Biological formation of mesoporous amorphous and crystalline Materials

A keynote talk

Yue, Yuanzheng; Keding, Ralf; Jensen, Martin; He, Wen; Cui, Jingjie; Zhang, Xudong

Publication date:
2010

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
BIOLGICAL FORMATION OF MESOPOROUS AMORPHOUS AND CRYSTALLINE MATERIALS

Y. Z. Yue1,2, M. Jensen1, R. Keding1, W. He2, J. J. Cui3 and X. D. Zhang2

1Section of Chemistry, Aalborg University, Denmark
2Key Laboratory of glass & ceramics, Shandong Institute of Light Industry, Jinan, China
3Department of Chemistry, Shandong University, Jinan, China

Abstract

Mesoporous materials can be synthesized through different approaches. In this paper, we report a biological approach, by which high purity mesoporous amorphous silica is synthesized. This approach is discovered by studying the macro- and microstructures and the formation mechanism of the freshwater sponge \textit{Cauxi} that were collected at the river bank of the Rio Negro in the Amazon basin. The study revealed that the skeleton of sponges is constructed by amorphous silica spicules (average diameter: 15.6 \textmu m) that are cemented by proteins at the junctions. Such amorphous spicules contain randomly oriented mesopores. The characterization of the freshwater sponge \textit{Cauxi} shows that the mesoporous amorphous silica silica can be synthesized in aqueous solution under ambient conditions via biological catalysis. Here we describe the macro- and microstructural features, the mechanism of biological precipitation, and the glass transition of the \textit{Cauxi} skeleton.

In addition, we established a bio-mimetic approach for synthesizing high-performance mesoporous crystalline TiO\textsubscript{2}. The key step of this approach is to apply Baker’s yeast cells as biotemplates for deriving the hierarchically ordered mesoporous anatase structure. The yeast-TiO\textsubscript{2} exhibits remarkable electrocatalytic activities and outstanding photocatalytic performances. The approach may open new vistas for fabricating advanced mesoporous crystalline materials under ambient conditions.

References:
Please select the field in which the abstract is to be accommodated:

- Solvothermal/hydrothermal processes
- Soft solution processes
- Thermodynamics
- Supercritical fluids
- New solvents as ionic solvents
- **Novel synthesis**
- Functional materials
- Electronics & IT
- Nanomaterials-nanostructures
- **Porous materials and catalysts**
- Inner space science & Technology (Geochemistry)
- Life Sciences
- Biomedical & Biomimetic materials
- Hydrometallurgy
- Green sustainable technology
- Environmental science
- Other related emerging topics

Presenting author: _______Yuanzheng YUE____________________________

Title: **xProf. □Dr. □Mr. □Ms.**

Category: **x Invited □Regular □Student**

Please select your preference: □Oral □Poster

E-mail: ____________________yy@bio.aau.dk__________________________