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ABSTRACT
The dynamic model of multi-degree-of-freedom permanent magnet (PM) spherical actuators is
multivariate and nonlinear due to strong inter-axis couplings, which affects the trajectory tracking
performance of the system. In this paper, a decentralised control strategy based on adaptive fuzzy
sliding mode (AFSM) algorithm is developed for a PM spherical actuator to enhance its trajectory
tracking performance. In this algorithm, the coupling terms are separated as subsystems from the
entire system. The AFSM algorithm is applied in such a way that the fuzzy logic systems are used to
approximate the subsystem with uncertainties. A sliding mode term is introduced to compensate
for the effect of coupling terms and fuzzy approximation error. The stability of the proposedmethod
is guaranteed by choosing the appropriate Lyapunov function. Both simulation and experimental
results show that the proposed control algorithm can effectively handle various uncertainties and
inter-axis couplings, and improve the trajectory tracking precision of the spherical actuator.
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1. Introduction

Multiple degree-of-freedom (DOF) actuators have wide
potential applications such as robot manipulators, auto-
mobile wheels, vision systems and precision assemblings.
Conventionally,multiple-DOFactuators are implemented
by combining several single-axis motors which have
inevitable disadvantages such as complex structure, large
backlash and slow response. As an alternative, spheri-
cal actuators which can realise 3-DOF motion in one
single joint are advantageous due to simple mechanical
structure and rapid response. So far, various structures
and working principles of 3-DOF spherical actuators
have been proposed, such as spherical ultrasonic motors
(Toyama & Kobayashi, 1996), spherical induction actu-
ators (Dehez et al., 2002) and permanent magnet (PM)
spherical actuators. In this paper, our interest is the PM
spherical actuators. In past years, this type of actuator has
been studied, which reveals their advantages of small vol-
ume, high flux density (Hey, Teo, Bui, Yang, & Martinez-
Botas, 2014; Shigeki, Shigeru, Zhang, & Yasutaro, 1995;
Takahara, Hirata, Niguchi, Nishiura, & Sakaidani, 2017;
Yan, Chen, Lim, Yang, & Lee, 2011).

Many control algorithms have been proposed for PM
spherical actuators to achieve high trajectory tracking
performance. A typical method to control PM spherical
actuator is to use proportional-derivative (PD) control

CONTACT Weihai Chen whchenbuaa@126.com

Supplemental data for this article can be accessed here. https://doi.org/10.1080/00207721.2018.1553254

law (Jia, 2003; Maeda, Hirata, Ikejiri, & Tong, 2010;
Wang, Wang, Jewell, & Howe, 2003; Xia, Song, Li, Li,
& Shi, 2009). However, the dynamic model of PM spher-
ical actuator includes nonlinearities, uncertainties and
strong inter-axis couplings among various inputs and
outputs (Son & Lee, 2010), and the trajectory tracking
performances will be seriously affected with the PD con-
trol scheme. To compensate for the nonlinearities and
couplings, a computed torque method has been used
(Bai & Lee, 2014; Chen, Zhang, Yan, & Liu, 2012; Son
& Lee, 2014). It can linearise and decouple the dynamics
of the spherical actuator, whereas it cannot achieve a high
trajectory tracking performance especially in the pres-
ence of various external disturbances. To cope with these
problems, the neural networks control is applied due
to their learning ability and adaptation (Chu, Niguchi,
& Hirata, 2013; Yan et al., 2017; Jia, 2000). However, the
neural networks control required considerable compu-
tational time and extensive training data, which brings
challenge to real-time control. Meanwhile, a robust con-
trol schemewhich combines the backstepping and sliding
mode control method has been implemented for PM
spherical actuators with modelling errors and external
disturbances (Liu, Deng, Hu, Hua, &Chen, 2017). As this
method does not take the decoupling terms into consid-
eration, the tracking accuracy improvement is limited. In
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Liu, Deng, Chen, and Bai (2017), an active disturbance
rejection control is developed to reformulate the decou-
pling problems as disturbance rejection by merging the
cross channel interference into lumped disturbance. Nev-
ertheless, the selection of parameters and nonlinear func-
tions is a natural challenge which limits its application in
practice.

In recent years, advanced control strategies are devel-
oped for systems with interconnections, nonlinearities,
or uncertainties (Li, Liu, Chen, & Bai, 2018; Utkin,
Guldner, & Shi, 2009). Decentralised control strategy
arises from various complex situations where there exist
coupling terms among several subsystems (Ma, Na,
& Zhong, 2013; Wang & Lin, 2015; Wang, Liu, Qiu,
& Liu, 2017). Adaptive fuzzy control has been success-
fully used in nonlinear systems with partially unknown
functions (Chen, Lin, Liu, & Liu, 2016; Zhou, Li, Wu,
Wang, & Ahn, 2017). Due to its approximation property,
fuzzy control can be used for approximating unknown
dynamics with a satisfactory tracking results, which has
been applied to the identification analysis and design of
control systems (Chen, Liu, Ge, & Lin, 2012; Feng, 2006).
Recently, variable structure control algorithm based on
the sliding mode has been successfully used in the field
of industrial robots, as it is insensitive to parameter vari-
ations, disturbances and noise (Bartolini, Levant, Pisano,
& Usai, 2016; Fei & Lu, 2018). Hybrid control schemes
which combine the advantages of different methods are
also developed (Shen, Shi, & Shi, 2016; Zheng, Wu, Xu,
& Chen, 2015). An adaptive backstepping fuzzy sliding
mode control is introduced by combining the backstep-
ping method with adaptive fuzzy control to approximate
the unknown systemdynamics (Fang, Fei, &Hu, 2018). A
decentralised adaptive fuzzy sliding mode (AFSM) con-
trol is proposed for reconfigurablemodularmanipulators
with guaranteed stability and trajectory tracking perfor-
mance (Zhu & Li, 2010). The dynamics of PM spherical
actuator is a nonlinear system with strong couplings,
modelling errors and external disturbances, therefore it
is desirable to combine the advantages of those control
methods to obtain a new hybrid control scheme in order
to significantly improve its performance.

Themotivation of this work is to develop a hybrid con-
trol strategy which can linearise and decouple the non-
linear dynamic model of PM spherical actuators and has
the ability to compensate for various uncertainties in real-
time control. This paper presents a decentralised control
strategy based on the AFSM for the complex dynamic
model of the PM spherical actuator. It’s a hybrid con-
trol strategy which combines the advantages of decen-
tralised control, adaptive fuzzy algorithm and sliding
mode control: (1) The decentralised control can decouple
the dynamic model by separating terms only depending

on local variables from other variables, which can avoid
difficulties in complexity of controller design; (2) The
fuzzy control is used to approximate the subsystems of
the dynamic model to remove the effect of uncertainties
including themodelling errors and external disturbances,
which means the precise knowledge of entire dynamic
model is not required; (3) The sliding mode controller is
used to remove the effect of coupling terms and compen-
sate for the errors of fuzzy approximation; (4) An adap-
tive law is employed to update the control parameters
online which ensure the effectiveness and robustness of
the controller. In contrast to previous works, this hybrid
control method takes multiple issues of PM spherical
actuators into considerations simultaneously to improve
the accuracy of the trajectory tracking performance.

The paper is organised as follows. Section 2 presents
the dynamic and torque models of a PM spherical actua-
tor. Section 3 reformulates the nonlinear dynamic model
with interconnections and uncertainties by introducing
the decentralised control, and illustrates the design of
AFSM controller. The stability of the closed-loop system
is proved in that section. Sections 4 and 5 present the
results of simulations and experiments, respectively. The
concluding remarks are finally given in Section 6.

2. PM spherical actuator

The mechanical structure of the PM spherical actuator
is shown in Figure 1. The PM spherical actuator mainly
consists of a ball-shaped rotor with 16 PMpoles arranged
in two layers along the equatorial plane and 36 air-core
coils distributed in three layers symmetrically about the
equatorial plane of the stator. The rotor is supported by a
passive spherical joint which includes a rotary encoder
and two potentiometers to measure the orientation of
the rotor for closed-loop system. Additionally, this joint
also acts as the support of the rotor for achieving 3-DOF
motion within a confined workspace.

Figure 2(a ,b) show the working principle of spinning
motion and tilting motion generated by the attraction
or repulsion forces between the coils and PMs. Specif-
ically, with pairs of coils activated in two longitudinal
directions, the rotor can realise tilting motion in two
longitudinal directions, while the spinningmotion is gov-
erned by energising all the circumferential coils in order.
The rotor can produce corresponding motion within the
workspace by activating the input currents of stator coils
in a specific approach.

2.1. Dynamicmodelling

The spherical joint mechanism is comprised of a 1-DOF
passive rotary joint in conjunction with a 2-DOF passive



INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE 3

Figure 1. Concept of PM spherical actuator. (a) The CAD model
and (b) the passive spherical joint.

Figure 2. The 3-DOF motion of PM spherical actuator. (a) Spin-
ning motion and (b) tilting motion.

universal joint. It can be decomposed into three seri-
ally connected 1-DOF revolute joints perpendicular to
each other (see Figure 3(a)). The rotation angle of each
revolute joint is detected by the sensors installed in the
spherical joint. There is a 3-DOF rigid-body rotational
motion between the stator and rotor. Figure 3(b) shows
the coordinate transformation from the rotor frame TR
to the stator frame TS coordinate system. The rotation
matrix Rrs is an orthogonal matrix given by:

Rrs =
⎡
⎣ cβcγ −cβsγ sβ

cγ sαsβ + cαsγ cαcγ − sαsβsγ −cβsα
−cγ sαsβ + sαsγ cγ sα + cαsβsγ cαcβ

⎤
⎦ ,

where c and s represent cosine and sine, respectively.XYZ
Euler angles (α,β , γ ) are used here to describe the ori-
entation of the rotor (Murray, Sastry, & Li, 1994). It can
provide a mapping between the rotor orientation and
rotation angles of three revolute joints. It is noted that the
orientation can also be expressed with Euler parameters
(Bai, Hansen, & Andersen, 2009). In this work, we adopt
Euler angles to describe the motor rotations (Figure 2).

Figure 3. Kinematics of PM spherical actuator. (a) Three orthog-
onal axes and (b) coordinate system and Euler angles.

The ideal dynamicmodel of the PM spherical actuator
can be derived using the Lagrange equation as follows:

M(q)q̈ + C(q, q̇)q̇ + G(q, q̇) = τc − τl − τr = τc − τd,
(1)

where M(q) is the inertial matrix; C(q, q̇) and G(q, q̇)
represent the Coriolis and gravity matrix terms, respec-
tively. q =[α,β , γ ]T denotes the vector of the Euler
angles; τc = [τα τβ τγ ]T is the vector of control torques;
τd = τl + τr denotes the disturbances which include the
external disturbance τr and load torque τl. The princi-
pal inertial moments of the rotor are J1 = Jxx = 2.219 ×
10−3(kgm2), J2 = Jyy = 2.176 × 10−3(kgm2), J3 = Jzz =
2.256 × 10−3 (kgm2). Specifically,M is given as follows:

M =

⎡
⎢⎢⎢⎣
J1c2βc2γ + J2c2βs2γ

+J3s2β
(J1 − J2)cβcγ sγ J3sβ

(J1 − J2)cβcγ sγ J1s2γ + J2c2γ 0
J3sβ 0 J3

⎤
⎥⎥⎥⎦

and the gravity term in Equation (1) is:

G(q, q̇) = 0. (2)

The details of Coriolis matrix are described in the
appendix. To analyse the inter-axis coupling effect of the
PM spherical actuator, it’s assumed that J1 = J2 = J3 = J
in inertial and Coriolis matrix. The dynamic model can
be simplified as follows:

Jα̈ + Js(β)γ̈ + Jc(β)β̇γ̇ = τα − τd1, (3)

Jβ̈ − Jc(β)α̇γ̇ = τβ − τd2, (4)

Js(β)α̈ + Jγ̈ + Jc(β)α̇β̇ = τγ − τd3. (5)

The equivalent coupling torques on α-axis are

τα1 = Js(β)γ̈ , (6)
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τα2 = Jc(β)β̇γ̇ , (7)

where τα1 is the inertial coupling term and τα2 is the
Coriolis force term. The equivalent coupling torque on
β-axis is

τβ1 = −Jc(β)α̇γ̇ , (8)

where τβ1 is the Coriolis force term. The equivalent
coupling torques on γ -axis are

τγ 1 = Js(β)α̈, (9)

τγ 2 = Jc(β)α̇β̇ , (10)

where τγ 1 is the inertial coupling term and τγ 2 is the
Coriolis force term. It can be seen fromEquations (3)–(5)
that the dynamic model has nonlinear characteristics,
and many inter-axis coupling terms exist in the dynamic
model.

Note that modelling errors cannot be avoided due to
the complexity of the real physical system. Considering
the effects of the dynamic modelling uncertainties, the
dynamic model can be shown to satisfy:

M̂(q)q̈ + Ĉ(q, q̇)q̇ + Ĝ(q, q̇) = τc − τd, (11)

where M̂(q) = M(q)+�M(q) is the actual inertial
matrix; Ĉ(q, q̇) = C(q, q̇)+�C(q, q̇) is the actual Cori-
olis matrix; Ĝ(q, q̇) = G(q, q̇)+�G(q, q̇) is the actual
gravity matrix;�M(q),�C(q, q̇),�G(q, q̇) are the mod-
elling errors.

2.2. Torquemodelling

The driving torque of the PM spherical actuator is deter-
mined by the coil currents and the rotor orientation. The
coils of proposed spherical actuator are wound on non-
ferromagnetic cores, thus the torque output is propor-
tional to the current input. The complete torque model
can be derived by using the superposition principle. The

finite element analysis is used to obtain the torque gener-
ated by one coil and the PM array of rotor with different
separation angles. The numerical model is built in Ansoft
3D as shown in Figure 4(a). In themodel, the iron hoop is
used for mounting the PM poles, and the air gap between
the rotor and stator is 0.5mm.

Since the air-core coils are used in PM spherical actu-
ator, the torque varies linearly with respect to the current
inputs. The torque model can be obtained by summing
up the torques generated by all the coils (Lim, Chen, Yan,
Yang, & Lee, 2009). The total control torque τc of the PM
spherical actuator can be expressed as:

τc = [τx τy τz]T = GtI, (12)

where Gt is the torque matrix which is described as:

Gt = [Gt1 · · · Gtj · · ·GtN], Gtj ∈ R3×1 (13)

and I is the vector of current inputs of the stator coils:

I = [I1 · · · Ij · · · IN]T (14)

herein, N is the number of stator coil groups; Gtj is
the torque coefficient, which describes the torque con-
tribution of the jth coil with 16 PMs at a specific rotor
orientation; Ij is the current input of the jth coil. Gtj is
given as:

Gtj =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

16∑
i=1

(−1)i−1ft(ϕij)

(ri × sj/
∣∣ri × sj

∣∣), ri × sj �= 0,
0, ri × sj = 0,

(15)

where ft(ϕij) is a torque function between the ith PMpole
and the jth coil obtained by curve fitting of the computed
data using a finite element (FE) method (see Figure 4(b))
and ϕij = cos−1(ri, sj) is the separation angle between the
ith PM pole and the jth coil.

Figure 4. Torque between a PM pole and a coil. (a) FE model and (b) curve fit of the FE.
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Given desired control torque τc at a specific rotor ori-
entation, the currents of the coils I are calculated as
(Zhang, Chen, Yan, & Liu, 2011):

I = Gt
T(GtGt

T)−1τc. (16)

It should be noted that all the coils are divided into
18 groups, and the coils whose axes are collinear are
arranged into one group.

3. AFSM algorithm-based decentralised control

3.1. Reformulation of decentralised control problem

The nonlinear dynamics of the PM spherical actuator
with uncertainties and cross-couplings is clearly shown in
Equation (11). In the literatures of the decentralised con-
trol, such a multiple-input multiple-output (MIMO) sys-
tem can be partition into three single-input single-output
(SISO) subsystems which are dependent from each other
(Wang et al., 2017). By separating terms depending on
only local variables (qi, q̇i, q̈i) from those terms of other
variables, each subsystem of the dynamic model can be
reformulated as (Tang, Tomizuka, Guerrero, & Mon-
temayor, 2000):

M̂i(qi)q̈i + Ĉi(qi, q̇i)q̇i + Ĝi(qi, q̇i)

+ Zi(q, q̇, q̈) = τic − τid (17)

with

Zi(q, q̇, q̈) =
⎧⎨
⎩

n∑
j=1,i�=j

M̂ij(q)q̈j + [M̂ii(q)− M̂i(qi)]q̈i

⎫⎬
⎭

+
⎧⎨
⎩

n∑
j=1,i�=j

Ĉij(q, q̇)q̇j

+ [Ĉii(q, q̇)− Ĉi(qi, q̇i)]q̇i

⎫⎬
⎭

+ [ ¯̂Gi(q)− Ĝi(qi)], (18)

where qi, q̇i, q̈i,
¯̂Gi(q), τic and τid are the ith element

of the vectors q, q̇, q̈, Ĝ(q), τc and τd, respectively.
M̂ij(q), Ĉij(q, q̇) are the ijth element of the matrices
M̂(q), Ĉ(q, q̇), separately.Moreover, M̂i(qi), Ĉi(qi, q̇i) and
Ĝi(qi, q̇i) represent the inertial term, Coriolis term and
gravity term, respectively, which depend on local vari-
ables only. Zi(q, q̇, q̈) in Equation (18) represents all the
coupling terms interconnected with other variables. It
can been inferred from Equation (18) that the coupling
terms of PM spherical actuator are very complex, which

should be compensated in the control law. The follow-
ing properties of these terms can be revealed (Zhou, Li,
& Shi, 2015).

Property 3.1: M̂i(qi) is symmetric, bounded and posi-
tive definite.

Property 3.2: ˙̂Mi(qi)− 2Ĉi(qi, q̇i) is skew symmet-
ric, i.e. for scalar functions M̂i(qi) and Ĉi(qi, q̇i) in
Equation (17), the following equation holds:

siT[ ˙̂Mi(qi)− 2Ĉi(qi, q̇i)]si = 0, ∀si ∈ �. (19)

Let

xi =
[
xi1
xi2

]
=

[
qi
q̇i

]
, i = 1, 2, 3. (20)

Then each subsystemdynamics equation can be expressed
by the following state equation:

Si :

{
ẋi1 = xi2,

ẋi2 = −pi(qi, q̇i,wi)+ M̂−1
i (qi)τic + hi(q, q̇, q̈),

(21)
where wi is the same as τid, and xi is the state vector of
subsystem Si, and:

pi(qi, q̇i,wi) = M̂−1
i (qi)[Ĉi(qi, q̇i)q̇i + Ĝi(qi)+ τid]

hi(q, q̇, q̈) = −M̂−1
i (qi)Zi(q, q̇, q̈).

(22)
Further, let

θ1 = [α̇,α]

θ2 = [β̇ ,β]

θ3 = [γ̇ , γ ]

w = [wα ,wβ ,wγ ] = [w1,w2,w3] = τd

u = [uτα , uτβ , uτγ ] = [uτ1 , uτ2 , uτ3 ] = τc. (23)

Equation (23) can be written as follows:
⎡
⎣α̈β̈
γ̈

⎤
⎦ = −

⎡
⎣p1(θ1,w1)

p2(θ2,w2)

p3(θ3,w3)

⎤
⎦ +

⎡
⎣h1(q, q̇, q̈)
h2(q, q̇, q̈)
h3(q, q̇, q̈)

⎤
⎦

+ M̂(q)−1 ·
⎡
⎣uτ1
uτ2
uτ3

⎤
⎦ . (24)

Herein,we define p = [p1, p2, p3]T as the subsystems
of the dynamic model with uncertainties, while h =
[h1, h2, h3]T is the dynamic couplings, since they are
independent from the control law.
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Then, introducing the virtual control input:

v = M̂−1(q) · u =
⎡
⎣vτ1vτ2
vτ3

⎤
⎦ . (25)

Equation (23) can be further expressed as follows:⎡
⎣α̈β̈
γ̈

⎤
⎦ = −

⎡
⎣p1(θ1,w1)

p2(θ2,w2)

p3(θ3,w3)

⎤
⎦ +

⎡
⎣h1(q, q̇, q̈)
h2(q, q̇, q̈)
h3(q, q̇, q̈)

⎤
⎦ +

⎡
⎣vτ1vτ2
vτ3

⎤
⎦ .

(26)
In this way, an AFSM algorithm controller can be
designed for each subsystem in order to obtain the decen-
tralised control in a multi-variable system.

3.2. Design of AFSM controller

Equation (24) can be considered as a set of coupled
input/output equationswith predetermined input/output
pairings. The ith subsystem of dynamic model is:

q̈i = −pi(θi,wi)+ hi(q, q̇, q̈)+ vτi , (27)

where i=1,2,3. To handle the above lumped disturbance
of the PMspherical actuator system, anAFSM is designed
for the trajectory tracking control. As this control scheme
is based on the Lyapunov function, the stability of the
closed-loop system can be ensured.

Let qd be the desired trajectory, xi1d = qdi , xi2d = q̇di .
The control strategy is described as follows.

The state tracking error of the motion is defined as:

ei1 = xi1 − xi1d,

ei2 = xi2 − xi2d. (28)

Introduce the terminal slidingmode for the second order
of the subsystem as:

si = λiei1 + ei2 = xi2 − νi, (29)

where λi is a positive constant, and νi is the virtual
controller which is chosen as:

νi = ẋi1d − λiei1. (30)

Differentiating Equation (29) with respect to time yields

ṡi = ėi2 + λiėi1 = −pi + hi + vτi − ν̇i

= −M̂−1
i fi − M̂−1

i Ĉisi + hi + vτi , (31)

where fi = fi(θi,wi) = M̂i(pi + ν̇i)− Ĉisi. According to
Equation (31), fuzzy logic systems are used to approxi-
mate the subsystems of dynamicmodel. An adaptive slid-
ing mode controller is introduced to compensate for the
effect of coupling term and fuzzy approximation error.

In order to estimate the nonlinear functions fi, Tak-
agi–Sugeno fuzzy model is used. The fuzzy IF-THEN
rules are employed to perform a mapping from an input
vector x = [x1, x2, . . . , xn]T ∈ �n to an output y ∈ �.
The lth fuzzy rule can be obtained from a collection
of fuzzy IF-THEN rules in the following form (Chen
et al., 2012):

Rl :if x1 is Fl1(x1), x2 is F
l
2(x2), · · · , and xn is Fln(xn),

then yl = al,0 + al,1x1 + · · · + al,nxn, l = 1, 2, . . . , k,
(32)

where k is the number of fuzzy IF-THEN rules, Flj are
fuzzy sets with memberships μFlj

, and yl is a linguistic
variable. By using singleton fuzzifier, product inference
rule and centre-average defuzzifier, the output of the
fuzzy logic system can be expressed as follows:

y =
∑k

l=1 yl
(∏n

j=1 μFlj
(xj)

)
∑k

l=1

(∏n
j=1 μFlj

(xj)
) = ϑTψ(x), (33)

where ϑ = [a1,0, . . . , ak,0, a1,1, . . . , ak,1, . . . , a1,n, . . . .
ak,n]T is an adjustable parameter vector and ψ =
[ψ1,ψ2, . . . ,ψk]T is a fuzzy function vector which is
expressed as:

ψ l(x) =

(∏n
j=1 μFlj

(xj)
)

∑k
l=1

(∏n
j=1 μFlj

(xj)
) . (34)

Based on the universal approximation theorem, fi(θi,wi)

can be expressed as follows:

fi(θi,wi) = ϑi
Tψi(θi,wi)+ εi, (35)

where εi is the approximation error of the fuzzy logic
system and ϑi is the optimal parameter vector which
satisfies:

ϑi = argmin
ϑ̂i

{
sup

θi,wi∈Ui

| fi(θi,wi)− f̂i(θi,wi | ϑ̂i) |
}
,

(36)
where Ui denotes the set of suitable bounds on θi and wi,
ϑ̂i is the adjustable parameter vector. f̂i(θi,wi | ϑ̂i) is an
estimation of fi(θi,wi), which can be defined as:

f̂i(θi,wi | ϑ̂i) = ϑ̂i
Tψi(θi,wi). (37)

Assumption 3.1: The minimum estimation errors εi
which is defined as:

εi = fi(θi,wi)− f̂i(θi,wi | ϑ̂i) (38)

is bounded, i.e. for all∀θi,wi ∈ Ui, the following equation
holds,

| εi |≤ ξi (39)

that ξi is a positive constant.
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Assumption 3.2: The coupling terms Zi(q, q̇, q̈) is
bounded by:

| Zi(q, q̇, q̈) |≤
N∑
j=1

dijSj ≤ max
ij

{dij}
N∑
j=1

Sj = ζi

N

N∑
j=1

Sj,

(40)
where dij ≥ 0, Sj = 1+ | sj | + | sj |2 and ζi = Nmaxij
{dij}.

By virtue of Equation (27), theAFSMcontroller is now
designed as:

uτi = ϑ̂iψi(θi,wi)− ξ̂isgn(si)− ζ̂isgn(si)Si − Kisi,
(41)

where Ki is a positive constant, and ϑ̂i, ξ̂i, ζ̂i are estima-
tions of ϑi, ξi, ζi, respectively. The estimation errors can
be defined as:

ϑ̃i = ϑi − ϑ̂i,

ξ̃i = ξi − ξ̂i,

ζ̃i = ζi − ζ̂i. (42)

To generate control parameters in real time, adaptive laws
to adjust the parameter vectors in Equation (41) need to
be developed. The adaptive control rules are chosen as:

˙̂
ϑi = −ηisiψi(θi,wi),

˙̂
ξi = σi |si| ,
˙̂
ζi = ςi |si| Si,

(43)

where ηi, σi, ςi are positive constants.

Above all, the subsystem of the dynamic model is
assumed to be known as Equation (27), and the decen-
tralised control law in Equation (41) is used to obtain
reliable motion of the spherical actuator with possible
configurations. Figure 5 shows the block diagram of the
AFSM controller for each subsystem. The fuzzy con-
troller represents the subsystem of dynamics expressed in
terms of the sliding variables. The slidingmode controller
is designed to handle the interconnections in system and
compensate for errors of fuzzy approximation.

3.3. Convergence analysis

In this section, the convergence of proposed control
scheme is analysed. Firstly, we choose the Lyapunov func-
tion as:

V =
3∑

i=1

[
1
2
M̂isTi si +

1
2
ϑ̃T
i η

−1
i ϑ̃i

+ 1
2
ξ̃Ti σ

−1
i ξ̃i + 1

2
ζ̃Ti ς

−1
i ζ̃i

]
. (44)

Equation (42) yields:

˙̃
iϑ = ϑ̇i − ˙̂

ϑi = − ˙̂
ϑi,

˙̃
iξ = ξ̇i − ˙̂

ξi = −˙̂
ξi,

˙̃
iζ = ζ̇i − ˙̂

ζi = −˙̂
ζi.

(45)

Figure 5. Block diagram of the subsystem i.
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Differentiating both sides of Equation (44) leads to

V̇ =
3∑

i=1

[
1
2

˙̂MisTi si + M̂isTi ṡi − ϑ̃T
i η

−1
i

˙̂
ϑi

− ξ̃Ti σ
−1
i

˙̂
ξi − ζ̃Ti ς

−1
i

˙̂
ζi

]
. (46)

Using Property 3.2 and Equations (31) and (46) becomes

V̇ =
3∑

i=1

[
sTi

(
1
2

˙̂Misi + M̂iṡi
)

− ϑ̃T
i η

−1
i

˙̂
ϑi

− ξ̃Ti σ
−1
i

˙̂
ξi − ζ̃Ti ς

−1
i

˙̂
ζi

]

=
3∑

i=1

[
sTi

(
1
2

˙̂Misi + M̂i(−M̂−1
i fi(θi,wi)− M̂−1

i Ĉisi

+ hi + vτi)

)
− ϑ̃T

i η
−1
i

˙̂
ϑi − ξ̃Ti σ

−1
i

˙̂
ξi − ζ̃Ti ς

−1
i

˙̂
ζi

]

=
3∑

i=1

[
sTi (

1
2

˙̂Mi − Ĉi)si + sTi
( − fi(θi,wi)+ M̂i(hi + vτi)

)

− ϑ̃T
i η

−1
i

˙̂
ϑi − ξ̃Ti σ

−1
i

˙̂
ξi − ζ̃Ti ς

−1
i

˙̂
ζi

]

=
3∑

i=1

[
sTi

( − fi(θi,wi)− Zi(q, q̇, q̈)+ uτi
)

− ϑ̃T
i η

−1
i

˙̂
ϑi − ξ̃Ti σ

−1
i

˙̂
ξi − ζ̃Ti ς

−1
i

˙̂
ζi

]
. (47)

From Equation (35), one can obtain

V̇ =
3∑

i=1

[
sTi

( − fi(θi,wi)− Zi(q, q̇, q̈)+ uτi
)

− ϑ̃T
i η

−1
i

˙̂
ϑi − ξ̃Ti σ

−1
i

˙̂
ξi − ζ̃Ti ς

−1
i

˙̂
ζi

]

=
3∑

i=1

[
sTi

( − ϑT
i ψi(θi,wi)− εi − Zi(q, q̇, q̈)+ uτi

)

− ϑ̃T
i η

−1
i

˙̂
ϑi − ξ̃Ti σ

−1
i

˙̂
ξi − ζ̃Ti ς

−1
i

˙̂
ζi

]
. (48)

By substituting Equation (41) into (48) and using Equa-
tions (40) and (42), we have:

V̇ =
3∑

i=1

[
sTi

( − ϑT
i ψi(θi,wi)− εi + ϑ̂iψi(θi,wi)

− ξ̂isgn(si)− ζ̂isgn(si)Si − Kisi − Zi(q, q̇, q̈)
)

− ϑ̃T
i η

−1
i

˙̂
ϑi − ξ̃Ti σ

−1
i

˙̂
ξi − ζ̃Ti ς

−1
i

˙̂
ζi

]

≤
3∑

i=1

[
sTi

( − ϑ̃iψi(θi,wi)− εi − ξ̂isgn(si)

− ζ̂isgn(si)Si − Kisi
) − ϑ̃T

i η
−1
i

˙̂
ϑi

− ξ̃Ti σ
−1
i

˙̂
ξi − ζ̃Ti ς

−1
i

˙̂
ζi

]
+

3∑
i=1

|si|
∣∣Zi(q, q̇, q̈)∣∣

≤
3∑

i=1

[
sTi

( − ϑ̃iψi(θi,wi)− εi − ξ̂isgn(si)

− ζ̂isgn(si)Si − Kisi
) − ϑ̃T

i η
−1
i

˙̂
ϑi

− ξ̃Ti σ
−1
i

˙̂
ξi − ζ̃Ti ς

−1
i

˙̂
ζi

]
+

3∑
i=1

|si|
3∑

j=1
dijSj. (49)

Noticing that |si| ≤ |sj| ⇔ Si ≤ Sj, the following inequal-
ity is obtained from Chebyshev inequality

N∑
i=1

|si|
N∑
j=1

Sj ≤ N
N∑
i=1

|si| Sj. (50)

With Equations (39), (40) and (50), Equation (49)
becomes

V̇ ≤
3∑

i=1

[
sTi

( − ϑ̃iψi(θi,wi)− εi − ξ̂isgn(si)

− ζ̂isgn(si)Si − Kisi
) − ϑ̃T

i η
−1
i

˙̂
ϑi

− ξ̃Ti σ
−1
i

˙̂
ξi − ζ̃Ti ς

−1
i

˙̂
ζi

]
+ ζi

3∑
i=1

|si| Si

≤
3∑

i=1

[
sTi

( − ϑ̃iψi(θi,wi)− Kisi
) − ϑ̃T

i η
−1
i

˙̂
ϑi

− ξ̃Ti σ
−1
i

˙̂
ξi − ζ̃Ti ς

−1
i

˙̂
ζi + |εi||si|

− ξ̂isgn(si)si − ζ̂isgn(si)siSi + ζi |si| Si
]

≤
3∑

i=1

[
sTi

( − ϑ̃iψi(θi,wi)− Kisi
) − ϑ̃T

i η
−1
i

˙̂
ϑi

− ξ̃Ti σ
−1
i

˙̂
ξi − ζ̃Ti ς

−1
i

˙̂
ζi

+ ξ̃i |si| + ζ̃i |si| Si
]
. (51)

Substituting Equation (43) into (51) yields:

V̇ ≤
3∑

i=1
−siTKisi. (52)

Then Equation (52) can satisfy:

V̇ ≤ 0. (53)
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As a result, the global stability of the proposed control
algorithm is guaranteed and the tracking errors converge
to zero.

4. Simulations

Simulations have been carried out using different control
strategies. One simulation was performed with varying
modelling errors with a fixed load torque and varying
different loads with a fixed coefficient of the modelling
errors. In another simulation, the nutation motion was
adopted to verify the global controllability of the pro-
posed algorithm. The trajectory tracking performances
with different controllers are analysed and compared.

The modelling errors are set as:

�M(q) = m · M(q),�C(q, q̇) = m · C(q, q̇),�G(q, q̇)

= [0.002, 0.001, 0.001], (54)

where m is the coefficient quantifying the modelling
error.

The random external disturbance torque is set as:

τd = τl + τr, (55)

where the load torque and the random external distur-
bance torque are set as:

τr = r · [cos(π t) sin(−π t) exp(π t)]

τl = L · [0.05 0.05 0.05],
(56)

where L denotes the coefficient of the load torque. r is the
coefficient of the randomexternal disturbance torque and
randomly distributed in (−0.05 0.05).

The fuzzy sets of a FLS with Gaussian Function for
each input signal are divided as {NB, NS, ZO, PS, PB}.
Meanwhile, the membership functions are chosen as:

μFlj
(xj) = exp

[
−b

(
xj − c
2σ

)2
]
, (57)

where b = 1
2 , c ∈ {−3,−1.5, 0, 1.5, 3} and σ = 1.

Figure 6. Comparison of sinusoidal trajectory tracking errors with different algorithms (L= 1 with varyingm).
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To ensure the convergence and robustness of the pro-
posed control scheme, the controller gain matrices are
set as:

K = diag[20 20 20],

λ = diag[50 50 50].
(58)

The parameters of the adaptive controller are set as ϑ =
10, ξ = 10 and ζ = 10. It is noted that the parameters of
the compared adaptive fuzzy logic controller are equal to
those of the proposed controller.

4.1. Sinusoidal trajectory tracking in different
conditions

In the first simulation, sinusoidal trajectory tracking for
three channels were conducted in different conditions. In
addition, the static and dynamic performances of pro-
posed algorithm are compared with different control
methods. Herein, we firstly set the coefficient of the load
torque L as 1 (L=1) and change the coefficient of the
modelling error m from 0 to 0.5. Afterwards, we set the

coefficient of the modelling error m as 0.2 (m=0.2) and
change the coefficient of the load torque L from 0 to 5.

Figure 6 shows the sinusoidal trajectory tracking
errors with variation of the coefficient of the modelling
errorm from 0 to 0.5. It is seen that the tracking errors of
the proposed control is the smallest among three control
methods during the change ofm. When PD and adaptive
fuzzy logic control scheme are applied with the condition
m=0.2, the maximum position tracking errors of three
Euler angles α,β , and γ are 0.4376, 0.4121, 0.4687 (rad)
and 0.2505, 0.2822, 0.2669 (rad), respectively. In com-
parison, under the proposed method, the corresponding
position errors are reduced to 0.0832, 0.0750 and 0.0761
(rad). Figure 7 shows the sinusoidal trajectory tracking
errors when the coefficient of the load torque L varies
from 0 to 5. It is clear that the tracking errors of the
proposed control are much smaller than those of other
two control methods as L changes. Under the condition
L=2, the maximum position tracking errors of three
Euler angles α, β , and γ are 1.2560, 1.0560, 1.1500 (rad)
and 0.8954, 0.9856, 1.0100 (rad) byPDand adaptive fuzzy

Figure 7. Comparison of sinusoidal trajectory tracking errors of different algorithms (m= 0.2 with varying L).
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controls, respectively. On the other hand, with the pro-
posed control, the corresponding Euclidean norms are
0.1854, 0.1986 and 0.1769 (rad).

These results indicate that the proposed control
algorithm can greatly improve the tracking performance
in the presence of different conditions, demonstrating the
effectiveness and robustness of the proposed algorithm.

4.2. Nutationmotion

The nutation motion is a gyro-movement, which can
make a good observation of global controllability. The
system uncertainties are set as L=2 and m=0.2. The
desired trajectory is:

q(t) =
⎡
⎣αβ
γ

⎤
⎦ =

⎡
⎣ 0.2 sin(π t)
0.2t cos(π t)

2π t

⎤
⎦ , t ∈ [0, 5]. (59)

The tracking performances of the PM spherical actua-
torwith different control algorithmare shown inFigure 8,
where q denotes the actual output, and qd is the desired
trajectory. It can be clearly seen from Figure 8(a) that
there is an obvious tracking error in PD control strategy,

which means that interaction among inter-axis and
uncertainties with different loads and modelling errors
seriously affect the nutation motion tracking perfor-
mance. Figure 8(b ,c) show that the proposed algorithm
can track the desired trajectory precisely in compari-
son to adaptive fuzzy control strategy, which indicates
that proposed algorithm can greatly improve the static
and dynamic responses of nutation motion by eliminat-
ing the effect of inter-axis couplings. It also means that
the algorithm proposed in this paper has relatively good
global controllability in the presence of uncertaintieswith
different loads and modelling errors.

5. Experiments

Further to the simulations, experiments were conducted
with a prototype of the PM spherical actuator. The con-
trol system is shown in Figure 9. The system includes a
graphical user interface for parameter settings, a PC in
charge of algorithm computation. With the system, the
commands are sent to the current controller which is
constructed by ARM and FPGA, and the power of output
currents is amplified by FPGA. In the experiments, the

Figure 8. Comparison of tracking performance in nutation motion. (a) Tracking performance with the PD control. (b) Tracking perfor-
mance with the adaptive fuzzy control. (c) Tracking performance with the proposed control.
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Figure 9. General diagram of PM spherical actuator’s control system.

Figure 10. Experimental prototype and the control system. (a) Experimental prototype. (b) Block diagram of the control system. (c) Core
control module.

3-DOF motions were measured by position detecting
device. The hardwares of the PM spherical actuator are
shown in Figure 10(a) with block diagram of the cur-
rent control system shown in Figure 10(b). As shown in
Figure 10, the ARM and FPGA comprise the core control
module. The ARM is responsible for communicating

with the PC and algorithm computing. FPGA is in
charge of driving the AD5370 chip and processing sen-
sors information. The D/A chip AD5370 has 40 chan-
nels with 16-bit D/A converting resolution for generating
multi-channel and bipolar currents simultaneously. The
V-I converting circuit OPA549 (a power amplifier) is
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chosen to achieve V/I conversion, which can transform
the voltage obtained from AD5370 into a proportional
current. The ADS8364 is an A/D chip that can offer 6-
channel output with a 16-bit A/D converting resolution.
Orientation module system includes an rotary encoder
OME-500-2MCA and a two-axis potentiometer sensor
RV24YN20S which provide high precision positionmea-
surement. A graphical user interface (GUI) program
is developed on the PC in VS2016 environment pro-
grammed by C++. Hence, the control parameter setting,
control mode selection, command sending and status
displaying can be easily done through GUI.

To observe the control performance simply, a typical
tilting motion along the X-axis of rotor is conducted. In
this experiment, a load weighting, 0.05 kg, is fixed on the
output shaft. The rotor is controlled to move along the
desired trajectory q(t) = [α(t), 0, 0], t ∈ [0, 6] with:

α(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

π

30
t, 0 ≤ t ≤ 2,

π

15
, 2 ≤ t ≤ 4,

− π

30
t + π

5
, 4 ≤ t ≤ 6.

(60)

Figure 11. Experimental results of tracking performance under different methods. (a) Tracking performance under the PD control. (b)
Tracking performance under the adaptive fuzzy control. (c) Tracking performance under the proposed control.
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Herein, a comparison is made about the trajectory
tracking control performance among the classical PD
control, the conventional adaptive fuzzy control and
the proposed control. Figure 11(a) shows the trajectory
tracking performance under the classical PD control. It is
obvious that the maximum tracking errors of both α and
β angles are more than 0.55◦. The undesirable dynamic
response indicates that the classical PD control is not
applicable for PM spherical actuator in the presence of
nonlinearities and uncertainties as well as inter-axis cou-
plings. Figure 11(b) shows the experimental results under
conventional adaptive fuzzy control strategy. It can be
seen that the actual trajectory has a better tracking per-
formance than PD control, and the maximum tracking
error reduces to about 0.25◦. The results indicate that
the complicated uncertainties in the practical control sys-
tem have been eliminated effectively. However, it can
be observed that there exists an unacceptable deviation
around the initial value, although the given trajectory ofY
-axis is 0. It should be attributed to the inter-axis coupling
influences from X-axis.

It is seen from Figure 11(c) that the actual trajectory
fits the desired trajectorywell under the proposed control
scheme. The tracking errors are clearly smaller than those
of above control strategies, and the maximum tracking
error is only about 0.12◦. The experimental results illus-
trate that our proposed algorithm is robust against com-
plex internal and external uncertainties, which can also
compensate for the effect of inter-axis couplings of α and
β accurately.

In summary, the experimental results show that the
proposed control algorithm can give much better trajec-
tory tracking performances in practical systems, com-
pared to the PD control and conventional adaptive fuzzy
control. Furthermore, the fuzzy approximate terms can
make the system robust against various kind of uncer-
tainties including modelling errors and external distur-
bances, while inter-axis coupling influences have been
successfully compensated by the sliding mode term. The
adaptive law with self-adaptive ability can improve the
robustness of the control system.

6. Conclusions

This paper investigates the trajectory tracking control
of the PM spherical actuator. The nonlinear dynamic
model of the PM spherical actuator with uncertainties
and strong inter-axis couplings was established based on
the Lagrange equation. To cope with the uncertainties
and couplings of PM spherical actuators, an AFSM-based
decentralised control was developed. The stability anal-
ysis of the control system is performed by Lyapunov

function and the performance of the algorithm is tested
by both simulations and experiments.

A major contribution of this paper is the introduc-
tion of AFSM-based decentralised control to PM spheri-
cal actuator. The proposed algorithm is a hybrid control
scheme, combining the merits of decentralised control,
fuzzy logic systems and slidingmode control. The decen-
tralised control can eliminate the inter-axis couplings
among the input/output pairs by partitioning the MIMO
system into three separate SISO subsystems. The fuzzy
logic systems are applied to approximate each subsystem
with lumped uncertainties that are caused by modelling
errors, random influence and the load error. The effect of
coupling terms and fuzzy approximation error are com-
pensated by introducing the adaptive sliding mode law.
Simulation and experimental results verify the proposed
algorithm and its better performance over conventional
PD and adaptive fuzzy control methods.

Furthermore, the tracking errors of the proposed
algorithm increase with the increasing load torque from
the simulation results. In the future, the algorithm can be
improved to adapt the varying load torques with better
trajectory performance.
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Appendix

The Coriolis matrix C(q̇, q) in Equation (1) is:

C(q̇, q) =
⎡
⎣c11 c12 c13
c21 c22 c23
c31 c32 c33

⎤
⎦

with the elements are:

c11 = (J1 cosβ sinβcos2γ − J2 cosβ sinβsin2γ

+ J3 sinβ cosβ)β̇ + (−J1sinγ cos γ cos2β

+ J2cos2β sin γ cos γ )γ̇

c12 = (−J1 cosβ sinβcos2γ − J2 cosβ sinβsin2γ

+ J3 sinβ cosβ)α̇ + ((J1 − J2) sinβ sin γ cos γ )β̇

+ 1
2
(−(J1 − J2) cosβsin2γ

+ (J1 − J2) cosβcos2γ + J3 sinβ)γ̇

c13 = −((J1 − J2) cos γ sinγ cos2β)α̇

+ 1
2
(−(J1 − J2) cosβsin2γ

+ (J1 − J2) cosβcos2γ + J3 cosβ)β̇

c21 = (J1 cosβ sinβcos2γ + J2 cosβ sinβsin2γ

− J3 sinβ cosβ)α̇ + 1
2
(−(J1 − J2) cosβsin2γ

+ (J1 − J2) cosβcos2γ − J3 cosβ)γ̇

c22 = ((J1 − J2) cos γ sinγ )γ̇

c23 = 1
2
(−(J1 − J2) cosβsin2γ

+ (J1 − J2) cosβcos2γ − J3 cosβ)α̇

+ ((J1 − J2) cos γ sin γ )β̇

c31 = ((J1 − J2) cos γ sinγ cos2β)α̇+1
2
((J1 − J2) cosβsin2γ

− (J1 − J2) cosβcos2γ − J3 cosβ)β̇

c32 = 1
2
((J1 − J2) cosβsin2γ

− (J1 − J2) cosβcos2γ + J3 cosβ)α̇

− ((J1 − J2) cos γ sin γ )β̇

c33 = 0.
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