonlinear least-squares
optimisation in spectral estimation and array processing,” in
Proc. European Signal Processing Conf., Aug 2016, pp. 1653–
1657.

[34] D. R. F. van der Heijden, R. P. W. Duin and D. Tax, Classifica-
tion, Parameter Estimation and State Estimation, 1st ed. John
Wiley and Sons, Ltd., 2004.

[35] N. H. Fletcher and T. D. Rossing, The Physics of Musical In-
struments, 2nd ed. Springer, 1998.

http://www.imjeffp.com/
http://www.imjeffp.com/

