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Abstract—The unmanned-aerial-vehicle (UAV) has attracted
great interests in both civil and military applications, due to its
low cost, flexibility and ability to establish seamless coverage.
In this paper, a Universal Software-defined Radio Peripheral
(USRP) based channel sounding system for characterizing the
UAV communication channel is introduced, which can be applied
in both active and passive measurement campaigns. To investigate
the effect of the equipment in the UAV measurement system,
measurements were conducted by connecting two USRP devices
directly with a cable. Furthermore, a post-processing method
is proposed to calibrate the delay shift and “fake” Doppler
frequency caused by the frequency deviation of the local oscillator
in the system.

Index Terms—unmanned-aerial-vehicle (UAV), channel sounding,
delay shift, and “fake” Doppler frequency.

I. INTRODUCTION

With their flexibility and low cost, unmanned-aerial-vehicles

(UAVs), also commonly known as drones or remotely piloted

aircrafts, have gained significant interests in both industry

and academia [1]. UAVs are now widely used in civil and

commercial applications, such as video surveillance, weather

monitoring, search and rescue operations, precision farming,

and transportation [2]. Among these applications, the use of

UAVs for achieving high-speed wireless communications is

expected to play an important role in future communication

systems [3].

Extensive measurement campaigns have been conducted for

characterizing the UAV communication channel, which is

important for the performance evaluation and design of UAV

communication systems [4]–[8]. Most of the measurement

campaigns were conducted in urban, suburban and open fields

with mostly clear line-of-sight (LOS) scenarios such as moun-

tain, desert, hilly and over-sea, etc. Furthermore, the choice of

channel sounding equipment is important, considering the on-

board space limitations, payload weight, bandwidth require-

ments and multipath resolution. Time Domain P440 radios

were used for ultrawideband (UWB) channel sounding in bi-

static mode with the operating frequency from 3.1 GHz to

5.3 GHz [9]. In [10], an autonomous mobile network scanner

by Rohde & Schwarz was chosen for recording the live LTE

signals at the 800 MHz frequency band, which is capable of

reporting radio measurements from up to 32 cells per recorded

sample. Smartphones are also applied for the test of EDGE,

HSPA+ and LTE technologies [11], [12]. The millimeter-wave

(mmWave) spectra measurement campaign at 28 and 38 GHz

was planned to be conducted using SAFtehnika 24-40 GHz

mmWave portable spectrum analyser [13]. Moreover, Univer-

sal Software-defined Radio Peripheral (USRP) hardware is

widely applied in UAV measurement campaigns, such as N-

210 [4], [14], B-210 [5], X-310 [6], [7] and B-200 mini, which

are benefit with their lighter weight, software-definability,

and ability to test multi-carrier and MIMO system in UAV

communication.

In this paper, a USRP-based channel sounding system for char-

acterizing the UAV communication channel is introduced. This

paper aims to investigate the effect of the system equipment

on the measured signals. The first issue is the possible effect

introduced by the system responses of the USRP devices and

cable. The second issue is the frequency offset caused by the

local oscillator of USRP. The rest of this paper is organized as

follows. In Sect. II, the components of a USRP-based channel

sounding system are introduced. Sect. III analyzes the system

response by the measurements connecting two USRPs with a

cable directly. Sect. IV elaborates the method for eliminating

the frequency offset caused by the local oscillator. Finally,

concluding remarks are given in Sect. V.

II. MEASUREMENT SYSTEM

Fig. 1(a) illustrates the block diagram of the UAV measurement

system, which consists of two parts, i.e., the air part and the

ground part as shown in Fig. 1(b) and Fig. 1(c), respectively.

The UAV measurement system can be used for both active and

passive channel sounding measurements as shown in Fig. 2.

Note that the term “active” here means that we transmit and

receive the signals by ourselves, and “passive” means that

we receive the signals already existing in the environment.

The active channel sounding can be applied for the air-to-

ground (A2G) and air-to-air (A2A) propagation measurement

campaigns, and the passive channel sounding can be applied

for collecting the down-link signals from base stations (BSs)

such as in commercial 3G and 4G networks.

The air part contains an antenna, a USRP device of type N210,

a computer, a commercial wireless fidelity (WiFi) router, a

Global Positioning System (GPS) disciplined oscillator and a

GPS antenna. The ground part includes the same components

as the air part and a computer for controlling the air part.

Local area network can be built by the two commercial WiFi
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Fig. 1: The UAV measurement system. (a) The block diagram of the
system. (b) Air part. (c) Ground part.
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Fig. 2: The sketch of the UAV measurement system applied in the
active (A2A and A2G channel) and passive (collect down-link signals
from BS) measurement campaigns.

routers to control the air part from the ground. The USRPs can

be programmed by GnuRadio or LabVIEW softwares in the

computers to transmit and receive real-time signals at specific

carrier frequency and with specific sampling rate (or band-

width). The received data is also stored in the computer. Fur-

thermore, transmitter and receiver parts are time-synchronized

by the pulse per second (PPS) signals generated from the

GPS modules and frequency-synchronized by the accurate

10 MHz reference signals provided by the GPS-disciplined

clocks. As an example, a pseudo-noise (PN) sequence signal

with a bandwidth of 20 MHz is transmitted repeatedly at the

center frequency of 2.585 GHz and recorded with complex

sampling rate of 25 MHz at the receiver. The channel impulse

response (CIR) is calculated by the correlation between the

transmitted and received signals.

III. SYSTEM RESPONSE

To investigate the possible effect caused by the USRP devices

and cables, a measurement was conducted by connecting

two USRP devices with a cable used in the measurement

campaigns directly. The baseband equivalent signal s(t) with

a bandwidth of 20 MHz was transmitted from the transmitter

USRP device and received by the receiver USRP device as

baseband equivalent signal r(t).

Fig. 3(a) illustrates the normalized power frequency spectra of

the transmitted signal s(t) and received signal r(t). Further-

more, the normalized power frequency spectra with the range

of 150 KHz are plotted in Fig. 3(b). It can be observed that the

spectrum of the received signal r(t) is deteriorated near 0 Hz,

which is probably due to direct-current (DC) leakage of the

USRP. This effect can be ignored in the case of orthogonal

frequency division multiplexing (OFDM) systems, since zero

frequency point is not used.

Fig. 3(c) illustrates the normalized ideal instantaneous power

delay profile (PDP) |hi(τ)|
2 and measured PDP |hm(τ)|2,

where

hi(τ) =

∫
s(t)s∗(t− τ)dt
∫
s(t)s∗(t)dt

, (1)

hm(τ) =

∫
r(t)s∗(t− τ)dt
∫
s(t)s∗(t)dt

. (2)

Note that the illustrated PDPs are over-sampled with sample

interval as [1/(5×25e6)]. It can be observed that the effect of

the equipment and cable can be ignored, when we consider

the CIR within the dynamic range of 30 dB.

IV. CALIBRATE THE EFFECTS OF LOCAL OSCILLATOR

The sampling rate and center frequency are determined based

on the 10 MHz reference frequency provided by the local

oscillator.1 However, the inaccuracy of local oscillator can lead

to the shifts of the sampling rate and center frequency from

the expected or set values. Thus a GPS disciplined oscillator is

usually used to increase the accuracy. Even so, the deviation is

inevitable although smaller. Moreover, it cannot be guaranteed

that GPS-disciplined clock is always available to increase the

accuracy.

Figs. 4(a) and 4(b) illustrate the measured concatenated power

delay profiles (CPDPs) and Doppler delay power spectra

obtained in static state, respectively. It can be expected that

the delay should be fixed and Doppler shift should be zero,

since the transmitter and receiver are in static state. However,

it can be observed from Fig. 4(a) that the delay is shifting

and from Fig. 4(b) that a Doppler shift exists, due to the

deviation of the sampling rate and center frequency caused

by the inaccuracy of local oscillator. To solve the problem,

we propose a post-processing method to calibrate sampling

rate and center frequency as follows.

1The deviation of the reference frequency is time-variant and dependent on
temperature, etc. The deviation tends to be stable after a specific time period
(about half an hour) of warming up.
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Fig. 3: The effects introduced by the system responses. (a) Power
frequency spectra of transmitted signal and received signal. (b) Power
frequency spectra with the range of 150 KHz. (c) Normalized ideal
and measured PDPs.

(a) (b)

Fig. 4: The measured CPDPs and Doppler delay power spectra
obtained in static state. (a) CPDP. (b) Doppler delay power spectra.

(a) (b)

Fig. 5: Calibrated CPDPs and Doppler delay power spectra obtained
in static state. (a) CPDP. (b) Doppler delay power spectra.

Let us consider the reference frequencies provided by the local

oscillators in both USRPs are ftx and frx, respectively. Both

ftx and frx should be 10 MHz if no deviation exists. We denote

the clock times at the transmit USRP and the receiver USRP

as t and t′, respectively. Then it can be known that

t =
frx

ftx

t′ + τoffset (3)

or

t′ =
ftx

frx

t+ τ ′offset (4)

where τoffset is a fixed offset caused by the time-

synchronization offset, i.e., the zero time at both USRPs

may be different. When (3) is written as (4), τoffset becomes

τ ′offset which is still a fixed offset. The passband signal sp(t)
transmitted can be formatted as

sp(t) = R{s(t) exp {j2πfct}} (5)

where fc is the center frequency. As the two USRPs are

connected using a cable, the received passband signal at the

receiver USRP can be written as

rp(t) = R{α0s(t− τ0) exp{j2πfc(t− τ0)} (6)

where α0 and τ0 denote the complex attenuation and delay,

respectively. When the passband signal rp(t) is demodu-

lated at the receiver to obtain its baseband equivalent signal,

exp{−j2πfct
′} is applied to move its spectrum down. There-

fore, it can be known that

r(t) = α0s(t− τ0) exp{j2πfc(t− t′)− j2πfcτ0} (7)

Replace t with the clock time t′ at the receiver according to

(3) or (4), we have

r(t′) = α0s(
frx

ftx

t′ + τfixed) exp{j2πfc(
frx

ftx

− 1)t′ + j2πfcτfixed}

(8)

with

τfixed = τoffset − τ0 (9)

It is straightforward to know the fact from (8) that the

baseband signal received at the receiver has a “fake” Doppler

frequency as fc(
frx

ftx
− 1) as illustrated in Fig. 4(b). Moreover,

if the transmitted signal has a period of T , the received

period will become T ftx

frx
which is the reason for the shifting

delay in the CPDPs as illustrated in Fig. 4(a). Figs. 5(a) and
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5(b) illustrate the calibrated CPDPs and Doppler delay power

spectra, respectively. It can be observed that the delay shift

with respect to time and Doppler frequency are calibrated

to zero, which indicates the validity of the post-processing

method.

V. CONCLUSION

In this contribution, a USRP-based channel sounding system

for characterizing the unmanned-aerial-vehicle (UAV) channel

is introduced. It is found that the effect of the equipment and

cable can be ignored. Besides, a post-processing method is

proposed to eliminate the effects of local oscillator in the

actual measurement activities. The method requires a static

pre-measurement and is necessary especially when the Global

Positioning System (GPS) disciplined oscillator is unavailable

such as in mountain areas, high-speed railway and tunnels in

subway scenarios. The future research mainly focuses on the

following aspects: i) The system will be further applied for

the virtual linear or circular array measurements, based on the

up to centimetre-level real-time kinematic (RTK) positioning

function. ii) The system can be used for air-to-air (A2A)

channel measurement, which has not been widely investigated.

iii) The system will be applied to evaluate the 4G and 5G

communication techniques, e.g. the performance of different

waveforms [15].
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