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Abstract 
 

 

The increasingly visible effects of climate change demand for a larger use of 

renewable fuels, especially in the transportation sector, in order to reduce GHG 

emissions and to move forward against fossil fuels dependence. Hydrothermal 

liquefaction (HTL) is a prospective technology, capable of producing renewable 

advanced biofuels via thermochemical conversion of the feedstock into biocrude and 

its consequent upgrading. The peculiarity of HTL is to be able to process a large 

variety of feedstock regardless from their chemical composition, including wet 

biomasses, and therefore allowing even the treatment of inhomogeneous wastes.  

The present work investigated the HTL of three highly diverse waste fractions with 

the common aim of valorizing the organic fraction by producing biocrude and, at the 

same time, investigating the potential recovery of valuable by-products for an 

improved circular economy. 

In the first study, HTL was proposed to process unrecyclable mixed fractions of 

plastics: to investigate its potentials, nine high-density polymers were individually 

processed under supercritical water conditions. In most cases, the liquefaction of the 

plastics resulted in high yields of synthetic crude oils; in particular, PC almost fully 

converted into biocrude (99.8%), and very high biocrude yields (ca. 80%) were 

obtained from SB and PPO conversion. From the qualitative characterization, the 

biocrudes result suitable for fuels and chemicals applications. Furthermore, biocrudes 

derived from polymers with an aromatic structure may also be used for BTX 

production, as they contain aromatic compounds. Moreover, monomers were 

identified in the products after liquefaction of PC, SB, PLA, PBT, and PET; as a result, 

monomeric compounds may be reclaimed for the production of new plastics. For 

example, although PET and PBT liquefaction did not produce any biocrude, their 

conversion resulted in the precipitation of the monomeric compound TPA. From the 

results of this work, HTL is found being highly prospective for chemical recycling of 

high-density polymers.  

In the second study, HTL was proposed to convert willow used for a particular 

application: the lignocellulosic biomass was grown on fields irrigated with wastewater 
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for absorbance of nutrients and metals from the waste stream. The supercritical 

liquefaction of the willow produced high yields (40%) of biocrude oil, a mixture of 

ketones and phenols, that could be upgraded for the production of fuels. Around 60% 

of the biocrude was in fact found being made of compounds whose boiling point is in 

the same range as gasoline, jet fuel, and diesel. The quality of the biocrude was not 

affected by the presence of the inorganics in the biomass, as most of the investigated 

inorganics (e.g. Ca, P, Mg, Fe) were primarily recovered in the solids after HTL 

processing. Potassium and sodium showed a different behavior being, instead, 

primarily dissolved in the aqueous phase. The concentration of the inorganics in the 

solids result favorable to both separate undesired heavy metals and recover nutrients 

for reutilization as fertilizers. 

In the third study, HTL was proposed as treatment for the disposal and simultaneous 

valorization of animal and human organic residues. Swine manure, cow manure, fish 

sludge, and sewage sludge were thus processed at both sub- and supercritical 

conditions, in presence and in absence of K2CO3 catalyst. The organic fraction of these 

wastes was substantially valorized through HTL: up to two thirds of the feedstock 

introduced in the reactor was converted into biocrude (59% for fish sludge, 46% for 

sewage sludge, and 41% for the manures at the most favorable process conditions). 

Though higher yields were obtained when operating at lower temperature (350 °C), 

the quality of the biocrude was enhanced by the use of supercritical conditions (400 

°C), especially for the manure-derived biocrudes, for which more severe conditions 

resulted in a higher deoxygenation extent. Likewise, the addition of K2CO3 catalyst 

allowed reducing the final oxygen content in the biocrudes, with a stronger effect on 

the biocrudes derived from the manures. Similarly as for the processing of woody 

biomass, most of the inorganics (Al, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Ni, P, Pb, Zn) were 

primarily recovered (>70%) in the HTL solids after hydrothermal processing. Since 

these waste fractions have high inorganic content (around 10% in the manures and 

>20% in the sludges) and are a particularly abundant source of phosphorus, HTL holds 

great potential for the recovery of a large volume of phosphorus. 

The outcomes of the present PhD work confirm the high flexibility of the HTL process 

towards the processing of highly inhomogeneous and diverse waste streams.  

The results of the experimental activities conducted within this work are also intended 

for utilization in support of the development and upscaling of the HTL technology.
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Resumé 
 

 

De stigende negative effekter af klimaforandringerne øger efterspørgslen af 

vedvarende brændstoffer, i særdeleshed inden for transportsektoren, til at reducere 

drivhusgasudledningerne og mindske afhængigheden af fossile brændstoffer. 

Hydrothermal liquefaction (HTL) er en potentiel teknologi, der er i stand til at 

producere vedvarende, avancerede biobrændstoffer via våd termokemisk omdannelse 

af organisk materiale til bio-olie, efterfulgt af opgradering af bio-olien til færdige 

brændstoffer. HTL er i stand til at konvertere en lang række bio-materialer uanset 

deres kemiske sammensætning, herunder våd biomasse, hvilket endda muliggør 

omsætning af inhomogent affald til brændstoffer. 

I denne afhandling er omdannelsen af tre meget forskellige affaldsfraktioner via HTL 

undersøgt med det fælles formål at øge værdien af den organiske fraktion ved at 

producere bio-olie og samtidig undersøge en potentiel nyttiggørelse af værdifulde 

biprodukter til en forbedret cirkulær økonomi. 

I det første studie testes hypotesen, at HTL kan anvendes til at forædle ikke-

genanvendelige plastfraktioner. Til understøttelse af hypotesen testes potentialet af ni 

højdensitets-polymerer, alle behandlet individuelt under superkritisk HTL. I de fleste 

tilfælde resulterede plastmaterialet i høje udbytter af syntetisk olie; især blev 

polykarbonat (PC) næsten fuldstændigt omdannet til syntetisk olie (99,8 %), og meget 

høje olie-udbytter (ca. 80 %) blev opnået ved konvertering af styren-butadien (SB) og 

polyphenylenoxid (PPO). Udfra en kvalitativ karakterisering konkluderes det, at de 

syntetiske olie fra plasten er velegnet til produktion af brændstoffer og andre 

kemikalier. Endvidere kan polymerer af en aromatisk struktur nedbrydes til 

aromatiske stoffer, som kan anvendes til BTX-produktion. Derudover blev der 

identificeret monomerer i produkterne fra PC, SB, polylaktisk syre (PLA), 

polybutylen terephthalat (PBT) og polyethylen terephthalat (PET); som et resultat 

heraf kan monomererne indvindes til fremstilling af ny plast. F.eks. resulterede 

konverteringen af PET og PBT ikke i nogen produktion af olie men derimod i faststof-

monomeren terephthalat syre (TPA). Fra resultaterne af dette studie konkluderes det, 

at HTL er en yderst potentiel teknologi til kemisk genanvendelse af polymerer med 

høj densitet. 
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I det andet studie blev HTL undersøgt til konvertering af fytoremedierende pil; det vil 

sige, pil dyrket på marker, der er overrislet med spildevand til absorption af 

næringsstoffer og tungmetaller. Superkritisk HTL bevirkede, at pilen producerede 

høje udbytter (39,7 %) af bio-olie, primært bestående af en blanding af ketoner og 

fenoler, der kunne opgraderes til produktion af biobrændstoffer. Det blev identificeret 

af cirka 60 % af bio-olien falder inden for kogepunkter i samme område som 

konventionel benzin, jetbrændstof og diesel. Kvaliteten af bio-olien blev ikke påvirket 

af tilstedeværelsen af uorganiske stoffer i biomassen, da de fleste af de undersøgte 

uorganiske stoffer (f.eks. Ca, P, Mg, Fe) primært blev udvundet i den faste fraktion 

efter HTL-behandling. Kalium og natrium var primært opløst i den vandige fase. 

Koncentrationen af de uorganiske stoffer i den faste fraktion resulterede i en gunstigt 

separation af både uønskede tungmetaller og genindvinding af næringsstoffer til 

genanvendelse som gødning. 

I det tredje studie blev HTL undersøgt som behandlingsmetode til bortskaffelse og 

samtidig valorisering af organiske restfraktioner fra dyr og mennesker. Svinegylle, 

kvæggylle, fiskeslam og spildevandsslam blev således behandlet under både sub- og 

superkritiske forhold, både med og uden tilsætning af K2CO3. Den organiske fraktion 

af dette affald blev i væsentlig grad valoriseret gennem HTL: op til to tredjedele af 

det råmateriale, der blev introduceret i reaktoren, blev omdannet til bio-olie (59 % for 

fiskeslam, 46 % for spildevandsslam og 41 % for gyllen under de mest gunstige 

procesbetingelser). Hvor der blev opnået de højeste udbytter ved konvertering ved 

lavere temperatur (350 °C), blev kvaliteten af bio-olie forbedret ved anvendelse af 

superkritiske betingelser (400 °C), især for gylleafledte bio-olier, for hvilke mere 

barske betingelser resulterede i en højere grad af iltfjernelse. På samme måde bidrog 

tilsætning af K2CO3 generelt til reduktion af det endelige iltindhold i bio-olierne, med 

den stærkeste effekt på bio-olierne fra gylle. Tilsvarende behandlingen af pil blev de 

fleste uorganiske stoffer (Al, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Ni, P, Pb, Zn) primært 

udvundet (> 70 %) i en fast fraktion efter HTL. Da disse affaldsfraktioner har et højt 

uorganisk indhold (ca. 10 % i gyllen og >20 % i slammene) og samtidig er en 

væsentlig kilde til fosfor, besidder HTL et stort potentiale til genindvinding af store 

mængder fosfor. 

Resultaterne af dette Ph.d.-projekt bekræfter HTL-processens høje fleksibilitet og 

evne til at behandle særdeles inhomogene og forskellige affaldsstrømme. 

Resultaterne af det eksperimentelle arbejde anses som understøttende til den videre 

udvikling og opskalering af HTL-teknologien. 
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Chapter 1 

Introduction 
 

 

1.1 Climate change and CO2 emissions 

The average surface temperature of the Earth has increased by 0.8 °C since 1880 and 

two-thirds of this temperature rise has taken place since 1975 [1]. The effects of the 

climate change are already visible and are projected to become more pronounced: 

warming and acidification of the oceans, rising of sea levels, melting of polar ice, 

glacial retreat, and increasingly intense and frequent extreme events, such as 

hurricanes, heavy rains, or heat waves [2]. The recent increase in anthropogenic 

greenhouse gas (GHG) emissions, which produce a heat-trapping effect, is recognized 

to be the dominant reason for global warming. The present atmospheric 

concentrations of carbon dioxide, methane, and nitrous oxide have reached 

unprecedented levels in the last 800,000 years. Moreover, in the last 150 years, 

atmospheric CO2 level has rapidly increased from 280 ppm to 400 ppm. In particular, 

CO2 emissions, produced from fossil fuel combustion and industrial processes, are the 

main contributors (accounting for 78%) to the sharp GHG increase measured from 

1970 to 2010 [3]. Without any mitigation, in 2100 the global average surface 

temperature is predicted to rise by 3.7-4.8 °C compared with pre-industrial levels [3]. 

Such increase in the global temperature would have irreversible effects, and 

compromise water availability and food security for future generations. 

To fight climate change, 195 countries have signed the Paris Agreement in 2015. This 

includes a limitation to the increase of the global average temperature to well below 

2 °C compared with pre-industrial levels, and to pursue concrete efforts to limit this 

increase eventually to 1.5 °C [4]. In response to the Paris Agreement, the International 

Energy Agency has outlined the “2 °C scenario” (2DS). It proposes a reduction of 

CO2 emissions by 70% respect to the present level by 2060 in order to have at least a 

50% chance of limiting the average global temperature increase to 2 °C by 2100 [5]. 
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The key factor behind present and future CO2 emissions is the increase in energy 

demand driven by the continuous growth in population and the economic 

development. Electricity, heat generation, and transport are the main contributors to 

CO2 emissions, producing more than two thirds on the total CO2 emissions (see Figure 

1). The transport sector by itself produced 27% of total EU-28 GHG emissions in 

2016, with GHG emissions from international aviation, for example, increased by 

114% respect to 1990 [8]. The transportation sector is still highly dependent on petrol 

consumption, with the road transport sector sharing the highest percentages of CO2 

emissions (74%), followed by the aviation and maritime sectors (see Figure 1). 

 

  

 

Figure 1: On the left side, Global CO2 emissions by sector in 2017 (based on data 

from [6]). On the right side, Global transport CO2 emissions by sub-sector in 2016 

(based on data from [7]). 
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1.2 Renewables in the transport sector 

The transport sector is still heavily relying on fossil fuels respect to the electricity and 

heat generation sectors. On a global scale, the share of renewable energies in the 

transport sector only accounted for 3.4% in 2017, respect to 23.9% of the electricity 

and 10.3% of the heat generation [9]. In EU, a higher share of renewables in the 

transport sector (7.6%) was reported for the same year, although more efforts are still 

required to achieve the 10% target set for 2020 and on a longer scale [10]. 

By 2050, the passenger vehicle stock is expected to more than double, and the aviation 

and shipping sectors are expected to more than triple [11]. It is therefore 

straightforward to understand that to ensure future energy demands and, at the same 

time, respect the limits defined in the Paris Agreement, more sustainable alternatives 

require to be implemented. Both biofuels and electric mobility will play a key role 

towards the decarbonization of the transport sector. To date, the use of renewable 

electricity in transport is primarily associated to the rail system. Electrification already 

represents an alternative for light vehicles, and, though it is currently limited, it is 

estimated to grow. Electrification will likely be unfeasible for the aviation, marine, 

and long-haul road freight sectors, which are expected instead to largely rely on 

biofuels. 

Biofuels are currently the main alternative to petroleum fuels as they can be blended 

and directly used in existing combustion engines. However, their production only 

accounts for about 3% of the total fuel demand (88.01 Mtoe in 2018); it requires to 

triple, in order to reach the 10% goal (252 Mtoe in 2030) established in the sustainable 

development strategy (SDS). The use of biofuels is, at present, almost exclusively 

associated to light passenger vehicle and road freight, while it is minimal in the 

aviation and marine sectors: for example, the aviation biofuel production accounted 

for less than 0.01% of the aviation fuel demand in 2018 [12]. 

To ensure a reduction in GHG emissions and sustain the large growth in fuel demand, 

an increasing use of drop-in fuels will be required. This will particularly apply for the 

aviation sector, whose requirements towards fuels characteristics are very restrictive. 

Drop-in biofuels are in fact defined as “liquid bio-hydrocarbons that are functionally 

equivalent to petroleum fuels and are fully compatible with existing petroleum 

infrastructure” [13]. From a chemical point of view, they are liquid hydrocarbons 

with low oxygen content, low water solubility, and high degree of carbon bond 

saturation. One of the main advantages of drop-in fuels is that they allow to overcome 

blending wall issues, typical of conventional biofuels (bioethanol and biodiesel). The 

physicochemical properties of drop-in fuels (e.g. boiling point range, carbon number, 

viscosity, freezing point, flash point, aromatic content) must resemble those of 

petroleum fuels to be mixed with them. The main processing routes to produce drop-

in biofuels are: 
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 oleochemical: from the hydroprocessing of lipid feedstock (e.g. oil crops, 

algae, or waste cooking oils) resulting in HVOs (hydrotreated vegetable oils) 

and HEFA (hydroprocessed esters and fatty acids); 

 biochemical: from the biological conversion of sugars or cellulosic materials 

to single product hydrocarbons, alcohols (e.g. isobutanol to jet and ethanol 

to jet) or fatty acids that can be further upgraded to drop-in biofuels; 

 thermochemical: from thermal conversion of biomass (pyrolysis, 

hydrothermal liquefaction, or gasification) producing intermediates, which 

are then upgraded to hydrocarbon fuels. 

 

1.3 Advanced biofuels 

Biofuels are renewable fuels produced from biomass, which is any organic matter 

derived from plants, algae, animals, or wastes (e.g. wood, agricultural crops, energy 

crops, forestry residues, animal manure, municipal organic wastes, or sewage sludge). 

Conventional biofuels, also called “1st generation biofuels”, are produced from 

agricultural crops, and, for this reason, they have been in the center of the “food vs 

fuel” debate. Advanced biofuels, or “2nd generation” biofuels, are, instead, produced 

from non-edible biomass or wastes, hence they mitigate land-use change concerns and 

their life-cycle results in lower GHG emissions respect to conventional biofuels. 

Advanced biofuels have lately received increasing attention after EU revised directive 

on renewable energy (REDII) has entered into force in December 2018. It 

encompasses a specific target for renewables in the transportation sector: a minimum 

of 14% of the energy consumed in road and rail transport must come from renewable 

energy by 2030. Aviation and maritime sectors are not subjected to any obligation; 

however, they can contribute to the overall target. Crop-based biofuels are capped at 

a maximum level of 7%, and high indirect land use change (ILUC)-risk biofuels will 

gradually phase out. ILUC biofuels are produced from feedstock requiring a 

significant expansion on high carbon stock land (i.e. forests, wetlands, peatlands), and 

therefore result in high release of CO2 stored in trees and soil. Lastly, REDII sets a 

dedicated target for advanced biofuels: (at least) 0.2 % in 2022, 1 % in 2025, and 3.5 

% in 2030. Additionally, a detailed and restrictive list of which biomasses and wastes 

can be used for the production of advanced biofuels is also included in the directive 

[14]. 

Among the technologies used to produce advanced biofuels, Hydrothermal 

Liquefaction has a unique feature: it is highly feedstock-flexible, therefore both dry 

or wet biomasses and wastes can be processed, and regardless of their chemical 

composition. 
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1.4 Hydrothermal Liquefaction 

Hydrothermal liquefaction (HTL) is a thermochemical process which converts 

biomass under hot compressed water, at relatively high temperatures (300-450 °C) 

and high pressures (15-35 MPa) into biocrude, a high energy-density renewable crude 

oil. HTL reproduces in few minutes (ca. 30 min), what Nature has done to produce 

fossil fuels in millions of years. 

HTL exploits the changes in water properties near and above its critical point (Tc = 

374 °C and pc = 22 MPa). Rising the temperature from 300 °C to 450 °C at pressure 

above pc, the density of water decreases from liquid-like values (~800 kg m-3) to gas-

like values (~150 kg m-3), without a phase change. At the same time, the dielectric 

constant drops down (from ~ 80 at 25 °C to ~ 2 at 450 °C) making water behaving like 

a non-polar solvent. The ionic product (Kw = [H3O+] [OH-]), which indicates whether 

ionic or radical reactions would prevail, first increases and then quickly drops down 

around the critical point [15]. This would result in an increased production of char and 

gases at supercritical conditions. However, when operating at high pressures (i.e. 350 

bar), this drop is smoothed, and ionic reactions still prevail over radical reactions. This 

makes it feasible to perform HTL at supercritical conditions, where increased reaction 

rates often result in higher deoxygenation extents [16]. 

Since water is the reaction medium and the reactant of the process, wet feedstocks 

(70-85 wt% of H2O) are particularly suitable as raw materials in HTL. This particular 

feature of hydrothermal processing alleviates the overall process economy as the 

energy intensive drying step can be avoided. Moreover, a large variety of feedstock 

can be processed through HTL, regardless from their chemical structure 

(carbohydrates, lignin, protein, and lipids) [15, 17]. Co-liquefaction of different 

feedstock is also an option in the HTL process; this has been, and still is, widely 

investigated to exploit potential synergetic effects towards biocrude production and 

quality [18, 19]. As a result, the high flexibility towards different feedstock is one of 

the most important advantages of HTL. 

When biomass/water slurries are heated under pressure, the organic fraction starts 

depolymerizing and decomposing through a number of reactions including hydrolysis, 

dehydration, decarboxylation, forming water-soluble intermediates. These re-

polymerize through various condensation reactions producing biocrudes and 

hydrochars. An aqueous phase, containing water-soluble organics, and a gas phase, 

primarily constituted by CO2 and minor amounts of H2, CH4 and CO, are formed as 

well (see Figure 2).  
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Figure 2: Scheme of the input and output streams in the HTL process. 

 

When biomass is liquefied into biocrude, the overall chemical goal is to reduce the 

oxygen content. Biomasses, in fact, contain large amount of oxygen (30-50 wt.%, see 

Table 1), while conventional petroleum only have trace amounts (<1 wt.%). Under 

HTL processing, oxygen heteroatoms are mainly removed by dehydration and 

decarboxylation in the form of water and carbon dioxide, respectively. As H2O and 

CO2 have no heating value (HHV), the result is a densification of the energy in the 

biocrude: from 15-20 MJ kg-1 of biomasses to 30-38 MJ kg-1 of HTL biocrudes. About 

60-70 % of the carbon in the biomass is usually transferred to the biocrude. Biocrude 

yields, as well as its quality, are highly variable and depend upon various factors, 

above all on the biomass used as feedstock, but also on process parameters, such as 

temperature, pressure, residence time, addition of catalyst/pH modifier in the feed 

slurry. By selecting the right parameters, high biocrude yields and energy recoveries 

(> 80%) can be achieved through HTL.  

A great deoxygenation extent is already achieved through HTL processing (O2 in the 

biocrude is about 10-20 wt.%, see Table 1); however a further deoxygenation is 

required to transform the biocrude into “fuel-like” products. The upgrading of the 

biocrude is also aimed to remove nitrogen and sulfur heteroatoms, whose 

concentrations in the biocrude are highly dependent on the type of biomass used as 

raw material. Depending on its quality and its level of blending with standard 

petroleum, the biocrude can be directly upgraded in standard refinery units, or 

alternatively, it can be partially or fully upgraded and fractionated in stand-alone units 

to drop-in fuels. To ease the upgrading step, which still relies on catalysts specifically 

developed for crude oil, and at the same time to reduce capital costs associated to the 

upgrading, it is fundamental to deliver best-quality HTL biocrudes. These two 

processes, HTL and biocrude upgrading, should therefore be considered as a whole 

process in prospective of delivering drop-in fuels of high quality. 
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Table 1: Elemental compositions and heating values of different biomass feedstocks, 

biocrudes, upgraded biocrudes, and petroleum for comparison. 

 C H O N S HHV Reference 

 (%) (%) (%) (%) (%) (MJ kg-1)  

Feedstock:        

woody biomass 44-53 5.5-6.5 38-49 0-2 0.05-0.1 15-19 [20] 
manure 49-59 4.9-7.7 31-42 1.1-4.3 0.3-1.1 20-23 [21] 

sewage sludge 43-51 5.9-8.0 37-47 2.3-6.1 1.0 15-20 [D] 

Biocrude:        
woody biomass 80.6 9.1 10.1 0.15 0.03 37.2 [22] 

manure 71.2 9.5 15.6 3.7 0.12 34.7 [23] 

sewage sludge 73-79 8.7-10.1 6.2-8.1 4.3-5.1 0.6-1.2 35-38 [24] 

Upgraded biocrude:        

woody biomass 88.4 11.6 0.0 0.99 0.02 42.1 [22] 

sewage sludge 83-85 12-14 0.0-1.2 0.03-3.6 0.002 43-46 [24] [25] 

Petroleum 83-87 10-14 0.05-1.5 0.1-2 0.05-6 44.4 [26] [27] 

 

 

1.5 Waste fractions in HTL 

One of the factors that has most impact on biofuel production costs is the price of the 

feedstock [28]. The price of the raw material can in fact account for about a third on 

the fuel final price [29]. Hence, a way to be competitive with traditional fossil fuels is 

to use waste fractions as feedstock. Applying the principles of the circular economy: 

rather than disposable and useless, wastes become resources exploited for the 

production of new valuable products, which are reintroduced on the market. The result 

is that both the environment and biofuel production technologies will benefit. 

However, the handling and processing of waste fractions can be highly challenging 

due to a series of reasons. Organic wastes (e.g. animal manure, sewage sludge, 

municipal solid wastes, industrial food waste) are often highly inhomogeneous and 

wet. Despite being composed of organic matter, they contain large quantities of 

inorganics as well. These inorganic elements may precipitate and accumulate resulting 

in blockages of the reactor or the set-up in continuous units. They may also interfere 

with the catalyst resulting in its deactivation. A further issue with organic wastes of 

animal or human origin is the presence of pathogens. This imposes the necessity of a 

safe handling to prevent contamination towards the personnel working in direct 

contact, as well as, restrictions on wastes and products disposal to prevent 

contaminations of the environment. 

These issues are overcome due to the high flexibility of the HTL towards various and 

wet feedstock, making feasible even the use of waste fractions as raw materials. As a 

result, using HTL, both the organic and the inorganic fractions are valorized; the 
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former is converted into a mixture of renewable hydrocarbons, the biocrude; the latter 

is a source of valuable elements, among which nitrogen, phosphorus and potassium 

are fundamental nutrients for agriculture (the so-called N-P-K fertilizers). Phosphorus 

is, at present, primarily extracted from phosphate rocks, which are a finite, non-

renewable resource. Nitrogen fertilizers are produced from nitrogen in the air, but the 

overall production process consumes large quantities of natural gas. Therefore, HTL 

ensures an essential circular approach, as the inorganics are recovered in the products 

(see Figure 3). A further advantage of processing organic wastes through HTL is the 

elevated temperature of the process that destroys all the biologically active organisms 

and thus results in products which are free from pathogens, and therefore safe for its 

handlers. 

 

Figure 3: Waste fractions used as feedstock in the HTL process for the production of 

renewable advanced biofuels or for the extraction of valuable chemicals and the 

simultaneous recycling of nutrients and monomeric compounds. 

 

 

1.6 Overview of the PhD project and thesis outline 

Given the background just described, the PhD project aims to investigate the 

conversion of different waste fractions in the HTL process, to assess the production 

of biocrude oil, and to explore the recovery of valuable by-products. HTL is a highly 

prospective technology, able to produce sustainable advanced biofuels; however, it is 

not yet proven beyond pilot scale (TRL 5-6). Therefore, investigating the use of new 

sources as feedstock is fundamental to contribute to its development and upscaling. 

Demonstrating the capacity of HTL to handle and process various waste fractions is a 
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double achievement: it enhances the HTL flexibility and environmental concerns are 

addressed (i.e. the re-use and valorization of waste fractions, the recycle of nutrients, 

pathogens are destroyed due to the elevated temperatures, microplastics can be 

processed along with the organic wastes). 

The PhD project is structured into three sub-projects: each of them with focus on 

different types of wastes, which were all converted through HTL under similar 

processing conditions. An outline of the PhD project is delineated in Figure 4.  

The first study explores the decomposition of nine different plastic polymers under 

hot compressed water, with focus on the potential recovery of the monomers in the 

HTL products. The choice of using those specific polymers was based on the outcome 

of an investigation, pointing the complexity of recycling high-density waste plastics 

when they are mixed. 

The second study investigates the HTL of a particular type of lignocellulosic biomass: 

willow wood cultivated using household wastewater for irrigation. Fast-growing 

willows are used as vegetation filters: their natural tendency to absorb nutrients and 

metals from the soil is exploited to absorb the inorganics released when irrigating the 

plants with household wastewater. The added value, in this case, is associated to the 

recovery of nutrients from the HTL products. 

The third project focuses on the use of organic wet wastes from animal and human 

origin in the HTL process. More specifically, cow manure, swine manure, fish sludge, 

and sewage sludge are used to produce biocrude under sub- and supercritical HTL 

conditions. Simultaneously, the recovery of the inorganics (e.g. N, P, K) in the HTL 

product phases are assessed. 

 

Figure 4: Outline of the PhD project. 
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The thesis is structured into two parts: Part I and Part II. 

Part I, the extended summary, provides a background to the research field, and it 

reports the methodology and the main outcomes obtained from the PhD project with 

reference to the main publications (paper A, paper B, and paper C). The extended 

summary is structured into Chapters: 

o Chapter 1 provides an introduction to the research field; 

o Chapter 2 discusses the methodology used for the experimental activities and 

the challenges that were faced; 

o Chapter 3 reports the results from study 1 on plastics; 

o Chapter 4 reports the results from study 2 on wastewater irrigated willow; 

o Chapter 5 reports the results from study 3 on animal and human organic 

wastes; 

o Chapter 6 summaries the main outcomes and conclusions of the PhD project;  

o Chapter 7 provides recommendations for future studies. 

 

Part II of the thesis contains all the publications, of which the first three articles are 

based on the outcomes of PhD project: paper A refers to study 1, paper B to study 2, 

and paper C to study 3. The other two publications (paper D and paper E) are 

additional works in which I was directly involved. “Paper D” is a book chapter where 

the HTL technology is proposed as alternative processing route for sewage sludge, 

while “Paper E” is an article based on a study conducted on sewage sludge with high-

ash content.
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Chapter 2 

Methodology 

 

 

This chapter provides details on the methodologies used within this PhD project. 

These information are of relevance for a broader understanding of the results, as these 

strictly depend upon the choice made for the processing of the feedstocks and the 

recovery of the products (e.g. experimental set-up used, process conditions adopted, 

choice of solvents in the recovery of the products). Additionally, this chapter presents 

and discusses the major challenges encountered, so that they may be avoided in future 

investigations. 

 

2.1 Feedstock characterization 

The plastic polymers were bought from various petrochemical producers and they 

were used “as received” in the HTL experiments, without undergoing any 

pretreatment or characterization. The willow wood was provided by a local producer; 

and similarly, the animal manures and the sewage sludge were collected from Danish 

farms and a wastewater treatment plant, respectively, near Aalborg (Denmark). The 

fish sludge was obtained from a fish farming industry in Norway. It was highly 

relevant to know the collection point of the biomasses respect to their processing line 

(i.e. sewage sludge was collected after secondary treatment) and if any treatment was 

performed before they were supplied to us (e.g. the manures were mechanically 

dewatered while polymer flocculants were added to the fish sludge and the sewage 

sludge to facilitate the dewatering). Once received, the willow stems with bark were 

chopped and ground to fine sawdust (particle size below 0.5 mm) using a cyclone mill 

(Foss, Cyclotec 1093). The organic wastes were stored in a refrigerator before being 

analyzed and used in the HTL experiments. Safety precautions were strictly followed 

in order to avoid contamination: samples were handled in dedicated areas for 
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biohazards and personnel was vaccinated against hepatitis A, Polio, and Tetanus. On 

the other hand, the same precautions were not necessary when handling HTL products 

as the high temperature of the process destroys all the pathogens, as already described. 

Before investigating the conversion of the feedstocks through HTL, the raw materials 

were characterized to establish their moisture content, inorganic content, and 

elemental composition. The moisture content was measured with a moisture analyzer 

(Kern, MLS) by heating the samples from room temperature to 120 °C. The moisture 

mass fraction, expressed in weight percent (wt%), was reported by the instrument after 

weight stabilization. These results were successively used to calculate the amount of 

water necessary to be added to the biomass to produce a slurry with the desired dry 

matter (20%) for the HTL experiments. 

The inorganic content, or ash content, was determined with an electric muffle furnace 

(Protherm Furnaces), in which the pre-dried samples were heated in air up to 775 °C, 

hold isothermally for 3 h, and then cooled down to room temperature. The remaining 

fraction of the samples was weighted and defined as the ash mass fraction. The reason 

for drying the samples before measuring the ash content was of minimizing errors due 

to the presence of large amounts of water respect to the inorganic content. For 

example, from the results reported in Table 1 of Paper [C], the swine manure was 

found to contain 75.5 wt% moisture and 11.4 wt% ash on dry basis (d.b.). The 

inorganic content of the feedstocks was measured also by thermogravimetric analysis 

(TGA). However, as only a small amount of sample (5-10 mg) could be loaded in the 

pan for analysis, an increased uncertainty of the results was observed respect to the 

measurements obtained from the furnace, in which a higher amount of sample (ca. 2 

g) could be loaded in the crucible. 

The elemental composition of the pre-dried feedstocks was determined with an 

elemental analyzer (Perkin Elmer, 2400 Series II CHNS/O), which directly measured 

C, H, and N mass fractions, while the O mass fraction was calculated by difference. 

Though the instrument is developed to be operated also in CHNS mode, it was 

previously observed that accurate results are obtained when it is operated in CHN 

mode. Therefore the S mass fraction was determined, together with the other 

inorganics, with ICP analysis. Before analyzing the samples, the elemental analyzer 

was calibrated using Acetanilide (C: 71.09 %, H: 6.71 %, and N: 10.36 %). By using 

the elemental composition of the feedstocks, hydrogen to carbon and oxygen to carbon 

atomic ratios were calculated as follow: 

 
𝐻

𝐶
=  

𝑤𝑒𝑖𝑔ℎ𝑡 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛
𝑎𝑡𝑜𝑚𝑖𝑐 𝑤𝑒𝑖𝑔ℎ𝑡 𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛

𝑤𝑒𝑖𝑔ℎ𝑡 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝐶𝑎𝑟𝑏𝑜𝑛
𝑎𝑡𝑜𝑚𝑖𝑐 𝑤𝑒𝑖𝑔ℎ𝑡 𝐶𝑎𝑟𝑏𝑜𝑛
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𝑂

𝐶
=  

𝑤𝑒𝑖𝑔ℎ𝑡 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑂𝑥𝑦𝑔𝑒𝑛
𝑎𝑡𝑜𝑚𝑖𝑐 𝑤𝑒𝑖𝑔ℎ𝑡 𝑂𝑥𝑦𝑔𝑒𝑛

𝑤𝑒𝑖𝑔ℎ𝑡 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝐶𝑎𝑟𝑏𝑜𝑛
𝑎𝑡𝑜𝑚𝑖𝑐 𝑤𝑒𝑖𝑔ℎ𝑡 𝐶𝑎𝑟𝑏𝑜𝑛

 

The H/C and O/C atomic ratios of the feedstocks were then reported in the Van 

Krevelen diagram, together with the atomic ratios relative to the biocrudes in order to 

visualize the decarboxylation and dehydration extent achieved with the HTL 

conversion. 

The feedstocks used in the third study (animal manures and sewage sludge) were 

additionally characterized in terms of higher heating value (HHV), volatile matter 

(VM), fixed carbon (FC), lignocellulosics, crude proteins (CP), and crude fats (CF) 

content. The HHV were measured with a bomb calorimeter (IKA, C2000). The VM 

was measured with a DSC/TGA system (TA Instrument, Discovery SDT 650), in 

which the samples were heated up to 775 °C under inert N2 atmosphere. The VM was 

then calculated as the loss in weight when raising the temperature from 105 °C to 775 

°C. The FC, on dry basis, was calculated as indicated in the formula below: 

𝐹𝐶 (%) = 100 (%) − 𝑎𝑠ℎ (%) − 𝑉𝑀 (%) 

Lignocellulosics and crude proteins were calculated using the following formula 

adapted from the literature: 

𝑙𝑖𝑔𝑛𝑜𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑖𝑐𝑠  (%) = (𝑉𝑀 + 𝐹𝐶) (%) − (𝐶𝐹 + 𝐶𝑃)(%)       [30] 

                                     𝐶𝑃 (%) = 𝑁 (%) ∗ 6.25                               [31] 

Crude fats, or lipids, were instead measured after Soxhlet extraction with petroleum 

ether for 24 h. 

 

 

2.2 Experimental set-up for HTL experiments 

The HTL experiments were performed using stainless steel (grade 316) micro-batch 

reactors (see Figure 5), with 10-12 cm3 volume, which were built in the department 

workshop (Aalborg University, Aalborg, Denmark) using tubes and fittings by 

Swagelok. Biomass/water slurries were loaded into the reactors by means of a spatula 

or a syringe without needle. The reactors were closed, sealed using high temperature 

grease, and then purged to remove air with inert N2 gas through a valve placed on top 

of the reactor unit. Pressure transducers and thermocouples were connected to the 



36 

 

reactors to monitor the pressure and the temperature during the HTL conversion. The 

heat to reach the reaction temperature (350 °C or 400 °C) was provided by a fluidized 

sandbath (Techne SBL-2D, see Figure 5) in which up to two reactors could be 

submerged simultaneously, once the temperature was stable. The mixing inside the 

reactors was instead provided by a mechanical agitator, mounted above the sandbath. 

The cooling of the reactors was done by quenching in a water bucket. 

 

Figure 5: On the left: an example of micro-batch reactor, used for the HTL 

experiments. On the right: the fluidized sandbath to provide the heat for the reaction. 

 

The reason for having chosen to process the feedstock in batch reactors is that batch 

operations allow a practical screening, especially when processing new raw materials 

or when different process conditions have to be tested. At the same time, the feed 

slurries can be loaded into the reactors without encountering the challenges due to the 

pumping of high dry matter streams, which would likely have been the case with 

organic wastes containing inorganics and plastic materials. Among batch reactors, 

microbatch reactors reproduce in a better way the continuous HTL processing of the 

biomass due to their small scale [32]. The use of an autoclave reactor would have 

instead implied a long time to heat up the reactor to the process conditions; moreover, 

it would not have been able to grant a rapid cooling and, therefore, increasing the 

chance for re-polymerization and char formation. When microbatch reactors are 
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submerged into the pre-heated sandbath, the reaction temperature is rapidly reached, 

as high heating rate are granted (250-450 K min-1 [33]). Low heating rates should in 

fact be avoided as they result in char formation due to re-polymerization of the 

intermediates [34]. At the same time, high cooling rates (1000 K min−1 [33]) were 

ensured with the quenching of the reactors in a water bucket. However, microbatch 

reactors present also downsides: the small size results in the production of small 

amounts of products, which in turn increases the chance of products losses and errors 

in the consistency of the results, and it may prevent from carrying out some analysis. 

Their high surface-to-volume ratio may produce catalytic wall effects. For example, 

new stainless steel reactors were reported promoting the dehydration of cyclohexanol 

in water at 380 °C respect to when seasoned stainless steel reactor were used [35]. 

Likewise, the surface of stainless steel 316 reactors was found acting as a 

heterogeneous catalyst for the hydrolysis of benzamide [36].  

In order to overcome some of the above-mentioned issues, future studies could 

implement the use of batch reactors with a larger volume (e.g. 40-50 cm3). 

Nevertheless, microbatch reactors offer a practical solution for screening 

investigations of new feedstock and/or process conditions and they are believed to 

lead to reliable results. 

 

 

2.3 HTL process conditions 

2.3.1 Reaction temperature 

Though most of the publications on HTL available in literature are conducted at 

subcritical conditions (usually below 350 °C) there are multiple reasons for 

performing HTL at supercritical conditions instead (above 375 °C). When feedstocks 

are processed at higher temperatures, a higher degree of depolymerization can be 

achieved due to the increased reaction rates. Consequently, biocrudes with an 

improved quality (i.e. decreased oxygen content, increased HHV, and lower viscosity) 

can be obtained [37, 38]. At the same time, as recently highlighted in a review on 

continuous HTL processing, it is not too energy intensive and costly to reach and 

maintain a system under supercritical conditions, due to the low compressibility of 

liquids and to fluctuations in specific heat capacity [16]. 

The HTL experiments conducted within this PhD project were performed at sub- 

and/or supercritical process conditions depending on the feedstock used and on the 

rationale of the experiment. The experiments within the first and second study, on 
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plastic polymers and on willow irrigated with wastewater, were performed at 

supercritical conditions (at 400 °C). Previous investigations on lignocellulosic 

biomass, both at batch scale and in the continuous “CBS1” unit at Aalborg University 

(Aalborg, Denmark), have reported an improved biocrude quality when operating at 

this temperature [39-41]. For what concern plastics, from the decomposition curves 

of the polymers reported in literature, it appeared necessary to operate at higher 

temperatures to achieve a sufficient depolymerization extent. Furthermore, the choice 

of working at supercritical conditions was driven by a broader aim: to prove that the 

plastic polymers could be processed at the optimal conditions already in use for 

lignocellulosic biomass, so that to ensure the co-processing of the two fractions. The 

study on organic wastes included experiments both at sub- and supercritical 

conditions; here the main goal was to investigate the effect of the two regimes on the 

biocrude yield and quality and in relation to the biomass constituents (carbohydrates, 

crude proteins, and crude fats). 

 

2.3.2 Catalyst 

HTL conversion is often performed in the presence of a homogeneous or 

heterogeneous catalyst. Among the various roles, catalysts are used to enhance the 

initial degradation rate of the biomass and suppress char formation. Both acidic and 

basic conditions are known to favor hydrolysis reactions [42]. Under acidic conditions 

higher hydrolysis rates can be reached as respect to basic conditions but, on the other 

hand, acidic environments promote charring reactions. Hence, acidic conditions are 

preferred in hydrothermal carbonization, where the goal is to produce a solid fuel in 

the form of char, rather than in HTL, where the aim is to produce a liquid fuel, the 

biocrude oil. In HTL, basic conditions are often achieved by adding a homogeneous 

catalysts (i.e. water-soluble basic compounds) to the feed slurry. Carbonates, 

bicarbonates, and hydroxides of an alkali or alkaline earth metal are all proven 

effective catalyst. These homogeneous catalysts cannot be recovered in the HTL 

products in the same form, as they will react with other compounds. Therefore, even 

though they are commonly referred to as catalyst, it would be more appropriate to 

refer to them as additives or pH modifiers [32]. 

Regarding the experimental activities conducted within the present PhD project, 

potassium carbonate (K2CO3) was used in the HTL of willow biomass. This catalyst 

had in fact previously resulted to be particularly effective in promoting biocrude 

production from lignocellulosic material, achieving higher de-oxygenation extents 

and, at the same time, suppressing coke formation [43]. The catalyst (2.5 wt% of the 

total reactor loading) was therefore added to the wood/water feed before introducing 

the slurry into the reactors. The experimental activities on animal manures and sewage 

sludge, conducted within the third study, were performed both with and without the 
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addition of K2CO3 in order to explore whether the catalyst had any beneficial effect 

on biocrude yield and its quality. The experiments on plastics were conducted instead 

without any catalyst, as we wanted to investigate the behavior of the individual 

polymers under the supercritical hydrothermal environment.  

 

2.3.3 Feedstock loading 

Another parameter affecting HTL conversion is the loading of solid material in the 

feed. On one hand, solids loading above 15-20 wt% are recommended to make 

continuous HTL conversion economically viable: lower concentrations would not 

sustain the capital costs associate to heat exchangers, heat losses and the expenses 

related to the pumping of larger quantities of water [15]. On the other hand, pumping 

feeds with high loading is highly challenging on larger continuous scale. This has 

been the focus of a previous research, where different methods have been applied to 

increase the dry matter of lignocellulosic feed slurry. The recirculation of the 

produced biocrude in the fresh wood/water slurry, a hydrothermal alkaline 

pretreatment, and the co-processing of wood with algae or other biomasses with water 

holding capacity and thickening properties were proposed and successfully tested 

[44]. The first and second treatment were also successfully demonstrated at 

continuous scale in the CBS1 plant at Aalborg University (Aalborg, Denmark) 

reaching 20 wt.% and 25 wt.% wood loading, respectively. 

The experiments conducted in the second study (on willow) and in the third study (on 

animal manures, fish sludge, and sewage sludge) were all performed at 20 wt.% dry 

matter loading to simulate the conditions which could be used at larger continuous 

scale. To achieve such loadings, demineralized water was added to the biomasses, 

taking into account the level of moisture already contained in the feedstocks (see 

Table 2). 

Table 2: Moisture mass fractions in the feedstocks, measured by moisture analyzer at 

120 °C, and corresponding dry matter contents. 

Feedstock Moisture Dry matter Reference 

 (wt.%) (wt.%)  

Willow 5.5 94.5 [B] 

Swine manure 75.5 24.5 

[C] 
Cow manure 63.0 37.0 

Fish sludge 5.6 94.4 

Sewage sludge 78.7 21.3 
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Swine manure and cow manure were mechanically dewatered, before being delivered 

to our laboratories in Aalborg University (Aalborg, Denmark), by means of a screw 

press, which allows reaching up to ~ 35 wt.% of dry matter. Therefore, potentially we 

could have received the feedstock with the dry matter content already in line for direct 

feeding into the HTL. 

Sewage sludge was processed as received, without the addition of water, being its dry 

matter content already close to 20 wt.% (21.3 wt.%, as reported in Table 2). Moreover, 

its paste-like consistency allowed a smooth feeding into the reactors, by means of a 

needleless syringe. The same feeding procedure could not be applied when using 

manures, as the water would separate out from the dry fraction when pressing the 

syringe plunger. 

Fish sludge was delivered in the form of powder with low moisture content (5.6 wt.%) 

achieved after a mechanical treatment and the addition of a polymer flocculants. When 

fish sludge was collected from fish ponds it had instead low dry matter content (about 

5 wt.%). The fish sludge could potentially be delivered with a higher moisture content 

for direct feeding into the HTL. To compare the outcomes of the conversions, the 

experiments on fish sludge, conducted within the third study on organic wastes, were 

performed with 20 wt.% dry matter. However, fish sludge particles did not show 

enough interaction with water at 20 wt.% dry matter, and the fish/water mixture could 

not be pumped by a syringe. Additional pumping tests using a syringe were performed 

at increasing dry matter loading (see Figure 6), and a smooth pumpability was 

observed at 40 wt.% dry matter content. Therefore, supplementary experiments on 

fish sludge were conducted with 40 wt.% loading. 

 

Figure 6: Fish sludge and water mixtures at increasing dry matter content: from left, 

20 wt.%, 30 wt.%, 40 wt.%, and 50 wt. 
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The feedstock loading in the experiments conducted on plastic fractions was set to 10 

wt.%, as in a future prospective of co-processing plastic with biomass, the plastic 

loading would not exceed the 50% of the total dry matter loading (20 wt.%). 

 

2.3.4 Reaction time 

The reaction time is a fundamental parameter in HTL processing: overly short reaction 

times can result in low biocrude productions, while overly long reaction times could 

cause a repolymerization of the products, with consequent production of char. In the 

current PhD study, all the experiments were performed with a reaction time of 15 min, 

including the heating time, as reactors reached the reaction temperature in a very short 

time (below 1 min) thanks to the high heating rate granted by the experimental set-up 

in use. The choice of this specific time was based on a previous successful 

investigation on lignocellulosic model systems [33]. 

 

2.3.5 Reaction environment 

Once sealed, reactors were checked for leaking using N2 gas up to ~8 MPa. Reactors 

were then purged three times with N2 to remove residual air. When using organic 

wastes and willow as feedstock, reactors were slightly pressurized (1.5-2.0 MPa) to 

avoid the presence of biomass in the upper capillary section of the reactor unit, as this 

occurred in unconverted material and/or blockages. 

 

 

2.4 Recovery of HTL products 

As previously introduced, when biomass is hydrothermally processed through HTL, 

a multiphase product is obtained, and, consequently, the different phases need to be 

separated. The recovery procedure can affect the products final yield and quality. For 

example, the solvents used to recover the biocrude can influence the amount of 

product collected and its chemical composition. Therefore, when comparing the 

outcomes of two studies performed on the same biomass material, it is necessary not 

only to look at the reactor set-up and at the process conditions, but also at the recovery 

procedure. 
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In the current PhD project, all the studies applied the same procedure for recovering 

HTL products. A schematic overview on the main steps involved in the procedure is 

presented in Figure 7 and additional details can be found in the publications [A, B, 

C]. The procedure was adapted from a method previously developed for the recovery 

of HTL products, produced from lignocellulosic model compounds [33]. 

 

Figure 7: Recovery procedure for the collection of Hydrothermal Liquefaction 

products (gas, aqueous phase, solids, residual water, and biocrude). Solvents: Acetone 

and Diethyl Ether (DEE). 

 

The first step of the recovery procedure was to collect the gas by opening a valve 

placed on the top of the reactors. The gas was either vented out or recovered in a gas 

collector device for further qualitative characterization. The second product to be 

collected was the aqueous phase by turning the reactors upside down without the 

addition of any solvent, to preserve the chemical composition for analysis. The 

remaining mixture of products (solids, biocrude, and residual water) was collected by 

rinsing the reactors with acetone. The solids were then separated by filtration: solids 

were defined as the dried fraction (overnight at 105 °C), insoluble in acetone, collected 

on a filter paper (particle retention: 5–13 μm). The acetone was successively removed 

by evaporation using a rotary evaporator, while the remaining fraction (biocrude with 

some residual water) was collected from the rotavap round flask using Diethyl ether 

(DEE). The mixture, consisting of biocrude, residual water, and DEE solvent, was 
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centrifuged to enhance the separation of the residual aqueous phase, which was 

separated out as bottom layer, while the biocrude dissolved in the DEE constituted the 

top phase. After the removal of the aqueous phase by means of a syringe, the DEE 

was evaporated using a centrifuge evaporator, and the residual fraction was defined 

as the biocrude. 

The procedure successfully recovered HTL products; nevertheless, some steps 

resulted more challenging: for example, the recovery of the biocrude from the rotavap 

round flask and the removal of the residual water. The difficulties encountered in 

recovering the biocrude were probably associated to the dissolution extent of the 

biocrude in the DEE. On the other hand, the solvent was chosen due to its high 

immiscibility with water and its low boiling point. The high immiscibility was 

exploited to enhance water/biocrude separation, while, thanks to its low boiling point, 

the solvent could be easily evaporated limiting the loss of biocrude light fractions. 

Regardless from the recovery procedures adopted, the number of steps involved, and 

the choice of the solvents, working at small scale with a reduced amount of products 

would anyway increase the chance of encountering losses of products. However, as 

previously described, the use of micro-batch reactors allowed for a practical screening 

of different feedstock under different process conditions. 

 

 

2.5 Characterization of HTL products 

Once recovered, HTL product phases were characterized using various analytical 

techniques. The composition of the gas phases was determined using a Gas 

Chromatograph (GC), which was calibrated for the detection of H2, CH4, CO, and 

CO2. The aqueous phases were characterized in terms of pH, total organic carbon 

(TOC), and total nitrogen (TN). In the study conducted on willow biomass, the 

concentrations of chloride, phosphate, and sulphate in the aqueous phases were 

additionally measured. The CHN elemental compositions of the solids and of the 

biocrudes were determined with an elemental analyzer. The functional groups in the 

biocrudes obtained from plastics were investigated by Fourier Transform Infrared 

Spectroscopy (FT-IR). Biocrudes were qualitatively characterized by Gas 

Chromatography Mass Spectrometry (GC-MS). However, GC-MS provided 

information only on the volatile fraction, which for biocrudes may sometimes account 

only for half of the total mass. The volatility of the biocrudes was investigated by 

Thermogravimetrical Analysis (TGA). The outcomes of the TGA measurements were 

also used to assess the ash content of the biocrudes and solids obtained from HTL of 

organic wastes. More detailed information on the equipment used for the analysis and 

on the methodology are reported in the publications [A, B, C]. 
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Some analysis could not be performed, due to the reduced amount of products, as a 

result from working at small scale. For example, the HHV of the biocrudes could not 

be measured with the bomb calorimeter, as it was done for the feedstocks. HHV were 

therefore calculated using the correlation developed by Channiwala and Parikh [45], 

as reported below:  

𝐻𝐻𝑉 = 0.3491 𝐶 + 1.1783 𝐻 + 0.1005 𝑆 − 0.1034 𝑂 − 0.0151 𝑁 − 0.0211 𝐴      

where C, H, S, O, and N are the mass fractions of the elements, and A refers to the 

ash mass fraction. For the same reason, the ash mass fractions of the solids and of the 

biocrudes were determined by TGA, instead of using the furnace, as for biomass 

materials. 

 

2.6 Methodology for measuring inorganic elements 

In the studies conducted on willow and on organic wastes, the focus was set both in 

the production of biocrude and in the recovery of the inorganic elements in the HTL 

products. For this reason, the composition of the inorganic fraction of both feedstocks 

and HTL products (i.e. solids, aqueous phases, and biocrudes) was investigated using 

Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). The samples 

were acid digested in a microwave to extract the elements, and successively analyzed 

through ICP, which provided information on the concentration of the elements. The 

investigated elements were: aluminum (Al), calcium (Ca), cadmium (Cd), chromium 

(Cr), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganite (Mn), 

sodium (Na), nickel (Ni), phosphorus (P), lead (Pb), sulfur (S), zinc (Zn). The 

concentrations of these elements were then combined with the results on the yields of 

the product phases, to estimate where the single elements tended to be recovered (i.e. 

in the solids or in the aqueous phase or in the biocrude) after the hydrothermal 

processing. Therefore, the results on the inorganics are presented in the publications 

and in the thesis as distributions of the different elements in the HTL products, rather 

than as mass balances. The reason for this choice is that for some elements mass 

balances cannot be closed properly: in fact, for some elements, recoveries above 100% 

are obtained primarily in the HTL solids. In particular, recoveries of nickel (Ni) and 

chromium (Cr), well above 100%, were obtained in the HTL solids for all the organic 

wastes regardless of the process conditions. Since the reactors used were made of 

stainless steel 316, which contains 10-14% Ni and 16-18% Cr [46], the high recoveries 

in these elements may be explained with a partial loss from the inside walls of the 

reactors during biomass processing. This aspect requires further investigations for 

being able to establish whether reactors should have limitations on the number of 

times they can be used to prevent the release of walls material. 
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Chapter 3 

HTL of plastic fractions 

 

 

3.1 Waste plastic fractions 

The widespread use of plastic materials has produced a rapid growth in plastic 

production, which has increased by twenty times in the last half century, and it is 

projected to double over the next 20 years and almost quadruple by 2050 [47]. In 

2018, the global annual plastic production has almost reached 360 million tons, of 

which 61.8 million tons produced in EU [48]. The direct consequence of this massive 

production of plastic materials, which are often meant for single-use applications, is 

the generation of large amounts of wastes, whose recycling is still limited, primarily 

due to the inhomogeneity of the waste streams [49]. Moreover, it is estimated that, 

every year, over 8 million tons of waste plastics end up in the ocean [47], representing 

an environmental concern as well as being harmful to wildlife. Furthermore, the 

release of microplastics to both marine and terrestrial environments is a global 

problem, as it is dangerous also for humans if they enter the food chain. 

In many EU-countries, landfilling of waste plastics is still practiced : on average, 

about one third of the waste plastics are landfilled; this corresponds to about 8 million 

tons of landfilled plastics per year [50]. In countries where restrictions on landfilling 

were introduced, the recycling rate has increased – however only to a moderate extent 

– as incineration is still the primary alternative for the disposal of waste plastics. In 

Denmark, for example, it is estimated that 64% of waste plastics are incinerated, while 

only 34% are recycled [51, 52]. An outline on how waste plastics are currently handled 

in Europe (on average) and in Denmark is presented in Figure 8. Incineration offers a 

sustainable alternative to landfilling, resulting in both waste reduction and energy 

recovery by heat and/or power generation. However, recycling should always be the 

first approach for the handling of wastes, particularly for waste plastics. Plastic 

materials are in fact almost exclusively produced from fossil feedstock; therefore, 
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their mechanical or chemical recycling can significantly affect the consumption of 

virgin feedstock. Recycling of plastics is straightforward for separated fractions of 

pure polymers (e.g. when separated collection systems are in place for PET bottles). 

On the other hand, the main challenges for plastic recycling enterprises are fractions 

of mixed plastics (e.g. from household collection) and plastics mixed with organic 

waste (e.g. packaged food). In fact, these waste streams cannot always be sorted into 

fractions of a sufficient level of purity for being recycled, either due to technological 

barriers or to economic unfeasibility. As a consequence, large amount of waste 

plastics are still incinerated or landfilled, cutting off the recycling loop of plastic 

materials.  

 

 

Figure 8: Overview on the current handling of waste plastics in Europe (above) and 

in Denmark (below) [50, 52]. 

 

Mixed plastics can be separated up to some extent by gravitational density in wet 

separators controlling the density of the wet medium [49]. With this technique, 

plastics with lower densities are collected from the surface of the wet medium, while 

those with higher densities are recovered from the bottom of the tank. The float, the 

fraction recovered from the top, and the sunk, the fraction recovered from the bottom, 

can be further separated in successive tanks. However, in order to achieve the levels 

of purity required for the recycling, many steps are necessary, resulting in extensive 

and expensive processes. In particular, this applies for mixed fractions of high-density 

waste plastics, which are ultimately sent to incineration, as reported after our consult 

with the largest plastic recycling enterprise in Denmark. 
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Here, an alternative solution is proposed to improve the circular economy of waste 

plastics: the lighter fractions will be treated for primary recycling, while the 

unrecyclable high-density plastics will be hydrothermally processed. As a result, 

through HTL the plastic polymers would decompose into valuable chemicals and into 

their monomeric constituents, which will be used for the production of new polymers. 

An overview of the proposed process configuration is outlined in Figure 9. The scope 

of Study 1 in the present PhD project was to investigate the decomposition of high-

density plastics in presence of supercritical water and to assess the potential recovery 

of monomeric compounds in the HTL products. 

 

 

Figure 9: Conceptual scheme highlighting the scope of Study 1: improving plastic 

circular economy via HTL of unrecyclable high-density polymers. 

 

HTL potentially offers a sustainable answer to the management of waste plastics, 

resulting in a prospective solution for the treatment of a broader range of waste 

streams: in particular, organic waste streams contaminated with plastics (e.g. food 

waste with packaging material or sewage sludge containing microplastics). 

At the time Study 1 was initiated (January 2016), studies on thermochemical 

conversion of plastics focused primarily on pyrolysis, while a limited amount of 

literature was available on HTL of plastic materials. However, in the last couple of 

years, HTL has undergone to a rapid development towards its commercialization, and 

an Australian company, LicellaTM, leader in the commercialization of the HTL 

technology has publicly announced the construction of a new plant, designed for the 

handling of unrecyclable waste plastics. LicellaTM, in joint venture with Armstrong 
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Chemicals, will build a commercial scale hydrothermal upgrading plant to convert 

end-of-life plastic into chemicals using their Cat-HTRTM platform [53]. The plant by 

ReNew ELP, whose construction is expected to start in 2020, will have an initial 

capacity of 20,000 tons of waste plastic per year, expandable up to 80,000 tons, and 

will be located in Wilton (UK) [54, 55]. Another example of chemical recycling of 

waste plastics comes from BASF project ChemCycling. In joint venture with 

Quantafuel, expert in pyrolysis of plastics, BASF will construct a plant in Skive 

(Denmark) for converting thermochemically unrecyclable waste plastics into 

feedstock and monomers to be used for the production of new plastics. The 

construction is planned to start in in the fourth quarter of 2019 and it will have a 

capacity 16,000 tons per year [56, 57]. 

 

 

3.2 High-density polymers 

The high-density polymers selected for investigation in Study 1 are reported in Table 

3, where short and full names are provided together with the chemical structure of the 

repeating units and their main applications. The plastics were individually processed 

under supercritical water conditions (400 °C) to assess the decomposition extent of 

the pure polymers and the distribution of the products among the different HTL phases 

(gas, aqueous phase, biocrude, and solids). In addition, preliminary investigations 

using mixtures of the selected polymers were performed and the results are reported 

in Paragraph 3.4. Observing the chemical structure of the repeating units presented in 

Table 3, it appears that most of the investigated plastics have aromatic structure (e.g. 

PC, PPO, SB); therefore, in these cases, biocrudes will likely show aromatic structure. 

Similarly to the monomers, which can be recycled for the production of new plastic 

materials, the aromatics complexes can be reintroduced into the petrochemical 

industry for the production of Benzene, Toluene, Xylene (BTX compounds). 
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Table 3: List of the high-density polymers investigated in Study 1. 

 
Plastic Repeating unit Applications 

PBT Polybutylene 

terephthalate 

 electrical (plug 

connectors), 

electronic 

(keyboards), 

automotive 

PC Polycarbonate  electronic (CD/DVD, 

phones), automotive, 

medical, safety 

helmets, construction 

(greenhouse) 

PET Poly(ethylene 

terephthalate) 

 food packaging 

(bottles, microwave 

trays), synthetic 

clothes 

PLA Poly(lactic acid)  food packaging, 

medical & healthcare, 

3D printing, diapers 

 

PMMA Poly(methyl 

methacrylate) 

 transparent glass 

substitute (aquarium 

glasses, aircraft 

windows), medical, 

acrylic paint 

POM Poly(oxymethylene)  mechanical gears, 

automotive, electrical 

 

 

PPO Poly(p-phenylene 

oxide) 

 electronic, electrical 

automotive 

 

 

PVA Poly(vinyl alcohol)  rubber reinforcement 

(in tires), nets, 

sewing thread 

 

SB Styrene-butadiene  automotive (tires), 

mats, shoes soles, 

chewing gum, 

conveyor belts 
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3.3 Conversion of high-density plastics through HTL  

3.3.1 Biocrude production and product distribution 

When hydrothermally processed under supercritical conditions, most of the 

investigated high-density polymers converted into biocrude oil, also named ‘synthetic 

crude’. The yields in biocrude obtained from plastics conversion are reported in Figure 

10, where the polymers are presented by decreasing values of biocrude yield. PC, SB, 

and PPO almost exclusively converted into biocrude with yields of 99.8%, 80.7%, and 

78.9%, respectively [A]. These values of biocrude yields are particularly high when 

compared to the yields in biocrude generally obtained from the conversion of 

biomasses as wood, algae or manure (25-45%) [20]. Biocrude was also the main 

product recovered from PMMA and PVA conversions, despite lower yields were 

registered (48.0% and 35.3%, respectively) [A]. For these two polymers, the 

remaining fraction of carbon was transferred to the aqueous phase, as higher TOC 

values were measured (23.4 g L-1 and 12.2 g L-1, respectively) as compared to the 

aqueous phases collected from the other polymers (see Table 1 in Paper [A] for more 

details). After POM conversion, carbon was more equally distributed among the HTL 

phases, leading to a lower biocrude yield (13%). 

A different behavior was observed for PET, PBT, and PLA plastics, whose conversion 

did not result in the production of any biocrude. PET and PBT primarily converted 

into solid products with yields of 68.5% and 50.8%, respectively (see Figure 10). No 

solvents were required for the collection of the products after PBT and PET 

conversion. Neither biocrude nor solids were detected when converting PLA. On the 

other hand, a high TOC value of the water phase (19.1 g L-1) [A] suggested a 

significant presence of organics in the aqueous phase and, at the same time, a 

significant production of gas was registered (approximately 20 bar). The elemental 

compositions of the biocrudes and the solids are reported in Table 4; the carbon mass 

balance can be found in Paper [A]. 
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Figure 10: Yields in biocrude and solids obtained from the conversion of high-

density plastics. Neither biocrude nor solids were recovered from PLA conversion. 

 

 

Table 4: Elemental compositions (wt.%), H/C, and O/C ratios of the biocrudes and 

solids obtained from HTL of the high-density plastics (elaborated from Table 1 in 

Paper [A]). 

 Biocrudes Solids 

 C H O H/C O/C C H O H/C O/C 

PBT -a -a -a   57.6 3.4 39.0 0.70 0.51 

PC 75.0 8.0 17.0 1.27 0.17 -a -a -a   

PET -a -a -a   34.9 1.4 63.7 0.48 1.37 

PMMA 63.6 9.0 27.4 1.69 0.32 -a -a -a   

POM 78.7 7.7 13.6 1.17 0.13 64.3 4.3 31.3 0.80 0.37 

PPO 85.7 8.2 6.1 1.14 0.05 83.8 7.1 9.1 1.01 0.08 

PVA 81.5 9.0 9.5 1.32 0.09 29.3 3.5 67.3 1.42 1.72 

SB 90.5 8.6 0.9 1.13 0.01 -a -a -a   

-a The product was not detected or not enough for the measurements 

99,8

80,8 78,9

48

35,4

13,7

1,2 8,8

2,9

8,1

68,5

50,8

0

10

20

30

40

50

60

70

80

90

100

PC SB PPO PMMA PVA POM PET PBT PLA

B
io

cr
u

d
e 

y
ie

ld
 (

w
t.

%
)

biocrude solids



52 

 

 

The main product of interest from biomass liquefaction is generally the biocrude, 

either whether the final purpose is the production of liquid fuels or the extraction of 

valuable chemicals. Instead, the production of solids is usually undesired, as they 

consist in char due to repolymerization of the products. Therefore, at a first glance, it 

could appear that PET, PBT, and PLA polymers are not suitable for being processed 

in HTL, since biocrude was not detected after their conversion. However, after a 

deeper investigation including a qualitative characterization of the solids obtained 

from PET and PBT, it was concluded that for plastic materials the production of solids 

is as relevant as the biocrude. In fact, the monomeric constituents of the plastics were 

detected in the HTL solids after liquefaction of PET and PBT. The presence of 

monomers in the HTL products is discussed in the next paragraph. 

 

 

3.3.2 Plastic circular economy 

As previously introduced, the interest behind processing waste plastics in HTL is to 

provide a sustainable alternative for their management with secondary recycling of 

the monomers for the production of new polymers and tertiary recycling of valuable 

chemicals. The quality of the biocrudes, solids, and aqueous phases obtained from the 

conversion of the polymers was therefore investigated in this prospective. The 

qualitative characterization of the biocrudes by GC-MS highlighted that synthetic 

crudes obtained from the conversion of plastics have a simple product slate, or, in 

other words, they are constituted of a very limited amount of compounds. In 

comparison, biomass-derived biocrudes are usually a mixture of a large amount of 

chemical compounds [15, 58]. The simplicity in the composition of the plastic-derived 

biocrudes will be advantageous for the separation and recovery of the monomers 

and/or chemicals. 

The biocrude obtained from HTL of PC consisted of only four compounds: phenol, 

isopropylphenol, isopropenylphenol, and Bisphenol A (BPA) (see the chromatogram 

in Figure 11). Under hot compressed water, the ether bonds within carbonates (in PC) 

underwent to hydrolysis, producing BPA, whose partial cracking formed the other 

three phenolics. Phenolic compounds are valuable commodity chemicals [59], 

commonly used in household products or as intermediates for industrial synthesis. 

BPA is instead the monomer used in PC production, as highlighted in the reaction 

reported in Figure 11. In order to increase the recovery in BPA, its cleavage into 

smaller compounds should be prevented, for example applying more moderate 

process conditions (i.e. reduced temperature and/or shorter residence time) [60]. The 
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process conditions used in this work were in fact optimized for biomass conversion 

and used for plastics in prospective of biomass/plastic co-liquefaction. However, 

reducing the severity of the process conditions could result in PC depolymerization to 

BPA, without further degradation. Hence, with high recovery in biocrude (99.8%) 

containing PC monomer and valuable chemicals, HTL offers a highly promising 

solution for an improved circular economy of PC plastics. 

 

Figure 11: Schematic overview on how PolyCarbonate (PC) circular economy could 

be improved through HTL with targeted recovery of its monomeric constituent 

(Bisphenol A) and valuable chemicals. 

 

Similarly as for PC, the biocrude obtained from the hydrothermal conversion of SB 

showed a simple product slate: it was constituted of a limited number of compounds 

of aromatic structure in the C8-C16 range (see the GC-MS chromatogram reported in 

Figure 12). These chemicals, monoaromatics and biphenyls, may be handled by 

standard refineries as a BTX pool or as a pool of gasoline compounds. Moreover, 

among the aromatic compounds, the monomeric Styrene was identified (compound 

n.3 in Figure 12); this may be used for the production of new SB plastic. The other 

monomer, butadiene, was not detected instead. Due to its high volatility (it is a gas at 

standard conditions), it is likely that butadiene was transferred to the gas phase; future 

investigations should confirm this. Furthermore, to uncover the full potential of 

chemical recycling through HTL, the heavy fraction of the SB biocrude, accounting 

for 60% in weight (see the TGA curve in Figure 4 of Paper [A]), should be 

qualitatively investigated. In contrast, the biocrude obtained from PC conversion was 

almost fully characterized by GC-MS, as the volatile fraction represented the 80% of 

the biocrude. From the elemental composition (Table 4) and the GC-MS qualitative 

characterization, it appears that SB primarily converted into hydrocarbons; this eased 

the recovery of the biocrude, which spontaneously separated from the aqueous phase 
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without recurring to any solvent. All in all, SB resulted highly susceptible to 

hydrothermal processing, with a consistent production of biocrude (80.8%), which 

may be used both for the production of new polymers and for the recovery of value-

added chemicals. 

 

 

Figure 12: Chromatogram of the volatile fraction of the biocrude obtained from 

hydrothermal processing of Styrene-butadiene (SB). From the left to the right, at 

increasing residence time, the following compounds were identified: (1) toluene; (2) 

ethylbenzene; (3) styrene; (4) benzene, (1-methylethyl)-; (5) amethylstyrene; (6) 

benzene, 1,10-(1,3-propanediyl)bis-; (7) benzene, 1,10-(1-methyl-1,3-

propanediyl)bis-; (8) benzene, 1,10-(2-butene-1,4-diyl)bis- [A]. 

 

Another example of how HTL processing can improve plastic circular economy is 

represented by PLA conversion. In this case, the focus of the investigation was on the 

aqueous phase, since neither biocrude nor solids were produced while from the carbon 

balance a great extent of the carbon was recovered in that phase. The organic 

compounds were extracted following the procedure described in [61], and 

successively analyzed by GC-MS, which detected the presence of various compounds: 

primarily carboxylic acids (e.g. acetic acid, propanoic acid, butyric acid, lactic acid, 

valeric acid, 2-methyl butyric acid), alcohols, and ketones in the C5-C6 range [A]. 

Lactic acid, the monomer from which PLA is produced, may therefore be extracted 

for the production of new plastic, while the other compounds hold potentials as 

marketable chemicals. Additionally, the fact that compounds are recovered in the 

aqueous phase may be advantageous when co-processing PLA with other plastics, 
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which convert into biocrude, as the recovery would be eased by the fact that the 

products distributes in different phases. 

A fourth example of an improved circular economy of the plastics through HTL is 

represented by PBT and PET conversion. In line with a previous study showing that 

these two polymers are intolerant to hot water [62], the present work observed that 

PBT and PET were subjected to hydrolysis and that full degradation was achieved 

within short residence times. In fact, high yields of solid products were obtained after 

HTL of PBT (50.8%) and PET (68.5%). The solids were qualitatively characterized 

and it was successively found that they consisted of an individual compound: 

terephtalic acid (TPA), one of the two monomers from which both PBT and PET are 

produced (see the chromatogram in Figure 13). The other monomers (butanediol for 

PBT and ethylene glycol for PET) were not detected; however, they may be dissolved 

in the aqueous phase, as previously observed in [62]. Moreover, the authors observed 

a decrease in ethylene glycol yields at increasing temperature; this was linked to the 

presence of acetaldehyde and diethylene glycol, formed by dehydroxylation and 

dimerization of ethylene glycol. The precipitation of the monomeric constituent TPA 

facilitated its chemical recovery through HTL, resulting highly prospective for the co-

processing of PBT/PET with polymers converting into biocrude, as, also in this case, 

the recovery of the products is expected to be simplified by the spontaneous 

distribution among different phases. 

 

Figure 13: Chromatograph of the solids obtained from hydrothermal processing of 

PBT (top) and PET (bottom) showing the presence of a single compound: the 

monomeric Terephthalic acid. 
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The characterization of the biocrudes derived from PPO, PMMA, PVA, and POM 

conversion was not as straightforward as for the other investigated polymers, either 

because of the reduced volatility of the biocrudes or as the monomeric compounds 

could not be identified. The main outcomes from the conversion of these polymers in 

HTL from Paper [A] are reported below: 

PPO conversion produced high yields of biocrude (78.9%), which resulted the least 

volatile of the investigated polymers with the residual non-volatile fraction accounting 

for 70% of the total weight (see TGA curves, Figure 4 of Paper [A]). The volatile 

fraction (30 wt.%), analyzed by GC-MS, was found being constituted of various 

methyl-, ethyl-, and propyl- substituted benzenes in line with the H/C ratio of 1.15 

(see Table 4), which suggested the biocrude would have aromatic structure. The 

elemental analysis detected the presence of oxygen (6%); however, as no oxygenated 

compounds were identified from the GC-MS, these are assumed to be in the heavy 

fraction of the biocrude. 

PMMA conversion produced a biocrude (48.0%) almost fully characterized by GC-

MS, as it is constituted of low boiling point compounds (at 300 °C more than 80% 

was volatilized from TGA curves in Figure 4 of Paper [A]) . The biocrude was a 

mixture of esters and carboxylic acids in the C6-C9 range. Esters were formed from 

PMMA cracking and cyclization, while carboxylic acids were the result of esters 

hydrolysis. The main identified compounds were: cyclohexane carboxylic acid, 

methyl ester, pentanoic acid, 4-methyl, methyl ester; pentanedioic acid, 2,4-dimethyl-

, dimethyl ester and 4,4-dimethyl mono-methylglutarate, methyl ester. The monomer 

MMA was not detected; however, the high TOC of the aqueous phase together with 

its marked acidity (pH 2.8) suggests that MMA may be dissolved in the aqueous 

phase. 

PVA conversion led to a substantial production of biocrude (35.4%), of which the 

majority was volatile (60%). The GC-MS showed that the volatile fraction of the 

biocrude has aromatic structure (e.g. phenol, benzyl alcohol, benzoic acid, cumenol), 

in line with the elemental analysis, which suggested the presence of aromatic 

oxygenated, showing a H/C of 1.32 and an oxygen content of 9%. Having the biocrude 

an aromatic structure, PVA conversion through HTL results prospective for co-

processing with PC, SB, and PPO, whose conversion similarly led to biocrudes with 

aromatic structure. 

Respect to the other polymers converting into biocrude (i.e. PC, SB, PPO, PMMA, 

and PVA), POM liquefaction led only to a smaller production of biocrude (13.7%), 

and some solids (8.0%), while most of the carbon was recovered in the aqueous phase 

(with highest TOC of 25.0 g L-1). This high carbon content may be explained by the 

presence of formaldehyde and methanediol, as the thermal decomposition of POM 

produces formaldehyde by end-chain initiation followed by depolymerization [63], 
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and formaldehyde is highly soluble in water and, reacting, produces methanediol by 

hydration [64]. The biocrude was found to be a mixture of high (40%) and low (60%) 

boiling point compounds, with the latter being made of phenols (e.g. dimethyl, 

trimethyl, and tetramethyl phenols) and ketons (e.g. 2-pentanone (4-hydroxy-

4methyl) and 2-cyclopenten-1-one (2,3,4-trimethyl-)). 

Although at this stage the monomeric constituents were not detected in case of PPO, 

PMMA, PVA, and POM, the conversion of these polymers through HTL still remains 

a prospective solution for their valorization via chemical recycling.  

 

 

3.4 Co-processing of plastics 

Based on the outcomes of the study conducted on single polymers, preliminary 

investigations on mixed fractions of plastics explored possible synergetic effects. The 

following four plastic mixtures were therefore examined: PC/PMMA, PC/SB/PPO, 

PC/PBT, and SB/PBT. The PC/PMMA mixture (50:50) was chosen as both polymers, 

when hydrothermally processed individually, converted into biocrudes primarily 

constituted of volatile compounds (approx. 80% volatilized at 300 °C, see Figure 4 in 

Paper [A]). The PC/SB/PPO mixture (33:33:33) was chosen as all polymers converted 

into biocrudes with an aromatic structure, though PC-derived biocrude was primarily 

constituted of light compounds, while the biocrudes obtained from SB and PPO were 

found to be the least volatile. Finally, PC/PBT and SB/PBT mixtures (both 50:50) 

were selected since one of the polymer (PC or SB) primarily converted into biocrude, 

while the other one (PBT) into solids. The main reason for the latter investigation was 

to assess whether Terephtalic acid could still be precipitated out as a solid, while 

simultaneously obtaining a high yield of biocrude. 

The yields in biocrude and solids obtained from the hydrothermal processing (400 °C, 

15 min, no catalyst) of the above mentioned plastic mixtures are reported in Figure 14 

and Figure 15, respectively. The calculated yields are presented next to those obtained 

from the experiments, based on the values obtained from the conversion of the single 

polymers and the ratios used in the mixtures. 



58 

 

 

Figure 14: Biocrude yields obtained from HTL conversion of plastic mixtures. 

 

 

Figure 15: Solids yields obtained from HTL conversion of plastic mixtures. 

 

PC/PMMA conversion resulted in a high yield of biocrude (68.8%), only slightly 

lower than the expected calculated value (73.9%), while no solids were produced as 

similarly observed when the two polymers were individually processed. Further 

investigations will be required to assess the quality of PC/PMMA derived biocrude, 

which is expected to be a combination of both aromatic and non-aromatic compounds. 

Likewise, PC/SB/PPO conversion primarily resulted in the production of biocrude 

68,8
65,4

56,0

44,8

73,9

86,5

49,9

40,4

0

20

40

60

80

100

PC/PMMA PC/SB/PPO PC/PBT SB/PBT

B
io

cr
u

d
e 

y
ie

ld
 (

w
t.

%
)

experimental calculated

0,2
1,5

18,9

27,3

0,0

3,3

25,4 26,0

0

5

10

15

20

25

30

PC/PMMA PC/SB/PPO PC/PBT SB/PBT

S
o

li
d

s 
y
ie

ld
 (

w
t.

%
)

experimental calculated



59 

 

(65.4%). Though biocrude production was elevated, it was significantly inhibited 

since a higher value was expected from the calculated yield (86.5%). The solids yield 

(1.5%) in Figure 15 refers to the fraction of solids, which could be effectively 

collected; however, PC/SB/PPO conversion produced more solids and unconverted 

material, which explains the reduction in biocrude yield. Finally, the HTL conversion 

of PC/PBT and SB/PBT mixtures simultaneously produced high yields of biocrude 

oil (56.0% and 44.8%, respectively), which are higher when compared to the 

calculated ones (49.9% and 40.4%, respectively). Moreover, high recoveries of solids 

were obtained; that could be linked to the precipitation of Terephtalic acid. A partial 

dissolution of the TPA in the biocrude may explain the higher recoveries in the 

biocrude and lower recoveries in solids obtained from the PC/PBT mixture. The 

outcomes of this preliminary investigation on mixture of polymers appear prospective 

and, once again, indicate that HTL is able to offer a sustainable alternative for the 

handling of waste plastic encompassing their chemical recycling. 

 

 

3.5 Challenging plastic polymers 

The behavior of high-density plastics when hydrothermally processed was the main 

focus of Study 1 in this PhD project, since the recycling of these polymers represents 

a great challenge for plastic recycling industries. However, with exception of PET, 

these high-density plastics are not the most used. In fact, half of the plastic demand is 

associated to Polypropylene (PP), low-density Polyethylene (LD-PE), and high-

density polyethylene (HD-PE), as shown in Figure 16. 

Figure 16: European plastic demand by polymer type [65]. 
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As a direct consequence, large amounts of plastic wastes are produced from the use 

of these polymers. If properly sorted, their recycling appears straightforward; 

however, if mixed with other plastics or especially with organic material, their 

recycling may be compromised. There is to date an increased interest in assessing how 

these polymers behave when hydrothermally processed and therefore, a preliminary 

investigation was also conducted on two largely consumed plastics. PP and LD-PE 

were individually processed at 400 °C for 15 min. However, only unconverted plastic 

material was detected inside the reactors, as shown in Figure 17.  

 

Figure 17: Unconverted plastic material collected after hydrothermal processing of 

LD-PE using the following conditions: 400 °C, 15min, without catalyst. 

 

 

The incomplete degradation of these plastic polymers, under the same process 

conditions adopted for high-density plastics, suggested the need for applying more 

severe process conditions for PP or LD-PE conversion: higher reaction temperatures 

or longer residence times. The isothermal decomposition of LD-PE was investigated 

through TGA in N2 atmosphere at 400 °C, 425 °C, and 450 °C. This investigation 

showed that applying higher temperatures (in particular when comparing 400 °C to 

450 °C) the polymer is decomposed in a short time (see TGA curves in Figure 18). 
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Figure 18: Isothermal decomposition curves of LD-PE in N2 atmosphere. 

 

Therefore, the first attempt for successfully converting LP-PE was to increase the 

reaction temperature to 450 °C; however, this still resulted in the recovery of waxy 

compounds. A second attempt was consequently done using the same higher 

temperature in addition to a longer residence time of 60 min. More wax was recovered, 

though the conversion remained very limited. In order to maintain a shorter residence 

time (15 min), the addition of Al2O3 catalyst was also investigated; still leading to a 

limited amount of waxy product. Therefore, although LD-PE showed to be prone to 

thermal degradation in N2 (without water as medium), when hydrothermally 

processed it showed to be recalcitrant to degradation, even when more severe 

processing conditions (i.e. 450 °C and 60 min) were applied. Slower degradation of 

PE in supercritical water respect to thermal cracking was previously observed by [66], 

who additionally reported that water molecules also intervene and inhibit the further 

decomposition or recombination of the degradation products. Thermal cracking is the 

preferred depolymerization mechanism as no heteroatoms or reactive sites are found 

in PE plastics [67]. 

As oxidation of LD-PE is known to effectively degrade the polymer [68], the use of 

oxidizing agents (i.e. O2 and H2O2) was additionally investigated. Despite the 

successful result reported in literature using O2 as oxidizing agent, only unconverted 

material was collected in the present study both when using O2 and H2O2. All the 

conditions additionally explored for LD-PE decomposition under hot compressed 

water are summarized in Table 5. Regardless of various attempts, the degradation LD-

PE through HTL still remains to be further investigated: using higher temperatures 

(above 450 °C), using a lower plastic loading, and in co-processing with biomass. 
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Table 5: Conditions used to investigate the hydrothermal processing of LD-PE. The 

changes in the process conditions respect to the initial conditions (400 °C, 15 min, no 

catalyst, in N2) are highlighted in bold. 
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Chapter 4 

HTL of willow irrigated with 

wastewater 
 

 

4.1 Willow vegetation filters 

Willows are increasingly cultivated in short rotation coppice (SRC), where their fast-

growing characteristic is exploited for producing large amounts of biomass, primarily 

used as renewable carbon source for heat and power generation [69]. Willows find 

further application in the phytoremediation of contaminated soils. In this case, their 

optimal capacity to absorb elements from the soil through their roots is exploited for 

purification of soils from the presence of heavy metals [70-72]. Similarly, willow are 

increasingly used as vegetation filters for the purification of wastewater. The 

wastewater effluent is used for irrigation of willow plants, which are planted in 

confined areas; in this way, nutrients and metals contained in the wastewater are 

absorbed through the roots and transferred to the plants avoiding or limiting the need 

for external input of fertilizers. The use of willows as vegetation filters is of particular 

interest, as they offer a solution to the management of wastewater streams, while, at 

the same time, crops yields are increased [73, 74]. When willows are combusted for 

heat and power generation, the heavy metals contained in the biomass are recovered 

in the ashes [75]. Various technologies are available and still under investigation for 

the recovery of heavy metals and nutrients, as phosphorus, from combustion ashes 

[76, 77]; however some elements, as sulfur and nitrogen, are irreversibly lost when 

biomass is combusted [78, 79]. 

In Study 2 of the present PhD project we propose to alternatively process wastewater 

irrigated willow through HTL: the willow biomass is converted to biocrude oil, while 

the inorganics are transferred to the HTL products. According to this new process 

configuration, the produced biocrude may be upgraded for fuel production; the 
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nutrients, in particular the fundamental macronutrients (e.g. N, P, K), may be 

circulated back to the land as fertilizers, if properly recovered. Therefore, the aims of 

Study 2 were to investigate the supercritical hydrothermal processing of wastewater 

irrigated willow, to assess biocrude yield and its quality, and to explore in which 

phases the inorganics tended to be recovered after HTL. 

 

 

4.2 Characterization of the willow 

The wastewater irrigated willow was a clone variety (Bjørn), specifically developed 

to achieve high biomass yield and, at the same time, high absorption of the nutrients. 

The willow plants were irrigated with untreated household wastewater (WW) and 

sludge for two years before stems were cut and provided to us (see Figure 19, left 

side). Since the biomass was delivered in the form of stems, it was necessary to cut it 

into smaller pieces and to successively mill it, in order to obtain a fine sawdust (see 

Figure 19, right side). The milling procedure, that in our case resulted necessary to 

ease the loading into the micro-batch reactors, would have been done also at larger 

continuous scale to allow the pumping of the feed-slurry. For example, in the 

continuous unit CBS1 at Aalborg University the particle size of woody biomass is 

reduced using a hammer mill [43]. 

 

Figure 19: On the left, willow stems as received with details relative to the plant and 

the irrigation regime. On the right, the willow sawdust obtained after milling the 

stems, with results from moisture analysis, ash content, and CHN elemental 

composition (details from [B]). 



65 

 

 

The moisture content measured after the milling was 5.5 wt.% [B]; therefore, 

demineralized water was added to produce a 20 wt.% dry matter slurry. The ash 

content, after 3 h at 775 °C, resulted being 0.7 wt.%. Comparing the ash content of the 

willow used in the present study with the ash content of various willows not irrigated 

with wastewater from the Phyllis 2 database [80], the latter result having a higher ash 

content (1.06-2.50 wt.% on d.b.). As we could not directly compare the ash content of 

the investigated willow biomass with the values of other wastewater irrigated willows, 

it remains unclear whether we should have expected higher levels of ash or the ash 

content was representative for willows irrigated with wastewater. The HHV of the 

willow biomass, calculated with the formula described in [45], resulted being 18.8 MJ 

kg-1.  

The composition of the inorganic fraction was examined by ICP and the results on the 

concentrations of the investigated elements are reported in Figure 20. It appears that 

calcium and potassium have significantly higher concentrations (4-7 times higher) as 

respect to the other explored inorganics. The concentration of phosphorus, iron, 

magnesium, and sulfur resulted in range of 200-300 ppm, while a minor amount or 

traces of copper, manganese, sodium, and zinc were detected. It was further observed 

that the mass fraction of the elements investigated through ICP does not sum up to the 

detected level of ash; therefore, the remaining part could be associated to the presence 

of other elements, such as aluminum, lead, or nickel, which were not investigated 

through ICP [B]. 

 

Figure 20: Concentrations of inorganic elements in the dried willow sawdust detected 

through ICP (data from [B]).  
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4.3 Biocrude production 

The supercritical HTL conversion of wastewater irrigated willow produced high 

yields of energy-dense biocrude (39.7%) and minor quantities of solids (10.8%) (see 

Figure 21). The remaining fraction was recovered as organics dissolved in the aqueous 

phase (TOC of the aqueous phase: 25.1 g L-1) and in the gas phase (75.2 vol.% of CO2, 

19.0 vol.% of H2 and minor fractions of CH4 and CO) [B]. The liquefaction of the 

willow biomass led to a concentration of the carbon in the biocrude: the carbon mass 

fraction increased from 46.9% in the willow to 78.2% in the biocrude, with a 

corresponding carbon recovery of 66.1% [B]. The use of supercritical conditions 

resulted in a significant reduction of the oxygen mass fraction from 46.0% in the 

biomass to 12.4% in the biocrude. As a consequence, the HHV doubles from 18.8 MJ 

kg-1 in the willow biomass to 36.0 MJ kg-1 in the biocrude, with a corresponding 

energy recovery of 76.1%. 

The effects of hydrothermal processing on the elemental composition of the willow 

biomass are highlighted in the Van Krevelen diagram (see Figure 21), which shows 

that decarboxylation reactions prevailed on dehydration reactions in the production of 

biocrude. 

 

 

Figure 21: Biocrude and solids yields after HTL conversion of wastewater irrigated 

willow at supercritical conditions (diagram to the left). Van Krevelen diagram 

showing H/C and O/C atomic ratios relative to willow, biocrude, and solids (diagram 

to the right). 
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The TG analysis showed that the biocrude was constituted of both low and high 

boiling point compounds (see Figure 2 in Paper [B]). The volatile fraction (i.e. the 

fraction with boiling points below 300 °C) corresponded to about 50% of the total 

mass. This portion of biocrude was qualitatively investigated by GC-MS, which 

showed that the most abundant compounds were ketones and phenols. Ketones are 

produced from carbohydrates degradation, while phenols derive from lignin 

degradation [33]. Similar findings on the composition of biocrude produced from SRC 

willow were previously reported, where the most abundant compounds were ketones, 

phenols, and alcohols [81]. The elemental analysis of the biocrude showed the 

presence of nitrogen, however limited to the 0.95%. Among the compounds identified 

by GC-MS, only one was a N-containing compound (9-Octadecenamide, see Table 2 

in Paper [B]). Therefore, N-containing compounds are expected to be primarily 

recovered in the heavy fraction of the biocrude, whose composition could not be 

determined by GC-MS. The concentration of N-heteroatoms in the heavy fraction of 

the biocrude rather than in the volatile fraction results advantageous in prospective of 

utilizing the biocrude for biofuels. Overall, the biocrude produced from the HTL of 

wastewater irrigated willow holds great potential for the production of fuels: prior to 

its upgrading, around 60% of the biocrude is made of compounds whose boiling range 

is in the same range as gasoline, jet fuel, and diesel (see Figure 2 in Paper [B]). 

 

4.4 Recovery of the inorganics through HTL 

Similarly as for the willow biomass, the presence of inorganic elements in the HTL 

products (i.e. in the solids, in the aqueous phase, and in the biocrude) was investigated 

by ICP analysis in order to determine in which phase the inorganics are transferred 

after the hydrothermal processing of the biomass. The ICP analysis provided 

information on the concentrations of the investigated elements in the HTL product 

phases; however, for a clearer overview of where the inorganics tended to transfer, 

the concentrations of the inorganics in the phases were combined with the yields of 

the product phases. The result was a normalized distribution of the inorganics among 

the HTL phases, presented in Figure 22, where the elements are reported by 

decreasing value of recoveries in the solids. 

After supercritical HTL of the willow biomass, it appears that most of the investigated 

elements tended to concentrate in the solids, with recoveries above 70% by weight. A 

different trend was observed for sodium and potassium, which were primarily 

recovered in the aqueous phase, with recoveries above 88%. A third different behavior 

was found for sulphur: primarily recovered in the biocrude (47.7%), with the 

remaining part distributed among the aqueous phase (41.3%) and the solids (11.0%) 

[B]. 
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Figure 22: Normalized distribution of the inorganic elements among the products 

(solids, aqueous phase, and biocrude) after supercritical HTL of wastewater irrigated 

willow [B]. 

 

The different trends found for the distribution of the inorganics among the HTL 

products may be related to the different forms in which the inorganics are present in 

the biomass. For example, calcium, magnesium, and phosphorus are usually bound to 

the biomass, while potassium and sodium are frequently in the form of soluble salts 

[82]. This would explain why, after the hydrothermal processing of the willow 

biomass conducted in the present study, calcium, magnesium, and phosphorus were 

primarily recovered in the solids (with recoveries of 86.3%, 81.5%, and 76.3%, 

respectively), while potassium and sodium were almost exclusively recovered in the 

aqueous phase (with recoveries of 94.7% and 87.6%, respectively). 

The recovery of the inorganics in the HTL products is also dependent on the process 

conditions used during the hydrothermal processing of the biomass. In fact, the 

solubility of the inorganic elements varies with the dielectric constant, which in turn 

changes with the temperature. For example, phosphates are soluble at low 

temperatures (below 200 °C), and insoluble at higher temperatures, especially in the 

region around the critical point of water [83]. Therefore, in Study 2, the use of 

supercritical conditions have favored the recovery of phosphorus in the solids, though 

part of it may be solubilized again in the aqueous phase, since the products were 

collected at room temperature due to the batch processing. In prospective of 

continuous HTL processing of the biomass, it is therefore advised to separate out the 
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solids at higher temperatures (at least above 200 °C) to enhance the recovery of 

phosphorus in the solids. 

The results on the inorganics redistribution among HTL products showed that, 

although heavy metals were primarily recovered in the solids, they also transferred to 

the biocrude to a minor extent. In case heavily contaminated biomass is processed, the 

presence of heavy metals in the solids might limit the direct application of the 

hydrochars to the soil, since the disposal of heavy metals is strictly regulated by law. 

On the other hand, the presence of heavy metals in the biocrude may represent a 

concern in its upgrading: for example, heavy metals may cause the deactivation of the 

catalyst used for the hydrotreating of the biocrude. The tendency of sulphur to 

concentrate in the biocrude implies that, when the biocrude is upgraded, 

hydrodesulfurization will be required along with hydrodenitrogenation and 

hydrodeoxygenation. Finally, as potassium and sodium were found primarily 

dissolved in the aqueous phase, it is proposed to use the aqueous stream as a source 

for irrigation in agriculture or, alternatively, it could be recirculated, reducing the need 

for fresh catalyst at continuous larger scale. 

All in all, HTL allowed to valorize even the inorganic fraction of the willow biomass, 

as most of the inorganics were recovered in the solids, which were easily separated 

from the other products. As a result, valuable elements (i.e. P, Ca, Mg), which are 

fundamental nutrients in agriculture, may be recovered and re-used as fertilizers if 

they are in their bioavailable forms: nitrogen in the form of ammonia (NH4+) or nitrate 

(NO3-), phosphorus in the form of phosphate (PO4 3-), and potassium in its ionic form 

(K+) associated to an anion as sulfate or nitrate [84]. Therefore, future investigations 

will have focus on the forms of the inorganics in the solids and on the bioavailability 

of the nutrients.  
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Chapter 5 

HTL of organic wastes 

 

 

5.1 Organic waste fractions 

The rapid growth in the global population and the urbanization, together with the 

increase in intensive farming activities to satisfy larger food demands, have resulted 

in a production of wastes, both of human and animal origin, greater than ever before 

cattle manure, swine manure, poultry manure, or fish sludge) are all examples of 

organic waste fractions produced from our society and whose disposal represent a 

great concern.  

SS is the residual product from the processing of industrial or municipal wastewater 

in treatment plants. Landfilling of SS has been prohibited in many EU countries, while 

its disposal on fields has become strictly regulated by laws to prevent soil and water 

contamination due to the presence of pathogens, to limit the release of heavy metals, 

and to avoid that micro-plastics could enter in the food chain [85]. In Europe the 

disposal of sludge is regulated by the Directive 86/278/EEC, which sets limits on the 

concentration of heavy metals in sludge for application to agricultural fields and in 

the soil for sludge disposal on non-agricultural fields. Several EU countries have 

additionally established more strict limitations on the heavy metals concentration in 

sludge and set a maximum annual average load of heavy metals for the soil [86]. Table 

6 presents the limit values for heavy metals in sludge set by EU and by some national 

legislations. The presence of residual plastics in SS or MSW represents an additional 

concern when these waste streams are treated in anaerobic digesters, as methane 

production is inhibited and the solid product – the digestate – cannot be applied to the 

soil as a source of fertilizers, if it still contains microplastics [88]. Moreover, the 

reduced temperatures used in anaerobic digestion do not always allow a total 

disruption of the pathogens [89]. Incineration with energy recovery is also practiced 
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for effectively reducing the volume of the wastes; however, it is highly energy 

demanding due to the large amount of moisture contained in such type of wastes. 

 

Table 6: Limit values for heavy metals in sludge (mg kg-1 DM) for application to 

agricultural fields. Red shaded cells indicate that national legislations have set more 

restrictive limits than the EU Directive [87]. 

 Cd Cr Cu Hg Ni Pb Zn 

Directive 

86/278/EEC 
20-40 - 1000-1750 16-25 300-400 750-1200 2500-4000 

Denmark 0.8 100 1000 0.8 30 120 4000 

France 10 1000 1000 10 200 800 3000 

Germany 10 900 800 8 200 900 2500 

Ireland 20 - 1000 16 300 750 2500 

Italy 20 - 1000 10 300 750 2500 

Netherlands 1.25 75 75 0.75 30 100 300 

Sweden 2 100 600 2.5 50 100 800 

 

Animal manure from farming activities presents similar waste management issues as 

SS due to the presence of bioactive chemicals (BACs) (e.g. pathogens, 

pharmaceuticals, hormones, and antibiotics), which represent an increasing concern 

to human health and agricultural activities [90, 91]. In fact, most of the antibiotics 

administrated to animals are excreted in an unaltered state [92]; therefore, when 

manure is applied to the fields, antibiotics are released to the environment and 

microorganism that enter into contact with these substances develop resistance to 

them [93]. Similarly, estrogenic hormones excreted from human and animals may 

contaminate surface and ground water [94], and in this case, very low concentrations 

(10-100 ng/L) can have adverse effect on the reproductive system of vertebrates [95]. 

Hydrothermal processing represents a safe and efficient solution for the handling of 

biowastes, since the majority of the BACs is fully removed thanks to the high 

temperatures used in hydrothermal carbonization and liquefaction [96-100]. 

Though the disposal of human and animal wastes represents a pronounced concern, 

these waste fractions are also great sources of carbon and of valuable inorganic 

elements (e.g. N, P, K), largely used in agriculture. Particular attention is nowadays 

set on the recovery and the circular economy of phosphorus; this element is in fact 

among the fundamental macronutrients required in agriculture, and its availability is 

finite and limited to its extraction from rocks [101]. SS production in EU is estimated 

to account for 13 million dry tons in 2020 [102]; every year, this corresponds 

potentially to 300,000 ton of phosphorus that could be recovered from this waste 

fraction (assuming phosphorus represents the 2.3 % in weight of SS [103]). Similarly, 

swine and cow manure production in EU accounts respectively for 14 and 295 million 



73 

 

tons of dried material [104], from which 125,000 tons and 175,000 tons of phosphorus 

could be extracted and reintroduced on the market (assuming phosphorus accounts for 

the 0.9% in weight in swine manure [105] and for the 0.6% in weight in cow manure 

[106]). The use of phosphorus in the agricultural sector was reported being 1.17 

million tons in 2017 in EU [107]; therefore, based on the above calculations, an 

appropriate recovery of the phosphorus from animal and human wastes would 

significantly contribute to supply the phosphorus agricultural demand in Europe. 

In Study 3 of the present PhD project we propose to treat organic wastes of animal 

and human origin through HTL. Among the advantages, HTL allows avoiding the 

expensive drying step required in other thermochemical processes and it excludes all 

the health risks associated to the presence of pathogens, as the efficient removal of 

these compounds is granted after processing at high temperatures (>300 °C) [108]. 

Additionally, the conversion through HTL allows valorizing both the organic fraction 

producing biocrude oil and the inorganic fraction by recovering the inorganics in the 

HTL products, as visualized in Figure 23. The objectives of Study 3 were to assess 

the effect of sub- and supercritical conditions and of the addition of K2CO3 catalyst 

on the liquefaction of organic wastes with focus on the biocrude. Furthermore, the 

study aimed to investigate the inorganic fraction and the elements redistribution after 

HTL to evaluate the recovery potentials. 

 

 

Figure 23: Conceptual overview of how animal and human waste fractions are 

valorized through HTL processing with the simultaneous production of biocrude for 

the production of advanced biofuels and the recovery of valuable inorganic elements. 
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5.2 Characterization of the organic wastes 

The organic waste fractions, investigated in Study 3 of the present PhD project, were 

swine manure (SM), cow manure (CM), fish sludge (FS), and secondary sewage 

sludge (SS) (see the pictures above Table 7). Before being processed through HTL, 

the waste fractions were characterized in order to be able to establish how their 

chemical composition and structure would affect biocrude production and its quality. 

 

Table 7: Proximate and ultimate analysis of the organic waste fractions investigated 

in Study 3 (adapted from Table 1 in [C]). 

 

 

The volatile matter represented about 70% in weight of the dried biomasses (see Table 

7), except for SS, for which a lower percentage (60%) was measured. The inorganic 

fraction accounted for about 20% of the dried weight for the sludges (22.08% for FS 

and 23.19% for SS), while lower ash contents were measured in the manures (11.40% 

in SM and 6.59% in CM). The fixed carbon was calculated being among 10% and 

20%, with increasing values in the following order: FS<SS<SM<CM [C]. 

The elemental analysis of the feedstocks highlighted that the nitrogen content in the 

sludges was significantly higher than in the manures: 7.55% for FS and 7.37% for SS, 

as compared to 2.39% for SM and 1.68% for CM [C]. Higher levels of nitrogen in the 

biomass could potentially result in biocrudes containing more N-heteroatoms 
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compounds, and consequently requiring a more severe upgrading in terms of H2 

supply and process conditions to reach the required denitrogenation extent. 

As for the inorganics content and for the nitrogen content, similarities among the two 

typologies of manure and among fish and human sludge were found when exploring 

the main constituents of the feedstocks. In fact, the manures were predominantly made 

of lignocellulosics (84.40% for SM and 88.70% for CM), with only minor percentages 

of crude proteins (14.94% for SM and 10.50% for CM) and traces of lipids (<1%) (see 

Figure 24). The composition of the sludges differed from that of the manures, as the 

main constituents were both lignocellulosics (39.77% for FS and 48.09% for SS) and 

proteins (47.19% for FS and 46.06% for SS), with minor percentages of lipids 

(13.06% for FS and 5.86% for SS) [C]. When hydrothermally processing biomass, the 

trend for conversion efficiency is generally the following: lipids > protein > 

carbohydrates [109]; therefore higher conversions were expected from the 

liquefaction of the sludges as compared to the manures. 

 

 

Figure 24: Composition of swine manure, cow manure, fish sludge, and sewage 

sludge in terms of lignocellulosics, crude proteins, and crude fats (data from Table 1 

in [C]). 

 

The composition of the inorganic fraction of the four feedstocks was investigated by 

ICP, and the results are presented in Table 8, where the elements are arranged in two 

groups depending on their concentration in the feedstocks. The main elements are 

highlighted in green and reported in weight percent of the dried biomass; the minor 

elements are highlighted in light blue and expressed in ppm. 
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Table 8: Inorganic elements in the waste fractions. The results of the most abundant 

elements are expressed in weight percent (in green), while for less abundant elements 

are expressed in ppm (in light blue) (data elaborated from Table S1 in [C]). 

 

 

For all feedstocks, the most abundant inorganic element was calcium, with a 

particularly high level registered in fish sludge (7.14%). Other abundant elements 

were phosphorus, potassium, magnesium, sodium, and sulfur – all essential 

macronutrients. The inorganics detected in lower concentrations were instead 

aluminum, copper, iron, manganese, and zinc. Finally, the inorganics in trace levels 

(below 20 ppm) were cadmium, chromo, nickel, and lead; these are instead the heavy 

metals whose concentration is strictly regulated by laws. Higher concentrations of 

aluminum and iron were detected in the SS as respect to the other feedstock (Al 

accounted for the 0.55% and Fe for the 0.83%) [C]. High levels of Al and Fe in sewage 

sludge may be explained by the addition of these elements in the wastewater treatment 

plant for the chemical precipitation of phosphorus [110]. The significant quantities of 

iron in the sewage sludge explains why the ash obtained from sewage sludge had a 

red color, which differed from the grey color of the ash obtained from the other 

feedstocks (see Figure 25). 

 

 

Figure 25: Ash from fish sludge (left) and from sewage sludge (right) after 3h at 

775°C. 
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5.3 Biocrude production 

After sub- and supercritical HTL of the organic waste fractions, from one to two thirds 

of the biomass fed into the reactors was converted into biocrude. Particularly high 

yields were obtained from the conversion of FS (47.2-59.1%) and SS (35.7-44.5%), 

while the production of biocrude from the liquefaction of the manures resulted more 

moderate (34.8-41.0% for SM and 32.3-41.0% for CM) [C]. This outcome resulted in 

line with our hypothesis based on the composition of the biomasses: lower yields were 

expected from the liquefaction of the manures, mainly constituted of lignocellulosics, 

as respect to the sludges, made of lignocellulosics, proteins, and lower percentages of 

lipids. Moreover, a correlation was found among biocrude yields and fixed carbon in 

the feedstock: the lower the level of fixed carbon in the feedstock, the higher the 

production of biocrude. The results on the biocrude yields for the four feedstocks at 

the different process conditions are reported in Figure 26; the elemental compositions 

of the biocrudes, together with HHV, carbon and energy recoveries are instead 

presented in Table 9. 

 

Figure 26: Yields in biocrude (on a dry ash-free basis) obtained from the HTL of 

swine manure, cow manure, fish sludge, and sewage sludge at the different process 

conditions (from [C]). 

 

The use of supercritical conditions (400 °C), with respect to subcritical ones (350 °C) 

produced a significant decrease in the biocrude yield of 10%, 21%, and 13% for SM, 

CM, and FS, respectively [C]. This may be explained by the fact that at higher 

temperatures, the formation of gaseous products is favored respect to the production 

of oily or solid products [111]. On the other hand, the use of supercritical conditions 

remarkably improved the quality of the biocrudes obtained from the manures. For 

example, with reference to the non-catalytic runs, the carbon mass fraction increased 
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from 66.28% to 70.89% and the oxygen mass fraction decreased from 23.50% to 

17.66% for SM; while the carbon mass fraction increased from 64.46% to 71.61% and 

the oxygen mass fraction decreased from 24.16% to 17.58% for CM (see Table 9). 

Therefore, for the manure-derived biocrudes, the decrease in the yields obtained at 

supercritical conditions can be explained also with the increased deoxygenation extent 

achieved. 

The addition of K2CO3 catalyst produced in most of the cases (with the exception for 

CM400 and SS350) a decrease in the biocrude yield. However, the quality of the 

biocrudes derived from manures noticeably improved with the addition of the catalyst 

both at sub- and supercritical conditions. The oxygen mass fraction in the biocrude 

originated from SM decreased from 23.50% to 17.26% at subcritical conditions and 

from 17.66% to 12.31% at supercritical conditions, while for the biocrude originated 

from CM it decreased from 24.16% to 15.37% at subcritical conditions and from 

17.58% to 12.47 at supercritical conditions (see Table 9). The increased 

deoxygenation obtained from the addition of K2CO3 may be explained with an 

increase in decarboxylation reactions, usually produced by alkali catalysts [22]. An 

increased deoxygenation was also observed after catalytic conversion of the sludges, 

however in this case the decrease in the oxygen content only accounted for about 1% 

point (see Table 9). 

 

Table 9: Elemental compositions (wt.%), high heating values (MJ kg-1), carbon and 

energy recoveries of the biocrudes obtained from the HTL of swine manure (SM), 

cow manure (CM), fish sludge (FS), and sewage sludge (SS) at the different process 

conditions. Results are reported on dry ash-free basis (elaborated from Table 2 in [C]). 

 

 

With HTL, we assist to a densification of the biomass energy into the biocrude with 

the removal of the oxygen heteroatoms by decarboxylation, producing CO2, and by 

dehydration, producing H2O. Enhanced decarboxylation and reduced dehydration (i.e. 

decrease in the O/C ratio rather than in the H/C ratio) are preferred for an optimal 
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biocrude quality and in prospective to its upgrading to fuel [112]. The Van Krevelen 

diagram with H/C and O/C atomic ratios of the feedstock and of the biocrudes allows 

visualizing the effect of HTL (see Figure 27). In the liquefaction of the manures, the 

oxygen removal occurred by both dehydration and decarboxylation reactions, with the 

latter particularly enhanced in the catalytic runs. In the liquefaction of fish sludge the 

oxygen was almost exclusively removed by decarboxylation. Finally, a decrease in 

both H/C and O/C values was observed when converting sewage sludge with 

decarboxylation prevailing on dehydration. 

 

 

Figure 27: Van Krevelen diagram with H/C and O/C atomic ratios relative to the 

organic wastes used as feedstock (sm: swine manure, cm: cow manure, fs: fish sludge, 

and ss: sewage sludge) and to the biocrudes obtained from the HTL at the different 

process conditions (data from [C]). 

 

The elemental composition of the biocrudes (see Table 9) revealed higher nitrogen 

contents in sludge-derived biocrudes (N: 5-7%) compared with manure-derived 

biocrudes (N: 2-3%). This finding was in line with the fact that the elemental 

composition of the feedstock (see Table 7 in Paragraph 5.2) had previously 

highlighted higher nitrogen content in the sludges (7.55% for FS and 7.37% for SS) 

as respect to its level in the manures (2.39% for SM and 1.68% for CM). The direct 
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consequence of higher nitrogen levels in the biocrude is that sludge-derived biocrudes 

will require a more intense upgrading to reduce the N-heteroatoms content to the 

required level. The nitrogen balance revealed that about 50% of the nitrogen in the 

manures and in fish sludge was transferred to the biocrude, while only about 30% for 

sewage sludge (see Figure 6 in Paper [C]). 

In order to establish which process conditions are more favorable for each biomass, it 

is not sufficient to look at the yields, but it is also necessary to consider the quality of 

the biocrudes (e.g. deoxygenation extent achieved that is reflected in the HHV). Other 

parameters contributing to the determination of the optimal conditions are the carbon 

recovery (Crec) and energy recovery (Erec). The carbon balance showed that, after 

liquefaction of the organic wastes, carbon was primarily transferred to the biocrudes 

with higher recoveries for the sludges (65.2-79.2% for FS and 56.2-72.2% for SS) as 

respect to the manures (58.4-60.5% for SM and 46.7-53.2% for CM). Crec resulted 

almost unvaried for the manures, regardless of the process conditions, while higher 

Crec were obtained at subcritical conditions for the sludges. Conversely, the highest 

HHV of manure-derived biocrudes was obtained at supercritical conditions in the 

presence of the catalyst (35.8 MJ kg-1 for SM and 35.7 MJ kg-1 for CM), while similar 

values resulted from all the process conditions for sludge-derived biocrudes (36.2-

36.8 MJ kg-1 for FS and 35.7-37.3 MJ kg-1 for SS). Finally, the energy recoveries, 

which take into account both HHV and biocrude yields, were found to be notably 

higher at subcritical conditions only for the sludges (91.8% for FS and 74.3% for SS). 

In conclusion, for the lignocellulosics-rich manures, the combined use of supercritical 

conditions and the catalyst improved the quality of the biocrudes, overcoming the loss 

in biocrude production. For the sludges, the use of the catalyst may be avoided with a 

consequent saving on its cost, crucial when operating at larger scale; on the other 

hand, the use of subcritical conditions may be preferable, as both higher carbon and 

energy recoveries can be achieved (see Table 9). 

 

 

5.4 Recovery of the inorganics through HTL 

In order to understand how the inorganic elements contained in the animal and human 

waste fractions tended to redistribute among the HTL products after liquefaction, the 

concentrations of the inorganics in each phase were investigated through ICP analysis. 

The concentrations were successively multiplied with the weight of the corresponding 

phase, and finally normalized to 100. The outcomes are normalized distributions of 

the inorganics among the HTL products after liquefaction of SM, CM, FS, and SS, 

and they are presented in Figure 28, Figure 29, Figure 30, and Figure 31, respectively. 
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Most of the investigated inorganics (Al, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Ni, P, Pb, Zn) 

were primarily recovered in the solids with recoveries above 70% in most of the cases. 

The remaining fraction of these elements was transferred to the aqueous phase, while 

only residual amounts were detected in the biocrudes. Only for the heavy metals (i.e. 

Cu, Ni, and Pb), higher recoveries in the biocrudes (10-30 wt.%) were registered under 

specific process conditions (as highlighted in Table S2 in the supplementary material 

of Paper [C]). Potassium and sodium showed a different behavior, with higher 

recoveries in the aqueous phase respect to the other inorganics. More specifically, 

after the hydrothermal processing of the manures, K and Na were mainly recovered 

in the aqueous phase with recoveries in the range 50.1-82.8 % (see Table S2 in [C]). 

Similarly, higher recoveries of K and Na in the aqueous phase were observed after 

HTL of wastewater irrigated willow in Study 2. After HTL of the sludges, K and Na 

were instead distributed among both the solids and the aqueous phase; nevertheless, 

they still exhibit a higher degree of solubility in the aqueous phase as respect to the 

other inorganics. Finally, S was more homogenously distributed among the different 

phases and, consequently, higher recoveries of S in the biocrude (among 33.5% and 

66.0%, see Table S2 in [C]) were obtained as respect to the other inorganics. More 

specifically, the mass fraction of S detected in the manure-derived biocrudes was 

0.37-0.58 wt.%, while in sludge-derived biocrudes was 0.27-1.00 wt.%. The higher S 

content of sludge-derived biocrudes reflects the higher S mass fraction detected in fish 

sludge and sewage sludge as respect to manures. In both cases, S-heteroatoms removal 

by desulphurization will be required for utilization as fuel. To some extent, the 

presence of S in the biocrude is required for an efficient upgrading, as conventional 

catalyst developed for crude oil upgrading are sulphided (i.e. they are activated and 

work in the presence of sulfur) and, therefore, low level of S in the biocrudes can 

negatively impact their activity [113, 114]. 

The use of different process conditions (sub- and supercritical and the addition of 

K2CO3 catalyst) did not affect the tendency of the inorganics to redistribute among 

the HTL products. However, a significant increase in the concentration of potassium 

in the biocrudes obtained from the catalytic runs was observed. This may suggest 

avoiding the use of K2CO3 catalyst, unless its contribution in enhancing biocrude 

quality (i.e. deoxygenation extent) is marked. Alkali metals have in fact a detrimental 

effect on the activity of the catalyst used in hydrocracking [115, 116]. 
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Figure 28: Normalized distribution of the inorganic elements among the products 

(solids, aqueous phase, and biocrude) after subcritical HTL of swine manure (SM) at 

the four different process conditions (350 °C without catalyst, 350 °C with catalyst, 

400 °C without catalyst, 400 °C with catalyst). 
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Figure 29: Normalized distribution of the inorganic elements among the products 

(solids, aqueous phase, and biocrude) after subcritical HTL of cow manure (CM) at 

the four different process conditions (350 °C without catalyst, 350 °C with catalyst, 

400 °C without catalyst, 400 °C with catalyst). 
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Figure 30: Normalized distribution of the inorganic elements among the products 

(solids, aqueous phase, and biocrude) after subcritical HTL of fish sludge (FS) at the 

four different process conditions (350 °C without catalyst, 350 °C with catalyst, 400 

°C without catalyst, 400 °C with catalyst). 
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Figure 31: Normalized distribution of the inorganic elements among the products 

(solids, aqueous phase, and biocrude) after subcritical HTL of sewage sludge (SS) at 

the four different process conditions (350 °C without catalyst, 350 °C with catalyst, 

400 °C without catalyst, 400 °C with catalyst). 
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The general trend for the redistribution of the inorganics among HTL products 

observed in Study 3 (on organic wastes) is in line with the findings from Study 2 (on 

willow biomass): multivalent metal ions (e.g. Al3+, Fe2+/3+, Ca2+, Mg2+) are primarily 

recovered in the HTL solids, while monovalent ions (i.e. K+, Na+) tend to dissolve in 

the HTL aqueous phase. The concentration of the inorganics in the HTL solids – rather 

than in the other phases – eases their recovery, as the solids can be effectively 

separated from the other HTL products regardless of the batch or the continuous 

processing of the feedstock. In fact, after batch processing, the solids are precipitated 

with the addition of the solvent and they can successively be separated from the 

products with the aid of filters, as performed in the present investigation. After 

continuous processing, a filter can be installed after the reaction system to collect the 

solids, as in the PNNL continuous HTL set-up [117]. 

 

In case of direct application of the HTL solids to the land as source of nutrients, there 

are upper limits on the heavy metals load. As previously introduced, there are 

legislations both at national and European level on the maximum concentration of 

heavy metals allowed in sludge (or, in this case, on products derived from sludge 

processing) for its application to agricultural fields. The limits set by EU Directive 

86/278/EEC and the national limits for Denmark and Germany are reported in Table 

10, together with the concentrations of the heavy metals detected in the HTL solids. 

As Danish limits for Cd, Cr, Ni, and Pb are considerably more restrictive when 

compared to those set by EU or Germany, the HTL solids produced from this study 

could be potentially applied to agricultural fields in many EU countries, but they 

would be subjected to some restrictions by the Danish authorities (see shaded values 

in Table 10). Nevertheless, it has to be noticed that the limits should be seen in relation 

to the extraction method used: in Denmark, it is usually used nitric acid, weaker than 

aqua regia, which is frequently used in other European countries [86]. 
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Table 10: Limit values for heavy metals in sludge (mg kg-1 DM) for its application to 

the European, Danish, and German agricultural fields (first, second, and third row, 

respectively) [86, 87]. In the section below the limits, concentrations (mg kg-1) of 

heavy metals in the HTL solids obtained from swine manure (SM), cow manure (CM), 

fish sludge (FS), and sewage sludge (SS) at the different process conditions. Orange 

shaded cells indicate that the concentration in the HTL solids is above the most 

restrictive limit. 

 Cd Cr Cu Ni Pb Zn 

EU Directive 86/278/EEC 20-40 - 1000-1750 300-400 750-1200 2500-4000 

Denmark 0.8 100 1000 30 120 4000 

Germany 10 900 800 200 900 2500 

SM-350 0.6 71.0 435.6 109.9 3.0 1892.5 

SM-350cat 0.4 116.9 279.1 110.2 3.4 1973.3 
SM-400 0.5 169.5 423.8 145.4 8.9 2240.5 

SM-400cat 0.4 74.4 197.0 60.1 6.1 1388.6 

CM-350 0.8 182.2 585.9 176.8 8.6 1651.5 
CM-350cat 0.6 230.6 576.7 206.6 4.6 1168.5 

CM-400 0.5 270.1 582.2 211.5 3.4 1605.3 

CM-400cat 0.4 220.8 405.2 186.8 9.7 1551.5 

FS-350 3.6 77.9 66.1 44.0 5.0 1817.3 

FS-350cat 3.1 158.5 49.1 116.1 3.7 1724.2 

FS-400 3.8 126.4 51.2 129.3 17.2 1990.2 
FS-400cat 2.9 186.8 42.4 137.8 4.3 1560.4 

SS-350 2.4 78.1 388.1 94.5 46.3 2959.8 

SS-350cat 1.8 165.8 291.1 147.1 36.5 1718.3 

SS-400 2.2 86.5 368.1 171.0 47.2 2007.4 
SS-400cat 1.7 197.5 281.1 138.9 40.3 2100.3 

 

 

The ICP analysis could only provide information on the concentrations of the 

inorganics in the product phases but not on their forms. However, the results on the 

concentrations were used to investigate whether some of the inorganics were 

correlated. The analysis highlighted that Ca and P were highly correlated (R=0.99; see 

Table S3 in [C]). From the slope of P-Ca curve, the molar ratio was found to be 0.42 

g/g; suggesting that P is primarily present as apatite or hydroxyapatite 

(Ca5(PO4)3(OH)), which has a molar ratio of 3P : 5Ca (0.46 gP/gCa). In support of 

this finding, the majority of P in hydrochar produced from HTC of cow manure and 

from HTL of primary sewage sludge was identified as apatite: 88.8% in the first study 

[118] and 96.7% in the second one [119]. Hydroxyapatite is a mineral and its main 

application is for the production of fertilizers [120]. Phosphorus precipitation as 

struvite, a slow-release fertilizer, is commonly performed in wastewater treatment 

plants [121], and its potential application to HTL solids for the extraction of 

phosphorus has been recently reported in literature [122]. Hence, the conversion of 

organic wastes through HTL results a prospective solution to further guarantee an 

improved circularity of phosphorus. 
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Chapter 6 

Conclusions 

 

 

This work proposes HydroThermal Liquefaction as an alternative process to treat 

three diverse category of wastes: plastics, lignocellulosic material, and organic wastes 

of animal and human origin. 

In the first study, nine high-density plastics (PBT, PC, PET, PLA, PMMA, POM, 

PPO, PVA, and SB) were processed under supercritical HTL conditions (400 °C), 

obtaining in most of the cases high yields of synthetic crude oil. Particularly high 

biocrude yields were obtained from the liquefaction of PC (99.8%), SB (80.8%), and 

PPO (78.9%). These synthetic crude oils of aromatic structure have a simple product 

slate as compared to biomass-derived biocrudes and therefore hold great potential for 

the production of fuels or chemicals (e.g. for a targeted production of BTX 

compounds). Moreover, the oil derived from PC and SB conversion could be 

additionally used for the production of new plastics, since the monomers BPA and 

styrene were respectively identified among the oils constituents. The liquefaction of 

PET and PBT did not produce any synthetic crude oil; however, their conversion in 

supercritical water resulted in high yields of terephtalic acid (68.5% and 50.8%, 

respectively), which is one of the monomers used for the production of these plastics. 

Overall, HTL is a prospective technology for chemical recycling of unrecyclable high-

density plastics, allowing to achieve the simultaneous production of high value 

chemicals and the recovery of monomers, ensuring an improved circular economy. 

In the second study, HTL efficiently converted willow biomass (Ybiocrude= 40%), 

which had been subjected to irrigation with wastewater for absorbance of nutrients 

and metals, into an energy-dense biocrude (HHV = 36 MJ kg-1). The biocrude was a 

mixture of ketones, phenols, and alcohols, which formed as a result of the 

lignocellulsic biomass decomposition. The investigation on the inorganics showed 

that most of elements (e.g. Ca, P, and Mg) were primarily (>70%) distributed in the 

HTL solids after the processing of the biomass. For this reason, the quality of the 
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biocrude was not compromised by the load of the inorganics contained in the 

feedstock. A standard upgrading of the biocrude is  expected being sufficient to reduce 

the oxygen, nitrogen, and sulphur heteroatoms contents. Thus, HTL allows producing 

a renewable crude oil, from which fuels can be derived, while the inorganics are 

filtered out from the biomass and concentrated in a reduced volume in the hydrochars. 

The outcomes from this work result highly prospective for the treatment of 

lignocellulosic material with high loads of heavy metals (e.g. impregnated wood). 

In the third study, swine manure, cow manure, fish sludge, and sewage sludge were 

hydrothermally processed at both sub- and supercritical conditions. The organic 

fraction of these wastes was efficiently converted into biocrude with energy recoveries 

of up to 67%, 78%, and 92% for the manures, sewage sludge, and fish sludge, 

respectively. The chemical composition of the feedstocks had impact on the biocrude 

production: the liquefaction of lignocellulosics-based biomass, such as the manures, 

resulted in lower biocrude yields (36%) as respect to the sludges (42% for sewage 

sludge and 52% for fish sludge), whose constituents include also proteins and lipids. 

Supercritical conditions produced a decrease in the biocrude yields respect to 

subcritical ones; however, at the same time, the deoxygenation extent was 

significantly enhanced for manure-derived biocrudes. The combined use of 

supercritical conditions with K2CO3 catalyst is recommended to process manure in 

HTL, since biocrudes had reduced oxygen content. After hydrothermal processing of 

the animal and human wastes, most of the inorganic elements (Al, Ca, Cd, Cr, Cu, Fe, 

Mg, Mn, Ni, P, Pb, Zn) were primarily collected in the HTL solids (>70%); this results 

advantageous in prospective of an effective separation of the valuable nutrients.  

In particular, being these organic waste feedstocks an abundant source of phosphorus, 

HTL provides an alternative way for the recovery of this finite element, which is 

largely required in agriculture. Overall, this work demonstrates that HTL offers a 

prospective solution for the management of wet ash-containing wastes, as these are 

efficiently converted into biocrude, from which advanced biofuels may be derived; 

moreover, the inorganics are concentrated into the hydrochars, from which heavy 

metals may be safely disposed and valuable nutrients may be reclaimed. 
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Chapter 7 

Future prospective 

 

 

Additional investigations, which could be performed as a natural continuation of the 

present PhD project, are proposed below: 

 To hydrothermally process mixtures of plastics representative of un-

recyclable waste streams and to assess the recovery of the monomeric 

compounds in the presence of dyes or pigments, such as colorants or other 

additives; 

 To co-process plastic along with biomass (e.g. waste plastics contaminated 

with residual food) through HTL, exploring potential synergies towards 

biocrude production; 

 To explore additional strategies to ease the decomposition of thermally 

resistant plastic polymers (e.g. PE and PP); 

 To process lignocellulosic biomass with high heavy metals loading (e.g. 

construction wood) in HTL for a simultaneous production of biocrude and 

separation of the heavy metals; 

 To identify the nature of the inorganics after being recovered in the HTL 

solids, and to establish the bioavailability of the nutrients (i.e. if they are in 

the forms accessible to plants so that biological uptake can take place). 
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a b s t r a c t

Rising environmental concerns on climate changes are causing an increasing attention on circular econo-
mies. The plastic economy, in particular, is in focus due to the accelerating consumption of plastics,
mainly derived from virgin feedstock, combined with the lack of plastic recycling strategies. This work
presents a novel outlook on the potential of using supercritical hydrothermal processing of waste plastic
fractions for tertiary recycling. The study investigates hydrothermal processing of nine different, high-
density types of plastics into original resin monomers and other value-added chemical compounds.
The outlook presents conversion yields, carbon balances, and chemical details on the products obtained.
It is found that all the investigated resins are prone to hydrothermal treatment, and that high yields of
monomers and high value compounds (up to nearly 100%), suitable for chemicals and fuels applications,
can be obtained. For instance, for polycarbonate, styrene-butadiene, poly(lactic acid), poly(ethylene
terephthalate), and poly(butylene terephthalate), original monomeric compounds can be reclaimed for
manufacturing new resins. The promising results presented demonstrate that hydrothermal processing
of high-density plastics is a prospective technology for increasing the circularity of the plastic economy.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Plastic production and consumption have increased dramati-
cally over recent years, and with more than 300 million tons pro-
duced every year, plastic has become a global environmental
concern. Striving for primary closed-loop recycling of plastics is
ultimate, but has only been achieved for a very narrow plastic seg-
ment, such as clear PET bottles, for which dedicated collection
schemes already exist [World Economic Forum, 2016]. The lack
of primary recycling of plastics is challenged by many aspects, such
as colors (dyes) and other contaminants, qualities, blends of differ-
ent plastics, etc., and is manifested by the fact that only approxi-
mately 2% of all plastics is closed-loop recycled [World Economic
Forum, 2016]. Secondary recycling of plastics into products of infe-
rior qualities includes for example uni-coloring of mixed colored
plastic, typically in black, but is limited mainly to fractions con-
taining only a single type of plastic. Tertiary recycling, involving
decomposition or depolymerization of the polymers for recovering
of monomeric constituents or other valuable chemicals, is prospec-
tive for fractions of plastics were primary and secondary recycling
is unviable [Al-Salem et al., 2009]. Tertiary recycling includes
chemical depolymerization, solvolysis, catalytic and thermal

cracking, pyrolysis, gasification, hydrogenation, etc. [Curlee and
Das, 1998]. Whereas some types of polymers like polyesters, poly-
ethers, polycarbonates, polyamides, are prone to solvolysis, such as
hydrolysis (thermal and/or catalytic), others are more chemically
resistant and require severe thermal conditions in order to decom-
pose. For such polymers, including polyethylene and polypropy-
lene, pyrolysis is suitable for converting the resins into basic
chemicals and oils [Bockhorn et al., 1998; Onwudili et al., 2009].
Hydrothermal treatment is another thermochemical process iden-
tified as a highly cost competitive process for converting organic
matter, e.g. wood, straw and sewage sludge, into value-added
chemicals [De Jong, 2015; Zhu et al., 2014]. Hydrothermal process-
ing of plastics at near and supercritical water conditions is an
advanced tertiary technology, which has only scarcely been inves-
tigated [Sugano et al., 2009; Park et al., 2001; Watanabe et al.,
1998]. Hydrolysis of Nylon 6 and Nylon 66 at near and supercritical
conditions, without any added catalysts, was successfully applied
for recovering high yields of monomers, such as caprolactam
(85%) and apidic acid (>40%) [Meng et al., 2004; Iwaya et al.,
2006]. Due to the bifunctionalities (thermal and chemical proper-
ties), a near or supercritical water environment is potentially use-
ful for processing technically difficult waste, i.e. mixed types of
plastics, and plastics contaminated with e.g. organic waste, which
are otherwise incinerated. In fact, mixed fractions of plastics and
plastics contaminated with organics are main challenges in plastic

http://dx.doi.org/10.1016/j.wasman.2017.06.002
0956-053X/� 2017 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: thp@et.aau.dk (T. Helmer Pedersen), fco@et.aau.dk (F. Conti).

Waste Management 68 (2017) 24–31

Contents lists available at ScienceDirect

Waste Management

journal homepage: www.elsevier .com/ locate/wasman



waste management as they cannot be sorted and cleaned to their
pure forms, which are requested aspects for their primary or sec-
ondary recycling [Gent et al., 2009].

As an alternative solution to incineration, we propose to pro-
cesswaste plastic streams under supercritical water conditions
and to recycle the plastic monomers for the production of new plas-
tics along extraction of value added chemicals for usage in the
chemical industry (Fig. 1). The flexibility of this hydrothermal pro-
cess would allow the processing of different plastics regardless of
color, sizes, purity, physical properties etc. within the same process.

In this paper, we demonstrate the usefulness of supercritical
water for processing various types of high-density plastics. The
objective is to screen hydrothermal processing of different types
of pure plastics, individually, in order to obtain novel insight into
decomposition trends and chemical recoveries for the various types
of plastics. Ultimately, the expansion of the fundamental under-
standing, presented by this study, of how pure plastics decompose
will improve the understanding and prediction of how undifferenti-
ated plastic waste can be processed under supercritical water
conditions.

2. Materials and methods

2.1. Materials

The high-density plastics used as feedstock in this study were:
Poly(butylene terephthalate) (PBT), Polycarbonate (PC), Poly(ethy-
lene terephthalate) (PET), Poly(lactic acid) (PLA), Poly(methyl
methacrylate) (PMMA), Poly(oxymethylene) (POM), Poly(p-
phenylene oxide) (PPO), Poly(vinyl alcohol) (PVA), Styrene-
butadiene (SB). The plastics were purchased from major polymer
producers: BASF, Chevron Phillips Chemical, LanXess, SABIC and
Total Petrochemicals. All plastics were supplied in granular form,
approximate size 3 mm, and then used as received without per-
forming any pretreatment.

2.2. Experimental procedure

All pure plastics were processed, in duplicates, under hydrother-
mal process conditions. The experiments were carried out in

micro-batch reactors (12 mL) submerged in a preheated fluidized
sand bath (Techne SBL-2D). For each experiment, distilled water
(5 g) and plastic (0.5 g, about 10 wt.%) were added to the reactor.
None catalyst was necessary for the conversion. Reactors were
sealed, purged with N2 to remove residual O2 and for leaking test,
and then rapidly heated to 400 �C, developing a corresponding pres-
sure of about 250 bar. The retention time was set to 15 min, includ-
ing the heating period. During the reaction, temperature and
pressure were both monitored and an agitation system provided
the mechanical mixing inside the reactors. After 15 min, reactors
were instantly cooled to room temperature in a water bucket.

2.3. Products recovery

The importance of the products recovery technique lies in the
fact that products yields and quality are strictly dependent on
the separation procedure and the solvents involved.

Once reactors were at ambient temperature, any eventual over-
pressure was vented through a top mounted valve. In some cases,
such as for PLA processing, gases were collected for analysis. Reac-
tors were then opened, and an aqueous phase containing soluble
organics was collected and named as aqueous phase (AP). Acetone
(�95%, Cab Dan) was used to rinse reactors and to recover an oily
phase. The collected mixture was vacuum filtrated and the solids
(S) were dried in an oven (105 �C, 24 h) before being weighed. Then
acetone was evaporated (40 �C, 556 mbar) in a rotary evaporator.
Diethyl ether (DEE, ACS reagent, anhydrous, �99.0%, Sigma
Aldrich) was added to extract the oily phase and then evaporated
(40 �C, 990 mbar); the remaining oily phase was weighed and
defined as synthetic crude oil (Fig. 2).

2.4. Products characterization

For some experiments, the gas phase composition was deter-
mined using a Gas Chromatograph (GC - Shimadzu, Tracera GC-
2010 Plus). The GC was equipped with a micropacked column
(Restek, length 2.0 m, I.D. 0.53 mm) and a BID detector. The oven
was held at constant temperature of 85 �C. The total flow was
803 ml/min, split ratio was 1:200 and pressure was set to be the
flow control mode (400 kPa). The injected volume was 0.1 mL.

Plastic wastePLASTIC INDUSTRY

PLASTIC RECYCLING

HTL FACILITY Value added
chemicals

Fig. 1. Conceptual scheme for improving plastic economy via hydrothermal processing of unrecyclable plastics.
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The aqueous phases were characterized by determining the pH
(WTW, pH meter 3210) and the Total Organic Carbon (TOC) with a
proper kit (LCK386) and a spectrophotometer (Hach & Lange
DR3900).

Elemental composition of the solids and of the synthetic crudes
was determined with an elemental analyzer (Perkin Elmer, 2400
Series II CHNS/O).

Functional groups in the synthetic crudes were detected
through FT-IR spectroscopy (Thermo Scientific, Nicolet 380
spectrometer).

Crude oils and some solids were also qualitatively characterized
by Gas Chromatography Mass Spectroscopy (GC–MS). Analyses
were performed in a Thermo Scientific Gas Chromatograph (Trace
1300) equipped with a capillary column (Agilent Technologies,
length 30 m, I.D. 0.25 mm, film thickness 0.25 mm) and coupled
with a Mass Spectrometer (ISQ QD). Flow rate of the carrier gas
(Helium) was set to 1 mL/min and 1 mL of sample was injected each
time with a split ratio of 1:20. MS ion source was heated to 300 �C
while the oven had the following temperature profile: 40 �C held
for 1 min and then ramped to 300 �C (10 �C/min). Prior to analysis,
oil samples were diluted in 2 mL of DEE and filtered with 0.45 mm
syringe filters. In some cases, samples were also derivatized: few
drops of N,O-Bis(trimethylsilyl)-trifluoroacetamide with
trimethylchlorosilane (TMCS 1%, Sigma Aldrich) were added; the
sample was then heated to 60 �C in a water bath for 1 h, and finally
the excess derivatizing agent was removed with a gas stream.

GC–MS analysis was also used to trace the organic compounds
in the aqueous phase obtained from PLA plastic. Before the analy-
sis, the aqueous phase was treated to extract the organics using the
method developed by [Madsen et al., 2016].In this case the temper-
ature profile for the oven was: 40 �C hold for 1 min, ramped to
100 �C (4 �C/min) and held for 1 min, and finally ramped to
300 �C (15 �C/min).

The decomposition extent of oil samples was determined by
Thermogravimetrical Analysis (TGA) in a TA Discovery. Starting
from room temperature, samples were subjected to an increase
in temperature up to 900 �C, with a temperature rate of 10 �C/min.

3. Results and discussion

3.1. Yields and properties of product phases

The plastics included in this study showed to be easily degraded
via hydrothermal processing. The polymers converted to different
extent into synthetic crude oils and solids. For each type of plastic,

average yield in oil (Yoil) and in solid (Ysolid) are reported in Table 1,
together with the elemental composition of the two respective
phases. Carbon and hydrogen content were determined from the
analysis of products, while oxygen was calculated by difference.
Nitrogen was not detected by the elemental analyzer and therefore
not reported.

For some plastics, like PC, SB and PPO, the synthetic crude oil
represents the main product, accounting for 99.8%, 80.8%, and
78.9%, respectively. A different tendency was observed when pro-
cessing PBT and PET under the same hydrothermal conditions.
The latter, in fact, were primarily recovered into solid products,
which accounted for 50.8% and 68.5%, respectively, while synthetic
oil was not detected. A more varied product distribution across the
different phases was observed in the case of PMMA, PVA and POM;
whose products were recovered in the form of oils, solids, organics
dissolved in the aqueous phase and some gases. Neither oil nor
solids were detected from PLA conversion; while the high TOC
value (19.1 g/L) clearly reflects the presence of organics in the
aqueous phase. An evolvement of gas was registered when pro-
cessing PLA.

TOC analysis was performed in order to determine the amount
of organics dissolved in the aqueous phase; results are summarized
in Table 1 together with measured pH values. All aqueous phases
were found to be acidic with values in the range 2.8–4.7. For most
plastics, a correspondence between pH and TOC values was found:
when pH is highly acidic, carbon content is also high, which could
suggest that more organic acids are dissolved in the aqueous
phase. The low TOC value (0.4 g/L) of SB aqueous phase is strictly
dependent on the different products recovery method that was
used. This involved the addition of DEE to the aqueous phase to
extract residual oil and led to a cleaner aqueous phase.

Carbon balance was elaborated, comparing the carbon content
in the plastic used as feedstock with the quantity of carbon
detected in the different product phases. Results are presented in
Fig. 3, which highlights the carbon distribution across the different
phases for each plastic type involved in the study.

Synthetic crude oils were qualitatively analyzed by GC–MS,
using temperatures up to 300 �C. Therefore it was relevant to
establish the tendency of the oils to evaporate, below and above
this temperature, in order to define up to which extent oils were
characterized with GC–MS. For this reason, the oils were analyzed
with TGA up to 900 �C, and decomposition curves by temperature
are presented in Fig. 4.

A similar trend was observed for PC and PMMA: at 300 �C, more
than 80% of the oil was evaporated, revealing that PC and PMMA
oils contain compounds with relatively low-boiling points. From
these results, it is suggested that PC and PMMA oils are fully char-
acterized by GC–MS.

SB and PPO oils, instead, were found to contain more high-
boiling point compounds: the evaporation extent accounted for
only 40% and 30%. Only less than half of the compounds were
therefore detected by GC–MS.

3.2. Decomposition and chemical recovery from the resins

3.2.1. Polycarbonate (PC)
Polycarbonate showed to be extremely susceptible to

hydrothermal treatment, with nearly 100% conversion, where the
vast majority was turned into volatile liquid products. Ether bonds
(within the carbonates) are known to undergo hydrolysis in hot-
compressed water, which was also the case for the polycarbonate
polymer. Hydrolysis of the polymer was evident due to the forma-
tion of the Bisphenol A (BPA) monomer, which was confirmed by
GC–MS. The GC–MS result is illustrated in Fig. 5.

It is observed that only four compounds were formed, including
the BPA. The other compounds appeared to be phenol (1),

HTL

Reactor
cleaning

Solid
filtration

Acetone
evaporation

DEE
evaporation

PLASTIC
H2O

ACETONE

DEE

GAS

SOLIDS

SYNTHETIC
CRUDE OIL

WATER PHASE

Fig. 2. Steps involved in the products recovery.
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isopropylphenol (2), and isopropenylphenol (3), and were all a
clear result of BPA (4) cleavage. Hunter et al. demonstrated that
these compounds can be synthesized from BPA in hot-
compressed water, but clearly the present results show that similar
products can be obtained by processing PC [Hunter et al., 2004].
The elemental analysis of the liquid product, which is nearly iden-
tical to that of the original resin, also confirms the fact that only
these four main compounds are formed.

Polycarbonate !hydrolysis
BPA !cracking

phenolics ð1Þ

The simplicity of the product slate is a great advantage in further
processing and product separation, and is in shape contrast to e.g.
hydrothermal processing of biomass, where the product slate con-
sists of hundreds of different compounds [Peterson et al., 2008].

From these results, it is evident that hydrothermal processing for
tertiary recycling of PC is prospective. A significant portion of the
BPA monomers can be obtained, which can be directly recycled to
PC manufactures for new identical resins. Furthermore, the iso-
propylphenol, isopropenylphenol, and phenol are already valuable
commodity chemicals [Hunter et al., 2004], and potential fuel can-
didates when further processed. It is expected, though, that the pro-
cess severity can be tuned in order to obtain either a higher yield of
BPA or more cracking products, in particular by temperature and
reaction time, depending on the preferences [Adschiri et al., 1997].

3.2.2. Styrene-butadiene (SB)
Like for the PC, SB is also mainly converted into liquid, oily

products. The TGA results of the SB derived syncrude, however,
show that only approximately 40% of the liquid fraction is consid-
ered as volatile. The thermal decomposition of polystyrene and
polybutadiene are well-known and occur generally through end-
chain and random scission, and for which high levels of monomer
recovery can be achieved [Beyler and Hirschler, 2002]. The initial
temperature for thermal decomposition of polystyrene (�600 K)
and polybutadiene (�500 K) are both well below the critical tem-
perature of water (�647 K), and therefore it is expected that SB
decomposes at a high degree. Through liquid product analysis, it
is observed that the volatile fraction of the product slate from SB
processing consists of a broad range of hydrocarbons, primarily
of aromatics in the C8-C16 range, including monomeric styrene
(Fig. 6).

With more than 80% conversion into syncrude, hydrothermal
processing of SB has been demonstrated successfully for tertiary
recycling. The product slate of substituted monoaromatics and
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Fig. 3. Normalized carbon balance for the product phases obtained.

Table 1
Yield and composition of oils and solids, and analysis of aqueous phases.

Yoil Ysolid Oils [wt.%] Solids [wt.%] pH TOC

[wt.%] [wt.%] C H Oa C H Oa [–] [g/l]

PBT ndb 50.8 –c –c –c 57.6 3.4 39.0 3.3 8.1
PC 99.8 ndb 75.0 8.0 17.0 –c –c –c 3.8 10.3
PET ndb 68.5 –c –c –c 34.9 1.4 63.7 3.7 5.4
PLA ndb ndb –c –c –c –c –c –c 3.6 19.1
PMMA 48.0 ndb 63.6 9.0 27.4 –c –c –c 2.8 23.4
POM 13.7 8.1 78.7 7.7 13.6 64.3 4.3 31.3 4.7 25.0
PPO 78.9 8.8 85.7 8.2 6.1 83.8 7.1 9.1 3.5 1.6
PVA 35.4 2.9 81.5 9.0 9.5 29.3 3.5 67.3 3.5 12.2
SB 80.8 1.2 90.5 8.6 0.9 –c –c –c 4.3 0.4

a Oxygen calculated by difference.
b Product not detected.
c Analysis could not be performed as the product was not detected or was not enough for analysis.
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biphenyls is a potential feedstock for new plastics, e.g. as a BTX
pool, and as a pool of gasoline compounds which can be processed
by standard refinery technology. The formation of, primarily,
hydrocarbons also simplifies the product separation after process-
ing, since it spontaneously separates from the aqueous phase.
Although monomeric butadiene was not detected, which will likely
be present in the gas phase due to its volatility, the high yield of
oily products reveals that butadiene has been synthesized into syn-
crude compounds. Thermal aromatization of butadiene or conden-
sation reactions with other aromatic derivatives for substituted
compounds would indeed both increase the yield of syncrude.
These results show that SB is also highly susceptible to hydrother-
mal processing, although the product slate needs to be further
characterized, especially the non-volatile fraction of the syncrude,
in order to identify the full potential.

3.2.3. Poly(p-phenylene oxide) (PPO)
PPO is a polyether of aromatic monomers, and like PC and SB it

converts into mainly liquid products. Nearly 80% of the PPO is
turned into liquids, but of which the majority is considered non-
volatile. Of all the investigated resins, PPO appears to be the least
volatile, which also complicates the product analysis. With an ele-
mental H/C ratio of the liquid product of 1.15, it is expected that
the majority is of aromatic structure. FT-IR analysis shows strong
absorptions in the 1720 cm�1, and in the 1600–1400 cm�1 band,
indicating carbonyl functionalities, including carboxylic acids, see
Fig. 7. GC–MS analysis shows only various, methyl-, ethyl-, and
propyl- substituted benzenes, and hardly no oxygenated com-
pounds, despite the fact that approximately 6% oxygen is detected
through elemental analysis. Therefore, it is assumed that the vola-
tile fraction consists mostly of aromatic hydrocarbons, similar to

Fig. 5. Chromatogram of the syn-crude obtained for PC hydrothermal processing. (1) phenol, (2) isopropylphenol, (3) isopropenylphenol, and (4) bisphenol A.

Fig. 6. Chromatogram of the syn-crude obtained for SB hydrothermal processing. (1) toluene; (2) ethylbenzene; (3) styrene; (4) benzene, (1-methylethyl)-; (5) a-
methylstyrene; (6) benzene, 1,10-(1,3-propanediyl)bis-; (7) benzene, 1,10-(1-methyl-1,3-propanediyl)bis-; (8) benzene, 1,10-(2-butene-1,4-diyl)bis- .
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those obtained from PC and SB processing, and that the non-
volatile fraction consists of higher molecular weight compounds
containing the oxygenated functionalities. Due to the lack of liquid
product analysis, it is hard at this point to determine the potential
of hydrothermal processing of PPO. It is a fact that high yield of liq-
uid products can be obtained, but it remains unclear to which
extent this product can be used for manufacturing new resins.

3.2.4. Poly(methyl methacrylate) (PMMA)
Hydrothermal processing of PMMA primarily produced an oily

phase, which nearly represented 50% of the recovered products.
The elemental analysis shows that PMMA derived syncrude has
the lowest carbon and the highest oxygen contents among all
the syncrudes, which in fact reflect the elemental composition of
PMMA itself and of its monomer. The TGA results show that
PMMA derived syncrude, similarly to PC syncrude, consists of
mainly volatile compounds: in fact, at 300 �C more than 80% is
vaporized.

It is known that PMMAmolecular scission is favored by thermal
degradation at temperatures above 300 �C, which leads to the pro-
duction of the monomer, methyl methacrylate (MMA), together
with many other products [Manring, 1991].

The GC–MS analysis of the syncrude shows that many different
compounds, mainly in the C6-C9 range, were obtained from PMMA
degradation. The main identified products were found to be: cyclo-
hexanecarboxylic acid, methyl ester, pentanoic acid, 4-methyl,
methyl ester; pentanedioic acid, 2,4-dimethyl-, dimethyl ester;
and 4,4-dimethyl mono-methylglutarate, methyl ester, all clearly
derived from PMMA thermal decomposition and by cyclization
reactions. The monomer MMAwas instead not detected in the pool
of these low boiling point compounds. In addition, several car-
boxylic acid compounds were identified, indicating hydrolysis
reactions of derived esters. From the carbon balance it is observed
that the rest of the carbon was collected in the aqueous phase. In
agreement with the observation of the carboxylic acids formation,
the AP appeared highly acidic with a pH value of 2.8, and further-
more its TOC was found among the highest (23.4 g/L). Such high
value could be explained by the presence of the monomer MMA
in the aqueous phase. Therefore further qualitative investigation
on the AP is required. Hydrothermal processing of PMMA, alone
or mixed in a blend with other polymers, is considered a valuable
alternative for unrecyclable waste plastic handling with chemicals
recovering.

PMMA !
cracking=
cyclization

esters !hydrolysis
carboxylicacids ð2Þ

3.2.5. Poly(vinyl alcohol) (PVA)
According to Table 1 it is evident that PVA also produces a sig-

nificant amount of syncrude (�35%), and only to a minor extent a
solid phase, when processed hydrothermally. Thermal decomposi-
tion of PVA via pyrolysis has previously been studied [Gilman et al.,
1994]. It has been found that thermal decomposition is initiated
well below 300 �C and terminates around 475 �C. The thermal
decomposition of PVA involves H2O chain stripping resulting in
the formation of polyenes. These may then undergo cyclization,
aromatization, condensation etc. forming substituted compounds,
cyclic and aromatic compounds.

TGA of the PVA derived syncrude shows that approximately 60%
is volatile. Of the volatiles, GC–MS analysis showed that mainly
aromatic compounds are obtained, e.g. phenol, benzyl alcohol, ben-
zoic acid, cumenol. This observation is in accordance with the ele-
mental composition of the PVA derived syncrude, which shows a
H/C ratio of 1.32 and an oxygen content of 9%, which indicates pre-
dominately aromatic oxygenated compounds. This reflects that
PVA also undergo dehydration, cracking and to a great extent
aromatization of intermediates when processed in supercritical
water.

PVA !�H2O polyenes !
cracking=
cyclization

oxygenatedaromatics ð3Þ

In a plastics co-processing context, the formation of aromatic com-
pounds from PVA has synergetic potential. For instance, if processed
together with e.g. PC, SB, or PPO, the majority of compounds will
still be an aromatic pool of compounds for which the extent of oxy-
genates can be tuned be varying the ratio of the different resins.

3.2.6. Poly(oxymethylene) (POM)
POM hydrothermal conversion led, in a smaller extent, to the

production of syncrude (�14%) and solids (�8%); while the major-
ity of the carbon was recovered in the aqueous phase, whose TOC
content is in fact the highest among the aqueous phases, reaching a
concentration of 25 g/L.

It is known that the thermal decomposition of POM yields
formaldehyde by end-chain initiation followed by depolymeriza-
tion [Beyler and Hirschler, 2002]. Formaldehyde is highly soluble
in water, and below 200 �C it tends to react producing methanediol
by hydration [Matubayasi et al., 2007]. The high carbon content of
the aqueous phase could therefore be related to the presence of e.g.
formaldehyde and methanediol. From the TGA it can be noted that
the POM derived syncrude is both made of low and high boing
point compounds: at 300 �C, 40% of the syncrude is not volatilized

1000150020002500300035004000

Wave number [cm-1]

Fig. 7. FTIR spectrum of the PPO derived syncrude.
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yet. In the pool of the low boiling point compounds, phenols
(dimethyl, trimethyl and tetramethyl) together with ketones, such
as 2-pentanone (4-hydroxy-4methyl) and 2-cyclopenten-1-one
(2,3,4-trimethyl-), were identified as the main compounds by
GC–MS analysis. This indicates that intermediates form POM
decomposition may undergo more complex condensation reac-
tions, ultimately leading to the formation of higher boiling and
even non-volatile compounds. A great interest would be related
to further investigate the formation mechanism of phenolic and
ketonic compounds, and furthermore the recovery of the com-
pounds due to their high added value, as they are not just com-
monly involved in the plastic production, but also used in the
pharmaceutical industry.

3.2.7. Poly(lactic acid) (PLA)
From Table 1 it is evident that the vast majority of compounds,

formed from PLA degradation, were obtained in the aqueous phase.
In order to investigate the compounds formed, the aqueous phase
was extracted using the method developed by Madsen et al. which
is capable of extracting a broad range of different chemical com-
pounds [Madsen et al., 2016]. A broad range of compounds were
identified including several carboxylic acids accounting e.g. acetic
acid, propanoic acid, butyric acid, lactic acid, valeric acid and 2-
methyl butyric acid etc. In addition, several alcohols and ketones,
mainly in the C5 and C6 range, were identified.

Through previous studies it is known that lactic acid chemically
converts along several reaction pathways when subjected to super-
critical water [Mok et al., 1989]. Decarbonylation, decarboxylation,
and dehydration are known reactions in lactic acid conversion,
which lead to a variety of different compounds, such as acetalde-
hyde and acrylic acid [Szedlacsek, 2013]. Serrano-Riuz and Dume-
sic showed that especially acetaldehyde, but also lactic itself, can
be intermediate compounds for the formation of C4-C7 ketones
and alcohols [Serrano-Ruiz and Dumesic, 2009].

The fact that lactic acid is detected in the aqueous is prospective
from a circular plastic economy perspective. Moreover, the pres-
ence of a broad range of commodity chemicals, obtained mainly
from the aqueous phase, might be a process advantage when con-
sidered in a plastic blending context. For instance, in PLA/PPO or
PLA/PVA blends a straight forward separation scheme is expected
since the majority of PLA degradation compounds will be obtained
in the aqueous phase, whereas the PPO or PVA derived compounds
will be obtained primarily in the water-insoluble synthetic crude
phase.

3.2.8. Poly(butylene terephthalate) (PBT) and Poly(ethylene
terephthalate) (PET)

For the PBT only aqueous phase and solid products were
obtained, where approximately 80% of the carbon was recovered
in the solid phase. PBT is known for its intolerance to hot water,
and present results showed that full degradation can be achieved
within short residence times [Beyler and Hirschler, 2002]. GC–MS
analysis showed that the solid phase consisted almost exclusively
of terephtalic acid (TPA), one of the two monomers of PBT (the
other one being butanediol). This indicates that the esters groups
underwent hydrolysis under the applied hydrothermal conditions
forming TPA and butanediol. Furthermore, the results also show
that TPA is thermally stable under the severe conditions, and that
char formation reactions are retarded. The insolubility of TPA in
water resulted in a benign chemical recovery, which could be per-
formed simply by decanting or filtration. Moreover, in blend prod-
ucts, like PC/PBT blends, chemical recovery is expected to be
simple since PC forms mainly supernatant syncrude, whereas the
TPA will precipitate and be recovered as solids. According to
Fig. 2, it is observed that the remaining carbon is obtained in the

aqueous phase, but it still remains to be investigated if butanediol
is in fact recovered in the aqueous phase.

PET is also, like PBT, known to be intolerant to hot water [Beyler
and Hirschler, 2002]. Structurally, PET and PBT are very similar and
therefore it is expected that these polymers will behave similarly
when exposed to supercritical water. Just like it was observed for
PBT, the majority of carbon (�80%) was obtained in a solid fraction,
of which TPA was found as the dominating compound. The simplic-
ity in these observations can easily be identified in blend products
like PC/PET (same as for PC/PBT) and for PBT/PET blends. As in the
case of PBT, it remains to be investigated if ethylene glycol can be
recovered in the aqueous phase. The fate of ethylene glycerol in
supercritical water, but under alkaline conditions, was investigated
by [Pedersen and Rosendahl, 2015]. Under these conditions, it was
found that ethylene glycerol is also synthesized into a syncrude,
although in low yields.

3.3. Applications and challenges

Results have shown that high yields of synthetic crude oil can
be achieved when processing plastic polymers individually under
supercritical water conditions. For the majority of the polymers
in the present study, more than 50% of the plastic fed into the reac-
tor is in fact decomposed to synthetic crude oil.

The synthetic crude oil constitutes a variety of chemical com-
pounds that makes it usable as source for extraction of valuable
chemicals or as a fuel. It is envisioned that the postprocessing of
the synthetic crudes, e.g. separated, purified, and upgraded can
be handled by business-as-usual refinery operations. Furthermore,
the analyses of the products have highlighted the presence of
monomers, which if properly extracted can be reintroduced into
the market for the production of new plastic materials. Both
aspects, the production of the synthetic-crude oil and the presence
of monomers in the products, show that hydrothermal processing
can be considered as a potential technology for increasing the cir-
cularity of the plastic economy.

The recovery of monomers and other value added chemicals
from the bulk synthetic crude must however be examined in the
light of actual plastic waste processing. Dies, additives, and impu-
rities etc. may likely challenge the separation since they will mixed
with the synthetic crude product. For instance, if carbon blacks or
titanium oxides are used for pigmentation, such additives will
likely be obtained in the product precipitate. Processing colored
PET or PBT could therefore be challenging since TPAmonomers will
mix with precipitated additives. Hydrothermal treatment of undif-
ferentiated mixtures of plastics with and without additives is
therefore a necessary consequential study needed to evaluate the
technology potential. Co-processing of plastic materials with other
organic feedstock, e.g. household waste and sewage sludge con-
taining micro-plastics resembles other relevant plastics waste
streams. Recovery of the plastics from these streams may turn
out challenging, where direct co-processing, without any pre-
separation, seems attractive. In conclusion, the results of the pre-
sent study are promising and future studies focussing on handling
real waste streams under hydrothermal conditions should be
undertaken.

4. Conclusions

In this study nine different types of high-density plastics are
processed in supercritical water. Results show that all the plastics
are susceptible to hydrothermal treatment, which converts them
into synthetic crude oil, water soluble organics, gases and solids.
The yield of synthetic crude oil ranges from 0%, for e.g. PET, PBT,
and PLA, to nearly a 100% for PC. For PC, the synthetic oil is a simple
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mixture of only few compounds included BPA, the original PC
monomer. PPO, SB, and PVA, all demonstrate high yields of syn-
thetic oils but of more complex nature, nonetheless all of aromatic
structures. For PET and PBT it was observed that the obtained solid
fractions contained almost exclusively terephalic acid, one of the
original monomeric compounds. In conclusion, the study demon-
strates that hydrothermal processing of high-density plastics is a
prospective technology for tertiary recycling, in order to produce
high value chemical compounds and to recover, at the same time,
monomeric constituents.
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A R T I C L E I N F O
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A B S T R A C T

Willows are increasingly used as natural filters to treat nutrient-rich wastewater. Their natural tendency to
absorb minerals is exploited both for the nutrients and the metals, which are contained in the wastewater. This
application allows addressing environmental concerns related to wastewater management and, at the same time,
achieving higher biomass yields. However, the end-use of this biomass is often a simple incineration for pro-
duction of heat and power.

The present study proposes, alternatively, to use willow biomass, grown on wastewater irrigated fields, as
feedstock for the hydrothermal liquefaction process. The thermochemical conversion route allows the valor-
ization of the organic fraction of the biomass into a biocrude oil, and simultaneously collecting and preserving
the inorganic elements in the effluent products.

The willow was converted at supercritical water conditions (400 °C) for 15min in a micro-batch reactor
(10 cm3), and high mass yields (39.7%) of energy dense (38.6 MJ kg−1) biocrude oil were obtained. It was found
that most inorganics, including phosphorus (76% of total P on a mass basis), are mainly transferred to the solid
products. The concentration of the elements in the solids eases their recovery and re-use for soil amendment. A
different tendency was observed for potassium and sodium, which were almost exclusively collected in the
aqueous phase (above 88% for both K and Na on a mass basis). Significant quantities of nitrogen and sulfur, and
some metals, were transferred to the biocrude oil, however its quality resulted overall unaffected.

1. Introduction

The use of renewable energy sources for the production of fuels and
chemicals is increasingly required as fossil reserves are depleting, and
because of environmental concerns arising from fossil fuels usage [1].
Lignocellulosic biomasses (i.e. poplar and willow) are commonly grown
in Short Rotation Coppice (SRC) as renewable carbon source to produce
heat and power. In particular, willow is a fast growing plant, easily
adaptable to various climates and soils, and can lead to high biomass
yields per hectare of cultivation [2]. Willow plants find application also
in the phytoremediation of metal polluted soils, where their natural
capacity of up-taking elements through their roots is exploited for re-
mediation of heavily contaminated lands [3–5]. Using willow as vege-
tation filter, for cleaning of wastewater, has been demonstrated to be a
good alternative for waste management and to have an increased bio-
mass production with no further costs for fertilizers [6]. Studies have
investigated different wastewater streams: groundwater [7], municipal
wastewater [8], or agricultural drainage water [9].

Every two to four years SRC willow crops are cut, and the biomass is
mainly used for heat and power production. Heavy metals, absorbed by
willow biomass during phytoremediation processes, are primarily re-
covered in the ashes after combustion [10], and some technologies have
also been developed for their separation [11]; in contrast, a great
portion of nitrogen and sulfur is irreversibly lost during combustion
[12].

Willow biomass can also be used as lignocellulosic feedstock for
biofuel production in thermochemical processes like Hydrothermal
Liquefaction (HTL). HTL is a high pressure, medium temperature pro-
cess, where various biomasses or organic waste sources are processed in
the presence of water to produce an energy dense oily product, named
biocrude, along with an aqueous phase, some solids, and gases [13].
HTL is an energy-efficient technology (85% of the energy in the feed-
stock is recovered in the biocrude). In continuous HTL processing, the
feedstock can be efficiently converted into biocrude (45%, mass frac-
tion of the dry ash free feedstock) [14]. In some studies, willow wood
has already been investigated as a raw material for hydrothermal
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processing, for example with focus on the dissolution mechanism [15]
or its application in a continuous bench scale reaction unit [16].

A new concept is proposed in this work, where the wastewater is
used to grow willow trees, which are then converted by HTL to bio-
crude while nutrients are recovered simultaneously from the aqueous
and solid by-products. Biocrude oil can be upgraded to meet drop-in
fuels properties, while the nutrients could be re-utilized as fertilizers for
agricultural lands.

Recycling of nutrients for cultivation of algae by recirculation of the
aqueous phase produced from HTL [17,18] or hydrothermal gasifica-
tion [19] of algae has been previously studied in literature. Moreover,
few other studies were found on the fate of nitrogen [20] and other
inorganics [21] in hydrothermal carbonization. Ekpo et al. [22] have
investigated the inorganics in the solid residues and the nutrients in the
water phases from hydrothermal processing of microalgae, manure and
digestate at various temperatures. Lu et al. [23] have similarly looked
into the inorganic content of aqueous and solid residues after HTL of
human feces in subcritical water conditions. Carrier et al. [24], studied
the effect of temperature on the inorganics redistribution after sub- and
supercritical hydrothermal liquefaction of uncontaminated and As-
contaminated fern biomass.

The aim of the present study was to understand the fate of nutrients
and metals after HTL of willow, grown with wastewater, in supercritical
water conditions; and ultimately to define the distribution of the in-
organic elements among the different product phases from HTL, in-
cluding the biocrude. Furthermore, it was investigated whether the
quality of the oil was eventually affected by the presence of inorganics.

2. Materials and methods

2.1. Feedstock characterization

The raw material used in the HTL experiments is willow wood,
clone variety Björn (Salix schwerinii x Salix viminalis), which has been
developed in particular to get high biomass-yields and a high nutrient-
uptake. The biomass was grown at Center for Recirkulering (Denmark,
55.831485, 8.635960), and it was irrigated with untreated household
wastewater and sewage from local houses for two years. Two-year-old
stems of fifteen-year-old roots were provided for the experiments.
Stems were 25–30 cm long, with a diameter of 1–2 cm, and with bark.
In order to ease the reactor loading, the willow stems including bark
were chopped and further ground to sawdust with a particle size below
0.5 mm, in a cyclone mill (Foss, Cyclotec 1093). After the milling, the
willow was characterized in terms of moisture content, ash content, and
elemental composition, and the average results from the measurements
are reported in Table 1. The moisture mass fraction of the willow
sawdust was measured in a moisture analyzer (Kern, MLS) at 120 °C.
The ash mass fraction was instead determined after holding pre-dried
samples isothermally at 775 °C for 3 h in an electric muffle furnace
(Protherm Furnaces). The TG curve of the willow biomass obtained by
Thermo-Gravimetrical Analysis, confirmed both the moisture mass
fraction (∼5%, at 100 °C) and the ash mass fraction (< 1%, see Fig. 1).

Inductively Coupled Plasma (ICP) analysis was used to investigate
the presence of nutrients and heavy metals in the willow biomass, and
the average concentrations of the investigated inorganics are reported

in Table 2. Calcium and potassium are the most abundant inorganic
source, while the presence of phosphorus, sulfur, magnesium, and iron
is significant as well. The mass fraction of inorganics investigated by
ICP sums up to 0.38%, therefore the rest of the inorganics should be
attributed to the elements as aluminum, lead or nickel, which are
highly abundant in wastewater [25].

2.2. Experimental procedure for HTL experiments

HTL experiments were carried out in stainless steel micro-batch
reactors with 10 cm3 volume. A total of three experiments were carried
out under the same process conditions, and the average results are re-
ported together with the standard deviations. A homogeneous slurry
(7 g) was prepared by adding distilled water to the willow sawdust. The
high biomass loading into the feed, corresponding to a mass fraction of
20% on a dry basis, is expected to additionally cause a relatively high
biocrude yield. At the same time it will enable a smooth pumpability of
the slurry when operating in a continuous system.

Potassium carbonate (K2CO3) was added to the feed mixture (2.5%
in weight of the water-biomass mixture), as alkaline conditions promote
biocrude oil production, reduce coke formation [26], and enhance the
de-oxygenation of lignocellulosic biomass leading to biocrudes with
lower oxygen content [27].

Reactors were sealed, purged with nitrogen to remove residual air,
and then pre-pressurized to 2MPa to push the slurry down into the
reactor volume. Without pre-pressurizing, accumulation of the slurry in
the upper capillary section of the reaction system [28] was observed,
causing undesirable, unconverted material to appear in the products.

The biomass was converted at supercritical conditions; in this re-
gion, the thermo-physical properties of water are enhanced. The di-
electric constant is significantly reduced and consequently water be-
comes a non-polar solvent in which organics can easily dissolve. At
higher temperatures, taking advantage of the increased reaction rates, a
higher degree of depolymerization can be achieved leading to biocrude
oil with an improved quality (e.g. lower oxygen content, lower visc-
osity, higher HHV) [14,29]. Reactors were submerged in a pre-heated
sand bath (Techne, SBL-2D), which provided the necessary heating to
reach the reaction temperature, set to 400 °C, in about 1min (heating

Table 1
Characterization of the willow sawdust used as the HTL feedstock material. The values measured are mass fractions.

Moisture Asha Ca Ha Na Oa b H/C O/C

(%) (%) (%) (%) (%) (%) (−) (−)

5.54 ± 0.42 0.70 ± 0.07 46.92 ± 0.23 6.10 ± 0.08 0.30 ± 0.11 45.98 ± 0.04 1.55 0.84

a Dry basis.
b Oxygen calculated by difference (O=100-C-H-N-ash).
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Fig. 1. Thermogravimetric curve of the willow wood.
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rate: 250–450 Kmin−1 [30]). A rapid heating suppresses the formation
of char by repolymerization of the intermediates, which frequently
occurs at lower heating rate [26]. According to previous studies [30],
reactors were kept in the bath for 15min (including the heating period),
while agitation was provided by a motor system. Both temperature and
pressure were monitored during the entire reaction time. Pressures of
about 35–38MPa were achieved at supercritical water conditions. After
the reaction time, the reactors were quenched to room temperature
(cooling rate: 1000 Kmin−1 [30]) in a water bucket.

2.3. Products separation and recovery

The gas, produced during the hydrothermal conversion of the
willow biomass, was released from a valve, placed on top of the re-
actors, into a gas collecting system for being analyzed qualitatively.
Reactors were turned upside down and the aqueous phase was col-
lected, without adding any solvents to preserve its quality and com-
position for analysis.

Reactors were unsealed and rinsed with acetone (Cab Dan,
acetone > 95%) to collect the oil phase and the solids. The recovered
mixture was vacuum filtered to separate the solids. The solids were
collected on a filter paper (VWR, particle retention: 5–13 μm), rinsed
with distilled water to wash away the catalyst, dried in the oven
overnight at 105 °C, and finally weighted to determine their yield. The
acetone was evaporated in a rotary evaporator (40 °C, 56 kPa), while
Diethyl Ether (DEE, Sigma Aldrich, ACS reagent, anhydrous,> 99.0%)
was added to recover the oil from the flask in the rotary, and to allow
removing of any residual water. As DEE is immiscible in water, it
formed a top phase with the oil, while the residual water was recovered
at the bottom. DEE was finally evaporated (40 °C, 99 kPa) and the re-
maining biocrude oil was weighted to report the yield. The combined
use of acetone and DEE was here adapted from the method used by
Pedersen et al. for the recovery of oil products after HTL of lig-
nocellulosic model compounds [30].

Although the use of micro-batch reactors enables a fast screening of
the biomass, simulating what happens in continuous processing, there
are some challenges related to working at such small scale. Each step in
the recovery of the products includes an additional risk of losses.
Therefore, the less steps involved the better it is. In the present work the
aqueous phase was collected in two steps: first without adding any
solvent to preserve its quality, and then after the addition of the DEE. It
should be noticed also that a small amount of aqueous phase could get
lost upon evaporating the acetone.

2.4. Products characterization

The elemental composition of the biocrude and solids was de-
termined by an elemental analyzer (Perkin Elmer, 2400 Series II CHNS/
O), operated in CHN mode. Acetanilide (Sigma Aldrich, puriss. p. a.,
≥9.5%) was used as standard to calibrate the instrument. The instru-
ment provided information on the C, H, and N mass fraction in the
products, while O was calculated by difference however without ac-
counting for the ashes. Ash determination was impossible because the
product samples were too small for that. The volatility of the biocrude
was assessed by Thermogravimetrical Analysis (TGA, TA Instrument,
Discovery). Samples were heated from room temperature to 1000 °C
(20 Kmin−1) in a nitrogen atmosphere.

Qualitative analysis of the volatile fraction of the bio-crude was
performed in a GC-MS system: a Gas Chromatograph (Thermo

Scientific, Trace 1300) coupled with a Mass Spectrometer (ISQ QD).
The GC oven was equipped with a capillary column (Agilent
Technologies, length: 30 m, I.D.: 0.25mm, film thickness: 0.25mm),
whose temperature was increased up to 300 °C (10 Kmin−1) during the
measurements. The MS ion source was kept at a constant temperature
of 300 °C. Before injecting 1mm3 of bio-crude oil in the GC-MS inlet
(injector temperature 300 °C), samples were diluted in DEE and filtered
using 0.45 μm syringe filters.

The pH of the aqueous phase was measured with a WTW pH meter
3210. Total organic carbon, total nitrogen, chloride, phosphate, and
sulphate concentrations of the water phase were instead determined
using reagent vials (LCK: 386, 138, 311, 349, 153, respectively) and a
spectrophotometer unit (Hach & Lange, DE3900).

The composition of the reaction gas was determined in a Gas
Chromatograph (Shimadzu, Tracera, GC-2010 Plus). 0.1 mm3 were in-
jected into a micropacked column (Restek, length: 2.0 m, I.D.:
0.53 mm), whose temperature was set to 85 °C, while the signal was
elaborated by a Barrier Ionization Discharge (BID) detector. Helium
was the carrier gas (total flow: 803 cm3min−1; split ration: 1:200; flow
control mode: pressure 400 kPa). The GC had previously been cali-
brated for measuring of H2, CH4, CO and CO2.

2.5. Analytical method for measuring inorganics

The concentration of inorganics in the solids, in the aqueous phase
and in the biocrude was determined by Inductively Coupled Plasma
Atomic Emission Spectroscopy (ICP-AES). In order to extract the ele-
ments of interest, samples were digested by microwave assisted acid
digestion according to EPA method 3051A (US. EPA., 2007). The mi-
crowave reaction system was an Anton Paar Multiwave 3000 equipped
with a HF-16 high-pressure rotor and Teflon® lined ceramic digestion
vessels. Approximately 0.2 g of material was weighed into each diges-
tion vessel and 9 cm3 concentrated nitric acid (HNO3) and 3 cm3 hy-
drochloric acid (HCl) were added. All acids were of suprapure quality
(PlasmaPure, SCP Science). In accordance with the method, the di-
gested samples were transferred into Polypropylene vials and diluted to
50 cm3 with Type I ultrapure water (Elga LabWater). The ICP instru-
ment was a Thermo iCap 6300 Duo view ICP-AES operated in axial view
mode (Thermo Scientific). The forward power of the radio frequency
(RF) generator was 1150W and the plasma and auxiliary gas flows were
set at 12 Lmin−1 and 1.0 Lmin−1, respectively. The introduction
system for samples was a cyclonic spray chamber equipped with a
concentric glass nebulizer operated at sample uptake rate of
2 cm3min−1 and a nebulization gas pressure of 200 kPa. The ICP-AES
was calibrated using matrix matched multi-element external standards.
The standards were prepared from single element standards of 1 g L−1

(PlasmaCAL, SCP Science). Each element was quantified using several
emission lines, measured in triplicate. When more than one emission
line was used, the concentration was calculated based on the average
concentration reported. The integration time was 5 s for emission lines
above 243 nm, and 15 s for emission lines with shorter wavelengths.
Internal standardization using yttrium (Y) was used for compensation
of possible matrix effects; i.e. all samples and standards were spiked
with Y to a final concentration of 1mg L−1. For quality control,
Certified Reference Material (CRM) was digested and analyzed along
with the samples. The CRM was lyophilized and homogenized sewage
sludge of type EnviroMAT BE-1 (SCP Science). The method yielded
results within the specified confidence interval of the CRM.

Table 2
Concentrations of inorganic elements in the pre-dried willow sawdust.

Ca Cu Fe K Mg Mn Na P S Zn

willow (mg kg−1) 1688 ± 901 5 ± 2 234 ± 57 891 ± 297 240 ± 56 66 ± 17 87 ± 52 308 ± 70 211 ± 31 56 ± 15
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3. Results and discussion

3.1. Solid residues and biocrude oil

The catalytic thermochemical conversion of willow, grown on
wastewater irrigated fields, in supercritical water produced a high yield
of biocrude oil (mass fraction of the dried feedstock 39.7 ± 7.5%), and
some solid residues (mass fraction of the dried feedstock 10.8 ± 1.3%).
The rest of the carbon contained in the feedstock was recovered in the
aqueous phase, as soluble organics, and in the reaction gas. Biocrude
yields were higher than those (31% and 28.5 ± 1.0% in mass, dry
basis) reported in previous studies [16,31]. Possible causes include the
rapid heating provided by the present reaction set-up, the pre-pres-
surization of the reactors leading to higher pressure during the hydro-
thermal conversion, the choice of the catalyst, and the solvents used to
collect the oil and the other products. The elemental composition of the
solids and of the biocrude oil are shown in Table 3, where the average
values from different experiments, each sample repeated twice, are
reported. The high carbon mass fraction (78%) and the low oxygen
mass fraction (12%) of the biocrude are reflected in its high HHV
(38.6 MJ kg−1). The carbon mass recovered in the biocrude corre-
sponds to 66.16% of the carbon contained in the original biomass. The
reduced oxygen content in the biocrude, with respect to the biomass, is
explained by the reactions that take place during HTL processing.
Oxygen was removed through decarboxylation and dehydration reac-
tions, and carbon dioxide and water were formed as products. From the
elemental analysis, it appeared also that a great portion of the nitrogen
was transferred to the biocrude, and therefore an upgrading (e.g. cat-
alytic hydrotreating) of the oil for reducing nitrogen heteroatoms will
be needed to use it as fuel precursor.

TG analysis showed that the biocrude is a mixture of low and high
boiling point compounds. The weight loss of the oil occurred in a single
step. More than half of the mass of the biocrude (60%) consisted of low
(< 180 °C) and medium (180–350 °C) boiling point compounds, which
represent the gasoline, jet fuel, and diesel fractions. About 20% of the
mass of the biocrude was volatilized in the boiling range of lubricants
and maritime fuels (350–575 °C). The remaining non-volatile fraction
accounted for 20% of the mass of the biocrude, and it represents the
asphalts and residue (see Fig. 2).

The biocrude was analyzed qualitatively by GC-MS, which enabled
the identification of compounds with a boiling point below 300 °C; this
volatile fraction corresponds to half of the total composition, as visible
from the TG analysis (Fig. 2). The volatile fraction of the biocrude
appeared to be primarily composed of oxygenated cyclic compounds
with carbon in the range C6-C18. In Table 4, the main identified com-
pounds are reported, together with their chemical formula, peak area,
and retention time. As compounds are grouped into chemical classes, it
clearly appears that the most abundant compounds are ketones and
phenols. Overall, the chemical composition of the biocrude obtained
from willow irrigated with wastewater does not differ from the one of
the biocrude obtained from normally irrigated willow, where ketones,
phenols, and alcohols were also identified as the most abundant com-
pounds [33]. Among the first 30 compounds by peak area, only one was

a N-containing compound; the same one was also detected in the pre-
vious study [33]. Therefore, the quality of the biocrude appears to re-
main unaffected when using willow irrigated with wastewater instead
of normally irrigated willow.

3.2. Aqueous phase

The aqueous phase appeared to be slightly acidic, despite the use of
an alkaline catalyst (see Table 5). This is probably due to the dissolution
in the water phase of organic acids and phenols, produced during HTL.
The presence of organic compounds in the aqueous phase was in fact
confirmed by TOC measurement, which revealed a high carbon con-
centration (25.09 g L−1). On the other hand, total nitrogen (TN) ap-
peared to be low (0.23 g L−1); this confirmed the fact that most of the
nitrogen was transferred to the biocrude, as observed by elemental
composition of the oil.

Previous studies on HTL of algae at subcritical temperatures have
found that most of the nitrogen was recovered in the aqueous phase
[17–19,34,35]. The nitrogen abundance in the aqueous phase was
sufficient for recycling and reutilization of HTL water for cultivation of
new algae biomass [17,18]. However, they likewise all observed ni-
trogen in the biocrude. Biller et al. [18] have observed that at higher
temperatures (350 °C) more proteins are broken down, resulting in an
increased nitrogen content in the biocrude. Both higher temperatures
and longer residence times resulted in an increased accumulation of the
nitrogen in the biocrude oil in a study conducted by Yu et al. [34].

It should be noted that, in all the studies mentioned above, the ni-
trogen in the raw biomass was considerably higher than in the willow
used in the current study; to some extent, this can explain the different
trend in the distribution among HTL products. Considering the out-
comes of the above mentioned studies, an aspect that had certainly
played an important role in favoring nitrogen concentration in the
biocrude is the more severe temperature and pressure used in the
present study.

From the measurements reported in Table 5 it appears that the
concentration of sulphate (SO4

2-) in the aqueous phase is 200 times
larger than the concentration of phosphate (PO4

3-) in the same product
phase. These higher concentrations of sulfur in the aqueous phase are
also confirmed by ICP analysis (Table 6).

3.3. Reaction gases

The most abundant gas produced in supercritical HTL of willow is
CO2 (volume fraction 75.2%). The volume fraction of H2 accounted for
19.0%, while only minor volume fractions of CH4 (3.6%) and CO
(2.2%) were detected in the gas mixture. The proportion of the various
gas components is in line with results from HTL processing of lig-
nocellulosic biomass, which usually results in slightly higher con-
centrations of CO2 at the expense of H2 [36]. Water gas shift equili-
brium (at 400 °C and 30MPa) would result in the following volume
fractions: 78% CO2, 17% H2, 4.8% CH4, and almost no CO. As the
measured volume fractions are very close to the calculated ones, the
reaction was close to equilibrium.

Table 3
Mass yield of solids and biocrude after HTL of willow, and characterization of solids (on dry basis) and biocrude in terms of elemental mass fractions and HHV.

Product Yielda,d Cd Hd Nd Ob,d H/C O/C HHVc

(%) (%) (%) (%) (%) (−) (−) (MJ kg−1)

solids 10.83 ± 1.28 71.64 ± 3.08 3.82 ± 0.06 0.43 ± 0.01 24.11 ± 3.13 0.64 0.29 32.00
biocrude 39.72 ± 7.54 78.15 ± 1.24 8.50 ± 0.43 0.95 ± 0.15 12.40 ± 0.96 1.30 0.14 38.57

a Dry basis.
b Oxygen calculated by difference (O=100-C-H-N).
c HHV calculated using Channiwala and Parikh correlation [32].
d ± numbers refers to the standard deviations of the average values.
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3.4. Distribution of the inorganic elements among HTL products

When biomass is converted hydrothermally, the inorganic elements
are transferred from the raw feedstock to the products. Therefore, the
presence of inorganics in the solid residues, in the biocrude, and in the
aqueous phase from HTL of willow, was investigated by ICP-AES ana-
lysis.

High concentrations of the inorganics in the solids were found as
compared to the concentrations of the same elements in the biocrude
and in the aqueous phase (see Table 6). This suggests that most in-
organics tend to concentrate in the solid residue after HTL. A different
behavior was observed for potassium (K) and sodium (Na): K and Na

were mainly distributed in the aqueous phase.
Previous investigations, conducted at subcritical conditions, also

reported that alkaline and earth metal elements are primarily recovered
in the solid products regardless from the feedstock used: algae
[17,22,35], digestate [22], animal manure [22], and human feces [23].
Furthermore, these studies confirmed the tendency of K and Na to
concentrate in the water phase, as observed in the present study.

The various pathways followed by the inorganic elements while
being distributed over the HTL products may be caused by the way they
were included in the raw biomass. Within biomass, calcium, magne-
sium, and phosphorus bound frequently to the organic matter, which
explains why they are primarily retained in the solid products. Instead,
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Fig. 2. Thermogravimetric curve of the biocrude and boiling point ranges of petroleum fractions.

Table 4
Main chemical compounds detected in the biocrude by GC-MS.

Chemical class Identified compound Chemical formula Peak area (%) Retention time (min)

Ketones 4-Hydroxy-4-methyl-pentan-2-one C6H12O2 5.30 7.75
2,3-Dimethyl-2-cyclopenten-1-one C7H10O 4.62 11.73
2,3,4-Trimethyl-2-cyclopenten-1-one C8H12O 3.90 12.15
3,4,4-Trimethyl-2-cyclopenten-1-one C8H12O 3.74 12.61
4-Ethyl-4-methyl-2-cyclohexen-1-one C9H14O 2.89 14.2
2-Ethylidenecyclohexanone C8H12O 1.73 13.32
3-(1-Methylethyl)-2-cyclopenten-1-one C8H12O 1.52 12.83
2,3,4,5-Tetramethyl-2-cyclopenten-1-one C9H14O 1.39 12.90
3,4-Dimethyl-2-cyclopenten-1-one C7H10O 0.97 11.44

Phenols 2,6-Dimethyl-phenol C8H10O 2.82 13.52
2-Methyl-phenol C7H8O 2.29 12.02
2,4,6-Trimethyl-phenol C9H12O 1.94 14.41
2,3,4,6-Tetramethyl-phenol C10H14O 1.46 16.66
2-(2-Penten-4-yl)-4-methyl-phenol C12H16O 1.18 19.36
5-Methyl-2-(1-methylethyl)-phenol C10H14O 1.03 17.57
3,4,5-Trimethyl-phenol C9H12O 1.00 15.32
3,5-Bis(1-methylethyl)-phenol C12H18O 0.97 20.83
2,3,5-Trimethyl-phenol C9H12O 0.87 15.38
2-Ethyl-6-methyl-phenol C9H12O 0.83 14.72

Hydrocarbons 3-Ethyl-2,5-dimethyl-1,3-hexadiene C10H18 2.56 13.61
(saturated & unsaturated) Hexadecane C16H34 1.10 18.34
Aromatic 1-(2-Methoxymethyl-3,5,6-trimethylphenyl)ethanol C13H20O2 1.46 18.92
alcohols (6-Hydroxymethyl-2,3-dimethylphenyl)methanol C10H14O2 1.13 17.64
Aromatics 3-Ethyl-1,2,4,5-tetramethyl-benzene C12H18 1.18 19.01

1,2,4,5-Tetraethyl-benzene C14H22 0.97 20.28
Aldehydes 2,4,6-Trimethyl-3-cyclohexene-1-carboxaldehyde C10H16O 1.08 13.98

1,3,4-Trimethyl-3-cyclohexene-1-carboxaldehyde C10H16O 0.91 14.95
Esters Butanoic acid, 3-methyl-, 3,7-dimethyl-2,6-octadienyl ester C15H26O2 1.31 15.48
Alcohols 5-Methyl-6-Hepten-1-ol C8H16O 1.23 9.84
Amides 9-Octadecenamide C18H35NO 0.91 27.08

Total area 54.28%
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sodium and potassium are more frequently present as soluble ionic
salts, which eases their recovery in the aqueous phase [21]. In the
present study, the potassium in the aqueous product is mainly due to
the addition of the potassium carbonate catalyst, which still is a salt
soluble in water. Carrier et al. also related the inorganics redistribution
among the HTL product phases to the nature and properties of the
elements and to the pH rather than to the sub- or supercritical tem-
peratures used. In particular, they highlighted that Al, Fe, and Zn,
which are all amphoteric, were mostly recovered in the solids [24].
Similarly, in the present study, most of the Fe and Zn were found in the
solid products.

Fig. 3 shows the distribution of the inorganics among the different
HTL products, obtained by taking into account both the concentration
of the inorganics in each phase and the amount of product for each of
the phases. For each inorganic element, the distribution is normalized
with respect to the total amount of inorganic recovered in the solids,
biocrude and aqueous phase.

For most inorganics, the mass recovery in the solids was more than
50%: Ca (86%), Mn (84%), Mg (81%), P (76%), Fe (71%), Zn (65%), Cu
(50%). Na and K were almost exclusively recovered in the aqueous
phase (88% and 95%, respectively). Nearly half of the S was recovered
in the biocrude, while the remaining was distributed over the aqueous
phase and solids. Heavy metals (i.e.: Fe, Zn, and Cu) were also found in
the biocrude. The amount of heavy metals in the willow biomass used
in the present study did not have negative impact on the quality of the
biocrude. However, the fact that heavy metals and sulfur also end up in
the biocrude oil should be considered, if heavily polluted feedstock are
processed (i.e. impregnated wood); this would in fact be a drawback for
further use in combustion applications or as fuel precursor. The appli-
cation of severe processing conditions could be beneficial in a way that
it enhances the recovery of heavy metals (as Cu, Fe and Zn) in the solids
rather than in the biocrude. This was in fact observed by Jiang and
Savage, who investigated the influence of various processing conditions
on inorganics redistribution after HTL of microalgae. On the other hand
the distribution of Cu, Fe, and Zn distribution over the product phases
appeared to be insensitive to different biomass and water loading [37].

Spectrophotometric analysis of the aqueous phase showed low
concentrations of inorganic P, whereas ICP analysis revealed high
concentration of P in the solids. Phosphates, as well as many other
inorganic materials, are highly soluble in water at temperatures below
200 °C, while they become insoluble at sub and especially at super
critical conditions. The insolubility at higher temperatures is explained
by the fact that solubility is strictly dependent on the dielectric con-
stant, which drops with increasing temperature [38]. Contrary to
common understanding, however, the sharp drop around the critical
temperature normally associated with supercritical conditions is not
present at pressure above 30MPa and thus solubility of phosphates at
the conditions of this work is very similar to those of most subcritical
HTL works. In order to maximize the recovery of P, continuous pro-
cessing of biomass with continuous recovery of solid products at reac-
tion temperature (or, at least, above 200 °C) and pressure is therefore

required; batch processing instead implies the cooling down of the
products with consequent re-dissolution of part of the P in the aqueous
phase [39]. Ekpo et al. [22] observed that the recovery of P in the solids
or in the aqueous phase depends on two parameters: the severity of the
process and the concentration of Ca, Mg, and Fe in the feedstock. They
registered a reduced extraction of the P in the aqueous phase at higher
temperatures (corresponding to hydrothermal liquefaction and gasifi-
cation) rather than at lower (corresponding to thermal hydrolysis and
hydrothermal carbonization). They also noticed as feedstock with
higher Ca:P ratio led to an increased recovery of P in the solid products.
This was previously explained by Heilemann et al. [40], who identified
multivalent metal ions (Al, Ca, Mg, Fe) as responsible for the formation
of insoluble phosphates, which were detected after hydrothermal car-
bonization.

3.5. Potentials and challenges for the recovery of nutrients through HTL

The recovery of nutrients and metals after hydrothermal conversion
of biomass is facilitated by the fact that most inorganics concentrate in
the solid product. Macronutrients (i.e. P), secondary macronutrients
(i.e. Ca, Mg, Mn), and micronutrients (i.e. Cu, Fe, Zn) are in fact re-
covered primarily in the solid product, also named hydrochar. Once
solids are separated from the HTL products mixture, hydrochar can be
used for example for soil amendment [41,42]. In order to use hydrochar
as fertilizers, nutrients should be bioavailable, which means that they
should be in the forms accessible to plants so that biological uptake can
take place [43]. Therefore, future studies should also investigate in
which forms nutrients exist in hydrochar residues from HTL of biomass
in order to assess their bioavailability. Heavy metals (i.e. Cd, Cr, Ni, Pb)
also tend to concentrate in the solids after HTL [44–46]. To be able to
apply hydrochar to the soil, the concentration of heavy metals in the

Table 5
Characterization of the aqueous phase from HTL.

pH (−) TOC (g L−1) TN (g L−1) SO4
2-(g L−1) PO4

3-(g L−1) Cl−(g L−1)

6.83 ± 0.68 25.09 ± 1.67 0.23 ± 0.02 14.34 ± 2.72 0.07 ± 0.03 1.34 ± 0.22

Table 6
Concentrations of inorganics in solid, biocrude, and aqueous products from HTL.

Ca Cu Fe K Mg Mn Na P S Zn

solids (mg kg−1) 8892 ± 1583 46 ± 1 3867 ± 1581 3089 ± 832 2353 ± 176 508 ± 86 44 ± 8 3009 ± 55 293 ± 6 692 ± 80
biocrude (mg kg−1) 37 ± 53 9 ± 1 250 ± 114 4922 ± 3053 2 ± 3 3 ± 1 42 ± 2 47 ± 66 345 ± 6 75 ± 26
aqueous phase (mg L−1) 45 ± 3 0 ± 0 23 ± 2 13339 ± 2229 18 ± 3 3 ± 0 50 ± 21 27 ± 7 39 ± 9 3 ± 0
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solids should not exceed the limits established by law. Restrictions
might vary from country to country, and differ depending on the land
use (e.g. agricultural or non-agricultural destination of use). If the
concentration of heavy metals in the solids is above the permitted
limits, then the solids should be further treated to extract the heavy
metals (e.g. by acid leaching) to guarantee a safe disposal. In order to
avoid an overestimation on the risk posed by the presence of heavy
metals, the concentration of element species, rather than the total
concentration, should be considered. A few studies [44–46] have in-
vestigated the chemical speciation of heavy metals for HTL solid re-
sidues by using BCR or Tessier sequential extraction methods and
concluded that though liquefaction process significantly reduce the
mobility/leachability of heavy metals, still some organic bound heavy
metals could be degraded under oxidizing conditions leading to the
release of heavy metals. Therefore, more investigations will be required
when processing heavily polluted biomass in order to assess the risk
associate with the presence of heavy metals in the products. Never-
theless, HTL offers at least a method to concentrate the elements in the
solid products, which would allow for containing the problem.

Potassium is another macronutrient, whose presence in plants is
fundamental and which facilitates strong stem growth, movement of
water in plants, and promotion of flowering and fruiting. After HTL,
potassium, as well as sodium, are almost exclusively recovered in the
aqueous phase. This product phase, rich also in K and Na, has a po-
tential use as irrigation in agriculture or alternatively to be recycled in
continuous HTL systems. The latter case would result in a reduced
consumption of catalyst due to the presence of potassium in the re-
circulated water, and in an increased amount of oil due as the presence
of soluble organics in the process water that limits the dissolution of
more organics in the aqueous phase [14].

4. Conclusions

The hydrothermal liquefaction process offers a value-adding alter-
native for treating wastewater irrigated willow. The thermochemical
conversion of the woody biomass in supercritical water simultaneously
produces an energy-dense biocrude oil, while most nutrients and metals
are concentrated from the willow biomass into a smaller volume, re-
presented by the solid hydrochars. The results of the present work show
that there are no adverse indications for the HTL process using waste-
water irrigated willow, as the oil, hydrochar and gas yields are in the
range expected for SRC, and the biocrude oil properties and element
contamination are also in the expected range. A standard upgrading of
the biocrude is required to reduce O, N and S content to meet drop-in
fuel quality. Phosphorus is recovered in high yield in the solid char
phase, potassium is instead mainly in the aqueous phase, while nitrogen
is to a great extent transferred to the biocrude. The concentration of
most of the inorganics (Ca, Cu, Fe, Mg, Mn, P, and Zn) in the solids
eases their recovery for reutilization in soil amendment.
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A B S T R A C T

Intense farming activities and the growth of the population produce increasing amounts of wastes, which re-

present an environmental concern and require an adequate disposal. Animal manure, fish sludge, and sewage

sludge are all wet wastes consisting of organic, but also inorganic material. Hydrothermal liquefaction is pro-

posed to treat these wastes as wet feedstocks can be processed without any drying. The organic fraction is

valorized, being converted into biocrude oil, while the inorganics are recovered primarily in the solid products.

The decomposition of these wastes is investigated under sub- (350 °C) and supercritical (400 °C) conditions, and

with and without the addition of K2CO3 catalyst with focus on the biocrude yield and quality. High yields of

biocrude are obtained from the liquefaction of all the feedstocks, especially from fish sludge (ca. 50% d.a.f.) and

sewage sludge (ca. 45% d.a.f.). A reduction in biocrude production is observed at supercritical conditions for

animal wastes, however, the quality of manure-derived biocrudes is improved when using supercritical condi-

tions and by the addition of the catalyst. Carbon is primarily recovered in the biocrude: 50–60% for swine and

cow manure, 55–80% for fish and sewage sludge. Considerable quantities of nitrogen and sulfur are transferred

to the biocrude, respectively 26–60% and 33–66%. Most of the inorganics (e.g. Ca, Mg, P) are recovered in the

solids (above 70%), except for potassium and sodium, which show a higher degree of solubility in the aqueous

phase.

1. Introduction

The depletion of conventional fossil resources, the increase in

greenhouse gas concentrations, and waste management issues are the

main reasons behind an urgent need for renewable resources.

Population growth and the gap between world’s energy demand and

supply are other key factors that contribute to predicting a significant

depletion of fossil fuels by 2050 [1]. The transportation sector is the

greatest contributor to climate emissions, having produced 27% of total

EU-28 greenhouse gas emissions in 2016 [2]. Increasing the use of

biofuels is, therefore, necessary to reduce CO2 emissions in the trans-

portation sector. Advanced biofuels, obtained from inedible biomass

and wastes, represent a promising solution, being able to overcome

some limitations of plant-based biofuels: shortage of raw materials, low

CO2 mitigation effect, blending wall, and poor cost competitiveness [3].

Hydrothermal liquefaction (HTL) is a promising technology produ-

cing advanced biofuels directly from biomass and wastes. HTL is a

thermochemical process capable of converting dry or wet biomass, as

water is the reaction medium. This results in wide feedstock flexibility

and reduces the expensive costs associated with the drying, essential in

other thermochemical processes. In HTL, the biomass can be processed

at sub- or supercritical water conditions (temperatures 280–400 °C,

pressure 10–35 MPa), and with or without the addition of a catalyst to

the feed mixture [4]. The main product of interest of biomass lique-

faction is the biocrude, a product similar to crude oil except oxyge-

nated, which can be further upgraded to achieve drop-in fuel qualities.

Techno-economic assessments have shown that the production of re-

newable fuels via HTL and upgrading can be highly cost competitive to

other alternative fuel processes [5,6]. Together with the biocrude yield,

the price of the feedstock is among the key factors affecting the pro-

duction costs [6,7]. For this reason, the use of waste resources as

feedstocks in HTL would reduce the final price of the fuel and si-

multaneously improve the circular economy. Treating the animal and

human wastes through HTL would valorize their organic fraction by

converting them into an energy-dense product, and, at the same time,

allowing the recovery of the inorganics, including phosphorus.
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Phosphorus is an essential nutrient for the human diet and in agri-

cultural activities. Its current major source, phosphate rock, is a finite,

non-renewable resource. Therefore, recycling and closing phosphate

loops are essentials both to avoid environmental pollution and to secure

fertilizers supply [8].

As a result of intense farming activities, pig and cattle manure

production in Europe accounts for 14 and 295 million tons of dried

material, respectively [9]. Animal manure is commonly applied to farm

lands as fertilizers or is treated by anaerobic digestion and then the

digestate is applied to the land. However, the presence of pathogens,

hormones, and antibiotics represent an increasing concern for human

health and the environment [10]. Another source of animal sludge is

coming from fish farming activities; the largest of these farms in Europe

are located in Norway. Here the estimated annual production of dry

matter in smolt sludge is 11 thousand tons, which corresponds to 225

tons of phosphorus [11]. Similarly to manure, a portion of the fish

sludge is spread on agricultural fields; alternatively, it is treated for

biogas production, with the remaining fraction used as soil enhancer

with strict regulations on the concentration of heavy metals [12]. Fi-

nally, sewage sludge production in EU26 is expected to grow to 13

million tons of dry solids in 2020 [13]. However, only around one third

of sewage sludge is currently recycled in agriculture, leading to a loss of

300,000 tons of phosphorus every year [14].

Some parametric studies on HTL of manure, principally from pigs,

were found in literature: He et al. investigated swine manure lique-

faction, using CO as reducing agent, and suggested 295–305 °C and

15–30 min as the optimal temperature range and retention times, re-

spectively [15]. They additionally found that reducing gases (i.e., CO

and H2) produce more oil and favor its solubility in benzene [16].

Furthermore, high pH values (pH ~ 10) increased oil production,

though its solubility in benzene decreased with respect to neutral and

acidic pH [17]. Posmanik et al. studied the effect of acid (H3PO4) and

basic (NaOH) catalysts on HTL of manure digestate, and reported

higher biocrude yields in both cases, particularly when using H3PO4,

which also enhanced dehydration reactions [18]. Other investigations

suggested 15 min as the optimal retention time for the HTL of swine and

cattle manure, while different temperatures were indicated to achieve

maximum biocrude yields: 340 °C for swine manure [19] and 310 °C for

cattle manure [20]. In all the studies mentioned above, optimal tem-

peratures refer to maximum biocrude yield, however, information is

missing on how the temperature affected the biocrude quality (e.g.

deoxygenation extent). Therefore, the effect of the temperature on the

biocrude quality is among the objectives of the present work.

Quian et al. investigated isothermal (400 °C, 60 min) and fast

(500 °C, 1 min) HTL of sewage sludge, reporting that biocrudes with

higher H/C and O/C ratios and lower N/C ratio were obtained from fast

HTL [21]. They suggested the use of dichloromethane for biocrude

recovery, while the addition of additives (K2CO3, Na2CO3, MoO3-CoO/

γ-Al2O3, and Ru/C) decreased biocrude yield. Wang et al. registered the

highest biocrude yield (39.7 wt%) from sewage sludge conversion at

375 °C with 0 min retention time [22]. Ma et al. similarly suggested the

use of supercritical temperatures (385 °C) and a moisture content of

85 wt% for maximum biocrude production (37.23 wt%) [23]. The effect

of Ni-Tm/TiO2 catalyst on sewage sludge liquefaction was investigated

at various subcritical temperatures (250–350 °C) and the largest in-

crease in the biocrude yield was reported at 330 °C with 30 min re-

tention time [24]. Biocrude production via co-HTL of wastewater

treatment derived microalgae and domestic sewage sludge was ex-

plored in the subcritical range reporting higher biocrude yields (39.6 wt

%) at 325 °C with 45 min residence time. Additionally, the co-lique-

faction significantly improved the production of low-boiling biocrude

fractions [25]. A synergistic effect on the biocrude yield (+4.7 wt%)

and quality was also observed in another recent work where co-HTL of

microalgae and SS (1:1) was investigated at 340 °C with 0.3 MPa of

initial H2 addition. The authors reported an increase in the low boiling

points compounds (50–250 °C) and a reduction in the fraction of

compounds with boiling points in the range 250–450 °C [26].

The behavior of different biomasses in HTL and how the feedstocks

composition is reflected in the biocrude were investigated in [27-29].

Ekpo et al. [29] explored the conversion of microalgae, digestate, and

swine and chicken manure under a wide temperature range

(170–500 °C) and the fate of N, P, and K at increasing process severity.

They found that P is immobilized in the residue after processing at

higher temperatures due to precipitation of P salts and they linked its

extraction to the presence of inorganics, such as Ca, Mg and Fe. Few

other publications investigated both the fate of inorganics and the

subcritical HTL of a single waste fraction: swine manure [30], sewage

sludge [31], and human feces [32]. Lu et al. reported that most of the

heavy and alkaline-earth metal elements including Ca (89%), Mg

(81%), Al (88%), Fe (72%), and Zn (94%) were distributed in the solid

residue, whereas K (89%) and Na (73%) were mainly dissolved into the

aqueous phase [32].

The present study investigates the use of four different organic

waste fractions of animal and human origin in the HTL process: swine

manure, cow manure, fish sludge, and sewage sludge. To the best of our

knowledge, no previous work has been done processing fish sludge

through HTL; thus, we present the first results in the scientific litera-

ture. The feedstocks are individually processed using batch reactors at

four different process conditions. Most batch HTL studies are conducted

at subcritical conditions; instead, the present work investigates the li-

quefaction under both subcritical (350 °C) and supercritical (400 °C)

conditions, and with or without the addition of K2CO3 catalyst to the

feed mixture. The influence of the process conditions on the biocrude

yield and quality is assessed with respect to the degree of de-oxyge-

nation. The recovery of C and N in the HTL products and their balances

are presented. Finally, the redistribution of the inorganic elements (Al,

Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, and Zn) among HTL

product phases is assessed to establish the potential for their recovery.

HTL is investigated and proposed to improve the circular economy of

animal and human waste streams, since it allows valorizing the organic

fraction producing biocrude and recovering valuable inorganics for

being re-utilized. The outcomes of the present study are also intended to

establish the knowledge necessary to proceed to continuous HTL pro-

cessing as well as the following step: upgrading the biocrude to drop-in

fuels.

2. Materials and methods

2.1. Feedstocks characterization

Four different waste fractions were used as feedstock for the HTL

experiments: swine manure (SM), dairy cow manure (CM), fish sludge

(FS), and secondary sewage sludge (SS). Before delivery, the dry matter

of the feedstocks was increased either by mechanical pretreatment with

a screw press for SM and CM, or with the addition of polymer floccu-

lants for FS and SS. Once received, SM and CM were preserved at room

temperature, while FS and SS were stored in a refrigerator before

analysis and their use in the experiments. All feedstocks were char-

acterized by proximate and ultimate analysis. The moisture mass frac-

tion was measured with a moisture analyzer (Kern, MLS) at 120 °C. The

ash mass fraction was determined with an electric muffle furnace

(Protherm Furnaces), where pre-dried samples were held isothermally

at 775 °C for 3 h in air. The volatile matter (VM) was calculated as the

difference in weight percent heating up the feedstocks from 105 °C to

775 °C under nitrogen, with a DSC/TGA system (TA Instrument,

Discovery SDT 650). The fixed carbon (FC), on dry basis, was calculated

as in Eq. (1):

=FC(%) 100(%) ash(%) VM(%) (1)

The crude fats (CF), or lipids, were determined after Soxhlet ex-

traction for 24 h using petroleum ether as solvent. Crude proteins (CP)

were estimated by multiplying the nitrogen mass fraction (from

F. Conti, et al.



elemental analysis) by 6.25 factor [33]. The lignocellulosic fraction was

calculated based on an equation previously described in literature [28]

and here reported in Eq. (2):

= +lignocellulosics(%) combustibles(%) (CF CP)(%) (2)

where combustibles are intended as the sum of VM and FC.

The elemental composition was determined with an elemental

analyzer (Perkin Elmer, 2400 Series II CHNS/O), operated in CHN

mode. Acetanilide (Sigma Aldrich, puriss. p. a., ≥99.5%) was used as

standard to calibrate the instrument. The higher heating values (HHV)

were determined with an oxygen bomb calorimeter (IKA, C2000). The

results from the proximate and ultimate analysis of the feedstocks are

presented in Table 1. The average with standard deviations are reported

for the analysis performed in duplicates or triplicates. By looking at the

lignocellulosics, crude proteins, crude fats, and ash contents, it appears

that SM and CM have similar compositions, and likewise the compo-

sitions of FS and SS can be compared. SM and CM are mainly con-

stituted of lignocellulosics (84.40% and 88.70%), while for FS and SS

the main constituents are both lignocellulosics (39.77% and 48.09%)

and proteins (47.19% and 46.06%). Crude fats in SM and CM are almost

negligible (< 1%), while they account for some percentages in FS and

SS (13.06% and 5.86%). FS and SS also show high inorganic contents

(> 20%).

The composition of the inorganic fraction of the feedstocks was

investigated by Inductively Coupled Plasma Atomic Emission

Spectroscopy (ICP-AES) using a Thermo iCap 6300 Duo view (Thermo

Scientific). To extract the elements, the samples were first digested by

microwave assisted acid digestion according to the EPA method 3051A

(US. EPA., 2007). The microwave reaction system was an Anton Paar

Multiwave 7000 equipped with 18 digestion vials made from modified

polytetrafluoroethylene (PTFE-TFM). Each digestion vial had a volume

of 18 mL and was loaded with approximately 0.2 g of sample material

and 9 cm3 concentrated nitric acid (HNO3). The vials were inserted into

a PTFE-TFM rack and placed in the pressurized digestion cavity of the

reaction system. The cavity was pressurized with high purity nitrogen

gas (N2) before the microwave energy was applied. After the digestion,

3 mL of hydrochloric acid (HCl) was added for stabilization of certain

elements (particularly Fe). All acids were of suprapure quality

(PlasmaPure, SCP Science). After digestion, the samples were analyzed

by ICP-AES following the procedure previously described in [34]. 15

elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Zn) were

investigated and the concentrations of each element in each feedstock

are reported in the supplementary material (Table S1). Ca was the most

abundant inorganic element in all feedstocks, as clearly visible from

Fig. 1. The other main constituents of the inorganic fraction were then

K, P, S, and Mg. Some elements were detected only at trace level: Cd,

Cr, Ni, Pb < 20 ppm, while Cu and Mn < 200 ppm. The inorganic

fraction of FS was almost exclusively represented by Ca and P which

together account for 90% of the investigated elements. In SS, among the

most abundant inorganics there were also Fe and Al, which respectively

account for 17% and 11.4%. Considerable quantities of iron in SS ex-

plain the red color of the ash from SS, which strongly differed from the

grey color of the ash obtained from all the other feedstocks.

2.2. HTL experiments

Each feedstock was individually converted under four different

process conditions: subcritical (350 °C), with and without the catalyst,

and supercritical (400 °C), with and without the catalyst. In the cata-

lytic runs, potassium carbonate (K2CO3) was added to the feed slurry

(2.5% in weight of the water-biomass mixture) as catalyst and regulator

of alkalinity, previously found being effective to prevent coke formation

and to achieve a higher deoxygenation extent [35]. Each experiment

was performed at least in duplicate to verify the consistency of the

results, and the average values with their standard deviations are re-

ported in the results section. The feed slurries were prepared by ad-

justing the dry matter content of the feedstocks to 20% with the addi-

tion of demineralized water. For SS, this step was not necessary as its

dry matter content (21.36%) was already close to the desired value. The

experiments were carried out in stainless steel micro-batch reactors

(10 cm3 volume), which were loaded with 7 g of feed slurry, sealed,

purged with nitrogen to remove residual air, and then slightly pres-

surized (1.5–2.0 MPa) to push the slurry down into the reactor's vo-

lume. The heating was provided by a preheated sand bath (Techne, SBL-

2D), in which the reactors were submerged for 15 min, based on the

results from a previous investigation [36]. The mixing inside the re-

actors was provided by a mechanical agitator. Thermocouples and

pressure transducers were connected to the reactors so that both tem-

perature and pressure were monitored throughout the reaction time.

Once the reaction time was reached, the reactors were cooled to room

temperature by quenching in a water bucket.

2.3. Recovery of the products

The HTL products were separated according to the procedure al-

ready described in detail in [34]. The main steps involved in the re-

covery of the products are summarized in Fig. 2. The first product to be

collected is the reaction gas, then the aqueous phase is collected from

the top by turning reactors upside-down and without the addition of

any solvents to preserve its quality for analysis. The solids are defined

as the fraction, insoluble in acetone, which is collected on a filter paper

(VWR, particle retention: 5–13 μm), and then dried overnight at 105 °C.

Table 1

Proximate and ultimate analysis of the feedstocks used in the HTL experiments.

Swine manure Cow manure Fish sludge Sewage sludge

Moisture (%) 75.46 ± 0.14 63.04 ± 0.63 5.58 ± 0.97 78.64 ± 0.51

Volatile matter (%) db * 69.26 72.67 68.33 59.88

Fixed carbon (%) db 19.34 20.74 9.59 16.93

Ash (%) db 11.40 ± 0.04 6.59 ± 1.08 22.08 ± 0.29 23.19 ± 0.37

Lignocellulosics (%) daf * 84.40 88.70 39.77 48.09

Crude proteins (%) daf 14.94 10.50 47.19 46.06

Crude fats (%) daf 0.68 0.79 13.06 5.86

C (%) daf 44.89 ± 1.92 49.63 ± 0.67 53.49 ± 0.22 46.43 ± 0.99

H (%) daf 5.91 ± 0.28 6.55 ± 0.05 8.05 ± 0.02 7.62 ± 0.32

N (%) daf 2.39 ± 0.02 1.68 ± 0.38 7.55 ± 0.18 7.37 ± 0.22

O** (%) daf 46.81 ± 2.23 42.14 ± 0.23 30.91 ± 0.02 38.58 ± 1.54

H/C (-) 1.57 1.57 1.79 1.96

O/C (-) 0.78 0.64 0.43 0.62

HHV (MJ kg−1) daf 19.68 ± 0.05 19.10 ± 0.07 23.30 ± 0.05 21.93 ± 0.07

* db = dry basis; daf = dry ash-free basis.

** Oxygen calculated by difference.
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Two solvents are used in the recovery of the products: acetone and

diethyl ether (DEE), as previously used [34] and adapted from [36]. In

the first stage, acetone is used to recover the products and to clean the

reactors with the aid of a brush: reactors are rinsed with acetone until

clear solvent is collected. Successively DEE, which is immiscible in

water, is used for removing the residual water from the biocrude.

Biocrude weight and yield are calculated after the evaporation of the

DEE solvent. We would like to highlight the fact that the recovery of the

products and especially the results obtained for the biocrude yields are

strictly dependent on the procedure adopted and the solvents used.

The use of micro-batch reactors is very practical for assessing the

behavior of different feedstocks under various HTL processing condi-

tions; however, working at such small scale can lead to losses of the

products while recovering them. The most challenging steps of the

method used in the present work are the recovery of the biocrude with

DEE from the round evaporating flask after evaporation of acetone and

the removal of residual water from the biocrude/DEE mixture. The

latter step was performed with the aid of a syringe, after having cen-

trifuged the samples obtaining the separation of the residual water to

the bottom and the biocrude/DEE mixture at the top.

2.4. Analysis of the products

The elemental composition of the biocrudes and solids was de-

termined with an elemental analyzer (Perkin Elmer, 2400 Series II

CHNS/O), which directly measured C, H, and N mass fractions, while O

mass fractions were calculated by difference. For the solids, mass

fractions were calculated subtracting also the ash, measured by TGA.

TGA highlighted that a significant portion of the solids was constituted

of ash, while the ash content of the biocrudes was negligible. TGA was

also used to assess the volatility of the biocrudes. All biocrudes and

solids samples were investigated using a DSC/TGA system (TA

Instrument, Discovery SDT 650) with the following program: ramp to

775 °C (10 K/min) in N2, isothermal at 775 °C for 15 min in N2, iso-

thermal at 775 °C for 60 min in air.

The aqueous phase was characterized in terms of pH, total organic

carbon (TOC) and total nitrogen (TN). The pH was measured with a pH

meter (WTW 3210), while TOC and TN were determined using reagent

vials (LCK386 and LCK138, respectively) and a spectrophotometer unit

(Hach & Lange, DE3900). Similarly as for the feedstocks, the con-

centrations of inorganic elements in the biocrudes, solids, and aqueous

phases were investigated by ICP analysis, after microwave assisted acid

digestion of the samples.

3. Results and discussion

3.1. Biocrudes yields and quality

The average biocrude yields obtained from HTL of SM, CM, FS, SS

are reported in Fig. 3. FS is the feedstock, whose conversion produced

the greatest quantity of biocrude, with yields close to or above 50 wt%.

Likewise, SS conversion resulted in high biocrude yields: about 45 wt%.

About 35 wt% biocrude was produced from CM and SM conversion. A

higher degree of liquefaction was achieved from HTL of biomass con-

taining higher percentages of proteins and lipids (i.e. FS and SS) com-

pared to lignocellulosic biomass (i.e. SM and CM). This is in line with

the general trend for conversion efficiency: lipids > protein >

carbohydrates [37]. Spirulina and SM conversion (300 °C, 30 min)

Ca
K
P
S
Mg
Na
Fe
Al
Zn

SWINE MANURE COW MANURE FISH SLUDGE SEWAGE SLUDGE

Fig. 1. Most abundant elements constituting the inorganic fraction of the feedstocks.

Fig. 2. Diagram of the steps involved in the recovery of the HTL products (highlighted in green). (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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resulted in similar biocrude yields (32.6 wt% and 30.2 wt%, respec-

tively), despite the higher lipids content of the algae [27]; the authors

identified the higher carbohydrate content of manure as the reason for

its lower conversion efficiency. Similarly, Huang et al. explained the

lower biocrude yield obtained from rice straw (21.1 wt%) compared

with Spirulina (34.5 wt%) and sewage sludge (33.6 wt%), with the

larger carbohydrate content of the first [28].

Except for SS, the other three feedstocks showed a significant de-

crease in biocrude production at supercritical conditions (400 °C)

compared with subcritical conditions (350 °C). The decrease corre-

sponds to 10% for SM, 21% for CM, and 13% for FS and it may be

explained with an increase in gasification reactions at supercritical

conditions [21]. Similar biocrude yields among sub- and supercritical

HTL of SS without catalyst were also obtained in a previous in-

vestigation [22]. In that study, the maximum biocrude yield was

achieved at 375 °C (62.3 wt% on d.a.f. basis), while similar lower va-

lues were obtained among 350 °C and 400 °C (46.9 wt% and 47.1 wt%,

respectively).

In the present study, both at sub- and supercritical conditions, the

addition of K2CO3 catalyst did not affect positively the biocrude yields.

In particular, the catalytic experiments showed a decrease by 10–15%

for SM, CM, and FS at subcritical conditions, while a decrease by 17%

was registered for SS at supercritical conditions. A decrease by 19% in

the biocrude yield from the addition of K2CO3 (10 wt%) was reported in

literature after isothermal HTL of SS at 400 °C [21]. Alkali catalyst are

known having positive effect on biomass liquefaction since they en-

hance the degradation of macromolecules by hydrolysis, decarboxyla-

tion, and depolymerization [38]. Therefore, one reason for the de-

creased biocrude yields in the catalytic experiments may be the

increased decarboxylation, which would lead to biocrudes having less

oxygen compared to those obtained under non-catalytic conditions.

This particularly applies to the biocrudes derived from manures for

which the increase in the deoxigenation extent in the catalytic runs is

significant, both at sub- and supercritical conditions, as shown by our

elemental analysis reported in Table 2. However, the extended deox-

ygenation cannot entirely explain the substantial decrease in yield.

Another effect could be the formation of water soluble salts from the

reactions between acidic bio-crude compounds and the basic catalyst.

In other published procedures [39,40] an acidification step is involved

lowering the pH of the aqueous phase to 1–2. However, in this present

study such acidification was not applied to keep the phases as pristine

as possible.

Although yield is an important parameter for the process economics,

it is as crucial to evaluate the quality of the biocrude and to establish

how this is influenced by the different process conditions. The ele-

mental compositions of the biocrudes obtained from the current HTL

experiments are reported in Table 2. The results show that different

process conditions influenced the elemental compositions – and con-

sequently the quality – of the biocrudes obtained from SM and CM. For

manure-derived biocrudes, the addition of the catalyst improved the

quality, both at sub- and supercritical conditions. The content of C in

the biocrude increased and simultaneously less O was transferred from

the biomass to the biocrudes. For fish and sewage sludge-derived bio-

crudes, the addition of the catalyst did not affect the quality in the same

manner: C and O contents were increased and decreased, respectively,

by only 1%. Therefore, the use of K2CO3 catalyst can be avoided when

processing sludges; this would also reduce process costs, especially at

larger continuous scale.

A lower O content in the biocrude leads to a lower biocrude yield,

because a greater amount of the O contained in the biomass has been

transferred to the other HTL products (i.e. water solubles or gases). For

the present investigation, this particularly applies for manure-derived

biocrudes (see Table 2). The removal of O in HTL occurs by dec-

arboxylation and by dehydration, respectively, in the form of carbon

dioxide and water [40]. Therefore, a decrease in the O/C ratio is related

to decarboxylation, while a decrease in the H/C ratio can be related to

dehydration. Regarding manures, O was removed by both dehydration

and decarboxylation, with strong decarboxylation at supercritical con-

ditions in the presence of the catalyst. Regarding sludges, for FS the O

was removed almost exclusively by decarboxylation and independently

from the conditions adopted; while in the case of SS a decrease in both

H/C and O/C values is observed. A decrease in the O/C ratio rather than

in the H/C ratio (i.e., enhanced decarboxylation and reduced dehy-

dration) is an advantage with respect to the biocrude quality and its

consequent upgrading to fuel [18]. Higher nitrogen mass fractions were

detected in the biocrudes obtained from SS (5 wt%) and FS (6–7 wt%)

with respect to the biocrudes obtained from SM and CM (2–3 wt%).

This diversity among the biocrudes is a direct consequence of the dif-

ferent nature of the feedstocks: the elemental composition of these

waste fractions had, in fact, higher percentages of N in FS and SS

(~7 wt%) as compared to manures (~1 wt%). As a result, the HHV of

the manure-derived biocrudes have increasingly higher values for the

experiments conducted at higher temperatures and in the presence of

the catalyst, while the HHV of the sludge-derived biocrudes are con-

stant for the different process conditions.

The volatility curves of the biocrudes, obtained from TGA (Fig. 4),

show that FS and SS biocrudes are more volatile compared to manure-

derived biocrudes: above 450 °C, only 10% of FS biocrude and 20% of

SS biocrude are respectively left, while about 30% of manure-derived

biocrude. The reduced volatility of manure-derived biocrudes may be

linked to the larger contribution of lignocellulosic compounds in the

manures respect to the sludges and, more specifically, to the presence of
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Fig. 3. Biocrude yields (on a dry ash-free basis) from the conversion of swine manure, cow manure, fish sludge, and sewage sludge at different HTL process

conditions.
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lignin, which leads to the production of heavier biocrudes [41]. After

investigating the volatility under an inert nitrogen atmosphere, the

biocrudes were burnt in air and this resulted in a drop of weight down

to about 0%, meaning that most of the inorganics are not concentrated

in the biocrude after HTL, and this is in line with the results obtained by

ICP-AES. Negligible amounts of ash in the biocrude were observed in a

previous study conducted on digested manure [18].

3.2. Solids yields and characterization

Solids yields were first calculated on a dry basis but, as the TGA

showed that most of the solids are constituted of inorganics, they were

calculated a second time on dry ash-free basis, in order to estimate the

effective production of solid chars from HTL conversion of the waste

feedstocks. These results are reported in Table 3, together with the

elemental compositions of the solids, adjusted on dry ash-free basis. An

increasing amount of ash was detected in the solids obtained from CM

(23–40%), SM (48–57%), FS (74–80%) and SS (71–89%), and this re-

flects the increasing amounts of ash found in the raw materials (see

Table 1 for comparison). The elemental analysis shows that more C is

recovered in the solids obtained from manures as respect to solids ob-

tained from the FS and SS. The increase in the solids yields (on dry

basis) of the catalytic experiments respect to the non-catalytic ones may

be related to the recovery procedure used in the present work: the

addition of acetone to the reaction mixture might have caused the

precipitation of the inorganics in the residual aqueous phase.

3.3. Aqueous phases characterization

The aqueous phases obtained from the conversion of the manures

resulted being acidic (5.21–6.93 for SM and 3.85–6.41 for CM), except

for the one derived from processing SM at 400 °C with catalyst, re-

sulting slightly basic (pH 7.83). On the contrary, the aqueous phases

from FS and SS were basic (8.54–8.76 for FS and 8.47–8.87 for SS). This

difference in the pH values of the aqueous phases relates to the com-

position of the feedstock. In protein-rich biomass, protein hydrolysis

and deamination produces ammonia, which in turn results in alkaline

pH. The HTL aqueous phase obtained from the conversion of lig-

nocellulosic biomass is instead often acidic due to the production of

organic acids from the degradation of carbohydrates [42]. This explains

why in the present study the aqueous phases obtained from the con-

version of the sludges have alkaline pH while the aqueous phases ob-

tained from the manures have values in the acidic range (see Table 4).

The use of different process conditions did not have any effect on the

pH of the aqueous phases from FS and SS, while increased basicity was

measured for the aqueous phases obtained from the experiments at

supercritical conditions for both SM and CM, and using the catalyst.

Biocrude quality seems to be correlated to the pH of the aqueous phase.

In fact, FS and SS biocrudes showed similar quality regardless of the

process conditions and, for these feedstocks, the aqueous phases are all

similarly in the basic range. For SM and CM, improved biocrude quality

was obtained only under catalytic supercritical conditions, which is the

only condition to which corresponds basic - or towards basic - pH of the

aqueous phase. The results for the pH of the aqueous phases are re-

ported in Table 4, together with the results for the total organic carbon

and the total nitrogen, which were measured to establish how C and N,

respectively, distribute among the HTL products.

3.4. Carbon and nitrogen recovery

The recovery of C and N in each product phase was calculated as the

ratio between C or N wt.% in the product phase and C or N wt.% in the

feedstock, times the yield of that phase. Regarding the biocrude and the

solids, the C or N wt.% was obtained from the elemental analysis, while

for the aqueous phase it was measured as TOC or TN. For each feed-

stock, the average yield of the aqueous phase (based on the four process

conditions investigated) was determined as the mass ratio water out/

water in: 69.23 for SM, 76.69 for CM, 77.31 for FS, and 66.55 for SS.

The C and N recovery in the gas phase was instead calculated by dif-

ference. The results on C and N recovery for all phases are reported in

Fig. 5 and in Fig. 6, respectively.

For all the feedstocks, most of the C was recovered in the biocrude,

Table 2

Yields, elemental compositions, H/C and O/C ratios, high heating values (HHV), carbon recovery (Crec), and energy recovery (Erec) of the biocrudes obtained from the

waste feedstocks at the different process conditions. Results are reported on dry ash-free basis.

Ybiocrude C H N O H/C O/C HHV Crec Erec

(-)daf (wt.%) (wt.%) (wt.%) (wt.%) (-) (-) (MJ kg−1) (-) (-)

SM 350 41.01 ± 0.73 66.28 ± 2.54 7.74 ± 0.62 2.48 ± 0.30 23.50 ± 3.46 1.39 0.27 29.79 60.5 62.1

350cat 36.82 ± 2.23 71.28 ± 1.94 8.38 ± 0.20 3.08 ± 0.53 17.26 ± 2.67 1.40 0.18 32.92 58.5 61.6

400 36.97 ± 0.70 70.89 ± 0.80 8.37 ± 0.44 3.08 ± 0.14 17.66 ± 0.50 1.41 0.19 32.74 58.4 61.5

400cat 34.76 ± 0.39 75.56 ± 0.73 9.14 ± 0.35 2.99 ± 0.08 12.31 ± 1.16 1.44 0.12 35.83 58.5 63.3

CM 350 40.96 ± 3.63 64.46 ± 0.47 9.36 ± 0.06 2.02 ± 0.02 24.16 ± 0.39 1.73 0.28 31.00 53.2 66.5

350cat 34.98 ± 2.96 73.17 ± 0.54 8.54 ± 0.17 2.92 ± 0.02 15.37 ± 0.35 1.39 0.16 33.97 51.6 62.2

400 32.37 ± 3.28 71.61 ± 1.03 8.19 ± 0.02 2.62 ± 0.39 17.58 ± 1.44 1.36 0.18 32.79 46.7 55.6

400cat 32.29 ± 1.04 76.02 ± 2.17 8.90 ± 0.58 2.61 ± 0.28 12.47 ± 2.48 1.40 0.12 35.70 49.5 60.4

FS 350 59.11 ± 2.86 71.65 ± 1.27 10.51 ± 0.10 6.97 ± 0.06 10.87 ± 1.30 1.75 0.11 36.17 79.2 91.8

350cat 51.74 ± 1.72 72.57 ± 0.76 10.57 ± 0.10 7.14 ± 0.19 9.72 ± 0.67 1.74 0.10 36.67 70.2 81.4

400 51.27 ± 1.51 73.09 ± 0.65 10.41 ± 0.13 6.87 ± 0.04 9.63 ± 0.81 1.70 0.10 36.68 70.1 80.7

400cat 47.17 ± 0.23 73.94 ± 0.21 10.18 ± 0.08 7.22 ± 0.54 8.66 ± 0.66 1.64 0.09 36.80 65.2 74.5

SS 350 44.46 ± 0.74 73.02 ± 1.81 10.53 ± 0.17 5.18 ± 0.46 11.27 ± 1.52 1.72 0.12 36.65 69.9 74.3

350cat 45.73 ± 2.50 73.27 ± 0.95 10.94 ± 0.58 5.00 ± 0.21 10.79 ± 1.32 1.78 0.11 37.28 72.2 77.7

400 43.02 ± 0.03 72.00 ± 0.11 10.10 ± 0.30 5.57 ± 0.18 12.33 ± 0.22 1.67 0.13 35.68 66.7 70.0

400cat 35.70 ± 2.65 73.10 ± 1.82 10.85 ± 0.23 5.45 ± 0.88 10.60 ± 1.17 1.77 0.11 37.13 56.2 60.4

Fig. 4. Thermogravimetric curves of the biocrudes (at 775 °C the gas was

switched from N2 to air) obtained from the subcritical (350 °C) and supercritical

(400 °C) liquefaction of swine manure (SM), cow manure (CM), fish sludge (FS)

and sewage sludge (SS).
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in particular, 50–60% of C is recovered in the biocrude after HTL of SM

(58.4–60.5%) and CM (46.7–53.2%), and higher recoveries are ob-

tained after processing FS (65.2–79.2%) and SS (56.2–72.2%). On the

other hand, a greater amount of C is recovered in the manure-derived

solids (17.1–25.8%) as respect to the C recovered in the solids obtained

from the sludges (4.7–13.7%). The recoveries of C in the aqueous phase

show similar values (2.2–7.5%), independently from the feedstock and

the process condition used. Fig. 6 shows that about half of the N is

transferred to the biocrude, except for SS, where N recovery is lower

(around 30%). Similar to the C recovery, N recovery in the solids is

greater for the manure-derived biocrudes (around 15% for SM and 25%

for CM) compared to the sludges (around 5% for FS and SS), while the

recovery of N in the aqueous phases shows similar values for SM, CM,

FS (4–9%) and slightly higher values for SS (around 15%).

In the study conducted by Lu et al., most of the nitrogen contained

in the SM was instead released to the aqueous phase (> 42%) and lower

percentages were transferred to the biocrude (17–30%) [30]. Similarly,

72% of the N was released to the aqueous phase after HTL (340 °C,

10 min, and 25% total solids) of human feces [32]. However, in the

latter study, the particularly high value for the N in the aqueous phase

might also be explained by the different approach adopted by the au-

thors, who assumed the N in the gas phase negligible and calculated the

N in the aqueous phase by difference.

3.5. Composition of the inorganic fraction of the HTL products

The concentrations of the inorganic elements in the HTL products,

investigated by ICP-AES, are reported in the supplementary material

(Table S1). Nevertheless, it is not enough to evaluate the concentrations

of the inorganics to understand how they distribute among the pro-

ducts: the yield of each phase should be considered as well. The amount

of each inorganic element recovered in each of the product phases, was

calculated by multiplying the concentration of an element in a phase by

the weight of that phase. The corresponding weight percent was

calculated normalizing the total to 100. The weight percentage of each

inorganic element in each of the product phases are provided in the

supplementary material (Table S2). The results show that the majority

of the inorganics investigated (Al, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Ni, P, Pb,

and Zn) concentrate in the solids after HTL, with weight percentages

above 70% for most of the elements. The remaining fraction is primarily

found in the aqueous phase (in most of the cases below 30 wt%), while

only minor quantities are detected in the biocrudes (< 3 wt%), except

for the heavy metals (i.e. Cu, Ni, and Pb), for which higher values are

registered (wt.% also in the range 20–30%). K and Na show a higher

degree of dissolution in the aqueous phase as respect to the other in-

organics, being primarily recovered in the aqueous phase (50.1–82.8 wt

%) after processing SM and CM. For FS and SS, K and Na are instead

primarily recovered in the solids in most of the process conditions, but

still higher recoveries in the aqueous phase are obtained compared with

other inorganics. Finally, a further different trend is registered for S,

which, besides being found in the solids and the aqueous phase, is also

recovered in the biocrude for more than a third (33.5–66.0 wt%) that

corresponds to 2260–9965 ppm.

Though the inorganics seem to have similar behavior when redis-

tributing among HTL products, however, higher recoveries of the ele-

ments in the solids are registered after processing FS and SS at all the

process conditions investigated, compared with SM and CM. The dif-

ferent temperatures investigated (350 °C and 400 °C) and the presence

of the catalyst did not seem to have a significant influence in the re-

distribution of the inorganics in the product phases. Fig. 7 visualizes

how the inorganics distribute among the products after processing the

feedstocks at subcritical conditions.

The distribution of the inorganics found in the present study is also

in line with our previous research on willow irrigated with wastewater

[34], showing that K and Na were primarily recovered in the aqueous

phase, as in the present study for SM and CM. Similarly, it was reported

that over 70% of the heavy metal elements (Zn, Cu, As, Pb, and Cd)

were accumulated in the solid residue after HTL of SM [30]. Xu et al.

Table 3

Yields, ash content, and elemental compositions (on dry ash-free basis) of the HTL solids.

Ysolids Ash Ysolids C H N O

(-)db (wt.%) (-)daf (wt.%) (wt.%) (wt.%) (wt.%)

SM 350 20.92 ± 0.92 52.61 11.19 ± 0.49 76.56 ± 1.92 4.39 ± 0.37 3.91 ± 0.17 15.14 ± 2.46

350cat 22.65 ± 1.01 57.21 10.94 ± 0.49 70.13 ± 1.32 4.94 ± 0.27 3.04 ± 0.12 21.89 ± 1.71

400 20.66 ± 1.50 52.49 11.08 ± 0.80 80.36 ± 5.51 3.83 ± 0.45 3.87 ± 0.25 11.94 ± 6.21

400cat 27.10 ± 0.29 47.93 15.93 ± 0.17 72.58 ± 5.02 4.67 ± 0.16 1.34 ± 0.41 21.41 ± 5.59

CM 350 21.43 ± 3.12 22.78 17.72 ± 2.58 66.75 ± 0.32 5.78 ± 0.40 2.83 ± 0.13 24.64 ± 0.22

350cat 22.82 ± 1.21 39.34 14.82 ± 0.79 73.81 ± 1.54 6.06 ± 0.34 2.87 ± 0.04 17.26 ± 1.92

400 18.55 ± 0.23 27.29 14.44 ± 0.18 79.84 ± 1.29 4.85 ± 0.31 3.12 ± 0.10 12.19 ± 1.69

400cat 20.05 ± 0.24 40.49 12.78 ± 0.15 73.97 ± 5.06 5.56 ± 0.90 2.57 ± 0.11 17.90 ± 6.07

FS 350 26.94 ± 1.00 77.71 7.71 ± 0.29 52.15 ± 0.06 4.62 ± 0.03 4.44 ± 0.19 38.78 ± 0.22

350cat 29.03 ± 0.32 75.58 9.10 ± 0.10 45.54 ± 3.56 4.06 ± 0.33 3.20 ± 0.22 47.19 ± 4.11

400 25.83 ± 0.18 80.12 6.59 ± 0.05 51.14 ± 6.46 3.03 ± 1.08 3.56 ± 0.84 42.27 ± 8.38

400cat 32.89 ± 0.48 74.43 10.79 ± 0.16 55.40 ± 4.54 5.93 ± 0.84 2.96 ± 0.43 35.71 ± 5.81

SS 350 28.05 ± 1.72 70.51 10.77 ± 0.66 46.33 ± 6.68 2.24 ± 2.95 5.16 ± 2.07 46.27 ± 11.7

350cat 34.81 ± 0.38 73.98 11.79 ± 0.13 53.91 ± 2.11 2.82 ± 1.32 5.05 ± 0.46 38.22 ± 3.89

400 27.26 ± 0.82 85.28 5.22 ± 0.16 64.81 ± 0.82 1.99 ± 0.22 7.95 ± 0.29 25.25 ± 0.89

400cat 29.35 ± 1.44 89.28 4.10 ± 0.20 53.19 ± 6.17 0.00 ± 0.00 0.93 ± 0.73 45.87 ± 5.44

Table 4

Characterization of the aqueous phases obtained from HTL of the waste feedstocks at the different process conditions.

pH (-) TOC (g L−1) TN (g L−1)

SM CM FS SS SM CM FS SS SM CM FS SS

350 5.21 3.85 8.59 8.69 48.52 27.74 15.43 37.70 3.14 1.28 6.74 10.99

350cat 6.93 5.36 8.76 8.87 33.63 44.46 19.52 45.25 2.95 1.63 7.41 11.56

400 5.35 4.25 8.54 8.47 29.18 45.48 23.06 32.47 2.98 1.74 5.49 11.06

400cat 7.83 6.41 8.76 8.86 35.46 37.89 22.55 49.64 3.18 1.95 6.40 11.34
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also observed that over 93% of heavy metals (i.e., Cu, Zn, or Cr) were

collected in the HTL solids, except for As, which was almost equally

portioned among solids, aqueous phase, and biocrude [31]. K resulted

almost entirely extracted into the aqueous phase after hydrothermal

processing of chicken manure and swine manure [29].

The tendency of the inorganics to concentrate in the solids facil-

itates their recovery after HTL; on the contrary, the presence of in-

organics in the biocrude is highly undesired for its final use as fuel and

for the upgrading process, where the presence of metals can cause the

deactivation of the catalyst.

Regarding the concentrations of the inorganics, Ca and P are

strongly correlated in the solids with R = 0.99 (see Table S3, in the

supplementary material). From the slope of P-Ca curve, the molar ratio

is found to be 0.42 g/g; therefore, for every g of Ca in the sample, we

find on average 0.42 g of P. This suggests that P is primarily present as

apatite or hydroxyapatite (Ca5(PO4)3(OH)), which has a molar ratio of

3P : 5Ca (0.46 gP/gCa). This finding is in line with the outcome of a

previous study reporting that > 88.76% of the P in the hydrochar,

obtained from hydrothermal carbonization (HTC) of cow manure, was

apatite. The study reported an increase by > 85% in apatite P and

consequently proposed HTC as a treatment to immobilize the P in the

hydrochar and reduce the problem of P loss associated to cow manure

[43].

3.6. Prospective for continuous HTL processing

The present study was conducted at laboratory scale, as this allows a

practical screening of the feedstocks and exploring different process
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conditions. The results obtained are also intended to be used in support

of the processing of the same feedstocks on a continuous larger scale.

However, when a feedstock is processed in a continuous plant, there are

some aspects, which require additional attention. For example, the high

inorganic content of organic wastes could result in deposits and

blockages of the system. The pumping of the feedstock into the reactor

could also result highly challenging, especially when processing swine

and cow manures which have a fibrous consistency. The mixing of

various feedstocks with different dry matter contents and consistency

could help in overcoming some issues related to the feeding.

Furthermore, at larger scale the use of solvents is avoided, the solids

including the inorganics would be recovered together with the biocrude

in the downstream section of the plant. Nevertheless, this can be

overcome, for example, by introducing a filter after the reaction system,

as in the PNNL continuous HTL set-up [44]. An in-line filter is also

placed in the downstream section of the CBS1 unit at Aalborg Uni-

versity, to ensure the collection of the solid hydrochars and inorganics.

With regards to the large amount of aqueous phase, in continuous

processing, this can be recycled to reduce the use of fresh water and

simultaneously decrease the production of a waste product, which re-

quires treatment before disposal. Recycling the water phase would also

result in a decreased consumption of K2CO3 catalysts, as K is dissolving

in the aqueous phase. Moreover, the recycling of the aqueous phase

produces its saturation, enhancing the production of insoluble com-

pounds and increasing the production of biocrude [35,45,46]. Besides

being a waste stream, HTL aqueous phase is a source of energy and

nutrients and, for this reason, several technologies are still under in-

vestigation with the aim of maximizing its valorization. Value-added

chemicals could be extracted and used as fuel additives, nutrients dis-

solved in the aqueous phase could be used for biomass cultivation or for

fertilizers production. Other alternatives for the valorization of the

aqueous stream consist in the hydrothermal gasification or the anae-

robic fermentation of the HTL aqueous phase. A detailed investigation

pointing out the advantages and challenges of the various approaches

for the aqueous phase valorization in prospective of HTL commercia-

lization is provided in [42].

4. Conclusions

Hydrothermal liquefaction represents a suitable alternative for

handling organic wastes of animal and human origin as manure, fish

sludge, or sewage sludge. These wet ash-containing waste fractions can

be processed directly in the HTL process with high yields of energy

dense biocrudes ranging from about 35% for manures, 45% for sewage

sludge, and 50% for fish sludge. Supercritical conditions (400 °C) result

in lower biocrude yields as compared to subcritical conditions (350 °C),

however, for swine and cow manure, higher temperatures produce

biocrudes with a better quality in terms of lower oxygen content. The

quality of manure-derived biocrudes is also improved by the addition of

K2CO3 to the feed mixture, while this catalyst does not affect the quality
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swine manure (SM), cow manure (CM), fish sludge (FS) and sewage sludge (SS).
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of biocrudes derived from sludges. As one to two thirds of N and S in the

feedstocks are transferred to the biocrude, denitrogenation and de-

sulfurization of the biocrude are necessary during biocrude upgrading.

Most of the inorganics (e.g. P, Ca, Mg) are instead transferred to the

solids after HTL, easing their separation for further reutilization as a

fertilizer. In this way, the processing of waste products through HTL

results simultaneously in the production of biocrude oil and in the re-

covery of valuable inorganics.
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9 Hydrothermal 
Liquefaction
A Sustainable Solution 
to the Sewage Sludge 
Disposal Problem

Saqib Sohail Toor*, Federica Conti, Ayaz Ali Shah, 
Tahir Hussain Seehar, and Lasse Aistrup Rosendahl
Aalborg University

9.1  INTRODUCTION

Sewage sludge (SS) is a product of modern society, as wastewater treatment has 
been implemented following a growing awareness of hygiene and water manage-
ment issues. SS management has evolved from merely disposal of sludge in landfills 
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or on agricultural soil to become a key component in a circular economy for organic 
and inorganic materials. Highlighted by the increasing urbanization seen in Europe 
with more than 70% of the population living in urban areas and many other places 
in the world, aggregated SS is challenged not only by the sheer volumes of biohaz-
ardous sludge to treat, but also by the legislative requirements to reuse of fertilizer 
 components (phosphates) as well as to disposal methods [1–3].

By 2020, European wastewater treatment plants will produce approx. 
13  million dry tons of sludge per year. Even allowing for high levels of inorgan-
ics, this represents an enormous potential for circular valorization of the organic 
content for energy purposes, and there are efforts to implement various tech-
nologies to realize this potential, such as through anaerobic digestion. However, 
impurities such as plastics and endocrine disruptants make this challenging, as 
the potential for downstream pollution remains significant after such a process. 
Thus, approaches that can combine high energy and conversion efficiencies with 
high tolerance for input material variations, and provide full recovery of fertil-
izers without the risk of downstream pollution are required. One such approach is 
hydrothermal liquefaction (HTL).

9.2  SS IN THERMO-CHEMICAL CONTEXT

Due to the continuous and abundant production of SS, new challenges are  arising, 
concerned with sustainable management of sludge disposal. Usually, most of SS 
has been used directly in agricultural sector as a fertilizer, but several factors make 
that exercise unfavorable due to the transfer of undesirable substances to the food 
chain through crops [4]. Incineration process is widely used for volume reduction 
of SS and simultaneous thermal energy production. However, incineration of SS 
involves environmental and economic concerns in the form of scrubbing costs of 
the product gases for air pollution control. Gases released from incineration are 
not  environment-friendly and require filtrations, which imply additional costs [5]. 
Another conventional route for SS disposal is landfilling, which is restricted due to 
European Union (EU) legislation. Land area requirement and proper maintenance, 
the two main issues other than ground water pollution through leaching system, are 
associated with the landfill applications which make landfill unfit for managing the 
waste, i.e., SS [6].

Over the last decades of research, different thermo-chemical conversion 
 technologies have received focus, and each has its own advantages and disadvan-
tages. Conventional thermo-chemical treatment of SS is energy-intensive due to 
high moisture content in SS and therefore does not fit well into modern circular 
economies. Anaerobic digestion has become an alternative that serves to reduce the 
volumes of sludge before disposal and recycling of nutrients but with relatively small 
energy output and volume reduction. Pyrolysis also requires dewatering step for 
feedstock utilization, which incurs considerable cost for drying process.

Recently, HTL has positioned itself as an attractive and suitable process capable 
of converting a broad range of wet organic solids, like SS, with high efficiency and 
energy yield, and with recovery of nutrients as an attractive bonus. HTL, therefore, 
fits very well into the circular economy schemes and recycle-upcycle strategies for 
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handling urban waste streams. Being a wet process, the costs for drying are avoided, 
compared to pyrolysis and gasification. From the energy perspective, HTL is gain-
ing significant attention due to its capability to produce sustainable drop-in biofuels 
as well as contributing to district heating. HTL reactions are carried out at elevated 
temperatures (250°C–450°C) and pressures (100–350 bars) in a hydrothermal water 
reaction medium for relatively short residence time (RT) to form a carbon-rich bio-
crude that, when refined, yields fuels such as gasoline, diesel, and jet fuels [7]. From 
the products of the HTL process, inorganics such as phosphates can be isolated for 
redistribution into agriculture. One of the important benefits of the HTL process, 
highlighted by Gollakota et al., is that HTL has the ability to recover 70% of the 
feedstock carbon content. Additionally, HTL is favorable due to the efficiency of 
consuming 10%–15% energy from feedstock which results in the output energy 
 efficiency of up to 90% [8].

Both HTL and pyrolysis are presented in Table 9.1 in terms of process  parameters, 
biocrude composition, and properties. In comparison with pyrolysis, HTL has a 
lower operating cost as the expensive procedure of drying the feedstock is avoided. 
Furthermore, HTL product has lower oxygen and moisture contents and higher heat-
ing value (HHV), which reduces both the fixed and operating costs of the equipment. 
The utilization of high-pressure operation equipment for HTL plant needs further 

investigations to reduce the cost of the HTL plant [8–9].

9.3  SS IN HTL CONTEXT

9.3.1  SS COMPOSITION

SS from Waste Water Treatment Plants (WWTP) shows high moisture content, 
 usually in the range of 75–85 wt% (see Table 9.2). Drying SS would require intensive 
energy input, resulting in extremely high costs, which are avoided with HTL, as the 
reaction medium and reactant is water [10]. The presence of water additionally allows 

TABLE 9.1
Comparison of HTL and Pyrolysis Processes [8–9]

HTL Process Pyrolysis Process

Drying Unnecessary Necessary

Temperature (°C) 200–400 370–526

Pressure (MPa) 5–20 0.1–0.5

Catalyst Sometimes No

C (wt%) 73 58

H (wt%) 8 6

O (wt%) 16 36

S (wt%) <45 29

Moisture 5.1 24.8

HHV (MJ/kg) 35.7 22.6

Viscosity (cP) 15,000 59
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a smooth pumpability of the slurry into the reaction system, though dry matter (DM) 
contents above 15%–20% are recommended for better process economics [11].

The DM in SS consists of both organic and inorganic elements. The latter, often 
referred to as ash, can vary widely (10–40 wt%) depending on the collection point 
in the WWTP line, the geographical area where the sludge is produced, and the 
presence (or not) of industries. High ash content in the feedstock can result in an 
increased production of HTL solid residue [12], which can cause blockage in con-
tinuous processing units and in general reduces the capacity for organic loading. For 
this reason, in some cases, it is advised to pretreat the biomass to lower the inorganic 
content through acid leaching of the feedstock [13], or by other means. However, this 
typically incurs loss of carbon and must be considered from case to case. The main 
organic constituents of SS are carbohydrates (30–50 wt%) and proteins (30–50 wt%), 
while lipids account for about 13% of the dried biomass (see Table 9.2). The elemen-
tal compositions of different SS found in literature consistently show that half of 
the dried sludge is made of carbon, while about 8% of the weight corresponds to 
hydrogen (see Table 9.2). Above one third of the dried SS is instead constituted by 
oxygen (see Table 9.2), which will be partly removed during hydrothermal process-
ing, and further deoxygenation will take place while upgrading the biocrude oil. 
The two other undesired heteroatoms are nitrogen and sulfur. Both are present in SS 
(3–6 wt% nitrogen and about 1.0 wt% sulfur), and they are primarily removed from 
the biocrude in the upgrading stage.

TABLE 9.2
Proximate and Ultimate Analysis of Different Sewage Sludge

[14] [15] [16] [6]

Feedstock
Primary and 

Activated Sludgea

Fresh Human 
Fecesa

Dewatered 
Sewage Sludgeb

Sewage 
Sludgeb

Moisture (%) 83.0 85.1  5.6 97.8

Ash (%) N/A 11.5 39.2 10.3

Carbohydrates (%) 57.0 34.2 33.3 N/A

Crude proteins (%) 30.0 34.7 55.1 N/A

Crude fats (%) 13.0 14.0 11.3 N/A

C (%) 49.0 47.8 43.4 51.8

H (%)  8.0  7.2  5.9  7.8

N (%)  3.7  6.1  3.2  2.3

S (%)  1.0 N/A N/A  1.0

Oc (%) 38.3 38.9 47.5 37.1

H/C (‐)  1.9  1.8  1.6  1.8

O/C (‐)  0.6  0.5  0.8  0.5

HHV (MJ/kg) N/A 20.4 14.6 19.9

a On dry basis.
b On dry ash-free basis.
c By difference.
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9.3.2  EFFECT OF PROCESS PARAMETERS

In the HTL process, the organic matter is first hydrolyzed into its main  components, 
sugars, amino acids, and fatty acids from carbohydrates, proteins, and lipids, 
 respectively. These main components break into their intermediates, like acids, 
 alcohols, aldehydes, phenols, nitrogen-containing compounds, and long chain hydro-
carbons via different reactions such as dehydration, decarboxylation, deamination, 
and repolymerization. These compounds distribute into biocrude, solids, gases, and 
the aqueous phase as well.

Numerous studies have already been conducted on the energy enhancement from 
the liquefaction of SS. The majority of the research was carried out on subcritical 
state while only few were carried out on supercritical conditions. Some important 
studies related to the liquefaction of SS are listed in Table 9.3.

In HTL, the production of biocrude could also be affected from various process 
parameters, like temperature, RT, catalyst, solvent type, and water to SS ratio.

9.3.2.1  Effect of Temperature
Temperature is one of the dominant operating parameters in HTL and it strongly 
affects biocrude yield and properties. Li et al. liquefied SS at 300°C–380°C 
and found that the highest biocrude yield was achieved at 340°C as shown in 
Figure  9.1. It was due to the low dielectric constant of water, which promotes 
hydrolysis of the organic matter. The subcritical state decreases the density and 
polarity of water, which improves the solubility of hydrophobic organic fractions. 
However, the biocrude yield was decreased when temperature rose from 340°C 
to 380°C, it is because of supercritical state, where biocrude could be cracked 
into gaseous products and repolymerization might have occurred that exhibited 
higher amount of solids [18]. Another study also observed the same trend with 
reduction in biocrude yield while liquefying SS from subcritical to supercritical 
conditions [22].

TABLE 9.3
Production of Biocrude From Hydrothermal Liquefaction of Sewage Sludge

Temp (°C) Solvent Catalyst
Biocrude 

(wt%) 
Solid Residue 

(wt%) db/daf
HHV 

(MJ/kg) References

340 Water None 23.00 43.00 db 35.94 Xu et al. [17]

340 Water None 37.10 16.70 daf 28.52 Li et al. [18]

340 MeOH-H2O None 39.40 12.10 daf 34.14 Li et al. [18]

300 Water None 40.12 38.01 daf 31.42 Malins et al. [19]

300 Water None 19.00 56.00 db 36.04 Liu et al. [13] 

300 Water None 9.40 — db 32.01 Vardon et al. [20]

325 Water None 27.00 15.00 daf 34.58 Prestigiacomo 
et al. [21]

350 Ethanol None 40.00 46.00 db 36.14 Huang et al. [16]

400 Water None 27.50 15.15 db — Qian et al. [6]
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Temperature also influences the elemental composition of biocrude, which is 
correlated with HHV. Xu et al. performed the liquefaction of SS from 260°C to 
350°C and concluded that higher temperature increases the degree of deoxygen-
ation via decarboxylation and dehydration. The maximum HHV 35.94 MJ/kg was 
measured at 350°C, although maximum biocrude yield was achieved at 340°C [17]. 
The justification of this would be the intensified thermal decomposition of SS at 
higher temperature, which converted organic matter into gaseous state and differ-
ent char substances. This phenomenon decreases the biocrude yield but improves 
the HHV [19].

9.3.2.2  Effect of RT
RT is the second most significant parameter after temperature in the HTL process. 
Short RT increases biocrude yield, however beyond a certain level, further increase 
in RT has adverse results. The threshold of the RT depends on the biomass feed and 
catalyst type [9].

Li et al. treated SS under different retention times at 340°C to assess the  influence 
of RT on the product yields. They concluded that biocrude yield significantly depends 
upon the RT, as the highest biocrude yield was obtained at 20 min, on the other hand, 
prolonged RT like 40 and 60 min decreases the biocrude yield as demonstrated in 
Figure 9.2. The apparent cause behind this would be the condensation, cyclization, 
and repolymerization reactions between intermediate products, which decreases the 
biocrude yield and increases the yield of solids.

FIGURE 9.1 Effect of temperature on liquefied products yield daf ( : Aqueous fraction; 
: Gases; : Bio-oil; : Solid residue) obtained from HTL of sewage sludge. (Adapted 

from [18].)
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Malin et al. mentioned that long RT is favorable for formation of gaseous product 
but undesirable for biocrude production. Approximately 44% of biocrude yield was 
observed at both 20 and 40 min, respectively.

9.3.2.3  Effect of Catalyst
Catalyst is another main constituent of biomass feed, which affects the overall 
 economics and effectiveness of HTL processing. Mostly catalysts have been used in 
the liquefaction experiments for char reduction.

Several studies [6,19,21,23–24] reported the effect of catalyst on product yield 
distribution after HTL of SS. Malins et al. used four different catalysts with SS 
and achieved the highest biocrude yield (45.58% daf) with FeSO4 as shown in 
Figure 9.3a, whereas maximum HHVs 33.90 and 35.74 MJ/kg were observed with 
Na2CO3 and FeSO4, respectively. Biocrude has shown increased concentration of 
sulfur on utilization of FeSO4 and MoS2, this shows that some fractions of catalysts 
might be dispersed into biocrude [19], hindering downstream upgrading. Although 
biocrude yield is an important parameter, its quality needs to be taken into consider-
ation as well. Prestigiacomo et al. also employed heterogeneous catalysts on SS and 
found that none of the catalysts resulted in increasing the biocrude yield as presented 
in Figure 9.3b [21].

Moreover, it has been highlighted from several studies that catalyst improves the 
biocrude quality as reported by Malins et al., that catalytic biocrude had higher 
HHVs as 33.90 and 35.76 MJ/kg with Na2CO3 and FeSO4, respectively, as compared 

FIGURE 9.2 Effect of residence time on liquefied products yield daf ( : Aqueous 
 fraction; : Gases; : Bio-oil; : Solid residue) obtained from HTL of sewage sludge. 
(Adapted from [18].)
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to 31.42 MJ/kg without catalyst. Prestigiacomo et al. also noticed the higher carbon 
and hydrogen contents in catalytic biocrude.

9.3.2.4  Effect of Solvent
Solvent plays a crucial role in HTL of SS, as it was highlighted in many studies [7, 
18, 25–28]. The liquefaction of biomass is greatly influenced by the type of solvent 
used, and the solvent does not only affect the product yields but also the chemical 
composition of the biocrude. In various studies, water has been used as a solvent 
due to its cheap, environmental benign nature, and as it is already present in the 
biomass [9].

Huang et al. investigated the effect of three solvents (methanol, ethanol, and ace-
tone) with SS, at temperatures of 260°C–380°C and RT of 60 min. They reported 
that the highest biocrude yield was achieved with acetone, whereas methanol showed 
the highest conversion rate, as presented in Figure 9.4. The efficiency of the sol-
vents in achieving higher biocrude yields was estimated to follow this order: acetone, 

FIGURE 9.3 (a and b) Effect of different catalysts on HTL products from sewage sludge. 
(Adapted from (a) [19], (b) [21].)
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ethanol, and methanol. The solvents serve as reaction substrates during the liquefac-
tion process, which react with biomass intermediates fractions to form biocrude [26]. 
In light of this statement, the lower biocrude yield with methanol is due to its lower 
molecular weight with respect to acetone and ethanol [29].

The methanol gave a high conversion rate due to its high polarity and low dipole 
moment. The polarities are sequenced in a way as methanol (76.2) > ethanol (65.4) > 
acetone (35.5), whereas dipole moments of the three solvents are in the order of 
acetone (2.88 D) > methanol (1.69 D) > ethanol (1.67 D). Therefore, acetone gave a 
lower conversion rate corresponding to its high dipole moment and low polarity [26].

Looking at biocrude quality, the best biocrude, with maximum HHV (38.40 MJ/kg), 
was obtained using ethanol, followed by methanol and acetone. Ethanol and metha-
nol could act as hydrogen contributors and promote dehydration reactions, which 
lead to the lower oxygen content in biocrude [26]. Li et al. also observed the similar 
findings with high HHVs where methanol and hexane were used as co-solvents with 
water [18].

Although organic solvents yield more biocrude and enhance the energy recovery, 
using these solvents in continuous HTL is not a viable option in terms of the process 
economics outlook. Therefore, researchers are very much keen to explore the syn-
onymous of these solvents as with the recirculation of aqueous phase. In the recent 
past, recirculation has been discussed in many articles with other feedstocks like 
barley straw, algae, and aspen wood [57–59]. In this context, recirculation of aque-
ous phase from SS needs to be investigated to assess the overall efficiency of HTL 
processing based on SS.

9.3.2.5  Effect of Water to SS Ratio
The high moisture content of SS makes this feedstock easily pumpable. Malins et al. 
investigated different water to sludge ratios 1/0, 1/4, 1/5, 1/8, 1/12 and 1/15 at 300°C. 
They found that the biocrude yield, total conversion, and energy recovery increased 
with an increase in amount of water in SS. However, HHV decreased from 35.95 to 
31.35 MJ/kg [19]. The presence of sufficient amount of water improves the hydroly-
sis of polysaccharides, lipids, and proteins, which leads to the formation of oxygen 
containing compounds [30].

In agreement with the above-mentioned studies, Qian et al. found maximum 
oil yield at 85% moisture content, as shown in Figure 9.5 [6]. High amount of 
water increases the density of water in the reactor, which favors the decomposi-
tion of organic matter [31]. Qian et al. also investigated the effect of pressure and 
reported that it did not influence the biocrude yield. Once the critical pressure 
(Pc = 22.1 MPa) of water is reached, pressure has no effect on the biocrude yield as 
shown in Figure 9.6. This outcome is consistent with the results obtained from HTL 
of Nannochloropsis [32]. 

9.3.3  PRODUCT COMPOSITION & UTILIZATION

9.3.3.1  Characterization of Biocrude
Biocrudes obtained from HTL of SS have heating values and H/C ratio in the 
 following ranges 26.74–38.42 MJ/kg and 0.76–1.77, respectively (see Table 9.4).
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FIGURE 9.6 Effect of pressure on product distribution after HTL of sewage sludge. 
(Adapted from [6].)

FIGURE 9.5 Effect of moisture content on product distribution after HTL of sewage sludge. 
(Adapted from [6].)
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Biocrude is often characterized through Fourier-transform infrared spectros-
copy (FT-IR) and Gas chromatography mass spectrometry (GC-MS), as FT-IR only 
describes the functional groups of the compounds. Therefore, researchers firmly rely 
on GC-MS for identification of the compounds, which volatilizes up to temperatures 
of 300°C–350°C. The composition of biocrude depends upon the chemical constitu-
ents of the feedstock. SS-derived biocrude contains nitrogenous compounds (amides 
and heterocyclic) due to the presence of proteins, as well as ketones, esters, phenols, 
fatty acids, and long chain aliphatic hydrocarbons. These compounds are derived 
from the reactions like hydrolysis, C–C bond cleavage, decarboxylation, deamina-
tion, dehydration, cyclization, and repolymerization [17].

Heterocyclic compounds are formed by Maillard reaction between reducing sug-
ars and amino acids. Branched chain amides are converted from the reaction of fatty 
acids with amines that are produced from amino acids [17]. Ketones are formed 
by hydrolysis and dehydration of sugars, or by decarboxylation of amino acids to 
form keto-acids and then ketones by further decarboxylation. Aldehydes are formed 
through the same route or via isomerization of ketones. Fatty acid esters are derived 
from the reactions between alcohols and fatty acids. It has been experienced from 
several studies that the esters tend to become dominant compounds, when solvents 
other than water, like methanol or ethanol, are used for degradation of organic matter 
[16]. Phenols and their associated derivatives are converted from hydrolysis, dehy-
dration, and ring closure reactions of lignin and cellulose [13]. Fatty acids are pro-
duced by the hydrolysis of lipids, that later on converted into long hydrocarbons via 
decarboxylation [18].

9.3.3.2  Utilization of Biocrude
HTL biocrude cannot be directly used as transportation fuel due to its high viscos-
ity, high water and ash contents, low heating value, instability, and corrosiveness 
(reflected in high total acid number (TAN)). In fact, it is an intermediate product, 
which requires to be upgraded, similar to petroleum crude. Different techniques have 
been used, and are under investigation, for biocrude upgrading; however, hydrotreat-
ing appears to be the most suitable technique [33]. Hydrotreating is a technology 
already well established at commercial scale, and it is commonly used in conventional 
refineries for crude oil upgrading. Hydrotreating consists of processing biocrude 
with hydrogen (30–200 bar) in the presence of a heterogeneous bimetallic catalyst 
at temperatures ranging from 300°C to 450°C [34]. Under these conditions, oxygen, 
nitrogen, and sulfur heteroatoms, which are contained in biocrude (O: 5–18 wt%, N: 
0.5–1.0 wt%, S: 0.3–8.0 wt%), are removed in the form of H2O, NH3, and H2S via 
hydrodeoxygenation (HDO), hydrodenitrogenation (HDN), and hydrodesulfurization 
(HDS) [35]. Once the biocrude is upgraded, it can be  further refined via distillation 
into fractions, which correspond to gasoline, diesel, and jet fuel [36].

Various research groups have investigated the catalytic upgrading of HTL 
 biocrude produced from lignocellulosic [37–39] and algae [40–44] biomass. 
However, very few investigations on catalytic hydrotreating of biocrude from SS 
are reported in the literature. At present, all the studies on SS upgrading refer to 
PNNL (Pacific Northwest National Laboratory, USA) [45–46]. Jarvis et al. [45] 
have recently assessed the hydrotreating of HTL biocrude, comparing the upgraded 
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 biocrude derived from primary SS with the upgraded biocrude from microalgae and 
pinewood. The three biocrudes obtained using a bench-scale continuous-flow pro-
cess equipment, were individually hydrotreated in a continuous trickle-bed reactor 
at 400°C with 103–106 bar in the presence of a catalyst composed of cobalt oxide 
and molybdenum oxide on alumina. After hydrotreating, the bulk properties of all 
three biocrudes showed similar changes: density, viscosity, and moisture content 
of the hydrotreated biocrudes were lower than that of their respective biocrudes. 
A successful degree of HDN, HDO, and HDS was reported for all the biocrudes. 
In particular, for SS, oxygen decreased from 8.4 to 1.2 wt%, nitrogen from 4.3 to 
0.05 wt%, and sulfur from 0.63 wt% to 23 ppm. The increase in carbon and hydrogen 
content corresponded to an increase in the H/C ratio from 1.6 of the biocrude to 
2.0 of the upgraded biocrude. A greater concentration of n-alkanes was detected in 
hydrotreated SS and microalgae biocrudes (similar to shale oil), while a lower con-
centration of n-alkanes and a larger diversity of compounds was instead associated 
with the upgraded pine biocrude (similar to Gulf of Mexico crude oil).

Marrone et al. [46] have instead investigated the hydrotreating of primary sludge 
and digested solids using a 30 mL tubular fixed-bed reactor filled with a conventional 
catalyst (3.4%–4.5% CoO and 11.5%–14.5% MoO2 on alumina). The changes in bio-
crudes and hydrotreated biocrudes characteristics can be observed in Table 9.5. The 
carbon and hydrogen content increased leading to H/C atomic ratios of 2.0 and 1.9, 
respectively, for hydrotreated biocrude from primary sludge and digested solids. The 
authors reported a low loss of carbon to byproduct gas (~6% on carbon basis) and a 
minimal loss of carbon into the aqueous phase. The reduction in N, O, S heteroatoms 
is of the same order of magnitude as in the above-described study conducted by Jarvis 
et al. The changes in the elemental composition are reflected in the changes in density 
and viscosity: both reduced. Dissolved water and TAN were instead reduced to zero.

TABLE 9.5
Characterization of Biocrudes, From Primary Sludge and Digested Solids, 
Before and After Hydrotreating [46]

Primary Sludge Secondary Sludge

Analysis Units
Biocrude 

Feed
Hydrotreated 
(HT) Product

Biocrude 
Feed

Hydrotreated 
(HT) Product

Carbon wt% 76.5 84.7 82.3 85.2

Hydrogen wt% 10.1 14.2 9.3 13.8

H:C atomic ratio — 1.57 2.00 1.35 1.92

Nitrogen wt% 4.3 0.03 4.7 0.06

Oxygen wt% 8.43 1.10 2.6 0.96

Sulphur ppm 6,300 22 11,400 24

Moisture wt% 13.0 ~0 14.2 ~0

Density g/cm3 1.00 0.796 1.01 0.812

Kinematic viscosity cSt. 571 @ 40°C 2.2 @ 20°C 1,090 @ 40°C 2.4 @ 20°C
TAN mg KOH/g 55 <0.01 36 <0.01
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9.3.3.3  Inorganics in SS & HTL Products
SS has high ash content (10–50 wt%), especially if compared with lignocellulosic 
biomass (1–3 wt%) [47]. The ash content is associated with the presence of inorganic 
elements, which consists of both nutrients (e.g., N, P, K) and heavy metals (e.g., Co, 
Cr, Cu, Ni, Pb, Zn). The first, if properly separated and extracted, can be utilized 
as fertilizers in agriculture, providing an overall benefit to the HTL process. Heavy 
metals, instead, can represent a concern as their concentrations are strictly regulated 
by law in case of land application or disposal. An example of concentrations of inor-
ganics in primary SS, secondary SS, and digested solids is reported in Table 9.6. It 
appears that, regardless of the point of collection in the WWTP, the most abundant 
elements in SS are Al, Ca, Fe, P, and S. Table 9.6 also reports the concentrations 
of the inorganics in the HTL product phases (solids, aqueous phase, and biocrude). 
Finally, it should also be noted that these concentrations are not only strictly depen-
dent on the concentrations of the corresponding elements in the feedstock, but also 
on the technology used for separating the HTL product phases. In this case, first the 
solids were separated by hot filtration, and then the biocrude and aqueous phase were 
separated gravimetrically.

When SS is hydrothermally treated, the inorganics are processed along with the 
biomass, and they are recovered in the products at the end of the process. A down-
side of biomass with high inorganic content is therefore the increased chance for 
deposits and blockages, especially in continuous HTL systems. For this reason, 
researches focused on acid leaching, as a pretreatment for reducing the inorganic 
loading of the biomass prior to HTL. Liu et al. [13] have investigated the use of 
organic (HCOOH, CH3COOH, HOOCCOOH) and inorganic acids (HCl, HNO3, 
H2SO4) on municipal secondary sludge, and have observed that, even if all the 
acids increase the biocrude yield, only the inorganic ones improve the biocrude 
quality in terms of HHV, energy recovery, and increased production of light oils. 
However, the use of strong acids often reduces the carbon content of biomass 
 feedstock, and the costs and disposal of chemicals can become unfeasible when 
moving to continuous commercial scale. Another approach is to use wastewater 
sludge without any pretreatment and to remove the inorganics from HTL products. 
In lab-scale batch experiments, this is usually achieved by vacuum filtration of 
HTL products using a solvent. HTL solids, including most of the inorganics, are 
collected on the filter paper, while biocrude, water, and the solvent are recovered 
together in the filtrate.

Ekpo et al. [49] investigated the fate of inorganics after hydrothermal processing 
of digestate, reporting that K and Na are almost entirely extracted into the aqueous 
phase. N is also released in the water phase in the form of NH3–N. On the other 
hand, Ca, Mg, Fe, and Al concentrate in the solid residue. P is also precipitated in the 
residue as phosphate salts, and its extraction is linked to the presence of  inorganics 
such as Ca, Mg, and Fe. Similarly, Lu et al. [15] investigated how inorganics tend 
to distribute among HTL products after liquefaction of human feces. They con-
cluded that most ash contents were collected in the solid residue. They observed that 
 alkaline-earth metal elements (Al, Ca, Fe, Mg, and Zn) tend to concentrate in the 
solid residue, while K, Na, and N are mainly recovered in the aqueous phase.
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In continuous HTL processing, the separation of the solids can also take place by 
filtration. In PNNL set-up, for example, a hot filter vessel, which operates at  reaction 
conditions (350°C and 207 bar), is placed right after the PFR (plug flow reactor) HTL 
reactor. The low solubility of many inorganic salts in the near-critical and supercriti-
cal region is exploited to collect the inorganics apart from the main stream. Solids 
fall due to gravity to the bottom of the vessel, or the filter alternatively catches them 
as the flow leaves the top of the vessel. When and if necessary, the filter can be 
backflushed for cleaning. The removal of inorganics also minimizes the formation of 
emulsions, easing the separation of water and biocrude, which is the following step 
in the process [48]. A similar system is also installed at the pilot plant in Foulum, 
Aarhus University (Denmark). However, an additional demineralization step might 
be required, before hydrotreating biocrude oil to prevent catalyst deactivation and 
poisoning [34].

Different demineralization techniques, also used in petroleum refining, can be 
applied for removal of inorganics prior to hydrotreating [34]:

• flashing with further hydrotreating of the light fraction (used by Licella [50] 
and Biofuel B.V. [51]) or extraction with a polar solvent of the heavy fraction 
or of the entire product (used by Biofuel B.V. [51])

• filtration of the reactor effluents at process conditions to separate the 
 inorganics by precipitation (used by PNNL [52])

• desalting or washing with water at 90°C–150°C in two or more stages, with 
or without the addition of a diluent (proposed in early HTL literature [53], 
and currently used by UOP [54])

• washing with carbonated water to remove organically bound metal ions 
from crude (ExxonMobil holds a patent [55]), which is of interest in the 
HTL context, as CO2 is the main gas produced, and dissolved CO2 acts as 
a pH reducing agent enhancing phase separation (Steeper has filed a patent 
in this regard [34]).

9.3.3.4  Utilization of an Aqueous Phase
When wet biomass is hydrothermally processed, an aqueous phase is also obtained 
as a product and this represents a large part of the HTL products. A substantial 
amount of total organic carbon (TOC) and total nitrogen (TN) are lost into the aque-
ous phase affecting the process effectiveness of HTL. Therefore, the recovery of 
TOC and TN is indispensable for improving the efficiency and economics of the 
HTL process. The aqueous phase contains TOC in the form of oxygenated com-
pounds that preferably dissolve in water such as ketones, organic acids, phenols, and 
some nitrogen-containing compounds [7]. The concentration of TOC in the aqueous 
phase is highly reliant upon the type of biomass, solid loading, reaction conditions, 
and the recirculation of aqueous phase [56].

Previous studies demonstrated the beneficial effects of the recirculation of  aqueous 
phase from feedstock like barley straw [57], microalgae [58], and co- liquefaction 
of aspen wood and glycerol [59]. All studies reported higher biocrude yield and 
decreasing loss of organics to the aqueous phase. The recirculation of aqueous phase 
during the HTL of SS has not been reported yet.
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Various studies detected the nutrients like K, Na, P, and N, etc. from the  aqueous 
phase produced through HTL of SS (see Table 9.6). It was deduced from the study that 
the aqueous phase could be used as a nutrient source for the cultivation of  biomass, 
like microalgae, after the possible detoxification [17,48]. Catalytic hydrothermal gas-
ification (CHG) is another alternative route to valorize the organic  potential of the 
aqueous phase.

9.3.4  ECONOMIC AND ENVIRONMENTAL ASSESSMENT

The overall economic value of the HTL process depends upon several factors, 
among which the cost of the feedstock plays an important role [60]. Other factors, 
i.e., product yield, hydrogen price for fuel upgrading, high-pressure equipment cost, 
efficient pumps, and heat exchanger systems are also sensitive parameters, which 
have an impact on the minimum fuel selling price (MFSP) of biocrude production 
[7–9,60]. As compared to the other feedstocks, i.e., forestry, algal biomass, etc., SS 
does not need any cultivation and harvesting step due to unavoidable production 
from wastewater treatment plants, which results in a reduction of the HTL process 
costs. Furthermore, the average cost of different SS management strategies in EU, 
e.g., landfilling costs on an average 290 $/ton of DM, incineration 359 $/ton of DM, 
and for composting 353 $/ton of DM [61]. However, in connection with the wastewa-
ter treatment plants, small HTL plants seem to be a better alternative. The coupled 
system of HTL with other heat integration network can improve the biocrude yield, 
process efficiency, as well as overall economics [62].

SS is a product of the wastewater treatment plant, which deals with large flows 
of water constantly, through which solid concentration used to separate from effluent 
water for its environmentally friendly disposal pathway. Traditionally, SS from waste-
water treatment plant is used in the anaerobic digestion process to reduce the amount 
of sludge. After that, it is disposed in rural fields or in landfill. A new process configu-
ration, which recently gained attention, is to couple the WWTP facility with an HTL 
plant [63]. This process configuration can reduce the transportation cost of sludge, and 
also reduce the environmental burden of greenhouse gases. Additionally, the recovery 
of nutrients from HTL solids can contribute to meet the demand for fertilizers. To make 
the HTL process more efficient and economical, it is better to integrate the HTL system 
in a closed network loop to utilize all the phases of energy obtained by HTL process.
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