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1. Introduction
The study of the ocean is one of the biggest scientific 
challenges of the 21st century. It has a direct impact on 
our understanding of Earth’s climate (Stocker et al., 2013) 
and biogeochemical cycling (Field et al., 1998), as well as 
on our ability to provide human society with food, chemi-
cals, and energy (Lehahn et al., 2016). Oceanographic 
research strongly relies on in-situ and remotely-sensed 
observations, which describe physical, chemical, and 
biological seawater properties at a given time and place. 
These observations are collected from various crewed and 
autonomous platforms, including research vessels, floats 

(Roemmich et al., 2009), drifters (Lumpkin et al., 2017), 
autonomous vehicles (Eriksen et al., 2001), and satellites 
(Lehahn et al., 2018), providing an abundance of interdis-
ciplinary information on processes occurring over a wide 
range of spatial (from micrometers to thousands of kilo-
meters) and temporal (from seconds to decades) scales.

Over the last century, numerous in-situ and remotely-
sensed measurements have been taken, resulting in the 
creation of an increasingly large amount of oceanic data. 
In recent years, with the enhanced utilization of satellites 
and autonomous observation platforms, these data are 
collected at a blistering rate. Improving the scientific com-
munity’s ability to integrate, share, and explore this vast 
amount of data is an urgent task that will contribute sub-
stantially to our understanding of the ocean and its role in 
the Earth system.

Several public data repositories have emerged to ena-
ble the archiving and sharing of data collected between 
researchers. For example, PANGEA (2020), a data reposi-
tory for publishing and distributing georeferenced data 
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from Earth system research, hosts more than 370,000 data-
sets. The National Centers for Environmental Information 
(National Oceanic and Atmospheric Administration, 2020b) 
stores over 25 petabytes of atmospheric, coastal, oceanic, 
and geophysical data. Copernicus (European Commission, 
2020) archives datasets from several domains such as 
marine, climate, and agriculture, as part of a European 
Union program for observing the Earth. The extensive 
availability of data repositories provides oceanographic 
researchers with the ability to tap into a multitude of data 
collected by their peers and use it in their own studies.

One of the main obstacles for a researcher when com-
piling data from existing data sources is to overcome the 
semantic distance between datasets. Thus, when conduct-
ing such research, there is a need for manual data integra-
tion work done by an expert. In a recent review (Gregory 
et al., 2019), the authors described some of the challenges 
facing researchers when manually integrating data from 
multiple disparate studies.

Data integration is the art and science of reconciling 
two or more collections of data with each other. Data inte-
gration is as old as data. In 1975, the National Bureau of 
Standards and the Association for Computing Machinery 
issued the recommendation that, when integrating data 
from digital and physical files into the newly standardized 
Database Management Systems (DBMS), practitioners 
should maintain a data-dictionary to enable efficient and 
effective data integration (Berg, 1976). With the emergence 
of the federated database (Hammer and McLeod, 1979), 
a database composed of multiple independent database 
systems, the need for a central mediated schema was cre-
ated. A secondary problem created by federated databases 
was the prevalence of unwanted data duplication between 
the systems. The advent, and subsequent popularity of the 
World Wide Web, brought about a host of new opportuni-
ties for sharing data, providing portals and services based 
on the integration of data from multiple sources covering 
the same domain, such as the domain of travel reservation 
(e.g., www.orbitz.com). The process of data integration 
began as a manual one (Goodhue et al., 1992), gradually 
transitioning to a semi-automated process supported by 
software tools. The arrival of Big Data has increased both 
the number and sizes of available data-sources, bringing 
about additional challenges and opportunities for data 
integration (Dong and Srivastava, 2015).

We are at a time where artificial intelligence (AI) is 
applied ubiquitously across scientific domains and disci-
plines. First and foremost of AI research fields is the field 
of machine learning (ML), the science of building soft-
ware that learns from experience. Recent years have seen 
a concurrent increase in data (serving as experience for 
ML) and available cloud computing solutions to utilize 
the data. These phenomena, together with the arrival of 
deep learning (DL) as an efficient and effective method for 
ML, have caused ML to expand into an increasing num-
ber of fields (Jordan and Mitchell, 2015). Pioneered by 
Doan et al. (2002), the use of ML in data integration has 
been expected for some time now (Halevy et al., 2006). 
Recently, widespread use of ML in data integration appears 
to be the new norm (see review by Dong and Rekatsinas, 
2018). Concretely, ML has been used to create weighted 

ensembles of schema matchers (Gal and Sagi, 2010), map 
relational databases into ontologies (De uña et al., 2018), 
and create sub-groups of records to speed up entity reso-
lution (see review by O’Hare et al., 2019). However, the 
advances in data integration and specifically AI-assisted 
data integration have been utilized sparingly, if at all, in 
the ocean sciences.

In this paper, we systematically deconstruct the pro-
cess of integrating a multitude of datasets in the ocean 
science domain into specific phases and tasks. For each 
task, we review state of the art in AI-assisted data integra-
tion and discuss the barriers and challenges to its adop-
tion in the ocean sciences. We begin in the following 
section by formally defining and providing background 
on artificial intelligence, data integration, and how they 
are used together. We then present our model of data 
integration processes in ocean science and how artificial 
intelligence can support these efforts. To demonstrate 
the implications of having ocean-science-specific-AI tools, 
we then describe and provide results from an automated 
entity extraction task on oceanic datasets.

2. Background and definitions
Before we dive into the use of artificial intelligence for 
data integration in ocean sciences, we review data inte-
gration (DI), artificial intelligence (AI), and the use of AI 
techniques in DI.

2.1. Data integration
DI is the process of combining two or more datasets. Data-
sets are collections of structured data described by a data 
description, also known as a schema. A dataset may be sim-
ple as a table, with rows as data and the header row as 
a schema, or complex as a netCDF (UNIDATA, 2019) file 
containing numerical matrices.

Figure 1 reviews the five components of the DI process. 
Schema matching (1) aligns two or more schemas to find 
correspondences between them (see survey by Shvaiko 
and Euzenat, 2013 and books: Gal, 2011; Bellahsene et 
al., 2011). Schema mapping (2) operationalizes these cor-
respondences into data-transformation functions (e.g., 
Alexe et al., 2011). Entity resolution (3) is the task of iden-
tifying different instances related to the same entity (see 
surveys Papadakis et al., 2016; O’Hare et al., 2019). Entity 
consolidation (4) is the process of merging all data about 
the same entity coherently (e.g., Hogan et al., 2012). An 
orthogonal but crucial component of the DI process is 
data cleansing (5), which can be applied to both the origi-
nal data and the merged dataset (Abedjan et al., 2016).

Note that entity consolidation is designed for database 
records, where each property has a single value. Most 
oceanic datasets are comprised of both database-style 
records recording a dataset’s metadata and a large series 
of numbers varying over geographical or temporal dimen-
sions. Integrating the numerical component, introduces 
two new dimensions to the integration process, namely 
resolution and distance. Numerical analysis and model 
building requires a continuous set of numbers with the 
same resolution. For example, satellite images might have 
a spatial resolution of 1 km and a temporal resolution of 
one day, while a buoy in the same area and time has a 
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pinpoint spatial resolution but may often lay a few kilom-
eters away from the nearest sea surface image edge, due to 
cloud cover. To build an integrated model over both sets, 
one must perform interpolation and extrapolation and 
assess the reliability of their model given these differences 
and the methods employed to bridge them. Multi-sensor 
data fusion techniques (Lesiv et al., 2016; Waltz and Waltz, 
2017) have diversified and grown from statistically based 
methods to more elaborate ML-based methods. In the 
interest of brevity and focus, we limit the exploration of 
this task in the rest of this paper, leaving it for future work.

Example 1 Schema matching and mapping 
(Figure  2). A researcher wishes to integrate PANGAEA 
dataset 759517 (semina and Mikaelyan, 1994) with dataset 
2690 stored on EDMED (British Oceanographic Data Centre, 
2020). Figure 2 presents the correspondences between 

the two datasets’ schemas, a result of a manual schema 
matching process. A note added to the Nitrate field of the 
PANGAEA dataset identifies this field as actually measuring 
the sum of nitrates and nitrites, justifying the correspond-
ences to the Nitrite and Nitrate fields in the EDMED dataset. 
This double correspondence can be converted later to a sum 
of the two values in the schema mapping process to convert 
data points from these fields under the EDMED schema to 
the PANGAEA schema.

Example 2 Entity resolution. Consider Table 1 where 
the same data point is presented from the diatom data inte-
gration effort by Leblanc et al. (2012) (first row) and one of 
its constituent datasets, a supplement to Assmy et al. (2007) 
(second row). We manually schema-matched and mapped 
the second row to the first row’s schema; however, it is still 
unclear if indeed, these represent the same data point. For 

Figure 1: The process of data integration. The data integration process takes two datasets and combines them into 
a unified dataset by performing five composable tasks. Schema matching (1) aligns the schemas of the two datasets. 
Schema mapping (2) performs any transformations required by the different semantic of the aligned fields. Entity res-
olution (3) identifies duplicate records, and entity consolidation (4) merges them. Data cleansing (5) can be applied 
at any point to detect and correct errors. DOI: https://doi.org/10.1525/elementa.418.f1
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Figure 2: Schema matching of two oceanic datasets. The figure shows correspondences created by a schema match-
ing process between the schema of an EDMED dataset and that of a PANGAEA dataset. DOI: https://doi.org/10.1525/
elementa.418.f2
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large datasets, the entity resolution task may be daunting, 
requiring n2 comparisons where n is the number of records 
over all datasets. Thus, common approaches perform a pro-
cess of blocking, where records are grouped by (one or more) 
shared properties. In our example, these two data points were 
part of a dataset containing 293,000 data points, of which 
more than half may be duplicates. To avoid performing 8.6 
× 1011 comparisons, we could first group records by the lon-
gitude, latitude, depth, and date, and then perform compari-
sons only within each group (block in entity resolution terms).

Entity resolution can occur at different levels of granu-
larity and for different entities appearing in the dataset. 
The example given above identified the same data item 
in the two datasets, similarly, the authors were required 
to resolve different diatom species described differently. 
In the authors’ own words: “In total, 1364 different taxo-
nomic entries were found, but were reduced to 727 differ-
ent taxonomic lines….”

2.2. Artificial intelligence
Kaplan and Haenlein (2019) define AI as: “a system’s ability 
to interpret external data correctly, to learn from such data, 
and to use those learnings to achieve specific goals and 
tasks through flexible adaptation”. The definition encom-
passes three core aspects of AI systems. Interpretation of 

external data requires reasoning, i.e., deriving conclusions 
from raw inputs using an internal representation of knowl-
edge. Learning from data is the ability to change a system’s 
internal model based upon examples. Adaptation means 
the system can perform actions that change according to 
a change in the internal representation. In the following 
we describe the first two core aspects and their supporting 
technologies. The third aspect targets autonomous agents, 
such as robots, and game-playing (e.g., Silver et al., 2016), 
which are not relevant to the task of data integration and 
therefore are not addressed further.

2.2.1. Knowledge representation and reasoning systems
Allowing computer software to reason requires a way to 
represent and store large amounts of knowledge, and sys-
tems able to query knowledge and reason over it. One of 
the most mature approaches, backed by substantial com-
mercial and academic effort, is that of the Semantic Web as 
envisioned by Berners-Lee and Hendler (2001). Under this 
conceptual model, knowledge graphs (KG) have become a 
standard for representing facts. As their name suggests, KG 
are a network-based representation, where entities and lit-
erals are nodes, and predicates or relations are the edges.

Example 3 In Figure 3, a knowledge graph fragment 
presents our knowledge about a data point from a dataset 

Table 1: Entity resolution: two records mapped into the same schema. DOI: https://doi.org/10.1525/elementa.418.t1

Project ID Cruise or station ID Date Longitude Latitude Name entry

EISENEX out of +Fe patch st°108 11-29-2000 20.60 –47.67 Thalassionema nitzschoides 
<20 μm

European iron enrichment 
experiment in the Southern 
Ocean (EisenEx) 

PS58/108-1 (CTD149) 2000-11-
29T15:33:00 

20.64733 –47.66817 Thalassionema nitzschioides 
var. lanceolata, biomass as 
carbon [μg/l] (T. nitzschioides 
var. lanceolata C)

Figure 3: An example knowledge graph. In the figure, a graph fragment with some of the data from Semina and 
Mikaelyan (1994) is presented in machine-readable manner by using well-defined ontological and schematic proper-
ties that have well-defined relations to other properties. These definitions and properties allow integrating these data 
with data from other datasets. Boxes represent entities, quoted strings are literals, and edges represent predicates that 
connect a subject (entity) to an object (entity/literal). Prefixes denote the ontology/schema in which the property/
class are defined, with rdf denoting the resource description framework (RDF) schema (https://www.w3.org/TR/rdf-
schema/), gl denoting the geolink ontology http://schema.geolink.org/), and pan denoting the PANGAEA schema. 
The entity Temp represents a data point and is connected to its parent dataset via a gl:hasDataset predicate. The data 
point is connected to the collection time via a gl:hasCollectionDate predicate, and the dataset is connected to its 
temporal coverage through the predicates pan:startDateTime and pan:endDateTime. Both entities (i.e., data point 
and dataset) are connected to their ontological classes via an rdf:type predicate. The dataset entity is connected to a 
literal describing its project. DOI: https://doi.org/10.1525/elementa.418.f3
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(Semina and Mikaelyan, 1994) stored on PANGAEA. The 
dataset entity (Hydrolog…) is connected via the predicate 
gl:hasProject to a literal describing it. The data point entity 
(Temp) is connected via a predicate gl:hasDataset to the 
dataset entity describing the fact that the former is a com-
ponent of the latter.

In general-purpose knowledge graphs such as 
Wikipedia-based DBpedia (Auer et al., 2007), entities 
may represent people, places, and abstract things, such 
as events, while literals represent single pieces of infor-
mation such as names, titles, and dates. Ontologies pro-
vide a conceptualization of the domain (or domains) 
described by the knowledge graph, adding entailment 
mechanisms such as the ability to group entities into a 
class, create same-as links between entities, equivalence 
relationships between classes, and denote predicates as 
sub-properties. For example, both entities in the exam-
ple above are connected via rdf:type predicates to their 
ontological classes. These two entities and the predi-
cates prefixed with gl: are defined in the GeoLink base 
ontology (Krisnadhi et al., 2015). The definition of an 
rdf:type is specified in the resource description frame-
work (RDF) and can be found at https://www.w3.org/
TR/rdf-schema/. Querying information represented as 
a KG is often done using SPARQL (Prud’hommeaux and 
Seaborne, 2008), a data retrieval language enhanced 
with semantic inference constructs.

2.2.2. Machine learning
Endowing software with the ability to learn from exam-
ples has been studied extensively over the past 60 years. 
ML has been used to automate tasks over the entire 
expanse of the human endeavor from predicting relations 
in knowledge graphs (see review by Nickel et al., 2016) to 
forecasting solar radiation (Voyant et al., 2017). Machine 
learning techniques can be broadly divided into two types, 
supervised and unsupervised by the type of input provided 
to the learning algorithm.

Unsupervised learning techniques provide the learn-
ing algorithm with a large collection of items sampled 
from the target population and some target metrics to 
assess the quality of the task result, leaving the algorithm 
to attempt and optimize these quality criteria. Classic 
examples include clustering techniques such as K-Means 
(Hartigan and Wong, 1979). The effectiveness and appli-
cability of using unsupervised techniques to learn a 
representation have increased significantly with the 
appearance of large amounts of user-generated content 
on the Internet. For more details, see the seminal paper 
on the unreasonable effectiveness of data by Halevy et al., 
(2009). A similar opportunity exists in oceanic sciences 
with the increasing availability of large amounts of auton-
omously collected and remotely sensed data (see Durden 
et al., 2017 for a review).

Supervised learning techniques require a (hopefully 
large) set of tagged examples. For example, to identify 
the semantic information conveyed by a set of numbers 
representing the pixels in a picture, a supervised ML algo-
rithm requires a set of pictures labeled as cats, another 
labeled as dogs, etc (Russakovsky et al., 2015). Similarly, 

to identify people and places mentioned in a text, an ML 
model requires sentences where they are clearly labeled 
as such. Given a metric to which the ML’s prediction can 
be compared to the real tag, the ML algorithm can alter 
its internal representation to achieve better results on the 
task at hand. For example, using a quadratic loss metric, 
calculated over the distance between the final result vec-
tor and the expected one, is common in computer vision 
tasks. However, obtaining tagged examples is often diffi-
cult and expensive, as it requires humans, often experts, 
to tag the examples. Furthermore, one needs to obtain a 
set of examples which is representative of the target task. 
More often than not, the examples on which ML-models 
are trained are those for which gathering information is 
more convenient than representative.

2.2.3. Information extraction
The ability of AI systems to obtain information from raw 
data relies upon three fields of research. Computer vision 
(e.g., Krizhevsky et al., 2017) aims to extract meaning from 
images and video, (textual) information extraction focuses 
on text (e.g., Martinez-Rodriguez et al., 2020), and audio 
(speech) recognition (e.g., Hinton et al., 2012) converts 
sound into more meaningful information such as text and 
emotion markers (Schmidt and Kim, 2011).

2.3. AI in data integration
2.3.1. Ontology-based data integration and access
Taking advantage of the AI knowledge representation and 
inference mechanisms, ontology-based data integration 
(OBDI) uses ontologies to consolidate several heterogene-
ous sources into one source (see review by Ekaputra et al., 
2017). For example, if the schema in one dataset contains 
the specific instrument (e.g., CTD/Rosette) and in another 
the instrument type (e.g., Cast), we could use the hasType 
ontological construct to integrate them.

In many cases existing data sources are not linked to 
an ontology, rendering OBDI impossible. Ontology-based 
data access (OBDA) is an alternative model that provides 
access to the data layer through a declarative mapping 
between autonomous data layers and a domain-specified 
ontology (Xiao et al., 2018). A typical development pro-
cess of an OBDA system for a project that has a standard, 
non-ontological database will contain the following steps. 
(a) Create an ontology of domain-specific user knowledge. 
(b) Write mapping that connects (usually through SQL 
queries) the ontology to the project’s database. (c) Write 
a query using ontology’s vocabulary as a semantic query 
language query, such as SPARQL. (d) Build an OBDA sys-
tem framework that automatically rewrites the SPARQL 
query to the query language in which the project’s data-
base operates.

2.3.2. Word embeddings
Early work in DI heavily relied upon measures such as 
Jaccard similarity (e.g., He and Chang, 2006) and n-gram 
techniques (e.g., Do and Rahm, 2002) to ascertain if 
two strings are similar. However, syntactic methods 
ignore the semantics, or meaning, of words. Such tech-
niques can find plane and airplane to be similar, but not 

https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-schema/
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plane and aircraft. To overcome this weakness, thesau-
ruses such as WordNet, and later Wikipedia, were intro-
duced. However, these techniques required accurate 
spelling and were often baffled by technical terms and  
abbreviations.

The appearance of word embeddings has revolution-
ized the approach towards word, phrase, and sentence 
similarity. Word embedding was originally designed to 
convert text to the numerical representation required by 
DL techniques. The technique represents each word in the 
vocabulary with a d-dimensional vector of real numbers 
w∈ℝd. Word embedding has been extensively used in AI 
applications as an underlying input representation that 
serves as a word dictionary and enables better capture 
of the semantic meaning of the word (Levy et al., 2015). 
The following hypotheses have been noted (Bolukbasi et 
al., 2016). (a) Vectors of words of similar meaning tend to 
be closer. (b) The vector differences between vectors rep-
resenting word embeddings have been shown to repre-
sent relationships between words. A famous example is 
the male/female relationship captured by the word2vec 
implementation of word embedding, where Mikolov et al. 
(2013) showed that King Man Woman Queen− ≈+ .

Thus, a word would be embedded in a high-dimensional 
space as a vector, and a sentence became a collection of 
such vectors. Word similarity now becomes a problem of 
vector similarity. Useful embeddings are those that place 
similar words close to each other in this high-dimensional 
space. Embeddings are learned from large collections of 
text, in an unsupervised manner. Thus, they can be fine-
tuned to a specific domain by retraining some of the 
embeddings on a collection of domain-representative doc-
uments. Popularized by Word2Vec (Mikolov et al., 2013), 
recent methods include GloVe (Pennington et al., 2014), 
Flair (Akbik et al., 2018), and BERT (Devlin et al., 2019). 
The latter two use character-based embedding, which can 
also overcome spelling and abbreviation issues.

2.3.3 Machine learning for data integration
The use of machine learning for schema matching had 
been pioneered by Doan et al. (2000), followed by work by 
Gal and Sagi (2010). In both cases, machine learning was 
used to learn an ensemble model or method to combine 
the results of multiple matchers by training the ensemble 
method on the results of previous matching attempts. Sagi 
and Gal (2013) took this method one step further by learn-
ing to adapt the ensemble weights according to the results 
of the actual matching performed at run-time. Thus, the 
features upon which their model was trained were not 
the choice of matchers, but rather the structure and vari-
ous counting statistics of the match result. Recently, word 
embeddings were used to enhance the effectiveness of 
schema matchers by Fernandez et al. (2018).

ML techniques have been used for entity resolution 
as well. Kenig and Gal (2013) used an unsupervised ML 
technique called maximal frequent item-sets (MFI) to learn 
the optimal clusters in which to search for duplicates. 
Sagi et al. (2017) expanded upon this work by training 
an alternating decision tree model (Freund and Mason, 
1999) to classify pairs within the blocks to matched and 

unmatched entities. Recent work, such as by Ebraheem et 
al. (2018), utilizes word embedding to create semantically 
similar clusters as well as recommend matched pairs. Data 
tamer (Gubanov et al., 2014) uses ML for entity consolida-
tion by predicting which data item is most likely to be 
relevant.

3. Data integration in ocean science
In this section, we formalize the data integration process 
for oceanic datasets. Under this formalization, we can 
compare similar tasks and examine tools employed in sup-
port (or in relief) of the extensive manual labor otherwise 
required. After describing each step, we review current 
work in ocean science and list the remaining gaps accom-
panied by specific directions for future work.

A data integration project can be described as having 
three major phases (Figure 4, top layer). In the Discovery 
phase, the list of possible candidate datasets for the pro-
ject is compiled. In the Merge phase, candidate datasets 
are harmonized semantically, computationally, and geo-
graphically to form one large and coherent dataset. In the 
Evaluate/Correct phase, the results are analyzed to assess 
quality, coverage, and bias, and appropriate corrections 
are made to support assertions made over the data.

In the following sections, we describe these phases in 
detail, further dividing them into distinct steps. Although 
the integration process described holds whether done 
manually or automated, we point out how the DI tech-
nologies described in Section 2 can be used to automate 
the different steps, allowing to scale such projects and 
integrate large amounts of data. Where appropriate, we 
describe how AI technologies can in-turn support the DI 
processes. The bottom two layers of Figure 4 summarize 
these supporting relationships.

3.1. Discover
Data discovery is the phase where candidate datasets are 
collected to fit a set of study parameters. For example, Luo 
et al. (2012) searched for datasets containing sampling of 
marine N2 (dinitrogen) fixing organisms. Similarly, Wang 
et al. (2017) focused their efforts on geochemical data. 
The process of data discovery can be divided into three 
distinct steps, namely, search, link, and identify, described 
below.

3.1.1. Search
In the search step, a list of candidate research is col-
lected. Search is performed on repositories or through 
portals that provide access to multiple repositories, here-
after referred to as data sources. Data sources may con-
tain either textual descriptions of studies (i.e., scientific 
papers) or the datasets themselves. Google Scholar is an 
example of a scientific portal to study descriptions, while 
PANGAEA is a repository of datasets.

When searching for relevant research, users use search 
tools provided by the data sources. These tools can be 
classified into one of three types of interfaces. Key word 
queries comprise a sequence of terms of which at least 
one should be present in the dataset for it to be returned 
in the results. Ontological queries rely on well-defined 
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ontological terms such as organism species or molecu-
lar compounds, which the user specifies together with 
logical constraints and entailment allowances to form 
a logical statement. Each candidate result must satisfy 
the logical statement to be returned. Parameter queries 
rely on metadata associated with the research, such as 
the publication date or the geographical location of the 
samples collected. Queries are formed by defining restric-
tions and combining them using simple logical opera-
tors (and/or/not). To exemplify the difference between 
ontological search and parameter search, consider the 
following.

Example 4 A researcher is interested in datasets contain-
ing measurements of phytoplankton biomass, among other 
parameters. In a parameter search, that researcher would 
be required to search for all possible subgroups and types 
of phytoplankton, such as diatoms, Fragillariophyceae, and 
Coscinodiscophyceae, and then collate the results. In an 
ontological search, the researcher can simply ask for all dia-
toms and specify that they wish for all sub-species as well, 
then receive all datasets containing the biomass of a spe-
cies present in the taxonomic tree under diatoms. However, 
to support such a search, each parameter defined over a 
dataset needs to be aligned correctly with a comprehensive 
ontology, a task that is daunting when done retrospectively 
over large collections of datasets.

Table 2 provides a partial list of data sources, oceanic 
research portals and repositories current to January 2020, 
their type (R stands for Repository and P for Portal), and the 
extent to which they support the search tools described 
above (all data sources listed provide key-word search). A 
notable omission from this list is the set of commercial 
cloud services participating in NOAA’s Big Data Project 
(National Oceanic and Atmospheric Administration, 
2020a). Access to this data source is rudimentary, and the 
number of datasets provided is limited.

Taxonomies are widely used in the ocean sciences 
(Claramunt et al., 2017). Some examples are World Register 
of Marine Species (WoRMS Editorial Board, 2020) that holds 
a detailed taxonomy of marine species, AlgaeBase (Guiry 
and Guiry, 2020), a global algal database, and FishBase 
(Froese and Pauly, 2020). An ontology is an explicit specifi-
cation of a conceptualization that defines the terms in the 
domain and relations among them (Gruber, 1995).

All ontologies use some form of vocabularies in order to 
express terms and specify their meanings (Uschold, 1998). 
Similarly to taxonomies, they adopt a classification struc-
ture. However, ontologies add properties for each class 
and a set of axioms and rules that allow reasoning and 
full domain conceptualization (Zeng, 2008). Leadbetter 
et al. (2010) provide a systematic review of ontologies for 
the maritime domain. A few notable mentions include 

Figure 4: The three phases of the data integration process, and their application in ocean science. The top 
layer describes the process: in the discover phase, a list of candidate datasets with possible relevancy to the project 
is compiled; in the merge phase, candidate datasets are harmonized semantically, computationally, and geographi-
cally to form one large and coherent dataset; in the evaluate/correct phase, an analysis of the resulting dataset is 
performed to assess quality, coverage and bias, followed by appropriate corrections that are made to support asser-
tions made over the data. The middle layer shows how data integration technologies support the process. OBDA 
and OBD stand for ontology-based data access (A) and integration (I) respectively. The bottom layer contains three AI 
technologies/enablers that support the data integration technologies. Full-colored rectangles and trapezoids repre-
sent technologies/enablers in current use. Outline-colored-only shapes represent technologies and enablers that are 
not currently in use in ocean science data integration. Additional gaps are listed as lower-case letters corresponding 
to the gaps listed in Table 3. DOI: https://doi.org/10.1525/elementa.418.f4
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the NASA Semantic Web for Earth and Environmental 
Terminology (SWEET; Ashish, 2005), which hosted over 
6000 concepts in 200 separate ontologies as recently 
as 2018, but since 2019 has been removed from public 
access. MarineTLO is a top-level ontology for the maritime 
domain (Tzitzikas et al., 2013) that contains information 
about marine species, ecosystems, and fishers. Significant 
among these efforts is OceanLink/GeoLink, a large-scale 
project that aims to improve discovery, access, and inte-
gration (Figure 4) of interdisciplinary data in the oceano-
graphic domain (Narock et al., 2014). The ongoing project 
enables the discovery of integrated data from multiple 
repositories by creating an integrated knowledge discov-
ery framework on top of those repositories. The project 
utilizes semantic web technologies, particularly ontology 
design patterns (ODPs; Gangemi, 2005) and a SPARQL end-
point (accessible at data.geolink.org/sparql) for seman-
tic querying. Additional repositories supporting OBDA 
through a SPARQL endpoint are the European Directory of 
Marine Environmental Data (EDMED) (at https://edmed.
seadatanet.org/sparql/), and the British oceanographic 
data centre, NERC SPARQL endpoint (at http://vocab.nerc.
ac.uk/sparql/).

Although GeoLink’s ontologies provide extensive cover-
age of the domain, they are far from complete. In some 
cases, publishing a repository’s data in GeoLink is not pos-
sible due to missing concepts or a required but tedious 
schema-mapping process that the authors do not wish to 
undertake. In those cases, the remainder of the data not 
described by the GeoLink ontologies is published accord-
ing to the provider’s own schema (Krisnadhi et al., 2015). 

Specifically, some of the more fine-grained patterns are 
not fully described. For instance, in the marine biology 
domain, integrating data according to taxonomy can be 
very useful. Similarly, for measurements of plankton data 
such as biomass, integrating data according to plankton 
group size or kind can be beneficial. Such a taxonomic 
relation exists in the MarineTLO ontology and in WORMS 
but is missing in GeoLink. Another example is the lack of 
ontological representation of ocean basins and seas such 
as in SeaVoX (Claus et al., 2014). The GeoLink class Place 
can be related to a PlaceType=‘ocean’ but no deeper hier-
archical representation is supported. For example, if the 
discussed place is set to ‘The Red Sea’ and some other data 
point is given with the place set to ‘Gulf of Eilat’, then the 
correct integration could not be made with GeoLink. Even 
if the ontological issues are resolved, realigning existing 
data with Geolink, or a combination of the existing ontolo-
gies, would require an extensive mapping effort that would 
benefit from AI-supported schema matching technologies.

Thus, scaling the search process by using OBDA would 
allow the collection of a large number of datasets already 
aligned by the domain ontology over the parameters used 
to perform the search step. However, using OBDA requires 
the domain ontology to cover all aspects of the data to be 
integrated, and all datasets in the repository/portal to be 
completely aligned with the ontology. As detailed above, 
current repositories and data portals mostly use taxono-
mies rather than ontologies, combining parameter and 
keyword search. Existing domain ontologies have limited 
coverage and cross-alignment. In the abscence of perfect 
OBDA systems, the merge phase is required to integrate 

Table 2: Examples of oceanic data sources. DOI: https://doi.org/10.1525/elementa.418.t2

Data source Typea Content type Ontological support Searchable parameters 
(excl. key words)

ARGO R Float No Date, geo-coordinates

BCO-DMO R Underway, cast, float No Date, geo-coordinates

COPERNICUS P 2D/3D images, cast, float No Date, geo-region, parameter name

EDMED R Underway, cast, float Yes Date, geo-region, geo-coordinates, 
parameter (ontology), instrument 
(ontology)

Global DMS R Underway No Date, geo-coordinates

Google dataset search P All No None

IsraMar R Cast No Date, geo-coordinates, parameter name

NCEI LAS R Cast, underway, 2D image, 
radar, float 

No Date, geo-coordinates

PANGAEA R Cast, underway, float No Date, geo-coordinates, geo-region, 
instrument

SeaBass R Cast, 2D image No Date, geo-coordinates, instrument

World ocean database R Cast, underway, 2D image, 
radar, float 

Yes Date, geo-coordinates, instrument, 
parameter name, bio-species (ontology)

Data One P All Yes Date, Geo-coordinates, instrument, 
parameter name, bio-species (taxonomy)

a R: data repositories. P: portals. Portals provide access to data from multiple repositories.

https://edmed.seadatanet.org/sparql/
https://edmed.seadatanet.org/sparql/
http://vocab.nerc.ac.uk/sparql/
http://vocab.nerc.ac.uk/sparql/
https://doi.org/10.1525/elementa.418.t2
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the different datasets with their mismatched schemas 
and data descriptions.

3.1.2. Link
The linking process entails connecting between studies 
and their datasets (and vice versa) and between datasets, 
which are derived from one or more other datasets. The 
prevalence of object identifiers such as DOI, coupled with 
the increasing tendency of authors and publishers to pro-
vide publicly available datasets together with submitted 
papers, has made this process easier. However, the linking 
process is still a largely manual process where research-
ers piece together the papers describing the data and vice 
versa. Furthermore, the linking process may require a finer 
resolution, as the following story published by Data One 
(Data Observation Network for Earth, 2020) exemplifies.

“A third dataset looked particularly promising 
for use in a global study, but its PI had neglected 
to include units of measurement in the dataset. 
Unwilling to give up on a potentially great contri-
bution, Eileen decided to do some detective work 
and pull up the associated publication, looking for 
any clues that might lead to a breakthrough. At 
long last, Eileen found a single table referencing 
the units for a particular column of data. With the 
units finally established, she worked backwards to 
make sense of the data – but at a cost of several 
hours’ work.”

Thus, even though the researcher had succeeded in link-
ing the dataset to its corresponding publication, more 
refined work was needed to link specific parameters to 
their descriptions. This refined linkage can be delayed 
until the merge phase where the extended data descrip-
tions can be used to better align the schemas of the inte-
grated datasets with the domain ontology.

3.1.3. Identify
Even with the existence of DOI, in many cases, the same 
data may appear in several datasets by being used for 
several studies. Thus, researchers are required to meticu-
lously read the data collection procedures of every study 
used to make sure that their data do not contain dupli-
cate measurements and identify each dataset or even data 
point in a unique manner. The implicit danger of dupli-
cates is that they can create an inherent bias in the results 
towards duplicated data. In oceanic repository integration, 
this process is further complicated by the fact that some 
records represent a collection of datasets that previously 
may have been published separately as well.

Thus, DOIs provide grounding of datasets to fixed, reli-
able repository mentions, and can be used for citation and 
referencing purposes. However, they do little to resolve 
issues such as data overlap, republication, and bundling 
that may manifest themselves when combining several 
datasets. Resolving duplicate datasets and overlapping 
data points using entity resolution (see Section 2.1) is an 
obvious use of AI-supported DI tools. As entity resolution 
tools rely on similarity comparisons, they would also be 

benefited by ocean-science-specific word embedding to 
allow semantic comparison.

3.2. Merge
Once a collection of datasets has been assembled, the 
merge phase can commence. To facilitate this process, 
one must create a mediated schema to which all other 
datasets are matched and subsequently mapped or use 
an ontology to which the datasets’ schemas are mapped 
to facilitate OBDI. We divide this phase into three distinct 
steps, described in detail below. In the match step, cor-
respondences are found between each attribute in every 
dataset’s schema and the mediated schema/ontology. In 
the map phase, a function mapping from the semantics 
of the source dataset’s schema to the mediated schema is 
constructed. In the fuse step, some datasets are interpo-
lated over space/time to create a continuous and uniform 
space of measurements.

3.2.1. Match
In the match step, researchers align the different attrib-
utes/parameters in the dataset’s schema with the medi-
ated schema/ontology. To do so, the researcher must 
often consult the data descriptions of each parameter, 
which are either listed with the dataset in the source 
repository or described as part of the methods section 
of the accompanying paper. If an exact match cannot be 
found, the researcher must decide whether to disqualify 
the parameter or even the whole dataset from inclusion 
in the study or extend the mediated schema/ontology to 
accommodate the new dataset.

A wealth of literature and tools exist in the general data-
base and knowledge-base domains to facilitate schema 
matching and ontology alignment. Among these are the 
use of acronym expansion (e.g., Sorrentino et al., 2010), 
a corpus of previously discovered correspondences (e.g., 
Madhavan et al., 2005), and instance information (e.g., 
Chen et al., 2018). However, to the best of our knowledge, 
none of these were applied to match ocean science data-
set schemas, neither pair-wise nor to mediated schemas 
or ontologies. Zhou et al. (2018) proposed a complex 
real-world ontology alignment benchmark made on two 
separate GeoLink dataset ontologies. However, even this 
unique example attempts to automate ontology align-
ment and not automatically match dataset schemas 
against these ontologies. Furthermore, none of the exist-
ing automated schema matching and mapping tools is 
interoperable with the common ocean science meta-data 
formats. Schema matching can be supported further by 
AI-based information extraction technologies, such as 
described in Section 2.2.3, by extracting data descrip-
tions from the research papers linked to the datasets. 
These data descriptions can be used to improve schema 
matching performance, thus utilizing this unique aspect 
of ocean science datasets.

3.2.2. Map
In some cases, the semantics of the data in one source 
are slightly different from that of the mediated 
schema/ontology. For example, a dataset may contain 
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two fields, one representing the latitude and another 
the longitude, while in the mediated schema, there 
exists a single coordinates field that combines the two. 
In other cases, the mediated schema may contain a field 
that represents a calculation performed over raw data, or 
the units of measurement may differ between sources. 
All of these examples, and other semantic differences, 
require a mapping phase where conversion functions 
are generated to facilitate data integration according to 
correspondences found in the matching step. Even more 
mundane, but crucial is the need to map from the source 
format to that of the central repository used to collect 
the data from the different datasets. For example, the 
data may be received in XML format and the repository 
stored in a relational database, requiring format conver-
sion between the two. The use of OBDI facilitates con-
version between fields of different datasets by using the  
encoded conversion logic within the ontology. Thus, for 
example, the concept of Celsius can be linked to the con-
cept of Fahrenheit by a relation containing a specific bi-
directional conversion function.

Together with the match step, there is a substantial 
need for golden-standard tasks and structured bench-
marks for ocean science schema-matching and mapping 
tasks to enable the development and training of auto-
mated matching tools utilizing the existing ontologies 
and vocabularies. Word-embedding-based tools are highly 
dependent on the domain from which the text used to 
generate the embedding was collected. Currently absent, 
a word embedding for the ocean science domain would be 
an important enabler for AI-based DI tools (see Section 4). 
The same embedding could be used to enhance informa-
tion extraction tools to supplement schema matching and 
mapping processes over datasets with information from 
their linked papers. As a foundational enabler, provid-
ing schema interoperability between the common ocean 
science data formats and those used by schema matching 
and mapping tools would open up a plethora of options 
for practitioners to use.

3.2.3. Fuse
In this step, researchers need to mitigate problems that 
emanate from differences in spatio-temporal resolution 
between the datasets. Thus, one dataset may include 
measurements of a 50-m depth in increments of 1 m, 
while another in increments of 10 cm. Decisions must be 
made on whether to aggregate upwards to lower resolu-
tions, omit incompatible resolutions or interpolate the 
data to align the resolutions, or fill out missing data in 
some areas (e.g., in Kaplan and Lekien, 2007, due to faulty 
sensors). As previously mentioned, we leave the review 
and critical analysis of existing work in data fusion to 
future work.

In addition to spatio-temporal fusion, this step entails 
an additional effort of resolving duplicate and overlap-
ping data points. While overlapping and duplicate data-
sets could possibly be identified at the identify step, 
identifying these cases at the datapoint level requires all 
fields to be aligned by the match and map steps. Here, 
again, we can use entity resolution to automate this task 
(see Example 2).

3.3. Evaluate and correct
After, or sometimes during, the data integration process, 
researchers must evaluate the integrated dataset to facili-
tate inclusion/exclusion decisions and to report quality 
and descriptive measures upon publication. The evalua-
tion process often addresses one or more of the following 
issues.

3.3.1. Quality
Detecting data errors is often done using non-specific 
numerical and statistical tools; for example, by excluding 
all outliers, defined as values over two standard deviations 
from the mean. This step can be mostly aligned with the 
existing DI process of data cleansing (see Section 2.1). To 
identify, quantify, and possibly correct errors in data via 
interpolation, techniques appropriate to the data type 
(e.g., Gupta et al., 2014) should be used. Here, we refrain 
from performing a detailed review of the extent of AI used 
in these processes over ocean science data in the interest 
of brevity and focus.

A non-generic approach that could provide more 
accurate results can be obtained by reasoning over 
accumulated knowledge tied to the domain ontologies. 
For example, O’Brien et al. (2013) needed to remove 
individual samples of coccolithophore (a type of plank-
ton) where the species was reported as Thoracosphaera 
heimii, as this species was reclassified out of the cocco-
lithophore family after the original data were collected. 
This removal of misclassified samples could be done 
automatically by defining a logical rule over the global 
ontology. Furthermore, among the tools that can support 
a researcher in the process of evaluating the data qual-
ity of a given dataset, information extraction can provide 
substantial assistance. For example, information extrac-
tion tools can be used to extract and categorize quality 
control processes and pre-processing techniques used 
in a specific dataset and a collection of datasets from 
the scientific text describing them. Once extracted, this 
information can be attributed to the dataset, allowing 
researchers to employ data cleansing methods and filter 
out less trustworthy processes or, conversely, to select 
only those data points on which the required type of pre-
processing was performed.

3.3.2. Coverage and bias
An important tool in the evaluation of result validity and 
relevance is the analysis of coverage and bias. Data are col-
lected in different geographical regions, depths, and sea-
sons, and using different instruments. When presenting 
results, one must either correct them for inherent biases, 
exclude under-represented partitions, or provide a list of 
caveats and analyses regarding the coverage and bias with 
respect to the general distribution over each dimension 
(geographical/temporal/other). The ability of an ocean 
scientist to make use of an AI-based integrated dataset 
strongly depends on accurate representation of possible 
biases and uncertainties associated with the DI process. 
This point is emphasized for the case of climate science 
studies, where uncertainties result from a wide range of 
sources, as a limited number of available measurements, 
especially for rare events (IPCC, 2014).
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Existing portals/repositories provide mechanisms to 
filter by time/geo-location or map a collection of data-
sets over a world map. These mechanisms allow research-
ers to assess the coverage of their collection of datasets 
if they are from the same portal/repository. Evaluating 
coverage and bias over other dimensions, such as instru-
ments used and bio-diversity, is dependent on the 
ability to perform OBDA, the coverage of the OBDA’s 
ontology, and the extent of information extracted 
from the scientific description and aligned with the  
ontology.

3.4. Summary
Figure 4 presents an overview of how DI technolo-
gies (in purple/purple outline, middle layer) could 
support and scale the different steps and phases of 
the ocean science data integration process. However, 
to make these technologies work, some AI technolo-
gies and enablers are needed. These are listed in the 
bottom layer of the figure as trapezoids and are con-
nected to the DI  technologies which they support. 
Ontology-based  technology features heavily, as it 
effectively combines the wealth of accumulated knowl-
edge of the oceanic domain with AI-supported DI tech-
nologies. DI technologies and AI technologies/enablers 
that are missing today are drawn with a white back-
ground.

Table 3 presents a list of existing and missing enablers 
for DI in ocean science. Some of these enablers are pre-
sented in the figure, while others enable the processes 
in the figure. The gaps in the table are annotated with 
lower-case letters that are repeated in Figure 4 where 
they are positioned on the DI technology they enable, 
on the AI technology they enable, or on the support a 
specific AI technology provides to a DI technique. Note 
that while the technologies and enablers reviewed 
in Table 3 are listed by phase, some of them support 
 multiple phases. For example, entity resolution is a DI 
technology that can be used to identify duplicate data-
sets prior to their integration in the identify step and to 
identify duplicate data points in a merged dataset as part 
of the fuse step.

4. Empirical evaluation: the impact of AI 
infrastructure
In the following section, we provide some empirical 
evidence to the necessity of creating the AI infrastruc-
ture required to support DI efforts in ocean science. As 
described in the previous sections, both AI-supported 
entity resolution tasks in the discovery phase and schema 
matching tasks in the merge phase could benefit from 
adding relevant information from unstructured sources 
accompanying the data. In Example 1, the fact that the 
Nitrate field represented the sum of nitrate and nitrite 
was mentioned in the column comments. The ability to 
retrieve this information from the comment, codify and 
align it with a domain ontology, relies on AI-software 
being able to recognize domain-specific information in 
unstructured text. Domain-specific datasets, benchmarks, 
and word embeddings are needed to bridge this gap (see 
Table 3). To exemplify the potential benefits of having this 
infrastructure in place, we train a state-of-the-art informa-
tion extraction system on ocean science data descriptions 
and report on the performance gains on an information 
extraction task.

4.1. The task: extracting data descriptions using 
information extraction techniques
A standard information extraction task, named entity 
extraction (NER) aims to find entity mentions in unstruc-
tured text and map them into predefined classes. These 
entities can then be used to enrich automated data inte-
gration tasks such as schema matching and mapping. The 
classes a NER is seeking in the text can vary based on the 
requirement of a specific assignment. The most widely 
used classes are person, location, organization, and date 
(Jiang et al., 2016). For instance, a NER system trained to 
detect person, location, and organization when receiving 
the following text as input: “John Doe lives in New York 
City and works in the New York stock exchange,” should 
identify the following named entities as output, where the 
named entity is denoted between brackets and the class 
between parentheses. [John Doe] (person) lives in [New 
York City] (location) and works in the [New York stock 
exchange] (organization). An ocean science DI applica-

Table 3: Missing and existing AI enablers for DI in ocean science. DOI: https://doi.org/10.1525/elementa.418.t3

Phase Existing enablers Remaining gaps

Discover (1) Several ocean science ontologies. (2) 
OBDA to major dataset repositories. (3) 
Extensive use of DOI. 

(a) Incomplete conceptual coverage of existing ontologies. (b) Incomplete 
conceptual alignment between ontologies. (c) Alignment of historical 
datasets with existing ontologies. (d) AI-based tools for creators to align 
their schemas with existing ontologies.

Merge (4) An ocean science ontology alignment 
benchmark. 

(e) Entity resolution oceanographic benchmarks for both dataset and 
data point levels. (f) Entity resolution tools utilizing ocean science word 
embeddings. (g) Ocean data format interoperability with existing tools. 
(h) Schema matching/mapping oceanographic benchmarks. (i) Matching 
and mapping tool utilizing semantics encoded in existing vocabularies and 
ontologies. (j) Word embedding for ocean science domains.

Evaluate (5) Existing work on data 
cleansing/anomaly detection. Not 
reviewed in detail. (6) Geo-location 
 mapping in data-portals 

(k) Annotated datasets, tools, and benchmarks for extracting data quality 
and pre-processing descriptions from scientific text (l) Extension and 
refinement of oceanographic ontologies with respect to coverage, bias and 
quality queries.

https://doi.org/10.1525/elementa.418.t3
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tion would need to identify entities such as a measured 
variable (temperature, salinity), units (degrees, dbar), and 
devices (CTD, sonar, plankton counters).

4.2. Datasets
4.2.1. An oceanic science entity extraction dataset
To the best of our knowledge, no gold-standard anno-
tated documents are freely available for the oceanic 
domain. Therefore, we created a small dataset to provide 
initial support to our claim for the need for an extensive 
standard to train and evaluate tools against. We retrieved 
30 documents containing data descriptions from three 
data repositories: PANGEA (2020), BCO-DMO (Biological 
and Chemical Oceanography Data Management Office, 
2020), and the European directory of marine environ-
mental data (EDMED, 2020). Each token (usually a single 
word) was annotated in the IOB2 format using a standard 
NER annotation tool named TALEN (Mayhew and Roth, 
2018). The IOB2 format is a tagging format designed for 
the NER task. The B- prefix before a class name is used to 
indicate that the token is at the beginning of a chunk, the 
I- prefix before a class indicates that the token is inside a 
chunk, while O represents a token that is not inside of any 
chunk. Figure 5 shows an example of the IOB2 format 
used to annotate a data description document retrieved 
from EDMED. Our test data contain 1,256 sentences and 
7,848 total tokens with an average of 262 tokens per doc-
ument. We found 2,193 entities divided into 11 classes 
averaging 75.6 entities per document with an average 
length of 2.17 tokens per entity. The dataset is available 
online (Bar, 2020a).

4.2.2. An oceanographic text dataset
Word embeddings are created using a large text corpus. 
To test the hypothesis that specific word embedding 
could improve NER algorithms on the task of identify-
ing oceanic entities in texts, we trained custom word vec-

tors. Our training method is constructed based on the 
following steps. (a) Collect a large set of oceanographic 
papers. (b) Extract raw text from the collected oceano-
graphic papers. (c) Train word embeddings based on the 
text corpus.

Due to overlapping terms from the oceanic domain 
in other closely related scientific domains such as earth 
science or biomedical science, we collected papers that 
were published in known oceanographic journals. We 
used the Crossref API (Lammey, 2015) to search for the 
DOIs of papers that appeared in oceanographic journals, 
such as Ocean Science, Frontiers in Marine Science, and 
Aquatic Biology.

After acquiring the relevant DOIs, we implemented 
a web crawler that searched for the full-text PDF ver-
sion of the papers in several public repositories. The 
crawler mined 30,000 oceanic papers. We used the 
Science Parse (Clark and Divvala, 2015) open-source Java 
library to extract data from the papers. We extracted the 
title, abstract, and content section parts of the docu-
ments (references were excluded) into a JSON format. 
The raw text from the JSON file contained over 175 
million tokens. This dataset is available online as well 
(Bar, 2020b).

4.3. Methods
The NER algorithm is a supervised ML model that is 
trained on annotated documents to recognize patterns 
identifying a token or set of tokens as a named entity and 
to which class it most likely belongs. For example, after 
seeing a large number of documents where the tokens 
next to the word lives describe a person (e.g., John Doe 
lives in), the ML model learns to classify these tokens as 
people. Using word embeddings to represent the docu-
ments on which the algorithm trains allows it to general-
ize its learned model so that similar words such as resides 
and works would be recognized as well. Furthermore, the 
token John itself is embedded into the vector space such 
that other people’s names will be situated close to it. As 
described in Section 2, generating word embeddings is an 
unsupervised ML technique based on the co-occurrence 
of words in a very large text corpus.

In this evaluation, we use the Flair NER algorithm (Akbik 
et al., 2018), which is based on a word embedding technique 
as well. Unlike other models, the model employs charac-
ter level tokenization rather than word-level tokenization. 
A sentence is converted to a sequence of characters, and 
through a language model, the algorithm learns the word 
representation. Flair uses a stacked embedding approach. 
The algorithm’s character language model vector is concat-
enated with GloVe’s word embeddings (Pennington et al., 
2014) to form the final word vectors, thus leading to a bet-
ter result. Flair produced state-of-the-art F1-scores on the 
CoNLL-03 general-purpose dataset collected from newspa-
per articles (Sang and De Meulder, 2003).

To adapt Flair and its NER algorithm to the oceanic 
domain, one can both retrain it (using supervised ML) 
on the classes of this domain and fine-tune the underly-
ing word embeddings (using unsupervised ML) to reflect 
semantic relations in this domain better. In the following, 
we demonstrate both improvements.

Figure 5: An example of the IOB2 annotation. In this 
figure the IOB2 annotation is used to identify a Geo-
Region within a data description document retrieved 
from EDMED. Tokens marked with an O are not part of 
any entity. The token marked with B-GeoRegion begins 
the entity. The rest of the entity’s tokens are marked 
with I-GeoRegion. DOI: https://doi.org/10.1525/ele-
menta.418.f5

Environmental O
modification O
caused O
by O
aquaculture O
along O
the O
Portuguese B-GeoRegion
continental I-GeoRegion
coast I-GeoRegion

https://doi.org/10.1525/elementa.418.f5
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4.3.1. Improving the Flair NER by retraining on an ocean 
science tagged dataset
Training was performed on a Gigabyte Technology server 
with an Intel i7-7700 8 core CPU, 64GB RAM, and Giga-
byte GTX 1070 GPU running the Ubuntu 16.04.6 operat-
ing system. The empirical evaluation was performed using 
Flair version 0.4.1 (Zalando Research, 2019) running on 
python version 3.6.8, deployed as part of the Anaconda 
data science platform (Anaconda, 2020). We split our 
annotated dataset randomly into a training set comprised 
of 80% of the documents and a test set comprised of the 
remaining 20%. We then proceeded to train the Flair algo-
rithm on the training set and test both the original Flair 
NER model and our retrained one on the test set.

4.3.2. Creating ocean science word embeddings
We utilized the oceanographic text corpus for training 
two new word embeddings. Word2Vec (Mikolov et al., 
2013) with word-level embeddings and Flair’s character-
based forward and backwards embeddings (from now 
on, CBFB). The word-level embeddings were imple-
mented using the Gensim Python library (Řehůřek and 
Sojka, 2010) and the CBFB embeddings with Flair. One 
of the known connections in oceanographic research is 
between a measured variable and its measured units. 
Although often a variable can be measured using differ-
ent units, some notations are very common in the sci-
entific literature. Similar to the King-Queen relationship 
stated by Mikolov et al. (2013) on general-purpose text, 
the oceanographic trained models were able to conclude 
the relationships in Figure 6. Recall that in general text, 
the vector representation of the word king was found to 
relate to the vector representing queen in the same man-
ner as the vector man relates to the vector represent-
ing woman. After reviewing the ocean science research 
papers, the unsupervised algorithm, with no input from 
a domain expert, created an embedding model where, 
e.g., m/s relates to speed in the same manner that PSU 
(practical salinity units) relates to salinity. Note, that the 
fact that PSU has since been retired is unknown to the 
embedding algorithm, as it was trained on papers using 
this unit. Rather, this domain knowledge should be coded 
into an ontology to ensure that data from papers using 

PSU, can be handled appropriately when integrated with 
more modern datasets.

We trained the Flair algorithm with the same 
80%–20% train-test split to detect data descriptions from 
unstructured data, where the word embeddings served 
as features for the NER algorithm. We ran the following 
stacked embeddings models: (a) GloVe and Flair embed-
dings trained on a general-purpose text that served as a 
baseline; (b) Word2Vec oceanographic model; (c) Flair’s 
CBFB embeddings trained on an oceanographic corpus; 
(d) stacked embeddings model that was compiled of (b) 
(c) embeddings; and finally (e) stacked embeddings model 
of (a) (b) (c).

4.4. Evaluation measures
Several evaluation metrics have been offered to assess the 
efficacy of a NER system, where the most commonly used 
are based on the exact-match evaluation. A named entity 
that has been proposed by a NER system is considered cor-
rect only if there is an exact match of both entity bound-
aries and class (i.e., all tokens that should belong to the 
entity are correctly marked and assigned). However, the 
ML model we use in the first evaluation was not designed 
to detect ocean science classes (e.g., measure variable). As 
a result, we seek an exact boundary match with no consid-
eration of the entity type. For example, if the NER system 
can detect the ‘Mediterranean Sea’ as a named entity, it 
will be considered a match regardless of the class (location 
in this example). If for the same sentence, the system will 
only detect ‘sea’ as a named entity, it will be considered a 
false match. In the second evaluation, we train all models 
to detect the specific class as well as extract the named 
entity and therefore seek an exact match of both bound-
ary and entity type.

The measures precision, recall, and F1-score are argu-
ably the most commonly used to aggregate and quantify 
the number of exact matches detected by a NER system. 
Precision is the fraction of true instances of the total num-
ber of instances predicted by the NER system as positive, 
while recall is the fraction of true instances predicted by 
the NER system of the total true instances in the dataset. 
F1-score is the harmonic mean of precision and recall. 
Their formal definitions are as follows.

Definition 1 (NER evaluation measures) Let pre-
dicted positive (PP) be the set of named entities predicted 
as such by a NER algorithm. Let actual positive (AP) be the 
set of named entities that actually exist in the task. Let true 
positive (TP) be the intersection between these sets, i.e., those 
named entities that both exist in the task and were predicted 
by the NER algorithm, then Precision, Recall, and F1-score 
are defined as follows.

  

TP
Precision

PP
=  (1)

  

TP
Recall

AP
=

 
(2)

*
1 2 *

Precision Recall
F

Precision Recall
=

+
 (3)

Figure 6: Variable-unit analogies. The figure shows 
semantic relations between oceanic variables and their 
associated units, as found by the word embedding algo-
rithm, with no intervention of a domain expert. Note 
that although  salinity is a unitless variable, it was associ-
ated with PSU (practical salinity units) by the unsuper-
vised algorithm. The relations can be read as follows: 
“temperature relates to degrees as salinity relates to 
PSU”. DOI: https://doi.org/10.1525/elementa.418.f6
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4.5. Results
The result of the first evaluation can be seen in Table 4. 
The F1 score of the original flair model on oceanic data is 
only 0.068. Training the same flair model on an oceanic 
dataset results in an F1 score of 0.738. The results of the 
second evaluation can be seen in Table 5. The best model 
was the stacked embeddings model that reached an F1 
score of 0.679 on unstructured metadata. We remind the 
reader that in the first task, we require only a boundary 
match, while in the second, we require both boundary and 
class to be correct, making it substantially more difficult.

4.6. Discussion
The unmodified Flair model used in this evaluation scored 
a 0.932 F1 score on newswire text (Akbik et al., 2018). The 
same algorithm fails miserably on our task. The results 
of the retrained model can be considered as an immense 
improvement but still far from state-of-the-art results 
achieved on NER tasks in other domains. This result is 
expected due to the small number of training examples 
available to the supervised training algorithm. The result 
also highlights the need for an extensive, well defined, 
annotated dataset to train ML models over oceanic 
sciences tasks. Furthermore, the classes used to extract 
information should be carefully aligned with ocean sci-
ence domain ontologies if they are to be used in conjunc-
tion with schema matching tools.

The oceanic embeddings allow Flair to boost its results 
on the harder boundary+class task from an F-1 of 0.415 to 
0.679 for the best model. Here, too, a much more substan-
tial increase is expected should we increase the amount of 
training data. Alternatively, we could use transfer learn-
ing from models trained on related datasets, such as sci-
entific papers in general. Although 175 million tokens 
may sound impressive, the standard GloVe vectors used 

in general-purpose tasks are trained over 6 to 840 billion 
tokens (see Pennington et al., 2020, for examples).

5. Conclusions and future work
The study of the oceans relies on the extensive collection 
of physical, chemical, and biological data from various 
locations around the globe. Over the last century, numer-
ous measurements have been performed continuously, 
resulting in the creation of an increasingly large amount of 
oceanic data. One of the significant challenges facing the 
ocean science community is to integrate this vast amount 
of data in a way that will facilitate its translation into 
improved understanding of oceanic processes. Addressing 
this challenge relies strongly on the implementation of AI 
technologies, which now, in the era of Big Data, are ubiq-
uitously applied across scientific domains and disciplines.

In this paper, we have deconstructed the process of oce-
anic science DI and pointed to the key missing tools and 
underutilized information sources currently limiting its 
automation. We have focused on semantic AI technologies 
aiding the matching and mapping phases of the DI process, 
limiting our discussion of data fusion and data cleansing 
techniques, which we intend to address in future work.

The potential of implementing AI technologies to 
advance oceanic research calls for close collabora-
tion between ocean and data scientists. Importantly, 
such collaboration should promote the formation of 
dedicated infrastructures to support AI efforts in ocean 
science, focusing on several activities that address major 
limitations in the current state of ocean data integra-
tion (Table 3):

•	 Develop AI-based tools for assisting ocean scientists in 
aligning their schema with existing ontologies when 
organizing their measurements in datasets.

Table 4: Performance of data description extraction using embeddings trained on general versus ocean science text. 
DOI: https://doi.org/10.1525/elementa.418.t4

Measurementa Flair NER using news-trained embeddings Flair NER using ocean-science-trained embeddings

Precision 0.221 0.746

Recall 0.040 0.731

F1 score 0.068 0.738

a In this task, a true positive result entails identifying a named entity regardless of its class.

Table 5: Comparative performance of Flair NER using oceanic word embeddings as features. DOI: https://doi.
org/10.1525/elementa.418.t5

Embeddings method Pa R F1

Flair + GloVe (General-purpose) 0.547 0.335 0.415

Oceanic Word2Vec 0.659 0.541 0.594

Oceanic CBFB 0.705 0.648 0.676

Oceanic Word2Vec + Oceanic CBFB 0.705 0.604 0.650

Flair + GloVe (General-purpose) + Oceanic Word2Vec + Oceanic CBFB 0.713 0.649 0.679

a In this task, a true positive result is one where the algorithm correctly identifies the named entity and assigns the correct class.

https://doi.org/10.1525/elementa.418.t4
https://doi.org/10.1525/elementa.418.t5
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•	 Extend and refine conceptual coverage of – and con-
ceptual alignment between – existing ontologies, 
such that they are more compatible with the diverse 
and multidisciplinary nature of ocean science.

•	 Create ocean-science-specific schema matching and 
mapping benchmarks to accelerate the development 
of matching and mapping tools utilizing semantics 
encoded in existing vocabularies and ontologies.

•	 Similarly support the development of ocean-science-
specific entity resolution tools by creating annotated 
datasets and benchmarks on both the dataset and 
data point level.

•	 Annotate datasets, and develop tools and benchmarks 
for the extraction and categorization of data quality 
and preprocessing descriptions from scientific text.

•	 Create large-scale word embeddings trained upon 
ocean science literature to accelerate the develop-
ment of AI-based information extraction, entity reso-
lution, and matching tools.

Formation of improved AI integration infrastructure 
based on these suggested activities will contribute impor-
tantly to our ability to share, explore, and interpret the 
vast amount of available oceanic data, thus substantially 
advancing ocean research.
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