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Abstract Defining appropriate distance functions is a crucial aspect of effective and

efficient similarity-based prediction and retrieval. Relational data are especially chal-

lenging in this regard. By viewing relational data as multi-relational graphs, one can

easily see that a distance between a pair of nodes can be defined in terms of a virtually

unlimited class of features, including node attributes, attributes of node neighbors,

structural aspects of the node neighborhood and arbitrary combinations of these prop-

erties. In this paper we propose a rich and flexible class of metrics on graph entities

based on earth mover’s distance applied to a hierarchy of complex counts-of-counts

statistics. We further propose an approximate version of the distance using sums of

marginal earth mover’s distances. We show that the approximation is correct for many

cases of practical interest and allows efficient nearest-neighbor retrieval when combined

with a simple metric tree data structure. An experimental evaluation on two real-world

scenarios highlights the flexibility of our framework for designing metrics representing

different notions of similarity. Substantial improvements in similarity-based prediction

are reported when compared to solutions based on state-of-the-art graph kernels.

1 Introduction

Nearest-neighbor search is a fundamental problem that appears in many different con-

texts. In machine learning, the labels of nearest neighbors for a test case are used to

predict its unknown label. In information retrieval, nearest neighbors of a query object

are returned as the most relevant matches for the query. In all contexts, there are two
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important aspects to nearest neighbor approaches: first, a suitable distance measure

has to be defined, so that nearby neighbors according to this metric provide accurate

classifications, or relevant retrieval results. Second, for the given metric, suitable data

structures and algorithms have to be designed for an efficient retrieval of the nearest

neighbors of a query object.

In this paper we consider similarity and search in attributed, multi-relational

graphs, which provide a useful, common abstraction level for relational databases on

the one hand, and network data on the other. For a given query object (node), we want

to find similar objects in the data graph. Our first major concern is to define a powerful

and flexible framework for defining distance metrics. The particular challenge of graph

data lies in the fact that two nodes may be compared based on an essentially unlimited

and complex class of features: one can take into consideration the attributes of the

nodes itself, attributes of graph neighbors, structural properties of the graph neighbor-

hood, where for the latter one can take into account neighborhoods of different radii

around the nodes being compared.

Our approach is distinguished by the fact that it takes complex quantitative aspects

of relational neighborhoods into account. Specifically, we base our distance metrics on

counts-of-counts features we introduced in (Jaeger et al, 2013), that represent detailed

quantitative information about relational neighborhoods. To illustrate the basic idea

of counts-of-counts features, consider the case of a bibliographic database containing

authors and papers, an author of relation between authors and papers, and a cites

relation between papers. We may then compare different persons in the database based

on their citation profile, perhaps using a bibliometric index like h-index or i10-index.

In both cases, the comparison is based on the counts-of-counts statistic that for each

possible count of citations i provides the count n(i) of papers with i citations. Note

that in this paper we use the term “counts-of-counts” for an arbitrary nested structure

of counts, from simple counts (e.g. the number of papers written by an author), to

multiple nesting levels of counts (an example for three levels of counts will be given

below in Section 8.1.1 and Figure 8(a)).

Measuring similarity of authors based on a bibliometric profile will be appropriate

in certain contexts, e.g., when evaluating candidates for an academic position. In other

contexts, such as searching for potential scientific collaborators, a similarity measure

based on the number of publications in certain subject areas will be more useful. In all

cases, however, we focus on scenarios where the absolute numbers of related entities

matter. This contrasts with scenarios where only the existence of certain relationships

matter, which can be captured by logical rules with existential quantification such as:

classify a person as an academic, if there exists a scientific article of which the person

is an author.

In this paper we introduce a very flexible framework for specifying customized no-

tions of similarity in graph data. The framework first supports to specify what counts-

of-counts statistics should be considered, and then provides a parametric class of dis-

tance metrics on the given statistics. Figure 1 illustrates an application of our approach.

Here we are considering a movie database containing information on movies and actors.

We first are interested in actor similarity based on the genre profile of the movies they

have appeared in. The first row in the figure contains graphical representations of the

relevant relational neighborhood data for this purpose: the central node is the actor in

question, the inner circle of blue nodes represents the movies the actor had a role in,

and the outer colored nodes represent the different genres with which the movies are la-

beled. In total, 20 different genres are considered, each represented by a different color.
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Humphrey Bogart Eddie Graham

0.201

1.574

Tony Curtis

0.461

0.343

Fig. 1 Nearest neighbors of Humphrey Bogart according to genre-/business-based similarity.

A movie can be associated with more than one genre, and our metric will distinguish,

e.g., between the case where an actor has appeared in a movie that is both a romance

and a comedy, and the case where the actor has appeared in a movie that is a romance,

and another one that is a comedy. Based on this similarity concept, the most similar ac-

tor found for the query actor Humphrey Bogart is Eddie Graham. This relatively little

known actor has a very similar profile to Bogart in terms of the number of movies and

their genres. We next consider similarity based on financial/business characteristics of

an actor. The bottom row of Figure 1 illustrates relevant relational neighborhood data

selected for this purpose: central nodes are again the actor; the inner blue nodes are

again the movies the actor has appeared in, now shaded dark/light/medium according

to whether the actor had a leading/supporting/unspecified role in the movie. Movies

are connected to a budget attribute represented by a dark/medium/light green node

according to whether the movie had a large/medium/small budget (budget data is not

available for all movies, so movies need not be connected to a budget node). In terms

of these business statistics, Graham now is rather dissimilar to Bogart, since the status

of his roles are all unspecified, and there is no budget data for most of his movies.

In terms of business similarity, the closest actor for Bogart now is Tony Curtis. The

numbers underneath the graphs for Graham and Curtis are the actual distances to

Bogart according to our genre-based and business-based metrics.

We use our earlier type extension tree framework (Jaeger et al, 2013) for specifying

suitable counts-of-counts features. This paper makes the following new contributions:

– We introduce a parametric class of logistic evaluation functions that transfoms a

combinatorial counts-of-counts value into a hierarchical numerical structure. This

transformation can be understood as the evaluation of a neural network, and we

exploit this analogy by using backpropagation techniques to learn the parameters

of the evaluation function.
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– We show how to approximate the hierarchical numerical structure obtained from

the logistic evaluation function by a collection of multi-dimensional histograms, and

define an earth-mover’s-distance based metric on these histograms. Via a suitable

choice of the underlying counts-of-counts features, and adaptation of the parameter-

ization of the evaluation function, this metric becomes highly flexible and adaptable

for different datasets and applications.

– We introduce an approximation to the earth-mover’s distance on multi-dimensional

histograms using sums of marginal distances, and show that for many instances of

our metrics the approximation is exact.

– It is shown how the approximate distance computation in conjunction with a metric

tree data structure supports efficient retrieval of nearest neighbors.

– An experimental evaluation shows that the introduced framework is efficient and

effective for nearest neighbor retrieval under diverse notions of similarity, and allows

to address similarity-based prediction tasks with substantial improvements over

alternative similarity-based approaches.

A simple precursor of the metric introduced in this paper was already described

in (Jaeger et al, 2013). That metric was defined directly on the raw counts-of-counts

feature values, and did not permit the kind of problem-specific adaptation we now

obtain through the logistic evaluation function.

2 Counts-of-counts features

Our approach to defining similarity between graph objects is feature based: we use a

highly expressive and flexible framework for defining features for graph entities, and

then compare entities by comparing their feature values, based on suitable feature

metrics. For feature definition, we use the type extension tree (TET) framework, which

we introduced in (Jaeger et al, 2013).

Type extension trees represent complex “counts-of-counts” features that describe

the combinatorial structure of a graph entity’s neighborhood. A TET feature defines

which relations to follow for assembling the relevant neighborhood, and what attributes

of neighboring nodes to consider. In the following we summarize in a somewhat stream-

lined and simplified form the precise definitions given in (Jaeger et al, 2013).

The data model underlying our approach is that of an attributed, multi-relational

graph, which is given by a set of entities (nodes) E, a set of attributes A = {a1, . . . , al}
defined on the entities, and binary relations R = {r1, . . . , rm} between the entities. For

the purpose of this paper we make the restriction that all attributes and relations are

Boolean. Generalizations to arbitrary categorical and especially numerical attributes

and relations are not difficult in principle, but are omitted for now.

If e, e′ are entities, then ai(e) and rj(e, e
′) are ground atomic statements or simply

ground atoms that are either true or false for a given data graph. An atomic statement

or atom is an expression of the form ai(X) or rj(X,Y ), where X,Y are variable sym-

bols. We remark that the graphs shown in Figure 1 are not data graphs or subgraphs of

a data graph, because the nodes in these graphs do not represent entities, but ground

atoms. Thus, for example, one of the colored nodes on the periphery of Bogart’s genre

graph stands for the ground atom drama(Casablanca).

Definition 1 A type extension tree (TET) is a rooted tree whose nodes are labeled

with atoms, and whose edges can be labeled with variables.
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author(A)

author of(A,P )

cites(P ′,P )

P ′

P

(a)

movie(M)

comedy(M) romance(M)

(b)

Fig. 2 TET examples

To simplify notation and subsequent definitions, we here give a slightly simplified

definition of TETs. The more general definition of (Jaeger et al, 2013) also allows for

conjunctions of atoms at the nodes of the tree, and we will make use of this option in

one of our experiments in Section 8.3.3.

Figure 2 shows two examples of TETs. TET (a) is for bibliographic data that

includes the attribute author, and the relations author of and cites. This TET is

also shown in Figure 3 (a), which in (b) shows the data sub-graph of the relational

neighborhood of an author (blue (dark) central node) with his/her authored papers

(5 inner yellow (light) nodes connected by solid edges to author), and other papers

citing these (outer yellow (light) nodes connected by dashed edges). The value of the

TET feature (to be formally defined below) will provide a complete picture of this

sub-graph’s structure.

The TET in Figure 2 (b) is for a movie database that contains the attribute movie

and genre attributes comedy and romance. This movie TET does not contain any

relations, or variables as labels on the edges. It defines a feature for movie entities,

only as a function of the entities’ attribute values. The feature value corresponds to a

complete cross-classification of whether the movie is a comedy and/or a romance. The

pure counts-of-counts features as represented by Figure 2 (a), and attribute features

represented by Figure 2 (b) can be combined and nested in arbitrary ways. Examples

of such combinations will be used in our experiments (cf. Figure 8 (b) and (c)).

Type extension trees are evaluated for graph entities. A TET may define a feature

for single entities, for pairs of entities, or any number of entities. The “arity” of a

TET is determined by the number of free variables contained in the TET, where a free

variable is any variable that appears in an atom at one of the nodes v, such that this

variable does not appear as the label on any edge on the path from v to the root. In

particular, all the variables appearing at the root of a TET are free, and very often

these are precisely the free variables of the TET. In Figure 2, (a) has a single free

variable A, and (b) the single free variable M . Any sub-tree of a TET is itself a TET.

The sub-tree

author of(A,P )
P ′
−−→ cites(P ′, P ) (1)

has two free variables A,P . A TET with k free variables defines a feature for k-tuples of

entities. Thus, both TETs in Figure 2 define features for single entities (of type author,

respectively movie). Sub-tree (1) defines a feature for pairs of author and paper entities.

In the following definition we consider tuples of variablesX = X1, . . . , Xk, and cor-

responding tuples e = e1, . . . , ek of graph entities. Given a subset Z ⊆X of variables,

we then denote by e[Z] the corresponding selection of elements from e. We use α(X)

as a generic expression for an atom of either the form ai(X) or rj(X,Y ). The definition
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1 1

0.56 0.3 0.43 0.56 0.43

1 1 1 1 1 1 1 11

0.54

(b)

(c)

(a) {t:3}

{{t:3}:2, {t:2}:2, {t:1}:1}

{t:1} {t:2} {t:3} {t:2}

t t t t t t t t t tt

(d1)

(d2)

0.03

0.93 0.0001 0.04 0.93 0.04

1 1 1 1 1 1 1 1 1 11

β=(−14.7,5.8)

β=(−1.38,0.55)

author(A)

author of(A,P )

cites(P ′,P )

P ′

P

Fig. 3 Overview: illustration of Definitions 2, 3 and 4. (a): TET specification T (A); (b):
relational neighborhood of example author a (blue (dark) node); (c): TET value V (T (a))
(Definition 2); (d1),(d2): two different numeric evaluations of V (T (a)) (Definition 4) with
different parameterizations β (Definition 3)

now defines the counts-of-counts feature value defined by a TET for a specific tuple e

of entities. The precise mathematical structure that encodes our “counts-of-counts”

values are nested multisets, where counts now correspond to the multiplicities with

which a given element (itself potentially a nested multiset) occurs in a multiset. Thus,

TET values according to the following definition are complex, structured objects, not

simple scalars (distilling these complex values into scalars will be the task we address

in Section 3) .

Definition 2 Let T (X) be a TET with free variables X = X1, . . . , Xk. Let e =

e1, . . . , ek be a k-tuple of graph entities. The value of the TET feature T (X) for e,

denoted V (T (e)), is inductively defined as follows:

i Let α(Z) (Z ⊆X) be the atom at the root of T . If α(e[Z]) = false, then V (T (e)) =

false (if the root of the tree evaluates to false, then there is no further recursive

evaluation of the TET).

ii If T (X) consists of the single node α(X), then V (T (e)) = α(e) ∈ {true, false}
(leaves are directly evaluated by the Boolean value of their atom).

iii If neither case i nor case ii applies, then T (X) has m ≥ 1 children that are roots of

sub-trees Th(Zh) with free variables Zh (h = 1, . . . ,m). V (T (e)) then is defined

as a tuple (µ1, . . . , µm), where µh is a multiset of values of Th. To define µh for

sub-tree Th we distinguish two cases:

– the edge leading to Th is not labeled by a variable; then Zh ⊆X, and we define

µh = {V (Th(e[Zh])}. (2)

(the multiset contains only a single element in this case).

– the edge leading to Th is labeled by a variable Yh; then Zh = (Z̃h, Yh) for some

Z̃h ⊆X, and we define

µh = {V (Th(e[Z̃h], e′)) | e′ ∈ E} (3)

This is to be understood as a multiset, counting the multiplicities of identical

values obtained for different e′ ∈ E.
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We write {γ1 : n1, . . . , γl : nl} to denote a multiset that contains ni copies of the

value γi (i = 1, . . . , l).

Example 1 Evaluating the TET T (M) in Figure 2 (b) for an entity that is not a movie

returns the value false. If m is a movie, then V (T (m)) is one of ({f}{f}), ({t}{f}),
({f}{t}), or ({t}{t}), depending on whether or not m is a comedy and/or a romance.

Example 2 To demonstrate a recursive value computation for the TET in Figure 2 (a)

we first consider the sub-TET T1(A,P ) shown in (1). This is evaluated for pairs of

entities (a, p), and returns false if author of(a, p) is false. Otherwise, V (T1(a, p)) is

{true : k, false : l}, where k is the number of papers p′ citing p, and l is the number of

entities p′ for which cites(p′, p) is false. The number l includes the papers that do not

cite p, and even domain entities that are not of type paper. The count of occurrences

of false values is often semantically not very meaningful, and it will have no influence

on the further processing of TET values that we introduce in the following sections.

We therefore typically suppress false counts in the notation for TET values, and we

here would abbreviate {true : k, false : l} as {true : k}.
Turning to the evaluation of the full TET of Figure 2 (a) for an author a, we obtain

the value V (T (a)) as the multiset {{true : ki} : zi}, where zi is the number of papers

p by author a with ki citations (again omitting the count of false values generated by

domain entities p for which author of(a, p) is false).

Figure 3 (c) shows a tree representation of the value of the TET from Figure 2

(a) evaluated for the author a represented by the data sub-graph of Figure 3 (b). The

tree shows the final value V (T (a)) at the root, and its decomposition into values of the

sub-tree (1) (middle layer of the tree), and values of the leaf node cites(P ′, P ) (leaves

of the tree). In this figure we also have omitted the false values. Including them would

add to every node {t : k} of the middle layer n− k additional children labeled with f ,

where n is the total number of entities in the domain (authors and papers).

3 Logistic Evaluation Function

The evaluation of a TET T (X) as V (T (e)) as defined in Section 2 leads to a com-

plex nested multiset structure of Boolean values. In (Jaeger et al, 2013), we presented

two approaches for using these values as the basis for prediction tasks and similarity

measures:

– by defining a discriminant function f that maps TET values V (T (e)) to real num-

bers, and that can be used for binary classification tasks;

– by defining a metric d(V (T (e)), V (T (e′))) on TET values that can be used for

distance-based methods such as nearest-neighbor prediction.

In (Jaeger et al, 2013), we tested both approaches on the artificial problem of

classifying authors in a bibliographic database according to the binary attribute of

whether their h-index is greater than 7. We note that this is an artificial task, since

the h-index is a deterministic function of the data, and knowing the definition of h-

index, one can always “predict” it with certainty. The challenge here is to “discover”

the definition of the (h > 7)-attribute from examples of authors labeled as (h > 7)

or (h ≤ 7). In (Jaeger et al, 2013) we reported F1 scores of 61.3% and 91.2% for this
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prediction task when using the discriminant function and nearest-neighbor prediction,

respectively.

These results indicate that the discriminant function and metric definition of (Jaeger

et al, 2013) are not flexible and powerful enough to fully exploit the information given

by a TET value V (T (a)) to learn how to solve the (h > 7) prediction task with 100%

accuracy. We will greatly refine and unify these previous approaches by

– defining a rich class of evaluation functions lβ that map TET values to real numbers

and that are parameterized by an adjustable vector β;

– defining a metric on the nested multiset structure of real numbers that is generated

by the recursive evaluation of lβ on a TET value V (T (e)).

Thus, our evaluation functions lβ will be used directly as discriminant functions for

prediction, and as the basis for defining metrics dβ that can be customized to represent

specific similarity concepts by adjusting the parameters β of the underlying function.

We first define a parameterization of a TET:

Definition 3 Let T (X) be a TET. A weight assignment β for T assigns a nonnegative

real number to all non-leaf nodes and all edges of T . A weight assignment can be

written as (βr0 , β
r
1 , . . . , β

r
m,β1, . . . ,βm), where βr0 is the weight assigned to the root,

βri is the weight assigned to the edge from the root to its ith child, and βi is the weight

assignment to the ith sub-tree.

Given a weight assignment for TET, we define a function on TET values γ via a

recursive definition over the nested multiset structure of γ:

Definition 4 For a TET T with weight assignment β the logistic evaluation function

lβ is defined as follows. Let γ = V (T (e)) be a value.

Base cases:

– If γ = false, define lβ(γ) := 0.

– If γ = true, define lβ(γ) := 1.

Recursion:

– If γ = (µ1, . . . , µm), with multisets µi of values of sub-trees Ti, define:

lβ(γ) := σ

βr0 +

m∑
i=1

βri
∑
γ′∈µi

lβi(γ′)


where σ is the sigmoid function σ(x) = 1/(1 + e−x).

The recursive logistic evaluation of a TET value γ leads to a nested multiset struc-

ture of real numbers that follows the structure of γ. We refer to this structure as the

logistic evaluation tree, denoted Lβ(γ).

Example 3 Consider the TET value γ shown in Figure 3 (c), and let β be the weight

assignment that assigns β0 = −14.7 to both non-leaf TET nodes, and β1 = 5.8 to both

edges. Thus, β = (−14.7, 5.8, (−14.7, 5.8)) when properly expanded in the notation of

Definition 3 (which is represented in a simplified manner in Figure 3). The evaluation

of each leaf node representing a true value returns a 1. The leaf nodes labeled with

false which are omitted in the figure all evalute to 0. Now consider a sub-value {t : 3}
at the middle level of γ. We obtain:

l(−14.7,5.8)({t : 3}) = σ(−14.7 + 5.8 · (1 + 1 + 1)) = 0.937
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The omitted false values have no impact on this calculation, since they would only add

a number of 0 terms to the inner sum. Similarly, l(−14.7,5.8)({t : 2}) = 0.0431, and

l(−14.7,5.8)({t : 1}) = 0.0001. Note that here, and in the following computation, we

have m = 1, since the underlying TET has no branching. For the top-level evaluation

we then obtain:

l(−14.7,5.8,(−14.7,5.8))(γ) = σ(−14.7 + 5.8 · (0.93 + 0.0001 + 0.04 + 0.93 + 0.04)) = 0.03

Figure 3 (d1) shows the logistic evaluation tree Lβ(γ) induced by this computation of

lβ(γ). The final value lβ(γ) is the root of the tree.

Example 4 In the preceding example, the weights β were chosen so that σ(−14.7+5.8x)

is an approximation to a threshold function at x = 3. The resulting logistic evaluation

function then is a good discriminant function for identifying authors with an h-index at

least 3. An alternative weight assignment β = (−1.38, 0.55, (−1.38, 0.55)) is designed

so that σ(−1.38 + 0.55x) varies more gradually over a larger range of count values x.

The resulting logistic evaluation for the TET value of Figure 3 (c) is shown in Figure 3

(d2)

3.1 Neural network perspective and weight learning

In the preceding examples we have computed the recursively defined lβ(γ) by an induc-

tive bottom-up propagation of sub-values. These computations are similar to forward

propagation in a neural network with sigmoid activation functions. Indeed, one can

think of γ as defining a neural network structure, and β as defining neural network

weights and biases. A given TET T with logistic evaluation parameters β then can

be seen as a template for the construction of example-specific neural networks, and

the TET formalism represents a highly flexible and expressive way to define such tem-

plates. Under this neural network perspective, then Figure 3 (d1) and (d2) show the

activations of neural networks defined by the structure (c) induced by example (b),

and two different weight settings β. Note that here the inputs to the neural network

are always equal to 1 at all input (leaf) nodes.

Given a supervised learning objective expressed by a differentiable loss function

on the logistic evaluation values lβ(γ) = lβ(V (T (e))), one can apply standard back-

propagation rules to compute the gradient of the loss for a single example e with

respect to β, and learn β using any of the many available (stochastic) gradient descent

techniques. Our experimental evaluation shows that parameter learning by backprop-

agation is quite effective when combined with the appropriate supervision (see results

on h-index classification in Section 8.3.2).

4 Histogram Approximation

The nested multiset structures of Lβ(V (T (e)) gives a detailed description of e in

terms of quantitative features of its relational neighborhood, as defined by T and the

parameters β of the logistic evaluation function. We now aim to use this description

as a basis for defining distances between entities e, e′. In large and highly connected

graphs, the full structure Lβ(V (T (e)) will become very large, and not suitable to

support fast distance computations, or to store pre-computed Lβ(V (T (e)) for all e.
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1
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0.03

0.93 0.0001 0.04 0.93 0.04

1 1 1 1 1 1 1 1 1 1 1

v0

v0

v0

v0

v1

v1v1

v2
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Fig. 4 Overview, continued (cf. Example 7): approximation of logistic evaluation tree by a
node histogram tree with N = 5. A node vi with depth di in the underlying TET is represented
by a di-dimensional histogram whose dimensions correspond to the TET nodes on the path
from the root to vi. In this example, there are 6 values of the v2 node (highlighted in the
figure) whose value paths fall into the first bin for the v0 component, and the last bin for the
v1 and v2 components. Since all paths start with the same value (0.03) in the first component,
and end with a 1 in the last component, only a single one-dimensional slice in the bottom
3-dimensional histogram is populated with nonzero counts.

We therefore introduce an approximation of Lβ(V (T (e)) by a collection of multi-

dimensional histograms. The approximation will be constant in size for all e, and

independent of the size of the data graph.

As a first step towards this approximation, we approximate the full tree structure

of Lβ(V (T (e)) by multisets of paths. The following definition is a bit technical, and

may obscure the simple nature of what is defined. The reader may first skip forward

to Examples 5 and 6 for a quick illustration of what the definition contains.

Definition 5 Let v be a node in the TET T , and r = v0, v1, . . . , vk−1, vk = v the

path leading from the root r of T to v. Let γ = V (T (e)) be the value of T for entities

e. A sequence γ0, . . . , γk is a value path for v in γ, if

– γ0 = γ, and γi 6= f for all i.

– For i < k: if vi+1 is the j(i)th child of vi in T , and γi = (µi,1, . . . , µi,j(i), . . . , µi,mi
),

then γi+1 ∈ µi,j(i) with multiplicity ki+1 ≥ 1.

The multiset of value paths for v is the multiset that contains the value path γ0, . . . , γk
with multiplicity

∏k−1
i=0 ki+1.

Example 5 For the TET in Figure 3(a) let the three nodes be v0, v1, v2 indexed from

top to bottom. Then the value γ shown in Figure 3(c) contains for v2 the value path

{{t : 3} : 2, {t : 2} : 2, {t : 1} : 1}, {t : 2}, t

with multiplicity 4 (each of these paths is induced by one of the 4 papers that cite one

of a’s 2 papers with citation count 2).

Let β be a parameter vector for the logistic evaluation function for T . A sequence of

real numbers t1, . . . , tk is a logistic value path for v if there exists a value path γ0, . . . , γk
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for v such that ti = lβ(γi). The multiset of logistic value paths for v, denoted M(v)

is the multiset that contains the logistic value path t1, . . . , tk with a multiplicity equal

to the sum of multiplicities of value paths γ0, . . . , γk that induce t1, . . . , tk.

Example 6 Let v0, v1, v2 as in Example 5. Then for the logistic evaluation tree in

Figure 3 (d1):

M(v0) = {(0.03) : 1}
M(v1) = {(0.03, 0.93) : 2, (0.03, 0.04) : 2, (0.03, 0.0001) : 1}
M(v2) = {(0.03, 0.93, 1) : 6, (0.03, 0.04, 1) : 4,

(0.03, 0.0001, 1) : 1}

We observe that while the value paths of a node vi+1 in some sense extend the

value paths of its parent vi, it is not the case that from M(vi+1) the multiset M(vi)

can be constructed. In the preceding example, from the occurrence of (0.03, 0.93, 1)

with multiplicity 6 in M(v2) we can infer that (0.03, 0.93) must occur in M(v1), but

its multiplicity in M(v1) is not uniquely determined by M(v2).

Values of our logistic evaluation function lie in the interval [0, 1]. The elements of

a logistic value path multiset M(v) are vectors of a fixed length equal to the depth d

of v in T (defining the depth of the root to be 1), and hence are elements of [0, 1]d. We

partition the interval [0, 1] into N equal-width bins, leading to a discretization of [0, 1]d

into Nd cells. This leads to an approximate representation ofM(v) by a d-dimensional

histogram, which we call the node histogram for v. Arranging the node histograms for

all nodes of T in a tree structure isomorphic to T leads to the node histogram tree

(NHT) as an approximation for the logistic value tree Lβ(V (T (e))). The granularity

N of the histogram representation is a parameter we can choose to balance accuracy

with compactness of the approximation.

Example 7 Figure 4 gives a graphical illustration of the NHT constructed from the

logistic evaluation tree Lβ(V (T (a))) depicted in Figure 3 (d1). The counts contained

in the three histograms here allow for very intuitive explanations: the top histogram

just shows that the overall discriminant value for the entity a is very small, indicating

that the h-index of a is less than 3. The next histogram shows that 2 of a’s papers obtain

a high logistic value on the sub-TET (1), indicating that they have at least 3 citations

each, whereas 3 of a’s papers have fewer citations. The bottom histogram associated

with the leaf node cites(P ′, P ) is 3-dimensional. However, since all value paths end

with a leaf value of 1, only the histogram slice corresponding to the maximal bin in the

3rd dimension is populated with non-zero entries. The counts in this histogram slice

show: the 2 papers with at least 3 citations have a total citation count of 6, and the 3

papers with less than 3 citations have a total citation count of 5.

5 NHT Metrics

We now proceed to define a metric on NHTs. There can obviously be many different

approaches for defining such a metric, and in the following we make a number of design

choices. We will not be able to prove for each such choice that it is the only possible

or optimal one. However, they all are supported by a few overall design objectives that

we follow:
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– Based on earth mover’s distance (EMD): the earth mover’s distance (see (Rubner

et al, 1998) for a standard reference) is a well-established metric on histograms rep-

resenting discretized distributions of numerical quantities. Other metrics on discrete

probability distributions (e.g. χ2, Pearson or Bhattacharyya distances) or generic

distances on vectors (e.g. Euclidean or cosine distance) would not take the simi-

larity of values in nearby bins into account. EMD has proved extremely effective

in tasks like image retrieval (Datta et al, 2008) requiring distances between quan-

tized distributions. Therefore EMD is the canonical choice for measuring distances

between node histograms.

– Scale invariance: given two NHTs H1, H2: if H ′1, H
′
2 are obtained by multiplying

all entries in all histograms of H1, H2 by a constant c, then we want to obtain

d(H1, H2) = d(H ′1, H
′
2). In the context of count data, this seems more appropriate

than location invariance (defined as invariance under addition of a common con-

stant c): two authors who have written 1 and 10 papers, respectively, should be

more different than two authors with 101 and 110 authored papers, but may well

be considered just as different as two authors with 10 and 100 papers, respectively.

– Few parameters: the NHT metric should depend only on a small number of tunable

parameters and work well under a simple default setting of these parameters. It

is the intention that different behaviors of the final metric can be implemented by

modifying the TET structure and the β weights of the logistic evaluation function.

Adding further tunable parameters to the definition of the NHT metric would to

some extent only duplicate capabilities we already have through the construction

of customized NHTs.

Our construction of the NHT metric has two parts: defining a metric between node

histograms of a common dimension, and combining these individual metrics into a

metric on NHTs.

5.1 Node Histogram Metric

The first part is the more important one, as it is here where we have to incorporate the

EMD. EMD is most naturally defined on histograms that have an equal total number

of counts (usually normalized to a probability distribution over the histogram bins).

For histograms with unequal total mass, the early definition given in (Rubner et al,

1998) does not lead to a proper metric. A modified definition of EMD for distributions

with unequal total mass has been proposed in (Pele and Werman, 2008) (similarly also

in (Ljosa et al, 2006)). The modification essentially consists of adding to the histogram

with lower total count a virtual bin that has a constant distance to all other bins, and

is assigned the difference of total counts in the two histograms. Then standard EMD is

applied to the two now equal-sized histograms. If the constant distance of the virtual

bin is at least 1/2 of the maximal distance between any of the original bins, then the

result is again a proper metric (Pele and Werman, 2008). This existing approach for

dealing with histograms with unequal counts is not very well suited for our purpose,

since it does not lead to a scale-invariant measure, and in the case of histograms with

widely different total counts (as often encountered in our applications), the differences

in total counts dominate the computed distance, which then becomes less sensitive to

the differences in the distributions over the histogram bins.

We therefore introduce a different approach for dealing with histograms of unequal

mass that leads to a proper scale-invariant metric, and that allows us to better calibrate
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the contributions to the overall distance of differences in total counts, and differences

in the distributional patterns.

In the following, we use h to denote individual node histograms, and H to denote

NHTs. For a histogram h we denote with c(h) the sum of all cell counts in h. Let h1, h2
be two histograms of equal dimensions (i.e., h1, h2 have the same dimensionality, and

the same number of bins in each dimension). Then the relative count distance between

h1 and h2 is defined as:

dr-count(h1, h2) := 1− min(c(h1), c(h2))√
c(h1) · c(h2)

. (4)

Equation (4) requires that c(h1) and c(h2) are both non-zero. To complete the

definition, we define dr-count(h1, h2) = 1 if exactly one of the c(hi) is zero, and

dr-count(h1, h2) = 0 if both are zero.

Proposition 1 dr-count is a scale-invariant pseudo-metric with values in [0, 1].

A proof that dr-count is a pseudo-metric can be found in the appendix. It only is

a pseudo metric on histograms, because it is defined as a function of the count values

c(hi), and obviously, two different histograms can have identical counts, and hence zero

dr-count distance. Seen as a function on the pairs of integers, c(h1), c(h2), dr-count is a

proper metric. The scale-invariance of dr-count is immediate.

Now let h̄ = h/c(h) be the probability distribution on histogram bins obtained by

normalizing h. The earth mover’s distance between these normalized histograms is de-

fined in terms of an underlying ground distance between histogram bins (Rubner et al,

1998). We take the Manhattan metric as the ground distance, because this is a very

commonly used distance on histogram bins, and because it supports a computation-

ally efficient approximation to the EMD that we will introduce in Section 5.3 below.

Note however that our exact formulation is generic and can be used with any ground

distance, provided an appropriate normalization is introduced. Indeed, learning the

ground distance matrix from examples (Cuturi and Avis, 2014) is a promising direc-

tion for future research, as will be discussed in the conclusion of the paper. To ensure a

common scale for all EMDs, regardless of the dimensionality (D) and granularity (N)

of the histograms involved, we divide the raw Manhattan distance by D(N − 1), so

that all distances between histogram bins fall into the interval [0, 1]. The EMD distance

demd(h̄1, h̄2) between two normalized histograms then is defined (and computed) as

the solution of a linear program in M2 variables, where M is the number of bins in

each histogram.

Combining the count and the EMD distances via a simple mixture construction,

we define:

dc-emd(h1, h2) :=
1

2
(dr-count(h1, h2) + demd(h̄1, h̄2)) (5)

This definition gives equal weight to the dr-count and demd components. Obviously,

the mixture weights for these two components could be turned into an adjustable

parameter. However, following our “few parameters” objective, for now we only consider

equal weights (except that in the experimental section we will also consider the two

extreme scenarios of giving all weight to either dr-count or demd).

Proposition 2 dc-emd is a scale-invariant metric with values in [0, 1].
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This proposition follows from Proposition 1, the fact that demd on normalized

histograms is a proper metric, and the observation that if h1 6= h2 then c(h1) 6= c(h2),

in which case dr-count(h1, h2) > 0, or h̄1 6= h̄2, in which case demd(h̄1, h̄2) > 0. Thus,

dc-emd is a metric, even though its components only are pseudo-metrics.

5.2 Histogram Tree Metric

As the last step we have to combine the node histogram metrics into an overall metric

on histogram trees. This will again simply be a mixture construction, but with a slightly

more elaborate construction of mixture coefficients.

Consider two NHTs H1, H2 obtained as approximations of logistic evaluation trees

Lβ(V (T (e1))) and Lβ(V (T (e2))) for entities e1 and e2. Since both trees are derived

from the same underlying TET T with nodes (v1, . . . , vk), they have identical structure,

and consist of node histograms (h1,1, . . . , h1,k) and (h2,1, . . . , h2,k). A plain summa-

tion of per-node histogram distances dc-emd(h1,i, h2,i) (1 ≤ i ≤ k) would imply that

branches with many children tend to dominate the overall distance. This is not desir-

able, especially given that node histograms of the children of a node to some extent

duplicate the information it contains (cf. Example 6). In order to prevent this effect,

we scale dc-emd(h1,i, h2,i) by a factor 1/si, where si is the number of siblings of vi in

T 1. This leads to the following definition of a metric between NHTs, which we also

denote as dc-emd:

dc-emd(H1, H2) :=

k∑
i=1

1

si
dc-emd(h1,i, h2,i). (6)

Proposition 3 dc-emd is a scale-invariant metric on node histogram trees.

5.3 Marginal EMD

The computation of dc-emd(H1, H2) with Hi = (hi,1, . . . , hi,k) requires the computa-

tion of k EMDs. For a pair of node histograms the computation of demd(h̄1,j , h̄2,j)

consists of a linear optimization problem in M2 variables, with M the number of bins

in the histograms. Assuming a fixed granularity of N bins in each dimension, this

computation becomes exponential in the dimensionality of node histograms.

In contrast, EMD for 1-dimensional histograms w.r.t. Manhattan distance can be

computed without the use of linear optimization simply by summing over the absolute

difference of the cumulative distribution function (Chan et al, 2007): for normalized

1-dimensional histogram h̄1, h̄2 with N cells and cell values h̄i(1), . . . , h̄i(N) (i = 1, 2),

define the cumulative cell counts fi(k) :=
∑k
j=1 hi(j) (k = 1, . . . , N ; i = 1, 2). Then

demd(h̄1, h̄2) =

N∑
k=1

|f1(k)− f2(k)|. (7)

We can approximate demd(h̄1, h̄2) by considering the 1 - dimensional marginals of

the h̄i as follows: for a D-dimensional normalized histogram h̄ with N bins in each

1 Preliminary experiments showed that a plain summation indeed achieves poor performance
on TETs where different branches have very different number of children.
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Fig. 5 2-dimensional histograms with their 1-dimensional marginals and pairwise demd (blue,
solid arrows) and dmemd (green, dashed arrows) distances

dimension, and 1 ≤ k ≤ D let h̄↓k denote the marginal of h̄ in the kth dimension, i.e.,

h̄↓k is the 1-dimensional histogram whose count in the jth bin is the sum of all counts

in h̄ over bins with index j in the kth dimension. For a two-dimensional histogram, for

instance, this corresponds to computing row and column sums.

We then define the marginal EMD distance between h̄1, h̄2 as

dmemd(h̄1, h̄2) :=

D∑
k=1

demd(h̄↓k1 , h̄↓k2 ). (8)

Proposition 4 dmemd is a pseudo-metric with dmemd ≤ demd.

It should be emphasized that the inequality dmemd ≤ demd depends on our use

of the Manhattan distance as the underlying metric in the EMD definition. For other

metrics on histogram bins, this inequality need not hold.

Example 8 Figure 5 shows three 2-dimensional, normalized histograms h̄1, h̄2, h̄3, to-

gether with their 1-dimensional marginals. The pairwise distances between the his-

tograms according to demd and dmemd are shown by the labels on the blue (solid),

respectively green (dashed) edges. Since h̄1 and h̄3 have identical marginals, their

dmemd is zero. In all cases dmemd ≤ demd with equality for the pair h̄2, h̄3.

We next investigate under which condition the equality dmemd = demd holds. The

following is a very natural definition that basically just expresses stochastic indepen-

dence in histogram terms.

Definition 6 A histogram h is a product histogram, if the entries of h are given by

the product of its marginals, i.e., for a bin with indices i = (i1, . . . , iD):

h(i) =
∏D
k=1 h

↓k(ik).
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In Example 8, histograms h̄2 and h̄3 are both product histograms.

Proposition 5 If h̄1, h̄2 are product histograms, then dmemd(h̄1, h̄2) = demd(h̄1, h̄2).

The condition of being a product histogram may appear rather strong. However,

there is a special case of product histograms that in our context is quite impor-

tant, and which is exemplified by h̄2 in Example 8: we call a D-dimensional his-

togram h concentrated in a 1-dimensional slice if there exists 1 ≤ k ≤ D, and

indices i1, . . . , ik−1, ik+1, . . . , iD, such that h(i) 6= 0 only for i of the form i =

(i1, . . . , ik−1, j, ik+1, . . . , iD) for j = 1, . . . , N . When h is concentrated in a 1-dimensional

slice, then h is a product histogram. Thus, when comparing histograms that are con-

centrated in 1-dimensional slices, dmemd is the same as demd. Note that it is not

required that the two histograms whose distance we measure are concentrated in the

same 1-dimensional slice.

The reason that concentration in 1-dimensional slices is encountered quite fre-

quently in our node histograms, is that the value paths represented by a given his-

togram all start with the same (root) value, and in case of leaf nodes, all end with the

value 1. This implies that all 2-dimensional node histograms associated with nodes at

the second level of the TET are necessarily concentrated in 1 dimension, as are those

3-dimensional node histograms at the third level that correspond to leaf nodes. Fig-

ure 4 illustrates this for our bibliometric TET. Generally, every TET that has height at

most 3 only generates node histograms that are concentrated in a 1-dimensional slice.

5.4 Baseline Count Distance

In the preceding sections we have introduced a quite sophisticated metric that starts

with the underlying counts-of-counts feature represented by the TET value γ, applies

the customizable feature transformation through the logistic evaluation function, and

then uses a combination of count based and distribution based metrics on the his-

togram representations of the resulting logistic value paths. In this section we define a

somewhat simpler baseline metric for comparison in our experiments. The baseline is

just the Euclidean distance on the marginal count values of all node histograms: using

the notation from the previous sections, and in analogy to (4) and (6) define:

db-count(h1, h2) := (c(h1)− c(h2))2 (9)

db-count(H1, H2) :=

√√√√ k∑
i=1

db-count(h1,i, h2,i) (10)

Note that even though for convenience we here define the db-count metric via the

node histograms, it is in fact independent of the distribution of counts over the bins in

the histogram, and thereby does not depend on the logistic evaluation function that in-

duces this distribution. Moreover, db-count disregards the nested counts-of-counts struc-

ture represented in the underlying TET value γ, and only considers “flat” counts. Based

on our bibliometric TET of Figure 2(a), the db-count distance between two authors

a1, a2 is just the Euclidean distance between the vectors (#p1,#c1) and (#p2,#c2),

where #pi stands for the total number of papers of author ai, and #ci for the total

number of citations received by ai. In contrast to the scale-invariance of dc-emd, we

have that db-count is location invariant.
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6 Metric Tree Retrieval

Having defined a metric over NHTs, we are now interested in efficient nearest neighbor

retrieval according to that metric. There is a large body of literature on efficient exact

and approximate nearest-neighbor search, mostly relying on tree-decomposition (Clark-

son, 2006) or locality-sensitive-hashing (Wang et al, 2014, 2017) methods. The vast

majority of hashing-based approaches is conceived for Euclidean spaces (Wang et al,

2014), as designing hash functions with locality guarantees for non-standard distances

is a hard task. In this paper we rely on a simple metric tree (MT) structure based

on generalized hyperplane decomposition (Uhlmann, 1991). Albeit simple, this solu-

tion proved very effective in practice, as shown by our experimental evaluation. For

the type of applications that we have in mind, it will usually not be imperative that

exact nearest neighbors are retrieved. For k-nearest-neighbor prediction, for example,

the prediction accuracy will not usually suffer much when k very close neighbors are

used, rather than the exact k nearest neighbors. In information retrieval scenarios, k

very good matches for the query will often be as useful as the k best matches (noting

that the underlying precise distance measure can only approximately represent user’s

preferences to begin with). The procedures for building and searching MTs are briefly

reviewed in Appendix B.

7 Related Work

Our work is primarily related to other approaches for measuring node similarity in

graphs, and information retrieval and node classification in graph data in a broader

sense. It is also related to previous work on approximating EMD.

Information retrieval from graph data is often framed as the problem of finding for

a given query graph an approximately matching sub-graph in the data graph (Tong

et al, 2007; Khan et al, 2011; Mottin et al, 2014). The similarity between query graph

and sub-graph sometimes is defined in terms of pairwise similarities between the nodes

of the two graphs (Khan et al, 2011). In all these approaches one compares the query

graph only with the sub-graph identified by the matching. Connections of nodes in

this sub-graph to other nodes in the data graph not involved in the matching are

not considered. Thus, a node with a low degree in the query graph can be matched

with a high-degree node in the data graph, without incurring any penalty for their

similarity score. This is in sharp contrast to our metric dc-emd, which is based on a

full quantitative evaluation of the nodes’ neighborhoods.

When considering measures for the (dis-)similarity of nodes, one has to carefully

distinguish between measures that define similarity in terms of proximity and connec-

tivity in the graph, and measures based on local structural similarity which do not

require any connectivity for two nodes to be considered similar. Our approach, as well

as node similarity measures used in the context of approximate query graph matching

fall into the second category, and therefore are fundamentally different from e.g. (Jeh

and Widom, 2002; Sun et al, 2011; Liu et al, 2017), where similarity is induced by the

existence of (short) paths connecting the nodes.

Numerous paradigms exist for defining embeddings that map nodes into a D-

dimensional Euclidean space, where then similarity can be measured by standard

metrics. Such paradigms can be based on probabilistic (Hoff, 2009), matrix factoriza-

tion (Newman, 2006), or neural network models (Grover and Leskovec, 2016). These
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approaches share with ours the two stage process of defining node feature vectors (for-

mally, one could view our node histogram trees as vectors in Euclidean space), on

which then a metric is defined. However, all these embedding approaches are again

fundamentally different from ours in that similarity of feature vectors still is mostly

determined by proximity in the graph. When using such feature vectors as predictors in

node classification problems, one can exploit homophily properties, i.e., the tendency of

neighboring nodes to share the same (class) attributes. However, when the node class

does not exhibit homophily, then this type of feature vector will yield poor predictors.

For node classification in the absence of homophily several approaches developed in

the field of statistical relational learning can be used (Knobbe et al, 1999; Neville et al,

2003; Assche et al, 2006; Richardson and Domingos, 2006). These frameworks typically

extend classic machine learning models such as decision trees to operate on features

extracted from relational neighborhoods. Most similar in spirit to our counts-of-counts

features are perhaps complex aggregate features as considered in (Assche et al, 2006;

Vens et al, 2014). These approaches do not define similarity measures on graph entities,

and therefore can not be used for information retrieval tasks.

Similarity-based node classification is mostly treated as a graph classification prob-

lem, applied to a node’s relational k-hop neighborhood or “ego graph”. Thus, in (Ya-

nardag and Vishwanathan, 2015), for instance, individual researchers in physics are

classified according to their particular research fields by classifying their ego graphs in

a collaboration network. This is comparable to our approach, in that a node’s TET

value also is derived from its relational neighborhood. However, the graph kernels that

are used in (Yanardag and Vishwanathan, 2015) and many other approaches (Leicht

et al, 2006; Shervashidze et al, 2011; Neumann et al, 2016) to measure the similarity of

(neighborhood) graphs differ from TET-based node similarity measures in that they do

not allow identification of a central node of interest, and similarities of nodes is only in-

directly obtained as an aggregate of similarities between all the nodes or sub-structures

in their neighborhood graphs.

Most similar in spirit to TET-based similarities are perhaps the Weisfeiler-Lehman

(W-L) Graph Kernels (Shervashidze et al, 2011) which measure similarities between

labeled graphs (i.e., graphs that are equipped with a single node attribute). In an

iterative process, nodes are re-labeled with the multiset of labels of their neighbors. In

the course of several iterations, this implicitly leads to nested multisets of labels that

indirectly encode counts-of-counts statistics. However, W-L graph kernels lack a graded

concept of similarity for these nested multiset structures. The W-L graph kernel only

is based on testing equality of the label multisets. Our experimental evaluation will

show that this limitation produces a substantial reduction of performance with respect

to TET-based similarity in nearest-neighbor based prediction.

We note that while in the present paper we use TETs and logistic evaluation func-

tions to define structure-based similarity, we have in our previous work (Jaeger et al,

2013) also exploited TETs to construct connectivity-based similarity scores: this can

be done using TETs with two free variables, such that a discriminant function score

f(V (T (e1, e2))) defined on a single TET value can be directly used as a similarity

measure for two entities e1, e2. In (Jaeger et al, 2013) this approach was used to solve

the entity resolution problem on the CORA dataset, where binary TETs for pairs of

bibliographic records were learned in order to predict whether the two records actu-

ally referred to the same paper. This requires mostly connectivity-based similarity, for

example based on the number of shared words in the title fields of the two records.
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Our approach to approximating EMD on high-dimensional histograms as a sum of

marginal EMDs is related to earlier work on obtaining lower bound approximations for

high-dimensional EMD problems by dimensionality reductions via certain marginal-

ization operations (Ljosa et al, 2006; Wichterich et al, 2008). These earlier approaches

were not specifically designed for EMD on histograms, and therefore did not exploit the

very easy EMD computation for one-dimensional histograms, which is the cornerstone

of our approach.

8 Experiments

We performed a number of experiments to investigate the usefulness of our metrics,

and the quality and efficiency of nearest neighbor retrieval when facillitated by the

MEMD approximation, and the MT data structure.

8.1 Data and Experimental Setup

8.1.1 Bibliometrics

Our first application domain is bibliometrics. We employed the AMiner dataset2, which

consists of a citation network comprising a total of 1,712,433 authors, 2,092,356 papers

and 8,024,869 citations. From this large dataset, we extracted the 103,658 authors with

h-index > 2, where the h-index (or Hirsch index) of an author is defined as the largest

number h of papers having received at least h citations each.

We defined two TETs: the one shown in Figure 2 (a), representing the basic counts-

of-counts citation statistics for an author, and a second one shown in Figure 8 (a),

representing publication statistics of co-authors of a given author. The second TET

has depth>3, so that it induces histogram trees for which demd and dmemd can differ.

8.1.2 IMDb

The second application domain we considered is the Internet Movie Database (IMDb).3

We collected the version dated February 17, 2017, from which we extracted tables re-

garding movies, genres, actors, and business. We built a dataset of 246,285 movies

(those having at least one genre attribute), and considered 9,601 actors (those appear-

ing in more than 20 of those movies). Based on an actor’s billing position in the movie’s

credits we constructed actor-movie relations lead(a,m) if actor a appears in billing po-

sition 1 or 2 of movie m, and support(a,m) if a’s billing position is greater than 2.

Furthermore, we use a generic role(a,m) relation when a appears in m, whether or

not billing information is available. As for the business information, we assigned each

movie having budget information to one of three categories: large budget(m) contains

movies with a budget in the top 3% within their decade, medium budget contains the

next 20% of most expensive movies, and small budget the remaining movies.

2 https://aminer.org/aminernetwork
3 http://www.imdb.com/
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Table 1 Overview of methods and notations

Notation Definition

TET weight
assignment

(def) default parameter assignment
(man) manual parameter assignment
(l-cla) parameters learned with cross-entropy loss
(l-mse) parameters learned with mean squared error loss

Distance
Metrics

C-EMD combined relative count and EMD distance: equation (5)
C-MEMD equation (5) with demd replaced by dmemd.
RCOUNT relative count distance as defined by (4)
MEMD marginal EMD as defined by (8)
BCOUNT baseline count distance as defined by (10)
WL-GK Weisfeiler-Lehman graph kernel

NN retrieval . . . +MT use of metric tree data structure for fast retrieval of (ap-
proximate) nearest neighbors

Non NN
methods

CLA Classificaton based on logistic evaluation function value
REGR Regression based on logistic evaluation function value

8.1.3 TET parameters

All our experiments require the specification of a TET, and a weight assignment for a

logistic evaluation function. For the experiments in this paper all TET structures are

manually defined (we have shown in (Jaeger et al, 2013) how to learn TET structures

in the context of specific supervised learning problems). For the parameter setting we

employ three different methods:

Default: all “bias” parameters β0 are set to 0, and all “weight” parameters β1, . . . , βm
are set to 1.

Manual: we set weights manually in such a way that logistic evaluations for different

examples at all TET nodes are spread over the whole available interval [0, 1], and not

clustered at one of the saturation points 0 or 1 of the sigmoid function. In this way

we obtain a more fine-grained input for the dc-emd and dc-memd metrics with counts

distributed over a wide range of histogram bins, rather than being concentrated at the

extreme ends of histograms. While the heuristics we use to find these manual settings

could be made quite formal and even automated, we do not pursue this in greater

depth for this paper, since in future work we plan to rather pursue a metric learning

approach to supersede this heuristic approach.

Learned: we learn parameters according to a given supervised learning objective as

described in Section 3.1. The learning objective can be a classification task, in which

case we use cross entropy as the loss function, or a regression task, in which case we use

mean squared error loss. We have implemented ADAM (Kingma and Ba, 2015) as the

stochastic gradient descent technique, setting the maximum number of iterations to

200 and performing 20 random restarts, keeping 10% of the training set for validation.

8.1.4 Methods used

We are considering a number of different methods for prediction and retrieval. Table 1

gives an overview of methods and notation. The different weight assignments discussed

in the preceding section are summarized in the first block of Table 1. The second block
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summarizes the different distance metrics we have introduced. The last two of these

(BCOUNT and WL-GK) are baselines that do not use TETs. Then C-MEMD+MT

(man), for example, stands for the method where we use nearest-neighbor prediction

based on the dc-emd metric induced by a TET with manual parameter setting, and

using a metric tree for approximate nearest-neighbor retrieval. C-MEMD (man) is the

same, but nearest neighbors are found by exhaustive search over all training examples.

We also consider alternative methods where only the logistic evaluation function value

lβ(γ) is directly used for prediction. In classification settings we then classify an ex-

ample as positive if lβ(γ) > 0.5, and in regression settings we use lβ(γ) directly as the

estimate. Clearly, these methods are most naturally combined with parameter learning

under the corresponding objective, giving us CLA (l-cla) and REGR (l-mse). However,

some other combinations are also included in the experiments.

8.1.5 Experimental Setup

In our experiments we are retrieving nearest neighbors for certain test entities from

a given training dataset. For the AMiner dataset, we split our whole set of 103,658

authors into 2/3 (69,106) for training, and 1/3 (34,552) for testing. For IMDb, we

manually selected 50 different test actors, optimizing for diversity in the test set, while

preferring better known actors in order to improve interpretability of the retrieval

results. The remaining 9,551 actors constituted the training set. For all the experiments,

we used N = 5 as the number of histogram bins. For the MT, we used dmax = 12 as the

maximum tree depth, and nmax = 30 as the maximal bucket size (see Appendix B).

We run experiments on a server with Intel Xeon E5-2640 v4 2.4GHz with 128GB of

RAM. For earth mover’s distance, we employed the FastEMD Java implementation.4

The source code of our implementation is freely available at https://github.com/

andreapasserini/TET.

8.2 Efficiency of MEMD and MT Approximations

In a first set of experiments, we assess the benefits of the MEMD and MT approxima-

tions for retrieval efficiency, both individually, and in combination. We considered the

problem of retrieving nearest neighbors for each of the four data/TET combinations

described in Section 8.1, using C-MEMD and C-EMD distances, with or without the

use of the MT. Parameters were set manually for these experiments.

Table 2 reports in the first eight columns the average time (t) per test case for

retrieving the nearest neighbor, and the average total number of comparisons per test

case (nc). Comparing the time measurements for C-EMD vs. C-MEMD shows a reduc-

tion of 2-4 orders of magnitude due to the use of the MEMD approximation. Comparing

the time and nc values for the versions with and without the MT data structure shows

a significant gain from the use of MTs. We also investigated how balanced the con-

structed MTs turn out to be. For each internal node of an MT we have recorded the

split ratio (size of the smaller of the two subsets into which the data is split, divided

by the size of the larger subset). For each of the eight MTs constructed in this experi-

ment, the split ratio averaged over all its nodes was between 0.4 and 0.5, showing that

4 https://github.com/dkoslicki/EMDeBruijn/tree/master/FastEMD/java
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Table 2 Computational cost of retrieval using 4 different methods. All times are in ms (k =
× 1,000; m= × 1,000,0000).

Retrieval build MT build
NHT

C-EMD C-MEMD C-EMD
+MT

C-MEMD
+MT

C-EMD C-MEMD

TET t nc t nc t nc t nc t t t

AMiner author 21k 69k 121 69k 43 129 <1 129 483k 3k 1m

AMiner co-auth. 486k 69k 95 69k 907 123 1 148 11m 10k 16m

IMDb genre 32k 9k 56 9k 167 32 1 32 621k 4k 852k

IMDb business 10k 9k 32 9k 97 43 <1 43 203k 1k 285k

a typical split in the construction has a ratio of about 2:1. This indicates a robust ten-

dency for fairly balanced splits, and an expected exponential reduction in the number

of required comparisons from the use of MTs. Jointly, the MEMD approximation and

the MT data structure lead to a retrieval time of 1ms or less for the nearest neighbor

of a test example. The following two columns of Table 2 show the times needed for the

construction of the MTs. Due to the many distance computations involved in the con-

struction, building a MT based on C-MEMD is orders of magnitude faster than based

on C-EMD. However, in both cases, first the TET values and NHTs for all training

cases have to be computed. The time required for this is given in the last column, and

turns out to be the same order of magnitude as the C-EMD-based MT construction.

Therefore, the advantage of MEMD over EMD is mostly with regard to retrieval cost,

and less with respect to MT construction.

In summary, we find that both the MEMD and the MT approximations lead to

speedups of several orders of magnitude in nearest neighbor retrieval. However, due

to the cost of the always required initial node histogram tree computations, these

speedups will mostly make a difference when amortized over many retrieval operations

for a fixed dataset and MT.

8.3 Effectiveness of C-MEMD Metric for Prediction and Retrieval

In this section we test the effectiveness of C-MEMD based nearest neighbor compu-

tations for a range of supervised learning and data retrieval tasks. Before we consider

specific tasks, we first investigate in the following subsection how good an approxima-

tion C-MEMD+MT is of the “gold standard” retrieval method C-EMD.

8.3.1 Quality of MEMD and MT Approximation

In Section 8.2 we found that the MEMD and MT approximations lead to very signifi-

cant improvements in retrieval speed. We now evaluate how well the nearest neighbors

obtained under these approximations correspond to the nearest neighbors found with-

out approximation techniques, i.e., C-EMD.

We measure the quality of the retrieved (approximate) nearest neighbors with two

metrics: Normalized Discounted Cumulative Gain (NDCG) (Järvelin and Kekäläinen,

2000) to compare the rankings defined by sorted lists of nearest neighbors, and Average

Ratio Error (ARE) (Arya et al, 1998) to compare the actual distances to the test entity

of true and retrieved nearest neighbors. Given a ranking of k elements defined by the
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Table 3 Retrieval accuracy of nearest neighbors of C-MEMD+MT with respect to C-MEMD.

TET NDCG ARE
AMiner author 0.72 0.08
AMiner coauthor 0.63 0.22
IMDb genre 0.51 0.14
IMDb business 0.65 0.21

sorted list of approximate nearest neighbors, DCG is defined as:

DCGk =

k∑
i=1

πi
log2(i+ 1)

where πi is a relevance measure of the i-th element in the ranking, which we simply

define as the reciprocal of the position of this element in the true ranking. For example,

if the k = 3 nearest neighbors retrieved by an approximate method are the 3rd, 4th

and 7th element in the true ranking, then we will have DCG3 = (1/3)/ log2(2) +

(1/4)/ log2(3) + (1/7)/ log2(4) = 0.562. This metric is typically normalized to range

between 0 and 1, and then called NDCG. Our 3/4/7 example would have an NDCG

of 0.380. To define ARE, let dB be the distance of the true nearest neighbor to a test

example, and dp the distance of the returned approximate nearest neighbor. Then ARE

is
dp−dB
dB

averaged over all test examples. Parameters were again set manually for these

experiments.

First we want to assess the impact of the approximations introduced by using

C-MEMD instead of C-EMD, without the use of MTs. Among our four data/TET

combinations, only the co-author TET for the AMiner data can produce histograms

where MEMD and EMD differ, so we can only use this setting for this experiment.

Since we compare two different metrics, only NDCG is a meaningful error measure.

For 50 randomly selected test authors we retrieve the 3 nearest neighbors according

to C-MEMD from among the full set of 69,106 training authors, and determine their

positions in the “true” ranking defined by C-EMD. We obtain an average NDCG3

value of 0.955, indicating a near perfect approximation of C-EMD via C-MEMD.

From now on we focus on C-MEMD, and next consider the loss of retrieval accu-

racy induced by the use of the MT data structue, i.e., we compare C-MEMD against

C-MEMD+MT. Table 3 reports the NDCG and ARE error measures for the 4 different

data/TET combinations. The average NDCG scores are consistently very good, indi-

cating that a typical retrieval result is at least as good as returning the 2nd/3rd/4th

true nearest neighbors (which would correspond to an NDCG of 0.563). The ARE val-

ues, in comparison, appear relatively high, corresponding in 3 out of 4 settings to an

average 10-20% larger distance of the returned than the true nearest neighbor. Note,

however, that the ratio error for a single example is not bounded by 1, so that the

averages here can be greatly influenced by outliers.

In summary, we find that the nearest neighbors found with C-MEMD+MT approx-

imate the C-EMD nearest neighbors very well. For the MEMD approximation this was

already partly known from Proposition 5, which implies that for most of our settings

the MEMD approximation is exact.
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Fig. 6 Results on the bibliometrics classification task. We compare the accuracy of the con-
sidered methods on the reduced data set (left) and on the full data set (right). See Table 1 for a
definition of the different methods being compared (note for viewing the figure in a B/W ren-
dering: the top-to-bottom ordering of the methods in the key corresponds to the left-to-right
ordering of the result bars).

8.3.2 Classification and regression

We next evaluate our metrics and nearest neighour retrieval in predictive tasks.

Classification. Following our earlier work (Jaeger et al, 2013) we first consider the

binary classification task of predicting whether an author has an h-index greater than 7,

using the citation TET of Figure 2 (a) with different methods for setting its weights. For

this task the manually defined weights are set to approximate a step function going from

near 0 at x = 7 to near 1 at x = 8 (instead of following the general heuristic described in

Section 8.1.3 for manual weight setting), thus allowing to achieve perfect classification.

We performed for the test authors a k-nearest neighbor prediction based on the k = 10

nearest neighbors in the training set, retrieved by C-MEMD+MT. We compare this

approach to several alternatives. Some of these alternatives do not scale to our full

dataset, and we therefore perform some experiments on a reduced dataset containing

10,000 authors for training, and 1,000 authors for testing. Our first comparison is

against C-MEMD to assess the impact of the MT approximation on the prediction

accuracy. The second comparison is against nearest-neighbor prediction, when nearest

neighbors are determined based on similarity defined by the W-L graph kernel (WL-

GK). The W-L graph kernel expects graphs with a single node attribute and single

undirected edges between node pairs. In order to match this format, we represented

the relational neighborhood information of an author entity that our citation TET

exploits as an undirected graph with nodes representing ground atoms, atom types as

node labels and edges connecting ground atoms according to the TET structure (see

Fig 1 for examples from the IMDb domain, with node colours representing atom types).

The TET based similarity dc-memd and the W-L kernel based similarity are thus based

on the same selection of raw relational data. We used a publicly available graph kernel

implementation5 for this experiment. We set the number of iterations parameter to

1, which we found to give the best results. Our third comparison is with the baseline

count metric described in Section 5.4. We ran this baseline using both exhaustive

nearest neighbor search (BCOUNT) and metric tree approximation (BCOUNT+MT).

Figure 6 (left) reports classification accuracy of the methods we tested on the re-

duced dataset. The first relevant insight is that there is basically no difference between

results of the dc-memd metric using exhaustive or approximate neighbor search. Com-

paring different weight settings, we see that manually adjusted weights give rise to

5 https://github.com/mahito-sugiyama/graph-kernels
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perfect classification, and that parameter learning finds nearly optimal parameters,

substantially better than default ones. Competitors lag clearly behind. The WL-GK

is performing the worst, most likely because its aggregation strategy fails to compute

the relevant counts-of-counts statistics. The BCOUNT baselines do a reasonable job,

but are substantially outperformed by the dc-memd metric with an appropriate weight

setting (manual or learned).

Figure 6 (right) reports the results of a second set of experiments where we use

the whole training/test split described in Section 8.1.5. In this case we compare C-

MEMD+MT with different weight settings against three alternatives. The first alter-

native is given by the same count baselines used in the experiments with the reduced

dataset. Results are also very similar6, with count baselines achieving the same accu-

racy as in the reduced dataset. The second alternative consists of simplified versions of

the metric in which only the counting component (RCOUNT+MT) or only the memd

component (MEMD+MT) is used. In both cases, results are substantially worse than

those achieved with the combined metric, confirming the need for considering both

aspects of the similarity.

Results achieved with the direct classification model CLA and parameter settings

(man) and (l-cla) are very similar to those achieved with nearest-neighbor classifica-

tion. Both of these parameter settings are optimized for using the logistic evaluation

function as a discriminant in this classification task. Under the (def) parameter setting

the logistic evaluation always is ≥ 0.5, and therefore CLA (def) classifies all examples

as positive, leading to an accuracy of only 14.2. It is noteworthy that even under this

parameter setting the similarity based method C-MEMD+MT (def) performs reason-

ably well, indicating some robustness of the approach with respect to the parameter

values.

To summarize, the main insights from the classification experiment are:

– The C-MEMD metric is expressive enough to capture under a suitable parameter-

ization β the concept h-idx > 7 precisely.

– The classification performance of the metric is quite robust under changes of the

parameterization

– Supervised parameter learning under a classification loss function here finds pa-

rameters that lead to high classification accuracy, both in the direct classification

setting (CLA), and in conjunction with C-MEMD nearest neighbor prediction.

– The counts-of-counts based C-MEMD metric outperforms the flat count metric

BCOUNT, where the margin of difference varies with how well the C-MEMD pa-

rameters are optimized.

Regression. We then addressed a regression task, where the goal is to exactly pre-

dict some bibliometric index of an author. We employed h, g, e, and i10 indices (Hirsch,

2005; Egghe, 2006; Zhang, 2009) to investigate the capability of our metric to represent

relevant similarity for a broader range of prediction tasks. As before, we use the citation

TET of Figure 2 (a), with different methods for setting its parameters. Note that in the

l-mse weight setting, distinct parameters are learned for each index to be predicted. In

the nearest neighbor based approaches, we predict each bibliometric index by the aver-

age value of the index in the 10 nearest neighbors. We compare this approach with the

6 Note that a classification accuracy of 99.9% corresponds to F1=99.9, far higher than the
one we achieved in (Jaeger et al, 2013) for the same task (on another data set) with discriminant
function and nearest neighbor retrieval.
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Fig. 7 Results on the bibliometrics regression task. We compare the RMSE of the considered
competitors on the reduced data set (top) and on the full data set (bottom). See Table 1 for
a definition of the different methods being compared (note for viewing the figure in a B/W
rendering: the top-to-bottom ordering of the methods in the key corresponds to the left-to-right
ordering of the result bars).

same alternatives used for the classification task, both in the reduced and full dataset

settings.

Figure 7 (top) reports the root mean squared error (RMSE) of the methods we

tested on the reduced dataset. A comparison of the performances of C-MEMD and

C-MEMD+MT shows that for this more complex task, the MT approximation does

produce some performance degradation, albeit differences are rather limited. In terms of

weight settings, manual parameters again achieve the best results, and learned weights

are very competitive, with almost undistinguishable results in the exact search case. In

general, the metric is robust with respect to the choice of parameters, as the default

weight setting is also quite competitive. In terms of alternative methods, again the

WL-GK is performing the worst, and the BCOUNT baselines do a reasonable job but

are outperformed by C-MEMD, especially when combined with exact search.
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Figure 7 (bottom) reports the root mean squared error (RMSE) of the methods we

tested on the full dataset. In this case we compare C-MEMD+MT with different weight

settings againts three alternatives. The first alternative is given by the the same count

baselines used in the experiments with the reduced dataset. Results are also similar,

as C-MEMD+MT with manual parameters outperforms the baselines in all but the

e-idx prediction (where they perform the same). The second alternative consists of the

same simplified versions of the metric used for the classification case. As in that case,

the counting and MEMD components of the metric alone give rise to substantially

inferior performance than those achieved with the combined metric. With the direct

regression approach REGR we only obtain competitive results with the l-mse weight

setting, which substantially outperforms both manual and default parameter settings.

This shows the feasibility of weight learning by backpropagation. However, even under

this optimized setting of the weights, the performance of REGR is substantially worse

than what we obtain from similarity-based nearest neighbor regression. To summarize,

the main insights from the regression experiment are:

– C-MEMD+MT gives competitive results for all three weight setting approaches,

demonstrating a certain robustness of C-MEMD based prediction under variations

of the weights.

– Similarity-based nearest-neighbor prediction (C-MEMD and BCOUNT) greatly

outperforms direct regression (REGR).

– The strong results of C-MEMD+MT under the manual weight setting is evidence

for a potential of further improvements that could be obtained by weight optimiza-

tion using a metric learning (rather than regression) approach.

8.3.3 Retrieval

In this section we present qualitative and quantitative results about the TET frame-

work’s ability to support different similarity concepts that reflect different information

retrieval objectives. Compared to supervised learning tasks as considered in the pre-

vious section, retrieval tasks are much more difficult to evaluate, as there is no simple

ground truth against which one can assess the results. The experiments and evaluations

we present in this section, therefore, partly rely on intuitive judgement, rather than

numeric performance scores.

For our retrieval experiments we use the IMDb data. Figure 8 (b) and (c) shows

two TETs representing an actor’s “genre profile” (b), and “business profile” (c), re-

spectively. For the genre TET (b) we included the 20 most frequent genre labels in the

dataset (the complete list can be seen in Figure 11).

For both TETs we use a manual weight setting as described in Section 8.1.3. For

each of our 50 test actors (cf. Section 8.1.5) we retrieved the nearest neighbors according

to the genre and the business TET. We use C-MEMD+MT for retrieval, which means

that there is a certain amount of randomness in the result due to the random elements

in the MT construction. Indeed, we observe some variations in the outcomes, when

re-running the experiment with different random seeds.

The result for test actor Humphrey Bogart is illustrated in Figure 1 and was already

discussed in Section 1. We here remark that the nearest neighbors shown in Figure 1

were retrieved using the MT data structure, and therefore cannot be guaranteed to be

the precise nearest neighbors. However, as the distance values included in the figure

show, the ranking we obtain is correct: Graham really is closer to Bogart than Curtis
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Fig. 8 TETs used for AMiner (a) and IMDb data (b),(c)

Table 4 Nearest genre and business neighbors

Test actor NN genre NN business
Humphrey Bogart Eddie Graham Tony Curtis
Stan Laurel Billy Franey Oliver Hardy
Joseph Stalin Jimmy Carter Tom Herbert
Muhammad Ali John Kerry Justin Ferrari
Kirk Douglas Eli Wallach Burt Lancaster

if looking at genres only, while the opposite holds for business similarity. Figure 10

gives the graphical representation for Stan Laurel as the test actor. Not surprisingly,

Oliver Hardy here comes out as a very close neighbor both in terms of business and

genre similarity, but on the latter criterion Hardy is narrowly beaten by Billy Franey

(1889-1940). Franey also often appeared in leading roles, and visually there are no clear

differences between either the genre, or the business feature graphs for all of these three

actors.

Table 4 shows retrieved nearest genre and business neighbors for 5 selected test

actors (the results for all 50 test actors can be found in the appendix). In almost all

cases the nearest business and genre neighbors are distinct.

Recasting We next consider a task where an objective evaluation criterion can

be defined. Named “recasting”, this task is designed as follows: the IMDb website7

lists cases where an actor turned down a role in a major movie, and also states which

other actor subsequently filled that role. We can view this as a retrieval problem for a

director or casting agent: find for the initially chosen actor (the query actor) a similar

replacement actor. We denote as target actor the actor that ultimately played the role.

The IMDb website lists a total of 20 of such query/target pairs of male actors. We

omit from our experiments one pair that relates to the casting of a role in a TV series,

rather than a movie, and another pair for which one of the actors is not included in

our preliminary list of 9,601 actors (see Section 8.1.2).

The replacement for a query actor will usually match that query actor both with

respect to the type of movies they usually perform in, as well as with respect to commer-

cial aspects as represented by our business TET. To retrieve replacement candidates,

7 https://www.imdb.com/poll/p0HuVFrAcR4/
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Table 5 Results on the recasting experiment. For each movie, we report the ranking of the
target actor within the list of the nearest neighbors of the query actor.

Query actor Target actor Movie C-MEMD BCOUNT

Al Pacino Chazz Palminteri The Usual Suspects 714 1825
Burt Reynolds Harrison Ford Star Wars: Episode IV 1545 2263
Daniel Day-Lewis Viggo Mortensen Lord of the Rings: the

Fellowship of the Ring
1604 9163

Denzel Washington Brad Pitt Se7en 32 10
Hugh Jackman Daniel Craig Casino Royale 276 8020
Jack Nicholson Al Pacino The Godfather 2195 2573
James Caan Jack Nicholson One Flew Over the

Cuckoo’s Nest
348 547

John Travolta Tom Hanks Forrest Gump 17 105
Johnny Depp Matthew Broderick Ferris Bueller’s Day

Off
8467 6170

Kevin Costner Tim Robbins The Shawshank Re-
demption

256 129

Leonardo DiCaprio Mark Wahlberg Boogie Nights 1635 2077
Leonardo DiCaprio Christian Bale American Psycho 235 109
Matt Damon Sam Worthington Avatar 3850 3308
Sean Connery Ian McKellen The Hobbit: an Unex-

pected Journey
953 5640

Sylvester Stallone Brad Pitt Se7en 247 399
Tom Hanks Tom Cruise Jerry Maguire 2 27
Tom Selleck Harrison Ford Indiana Jones and the

Temple of Doom
162 348

Will Smith Keanu Reeves The Matrix 1502 9262

we therefore construct a TET that simply joins the two TETs of Figure 8 (b) and (c)

as two sub-trees under a new root with a vacuous label true. Since candidate replace-

ment actors should be active in the same time period as the query actor, we need to

consider only movies in a time interval immediately preceding the release date of the

query movie. This can be done by adding a temporal feature to the TET as follows:

when recasting a role in a movie that was released in year yyyy, we add to each node

that first mentions a movie entity M just introduced by an edge label the additional

constraint that M was released between yyyy-21 and yyyy-1. Thus, for example, when

searching for a replacement actor for Al Pacino in “The Usual Suspects”, which was

released in 1995, the first branch of the business sub-TET will be modified as

M−−−→ lead(A,M), produced in(M, [1974, 1994]) −−−→ . . .

Note that while for our experiment this means that we have to construct a customized

TET for each query, this reflects a real-world scenario where a query would always

be evaluated on the current database, and our varying constraints just corresponds

to the fixed predicate “not older than 20 years” as defined in the current version

of the database at (approximately) the time the query would be posed. We use the

default parameters and the C-MEMD metric for this experiment. Nearest neighbors

are retrieved by exhaustive search, without the use of metric tree data structures.

For each query actor we determine the rank of the target actor in the sorted list

of nearest neighbors. The results are shown in Table 5. Considering the large number

of possible replacement actors, and the fact that the eventual replacement actor (our

target) may be the result of many compromises and contingencies faced in the casting

process, one should not expect that the target already appears in the top 10, or so, of
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Burt Reynolds Harrison Ford

Fig. 9 Feature graphs for Burt Reynolds and Harrison Ford at production time of “Star
Wars: Episode IV”

the nearest neighbor list. In our results, in 11 cases the target actor is in the top 10%

of the ranking, whereas in 9 cases he is in the top 5%.

The first case where the target actor fails to make the top 10% of nearest neigh-

bors is the Reynolds/Ford pair for “Star Wars: Episode IV”. The feature graphs for

these two actors provide a clear explanation for why H. Ford is not considered a very

close neighbor for B. Reynolds: Figure 9 shows the genre (top) and business (bot-

tom) feature graphs for the two actors. All graphs are constrained by the release year

yyyy=1977. Obviously, at the production time of Star Wars (IV), Reynolds was a much

more established actor than Ford, with a significantly larger number of movies, includ-

ing numerous appearances in leading roles (darkest nodes in inner circle of Reynold’s

business feature graph).

We next compare the results with the C-MEMD based retrieval against the baseline

BCOUNT distance as defined by the same TET. Comparing the ranks of the target

actors assigned by C-MEMD vs. BCOUNT, we find that C-MEMD better ranks the

target actor in 13 cases out of 18. We performed a Wilcoxon signed rank test to

compare the two rankings, and the advantage of C-MEMD over BCOUNT is found

to be statistically significant with p = 0.02685.

To summarize, we found that customizing TETs for different concepts of similarity

in the same domain leads to intuitively meaningful and relevant retrieval results for

the IMDb data. The newly introduced “recasting” problem supports a small-scale

quantitative evaulation of the C-MEMD based similarity concept, which for this task

was found to give more relevant results than the BCOUNT baseline.

9 Conclusion and Future Work

In this paper we developed a powerful class of metrics over relational data based on

complex counts-of-counts statistics. The framework allows combining features such as

entity attributes, attributes of the neighbors of an entity and structural properties of
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Stan Laurel Billy Franey

0.382000

0.291539

Oliver Hardy

0.384518

0.115908

Fig. 10 Stan Laurel’s nearest neighbors.

an entity relational neighborhood in a natural and flexible way. Our experimental eval-

uation showed how the framework allows one to seamlessly represent diverse notions of

similarity and to address similarity-based prediction tasks substantially outperforming

alternative solutions based on graph kernels.

Our work can be extended in a number of relevant directions. First, in the paper

we only considered categorical (Boolean) attributes at the nodes. A straightforward

extension is to allow numerical data on nodes and edges. A second extension con-

cerns parameter learning. We currently either specify them manually, or learn them by

stochastic gradient descent in a supervised classification/regression setting, with super-

vision on the output of the logistic evaluation function. In the h-index > 7 classification

task, the approach learns parameters almost as accurate as the manually tuned ones.

For retrieval tasks, one would like to learn the metric parameters from observed ranking

preferences (Bellet et al, 2013), by e.g. adapting existing approaches for earth’s mover

distance learning (Wang and Guibas, 2012; Cuturi and Avis, 2014). These approaches

focus on learning the ground distance matrix, i.e., the pairwise distance between bins

in a (multidimensional) histogram. We plan to generalize them to also learn the pa-

rameters of the TET over which the metric is defined. Note that our experiments on

bibliometric index regression suggest that this alternative form of supervision could be

beneficial also in some supervised learning tasks.

Finally, our nearest-neighbor retrieval strategy relies on a simple metric tree struc-

ture based on hyperplane decomposition. The investigation of alternative search strate-

gies, for instance by designing ad-hoc locality-sensitive hash functions, is an interesting

direction for future research.

In this work we focused on the definition of a metric on NHT. It is interesting to

investigate whether this metric, or variants thereof, can lead to a valid (i.e. positive
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definite) kernel. Despite the importance of EMD in areas like computer vision, it is

still unclear whether kernels derived from EMD (by, e.g., simply taking the negated

exponential of the metric) are positive definite (Gardner et al, 2018), and there is

evidence to the contrary when EMD is paired with a Euclidean ground distance (Naor

and Schechtman, 2007). A sufficient and necessary condition for this to hold is that the

metric is conditionally negative definite (Berg et al, 1984). It is easy to show that our

MEMD metric is conditionally negative definite, also when combined with the count

metric, and that dc-memd on node histogram trees is conditionally negative definite

(see the Appendix for a formal proof). When positive definiteness cannot be ensured,

one can still rely one existing solutions for dealing with indefinite kernels, most notably

Krein spaces (Loosli et al, 2016; Oglic and Gaertner, 2018). We leave this investigation

as an interesting avenue for future research.
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A Proofs

Proposition 1 dr-count is a scale-invariant pseudo-metric with values in [0, 1].

Proof. The minimum of two counts is a positive semi-definite kernel, called histogram inter-
section kernel (Barla et al, 2003). The normalization is called cosine normalization, and the
result is also a kernel (Schölkopf and Smola, 2002). Let us refer to this kernel as

k(h1, h2) =
min(c(h1), c(h2))√

c(h1) · c(h2)
.

A kernel induces a pseudo-metric

d(h1, h2) =
√
k(h1, h1) + k(h2, h2)− 2k(h1, h2).

For the normalized histogram intesection kernel we have that 0 ≤ k(h1, h2) ≤ 1 and k(h1, h1) =

k(h2, h2) = 1, thus d(h1, h2) =
√

2− 2k(h1, h2). The count distance is obtained as dr-count(h1, h2) =
1
2
d(h1, h2)2, a simplified version of the distance which preserves its properties. Non-negativity

and symmetry are trivially preserved. For triangle inequality d(h1, h3) ≤ d(h1, h2) + d(h2, h3)
implies that αd(h1, h3)2 ≤ α(d(h1, h2)+d(h2, h3))2 ≤ αd(h1, h2)2+αd(h2, h3)2 for any α > 0.
Finally, dr-count is a pseudo-metric because any two distinct histograms having same counts
have zero distance.

Proposition 4 dmemd is a pseudo-metric with dmemd ≤ demd.

Proof. We recall and introduce the following notation: h̄1, h̄2 are normalized D-dimensional
histograms with N bins in each dimension. Histogram cells are indexed by index vectors
i, j, . . . ∈ ND. The kth component of the index vector i is denoted i(k).

For k = 1, . . . , D we have that d↓k
memd

(h̄1, h̄2) := demd(h̄↓k1 , h̄↓k2 ) (k = 1, . . . , D) is a

pseudo-metric on the D-dimensional histograms h̄1, h̄2, because it is induced by the metric
demd under the non-injective mapping h̄ 7→ h̄↓k. dmemd therefore is a sum of pseudo-metrics,
and therefore also a pseudo-metric.

We denote by EMD(h̄1, h̄2) the constrained optimization problem defining the earth
mover’s distance, i.e., demd(h̄1, h̄2) is the cost of the optimal solution of EMD(h̄1, h̄2). A

feasible solution for EMD(h̄1, h̄2) is a given by f = (fi,j)i,j , where∑
i

fi,j = h̄1(j),
∑
j

fi,j = h̄2(i)

The cost of a feasible solution is

cost(f) =
∑
i,j

fi,jd(i, j)

where d is the underlying metric on histogram cells. In our case, d is the Manhattan distance.
However, all we require for this proof is that d is additive in the sense that there exist metrics
d(k) on {1, . . . , N} (k = 1, . . . , D) such that

d(i, j) =

D∑
k=1

d(k)(i(k), j(k)).

In the case of Manhattan distance, d(k)(i(k), j(k)) = |i(k)− j(k)|.
Let f be a feasible solution for EMD(h̄1, h̄2). For k = 1, . . . , D we define the marginal

solutions
f↓ki,j :=

∑
i:i(k)=i
j:j(k)=j

fi,j
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Then f↓k = (f↓ki,j ) is a feasible solution solution of EMD(h̄↓k1 , h̄↓k2 ), and we have

cost(f) =
∑
i,j

D∑
k=1

fi,jd
(k)(i(k), j(k)) =

D∑
k=1

N∑
i,j=1

f↓ki,jd
(k)(i, j) =

D∑
k=1

cost(f↓k)

In particular, when f is a minimal cost solution of EMD(h̄1, h̄2), then we have demd(h̄1, h̄2) =
cost(f), and

D∑
k=1

cost(f↓k) ≥
D∑

k=1

demd(h̄↓k1 , h̄↓k2 ) = dmemd(h̄1, h̄2)

Proposition 5 If h̄1, h̄2 are product histograms, then dmemd(h̄1, h̄2) = demd(h̄1, h̄2).

Proof. Let f (k) be feasible solutions for EMD(h̄↓k1 , h̄↓k2 ) (k = 1, . . . , D). Define

fi,j :=

D∏
k=1

f
(k)
i(k),j(k)

.

Then f = (fi,j) is a feasible solution for EMD(h̄1, h̄2):

∑
i

fi,j =
∑
i

∏
k

f
(k)
i(k),j(k)

=
∏
k

N∑
i=1

f
(k)
i,j(k)

=
∏
k

h̄↓k2 (j(k)) = h̄2(j),

and similarly
∑

j fi,j = h̄1(i). For the cost of the solutions we obtain:

cost(f) =
∑
i,j

(∑
k

d(k)(i(k), j(k))

)∏
k

f
(k)
i(k),j(k)

=
∑
k

∑
i,j

d(k)(i(k), j(k))
∏
k

f
(k)
i(k),j(k)

=
∑
k

N∑
i,j=1

d(k)(i, j)
∑

i:i(k)=i
j:j(k)=j

∏
k

f
(k)
i(k),j(k)

=
∑
k

N∑
i,j=1

d(k)(i, j)
∑
i,j

f
(k)
i,j =

∑
k

cost(f (k)).

This implies demd(h̄1, h̄2) ≤
∑

k demd(h̄↓k1 , h̄↓k2 ), which together with Proposition 4 proves
the proposition.

Proposition 6 dc-memd on node histogram trees is conditionally negative definite.

Proof. Let us recall the definition of dc-memd on node histogram trees and the definition of
all its components:

dc-memd(H1, H2) :=

k∑
i=1

γdi

si
dc-memd(h1,i, h2,i) (11)

dc-memd(h1, h2) :=
1

2
(dr-count(h1, h2) + dmemd(h̄1, h̄2)) (12)

dmemd(h̄1, h̄2) :=
D∑

k=1

demd(h̄↓k1 , h̄↓k2 ) (13)

demd(h̄1, h̄2) :=
N∑

k=1

|f1(k)− f2(k)| (14)

dr-count(h1, h2) := 1−
min(c(h1), c(h2))√

c(h1) · c(h2)
(15)

(16)

Let us prove the statement in a bottom-up fashion:
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Algorithm 1 Metric Tree building.

1: procedure MTbuild (dmax,nmax,d,data)
2: Initialize node MN
3: if d = dmax ∨ Size(data) ≤ nmax then
4: MN.bucket ← data
5: return MN
6: MN.z1, MN.z2 ← getRandomPair(data)
7: data1, data2 ← splitData(data, MN.z1, MN.z2)
8: MN.left ← MTbuild(dmax,nmax,d+ 1,data1)
9: MN.right ← MTbuild(dmax,nmax,d+ 1,data2)

10: return MN

– dr-count(h1, h2) (eq. 15) is conditionally negative definite, as
min(c(h1),c(h2))√

c(h1)·c(h2)
is positive

semi-definite (see proof of proposition 1), the negation of a p.s.d. function is condition-
ally negative definite (Berg et al, 1984), and summing a constant value does not change
conditional negative definiteness.

– demd(h̄1, h̄2) (eq. 14) is a Manhattan distance and thus it is conditionally negative definite
(the same holds for other distances like the Euclidean one, see (Richards, 1985) for a
classical proof).

It follows that dc-memd(H1, H2) is conditionally negative definite, as it is a positively
weighted sum of conditionally negative definite functions, and the property is closed under
summation and multiplication by positive scalar.

B Procedures for Metric Tree building and retrieval

In the following we briefly review the procedures for building and searching MTs, mostly
following (Uhlmann, 1991).

A MT is built from a dataset of node histogram trees, by recursively splitting data until
a stopping condition is met. Algorithm 1 describes the procedure for building the MT. The
algorithm has two parameters, the maximal tree depth (dmax) and the maximal bucket size
(nmax) and two additional arguments, the current depth (initialized at d = 1) and the data
to be stored (data), represented as a set of node histogram trees, one for each entity. A MT is
made of two types of nodes, internal ones and leaves. An internal node contains two entities
and two branches. A leaf node contains a set of entities (the bucket). The MT construction
proceeds by splitting data and recursively calling the procedure over each of the subsets, until
a stopping condition is met. If the maximal tree depth is reached, or the current set to be
splitted is not larger than the maximal bucket size, a leaf node is returned. If the stopping
condition is not met, two entities z1 and z2 are chosen at random from the set of data (making
sure they have a non-zero distance), and data are splitted according to their distances to these
entities. Data that are closer to z1 go to the left branch, the others go to the right one, and
the procedure recurses over each of the branches in turn.

Algorithm 2 Metric Tree searching.

1: procedure MTsearch (MN,H,k)
2: if isLeaf(MN) then
3: sorted = sort(MN.bucket, H)
4: return sorted[1:k]

5: if Dist(H,MN.z1) ≤ Dist(H,MN.z2) then
6: return MTsearch(MN.left,H,k)
7: else
8: return MTsearch(MN.right,H,k)
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Once the MT has been built, the fastest solution for approximate k-nearest-neighbor re-
trieval for a query instance H amounts to traversing the tree, following at each node the branch
whose corresponding entity is closer to the query one, until a leaf node is found. The entities in
the bucket contained in the leaf node are then sorted according to their distance to the query
entity, and the k nearest neighbors are returned. See Algorithm 2 for the pseudocode of the
procedure. Notice that this is a greedy approximate solution, as exact search would require to
backtrack over alternative branches, pruning a branch when it cannot contain entities closer
to the query than the current kth neighbor (see (Liu et al, 2005) for the details). Here we
trade effectiveness for efficiency as our goal is to quickly find high quality solutions rather
than discovering the actual nearest neighbors. Alternative solutions can be implemented in
the latter case (Liu et al, 2005; Muja and Lowe, 2014).

Both algorithms have as additional implicit parameter the distance function over NHTs,
which can be the exact EMD-based NHT metric or its approximate version based on marginal
EMD (exact for product histograms, see Proposition 5). Notice that for large databases, ex-
plicitly storing the NHT representation of each entity in the leaf buckets can be infeasible. In
this case buckets only containt entity identifiers, and the corresponding NHTs are computed
on-the-fly when scanning the bucket for the nearest neighbors. Standard caching solutions can
be implemented to speed up this step.
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C Details on actor retrieval results

Test actor NN genre NN business
Muhammad I Ali John III Kerry Justin Ferrari
Kevin I Bacon Lance E. Nichols Charlie Sheen
Christian Bale Channing Tatum Hugh I Grant
Warren I Beatty Art I Howard Christopher Reeve
Humphrey Bogart Eddie I Graham Tony I Curtis
David I Bowie Ethan I Phillips Adam I Baldwin
Adrien Brody Mark I Camacho Kevin I Kline
Steve Buscemi Vincent I Price Keith I David
Michael I Caine Robert De Niro Robert De Niro
David Carradine Clint Howard Rutger Hauer
Jim Carrey Jason I Alexander Jake Gyllenhaal
Vincent Cassel Keith Szarabajka Dougray Scott
James I Coburn Ned Beatty Louis Gossett Jr.
Robbie Coltrane Rene Auberjonois H.B. Warner
Sean Connery Gene Hackman Paul I Newman
Kirk I Douglas Eli Wallach Burt Lancaster
Rupert Everett Brian Blessed Omar Sharif
Henry Fonda Dick I Curtis James I Mason
John I Goodman Christopher I Plummer Ron I Perlman
Al I Gore Jeroen Willems Dwight D. Eisenhower
Dustin Hoffman Rip Torn Pierce Brosnan
Stan Laurel Billy Franey Oliver Hardy
Jude Law Michael I Sheen Omar Sharif
Jack Lemmon Charles Dorety William I Holden
John Malkovich William H. Macy Mickey Rourke
Marcello Mastroianni James I Payne Ajay Devgn
Malcolm I McDowell Clint Howard Martin Sheen
Alfred Molina William H. Macy George I Kennedy
David I Niven Ivan F. Simpson William I Powell
Philippe Noiret Dominique Zardi Pat I O’Brien
Al I Pacino Jeremy Piven Tom Cruise
Chazz Palminteri Bobby Cannavale Norman Reedus
Gregory Peck James Seay Christopher I Lambert
Sean I Penn Andy I Garcia Michael I Douglas
Anthony I Perkins Nicholas I Campbell George C. Scott
Joe Pesci Stephen Marcus Anton Yelchin
Elvis Presley Berton Churchill Lee I Marvin
Robert I Redford Roscoe Ates Michael Keaton
Keanu Reeves Kevin I Pollak Antonio Banderas
Geoffrey Rush Jim I Carter Ian I McShane
Steven Seagal Frank Pesce Marlon Brando
Joseph Stalin Jimmy I Carter Tom I Herbert
Sylvester Stallone Nicolas Cage Johnny Depp
Ben Stiller Bill I Murray Antonio Banderas
David Suchet Danny Nucci James I Nesbitt
John Turturro Danny DeVito Bruce I Dern
Lee Van Cleef Robert I Peters Jack Warden

Christoph Waltz Frank I Gorshin DemiÃ¡n Bichir
Denzel Washington Michael V Shannon Tom Cruise
Orson Welles Donald Pleasence Rod Steiger
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Fig. 11 Color keys to actor feature graphs


