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Path-Following Model Predictive Control of Ballbots

Thomas K. Jespersen, Mohammad al Ahdab, Juan de Dios F. Mendez,
Malte R. Damgaard, Karl D. Hansen, Rasmus Pedersen and Thomas Bak

Abstract— This paper introduces a novel approach for model
predictive control of ballbots for path-following tasks. Ballbots
are dynamically unstable mobile robots which are designed to
balance on a single ball. The model presented in this paper
is a simplified version of a full quaternion-based model of
ballbots’ underactuated dynamics which is suited for online
implementation. Furthermore, the approach is extended to
handle nearby obstacles directly in the MPC formulation. The
presented controller is validated through simulation on a high
fidelity model as well as through real-world experiments on a
physical ballbot system.

I. INTRODUCTION

Safety is a very important element if robots should be able
to navigate and solve tasks in human-occupied environments.
These environments are challenging for robots because hu-
mans are dynamically moving obstacles and cluttered en-
vironments will leave only narrow passages for the robot
to navigate. To accommodate the possible rapid changes
in the scenes, planning and control algorithms must be
able to produce and execute safe and feasible paths fast.
Consequently, minimizing compute time is of interest.

Ballbots have unique holonomic properties and are well
suited for cluttered environments and human-robot interac-
tion. Not only can they move freely in any direction, but
they also exhibit human-friendly motions as a result of their
underactuated dynamics. Ballbots fall in the category of
shape-accelerated systems [1], where the shape variables are
the inclination and orientation of the ballbot, in the latter
referred to as the attitude. Hence to accelerate ballbots have
to lean. The planning and control algorithms need to consider
these dynamics to ensure that the paths of interest can be
executed.

A common approach to local planning for mobile robots
is to use model predictive control. To make the controller
computationally feasible in real-time some of the earliest
and most popular approaches, such as the dynamic window
approach (DWA) [2] and trajectory rollout [3], used simple
dynamical models and reduced the search space of possible
controls to constant translational and rotational velocities
over a relatively short time horizon. These approaches are not
suited for ballbots since they do not account for the under-
actuated dynamics while the constant control action greatly
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limits the useful horizon length. Besides, the advancements
in computers over the last decade enables a larger search
space of possible controls to be explored. Recently, this has
been addressed by the tensor dynamic window approach
(TDWA) [4], which uses a grid-map representation with an
efficient collision checking approach. However, TDWA is
limited to a fixed set of precomputed control sequences and
also to the resolution of the grid-map.

For ballbots, past research have mainly focused on robust
control of the attitude and velocity, without considering the
dynamic motion behaviour that ballbots exhibit. The few
that have considered dynamic motion planning include the
gain-scheduled LQR controller proposed in [5] and similarly
the iterated LQG scheme proposed in [6]. Focusing mainly
on optimal motion, these two approaches do not consider
obstacles and only considers point-to-point planning.

In [1] and [7], it is shown how shape trajectories can be
computed through optimization given desired acceleration
trajectories in position space. In [8] a differentially flat output
of the ballbot is derived and used for trajectory optimization,
enabling arbitrary motion and free constraints on e.g., the
position. The proposed method is capable of converting an
optimal kinematic path from a path planning algorithm to
a dynamically feasible path for the ballbot, which converts
into an angle trajectory.

This paper takes another approach and proves that the
highly non-linear underactuated ballbot system can be con-
trolled as a linear system which does not even include the
underactuated properties. Given a path-following formulation
we allow the final robot trajectory to deviate in time from the
desired trajectory, hence allowing underactuated deviations
without punishing them.

The approach presented in this paper uses an MPC for-
mulation to control the motion of ballbots given a low-level
balance controller. The focus of this work is to perform
shape-space planning with an MPC to generate control
actions that create progress along a planned path and avoid
any obstacles at the expense of closely following the path.

The rationale is that the robot will be navigating corridors
of large campuses like hospitals and airports, where progress
through the corridor and sensible obstacle avoidance are
prioritized. Furthermore, global planning is performed on
high-level maps and simply presented as long straight lines
in the middle of the corridors. This means that the robot
should preferably progress naturally along the path, but
not necessarily follow it closely. In contrast to DWA and
Trajectory Rollout, this formulation allows varying control
action along the horizon.



The MPC is designed on a simplified and linearized
model without any underactuated dynamics but with a path-
following cost function that compensates for the lack of
underactuated dynamics. A set of lifted output constraints
ensures that the MPC stays within the limits of the low-level
controller and actuators. Obstacle avoidance is achieved by
including nearby obstacles as both constraints and exponen-
tial cost.

The remainder of the paper is structured as follows;
Sec. II outlines the ballbot system architecture. In Sec. III,
a quaternion-based model of the ballbot is presented and
simplified for use in the MPC. In Sec. IV, the shape-
accelerated MPC approach is presented. Sec. V, validates the
proposed control approach through both simulation and real-
world experiments with a physical ballbot system. Finally,
Sec. VI, concludes the work.

II. SYSTEM ARCHITECTURE

The system architecture generally follows that of mobile
robots, where a user can input a goal, such as a desired
location in a map. The goal is transformed into the desired
path through a path planner utilizing feedback from SLAM
and obstacle detection algorithms which depend on sensor
feedback. Subsequently, the desired path, nearby obstacles,
and velocity and heading estimates are forwarded to a path-
following controller, which provides attitude references for
a low-level balancing controller. The system architecture,
along with a CAD model of the ballbot, is illustrated in
Fig. 1. The computation effort is divided between a high-
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Fig. 1. 3D model of the considered ballbot along with a simplified sketch
of the system architecture.

level onboard computer and a low-level real-time microcon-
troller. The onboard computer (Intel NUC) runs ROS, which
handles SLAM and obstacle detection along with the path-
following controller. The low-level microcontroller (ARM
Cortex-M7) runs the balancing controller and local state
estimators.

III. BALLBOT MODEL

Several approaches to modeling ball-balancing robots have
been proposed in [5], [9]–[11]. Common to these models
are either a decoupled planar model or an Euler-angle based
coupled model resulting in complicated symbolic derivations,
including an exhaustive mixture of sine and cosine expres-
sions. This work takes a different approach by utilizing the
quaternion-based model derived in [12] for a ballbot with
three omni-wheels installed with 120◦ separation. The model
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Fig. 2. Rigid body diagram of a ball balancing robot, with attached model
frames. {I} is the inertial frame, {H} is the heading frame, and {B} is
the body frame.

decomposes the ballbot into two rigid bodies; one for the
ball and one for the robot body, which balances on top of
the ball as illustrated in Fig. 2. The model in Fig. 2 shows
three frames: The inertial frame, {I}; the heading frame,
{H}, which is always horizontal but aligned with the heading
of the robot; and the body frame, {B}. The x-axis defines
the forward direction of the robot and the heading angle is
thus defined as the angle between the x-axis of the heading
frame and the inertial frame. Moreover, three motors with
omni-wheels are rigidly attached to the body. The wheels are
assumed to roll on the ball without slip. The two rigid bodies
are described by two degrees of freedom for the ball, which
is assumed not to rotate around the vertical axis, and three
degrees of freedom for the body. The generalized coordinates
of the model are given by

χ =
[

Ix Iy I
Bq
]T

(1)

where Ix and Iy are the inertial frame location of the center of
the ball and I

Bq is the quaternion describing the attitude of the
robot body in the inertial frame. The model assumes no slip
between the ball and ground, such that the rotational degrees
of freedom of the ball link directly to the translational
movement of both the ball and the body. Symbolic forward
and inverse kinematics models are derived for the odometry,
enabling conversion between the angular velocities of the
omni-wheels and the translational velocity of the ball given
the current attitude of the body.

The dynamics of the ballbot are modelled using La-
grangian mechanics with the kinetic energy of the ball,
Tk; the kinetic energy from rotational and translational
movement of the body, Tb; the kinetic energy of the omni-
wheels, Tw; and the potential energy of the body, Vb, which



stems from changes in height of the center of mass as the
inclination changes. The Lagrangian is thus given as

L = Tk + Tb + Tw − Vb (2)

Due to the chosen dimension of the generalized coordi-
nates in (1), six differential equations result from applying
the Lagrangian to the Euler-Lagrange equation. Also, three
friction terms are included to approximate the expected
friction in the system: Viscous friction from ball to ground,
DK ; viscous friction from body angular velocity, DB ; and
viscous friction from motor angular velocity, DM , which is
a combination of internal motor friction and ball to omni-
wheel friction. These friction components are included in
the equations of motion by adding the friction force matrix,
D(χ̇).

D(χ̇) =DK(χ̇) +DB(χ̇) +DM (χ̇) (3)

The torque generated by the three omni-wheels, τm, acts
in a coupled way on both the ball and the body. This input
torque is included in the equations of motion by applying
Hamilton’s principle, where the inverse kinematic relation-
ship is used to map the motor torques to the generalized
coordinate space.

Q(χ, τm) =

(
∂θ̇

∂χ̇

)T

τm (4)

where θ̇ ( I
Bq,

I
Bq̇,

Iẋ, Iẏ) is the angular velocities of the three
omni-wheels.

The dimension of the generalized coordinate space is,
however, larger than the degrees of freedom of the system
since all four quaternion elements are included. Thus, the
holonomic quaternion constraint, I

Bq
T I

Bq = 1, has to be
included and eliminated using a Lagrange multiplier. The
resulting equations of motion consists of six coupled differ-
ential equations in the form of

M̃(χ) χ̈+ C̃(χ, χ̇) χ̇+ G̃(χ) + D̃(χ̇) = Q̃(χ) τm (5)

where M̃(χ) is the mass/inertia matrix, C̃(χ, χ̇) is the
Coriolis and centrifugal force matrix, G̃(χ) is the gravita-
tional force matrix, D̃(χ̇) is the friction/dampening force
matrix and Q̃(χ) is a transformation matrix that transforms
the motor torques into equivalent torques in the generalized
coordinate space. By reorganizing the equations the non-
linear quaternion-based control-affine model of the ballbot
can be formulated as

ẋ =

 χ̇

M̃(χ)−1
(
−C̃(χ, χ̇) χ̇− G̃(χ)− D̃(χ̇)

)
+

[
06×3

M̃(χ)−1 Q̃(χ)

]
τm

(6)

where the state vector is the concatenation of the generalized
coordinates and their derivatives i.e. x = [χ; χ̇] , resulting in

x =
[

Ix Iy I
Bq

T Iẋ Iẏ I
Bq̇

T
]T

(7)

Note that the rank of the input matrix is smaller than the
degrees of freedom of the system resulting in the underac-
tuated dynamics. For more details on the quaternion model
consult [12].

A. Simplification of Model for MPC Implementation

The attitude dynamics of a ballbot in a region close to
the upright position can be assumed sufficiently faster than
the translational dynamics [12] such that it is possible to
design two controllers in a cascaded configuration. A non-
linear sliding mode controller is designed in [12] to stabilize
the attitude of the body to a given body reference frame, {B̃},
given a quaternion reference, I

B̃qref, and an angular velocity
reference, B̃ωref. The evolution of the quaternion reference is
assumed to be kinematically linked to the angular velocity
reference. Since the sliding mode controller is designed to be
robust against matched uncertainties, it can be assumed that
the balance controller will stabilize the attitude while driving
in any direction with any velocity within the operational
envelope. This envelope is limited by the dynamics of the
balance controller which is closely related to the limitations
of motor torque and friction, to avoid slip. Designing an MPC
for the translational dynamics will thus only require a subset
of the full quaternion-based model from Sec. III. However,
the translational subset is still coupled with the full dynamics
making it infeasible for real-time solving.

By assuming a robust and fast balance controller, a MPC
can be designed using the underactuated shape-acceleration
relationship between the body inclination and translational
acceleration. A linear shape-space accelerated model is de-
rived in (8) by linearizing a heading-independent version of
the quaternion-based model from (6), with the inclusion of
the closed loop balance controller. The heading direction is
defined as the 2D projection of the body x-axis vector onto
the xy-plane of the inertial frame. The attitude quaternion
defined in the heading frame furthermore captures the de-
coupled inclination in the x and y elements of the quaternion
such that the acceleration coefficients can be computed from

Av̇q =

∂ Hẍ
∂ H

Bq

∂ Hÿ
∂ H

Bq

∣∣∣∣∣∣ x=x̃
qref=q̃ref
ωref=ω̃ref

, Av̇qr =

 ∂ Hẍ
∂ H

B̃
qref

∂ Hÿ
∂ H

B̃
qref

∣∣∣∣∣∣ x=x̃
qref=q̃ref
ωref=ω̃ref

(8)
where Hẍ and Hÿ defines the acceleration of the ballbot in the
heading frame, and H

Bq and H
B̃qref are the attitude quaternion

and quaternion reference defined in the heading frame. The
model is linearized around the operating point defined in (9),
being the upright equilibrium where the balance controller
tracks the zero inclination reference with zero angular veloc-
ity reference and zero translational velocity.

q̃ = q̃ref =
[
1 0 0 0

]T
, ˜̇q =

[
0 0 0 0

]T
,

ω̃ref =
[
0 0 0

]T
, Ĩẋ = 0, Ĩẏ = 0

(9)

The linearized model matrices Av̇q and Av̇qr captures
the linearized relationship between the inclination-related



elements of the two attitude quaternions and the resulting
acceleration in the heading frame [12]. The relationship
is shown in (10) with the two coefficients, cqx and cqy,
assuming that the balance controller tracks the quaternion
reference perfectly.[

Hẍ
Hÿ

]
= (Av̇q +Av̇qr )

[
H
Bq1
H
Bq2

]
=

[
0 cqx

−cqy 0

][
H
Bq1
H
Bq2

]
(10)

where H
Bq1 and H

Bq2 are the x and y elements of the attitude
quaternion defined in the heading frame, respectively. The
off-diagonal terms are zero as a result of the linearization
point with no inclination and an assumed perfectly aligned
center of mass [12].

The optimization problem within the MPC is thus subject
to the following simplified shape-accelerated dynamics

d

dt
H
Bq1 =

1

2
B̃ωref,x,

d

dt
H
Bq2 =

1

2
B̃ωref,y,

d

dt
Hx = Hẋ,

d

dt
Hy = Hẏ,

d

dt
s = ṡ

d

dt
ṡ = s̈

d

dt
B̃ωref,x = B̃ω̇ref,x

d

dt
B̃ωref,y = B̃ω̇ref,y

d

dt
Hẋ = cqx

H
Bq2,

d

dt
Hẏ = −cqy H

Bq1,

(11)
where s is the path parametrization variable capturing
progress along the path and optimized online using the
corresponding control variable s̈. The MPC problem has
been lifted such as to define B̃ω̇ref,x and B̃ω̇ref,y as the control
variables of the MPC instead of B̃ωref,x and B̃ωref,y.

IV. CONTROLLER SYNTHESIS

The objective of the shape-accelerated MPC is to follow
a reference path given by a high-level path planner as a
connected series of geometric reference points, by computing
an optimal sequence of balance controller references, B̃ωref,x
and B̃ωref,y, over a horizon of N samples using the model in
(11).

A. Trajectory Tracking vs. Path-following

The MPC optimization problem is formulated as a path
following problem given a reference path. In contrast to
trajectory tracking, the reference points are given as a
parametrized geometric path instead of a time-series of
reference points. This adds time as an extra controllable
degree of freedom [13] enabling the MPC to shape the
acceleration based on the cost function rather than punishing
deviations from a time-discretized reference trajectory, which
are likely to happen due to the underactuated dynamics.
Since the simplified shape-accelerated dynamics presented
in (11) does not capture the underactuated dynamics of the
ballbot, e.g., how the ballbot initially has to drive backward
to change its inclination to accelerate forward, the extra
degree of freedom in time will make the controller less
susceptible to this lack of dynamics.

B. Path Parametrization

The MPC creates a local path from the global reference
trajectory, as an arc curve length parametrized polynomial
of order np. The polynomial order should be high enough
to ensure continuous differentiation in position, velocity, and
acceleration, resulting in a smooth trajectory. However, there
are no closed-form expressions for the arc curve length
of a polynomial of arbitrary degree [14], but it can be
approximated by several closed-form expressions as shown
in [15]–[17].

A sequence of local reference points are extracted and
the Euclidean distance between the points serves as a first
approximation of the arc curve length. The extracted ref-
erence points are fitted to a polynomial parametrized by
this Euclidean distance. Finally the polynomial is refined by
computing the approximate arc curve length using the closed-
form expression from [16] and refitting a new polynomial to
regularly spaced points extracted from the first polynomial.
The resulting parametrized reference path is given as

Hxref (s) =

np∑
i=0

cx,i s
i, Hyref (s) =

np∑
i=0

cy,i s
i (12)

where cx,i and cy,i for i = 0, . . . , np defines the polynomial
coefficients. Other common parametrizations such as Bezier
curves [18], splines [19], and the Dubins path [20] can also
be considered. Other examples of path-following MPC can
be found in [21]–[23].

C. Obstacle Handling

Obstacles are included as position constraints with a circu-
lar keep-out area defined by a center and a radius { HOi, ri}.
The immediate distance to an obstacle, po,i, is computed as

po,i =

√
( Hx− Hxo,i)

2
+ ( Hy − Hyo,i)

2 − ri − rb (13)

where rb = 0.1 m is the radius of the robot and Hxo,i and Hyo,i
defines the center of the obstacle, HOi. The MPC handles the
obstacles by imposing the following constraints

po,i ≥ −γo for i = 1, . . . ,no and γo ≥ 0 (14)

where no defines an upper limit for the number of nearby ob-
stacles to be considered by the MPC to make the optimization
problem computationally feasible. At each control iteration
the no number of nearest obstacles are thus extracted and
used as constraints. Imposing only constraints to handle
obstacle avoidance is dangerous since the MPC will end up
driving on the constraint boundary. In the case of noise,
dynamic variations, etc., the constraints are likely to be
voided, resulting in an infeasible optimization problem. An
obstacle avoidance cost similar to a barrier function is added
to the optimization problem to push the robot away from
the constraint boundary, thereby keeping a distance to the
obstacles. The obstacle avoidance cost is defined as

eobs =

no∑
i=1

ekp(−po,i+cp) (15)



where kp and cp are the gain and offset values respectively,
that defines the exponential barrier function used to push the
robot away from the obstacles. This formulation is efficient
for static obstacles and slow dynamic obstacles due to the
feedback from sensors and constant re-computation of the
trajectory.

D. Optimization Problem

The state vector of the MPC is defined as

X =
[

H
Bq1

H
Bq2

Hx Hy Hẋ Hẏ s ṡ B̃ωref,x
B̃ωref,y

]T
(16)

To avoid infeasibility, slack variables are added to allow
slight constraint violations at a high cost. This results in the
following control variables within the MPC

u =
[

B̃ω̇ref,x
B̃ω̇ref,y s̈ γv γq γo

]T
(17)

where γv , γq and γo are slack variables used in the con-
straints for the velocity bounds, quaternion bounds, and ob-
stacles avoidance respectively. Note how the control outputs
have been lifted to angular acceleration, B̃ω̇ref,x, B̃ω̇ref,y, and
path acceleration, s̈, such that acceleration constraints, which
are closely related to motor torques, can be handled to keep
the torques below saturation. The MPC minimizes the least
squares cost defined in (18) combining a set of error terms,
state variables and control variables over the horizon.

J = hTNWN hN +

N−1∑
k=0

hTkW hk (18)

where the cost vectors evaluated at the different time in-
stances over the horizon is defined as

hk =
[
ec q1,2 ωref ω̇ref γv γq γo

]T
(19)

hN =
[
ec q1,2 ωref

]T
(20)

with

ec =
[
elon elat evel eprog eobs

]
,

[
elon

elat

]
= Rψref

z perr

evel = vlon − vref, eprog = s− smax

q1,2 =
[

H
Bq1

H
Bq2

]
, ωref =

[
B̃ωref,x

B̃ωref,y

]
vlon =

[
Hẋ Hẏ

]
· dref , ω̇ref =

[
B̃ω̇ref,x

B̃ω̇ref,y

]
dref =

[
cos(ψref)

sin(ψref)

]
, perr =

[
Hx− Hxref (s)
Hy − Hyref (s)

]
ψref = atan2( Hẏref(s),

Hẋref(s)) (21)

where elon is the longitudinal error, elat is the lateral error,
evel is the velocity error, eprog is the progress error, perr is
the position error to the closest point on the path, Rψref

z

is a clockwise rotating 2D rotation matrix of the heading
reference, vlon is the longitudinal velocity and dref is the di-
rection vector of the path at a given point. The linear velocity
reference { Hẋref,

Hẏref} is computed from differentiation of
the reference path polynomial. The error on the progress,

eprog, will ensure the progress on the path although it will
affect the resulting velocity if the weight is in the same
magnitude as the weight on the velocity error.

eend = s− smax (22)

Another type of progress error, eend, pushes the system
towards the end of the fitted trajectory by rewarding the
driven distance related to the path parameter, s. Lastly, the
constraints are defined as

0 ≤ s ≤ smax,

−qlim ≤ H
Bq1 ≤ qlim ,

−qlim ≤ H
Bq2 ≤ qlim ,

−ωlim ≤ B̃ωref,x ≤ ωlim ,

−ωlim ≤ B̃ωref,y ≤ ωlim ,

−ω̇lim ≤ B̃ω̇ref,x ≤ ω̇lim ,

−ω̇lim ≤ B̃ω̇ref,y ≤ ω̇lim ,

ṡ ≥ 0

v ≤ vmax + γv

po,i ≥ − γo
γv ≥ 0

γq ≥ 0

γo ≥ 0

(23)
where v is the Euclidean norm of the velocity of the robot.

The maximum quaternion constraint helps to limit the
maximum inclination to an angle of θlim according to

qlim = sin(0.5 θlim) + γq (24)

which in return can be related to a maximum acceleration.
To ensure stability and feasibility terminal constraints

are included. By ensuring that the robot has an upright
inclination at the end of the horizon, the terminal acceleration
is zero. Therefore, the quaternion elements H

Bq and H
Bq should

both be zero at the end of the horizon together with the
angular velocity references B̃ωref,x[N ] and B̃ωref,y[N ] so that
the quaternion elements remain at zero. The velocity norm,
v[N ], should be kept below the maximum to allow only slack
within the horizon. Finally, the travelled distance, s[N ], is
limited to a valid region of the fitted reference polynomial
as any reference beyond that point would be unmodelled.

H
Bq1[N ] = 0 H

Bq2[N ] = 0 B̃ωref,x[N ] = 0
B̃ωref,y[N ] = 0 v[N ] ≤ vmax s[N ] ≤ smax

(25)

The weighting matrices W and WN are chosen to be diag-
onal with the diagonal elements representing the individual
weights for cost term.

V. TEST AND VALIDATION

The proposed path-following MPC has been evaluated in
simulation and experimentally tested on a real robot. For
test and verification of the balance controller the reader is
referred to [12]. The simulation was carried out in MATLAB
Simulink 2018b.

A. Test Scenario

The robot is given a circular trajectory centred at the
origin of the inertial frame and with a radius of 1 m while
keeping the initial heading constant and maintaining a de-
sired longitudinal velocity of 0.25 m/s. Furthermore, four
circular obstacles are included. The final MPC parameters
and the defined obstacles can be found in Table I and II in



Fig. 3. Trajectory tracking for both simulation and test. The arrows indicate
the progression of the robot along the trajectory. The inflated obstacles have
been enlarged with the robot’s radius.
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Fig. 4. Clearance between the robot and all the obstacles in the experi-
mental run.

the Appendix. The MPC is developed as a ROS package
which communicates with the embedded microcontroller
on the robot. For mapping and localization the gmapping
package [24] is used with two single beam SICK LiDAR
sensors on the robot. The MPC was run at a sampling
frequency of 10 Hz on an external computer (Intel Core i7-
6600U, 8 GB RAM) connected to the shared ROS network
over WiFi. The code used for simulation and implementation
can be found at [25] and [26] respectively.

B. Results

The results of the path following experiments are captured
in Fig. 3, along with simulation results for the same scenario.
Furthermore, Fig. 4 shows the clearance of the robot to the
obstacles and Fig. 5 illustrates the cost function values and
velocity norm for both the simulation and the test.

The robot successfully manages to avoid the obstacles
while progressing along the desired circular path. However,
there are slight differences between the simulation and ex-
perimental results. As expected the simulated trajectory of
the robot shows a better tracking performance. Moreover, it
can be noticed from Fig. 5 that the cost functions matches
in behaviour for both of the cases with three consecutive
spikes representing the situations where the robot gets close
to one of the three obstacles along the desired path. The
shift in time can be explained by the velocity plot which
shows that the robot drives slower near the obstacles during
the real-world test than in simulation. Besides, there is a
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Fig. 5. Cost function values for both the test and simulation cases, together
with the velocity norm of the robot.

difference in the magnitude of the cost functions especially
at the spikes. These differences are likely due to model
inaccuracies and/or uncertainties. For instance, the centre of
mass of the actual robot is slightly offset compared to the
nominal model used in simulation. These issues could be
reduced by e.g., considering robust techniques for the MPC
or online parameter estimation and compensation.

VI. CONCLUSION

This paper presented a novel path-following and obstacle
avoidance model predictive control approach for ball balanc-
ing robots with underactuated dynamics. The MPC utilized a
simplified quaternion-based model of the ballbot which made
real-time implementation and computation feasible although
orientation singularities are generally not a problem with
ballbots [12]. The MPC was validated through simulation
and experiments on a real ballbot to verify the approach.
Although there were discrepancies between the simulation
and the experiment, where the controller showed better
tracking performance in simulation, these differences were
as expected given the possible uncertainties such as unmod-
elled dynamics and inaccurate model parameters. Therefore,
further testing and tuning of the MPC in real-life scenarios
including external disturbances would be a natural direction
for future work.

APPENDIX

TABLE I
MPC PARAMETERS FOR THE SIMULATION AND TEST

Wlon = 20000 Wlat = 75 Wv = 600 Wprog = 0 Wq = 20

Wω = 10 Wω̇ = 20 Wγv = 9999 Wγq = 9999 Wγo = 9999

Wobs = 10 kp = 8 cp = 0.15 N = 22 f = 10Hz

θlim=7◦ ωlim = 10◦/s ω̇lim = 7◦/s2 νmin = 0m/s νmax = 3m/s

np = 8 no = 4

TABLE II
OBSTACLE PARAMETERS USED FOR SIMULATION AND TEST

Obstacle number Center [m] Radius [m]

1 (−0.5, −
√

3/2) 0.15

2 (0,0) 0.2

3 (−0.2141,1.0075) 0.12

4 (1.05/
√

2, − 1.05/
√

2) 0.11
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