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Abstract: Over time, erosion of the leading edge of wind turbine blades increases the leading1

edge roughness (LER). This may reduce the aerodynamic performance of the blade and hence2

the annual energy production of the wind turbine. As early detection is key for cost-effective3

maintenance, inspection methods are needed to quantify the LER of the blade. The aim of this4

proof-of-principle study is to determine whether high-resolution Structure-from-Motion (SfM) has the5

sufficient resolution and accuracy for quantitative inspection of LER. SfM provides 3D reconstruction6

of an object geometry using overlapping images of the object acquired with a RGB camera. Using7

information of the camera positions and orientations, absolute scale of the reconstruction can be8

achieved. Combined with a UAV platform, SfM has the potential for remote blade inspections with a9

reduced down-time. The tip of a decommisioned blade with an artificially enhanced erosion was10

used for the measurements. For validation, replica moulding was used to transfer areas-of-interest11

to the lab for reference measurements using confocal microscopy. The SfM reconstruction resulted12

in a spatial resolution of 1 mm as well as a sub-mm accuracy in both the RMS surface roughness13

and the size of topographic features. In conclusion, high-resolution SfM demonstrated a successful14

quantitative reconstruction of LER.15

Keywords: Structure from Motion; Surface Analysis; Leading Edge Roughness; Blade inspection;16

Quantitative 3D reconstruction; Photogrammetry17

1. Introduction18

Erosion of wind turbine blades poses a challenge for wind energy operation and maintenance19

[1]. Erosion of the leading edge (LE) increases the surface roughness and reduces the aerodynamic20

performance of the blade [1,2]. As the shape of wind turbine blades is specifically designed to achieve21

maximum energy efficiency [3], this increased leading edge roughness (LER) may lead to a reduced22

annual energy production of the wind turbine. Through CFD modelling, several studies have found23

that even a small degree of LE erosion can lead to 2%-5% loss in annual energy production [4–6].24

Severely eroded blades with high levels of LER can experience losses from 8% and up to 25% [4,7,8].25

As LE erosion over time can develop from small pinholes to large areas of coating delamination [4,9],26

early detection of the severity of the erosion is important. At later erosion stages, extensive blade repair27

may be necessary causing expensive turbine down-time. Thus for early erosion detection, inspection28

methods for measuring the surface topography of the blade are needed to quantify the LER.29

Visual inspection have long been applied for condition-monitoring of wind turbine blades [10]. In30

recent years, unmanned aerial vehicles (UAV) have received increased interest for remote inspection31

of wind turbines [11–16] with a lower downtime compared to manual rope-access inspection. From32
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2D images captured by the UAV, deep learning methods [13,15] can be used for detecting damages33

and erosion on the blades. However, while the 2D information can reveal the presence and location,34

quantification of the blade surface roughness requires high-resolution 3D data.35

Structure-from-Motion (SfM) is a camera-based method that provides a 3D reconstruction of an36

object geometry with a simple, fast and low-cost acquisition [17–19]. Aided by a rapid development of37

both open source [20,21] and commercial software solutions [22–24], SfM has found industrial interest38

in e.g. construction site monitoring [25–27] and infrastructure inspection [28–32]. A lot of research39

has also been done in the performance of SfM, for different use cases [33,34]. As input for the SfM40

reconstruction, overlapping images of the object from different positions and orientations are acquired41

using a RGB camera. Feature points are extracted and matched between the 2D input images using42

local feature descriptors such as SIFT [35] or ORB [36]. From the feature points and intrinsic camera43

parameters, a sparse 3D point cloud as well as the camera positions and orientations are computed.44

Using information from reprojected camera views, further points can be added to create a dense point45

cloud, which can be further meshed [37,38].46

The accuracy of a SfM reconstruction is influenced by a number of factors. Since SfM depends on47

triangulation of feature points, the accuracy is affected by the angular coverage of the acquired images48

[19,39] and scales with the the capturing distance from camera to object [38,40,41]. Furthermore, a49

sufficient texture level is required for enough distinct features on the object surface to be tracked from50

image to image [19,42]. Low texture regions may result in empty regions of the point cloud [43]. To51

evaluate the accuracy, the SfM reconstruction is typically compared to another optical technique such52

as a LiDAR or laser scanner. This can be done either by direct point-to-point comparison with the53

SfM point cloud [19,44,45] or raster-to-raster comparison of digital elevation models (DEM) [46,47].54

Either way, the comparison is influenced by the measurement uncertainty of the reference points [47].55

Common metrics for reporting the accuracy are the standard deviation (SD) [17,33,44] and root mean56

square deviation (RMSD) [41,43,46].57

Within wind energy, SfM has previously been investigated for 3D reconstruction of blade58

geometries [11,16]. However, these studies did not have a sufficient resolution to reconstruct the59

surface topography directly and rather used the color texture to identify damages. With high-resolution60

SfM, a point-sampling distance below 0.1 mm/pixel can be achieved which allows for reconstruction61

of the surface roughness [48,49].62

In this proof-of-principle study, we investigate the potential of high-resolution SfM in quantitative63

inspection of wind turbine blades. We envisage a scenario where an UAV carrying a high-end RGB64

camera is capturing images of the LE of blades. Using these images, a SfM reconstruction of (parts65

of) the LE is performed from which quantitative measures of the LER can be extracted. The study66

seeks to answer two main questions. Firstly, to demonstrate whether a sufficient resolution can be67

achieved to reconstruct the LER of a blade. Secondly, what is the performance of high-resolution SfM68

in providing quantitative measures of the surface topography of the LER. A mock-up of an eroded69

blade was fabricated by artificially enhancing the LER of the tip of a decommisioned blade. The70

SfM capturing was done using a handheld camera and in an outdoor environment to mimic realistic71

inspection conditions. In the high-resolution acquisition, the images were acquired from a distance of72

roughly 2 meters using a 300 mm lens. We believe these conditions to be representative of what the73

envisaged UAV inspection scenario might operate with.74

For evaluating the accuracy of the SfM reconstruction, selected areas on the blade surface75

were extracted from the point cloud and converted to a DEM. Replicas of the same areas on76

the blade surface were made using replication moulding and transferred to the lab. Replication77

moulding is a demonstrated method for transferring hard-to-access surface topographies to a substrate78

suitable for microscopy measurements [50]. In the replication of surface roughness, accuracies at79

the sub-micrometer level have been demonstrated using elastomer replica materials [51–56]. Using80

confocal microscopy (CM) measurements of the replicas, a DEM was created for direct raster-to-raster81

comparison to the SfM reconstruction. The resolution of the SfM reconstruction was evaluated82
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using Fourier analysis and RMSD calculation. For validation of the resolution analysis, a model was83

constructed by reducing the resolution of the reference DEM and adding noise. This model DEM84

was then compared to the SfM DEM. Finally, the quantitative performance in measuring LER was85

evaluated using surface roughness parameters and topographic feature sizes.86

2. Methods and Materials87

2.1. Blade Mock-up88

A decommissioned wind turbine blade was available for the experimental setup. The blade had89

been used in a modern 2 MW pitch-regulated wind turbine. Span-wise, the outer two meters of the90

blade that already had some erosion was used. To better resemble the examples of severe LE erosion91

experienced from field inspections [4,8,9], the erosion was artificially increased by sandblasting the92

LE. At this level of erosion, large areas of laminate are exposed along the LE with depths of 1-3 mm.93

Severe erosion was chosen for this study for two main reasons. Firstly, depths of these magnitude are94

at the order where the aerodynamic performance is significantly impacted. A study by Bak et al. [57]95

found that the critical height of roughness for lowering the maximum lift of wind turbine blades was96

above 1 mm. Secondly, a large surface roughness represents a good pass/fail test of the feasibility of97

high-resolution SfM. If the resolution was not sufficient for resolving large erosion structures, it would98

not function for less eroded surfaces either.99

For inspection of a wind turbine in operation, we envision that the turbine is stopped with the100

inspected blade in a vertical position. To simulate this, the blade was mounted vertically in a gantry,101

which was welded together for the purpose of this work. To include the effect of oscillations, chain102

links were used to fix the blade mock-up to the gantry, which let the blade segment move freely in the103

wind. The height of the gantry was 5 meters, resulting in a distance of 5 meters from the very tip of the104

blade to the ground. The blade setup on the gantry, together with the scissor lift used to capture all the105

data for this paper can be seen in Figure 1.106

Figure 1. The wind turbine blade segment positioned on the built gantry, together with the scissor lift
used for capturing image and replica data.

2.2. SfM Capturing Conditions107

The image capturing process of the proof-of-principle study was done in an outdoor environment108

to ensure realistic capturing conditions. A commercial DSLR camera (Canon 5Ds) with a variable109

zoom lens (Canon 70-300 f/4-5.6L IS USM) was used with the focal length fixed at 300 mm. Camera110
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parameters and settings are summarized in Table 1. As the capturing was done outdoors, a number of111

prerequisites need to be taken into account:112

• The natural illumination can change between images.113

• The sides of the blade mock-up may not be evenly illuminated.114

• Wind can cause oscillations of the blade mock-up, which can change its position and orientation115

compared to previous images.116

Since the accuracy of the SfM reconstruction depends on the stability of light conditions, camera117

settings should be robust to environmental changes in light direction and intensity. In addition, the118

settings should take into account the possible motion of the blade. The chosen ISO, shutter, and119

aperture settings are shown in Table 1. They represent what we believe to be reasonable compromises120

between exposure for outdoor conditions, becoming less sensitive to motion blur (shutter) and not121

having to worry too much about too shallow depth-of-field (aperture).122

Table 1. Camera parameters and settings for the outdoor capturing setup.

Camera Parameters Values
ISO 800
Shutter Speed [sec] 1/200
Aperture f/16
Focal length [mm] 300
Image size [pixels] 8688x5792
Sensor pixel size [µm] 4.14
Capturing setup
Distance to blade [m] 2
Angular spacing [◦] 10
Capturing bands 3
No of images 57
GSD [µm/pixel] 27

For the initial proof-of-principle study, a manual and hand-held image capturing was performed.123

A part of the wind turbine blade was chosen that contained a variation in surface topography across124

the leading edge - from very rough damaged areas to smoother clean areas. The part of the blade125

chosen for 3D reconstruction is shown in Figure 2.126

Figure 2. Testing blade together with the region chosen for reconstruction. The zoomed-in parts are of
the two sides of the blade

A semi-circular 180-degree capturing pattern is used for the image capturing. This capturing127

method was shown by [34] and [58] to produce high accuracy reconstructions, while also minimizing128
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the number of required images. Three horizontal semi-circular bands each with 19 images were129

acquired giving a total of 57 images. To ensure enough vertical separation between the horizontal130

bands, the first band was taken from the ground level looking toward the suspended blade. To capture131

the other two bands a moving scissor lift was used. The captured positions can be seen in Figure 3b.132

This way the blade surface could be captured from different positions and angles both in horizontal133

and vertical direction, ensuring maximum cover. The semi-circles were centered around the wind134

turbine blade with a distance of 2 meters from camera to blade. The capturing settings are summarized135

in Table 1.136

For a fixed focal length, the capturing distance determines the ground sampling distance (GSD),137

i.e. the spatial size on the object that each pixel in a captured image covers. Using a pinhole camera138

model, the GSD can be calculated as the camera sensor pixel size p multiplied by the ratio of the139

distance between camera and surface D over the focal length f as shown in equation 1.140

GSD =
D
f

p (1)

With the used settings in the study, the GSD was 27 µm/pixel which corresponds to approximately141

36 pixels/mm on the blade surface.142

2.3. SfM Reconstruction143

For SfM reconstruction, the commercial stand-alone software package Agisoft Metashape by [22]144

was used. It was selected as it has previously demonstrated a high accuracy compared to other state of145

the art solutions, while being robust against sub-optimal capturing conditions [34]. The pipeline from146

input images, 3D reconstruction and extraction of depth map patches is visualized in Figure 3. An147

overview of the process is given below.148

(a) Input images (b) Camera pose (c) Reconstructed 3D geometry

(d) Reconstruction in color (e) Patch in color (f) DEM of patch

Figure 3. Pipeline for 3D reconstruction using SfM. 3a) Initially, images were acquired at every 10
degrees of a half circle around the wind turbine blade at three different heights and tilt angles. 3b The
camera pose of the images and points on the object surface were then calculated. The reconstructed
surface geometry without 3c and with color 3d. Extracted patch from the reconstruction shown as 3e
(color) texture and 3f resulting DEM.
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The captured images 3a were imported to Metashape and a triangulation, feature extraction and149

matching step were performed to find the camera positions and key feature points from the input150

images 3b. From these positions and feature points, a sparse point cloud was formed. Next in the151

reconstruction process a dense point cloud was created and meshed into a triangle mesh 3c. Finally a152

(color) texture is build from the visual data from the input images 3d.153

To establish an absolute scale in the SfM reconstruction, the known camera positions and distance154

from camera to blade surface were utilized. The method presented in [59] was followed. The scale was155

calculated using a least squares transformation estimation between the reconstructed camera positions156

and the manually measured positions in the real world.157

For evaluating the SfM reconstruction, three areas R1, R2 and R3 were selected for comparison to158

reference microscopy measurements. The areas were chosen to include distinctive surface topography159

features and cover the boundary between intact coating and damaged surface. For each area, a160

digital elevation model (DEM) was created from the reconstruction using the following pipeline. First,161

for further processing and analysis of the mesh the reconstruction was imported to the software162

CloudCompare [60]. For each area, a patch of roughly 35 mm x 35 mm was created from the main163

reconstructed point cloud. The patches were oriented with the Z axis perpendicular to the mesh surface,164

and were rasterized into a DEM of the surface topography 3f. This was done by an interpolation of the165

point-cloud points to a map with equidistant point spacing and using the average z-values of each grid166

space. The resulting pixel size was chosen to be 13, 3µm to match the reference microscopy images.167

2.4. Replica Moulding168

Replication was performed for each of the R1, R2 and R3 areas described in section 2.3. As a169

replication material with a fast curing time and resolution down to 0.1 µm, Repliset T3 by Struers [61]170

was selected. In previous studies, the replication of surface textures using Repliset has achieved a171

sub-micrometer accuracy [55,62]. The RepliSet T3 is a black two-part silicone rubber which consists of172

a polymer and curing agent. For replication, the two parts were pushed out of the cartridge, mixed in173

a static-mixing nozzle and applied onto the blade surface 4a. Immediately after application, backing174

paper was placed on top of the mixture and attached by applying a small force as shown in Figure 4b.175

The mixture set for 15 minutes and then the replica was removed from the blade surface by hand.176

(a) (b)

Figure 4. Replication of an area on the blade mock-up. Figure 4a illustrates the application of the
combined polymer and curing agent from a static-mixing nozzle. Figure 4b shows the backing paper
being attached by applying a gentle force to the replication material.

2.5. Confocal microscopy177

Confocal microscopy (CM) was used to produce reference DEMs of the R1, R2 and R3 areas. The178

three replica of the blade surface were measured using a calibrated PLU NEOX confocal microscope by179

Sensofar [63]. For each replica, an extended area of approx. 35 mm x 35 mm was measured by stitching180
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around 400 individual images. A x5 magnification objective with an NA of 0.15 was used. For each181

image, a 4x4 binning was used resulting in a final pixel size of 13.3 µm. To ensure a superior resolution182

for the CM measurement, the pixel size was kept smaller than the GSD of the SfM reconstruction. The183

vertical step size (z-axis) used was 12 µm. The 3D surface reconstruction, stitching and creation of a184

DEM were performed using the proprietary SensoSCAN software.185

The sensitivity of the CM microscope in the vertical direction (z-axis) was calibrated using a set of186

step height transfer standards. Traceability was ensured through calibration of the standards by e.g.187

an AFM equipped with laser interferometer. The amplification coefficient of the z-axis had a relative188

uncertainty lower than 3%.189

2.6. Image processing and data analysis190

The main software programs used for the surface topography analysis were the Scanning Probe191

Image Processor (SPIP) [64] version 6.6.3 as well as custom scripts in MATLAB version 2019b. SPIP is192

an image processing program with special tools for accurate characterization of image structures.193

Initially using SPIP, each SfM and reference DEM were levelled by subtracting a least-squares194

parabola fit from the overall shape. This way the long wavelength curvature of the surface was195

removed, while the short wavelength surface roughness could be preserved. Then for each area, the196

SfM DEMs were co-registered using a Fourier correlation approach in MATLAB.197

From the co-registered DEMs, geometrical quantities were extracted from both SfM and198

microscopy reference. The chosen quantities are the depth and height of topographic features.199

2.6.1. SfM reconstruction quality200

To evaluate the quality of the SfM reconstruction, two parameters were chosen; The instrument201

transfer function at 50% value (ITF50) and the maximum value of the cross-correlation function202

(CCFmax).203

The ITF50 value is a measure of the spatial sharpness, which is analogous to the MTF50 value of204

the modulation transfer function. ITF50 is found as the spatial wavelength at which the instrument205

response is half the value of the reference. The definition of ITF is shown in (2) [65]. For the calculation,206

a region on the surface containing a height is selected. For each line across the height step, the ratio of207

the 1D Fourier transforms of the instrument function and reference is calculated. The ITF is found as208

the mean of all lines in the region.209

ITF( f ) =

〈 ∣∣∣∫ ∞
−∞ z(x, y)e−i2π f xdx

∣∣∣∣∣∣∫ ∞
−∞ zre f (x, y)e−i2π f xdx

∣∣∣
〉

y

(2)

CCFmax has a value between 0 and 1 and describes the spatial similarity of a set of co-registered
measurement and reference topographies. If the measurement is very close to the reference, the value
of CCFmax will be close to 1. CCFmax is found as the maximum of the normalized 2D cross-correlation
function [66].

fCCF
(
tx, ty

)
=

∫∫
A z(x, y)zre f (x − tx, y − ty)dxdy√∫∫
A z2(x, y)dxdy

∫∫
A z2

re f (x, y)dxdy
(3)

2.6.2. Surface Roughness210

Prior to performing the surface roughness analysis, an S-filter of 25 µm and an L-filter of 10 mm211

were applied to the DEM in accordance with [67]. A plane was chosen as reference surface using212

a least-squares linear fit to the height values of the DEM. The following areal surface roughness213

parameters as described in [68] were calculated: Sq, Sdq and Sal . These parameters were chosen as they214
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describe different and complementary features of the surface topography as explained below. The215

analysis was performed using the "Roughness Analysis" tool of the SPIP application software.216

• Sq is the root mean square height of the z-values with respect to the reference surface. Sq describes217

the overall height variation of the DEM.218

• Sdq is the root mean square of the surface gradient. As Sdq depends on variations in the local219

slope, it is sensitive to the short wavelength components of the surface topography.220

• Sal is the auto-correlation length, and is a measure of the spatial distance a which the surface221

texture becomes statistically different. Sal is calculated as the minimum distance in frequency222

space at which the auto-correlation function decays to 0.2 in value. Therefore, Sal contains223

information on the long wavelength components of the surface topography.224

3. Results225

The performance of the SfM reconstruction is illustrated in Figure 5. In 5a and 5b, the SfM and226

reference DEM of replication area R1 are shown. Both have been processed as described in section227

2.6. The blue box indicates the subregion used for the ITF analysis. As seen in panel 5a, the SfM DEM228

captures the main topographic features although the resolution is less than for the reference in 5b.229

While short wavelength topography variations are missing, holes, edges and the larger glass-fiber230

structures are visible in the SfM DEM.231

(a) SfM (b) Reference (c) Model

(d) ITF (e) SfM-Reference (f) Model-Reference

Figure 5. 5a Reference, 5b SfM and 5c model DEM of replication area R1. The blue box indicates the
area used for the calculation of ITF50. The scalebar is 5 mm. 5d ITF for SfM and two model curves
based on filtering the reference DEM with and without noise added. 5e-5f Residual of SfM and model
DEM with respect to reference DEM.

The ITF function was calculated from the SfM and Reference DEM of area R1 as described in232

section 2.6.1. The ITF was not calculated for R2 and R3 as no height step was present in these areas. In233

5d, the ITF function for SfM is shown (blue solid line) with the 50% value indicated in dashed black234

lines. As stated in Table 2, the ITF50 spatial wavelength was 1.3 mm.235

In order to validate the shape of the SfM ITF, a model was developed based on the reference DEM.236

First, the reduced resolution of the SfM reconstruction was approximated by applying a Gaussian237
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low-pass filter to the reference DEM. A filter with a FWHM of 0.65 mm was used to give the model238

DEM the same ITF50 value as the SfM. As seen in Figure 5d, the ITF of the filtered reference (dashed239

red line) matches the long wavelength values of the SfM ITF. However, at higher frequencies the240

filtered reference has lower values than the SfM. In a second step, structured noise centered at 0.5241

mm and 0.1 mm wavelengths was added (dash-dotted yellow line). The two noise components was242

constructed through Gaussian low-pass filtering of Gaussian noise with an amplitude selected to243

match the SfM ITF. In 5c, the model DEM using Gaussian filter and noise added is shown for area R1.244

Similarly, a model DEM was created for both area R2 and R3 using the same Gaussian FWHM and245

noise settings.246

In Table 2, CCFmax and RMSD values for both SfM and model DEM are shown for all replication247

areas. The CCFmax values for the model were close to 1 for all areas. For SfM, the values were >0.9248

for both R2 and R3 indicating a very close horizontal spatial resemblance. A slightly smaller value249

was found for R1. Overall, the CCFmax values indicate that an accurate scaling of SfM was obtained.250

As seen in the table, the RMSD values for SfM are between 0.1-0.2 mm, which is several times larger251

than the model values between 0.03-0.04 mm. This discrepancy is illustrated in the residuals shown in252

Figure 5e and 5f. While large differences are observed near sharp edges for both model and SfM DEM,253

the SfM residuals also contain a waviness that accounts for the larger RMSD value. The waviness has a254

wavelength in the order of 10 mm which shows up as large variations in the long wavelength part of255

the ITF in Figure 5d.256

Table 2. Quantitative values for evaluating the SfM reconstruction. CCFmax and RMSD are included
for all three areas R1 to R3 while ITF50 was only calculated for R1.

Replication area R1 R2 R3
ITF50 [mm] 1.3
CCFmax, SfM 0.86 0.95 0.93
CCFmax, Model 0.98 0.99 0.995
RMSD, SfM [mm] 0.099 0.12 0.21
RMSD, Model [mm] 0.038 0.036 0.031

To evaluate the surface roughness of the SfM reconstruction, two regions within each of the R1,257

R2 and R3 areas were selected as shown with blue solid lines in Figure 6a to 6c. Of the six regions258

named S1 to S6, an extensive erosion of S1 and S3 resulted in a topography dominated by glass-fiber259

structures while S2, S4, S5 and S6 still had an intact surface coating.260

The roughness parameters Sq, Sdq and Sal were calculated for each of the S1 to S6 regions as261

described in section 2.6.2. The roughness values for both SfM and reference are shown in Table 3 and262

illustrated in scatter plots in Figure 6g to 6i. Overall, both SfM and reference values show a larger263

roughness for the eroded S1 and S3 regions than the regions with intact coating. However, when264

comparing the three roughness parameters on the scatter plots, some differences are clear. While the265

SfM values for Sq and Sal vary within around 10%-20% of the reference values. the SfM values for Sdq266

are systematically lower than the reference by around 50%. The absolute RMSD deviations for S1 to S6267

were 9 µm for Sq, 0.5 for Sdq and 0.2 mm for Sal .268

Three distinctive topographic features were selected in the R1 and R2 areas; Two depressions269

D1 and D2 (red dashed lines) and a height step H1 (yellow dotted lines) as shown in Figure 6a and270

6b. For all features, the depth and height measurements for the SfM DEM are close to the reference271

as shown in Table 3. The relative deviations between SfM and reference are less than 16%, and the272

absolute deviations were less than 0.2 mm with an RMSD of 0.1 mm.273

4. Discussion274

The reconstructed SfM displayed a high sharpness and resolution. From the ITF50 value, we have275

that features down to 1.3 mm appear sharp. Conversely, the Gaussian FWHM of 0.65 mm from the276

model DEM gives a measure of the spatial resolution, i.e. the smallest distinguishable features. The277
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(a) R1, Ref (b) R2, Ref (c) R3, Ref

(d) R1, SfM (e) R2, SfM (f) R3, SfM

(g) Sq [µm] (h) Sdq (i) Sal [µm]

Figure 6. 6a-6c Reference and 6d-6f SfM DEMs of area R1, R2 and R3, respectively, with prior image
processing as described in section 2.6. Surface roughness regions S1 to S6 are indicated with solid
blue lines. Depressions D1, D2 and ridge H1 are indicated with dashed red and dotted yellow lines,
respectively. The scalebar is 5 mm. 6g-6i Scatter plots of SfM and reference values for Sq, Sdq and Sal ,
respectively. The dotted line indicates where SfM values are equal to reference values.

resolution of around 1 mm is one to two orders of magnitude lower than the GSD of 27 µm, which is in278

line with previous high-resolution SfM studies [48,49].279

The high value of CCFmax for the R2 and R3 areas shows a good spatial resemblance between280

SfM and reference measurements. The slightly lower value for R1 could either indicate an insufficient281

resolution or an imperfect co-registration. Since the CCFmax values for the model DEM were close to 1,282

the resolution seems sufficient to preserve the topographic features. The accuracy in co-registrating283

the DEMs could be limited by the replication moulding. While the replica ensures a high replication284

accuracy of the surface roughness, the overall shape is not preserved when demoulding the replica.285

Although a levelling was applied, a waviness was still observed in the residual of the SfM DEM with286

respect to the reference as seen in Figure 5e. Nonetheless, as the waviness had a wavelength of 10 mm287

it did not impact the ITF50 value of 1.3 mm.288

Furthermore, as indicated by the model DEM, a rather high noise level was present in the SfM289

DEM. Some of this may originate from the point cloud densification or the interpolation when creating290

the DEM. Varying light intensity may also affect the reconstruction as reported by [11]. Further studies291

are needed to determine the potential for reducing the noise level.292
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Table 3. Quantitative values for surface roughness and topography features. The roughness parameters
Sq, Sdq and Sal for regions S1 to S6 were calculated using an S-filter of 25 µm and an L-filter of 10 mm.
The depth for depression areas D1 and D2 and height for ridge area H1.

Replication area R1 R2 R3
S1 S2 S3 S4 S5 S6

Sq, Ref [µm] 78 31 96 35 37 51
Sq, SfM [µm] 61 28 106 39 36 44
Sdq, Ref 1.03 0.78 1.02 1.22 0.69 0.90
Sdq, SfM 0.43 0.45 0.45 0.50 0.55 0.35
Sal , Ref [mm] 1.04 1.12 1.41 0.66 0.73 0.64
Sal , SfM [mm] 1.25 0.84 1.66 0.85 0.66 0.88

D1 H1 D2
∆z, Ref [mm] 0.57 0.34 1.51
∆z, SfM [mm] 0.66 0.30 1.68

The surface roughness analysis show relatively good results for SfM measurement of both Sq and293

Sal parameters. The resolution of the SfM reconstruction was sufficient as both Sq and Sal are most294

sensitive to the low spatial frequencies, i.e. structures larger than 1 mm. Similarly, the topographic295

features D1, H1 and D2 had large spatial widths which ensured good results for the measured depths296

and heights. In contrast, a poor result was seen for the Sdq parameter which is sensitive to high spatial297

frequencies, i.e. structures smaller than 1 mm.298

The potential for using the Sq parameter in quantitative characterization of LER is illustrated in299

Figure 7. First, the SfM reconstruction was unfolded to a flat shape and extracted as a DEM using300

CloudCompare. A region centered on the LE was selected as indicated with a box in Figure 7b. For301

each 10 mm x 10 mm square in the region, the Sq parameter was calculated and visualized in red in302

Figure 7c. The strength of the red color indicates the Sq value in each square with a lower bound of 20303

µm (no color) and upper bound of 100 µm (color saturated). As seen, the Sq values are low for areas304

with the coating still intact, and high along the eroded leading edge. This indicates the potential for305

high resolution SfM for quantitative inspection of LER.306

(a) SfM curved shape (b) Plane shape (c) Sqvisualization

Figure 7. Visualization of LER. The curved blade geometry seen in 7a was unfolded to a flat shape
shown in 7b from which a region centered on the LE was selected as indicated by the box. For each 10
mm x 10 mm square in the region, the Sq parameter was calculated. In 7c, the strength of the red color
indicates the Sq value in each square. The scalebar is 10 mm.

For quantitative inspection of the blade erosion, the resolution of the SfM reconstruction needs to307

match the size of erosion structures, i.e. pits, gauges and delamination. From inspection reports of LE308

erosion structures, Sareen et al. [4] considered pits and gouges with widths down to 0.5 mm and depths309

from 0.5 mm to 3.8 mm. In the study by Gaudern [9], widths down to 2 mm and depths from 0.1 mm310

to 1 mm were investigated. In both studies, the delamination covered tens of millimeters in width311

and 1-3 mm in depth. The lower end of these feature sizes correspond very closely to the obtained312
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resolution of 1̃ mm. Conversely, as the results of the SfM measurements of topographic features D1, H1313

and D2 showed, depths from 0.3 mm - 1.5 mm could be successfully measured using high-resolution314

SfM.315

(a) f = 100 mm (b) f = 35 mm

Figure 8. Model DEM of a SfM acquisition of area R1 with 8a 100 mm and 8b 35 mm focal length. The
model DEMs were created by Gaussian low-pass filtering of the R1 reference DEM of Figure 5b with
FWHM of 1.9 mm and 5.5 mm, respectively. The scalebar is 5 mm.

Had the SfM resolution been lower by e.g. using a shorter focal length, the surface roughness316

and smaller topographic features would not have been visible. This is illustrated in Figure 8 by a317

model DEM of a SfM acquisition of area R1 with a 2 m capturing distance using a 100 mm (8a) or 35318

mm (8b) focal length. These settings correspond to a GSD of 0.08 mm and 0.24 mm, respectively. The319

model DEMs were created from the R1 reference DEM of Figure 5b by applying a Gaussian low-pass320

filter with a FWHM of 1.9 mm and 5.5 mm, respectively. As seen, already for the 100 mm focal length,321

the glass fiber structures are becoming blurred. For the model of a 35 mm focal length, even the322

topographic features appear blurred.323

In previous studies which applied SfM to reconstruct blade surface, the low resolution would324

have made a quantification of LER infeasible. In comparison, the settings used by Wang and Zhang325

[11], Zhang et al. [16] resulted in a GSD of around 0.3 mm which corresponds to the model in Figure326

8b. Rather than quantifying the surface topography, they relied on the texture of the reconstruction327

to locate damages on the blade surface. An advantage of using a lower resolution is that a larger328

surface area of the turbine blade can be covered in a single reconstruction. Applying high-resolution329

SfM to reconstruct the full length of a blade would require a very long inspection time and result in a330

challenging amount of data.331

For full blade inspection, 2D images with even lower resolution can be applied which require fewer332

image acquisitions and a lower acquisition time. However, in this approach the absolute geometry333

is not obtained, and the LER is not quantified. Instead other methods would be needed to indicate334

the presence and location of LER such as the deep learning approach used by Shihavuddin et al. [13].335

In many ways, the proposed high-resolution SfM is complementary to this deep learning approach.336

By combining both, an initial inspection using low-resolution 2D images would indicate the location337

of LER on the blades. Afterwards, high-resolution SfM could be applied to quantify the severity of338

the located erosion, which could be used to estimate the aerodynamic impact. Furthermore, if these339

inspections were combined with a probabilistic model such as a dynamic Bayesian network model340

[69], the development of the erosion in time could be estimated. This would provide an input for when341

to conduct repairs on the blade.342

5. Conclusion343

This proof-of-principle study demonstrated the successful application of high-resolution SfM to344

quantify the surface roughness of a decommissioned turbine blade. To better resemble the LE erosion345

observed from inspections, a severe level of erosion with a large area of delamination was applied to the346

blade. To mimic realistic inspection conditions, the blade was hanged vertically in an outdoor setting,347
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and the SfM image acquisition was conducted hand-held to ensure a level of vibrations. Using a 300348

mm focal length and 2 m distance from the blade, a 1 mm spatial resolution of the SfM reconstruction349

was obtained.350

To validate the SfM scan, smaller regions of interest were transferred to the lab using replication351

moulding and measured with confocal microscopy. From the co-registered SfM and reference regions, a352

number of surface roughness parameters and topographic feature size were extracted. The quantitative353

results of surface roughness and topographic feature sizes displayed sub-mm accuracies. Compared to354

the reference, the RMSD value was 9 µm for the Sq roughness using an S-filter of 0.025 mm and L-filter355

of 10 mm, while the RMSD value was 0.1 mm for the depths and heights of topographic features. The356

results demonstrate the potential for using high-resolution SfM for quantitative measurement of LER357

on wind turbine blades. Quantitative measurements of LER from blades in operation could aid in358

creating more realistic CFD models and improve blade inspections.359

In future work, a high-resolution SfM inspection using a UAV should be carried out on the blade360

of a wind turbine in operation. The camera would be mounted in a gantry on the UAV platform to361

allow for the same poses relative to the blade as in the current study. These settings would allow a362

more thorough investigation of the effects of vibrations from UAV platform and turbine on the image363

acquisition and the quality of the 3D reconstructions. In addition, the sensitivity of high-resolution SfM364

towards surface roughness should be investigated further through measurements on blade surfaces365

of varying erosion severity. Further studies are also needed on the influence of the texture and color366

contrast of the blade surface on the quality of the reconstructed surface details.367
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