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Abstract: Objective: The purpose of this study was to evaluate the impact of chiropractic
spinal manipulation on the early somatosensory evoked potentials (SEPs) and resting-state
electroencephalography (EEG) recorded from chronic stroke patients. Methods: Seventeen male
patients (53 ± 12 years old) participated in this randomized cross-over study. The patients received
chiropractic spinal manipulation and control intervention, in random order, separated by at least
24 hours. EEG was recorded before and after each intervention during rest and stimulation of
the non-paretic median nerve. For resting-state EEG, the delta-alpha ratio, brain-symmetry index,
and power-spectra were calculated. For SEPs, the amplitudes and latencies of N20 and N30 peaks
were assessed. Source localization was performed on the power-spectra of resting-state EEG and
the N30 SEP peak. Results: Following spinal manipulation, the N30 amplitude increased by 39%,
which was a significant increase compared to the control intervention (p < 0.01). The latency and
changes to the strength of the cortical sources underlying the N30 peak were not significant. The N20
peak, the resting-state power-spectra, delta-alpha ratio, brain-symmetry index, and resting-state
source localization showed no significant changes after either intervention. Conclusion: A single
session of chiropractic spinal manipulation increased the amplitude of the N30 SEP peak in a group
of chronic stroke patients, which may reflect changes to early sensorimotor function. More research is
required to investigate the long-term effects of chiropractic spinal manipulation, to better understand
what impact it may have on the neurological function of stroke survivors.

Keywords: chiropractic; stroke; electroencephalography; somatosensory evoked potentials;
brain waves; spinal manipulation

1. Introduction

Stroke is the second-most common cause of death globally, preceded only by ischemic heart
disease [1]. It has a high prevalence, affecting approximately 200 persons per 100,000 [2] and requires
extensive rehabilitation, with high economic and social costs (~€21,000 per patient in 2010) [3].
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Upper limb function is often affected by stroke, and its improvement has been identified as one of the
top ten research priorities by stroke survivors, caregivers, and clinicians [4].

The predictors known to identify inefficient upper limb sensorimotor recovery are increased
stroke severity, more severe early somatosensory and motor impairments, and the presence of
visuospatial neglect [5]. Somatosensory evoked potentials (SEPs) are frequently used as a measure
of somatosensory processing after stroke, and abnormalities in the median nerve SEPs often predict
functional outcomes for stroke survivors [6–12]. Compared to healthy controls or the same subjects’
unaffected hemisphere, typical median nerve SEP abnormalities are found in affected hemispheres
of stroke survivors. These are abnormally long interpeak intervals (such as N9-N13, N13-N20),
absent or severely reduced SEP peak amplitudes (such as N20 and P22 amplitudes), and prolonged
latency of some SEP peaks (such as 2-5 standard deviations higher latency of N20) [7,10,11,13,14].
A recent systematic review suggested that acute, inter-hemispheric imbalances involving higher alpha
event-related synchronization in the affected hemisphere could be more pronounced in those with
moderate upper limb motor impairments [11].

The cortical and subcortical areas associated with the movement are interconnected [15], and the
active networks can be seen during the assessment of the electrical resting-state activity of the
brain. After a stroke, the reorganization of these electrophysiological networks can result in changes,
for example, in the functional connectivity [16], and the power spectrum [17]. The changes in resting
activity have been associated with motor dysfunction during movements [18]. Increased activity of
the slower oscillations, i.e., increased power of the delta and theta frequency bands have been found
to be related to brain damage due to, for example, stroke, brain hemorrhage, tumors and traumatic
injury [19–22]. Finnigan et al. [23] suggested that the delta-alpha ratio (DAR) and pairwise-derived
brain symmetry index (BSI) calculated from the resting-state electroencephalography (EEG) can be
important predictors of neurological function in stroke survivors. Increased DAR and BSI were found
in the (sub-) acute stage after stroke [23–25]. However, only BSI in lower frequency bands was increased
in the chronic stroke survivors [17].

The possible mechanisms involved in post-stroke motor recovery consist of facilitation and
modulation of neural plastic changes in the brain [26]. In the past two decades, many studies
have shown that chiropractic spinal manipulation has a neural plastic effect on the central nervous
system (CNS) [27–29]. Numerous studies have demonstrated altered central processing, such as those
associated with somatosensory processing, sensorimotor integration, motor control, and pain after
(usually a single session of) chiropractic spinal manipulation, which suggests that the chiropractic
intervention can rapidly affect central neural function in a variety of ways [27,28,30–38]. Several of these
studies have shown that chiropractic care can alter the amplitudes of several SEP peaks, in particular,
the N20 and N30 peaks [32,36,39,40]. The most consistent change following chiropractic care is
a reduction in amplitude of the N30 SEP peak [32,36,39,40], which has been shown to occur primarily
in the prefrontal cortex [39]. The prefrontal cortex is highly involved in sensorimotor integration and
motor control [32,34,35,38]. Thus, the changes in the prefrontal cortex might be the reason why a single
session of chiropractic care could impact and improve force development, as has recently been shown
in a chronic stroke population [41]. However, the effects of chiropractic care on post-stroke sensory
and motor recovery have not yet been adequately studied.

Considering that N30 SEP peak amplitudes have been shown to decrease due to reduced cerebral
blood flow [42], and previous studies have consistently shown a decrease in N30 SEP peak amplitude
after chiropractic care [32,36,39,40] albeit, in a different population, we considered it to be worth
investigating what effect chiropractic care has on N30 SEP peaks, as well as other measures of brain
activity, in stroke survivors. Therefore, this study aimed to evaluate the effects of a single session of
chiropractic spinal manipulation on the resting-state EEG, early somatosensory evoked potentials,
and the strength of its corresponding brain sources in stroke survivors.
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2. Methods

The study used a randomized controlled cross-over design and was conducted at Railway General
Hospital in Rawalpindi, Pakistan. The Riphah International University Research Ethics Committee,
Pakistan, approved the study (ref # Riphah/RCRS/REC/000118). The study was also approved by
the New Zealand College of Chiropractic Research Review Committee. The study was conducted in
accordance with the Declaration of Helsinki.

2.1. Subjects

Nineteen stroke patients (all males, 53 ± 12 years old) participated in this study. By using
a purposive sampling technique, the subjects were recruited from the outpatient facility of the
rehabilitation department, where they came for their conventional physical rehabilitation. The subjects
gave their written informed consent to participate in the study. The patient details are given in Table 1.
Although it was not part of the inclusion criteria, all subjects recruited were males and naïve to
chiropractic care.

Table 1. Patients’ characteristics.

No. Age (Years) Type of
Stroke

Area
Involved

Affected
Hemisphere FM Score Time Since

Event (Months)

1 54 Ischemia MCA Left 55 24
2 51 Ischemia ACA Left 57 18
3 68 Hemorrhage MCA Left 41 60
4 75 Ischemia ACA Right 76 12
5 36 Ischemia MCA Left 64 18
6 61 Hemorrhage MCA Left 83 5
7 33 Ischemia MCA Left 55 5
8 48 Ischemia MCA Left 64 24
9 56 Ischemia MCA Left 63 5

10 58 Ischemia MCA Left 76 25
11 41 Hemorrhage MCA Right 64 20
12 62 Ischemia MCA Right 72 16
13 46 Ischemia MCA Right 54 13
14 33 Hemorrhage MCA Right 71 46
15 51 Ischemia MCA Right 46 23
16 66 Ischemia MCA Right 78 12

17 * 63 Hemorrhage ACA Right 21 50
18 58 Ischemia MCA Left 63 16

19 * 38 Hemorrhage MCA Right 58 3

Note. * = Patients excluded; MCA = Middle cerebral artery; ACA = Anterior cerebral artery; FM = Fugl-Meyer Score.

Before enrolling in the study, the subjects were introduced to the lab environment. Subjects were
eligible to participate if they had suffered from a stroke at least 12 weeks before their involvement in the
study and had a Fugl-Meyer Assessment score (combined upper and lower limb) of less than or equal
to 85 (i.e., they had significant motor impairment [43]). The subjects were ineligible to participate if they
showed no evidence of spinal dysfunction (i.e., presence of vertebral subluxation indicators identified
by a chiropractor), had absolute contraindications to spinal adjustments (including spinal fracture,
atlantoaxial instability, spinal infection, spinal tumor, or cauda equina syndrome), or previously had
a significant adverse response to chiropractic care.

2.2. Experimental Protocol

The subjects participated in two sessions, chiropractic and control, in random order, separated by
at least 24 hours. The balanced randomization scheme was generated using Minimizer (Microsoft Corp.
Redmond, WA, USA). The subjects were not informed beforehand that one of the interventions would
be a control intervention.
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Each session consisted of recording resting-state EEG, followed by SEPs evoked by electrical
stimulation of the median nerve of the non-paretic limb. Both recordings were done before and after the
intervention. During each session, the subjects were seated comfortably in a chair, in front of a screen
and were asked to keep their eyes open and be relaxed to reduce the contamination of EEG signals.

The study was single-blinded; therefore, the subjects did not know which intervention they
received. The data analysis was performed by blinding the analyst through assigning random numbers
to each dataset (recording) of every subject.

2.3. Interventions

The chiropractic spinal manipulation and control interventions were similar to those used in
previous studies [27,28,37,39,41] that have investigated the neurophysiological effects of chiropractic
spinal adjustments. The same chiropractor performed the actual and control adjustments. At the end
of the second session, the subjects were asked if they felt that they had undergone active treatment in
each session (‘yes’ or ‘no’).

2.3.1. Chiropractic Manipulation

The standard adjustment techniques used by the chiropractors, also known as spinal manipulation,
were used in the chiropractic spinal adjustment session. The chiropractor performed manual
high-velocity low-amplitude adjustments or instrument-assisted adjustments to the spine or pelvic
joints [44]. The chiropractor used standard clinical indicators of spinal and pelvic dysfunction to decide
where to adjust. [45] These indicators included tenderness to palpation, restricted intersegmental
motion, muscle asymmetry, and blocked jopint play or end-feel. Chiropractic adjustments were applied
to multiple spinal segments if required.

2.3.2. Control Manipulation

The control intervention was performed by the same chiropractor who provided the chiropractic
intervention. In the control session, the chiropractor interacted with the patient in a similar way to the
active session, including assessing the spine and pelvis for dysfunction and then moving and setting
up the patient as if they were going to apply an adjustive thrust. However, during the adjustment
set up, the chiropractor took care not to provide an adjustive thrust or to take a vertebral segment
that was deemed to be subluxated to tension. The control session was designed to control for the
interaction and time taken during the chiropractic intervention and to control for the mechanoreceptive
input associated with the chiropractor assessing the patient’s spine, while ensuring the afferent input
associated with the adjustive thrust was minimized.

2.4. Median Nerve Stimulation

The median nerve was stimulated using electrical pulses delivered by the electrical stimulator
(Digitimer DS7AH, Hertfordshire, UK) to evoke SEPs. The stimulation electrodes (Neuroline 700,
AMBU A/S, Ballerup, Denmark) were placed at the wrist. The motor threshold was defined as the
lowest current intensity, which elicited a visible twitch of the thumb. Before and after each intervention,
a total of 1000 electrical pulses were given to the median nerve of the non-paretic limb. The stimulation
pulse was monophasic, with a width of 0.2 ms and a frequency of 2.3 Hz.

2.5. EEG

The EEG was recorded at a sampling rate of 2048 Hz from 62 channels using a REFA amplifier
(TMSi, Twente, The Netherlands) according to the 10-20 electrode system. The ground electrode was
placed at AFz. The impedance of the electrodes was kept below 10 kΩ. The subjects were asked to
focus on a white fixation cross with black background displayed in the center of a computer screen
while minimizing eye blinks, eye movements, and facial movements.
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The EEG was analyzed offline using EEGLAB version 14.1.1 [46], ERPLAB version 6.1.4 [47],
and FieldTrip version 20180912 [48] running on MATLAB 2015b (The MathWorks, Inc., Natick, MA,
USA). We developed custom scripts in MATLAB utilizing EEGLAB, ERPLAB, FieldTrip, and MATLAB
functions to perform the analysis. The analysis pipeline has been previously described in detail [49].

The raw EEG was truncated to keep up to an additional 30 s of data in the beginning and end
of the recordings to reduce filter artifacts. The PREP pipeline [50] was used to identify bad channels,
remove line noise, and obtain the average referenced data.

2.5.1. Resting-State EEG

The resting-state EEG was recorded for 5 minutes. For artifact detection and correction, the PREPed
EEG was high-pass filtered using a Kaiser windowed FIR filter (β = 5.653) with a cutoff frequency of
1 Hz and an order of 4948 equivalent to the transition bandwidth of 1.5 Hz. After cleaning the data,
the channels of the subjects with the right affected hemisphere were mirrored in the sagittal plane to
model all subjects having the lesion(s) in the left hemisphere. The data from subjects with at least 2 min
of clean EEG per session were used for further analysis. The analyses were performed on the data
downsampled to 256 Hz to reduce the computational time and remove redundant frequency spectrum
not required in the analysis. The EEG was segmented into 2 s long epochs to encompass two cycles of
the lowest frequency of interest (1 Hz). For any session with clean data longer than 2 min, 60 epochs
were randomly selected to equalize the length of data across sessions and subjects.

Spatio-Spectral Power

The power spectra were calculated between 1 and 80 Hz using the Fourier basis with a 2 s wide
Hanning window. Afterwards, the average power of each classical frequency band (delta (1–4 Hz),
theta (4.1–8 Hz), alpha (8.1–12 Hz), beta (12.1–32 Hz), and gamma (32.1–80 Hz)) was computed.

DAR

For each channel c, the DAR was calculated to get the ratio of the mean delta power to the mean
alpha power as

DARc =

〈
Pc( f )

〉
f=1, ..., 4 Hz〈

Pc( f )
〉

f=8, ..., 12 Hz
(1)

The global DAR was calculated by averaging the ratios across all N EEG channels:

DAR =
1
N

N∑
c=1

DARc (2)

BSI

The pairwise-derived BSI was calculated by taking the absolute difference of the mean spectral
power between the homologous left cL and right cR EEG channels. The BSI was calculated over the
1–25 Hz range [17] by

BSIcp = 〈

∣∣∣∣∣∣ PcR( f ) − PcL( f )
PcR( f ) + PcL( f )

∣∣∣∣∣∣〉
f=1,...,25 Hz

(3)

The BSI across all channel pairs cp was averaged to get global BSI:

BSI =
2
N

N/2∑
cp=1

BSIcp (4)

The range of BSI is 0 to 1, where 0 means perfect symmetry, and 1 represents no symmetry between
channel pairs.
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Since BSI does not take the direction of asymmetry into account, the direction of asymmetry was
calculated by not taking the absolute of Equation (3):

BSIdircp = 〈
PcR( f ) − PcL( f )
PcR( f ) + PcL( f )

〉

f=1,...,25 Hz
(5)

The values were averaged over all channel pairs:

BSIdir =
2
N

N/2∑
cp=1

BSIdircp (6)

BSIdir ranges from −1 to +1, where 0 means perfect symmetry, positive values mean higher
power in the right hemisphere compared to the left hemisphere and vice versa for the negative values.
BSIdir for all subjects was multiplied by −1. This way, the positive values characterized higher power
in the affected hemisphere compared to the unaffected hemisphere, and vice versa for the negative
values [17].

In addition to BSI for the 1–25 Hz band, separate BSI calculations were made for the delta, theta,
alpha, beta, and gamma bands. The mid-line channels were not included in the BSI calculation.

Source Localization

The localization of electrical activity in the brain during rest was estimated in the LORETA-KEY
software, version 20151222 [51] (freely available at www.uzh.ch/keyinst/loreta). For source localization,
we used sLORETA, which is a linear inverse algorithm that estimates the distribution of cortical
generators of the EEG in three-dimensions, with lowest localization error compared to several other
linear inverse methods [51]. The sLORETA implementation uses a reference brain from the Montreal
Neurological Institute (average MRI brain map (MNI-152)) [52] with cortical gray matter divided into
6239 voxels with a resolution of 5 mm.

For sLORETA analysis, the EEG was segmented into 8 s long epochs to obtain smooth power
spectral density. The data from subjects with at least 2 minutes of clean EEG per session were used.
For any session with clean data longer than 2 minutes, 15 epochs were randomly selected to equalize
the length of data across sessions and subjects. The sLORETA was performed in the frequency domain
where cross-spectral matrices for each subject were computed in the LORETA-KEY software for the
same five frequency bands as in the power spectral analysis above. Subsequently, the cross-spectral
matrices were averaged for each subject and used as input for the sLORETA.

2.5.2. SEPs

The EEG recorded during the median nerve stimulation of the non-paretic limb was analyzed.
For artifact detection and correction, the PREPed EEG was high-pass filtered using a 2nd order
Butterworth filter with a cutoff frequency of 1 Hz. The epochs were extracted from 100 ms before
the stimulus to 150 ms after the stimulus and baseline corrected using the pre-stimulus period.
After cleaning the data, the channels of the subjects with the right affected hemisphere were mirrored
in the sagittal plane to model all subjects having a lesion(s) in the left hemisphere. For each subject,
the number of epochs in each session was equalized to the session with a minimum number of epochs
(for that subject), by randomly removing clean excess epochs. Finally, the epochs were averaged.

SEP Peaks

In this study, we analyzed the amplitudes and latencies of the N20 and N30 SEP peaks. The N20
amplitude was calculated from the central electrode. The most positive (P14) and the most negative
(N20) peaks with respect to the stimulus were identified in the time window of 13–20 ms and 20–30 ms,
respectively. The N30 amplitude was calculated from the frontal electrode, as done previously [39].

www.uzh.ch/keyinst/loreta
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The most positive (P22) and the most negative (N30) peaks with respect to the stimulus were identified
in the time window of 15–25 ms and 25–45 ms, respectively. Afterwards, manual inspection was
performed, and the identified peaks were verified by an expert in SEP analysis. The N20 and N30
amplitudes were defined as the absolute difference in the amplitudes of these peaks.

Source Localization

Brain source modeling was performed in the 18 to 60 ms post-stimulus period using Brain
Electrical Source Analysis (BESA) (BESA Research 5.3; MEGIS Software GmbH, Gräfelfing, Germany)
software. First, the potential distributions over the scalp from preset voltage dipoles within the brain
were calculated. Afterwards, the agreement between the recorded and the calculated field potentials
was evaluated. For further analysis, the percentage of data that could not be explained by the model,
termed as residual variance (RV), was required to be less than 10%. A 4-shell ellipsoidal model with
a radius of 85 mm was used.

The models were first created on the pre-session grand-averages to get an indication of the location
and number of sources. Afterwards, LORETA was used on individual pre-sessions to guide the
estimation of the location and number of sources. LORETA is a current density model that produces
blurred source images, requires no prior constraints, and has high accuracy [53]. Once the dipoles were
placed, the model fit was obtained by fixing their locations but allowing their orientations to move
freely. The model was then applied to the associated post-sessions. The source activation waveforms
were exported to MATLAB 2015b (The MathWorks, Inc., Natick, MA, USA), and brain source strengths
for the N30 peak were computed by calculating the area under the curve (AUC) in the 20 to 60 ms
post-stimulus period.

2.5.3. Artifact Removal

The same parameters were used for marking epochs as bad for both the resting-state EEG and
SEPs. The resting-state EEG was segmented into 0.5 s long epochs. An epoch was considered bad
if, for any channel, (i) the amplitude exceeded 100 µV, (ii) peak-to-peak amplitude was more than
150 µV in any sliding window of 200 ms width with a step size of 100 ms, (iii) the amplitude was
greater than 100 µV in a step-function with a sliding window 200 ms wide with a step size of 50 ms,
(iv) sample-to-sample difference was more than 50 µV, or (v) the amplitude was less than 2 µV for
125 ms (SEPs) or 150 ms (resting-state EEG) (i.e., flat-lined data). For SEPs, the above conditions were
not applied to −2 ms to 2 ms period corresponding to the stimulus artifact. Afterwards, all epochs
were manually verified to classify into good and bad epochs. The epochs with step-like artifacts in the
frontal channels were not removed as they were related to eye-blinks and eye-movements [54].

The high-pass filtered EEG was downsampled to 512 Hz and epoched in a similar way as
described above. The bad epochs and bad channels (from PREP) were removed from the data,
and adaptive mixture independent component analysis was employed to decompose EEG into
maximally independent components i.e., which are spatially fixed and temporally discrete [55].
This algorithm was used since its performance is better than that of other ICA algorithms [56].
The ICA weights obtained were applied to band-pass (0.5–1000 Hz) filtered PREPed data with bad
epochs removed. For resting-state EEG, a Kaiser windowed FIR filter (β = 5.653) with an order of
7420 corresponding to the transition bandwidth of 1 Hz was used. For SEPs, a 2nd order Butterworth
filter was employed. Afterwards, all the independent components (ICs) were manually categorized
into the brain or non-brain components resulting from activities of muscle or eye, or noise of channel
or mains. The ICs were categorized based on their spatial distribution (scalp topography), time course,
spectrograms, event-related potential (ERP) images, and current dipole models using recommendations
from [57,58] and the website https://labeling.ucsd.edu/. The bad ICs were removed, followed by
interpolation of the noisy channels to give cleaned datasets.

https://labeling.ucsd.edu/
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2.6. Statistics

The data are reported as mean ± SD unless otherwise indicated. The statistical significance
threshold was set at p < 0.05.

Two-way, repeated-measures ANOVAs were used with factors of intervention (Control and
Chiropractic) and session (pre and post) to identify the effects of the intervention on the SEPs’
amplitudes and latencies, brain source strengths, DAR and BSI. Tukey’s HSD was used to perform
pairwise comparisons. The statistical procedure was performed in MATLAB 2015b (The MathWorks,
Inc., Natick, MA, USA).

Non-parametric cluster-based permutation tests [59] were used with a cluster-threshold of 0.05
to evaluate the differences between the interventions based on the global power spectrum of the
resting-state. The clusters were defined as two or more channel-frequency pairs, each with p < 0.05
from the paired t-test (two-tailed). The maximum of cluster-level statistics, obtained by adding the
t-values within each cluster, was used as the test statistic. A cluster was considered significant if
its Monte Carlo probability for each tail exceeded the threshold of 0.025 compared to the reference
distribution, which was approximated by the Monte Carlo method with 5000 permutations.

The statistical procedure for source localization of resting-state EEG was performed in the
LORETA-KEY software using non-parametric mapping [60], which utilized Fisher’s random
permutation test with 5000 randomizations to control for multiple comparison problem. The paired
two-tailed t-test was used to find differences in the current sources across the different frequency bands.
The tests were used to identify differences between the pre-sessions; the post- and pre-chiropractic
sessions; and the post- and pre-control sessions.

3. Results

Out of nineteen chronic stroke survivors recruited, two were excluded as they were unable to
complete the experiment—one was uncomfortable with the median nerve stimulation, and the other
could not follow the instructions of the experimenter. Hence, the analyses were performed on the
remaining 17 subjects (53 ± 12 years old). From the questions to evaluate the success of subject blinding,
out of the 17 subjects, only two felt that one of the sessions was not an active session, and one of these
was correct in the identification of the order of the interventions (chiropractic or control) he received.

3.1. Resting-State EEG

The analyses were performed on 16 subjects who had a minimum of 2 minutes of clean resting-state
EEG in every session.

3.1.1. Spatio-Spectral Power

For all frequency bands, no differences in the power were seen between the pre-intervention
sessions (no clusters) (Figure 1A), post- and pre-control intervention (1 positive cluster p = 0.055)
(Figure 1B), and post- and pre-chiropractic spinal interventions (no clusters) (Figure 1C). There was
a trend towards higher grand-averaged absolute power in all frequency bands after the chiropractic
intervention compared to post-control intervention, which was similar or lower than the pre-control
intervention. The difference between the two is shown in Figure 1D.
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averaged power from (A) the pre-intervention sessions (chiropractic - control), (B) post- and pre-
control sessions, (C) post- and pre-chiropractic sessions, and (D) between interventions ((C) minus 
(B)). The cluster-based permutation tests showed non-significant differences in comparisons in (A), 
(B) and (C), however, the absolute power in all frequency bands across the scalp was higher after the 
chiropractic intervention. 

3.1.2. DAR 

The ANOVA revealed that there was no interaction between the interventions and sessions over 
DAR values (all p > 0.05). Descriptive statistics are given in Table 2.

Figure 1. Resting-state frequency-domain analysis. Scalp topographies of the difference of
grand averaged power from (A) the pre-intervention sessions (chiropractic-control), (B) post-
and pre-control sessions, (C) post- and pre-chiropractic sessions, and (D) between interventions
((C) minus (B)). The cluster-based permutation tests showed non-significant differences in comparisons
in (A–C), however, the absolute power in all frequency bands across the scalp was higher after the
chiropractic intervention.

3.1.2. DAR

The ANOVA revealed that there was no interaction between the interventions and sessions over
DAR values (all p > 0.05). Descriptive statistics are given in Table 2.
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Table 2. DAR and BSI descriptive statistics.

Intervention Session DAR
BSI1-25 Hz BSIdelta BSItheta BSIalpha BSIbeta BSIgamma

Value dir Value dir Value dir Value dir Value dir Value dir

Control
Pre 2.37 ± 1.70 0.44 ± 0.17 0.08 ± 0.24 0.48 ± 0.17 0.11 ± 0.25 0.48 ± 0.15 0.11 ± 0.27 0.47 ± 0.21 0.03 ± 0.26 0.41 ± 0.16 0.01 ± 0.22 0.46 ± 0.10 0.07 ± 0.22
Post 2.12 ± 1.55 0.42 ± 0.16 0.08 ± 0.23 0.47 ± 0.17 0.11 ± 0.24 0.48 ± 0.16 0.12 ± 0.27 0.44 ± 0.21 0.02 ± 0.25 0.39 ± 0.14 −0.01 ± 0.21 0.47 ± 0.14 0.04 ± 0.28

Chiropractic Pre 2.48 ± 2.20 0.38 ± 0.11 0.11 ± 0.14 0.43 ± 0.15 0.15 ± 0.14 0.41 ± 0.14 0.15 ± 0.16 0.40 ± 0.17 0.04 ± 0.18 0.35 ± 0.08 −0.01 ± 0.14 0.40 ± 0.09 0.02 ± 0.21
Post 2.05 ± 1.14 0.44 ± 0.21 0.09 ± 0.19 0.45 ± 0.18 0.11 ± 0.19 0.49 ± 0.24 0.11 ± 0.19 0.51 ± 0.25 0.06 ± 0.22 0.38 ± 0.21 0.01 ± 0.17 0.41 ± 0.16 0.03 ± 0.16
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3.1.3. BSI

No interaction between interventions and sessions was found in any of the frequency band’s BSI
values and directions (all p > 0.05). Descriptive statistics are given in Table 2.

3.1.4. Source Localization

For all frequency bands, the sLORETA analysis showed that the pre-sessions were similar. A slight
increase in activity was seen after the control intervention, however, neither of the interventions had
any significant effect on brain activity (all p > 0.05).

3.2. SEPs

The number of epochs per subject used for the analysis were 799 ± 124 ([min, max] = [437, 956]).

3.2.1. SEP Peaks

The N20 amplitude was not affected by either intervention (all p > 0.05) (Figure 2A). The ANOVA
(Table 3) showed a significant interaction of the intervention and session for the N30 SEP peak amplitude
(p = 0.03). The post hoc analysis showed that the N30 amplitude was increased by 39% after the
chiropractic spinal manipulation (p = 0.007; 95% CI = [0.11, 0.78]). The N30 amplitude was similar
for the pre-intervention sessions (control vs chiropractic: p = 0.12; 95% CI = [−0.09, 0.99]) and there
was no change after the control intervention (post vs pre: p = 0.95; 95% CI = [−0.56, 0.39]). Figure 2B
shows the distribution of N30 amplitude across the four sessions. None of the SEPs latencies were
significantly changed following either intervention (all p > 0.05) (Figure 3).
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Figure 2. Somatosensory evoked potentials (SEPs) amplitude. Dots represent (A) N20 and (B) N30
amplitudes from all sessions of the analyzed subjects. Boxplots show the median, 25th and 75th
percentiles. The error bars represent mean± 95% CI. The distribution plots show the density distribution
estimated by a Gaussian kernel with SD of 1.5. (A) The N20 amplitude was not affected by either
intervention. (B) The N30 amplitude was similar for the pre-intervention sessions. After the chiropractic
spinal manipulation, the N30 amplitude increased significantly, however, it was not changed after the
control intervention. The figure was made using the code provided by Allen et al. [61].
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Table 3. ANOVA–N30 Amplitude.

Predictor df _num df _den SS_num SS_den F p Value

(Intercept) 1 16 501.38 112.10 71.56 0.00
intervention 1 16 0.58 7.61 1.21 0.30

session 1 16 0.57 2.29 3.99 0.06
intervention × session 1 16 1.20 3.37 5.71 0.03

Note. df _num indicates degrees of freedom numerator. df _den indicates degrees of freedom denominator.
SS_num indicates sum of squares numerator. SS_den indicates sum of squares denominator.
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Figure 3. SEPs latency. Dots represent (A) P14, (B) N20, (C) P22, and (D) N30 latencies from all sessions
of the analyzed subjects. Boxplots show the median, 25th and 75th percentiles. The error bars represent
mean ± 95% CI. The distribution plots show the density distribution estimated by a Gaussian kernel
with SD of 1.5. None of the SEPs latencies were significantly affected by either intervention.

3.2.2. Source Localization

The analyses were performed on 16 subjects because for one subject one of their sessions had an
RV that was greater than 10%. The LORETA solution revealed five distinct areas during the 20–60 ms
post-stimulus period; contralateral primary somatosensory cortex (SI), prefrontal cortex, cingulate,
and bilateral secondary somatosensory cortices (SII). Therefore, a 5-source solution was assumed,
and the dipoles were placed in these areas.

The ANOVA showed no interactions between the interventions and sessions for source strengths
(all p > 0.05). Table 4 shows the coordinates of the brain sources and AUCs of their activity waveforms.
The AUCs obtained are shown in Figure 4.
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Table 4. Coordinates (Talairach) and areas under curve (AUCs) of brain sources.

Region Control Chiropractic
X Y Z AUC Pre AUC Post X Y Z AUC Pre AUC Post

SI 26 ± 11 −31 ± 9 38 ± 7 897 ± 492 941 ± 482 27 ± 6 −29 ± 11 36 ± 7 1001 ± 589 949 ± 473
Pre Frontal 3 ± 13 44 ± 3 16 ± 5 349 ± 208 383 ± 226 −4 ± 18 44 ± 6 11 ± 5 376 ± 276 418 ± 260
Cingulate −22 ± 27 −5 ± 10 −6 ± 4 537 ± 354 474 ± 383 −18 ± 31 −4 ± 11 −6 ± 7 530 ± 412 494 ± 281
Cont. SII 27 ± 8 −52 ± 9 −14 ± 3 449 ± 236 515 ± 314 27 ± 12 −49 ± 13 −14 ± 2 511 ± 328 518 ± 286
Ips. SII −28 ± 10 −52 ± 13 −9 ± 12 362 ± 172 348 ± 172 −28 ± 8 −48 ± 15 −12 ± 11 336 ± 191 336 ± 172

Note. Abbreviations: AUC = Area under curve; SI = Primary somatosensory cortex; Cont. SII = Contralateral
secondary somatosensory cortex; Ips. SII = Ipsilateral secondary somatosensory cortex.Brain Sci. 2020, 10, x FOR PEER REVIEW 14 of 20 
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4. Discussion

In this randomized cross-over study, we evaluated the effects of a single session of chiropractic
spinal manipulation versus a control intervention on stroke patients by investigating the change in the
resting-state EEG, early somatosensory evoked potentials and their underlying brain sources. We found
that chiropractic spinal manipulation increased the N30 amplitude of the somatosensory potential
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evoked by median nerve stimulation, but there were no changes in the N20 amplitude and latencies.
There were no effects on the strength of the N30 peak brain sources by either intervention. There were
no changes in the power of frequency bands, resting-state EEG source localization, delta-alpha ratio,
and brain-symmetry index after either intervention. To the best of our knowledge, the current
randomized study is the first of its kind to investigate these parameters in a stroke population following
chiropractic spinal manipulation.

4.1. Resting-State

The current study showed a trend towards higher grand-averaged absolute power in all frequency
bands after the chiropractic intervention compared to post-control intervention, which was similar or
lower than the pre-control intervention. However, none of these increases were significant. In our
previous study, performed on sub-clinical pain patients [37], we found no differences in the spectral
power and in the sLORETA based source localization after the chiropractic spinal manipulation and
control interventions. Similarly, in this study, neither of the interventions had a significant effect on the
resting-state EEG, although there was a trend towards higher grand-average absolute power in all
frequency bands. The probable reason for this is likely the non-uniformity in the type and location of
the stroke in the subjects. This variation among subjects makes finding a statistical difference more
difficult and may have required a larger sample size. Hence, there is a need for more research to explore
longer chiropractic intervention periods (>1 session) and larger sample sizes or more homogenous
subject groups in future studies of this kind. It is possible that this study was underpowered to
show any potential changes following the chiropractic intervention. It is also possible, of course,
that chiropractic spinal manipulation does not affect the resting-state spectral power.

Since DAR has been shown to be a predictive parameter of recovery in (sub-) acute stroke [21,62],
it was used in this study to see if it was affected by the chiropractic spinal manipulation. It was found
that DAR was not changed significantly with either the chiropractic spinal manipulation or control
intervention. The DAR has been found to be increased in (sub-) acute stroke survivors compared to
healthy persons [23,24]. However, it has been shown to be similar between chronic stroke survivors
and healthy individuals [17]. Therefore, in this study of chronic stroke survivors, it is plausible that this
parameter is not predictive of recovery in stroke, and therefore, it was not affected by the interventions.

Previously, in a study conducted in chronic stroke patients [17], BSI was found to be increased
in the delta and theta bands but was unchanged in the alpha and beta bands. The same study also
showed, using directional BSI, that the affected hemisphere had more resting-state power compared to
the unaffected hemisphere, particularly in the delta and theta bands. In the present study, however,
the BSI was not affected by the interventions. The possible reasons for this were inter-individual
differences, the cross-over design of the study with less time between interventions, or more sessions
of the treatment is required to affect the BSI. Since BSI is based on spectral power, it is also possible that
chiropractic spinal manipulation does not affect the spectral power, and hence, does not affect BSI.

4.2. SEPs

In the current study, a 39% increase in the N30 SEP peak amplitude was observed following
the chiropractic intervention. Previously, SEP studies looking at the effects of chiropractic spinal
manipulation, compared to a control intervention, have shown that the N30 SEP amplitude decreased
by 17–30% [32,35,36,39]. Lelic et al. [39] showed that this decrease in N30 SEP peak amplitude occurred
in the prefrontal cortex, where there was a decrease of approximately 20% in the activity. Most of these
studies were conducted in subclinical pain patients.

The N30 SEP peak is believed to be generated at the motor, premotor, and prefrontal cortices [63–65],
and reflects sensorimotor integration [66]. Effective sensorimotor integration is required for learning
new motor skills as well as for recovering from injuries such as stroke [67,68]. The prefrontal cortex,
in particular, is of interest since it is associated with cognitive thinking and decision-making using the
somatosensory input and information from other internal and external sources [69]. Early SEP peak
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amplitudes are known to be severely diminished or even absent in stroke populations [7,10,11,13,14].
It is, therefore, interesting that the chiropractic intervention showed an increase in the N30 SEP peak
amplitude, considering previous studies in subclinical subjects have consistently reported a decrease
in N30 SEP peak amplitude after chiropractic spinal manipulation [32,36,39,40]. The increase observed
in the present study may reflect an improvement in early sensorimotor function that is related to
the observed increase in strength found in a recent study of chronic stroke survivors after a single
session of chiropractic spinal manipulation [41]. In that study [41], Holt et al. investigated the effect of
chiropractic spinal manipulation on motor recovery in a chronic stroke population and found that,
on average, plantarflexion muscle strength increased by approximately 64% after a single session of
chiropractic care.

The source strength of the N30 SEP peak was not affected by the interventions. The possible
reason for no significant changes in the source strength of the N30 SEP peak can be that the BESA
analysis was performed on a head model of the healthy brain which did not cater for the number,
location, and size of the lesion(s) of the participants in this current study. Using individual MRI to
obtain a realistic head model of each subject could have improved the accuracy of source modeling,
as suggested by previous simulation studies [70–72]. Therefore, this limitation should be kept in mind
when interpreting the results.

5. Study Considerations

There are several reasons that no changes in the brain activity were seen in other parameters
apart from the N30 amplitude after the chiropractic spinal manipulation intervention. These include
that chiropractic spinal manipulation does not alter these parameters, or it may be because there are
differences in the brain morphology of the stroke patients and non-uniformity of the type of stroke
and affected brain regions. The enrollment criteria of future studies could be modified to include
more homogenous patients with respect to stroke type and location. This would, of course, make the
recruitment of patients more difficult, and the results of that study may not be generalizable to the
majority of the stroke population.

This study was an exploratory study with a sample size of 19. Previous studies based on stroke
patients had sample sizes similar to this study (10 to 21 participants) [17,20,25,62,73]. However,
we recognize that the sample size used may not be large enough, and this study may, therefore,
be underpowered to detect changes following spinal manipulation that occur in this population.
Future studies that further explore the potential changes following chiropractic care for this population
should consider increasing the sample size.

It is also important to keep in mind that previous work has shown that some neuroplastic effects
of chiropractic spinal manipulation can, in some instances, remain for at least a week [74]. This may
have affected the current study because it could have reduced or nullified the changes in this study,
where both interventions were performed within a week. Future studies should control for this factor
by having more than a week between the interventions, or they should use a parallel-group design.

6. Conclusions

The findings of the study suggest that in chronic stroke survivors, a single session of chiropractic
spinal manipulation increases the cortical activity related to the somatosensory evoked N30 potential,
which may alter the early sensorimotor functionality. Future studies should investigate the long-term
effects of chiropractic care in this population group to understand better the impact of chiropractic care
on cortical activity in stroke survivors.
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