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Abstract: Several smartwatch vendors have over the past years entered the market 

with a large range of devices that differ in the design qualities they offer. In this 

paper, we focus on design qualities that are either perceived, descriptive or 

physical, and we investigate which of them may lead people to prefer particular 

smartwatches over others. To do so we conducted a laboratory study with 93 

potential smartwatch users and a trained panel study with 8 participants. Results 

were analysed through a multivariate statistical technique called Preference 

Mapping. The advantage of this technique is that it can relate a large number of 

design qualities to users’ preferences. Our findings show that participants can be 

divided into four groups with homogenous preferences, each emphasizing a unique 

combination of design qualities. For example, some groups emphasized device 

shape, while others prioritized expensiveness for their preferred smartwatch. We 

conclude with implications of our work on practice and research. 
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1 Introduction 

One way to approach design is to view it as the process of embedding a set of design 

qualities into a product. Such design qualities can relate to materials, functionality, shape, 

color, etc. On the other hand, buying or not a product is the process of experiencing these 

designed qualities and forming a judgment about the product. During this process people 

do not usually try to thoroughly identify all design qualities, prioritize them, and rate them 

as researchers believed in the past. Instead, only the design qualities that are believed to 

be relevant for the specific context are taken onto consideration in forming a judgment 

(Van Schaik et al., 2012). For example, we know from existing research that the design 

quality of usability is favored in product choice situations, but only when people are asked 

about it (Diefenbach and Hassenzahl, 2009). Otherwise, different design qualities such as 

cost, beauty, functionality, brand and durability may be more relevant (Işıklar and 

Büyüközkan, 2007; Mack and Sharples, 2009; Sata 2013). 

If a design quality that is considered relevant is missing, then people infer a value 

about it based on the ones they can identify (Van Schaik et al., 2012) by using pre-existing 

rules (also called heuristics) that are applied either consciously, or subconsciously. As 

previous research has shown, people can form first impressions extremely fast based on 

minimal information (Lindgaard et al., 2006). If a rule is going to be triggered or not in a 

specific context is related to people’s past experiences, and the rule’s effectiveness when 

applied in the past. For example, within user experience research a number of rules have 

been identified, such as “what is beautiful is good” (Dion et al., 1972), “what is beautiful 

is usable” (Hassenzahl and Monk, 2010; Tractinsky et al., 2000), and the reversed “it is 

usable therefore it is beautiful” (Tuch et al., 2012). The last two rules demonstrate that 

two design qualities may have a different relationship in different contexts. 
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Understanding which design qualities are relevant in specific contexts and how 

they trigger pre-existing rules to shape (often called drive) people’s preferences is an 

important topic both for practitioners as well as Human-Computer Interaction (HCI) 

researchers. The relevance for practitioners is almost straightforward. Having such 

knowledge allows them to design better products and to better tailor them to the 

needs/preferences of specific target groups. For researchers, such knowledge is also 

important as it allows them to better understand how people experience digital products, 

which design qualities influence them and how, and how they shape their preferences.  

A typical way to identify relevant influential design qualities that will trigger rules 

and shape people’s preferences (and/or user experience) is through experimental studies. 

In such, a digital product’s design quality (e.g. usability) is manipulated and its possible 

effect on user preference is documented. The process is then repeated with another 

experiment for another design quality for the same digital product in a specific context. 

Within HCI, there are numerous studies that reported on such experiments for a variety 

of digital products, such as mobile phones (Raptis et al., 2013), websites (Tuch et al., 

2010), etc. Such experimental studies are very important as they contribute to our field’s 

understanding of users’ experiences with digital products by identifying cause and effect 

relationships among design qualities and/or preferences. At the same time though, they 

do pose a number of challenges. The first challenge is that the number of design qualities 

that can be simultaneously investigated through such experimental studies is relatively 

low, due to the complexity of experimental conditions. The second challenge is that it is 

not possible to holistically identify which design qualities are relevant in driving peoples’ 

preferences in specific contexts.  

In this paper, the products under investigation are smartwatches and we address 

those two challenges by providing two contributions. Firstly, we identify which 
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smartwatch design qualities are considered as relevant in product choice situations 

through a laboratory study and a trained panel study. Secondly, we demonstrate how the 

identified relevant smartwatch design qualities trigger rules that shape people’s 

preferences by utilizing an explorative statistical technique called Preference Mapping. 

Preference Mapping is a statistical technique that has been successfully used in a variety 

of fields (e.g. marketing), but its use in HCI is somehow limited.  

Our paper is structured as follows. Firstly, we browse relevant literature for the 

case of smartwatches, and we provide details on how and why we conducted a laboratory 

study and a trained panel study. Secondly, we discuss how we analyzed the collected data 

through Preference Mapping and we present our findings. Finally, we conclude our work 

by discussing the implications of our findings both for practitioners as well as researchers. 

Furthermore, since Preference Mapping is a relatively unknown technique for the HCI 

field, and because we believe it could be relevant for investigating other digital products 

too, we discuss our reflections on using it. 

2 Related Work 

2.1 Perceived, Descriptive and Physical Design Qualities 

Typically, when people are asked about their preferences towards a product, a variety of 

design qualities can be given as a reason. In general, design qualities can be classified 

based on their subjectivity and abstraction level into three types: a) subjective perceived 

qualities b) descriptive attributes, and c) objective physical qualities.  

Subjective perceived qualities refer to people’s attitude towards a product. For 

example, high perceived usability signifies that a person subjectively perceives a product 

as usable, even without interacting with it. Within HCI we have a lot of experience in 

dealing with such qualities, which we usually measure through established 
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questionnaires. Examples of perceived qualities include hedonic and pragmatic qualities 

(Hasssenzahl et al., 2003: Van Schaik et al., 2012), classic and expressive aesthetics 

(Lavie and Tractinsky, 2004), or coolness (Bruun et al., 2016; Raptis et al., 2017; Sundar 

et al. 2014), etc. For reasons of simplicity for the rest of the paper we will refer to the 

subjective perceived design qualities as perceived qualities.  

Descriptive attributes differ from perceived qualities in that they only describe a 

product’s attribute without a value judgment about it. For example, when a dress is 

perceived as formal, people make a statement regarding its style without revealing any 

attitude towards it. For reasons of simplicity for the rest of the paper, we will refer to the 

subjective descriptive design attributes as descriptive qualities. Such qualities are usually 

very hard to be measured by novice users, since they do not have the experience to make 

purely descriptive judgments, and/or may not have the vocabulary or sensitivity to 

identify all the relevant descriptive qualities of a product. For example, while 

experiencing wine, novice wine consumers may not be able to identify viscosity or body 

as relevant in shaping their preferences. Within HCI, there have been studies which 

studied the effect of descriptive qualities on user’s preference and/or perceived qualities 

(such as website symmetry, Tuch et al., 2010). 

Finally, physical qualities differ from the previous two as they can be objectively 

and undisputedly measured. Such physical qualities relate to weight, size dimensions, etc. 

Within HCI we have studies that identified possible effects of physical qualities on users’ 

preference and/or perceived qualities. For example, in Raptis et al. (2013) researchers 

studied the effect of the physical quality of screen size on users’ preference and perceived 

usability for the case of mobile phones, or in Kim (2016) and Kim (2017) effects of screen 

shape and size have been identified for the case of smartwatches.  
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2.1 Smartwatch Design Qualities and Preferences 

Research on how people realize specific design qualities and how these drive their 

experiences and preferences has been successfully conducted in the past for many 

products such as mobile phones (e.g. Chuang et al., 2001; Han et al., 2004; Ling et al., 

2007; Yun et al., 2010).  Besides mobile phones, an increasingly growing body of 

research is also investigating qualities that can influence user preferences, adoption and 

sustained use of wearable technology, such as smartglasses, smartwatches, and jewellery. 

Examples of such qualities include perceived value (Yang et al., 2016), body placement 

(Gemperle et al., 1998; Harrison et al., 2009), social comfortability (Dunne et al., 2014), 

functionality (Dunne 2010; Adapa et al., 2018), and fashion (Juhlin et al., 2016; Wang et 

al., 2017). Furthermore, within the domain of healthcare and fitness tracking it was 

identified that adoption of wearable devices can be influenced by perceived usefulness 

(Lunney et al., 2016; Chau et al., 2019), form, comfort of wearing the device, and battery 

life (Rantakari et al., 2016). In the same context, Canhoto and Arp (2017) found that 

functionality was the main driver for adoption of health and fitness wearables, while the 

drivers for sustained use were more related to data accuracy, portability and resilience.  

Regardless of application area or wearable device type, aesthetic qualities are 

consistently identified as important (e.g. Juhlin et al., 2016; Dunne et al., 2014; Gemperle 

et al., 1998; Hsiao and Chen, 2018; Rantakari et al., 2016). Towards this end, Pateman et 

al. (2018) focused on individual differences regarding aesthetic preferences for wearable 

devices. In a three-part study, participants created their own wearable device based on 

their individual preferences. Those prototypes where then used by the participants for 5 

days. The results underline the importance of aesthetic qualities in the use and continuous 

engagement with wearable devices and also indicate a need for customizability so that 

users can adapt the devices to their own preferences and needs. 
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Specifically for the case of smartwatches, most research work within HCI focuses 

on how people interact with them (Ashbrook et al., 2008; Chen et al., 2014; Cho et al., 

2014; Gong et al., 2018, Huang et al., 2014; Klamka et al., 2020; Oakley et al., 2015; 

Ogata and Imai, 2015, Singh et al., 2018; Yeo et al., 2019; Wang and Grossman, 2020; 

Wong et al., 2020), their everyday usage (Pizza et al., 2006), and what motivates them to 

do so (Dehghani 2018). In relation to possible effects of smartwatch design qualities on 

preferences, we identified three relevant studies (Lyons 2015; Schirra and Bentley, 2015; 

Dehghani and Kim, 2019). 

In detail, Schirra and Bentley (2015) conducted an interview study with five 

participants who owned and used a smartwatch for at least four months. The objective of 

that study was to identify what kind of applications mainly shape purchase decisions as 

well as issues related to everyday usage. Findings from the interviews revealed that 

several design considerations factored into choosing a smartwatch. For example, a 

smartwatch’s aesthetic dissimilarity to a regular wristwatch, which was contrasted to “a 

horrible wrist communicator thing”. Interviewees also referred to smartwatch designs in 

terms of formal, casual, or sporty. Physical size was also an important quality, 

particularly for the female interviewees, to whom it was challenging to find a smartwatch 

designed for them. For the current designs at the time (2015), it was stated: “they just 

look like a big, huge man’s watch”. One participant reported that she eventually found a 

smartwatch with a white and rose-colored metal band, which “best resembled a woman’s 

fashion style watch”. Towards that end, color was also considered important. Schirra and 

Bentley (2015) also found that all their interviewees had downloaded third-party apps 

such as Facebook, eBay and Swarm for their smartwatches, yet they were only used to a 
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limited extent. Thus, some of the advanced features offered by a smartwatch over a 

regular wristwatch seemed unimportant.  

Similarly, Lyons (2015) made a survey study with 50 respondents to understand 

factors going into buying and using a smartwatch. In order to do so, he asked respondents 

about their preferences in relation to the choice of digital “dumb watches” (Lyons 2015). 

The aim of the study was to transfer design considerations from the regular (but digital) 

wristwatch domain into the smartwatch domain. Like the study of Schirra and Bentley, 

results from Lyons’ survey showed that several design qualities drove the preference in 

selecting a particular watch. The design qualities that overlap with Schirra and Bentley’s 

findings, are style (in terms of formal/casual/sporty), similarity to a regular wristwatch, 

and size. Lyons also found that only a core set of features in the digital (dumb) watches 

were used. Features like timer, alarm, stopwatch and time zone facilities were not used 

often. Color was also one of the decisive design qualities for choosing a watch, along 

with sleek and simple styles, over flashy ones. Multiple respondents also owned more 

than one watch, since some were more suitable to use for sports.  

Along the same direction, Dehghani and Kim (2019) conducted a study on how the 

appeal of a smartwatch may influence user’s experience and adoption. Smartwatch appeal 

was approached by three components, namely design aesthetics, uniqueness and screen 

size. Through a questionnaire study with 738 participants that assessed the effect of those 

three components on purchase intention and use behavior, they identified differences 

between current and potential users. For current users they identified a significant effect 

of design aesthetics and screen size on use behavior, and differences among male and 

female participants for the first case. For the potential users, design aesthetics and 

uniqueness had a significant effect on purchase intention.  

Inspired by related work we chose to work with this research question: “Which 
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smartwatch design qualities are relevant and how do they shape people’s preferences in 

product-choice situations?”. To answer this research question, first we identified a set of 

smartwatches that we used in a laboratory study with the purpose to collect data on their 

physical qualities and on how people perceived them in general (Study 1). Then we 

conducted a trained panel study (Study 2) with the purpose to first identify descriptive 

qualities for any smartwatch that could be relevant in driving people’s preferences, and 

then rate them for the same smartwatches as in Study 1. Finally, we analyzed all collected 

data through an explorative statistical technique called Preference Mapping. 

3 STUDY 1: Preferences, Perceived and Physical Qualities 

The purpose of the first study was to collect data on relevant physical and perceived 

smartwatch qualities as well as people’s preferences. It was a laboratory study and in the 

following subsections we discuss in detail how we selected the smartwatches, the 

participants, and the measured design qualities as well as our results. 

3.1 Selected Smartwatches 

The first step in the process was to identify which smartwatches to include in our 

laboratory study. Since we knew beforehand that we would use Preference Mapping to 

analyze the collected data, we opted for the minimum number of smartwatches that would 

allow us to use this statistical technique. Thus, six smartwatches were chosen (Lavine et 

al., 1988). After carefully considering a variety of available smartwatches, a selection was 

made by keeping in mind that we had to include as much variety in design qualities as 

possible in order to make sure that we would be able to identify which ones are important 

in driving people’s preferences. Figure 1 shows the included devices: Polar m600 (Device 

A), Motorola 360 2nd gen (Device B), Sony Smartwatch 3 (Device C), Zeblaze Blitz 

(Device D), NO.1 G4 (Device E), and NO.1 D6 (Device F). 
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Figure 1. The 6 selected smartwatches. 

Within this selection we opted for variability in smart watch design qualities. In detail, 

three smartwatches were chosen to be square (A, C, E) and three round (B, D, F), as it 

has been identified that the shape of a smartwatch face may influence how it is perceived 

(Kim 2016). Since size is important (Schirra and Bentley, 2015), three were relatively 

small (B, C, E) and three relatively big (A, D, F). Inspired by Lyons (2015) and Schirra 

and Bentley (2015) on style, two were selected to represent sport watches (A, D), two 

representing everyday watches (B, E) and two were selected as they appear formal (C, 

F). Three had a colorful idle screen face (B, D, E) and two a black-and-white one (A, C, 

F), as color can be an important design quality too (Schirra and Bentley, 2015). Two 

variations were also included in relation to their price. Thus, A, B, and C were considered 

expensive smartwatches (approx. 300, 200, and 180USD), while D, E, and F were 

considered relatively cheap (approx. 110, 60, and 45USD). All of them were Android 

smartwatches. A, B and C run on Android Wear, while D, E and F were based on Android 

5.1. Finally, variation was also included in relation to the bracelets of which two were 

A: Polar m600 B: Motorola 360 2nd gen C: Sony Smartwatch 3 

   

   

D: Zeblaze Blitz E:  NO.1 G4 F:  NO.1 D6 
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plastic (A, D), two leather (B, E), and two metallic (C, F). 

Before conducting the laboratory study, three of the authors, informed by related 

work and by carefully examining the smartwatches, identified physical smartwatch 

qualities. All physical smartwatch qualities that could potentially have been relevant for 

driving people’s preferences, have been included in the study. Table 1 presents the 

relevant physical qualities in detail along with their measurement units. 

Physical Quality  Description and measurement units 
Weight The weight of the smartwatch in grams  

Face Surface Area  The area of the smartwatch’s face in cm2  

Profile Height The thickness of the smartwatch in cm  

Volume The volume of the smartwatch in cm3 

Bracelet width The width of the smartwatch bracelets at the locking mechanism in cm 

Bracelet length The length of smartwatch bracelets in cm 

Table 1. Relevant physical smartwatch qualities and measurement units.  

3.2 Participants 

For our study, participants were recruited through social networks, through flyers around 

our university campus, and through direct contact by email. In total, 97 people agreed to 

participate in our study. Before the laboratory study, participants were asked to fill in a 

demographics questionnaire that contained information about their age, sex, prior 

experience with smartwatches, prior experience with wristwatches as well as their 

favorite mobile device brands. Four participants informed us that they already owned a 

smartwatch and they were excluded from the study. This allowed us to ensure that 

participants’ preferences would not have been affected by everyday usage. Sixty-five 

participants informed us that they owned at least one regular wristwatch that they would 

wear every day. Furthermore, Apple, Samsung and One Plus were identified as the 

favorite mobile device brand for 77 participants. No one mentioned as their favorite brand 

the ones the 6 included smartwatches had, thus this allowed us to experimentally control 
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for possible effects of brand (for effects of brand on perceived qualities see De Angeli et 

al., 2009; Rondeau 2005). In the end, we had 93 people participating in our laboratory 

study, 22 self-identified as female, and 71 self-identified as male, aged 19-31 (M=23.1, 

SD=2.73). 

3.3 Measures 

In order to collect data on relevant perceived qualities of smartwatches we chose to 

include the extended version of the Cool questionnaire (Raptis et al., 2017).  

Our motivation for this choice was twofold. Firstly, we consider perceived 

coolness as an important quality in product-choice situations in general, and specifically 

for smartwatches as uniqueness may influence purchase intention (Dehghani and Kim, 

2019). Secondly, this specific questionnaire has been created by taking into consideration 

established user experience questionnaires (Lavie and Tractinsky, 2004; Quinn and Tran, 

2010; Sundar et al., 2014, Van Schaik et al., 2012, for details see Raptis et al., 2017). 

Table 2 presents the 6 perceived qualities that were measured using COOL Questionnaire. 

Perceived Quality Items   Scale 
Desirability 4 1 to 7, strongly disagree - strongly agree 

Rebelliousness  4 1 to 7, strongly disagree - strongly agree 

Perceived usability 4 1 to 7, strongly disagree - strongly agree 

Classic aesthetics 2 1 to 7, strongly disagree - strongly agree 

Hedonic quality 3 1 to 7, strongly disagree - strongly agree 

Overall coolness 3 1 to 7, strongly disagree - strongly agree 

Table 2. Relevant perceived smartwatch qualities, number of items and measured scale. 

3.4 Procedure 

The participants entered along with a researcher in our usability laboratory in groups of 

six and the study was designed to last for about one hour. In order to mimic product-

choice situations, the six smartwatches were placed on display stands on a table in the 
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middle of the room and had the idle screens as depicted in Figure 1. Additionally, since 

brand can influence participants when rating perceived qualities (De Angeli et al., 2009; 

Rondeau 2005) all brand logos were masked. 

The participants were not provided with specific tasks (action-mode, Hassenzahl 

and Ullrich, 2007) and were instructed to freely interact with all the smartwatches for 

about 10 minutes. This mimicked the real-world scenario of observing smartwatches 

inside a store, together with other customers. After making sure that all participants had 

a chance to feel and interact with all smartwatches, each participant was assigned to a 

specific laptop and independently provided ratings.  

First, participants were asked to rank the smartwatches in relation to their 

preference. Preference data were collected on a linear, unmarked scale (from 0 to 100) 

with the verbal anchors “least preferred” and “most preferred” at the two ends. For this, 

we developed a web application in which participants could drag and drop the images of 

the smartwatches on the linear scale. Then, each participant individually rated all six 

smartwatches in a sequence through an online form that contained the Cool questionnaire 

(within-subjects design). The order of the questionnaire items was randomized, as was 

the smartwatches rating order.  

At the end of each session, the researcher reset the smartwatches to the idle screen 

and placed them on the display stands to be ready for the next group of participants. 

3.5 Study 1 Results: Physical Qualities, Perceived Qualities and Participants’ 

Preferences 

The physical qualities described in Table 1 were measured by three authors. Table 3 

summarizes the final measurements. 
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Measured Physical Quality  Α B C D E F 
Weight (gr) 64.00 54.00 134.00 69.00 102.00 54.00 

Face Surface Area (cm2) 12.24 13.85 22.00 19.63 14.51 17.02 

Profile Height (cm) 1.40 1.20 1.10 1.40 1.40 1.20 

Volume (cm3) 17.14 16.62 24.20 27.48 20.31 20.42 

Bracelet width (cm)  2.60 1.90 2.40 2.10 1.90 2.30 

Bracelet length (cm) 6.50 5.00 6.10 5.20 5.50 5.30 

Table 3. Measured physical qualities for the 6 smartwatches. A) Polar m600, B) Motorola 
360 2nd gen, C) Sony Smartwatch 3, D) Zeblaze Blitz, E) NO.1 G4, and F) NO.1 D6. 

Table 4 summarizes the results for the six measured perceived qualities for the six 

smartwatches in the form of averages from the 93 participants. Additionally, a reliability 

analysis was conducted for the measured perceived qualities. Cronbach α values were 

really high, ranging from .883 to .925. 

Measured Perceived Quality  Α B C D E F 
Desirability 2.88 4.30 3.16 2.98 3.00 2.45 

Rebelliousness  3.22 4.40 3.26 4.28 3.55 3.34 

Perceived usability 4.51 5.47 5.16 4.75 4.45 3.91 

Classic aesthetics 4.30 5.85 4.96 3.55 4.21 3.67 

Hedonic quality 3.31 5.08 3.67 4.23 3.47 2.89 

Overall coolness 2.72 4.52 3.06 3.11 2.79 2.01 

Table 4. Average scores for the 6 six measured perceived qualities for the 6 smartwatches 
(1-7 scale). Highest scores marked in bold. A) Polar m600, B) Motorola 360 2nd gen, C) Sony 
Smartwatch 3, D) Zeblaze Blitz, E) NO.1 G4, and F) NO.1 D6. 

Participants rated the six smartwatches on an unmarked scale (from 0 to 100) from their 

least to their most preferred ones. Figure 2 presents the average preference score of 93 

participants for each smartwatch. On average the most preferred smartwatch was B 

(73.58) and the least one was E (24.71). Furthermore, 47 participants selected smartwatch 

B as their most preferred, and 48 selected smartwatch E as their least preferred. 
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Figure 2. Average preference score of 93 participants for each smartwatch (scale 0-100). A) 
Polar m600, B) Motorola 360 2nd gen, C) Sony Smartwatch 3, D) Zeblaze Blitz, E) NO.1 G4, 
and F) NO.1 D6. 

At the end of Study 1, we had ratings from 93 participants on perceived qualities for the 

six smartwatches, data about their preferences, and objective data on the six 

smartwatches’ physical qualities. In general, smartwatch B (Motorola 360 2nd gen) scored 

the highest on all perceived qualities as well as participants’ preferences. These results 

demonstrate that smartwatch B was the most preferred one, but they do not explain why 

this was the case. The following study sheds some light on the issue. 

4 STUDY 2: Descriptive Smartwatch Qualities 

The purpose of the second study was to extend related work by identifying additional 

relevant descriptive qualities for the case of smartwatches. Since descriptive qualities are 

difficult to realize for novice users, we opted for a trained panel study. Contrary to expert 

panel studies, in trained panels novice users are trained on how to identify and rate 

descriptive qualities, and typically after the initial training they provide comparable 

ratings to that of experts. Trained panels have been successfully used in a variety of 
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disciplines such as sensory and food science (Lawless and Heymann, 2010), marketing 

(Urban and Hauser, 1993), and audio engineering (Mattila 2002).  

4.1 Participants 

Eight participants, 6 males and 2 females, aged 24-44 (M=32.75, SD=7.83) participated 

in the trained panel study. Since the purpose of the panel was to first identify and then 

rate any possible relevant smartwatch descriptive quality, it was important to include 

panelists with different backgrounds. Therefore, two of them were mechanical engineers, 

one was an electrical engineer, one was a visual designer, two were interaction designers, 

one was a usability expert and one was a techno-anthropologist. All of them were experts 

in technology-related fields, but none was an expert in smartwatches.  

4.2 Procedure 

Over the course of an eight-hour session, the panelists completed three phases. In the first 

phase, each panelist was provided with a small initial list of descriptive qualities, which 

were identified in the literature (Lyons 2015; Schirra and Bentley, 2015; Dehghani and 

Kim, 2019). Then, panelists were asked to remove, or add items to this list, based on how 

relevant they believed they were. Seven smartwatches (different than those used in Study 

1) were also physically present in the room to act as inspiration for removing/adding 

descriptive qualities.  

In the second phase, each of the identified descriptive qualities that each panelist 

created was repeatedly discussed and defined by all of them together. This process did 

not stop until all panelists reached a consensus on each identified descriptive quality’s 

definition. At the end of the second part, a set of 36 descriptive qualities was produced, 

along with their semantic differential scales (e.g. dull/bright, on a 1-7 Likert scale). 
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Examples of the identified 36 descriptive qualities from the panel include noisiness, 

bulkiness, etc.  

In the third phase each panelist individually rated the 6 smartwatches that were 

included in Study 1 over the 36 identified descriptive qualities, using an online form. The 

order they evaluated the 6 smartwatches was randomized, and so were the 36 identified 

descriptive qualities. 

4.3 Study 2 Results: Identified Descriptive Qualities 

The two main criteria for assessing a descriptive quality from a trained panel are 

discrimination ability and panelists’ agreement. In general, a descriptive quality may not 

discriminate if participants are not able to perceive any differences among the products 

for this quality. 

In our case, the discrimination ability of the 36 identified descriptive qualities was 

assessed through mixed-model ANOVAs with smartwatches as fixed factors and 

panelists as random ones. A descriptive quality was removed when a non-significant main 

effect was observed (p>.05).  

Disagreement among panelists may occur if they understand a descriptive quality 

in a different way. Mixed-model ANOVA analysis can give a first indication about which 

qualities are problematic, but no single analysis method can give sufficient results on its 

own. For this reason, several univariate and multivariate inspection techniques (e.g. 

histograms, profile plots, eggshell plots (Hirst and Næs, 1994), Tucker-1 correlation plots 

(Dahl et al., 2008) have been applied to identify the qualities that created disagreement 

among panelists.  

In the end, three descriptive qualities were removed due to low discrimination 

ability as they had a non-significant main effect. In addition, we removed another 11 
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qualities since multiple methods confirmed they caused disagreement among panelists. 

The remaining 22 descriptive qualities are presented in Table 5. 

Descriptive Quality Description and measurement scales 
Shininess How shiny the smartwatch is, without the face (glossy/matt) 

Built Quality The built quality of a smartwatch (fragile/robust) 

Price The price of the smartwatch (cheap/expensive) 

Style The style of the smartwatch (sports/formal) 

Size The size of the smartwatch (bulky/compact) 

Complexity How complex in terms of unnecessary design elements the smartwatch is 
(simple/complex) 

Smartness  How much the smartwatch states it is smart (dumb watch/smart watch) 

Waterproofness How much water-resistant the smartwatch is (non- 
waterproof/waterproof) 

Attention How much attention the smartwatch attracts (modest/flashy) 

Watch-Noisiness How noisy the smartwatch is when shaken, without wearing it (not-
noisy/noisy) 

Felt-Temperature How does the smartwatch feel when someone wears it (cold/warm) 

Wristwatch-
Prototypicality 

How typical is the form of the smartwatch in relation to a wristwatch 
(non-typical/typical) 

Shape The shape of the smartwatch’s face (round/square) 

Color How much color the smartwatch’s idle screen has (colorless/colorful) 

Brightness How bright the smartwatch’s idle screen is (dull/bright) 

Resolution How crisp the smartwatch’s display is (grainy/crisp) 

Swipe-Responsiveness How responsive the smartwatch’s display is, when swiping (non-
responsive/ responsive) 

Features The number of features the smartwatch offers (few-features/many-
features) 

Bracelet-Traditionality How traditional the bracelets’ lock mechanism is (non-
traditional/traditional) 

Touch How do the bracelets feel to the touch (harsh/soft) 

Bendiness  How bendable the bracelet joints are (Rigid/flexible) 

Button-Noisiness How noisy the smartwatch’s buttons are (when pressed) (not noisy/noisy) 

Table 5. Identified descriptive smartwatch qualities and their semantic-differential scales. 

5 Data analysis 

In the following subsections we discuss the method we used to analyze the collected data 

from the two studies and our results. 
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5.1 Method 

In order to analyze the collected data, we chose to use an explorative, visualization 

statistical technique called Preference Mapping (Carroll 1972; Meullenet et al., 2007). 

Preference mapping is very similar to another visualization technique called 

Multidimensional Scaling (MDS) (Carroll 1972; Schiffman, et al., 1981), which can be 

encountered in multiple HCI studies (e.g. Karapanos, et al., 2009; Wania, et al., 2006). 

Both techniques create a visual representation of various sources of collected data, but 

the key difference between MDS and Preference Mapping is that the former focuses on 

similarity and the latter on preference. Preference Mapping has been successfully used in 

many research domains such as marketing (e.g. Urban and Hauser, 1993; Van Kleef, et 

al., 2006) and food science (e.g. Helgesen et al., 1997), but its use in HCI is mostly in the 

domain of website aesthetics (e.g. Papachristos and Avouris, 2011; Papachristos and 

Avouris, 2013, Schenkman and Jönsson, 2000). 

The outcome of Preference Mapping is a visual representation of a complex 

dataset in the form of a preference map. Such a map contains participants’ preference 

ratings for multiple products (of the same type) as well as ratings of multiple product 

design qualities (perceived, descriptive and/or physical). This richness of projected data 

allows researchers and practitioners not only to have an overview of participant 

heterogeneity, but most importantly, to identify important drivers of preference by 

attempting to extract meaningful patterns out of these maps. The advantage of Preference 

mapping is that allows for the exploration of multiple design qualities at the same time 

by visually projecting correlations among these qualities and/or preferences. Since in our 

case we wanted to analyze data from multiple perceived, descriptive and physical 

smartwatch design qualities as well as participant’s preferences, Preference Mapping was 

an ideal choice.  
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Two are the most prominent categories for Preference Mapping, namely external 

and internal (for an extensive review of these techniques see Carroll 1979; Meullenet et 

al., 2007; Van Kleef et al., 2006). In our data analysis, we used Internal Preference 

Mapping (IPM) since it is appropriate in cases in which prior knowledge about the 

importance of a specific quality is limited. The only prerequisite for conducting IPM is 

to have participant preference ratings for all the included products. This condition was 

fulfilled in our case. 

In general, a preference map is created by using a data reduction technique 

(Meullenet et al., 2007; Naes and Risvik, 1996). For all preference maps we created, we 

conducted Principal Component Analysis (PCA) on a data matrix consisting of the six 

smartwatches in rows and participant preference ratings in columns. Before conducting 

PCA, as recommended by Greenhoff and MacFie (1994), we mean centered and 

standardized preference ratings to remedy for differences in use of scale by our 

participants.  

5.2 Understanding Preferences for All Participants 

5.2.1 Creating a Preference Map.  

As a first step we created a preference map for the six smartwatches by including the 

preferences for all 93 participants. After conducting PCA, the first step was to assess how 

many principal components (or preference dimensions) to retain for analysis. In general, 

in Internal Preference Mapping researchers try to identify a small number of principal 

components (usually 2-3) that explain a large percentage in the variation of participant’s 

preferences (Lawless and Heymann, 2010, p.442). In the case where two preference 

dimensions explain a large percentage of the total variance, it is very common to disregard 

the remaining dimensions for reasons of comprehensibility, if specific criteria are fulfilled 
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(such as eigenvalues greater than 1, scree plot, interpretability: Lawless and Heymann, 

2010, p.435). In our case, the first dimension accounted for 39.2% of the total variance, 

the second for 22.7%, while the third accounted for an additional 15.7%. After conducting 

a scree plot only the first two preference dimensions, which explained 61.9% of total 

variance, were included in the analysis. In Figure 3 the preference map of all 93 

participants is presented. The two axes represent the two preference dimensions. 

 

Figure 3. Preference map for the whole dataset. Grey arrows represent individual 
participant preference vectors while the black represents the Average. 

5.2.2 Exploring preferences.  

In Figure 3 the average preference of all 93 participants is denoted by a black vector with 

the caption ‘Average’, while each participant’s preference is represented by a grey vector. 

The length of a vector indicates loading strength. Participants with low preference for any 

smartwatch are depicted close to the axis origin and have short vectors. The direction of 
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the vector is also important. Preference vectors pointing to similar direction are positively 

correlated, while vectors pointing to opposite directions are negatively correlated.  

From preference maps, as the one in Figure 3, we get knowledge about the 

products too, besides the participants. If we focus on the smartwatches, the proximity of 

devices A, C, and E is an indication that people’s preferences for them were similar. On 

the other hand, devices B and F are far apart from each other because they received 

dissimilar preference ratings. Furthermore, devices A, C, D, and E have a little impact on 

the first preference dimension, as they are placed close to the vertical axis. The same is 

the case for device B and the second preference dimension. 

If we observe Figure 3 closely, we will see that a great number of preference 

vectors are pointing to the general direction of device B. This means that participants who 

liked device B, at the same time disliked device F since it is positioned in the opposite 

side of their preference vectors. Furthermore, by examining the average preference 

vector, we can conclude that the average participants’ preference vector (black vector) 

points towards device B, which makes sense, considering that the majority of participants’ 

vectors point to the right side of the map. However, there is also a considerable number 

of preference vectors that diverge to the top (devices A, C, E) or to the bottom quadrant 

(device D) and very few that point to left of the map (device F). This indicates that 

different preference drivers existed among the participants. 

5.2.3 Enriching the preference map with design qualities.  

The challenge when trying to understand a preference map is to interpret the preference 

dimensions. This process is very subjective and usually the more data we project on a 2-

dimensional map, the easier it is to interpret. In our case we enriched the previous map 



 23 

(Figure 3) with the physical, perceived and descriptive qualities that we collected from 

the two studies.  

 

Figure 4. Preference map for the whole dataset this time with design qualities too. Grey 
arrows represent individual participant preference vectors while the black represents the 
Average. Green triangles denote perceived qualities, blue squares descriptive qualities, and 
black circles physical qualities. 

Thus, a new preference map was created (Figure 4) by considering all the identified 

design qualities through a linear regression analysis (Greenhoff and MacFie, 1994), and 

by using their average score as dependent and smartwatch factor scores as independent 

variables. In general, only design qualities that have a significant relationship with 

preferences will appear on a map. Therefore, the design qualities that do not exist in 

Figure 4 did not have any significant relationship with preferences (p>.05). Each 

projected design quality is represented with a vector. If a design quality vector points to 

a specific direction (for example compact), then the opposing side defines the other end 
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of the semantic differential scale (in this case bulky). We refer to Table 2, and Table 5 for 

the opposing ends of each semantic differential scale for each design quality. 

5.2.4 Interpreting preference dimensions.  

We can understand the relationship of two projected design qualities by investigating 

their angle. Small angle between them means that they point to a similar direction, and 

thus they are highly correlated. A 90-degree angle means that they are not correlated, 

while a 180-degree angle indicates negative correlation. For example, from Figure 4 we 

may deduct that the perceived qualities of usable and desirable are highly correlated, 

since the angle between the vectors is really small. Furthermore, the closer a smartwatch 

lies to the direction of a design quality vector, the more intensively it possesses that 

quality. For example, devices A, C and E are typical examples of a smartwatch, while the 

rest are not as they reside on the opposite side. Similarly, participants near a design quality 

vector like that design quality. 

While trying to interpret the two preference dimensions from  Figure 4, we can 

see that the six perceived qualities are all pointing to the right side of the map. However, 

the perceived qualities of desirable, cool and usable are all closer to the axes, and 

therefore are strongly correlated to each other as well as the first preference dimension. 

For explaining the first preference dimension, all devices except B and F provide little 

information, as they are positioned in the center of the horizontal axis and should be 

thought of as neutral. Thus, Device B was perceived to be more cool, more desirable and 

more usable than device F. The descriptive qualities that are more relevant for interpreting 

the first dimension are compact and expensive, since they are closer to it, and to a lesser 

extent soft, crisp display, responsive swipe and bright face. Similarly, we can assume that 

device B was perceived to be cooler, more desirable and more usable than device F, since 

it was more compact and expensive looking, while design F was rather bulky (opposite 
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of compact) and appeared cheap (opposite of expensive). The second preference 

dimension is easier to explain since there are devices placed both at the top as well as the 

bottom part of the map. By observing Figure 4, it seems the second preference dimension 

is mostly defined by physical qualities, such as shape. Simple visual inspection reveals 

that smartwatches on the top are square and at the bottom round. In addition, devices on 

top have wider bracelets and look more than smartwatches rather than regular 

wristwatches. Devices on the bottom of the map are in the opposite end, as they look more 

as typical wristwatches, have narrower bracelets, are more flashy, and offer more features. 

5.3 Understanding Preferences in Groups 

Since we identified considerable diversity regarding the participants’ preferences, it was 

not possible to identify a set of preference drivers that would be equally important to 

everyone. In such situations, it is fruitful to identify groups of participants with 

homogenous preferences and study them in isolation (McEwan et al., 1998). Our first step 

was to examine whether homogenous preference groups could be identified based on 

participant demographic data (e.g. sex, prior experience with wristwatches, etc.). 

However, this process did not reveal any significant results. Since visual recognition of 

distinct groups is not always easy as we may observe in Figure 4, we applied a hierarchical 

cluster analysis (Ward’s method) on unstandardized preference data. Then we projected 

mean group preferences vectors in our Preference map to identify preference groups.  

The end result was the identification of 4 distinct groups of participants with 

homogenous preferences. Separate preference maps have been produced for each of these 

groups by following the same process as before.  
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5.3.1 Group A: “The Idle-Screen Lovers”  

Twenty-six participants were allocated to Group A, and two preference dimensions 

explained 81.6% of their variance. As it can be seen in Figure 5 all participants’ 

preference vectors are pointing to the right side of the map, signifying an agreement 

among participants regarding the first preference dimension, which accounted for 63.9% 

of variance. Devices B, D and E are the most preferred, and A, F and C the least.  

 

Figure 5. Preference Map of Group A: “The Idle-Screen Lovers”. 

The fact that the idle screen of the smartwatch had a bright and colorful face mainly drove 

the first preference dimension, and these are highly correlated with the perceived qualities 

of rebellious, hedonic, and cool. At the same time, the participants disliked the other 

smartwatches as they were perceived as heavy and noisy. Large face area and flashiness 

were important drivers for the second dimension, but since it accounts only for a small 

amount of variance (17.7%), it represents a less important preference driver. Based on 

these results, we call Group A the “Idle-Screen Lovers”. 
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5.3.2 Group B: “The Premium Lovers” 

Thirty-nine participants were allocated to Group B, and two preference dimensions 

explained 80.8% of variance. This was the largest identified group, and the one closer to 

the average preference of all participants. As it can be seen in Figure 6 all participants’ 

preference vectors are pointing to the right side of the map, signifying an agreement 

among participants regarding the first preference dimension which accounted for 61.1% 

of variance. Devices B and C are the most preferred, while A, E, D and F the least. 

 

Figure 6. Preference Map of Group B: “The Premium Lovers”. 

Screen swipe responsiveness and expensiveness mainly drove the first preference 

dimension, and these are highly correlated with the perceived qualities of usable, hedonic, 

and cool. Complexity and flashiness were important drivers for the second dimension, 

along with shape, but since it accounts only for a small amount of variance (19.7%), it 
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represents again a less important preference driver. Based on these, we call Group B the 

“Premium Lovers”. 

5.3.3 Group C: “The New-Form Lovers” 

This is the smallest identified group, as only thirteen participants were allocated to it. 

Two preference dimensions explained 68.7% of the variance. As it can be seen in Figure 

7 most participants’ preference vectors are pointing to the right side of the map, signifying 

an agreement among participants regarding the first preference dimension which 

accounted for 44.1% of variance. Devices A, C and E are the most preferred, while B, D, 

and F the least.  

 

Figure 7. Preference Map of Group C: “The New-Form Lovers”. 

What is interesting in this group is that they identified the devices B, D, and C as cool, 

hedonic and desirable along with a number of descriptive qualities (e.g. responsiveness), 

but this did not influence their preference (their preference vectors point towards devices 
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E and A). Thus, their preferred devices were mainly selected because they were square, 

had wide bracelets, looked like a smartwatch, did not have many features, and their 

physical form opposed the one of a typical wristwatch. For this reason, we call Group C 

the “New-Form Lovers”. 

5.3.4 Group D: “The Old-Form Lovers” 

Fifteen participants were allocated to Group D, and two preference dimensions explained 

82.4% of variance. As it can be seen in Figure 8 all participants’ preference vectors are 

pointing to the right side of the map, signifying an agreement among participants 

regarding the first preference dimension which accounted for 57.7% of variance. Devices 

B, F are the most preferred, while A, E, and C the least.  

 

Figure 8. Preference Map of Group D: “The Old-Form Lovers”. 

What is interesting in this group is that their preferences are driven by the opposite 

reasons of Group C. Thus, while Group C is driven by the typical form of smartwatches, 
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participants of Group D preferred devices F and B as they were the exact opposites: they 

hide the fact they are smart watches and they look like a typical round wristwatch. These 

descriptive qualities were also highly correlated with the perceived ones of usable, 

desirable and cool. Based on these, we call Group D “Old-Form Lovers”. 

6 Discussion 

Our findings bring forward the two contributions of this paper: the identification of 

relevant smartwatch design qualities in product choice situations, and the demonstration 

on how they shape people’s preferences. We will now discuss these two contributions in 

the form of implications for practice and research. Furthermore, since Preference 

Mapping is a relatively unknown statistical technique for HCI, we will also present our 

reflections on using it.  

6.1 Implications for Practice  

In relation to practice, our study provides four main implications. Firstly, the identified 

in the related work (Lyons 2015; Schirra and Bentley, 2015) design qualities of 

dissimilarity to a regular wristwatch, compactness, sleekness, idle-screen, low number of 

provided/used features and modesty (not flashy designs), were also present in our 

findings. Furthermore, we extended the work of Dehghani and Kim (2019) on the effect 

of smartwatch design aesthetics by breaking them down into specific, relevant design 

qualities (for example responsive swipe). This is important for practitioners as the 

identified relevant design qualities can be used as anchor points for their design efforts. 

For example, someone may choose to invest more on producing a smartwatch that has a 

responsive swipe as this may have an impact on some people’s preferences.  

Secondly, we linked the design qualities to 4 groups of people, where the 

preferences of each group were driven by different combination of design qualities. This 
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shows that there is no single smartwatch design that will appeal to everybody. Extending 

the Dehghani and Kim (2019) study who identified that demographic variables may 

impact the use and purchase intention of a smart watch, our study shows that people’s 

preferences can be grouped and explained by specific design qualities. We believe that 

this contribution can also guide practitioners in their design efforts. We suggest 

considering in some cases to design more narrow than broad; to focus more on the 

preferences of a particular group, than the average preference of everybody. For example, 

designers of new smartwatches can focus on the “Old-Form Lovers” group and produce 

alternative designs that have a more retro style by following the typical, round form of a 

wristwatch. Or focus on the “The Premium Lovers” group as it was the largest group 

identified and produce alternative designs that are perceived as expensive. We believe 

this way of thinking can be extended to other types of products, such as mobile phones, 

applications, websites, etc. 

Furthermore, an important aspect of a design process is the evaluation of existing 

versions of a product in order to redesign it, and/or the study of existing, competitive 

products in order to understand the state of the art. For such activities, we suggest to 

practitioners to conduct studies similar to this one in order to collect insights for possible 

design directions. By combining design qualities (perceived, descriptive and physical) 

with preference ratings and by using preference maps designers can identify what works 

well and what not in an existing design, or even discover major preference drivers that no 

design is currently fulfilling. Additionally, if such maps are combined with qualitative 

data, such as interviews with selected participants (for example the ones that their 

preference deviated the most from the average), then we believe the impact of a design 

may be drastically increased. 
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Finally, our results showed that the Cool questionnaire (Raptis et al., 2017) can 

be considered a good measurement tool of perceived qualities for the case of 

smartwatches too as it provided good results, both due to its reliability as well as its highly 

correlation with participant’s preferences. Although it is a relatively new instrument, such 

results indicate that practitioners can include it into their evaluation processes. 

6.2 Implications for Research  

An important part of user experience research is related to the identification of existing 

rules (or heuristics) that shape people’s preferences in specific contexts (such as “what is 

beautiful is good”, Dion et al., 1972). Our findings extend the related work, as we have 

indications of the existence of four rules (one per identified group) that potential 

smartwatch consumers apply in product choice situations.  

Based on our results we have indications that Group A was driven by the rule “it 

has a nice idle screen; therefore, it is good”, Group B by the rule “it feels premium; 

therefore, it is good”, Group C by the rule “it feels like a typical smartwatch; therefore, it 

is good”, and Group D by the opposite, “it feels like a regular wristwatch; therefore, it is 

good”. We purposefully stated that we have indications that these rules exist since in 

order to have concrete results on the existence of such rules we need to conduct 

experiments and studies similar to Tractinsky et al. (2000), or Van Schaik et al. (2012).  

Nevertheless, the identification of the 4 preference groups along with their 

corresponding design qualities and the possible rules people apply in product choice 

situations points to specific UX research directions. Firstly, it is almost certain that user 

heterogeneity exists to other products besides smartwatches. Thus, it is important to 

rethink how appropriate it is for user experience evaluations that we average the results 

from all our participants. Perhaps, in some cases we should consider having two-step 
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evaluation process, where we first identify possible preference groups, and then we 

conduct separate evaluations per group.  

Secondly, we believe that we need to also consider the existence of preference 

groups when we study relationships among specific design qualities. For example, in 

Raptis et al. (2013) researchers demonstrated that the screen size of a mobile phone has 

an effect on perceived usability. Wouldn’t be interesting to know if this applies to all 

mobile phone users, or to only specific user groups? Thirdly, we believe it is important 

to conduct more research work in order to understand if and how the relationships among 

preferences and design qualities change over time, and preference maps may play an 

important role on this.  

Finally, an important aspect of user experience research is the identification of 

measurable user experience qualities that can be useful to practitioners. If we observe the 

reported preference maps, we can see that in all cases except Group C, the perceived 

quality of coolness (Raptis et al., 2017) was highly correlated to the average preference 

vector (correlations between 0.7-0.9). This indicates that coolness may act as a mediator 

between specific design qualities and preferences. Of course, in order to have validated 

results there is a need to conduct experiments. Nevertheless, for user experience research, 

our results show that perceived coolness should be considered a relevant user experience 

quality that can be used both for better understanding what user experience is as well as 

for measuring it. 

6.3 Reflections on Using Preference Mapping  

Preference Mapping is not an appropriate statistical technique for revealing causal 

relationships among design qualities and preferences. Instead, it should be viewed as an 

ideal statistical technique for visually inspecting the relationships among such qualities 
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and for exploring relatively unknown domains. Thus, it is a technique which is based on 

collecting quantitative data for the creation of the maps but understanding/explaining the 

maps is a highly subjective process. Having this in mind, we will present four ways in 

which Preference Mapping was useful for our research work, hoping that it can be useful 

to other HCI researchers and practitioners too. 

Firstly, Preference Mapping proved extremely useful in providing visual 

representations of correlations among variables (only design qualities that have a 

significant relationship with preferences appear on a map). Visually inspecting a dataset 

was very insightful as it allowed us to explore the domain of smartwatches and have 

meaningful explanations relatively fast. We believe that this would not have been possible 

by following traditional statistical analysis techniques due to the large number of 

variables we included in our study. For this reason, we strongly recommend this technique 

to other researchers and practitioners, as visual inspection can sometimes be more 

informative than simply comparing numbers. 

Secondly, Preference Mapping allowed us to combine data from different sources. 

In this research work we combined perceived, descriptive and physical design qualities 

with preference ratings. The technique allows for even more data sources to be 

superimposed on a map, allowing for better/richer explanations to emerge. This, however, 

may come at a cost in terms of complexity, since very often the more data points exist on 

a map, the more difficult it is to reach a meaningful explanation due to information clutter. 

Thus, we recommend to future users of this technique to create a variety of maps of 

varying levels of complexity until they reach a explanation they believe it is meaningful.  

Thirdly, through Preference Mapping we managed to identify new interesting 

future research directions and we can now design a series of experiments that would allow 

us to identity possible causal relationships among specific design qualities and 
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preferences. For example, one of those experiments could focus on the “Idle-Screen 

Lovers” group and study the cause and effect relationships between idle screen’s 

brightness/colorfulness, coolness and preference. Thus, approaching Preference Mapping 

as an idea generation technique for future research directions can be extremely useful for 

others too. 

Finally, in order to properly do Preference Mapping there is a need for a large 

pool of participants (40-100 participants, Gagula Rutenbeck, 2006) and a considerable 

number of products (minimum 6, Lavine et al., 1988). Recruiting a large number of 

participants is never easy, but the most difficult task in this study was to select appropriate 

smartwatches, since we had to include a large variation in their design qualities. Our 

results show that we were successful in our selection as the smartwatches were spread 

across the maps. Nevertheless, this was a meticulous task as it took a lot of time to discuss 

possible candidate devices. For this reason, we strongly recommend to future users of the 

technique to allocate a considerable amount of time to their product selection processes. 

7 Limitations 

Our study has a number of limitations. At the time the study was carried out most 

smartwatch designs were predominately male-oriented both in their designs and their 

size. Thus, we faced the same situation as the Schirra and Bentley (2015) study. We tried 

to compensate by selecting a small, neutral smartwatch (Device B), but nevertheless in 

similar future studies, this has to be taken into consideration. Secondly, our sample was 

homogenous in relation to participant’s age, cultural background, and prior experience 

with smartwatches. Since it has been identified in prior research that there are differences 

between potential and actual users on how they perceive a smartwatch (Dehghani and 

Kim, 2019), our results are mainly relevant for young, potential smartwatch users.  
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8 Conclusions 

In this paper, we make two contributions to the field of HCI. Firstly, we identified which 

smartwatch design qualities (perceived, descriptive and physical) are relevant in product 

choice situations. Secondly, we demonstrated how these design qualities shape people’s 

preferences by analyzing the collected data using the statistical technique of Preference 

Mapping. Our findings showed that among young potential smartwatch users, there are 

four distinct groups in which different combinations of design qualities shape their 

preferences. Some of the participants are influenced by the idle screen of a smartwatch, 

most by how premium it is perceived, while many from its physical form (resemblance, 

or not to a typical round wristwatch).  

These findings have implications both for practitioners as well as researchers, as 

our findings can be used both for the design of new smartwatches as well as for the 

evaluation of existing ones. Our implications for practice can be summarized by the 

identification of relevant smartwatch qualities in product choice situations. Our 

implications for research can be summarized by the identification of 4 possible rules that 

drive people’s smartwatch preferences, which point to further research directions, as they 

should be validated through experimental studies. Furthermore, we demonstrated that 

Preference Mapping can be used to gain a deeper understanding on which design qualities 

may have an impact on users’ preferences. We suggest that using Preference Mapping 

can be useful for studying other technologies too.  

In the future, we aim to extend this work by researching in depth the possible 

relation between demographic characteristics and design qualities. Secondly, we want to 

follow up with experimental studies focusing on the 4 possible identified rules. Finally, 

we would like to examine how preferences, design qualities and coolness change over 

time.  
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Figure and Table List 

Figure 1. The 6 selected smartwatches. 

Figure 2. Average preference score of 93 participants for each smartwatch (scale 0-100). 

A) Polar m600, B) Motorola 360 2nd gen, C) Sony Smartwatch 3, D) Zeblaze Blitz, E) 

NO.1 G4, and F) NO.1 D6. 

Figure 3. Preference map for the whole dataset. Grey arrows represent individual 

participant preference vectors while the black represents the Average.  

Figure 4. Preference map for the whole dataset this time with design qualities too. Grey 

arrows represent individual participant preference vectors while the black represents the 

Average. Green triangles denote perceived qualities, blue squares descriptive qualities, 

and black circles physical qualities. 

Figure 5. Preference Map of Group A: “The Idle-Screen Lovers”. 

Figure 6. Preference Map of Group B: “The Premium Lovers”. 

Figure 7. Preference Map of Group C: “The New-Form Lovers”. 

Figure 8. Preference Map of Group D: “The Old-Form Lovers”. 

Table 1. Relevant physical smartwatch qualities and measurement units. 

Table 2. Relevant perceived smartwatch qualities, number of items and measured scale. 

Table 3. Measured physical qualities for the 6 smartwatches. A) Polar m600, B) Motorola 

360 2nd gen, C) Sony Smartwatch 3, D) Zeblaze Blitz, E) NO.1 G4, and F) NO.1 D6. 

Table 4. Average scores for the 6 six measured perceived qualities for the 6 smartwatches 

(1-7 scale). Highest scores marked in bold. A) Polar m600, B) Motorola 360 2nd gen, C) 

Sony Smartwatch 3, D) Zeblaze Blitz, E) NO.1 G4, and F) NO.1 D6. 

Table 5. Identified descriptive smartwatch qualities and their semantic-differential scales. 


