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Autoregressive Noise?
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Abstract

Many signals can accurately be modelled as a periodic function in coloured noise. An

important parameter of the periodic function is the fundamental frequency. Often, fun-

damental frequency estimators are either ad hoc or have been derived under a white

Gaussian noise (WGN) assumption. In this paper, we first derive the joint maximum

likelihood (ML) estimator of the fundamental frequency estimator in autoregressive noise.

Since a naïve implementation of this ML estimator has a very high computational com-

plexity, we derive three fast algorithms that produce either exact or asymptotically equiv-

alent estimators for all candidate sinusoidal and AR-orders. Through experiments, we

show that the fast algorithms are at least two orders of magnitude faster than the naïve

implementation and that the two fast approximate algorithm are faster and have a worse

time-frequency resolution than the fast exact algorithm. Moreover, we show that jointly

estimating the fundamental frequency and AR-parameters using our fast, exact algorithm

is both faster and more accurate than computing the estimates iteratively. Finally, we

apply the estimator to real data to show examples of how modelling the noise to be

coloured significantly reduces the number of outliers produced by the fundamental fre-

quency estimator compared to modelling the noise as WGN.

Keywords: Harmonic regression, coloured noise estimation, fundamental frequency

estimation; pitch estimation.

?MATLAB™ implementations of the presented fast estimators as well as the code for generating all
presented results can be found at https://github.com/jkjaer/fastF0ArMl.
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1. Introduction

The mathematical modelling of periodic functions has been topical since the 1807

results of Fourier [1], but had interested natural philosophers for two millennia before

that, mainly because of observations of the motion of the planets. Although Fourier

derived his famous results in order to solve the heat equation, his methods may be used

to solve many differential equations, and are thus applicable to many other problems

in acoustics and electrical engineering, in particular. A periodic function is a function

which repeats its function values in regular periods. The inverse of the shortest of

these periods is the fundamental frequency, and it contains important information about

the periodic function. In speech processing [2], for example, a short segment of voiced

speech is often modelled as a periodic function, and the fundamental frequency1 can be

used in applications such as enhancement, compression, classification, and diagnostics.

Another example is order analysis [4, 5] where the fundamental frequency is used for

resampling vibrational and/or acoustical data, typically generated by a rotating machine,

uniformly in rotation angle instead of in time. A third example is ECG-signal analysis

[6] in which the ECG signal can be accurately modelled as a periodic function [7] whose

fundamental frequency is not only important for estimating the heart rate, but also for

the investigation of heart rate variability [8].

Since periodic functions are encountered in many applications, there are many papers

concerned with fundamental frequency estimation when the available data have been ob-

tained at equidistant time points, with some of the most cited ones being PRAAT [9],

RAPT [10], YIN [11], and recently Kaldi [12]. These four estimators (and many others)

can all be derived from the comb filtering principle in which the fundamental frequency

is estimated by designing a feedforward comb filter that filters out the maximum amount

of energy from its input signal. This is equivalent to maximising a normalized auto-

correlation function and can, therefore, be implemented using computationally efficient

algorithms. The comb filtering principle is not based on a signal model and is, there-

(Jesper Kjær Nielsen), mgc@create.aau.dk (Mads Græsbøll Christensen)
1Note that in speech and audio processing, pitch and fundamental frequency estimation are often

used synonymously, despite the pitch is referring to a perceptual phenomenon whereas the fundamental

frequency is a physical quantity [3].
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fore, difficult to improve in a systematic fashion. This has led to many published comb

filtering-based estimators based on various heuristics. In particular, problems with the

so-called subharmonic (or octave) errors have been a major issue which stems from the

fact that an integer multiple of the fundamental period is also a period of the periodic

function. Consequently, designing a comb filter to minimise the output energy often re-

sults in the fundamental frequency being erroneously estimated as an integer fraction of

the true fundamental frequency if the periodic function is contaminated in noise. Since

the comb filter seeks to minimise the total output energy, not only that pertaining to

the periodic function, we can, therefore, think of the subharmonic error problem as an

over-fitting problem.

As an alternative to the nonparametric approaches described above, some work has

been done on model-based fundamental frequency estimation (see [13–16] and the ref-

erences therein for some examples). The main idea is to model the periodic function

as a finite Fourier series and the noise using a statistical model, and then estimate the

model parameters, including the fundamental frequency, from the observed data. The

main advantage of this approach is that the model assumptions are explicit and can

be improved if they are too crude for a given application. Moreover, the model-based

estimators typically outperform the nonparametric ones, provided that the model de-

scribes the data sufficiently well. The model-based estimators are also more robust to

subharmonic errors since they can be combined with model order estimation to avoid

(over-)fitting sinusoidal components to the noise. The main reasons for not using the

model-based estimators have been the computational complexity of the developed al-

gorithms and the fact that white Gaussian noise (WGN) is normally assumed, mostly

due to mathematical tractability. Although a computationally efficient algorithm for the

nonlinear least-squares fundamental frequency estimator has recently been developed in

[17], its statistical and computational efficiency rely on the WGN assumption being sat-

isfied. In practice, however, the WGN assumption is often inaccurate, and pre-processing

techniques such as pre-whitening have only received limited attention (see [16, 18, 19] for

some exceptions) since the noise colour is seldom known in advance. For general signal

enhancement, however, noise statistics estimation is a big topic due to its time-varying,

complex nature and some of these techniques have recently been compared and bench-
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marked for fundamental frequency estimation [20, 21]. In [21], it was found that simply

iterating between a noise statistics estimator and a fundamental frequency estimator

improved the performance on real-world data significantly compared to making a white

noise assumption. Unfortunately, however, an iterative approach to estimating the sinu-

soidal and noise parameters is much more prone than a joint approach to converging to

a local maximiser of the underlying non-convex optimisation problem. For fundamental

frequency estimation, an iterative approach, therefore, produces more outliers, which we

also demonstrate via simulations.

Only a handful of model-based fundamental frequency estimators have been derived

using a coloured noise model assumption, and we here give an overview over them. In

[13], it was shown that the nonlinear regression estimator assuming coloured noise could

be approximated by the maximiser of a weighted sum of the periodogram evaluated at the

fundamental frequency and its harmonics, with weights inversely proportional to the noise

spectral density at the relevant frequencies. These weights had to be estimated, possibly

by median smoothing. For the complex-valued case, [22, 23] modelled the coloured noise

as being autoregressive and obtained approximate maximum likelihood estimators of the

parameters, estimating the autoregressive and sinusoidal orders using MDL. In [24], the

real-valued case was considered in a full Bayesian framework in which the autoregressive

order was assumed known. Finally, in [16], coloured noise was modelled using a covariance

matrix and a recursive scheme for updating it was proposed. Unfortunately, however,

this updating has to be done for every candidate fundamental frequency which leads to

a large computational complexity and memory requirements.

For completeness, we also briefly discuss the related problem of estimating the fre-

quencies of unrelated sinusoidal components in coloured noise. In [25], it was shown that

local maximizers of the periodogram, i.e., regression estimators of the frequencies, were

statistically efficient in the Gaussian noise case. This was also demonstrated in [26, 27],

including for the complex-valued case. In [28], it was shown how to estimate autore-

gressive parameters and the parameters of a single sinusoid in parallel and recursively,

and this was generalised to the complex-valued case and several unrelated frequencies

in [29]. For estimating the number of sinusoidal and autoregressive components in the

data, [30] devised a BIC-like criterion to estimate the number of frequencies for the unre-
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lated frequencies in the case of white noise, and [31] extended this to the coloured noise

case. Important here was the idea that although the noise was neither assumed to be

Gaussian nor autoregressive, the BIC procedure was computed as though the noise was

autoregressive, with order bounded above by some function of the sample size. In [26],

the orders were estimated using a log log criterion which will not work here for reasons

given in [30, 31].

In this paper, we first derive a joint maximum likelihood (ML) estimator of the sinu-

soidal and autoregressive parameters for a periodic function contaminated by autoregres-

sive noise, including a BIC-type procedure for estimating the orders. The motivation for

deriving a joint ML estimator is that it is statistically efficient asymptotically, provided

that a regularity condition is fulfilled [32, Ch. 7]. Thus, the presented estimator is the

optimal unbiased estimator and attains the Cramér-Rao lower bound (CRLB) if enough

data are available. Unfortunately, a naïve implementation of this ML estimator has a

very high computational complexity. The main part of this paper is, therefore, concerned

with deriving several fast algorithms that will either exactly or approximately compute

the ML estimate in a computationally efficient manner. For increased generality, we

assume in what follows that the frequencies are unrelated, but the main application is

for the case of harmonically related frequencies, i.e., where frequencies are integer multi-

ples of a fundamental frequency. It should be stressed that similar, and indeed, simpler

algorithms may be obtained for the complex-valued case, but also that this case leads

to other problems such as a worse time-frequency resolution. We refer the interested

reader to [19] for a more thorough discussion on the real- and complex-valued models for

fundamental frequency estimation.

2. The autoregressive sinusoidal model

In what follows, we assume that the time between samples is 1 unit, and that fre-

quencies are measured in radians per unit time. When time is measured in seconds, or

some other unit, and frequency in Hz, it is trivial to translate the results. We assume
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the data to form one realisation of {xt; t = 0, 1, . . . , T − 1}, where, for t = 0, 1, . . . , T −1,

xt =

q∑

j=1

{δj cos (ωj(t+ t0)) + ξj sin (ωj(t+ t0))}+ εt, (1)

εt =

p∑

k=1

βkεt−k + ut. (2)

{ut} are assumed to be uncorrelated, and to have enough structure that the parameter

estimators have good asymptotic properties. Moreover, {ut} will be assumed to be sta-

tionary and ergodic, with common mean 0 and common variance σ2
u, and the polynomial

1 −∑p
j=1 βjz

j to have all of its zeroes outside the unit circle. The ut need not be in-

dependent but a martingale difference condition suffices. The start index t0 can be any

value, as it only affects the interpretation of phase which is a nuisance parameter in many

applications. The start index is usually set to t0 = 0, but we will see later that using

symmetric time indices is computationally advantageous. The ωj , δj , ξj , and βj , will

be assumed to be unknown (in the harmonically related case, of course, ωj = jω where

the fundamental frequency ω is unknown), as will the orders p and q. The key to the

algorithms that follow will be that if the ωj are known, the system of equations above can

be forced into a linear system, so that linear regression and Toeplitz-like simplifications

can be used. A constant or DC term µ has been deliberately omitted, since the data

are usually mean-corrected, and this will have no asymptotic effect. Moreover, the DC

term is known to be zero in some applications such as, e.g., in audio recordings where

the physical interpretation of the DC term is the constant pressure difference between

the two sides of the microphone membrane [19]. For exact least squares estimation, the

term may be included. The resulting design matrix Mp,q will then have an extra column

of 1’s.

For the harmonically related case, it is shown in [13] and [33] that the ‘Whittle

likelihood’ estimator of the fundamental frequency, when the noise power spectral density

(PSD)

φε (ω) = (2π)
−1

∞∑

k=−∞
E (εtεt−k) e−iωk

is known, is

ω̂ = argmax
ω

q∑

j=1

IX (jω)

φε (jω)
,
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where IX is the periodogram. Unfortunately, however, the noise PSD is seldom known

in practice which makes the above estimator impractical. In [13], it was shown that

T 3/2 (ω̂ − ω) is asymptotically normally distributed with mean 0 and variance

48π
∑f
j=1

j2(δ2j+ξ
2
j )

φε(jω)

. (3)

When {εt} is autoregressive, this central limit theorem is true whether or not the au-

toregressive parameters are estimated, as the autoregressive parameter estimators are

asymptotically independent of the estimators of the sinusoidal parameters. This result

thus holds when the full Gaussian likelihood is maximised, and for the procedure outlined

in this paper, whether of not {ut} is Gaussian.

3. The F0-AR-ML Estimator

By solving (1) for εt and inserting this in (2), we obtain

xt = ut +

p∑

k=1

βkxt−k +

q∑

j=1

{αj cos (ωj(t+ t0)) + γj sin (ωj(t+ t0))} , (4)

for t = 0, 1, . . . , T − 1, where

αj
γj


 =


 Reβ (ωj) Imβ (ωj)

− Imβ (ωj) Reβ (ωj)




δj
ξj


 , (5)

β (ω) = 1−
p∑

k=1

βke
−ikω (6)

so that

αj − iγj = (δj − iξj)β (ωj) . (7)

Since the AR-parameters {βk} and the sinusoidal weights {αj} and {γj} are all linear

parameters, we can for fixed {ωj} write the signal model as a linear regression

XP = Mp,qθp,q + uP . (8)

To facilitate fast algorithms, we assume that unobserved data points are zero, i.e., we set

all values of xt for t < 0 and t > T − 1 equal to 02. Thus,

X =
[
x0 · · · xT−1

]′
, XP =

[
X ′

P zeros︷ ︸︸ ︷
0 · · · 0

]′
.

2Note that this assumption is often referred to as the autocorrelation method in the context of linear

prediction [34].
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where P is the maximum candidate AR-order. Although this assumption will not matter

asymptotically, it will cause the estimator to have a variance slightly higher than the

optimal value in (3) for a finite T . We quantify this loss through experiments in Sec. 5.

The remaining quantities in (8) are defined as

uP =
[
u0 · · · uTP−1

]′
,

Mp,q =
[
Zp Eq

]
,

Zp =




x−1 · · · x−p
...

...

xTP−2 · · · xTP−1−p




Eq =
[
Ẽ1 · · · Ẽq

]
,

Ẽj =




cos (t0ωj) sin (t0ωj)

cos ((t0 + 1)ωj) sin ((t0 + 1)ωj)
...

...

cos ((t0 + TP − 1)ωj) sin ((t0 + TP − 1)ωj)



,

θ′p,q =
[
β̃1 · · · β̃p α1 γ1 · · · αq γq

]
=
[
β′p d′q

]
.

Note that only the last 2q columns of Mp,q, i.e., Eq, depend on {ωj}. To make sure the

estimated noise variance is non-negative for a finite data length T , the sinusoidal matrix

Eq must have the same number of rows as Zp, i.e., Tp = T + P rows. For fixed values of

{ωj}, the least squares estimator of θp,q is

θ̂p,q =
(
T−1M ′p,qMp,q

)−1 (
T−1M ′p,qXP

)
.

If the linear parameters in the nonlinear regression model in (8) are expressed in terms

of this least squares estimator, we obtain the residual

ûp,q = XP −Mp,q θ̂p,q,

and the residual mean square

σ̂2
p,q = T−1û′p,qûp,q = T−1

(
X ′PXP −X ′PMp,q θ̂p,q

)
. (9)

The estimators of {ωj} in the unrelated frequencies case are the values minimising this

with respect to ω1, . . . , ωq. In the harmonically related frequencies case, ωj = jω and the
8



residual mean square is a function of ω alone, but depends on both p and q, and our aim

is to estimate p, q, and ω efficiently. This is quite complicated because of the nonlinear

dependence of σ̂2
p,q on the harmonic frequencies {ωj = jω} and difficult to implement

in a real-time signal processing system. For estimating the orders p and q, we use the

BIC algorithm proposed in [31]. For unrelated frequencies, this suggests minimising with

respect to p ≥ 0 and q ≥ 0

φp,q = T log σ̂2
p,q + (p+ 5q) log T. (10)

The number 5 appears because the asymptotic variances of the estimators of {ωj} are

of order T−3, while those of the components of the dq are of order T−1 (see also [31, 33]

for an in-depth discussion on this). Thus, in the harmonically related case, we should

minimise

φp,q = T log σ̂2
p,q +




p log T q = 0

(p+ 2q + 3) log T q > 0

or equivalently

φp,q = T log σ̂2
p,q + (p+ 2q) log T, (11)

since the fundamental frequency is then the only frequency that is being estimated.

4. Three Fast Algorithms

The main contribution in this paper is three fast algorithms for either exactly or

approximately computing the residual mean square σ̂2
p,q over a grid of candidate fun-

damental frequencies ω ∈ (0, π/q) for all candidate model orders p = 0, 1, . . . , P and

q = 0, 1, . . . , Q. The algorithms will be referred to as the F0-AR-ML-E, F0-AR-ML-A1,

and F0-AR-ML-A2 algorithms, all being asymptotically equivalent and asymptotically

efficient. For a finite data length T , however, only F0-AR-ML-A1 and F0-AR-ML-A2

will produce the same estimate (as we suggest by the naming). Moreover, these two

algorithms only approximately solve the problem since they do not compute the residual

mean square in (9) exactly. The F0-AR-ML-E algorithm, on the other hand, will com-

pute the residual mean square exactly, but will be computationally more complex. The

two approximate algorithms, F0-AR-ML-A1 and F0-AR-ML-A2, exploit the fact that

lim
T→∞

T−1E′qEq =
1

2
I2q (12)

9



to replace T−1M ′p,qMp,q with a matrix that is asymptotically equivalent, but with a much

simpler structure. This allows us to formulate fast algorithms which are computationally

simpler. Note that the asymptotic result in (12) is frequently employed for deriving

computationally efficient frequency estimators such as the harmonic summation method

[35, 36] for fundamental frequency estimation in white noise. The main disadvantage

of the approximation is that it might produce spurious frequency estimates for a small

data length T , fundamental frequencies in the order of 1/T , or high SNRs. This is a

well-known problem, even for periodic functions in white noise, and the remedy is to

employ exact estimators when the above conditions are not satisfied [19].

Before describing these three fast algorithms in detail, we first rewrite the residual

mean square in (9) in two different ways, since these will be the starting points for

the derivation of the fast algorithms. By inserting the expression for the least squares

estimator of the linear parameters in (9), we obtain

σ̂2
p,q = T−1X ′PP

⊥
Mp,q

XP = T−1
(
X ′PXP −X ′PPMp,qXP

)

where PMp,q
= Mp,q(M

′
p,qMp,q)

−1M ′p,q and P⊥Mp,q
= ITP

− PMp,q
are the orthogonal

projector and the complementary orthogonal projector, respectively. The projection

matrix PMp,q
can be written in two different ways as described in the following lemma.

Lemma 1. The projection matrix PMp,q
= Mp,q(M

′
p,qMp,q)

−1M ′p,q withMp,q =
[
Zp Eq

]

can be written as

PMp,q
= PEq

+ P⊥Eq
Zp

(
Z ′pP

⊥
Eq
Zp

)−1
Z ′pP

⊥
Eq

(13)

= PZp + P⊥Zp
Eq

(
E′qP

⊥
Zp
Eq

)−1
E′qP

⊥
Zp

(14)

where

P⊥Eq
= ITP

− PEq = ITP
− Eq

(
E′qEq

)−1
E′q

P⊥Zp
= ITP

− PZp
= ITP

− Zp
(
Z ′pZp

)−1
Z ′p.

Proof. Follows from first forming the 2 × 2 block matrix M ′p,qMp,q. The inverse of this

matrix can then be expressed in two different ways as described in, e.g., [37]. The two

expressions for PMp,q
then follow from left and right multiplying these inverses withMp,q

and M ′p,q, respectively.
10



XP Σ Σ ûp,q = P⊥
Mp,q

XP

PEq Π PP⊥
Eq

Zp Π

û0,q = P⊥
Eq
XP

ŝ0,q = Eqd̂0,q

−

P⊥
Eq
Zpβ̂p,q

−

(a) The harmonic model before the AR-model.

XP Σ Σ ûp,q = P⊥
Mp,q

XP

PZp Π PP⊥
Zp

Eq Π

ûp,0 = P⊥
Zp
XP

ŝp,0 = Zpβ̂p,0

−

P⊥
Zp
Eqd̂p,q

−

(b) The AR-model before the harmonic model.

Figure 1: Block diagrams of two different ways of computing the residual ûp,q . Note that the multipli-

cation nodes map the data onto the different subspaces.

Fig. 1 illustrates how Lemma 1 can be used for writing the residual ûp,q = P⊥Mp,q
XP

in two different ways. This also means that the residual mean square can be written in

two different ways as

σ̂2
p,q = σ̂2

0,q − ρ′p,qΥ−1p,qρp,q = σ̂2
0,q − ρ′p,qβ̂p,q (15)

= σ̂2
p,0 − g′p,qΩ−1p,qgp,q = σ̂2

p,0 − g′p,qd̂p,q, (16)

where (15) and (16) follow from (13) and (14), respectively. In (15), we have defined

σ̂2
0,q = T−1X ′PP

⊥
Eq
XP (17)

ρp,q = T−1Z ′pP
⊥
Eq
XP (18)

Υp,q = T−1Z ′pP
⊥
Eq
Zp. (19)

Note that β̂p,q = Υ−1p,qρp,q and that ρp,q can be interpreted as a covariance vector. In

(16), we have defined

σ̂2
p,0 = T−1X ′PP

⊥
Zp
XP ,

gp,q = T−1E′qP
⊥
Zp
XP , (20)

Ωp,q = T−1E′qP
⊥
Zp
Eq. (21)

11



Note that d̂p,q = Ω−1p,qgp,q and that gp,q can be interpreted as the DFT of the residual

ûp,0 at the frequencies {ωj}.

4.1. The F0-AR-ML-E Algorithm

As described above, the F0-AR-ML-E computes the residual mean square exactly.

The algorithm is based on the expression in (15). From the expressions in (17) – (19),

we see that computing

Σp,q = T−1


X
′
P

Z ′p


P⊥Eq

[
XP Zp

]
(22)

efficiently for all values of p and q is central in a fast algorithm since the values of σ̂2
0,q,

ρp,q, and Υp,q can all be extracted directly from Σp,q as

Σp,q =


σ̂

2
0,q ρ′p,q

ρp,q Υp,q


 . (23)

Writing out the expression for Σp,q in (22) gives

Σp,q = T−1


X
′
P

Z ′p



[
XP Zp

]
− T−1


X
′
P

Z ′p


Eq

(
E′qEq

)−1
E′q
[
XP Zp

]
.

The first term is a symmetric Toeplitz matrix which means we only have to compute

the first column. The first element of this column is σ̂2
0,0 = T−1X ′PXP whereas the

last p elements will be ρp,0, defined in (18). The second term in the expression for Σp,q

is more challenging since this involves a matrix inversion which depends on {ωj} and

must, therefore, be evaluated for all candidate frequencies. As shown in the following

theorem, the matrix of residual mean squares Σp,q can be computed recursively in q using

a recursive algorithm.

Theorem 2. The matrix Σp,q+1 in (22) for an AR-order p can be computed recursively

for q = 0, 1, . . . , Q− 1 from

λp,q+1 =


X
′

Z ′p


Eq+1Γq+1

Σp,q+1 = Σp,q − T−1λp,q+1λ
′
p,q+1. (24)

12



The 2q × 2 matrix Γq is defined as

Γq , −ζq ζ̃q
−1/2

(25)

where ζ̃q is the last 2× 2 block of ζq given by

ζq =
(
E′qEq

)−1

 0

I2


 . (26)

Note that since Σp,q is a symmetric matrix, only its unique elements have to be computed

in the recursive computation of it. Note also that Σp,q for p = 1, 2, . . . P − 1 can be

extracted from ΣP,q as the upper-left p× p submatrix.

Proof. Since

(
E′q+1Eq+1

)−1
=


 E′qEq E′qẼq+1

Ẽ′q+1Eq Ẽ′q+1Ẽq+1



−1

=



(
E′qEq

)−1
0

0 0


+


E

+
q Ẽq+1

−I2



(
Ẽ′q+1P

⊥
Eq
Ẽq+1

)−1 [
Ẽ′q+1(E+

q )′ −I2
]

where E+
q =

(
E′qEq

)−1
E′q is the pseudo-inverse, it follows that

(
E′q+1Eq+1

)−1

 0

I2


 =


−E

+
q Ẽq+1

I2



(
Ẽ′q+1P

⊥
Eq
Ẽq+1

)−1
, ζq+1.

From the definition of Γq in (25), we, therefore, get

(
E′q+1Eq+1

)−1
=



(
E′qEq

)−1
0

0 0


+ Γq+1Γ′q+1.

If we now let Yp =
[
XP Zp

]
, we obtain

Y ′pPEq+1
Yp =

[
Y ′pEq Y ′pẼq+1

] (
E′q+1Eq+1

)−1

 E′qYp

Ẽ′q+1Yp


 = Y ′pPEq

Yp + λp,q+1λ
′
p,q+1.

Inserting this into (22) then gives the final recursion.

The recursive algorithm in Theorem 2 includes a data independent step in which ζq is

computed in (26). In real-time applications where X is just one segment of a much longer
13



signal, {Γq} in (25) should be computed offline and stored in memory prior to running

the recursion in Theorem 2 for every data vector XP . Note that in the harmonically

related case, (26) can also be solved efficiently and recursively by exploiting the block

Toeplitz-plus-Hankel structure in a permuted version of the matrix E′qEq. For more

details on this, we refer the interested reader to [17] where an algorithm was proposed

for computing σ̂2
0,q in a computationally efficient manner over a grid of fundamental

frequencies ω ∈ (0, π/q) for the candidate model orders q = 0, 1, . . . , Q.

The (p+ 1)× 2 matrix λp,q in Theorem 2 can be computed more efficiently by using

symmetric time indices and by exploiting the structure in Eq and
[
XP Zp

]
. We first

focus on the data independent computation of ζq in (26) and show that half of its elements

are zero when symmetric time indices are used.

Lemma 3. For the start index t0 = −(TP − 1)/2, we obtain

Ψ̃j,k = Ẽ′jẼk =


ψ(ωj − ωk) + ψ(ωj + ωk) 0

0 ψ(ωj − ωk)− ψ(ωj + ωk)




where, for η ∈ (−2π, 2π),

ψ(η) =




TP /2 η = 0

1
2
sin(ηTP /2)
sin(η/2) η 6= 0

.

Therefore, the matrix E′qEq can easily by permuted into a 2 × 2 block diagonal matrix

from which is follows that the solution ζq to (26) consists of q 2×2 diagonal matrices. In

the harmonically related case, i.e., ωj ±ωk = ω(j±k), the matrix E′qEq can be permuted

into a block Toeplitz-plus-Hankel matrix and (26) can be solved efficiently as shown in

[17].

Proof. Let η ∈ (−2π, 0) ∪ (0, 2π) unless otherwise stated. From the geometric series, it

follows that
TP−1∑

t=0

e±iη(t0+t) = e
±iη

(
t0+

TP−1

2

)
sin (ηTP /2)

sin (η/2)
.

For η = 0, the sum equals TP . By combining the above result with Euler’s formula, we

14



obtain for t0 = −(TP − 1)/2 that
TP−1∑

t=0

cos(η(t− (TP − 1)/2)) =
sin (ηTP /2)

sin (η/2)

TP−1∑

t=0

sin(η(t− (TP − 1)/2)) = 0

The two sums equal TP and 0, respectively, for η = 0. The final result then follows by

rewriting each element of the 2× 2 matrix Ẽ′jẼk using the product-to-sum identities

cos(θ1) cos(θ2) = [cos(θ1 − θ2) + cos(θ1 + θ2)] /2 (27)

sin(θ1) sin(θ2) = [cos(θ1 − θ2)− cos(θ1 + θ2)] /2 (28)

sin(θ1) cos(θ2) = [sin(θ1 − θ2) + sin(θ1 + θ2)] /2. (29)

To compute λp,q efficiently, we not only need to compute Γq efficiently, but also

E′q
[
XP Zp

]
. Let

fq =
[
f̃ ′1 · · · f̃ ′q

]′
= T−1E′qXP , (30)

and let f̃j be the j’th 2 × 1 vector of fq As we show in the next lemma, E′qZp can be

obtained by rotating the f̃j .

Lemma 4. The p× 2q matrix T−1P Z ′pEq can be written as

T−1Z ′pEq = Ξp,qGq

where

Ξp,q =
[
Ξ̃1,q · · · Ξ̃p,q

]′
(31)

Ξ̃k,q =
[
cos(kω1) sin(kω1) · · · cos(kωq) sin(kωq)

]′

Gq =




G̃1 0

. . .

0 G̃q


 , G̃j =



[
f̃j

]
1

[
f̃j

]
2

−
[
f̃j

]
2

[
f̃j

]
1


 . (32)

The notation [·]k means the kth entry of a vector. Note that

Ξ̃k,q = W k
q ιq

G−′q fq = ιq

15



where

Wq = W−′q =




W̃1 0

. . .

0 W̃q


 (33)

W̃j =


cos(ωj) − sin(ωj)

sin(ωj) cos(ωj)


 (34)

ιq =
[
1 0 1 0 · · · 1 0

]′
. (35)

Moreover, the {G̃j} can all be written in terms of f̃1 in the harmonically related case,

i.e., ωj = jω, as shown later in Lemma 5.

Proof. Let L be a cyclic permutation matrix given by

L =




0 0 · · · 1

1 0
. . .

...
...

. . .
. . . 0

0 · · · 1 0




so that the k’th column vector z̃k of Zp can be expressed in terms of XP as

z̃k = LkXP .

Since

Ẽj =


cos(ωjt0) · · · cos(ωj(t0 + TP − 1))

sin(ωjt0) · · · sin(ωj(t0 + TP − 1))



′

,

it follows from the product-to-sum identities in (27)—(29) that

Ẽ′jL = W̃jẼ
′
j ,

or, more generally, that

E′qL
k = W k

q E
′
q,

where W̃j and Wq are defined in (34) and (33), respectively. From the product-to-sum

identities, it also follows that

W̃ k
j =


cos(kωj) − sin(kωj)

sin(kωj) cos(kωj)


 .
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This leads to

T−1E′qZp = T−1E′q
[
LXP · · · LpXP

]
=
[
Wqfq · · · W p

q fq

]

= G′q
[
Wqιq · · · W p

q ιq

]
= G′qΞ

′
p,q

where fq, Ξp,q, Gq, and ιq are defined in (30), (31), (32), and (35), respectively. The

final result then follows by transposing both sides.

Lemma 3 and Lemma 4 describe how λp,q in Theorem 2 can be computed efficiently

given fq. Although the vector fq depends on {ωj}, we have so far not made this depen-

dency explicit to simplify the notation. However, fq has to be evaluated for all candidate

frequencies and the next lemma shows how this can be done efficiently for the harmon-

ically related case on a uniform grid of candidate frequencies using an FFT algorithm.

For the unrelated frequencies case, we in principle have to form fq from all unique com-

binations of candidate frequencies which is clearly impractical for even moderate values

of q’s.

Lemma 5. For the frequencies ω(f) = 2πf/F where F > TP and f = 1, . . . , bF/(2q)c,
the vector f̃ (f)j can be computed as

f̃
(f)
j = f̃

(jf)
1

in the harmonically related frequencies case where

f̃
(f)
1 = T−1

[
Re
(
e−iω

(f)t0X̂(f)
)
− Im

(
e−iω

(f)t0X̂(f)
)]′

with X̂(f) being the f ’th DFT bin of the F -point DFT of X.

Proof. The vector f̃ (f)j = T−1
(
Ẽ

(f)
j

)′
XP is defined as

f̃
(f)
j =


 T−1 Re

(∑T−1
t=0 xte

−ijω(f)(t+t0)
)

−T−1 Im
(∑T−1

t=0 xte
−ijω(f)(t+t0)

)

 .

Since

jω(f) = 2πjf/F = ω(jf)

17



in the harmonically related frequencies case, the term inside the real and imaginary

operators can be written as

T−1∑

t=0

xte
−ijω(f)(t+t0) = e−iω

(jf)t0X̂(fj)

and X̂(f) can be recognised as the DFT of X.

Theorem 2, Lemma 3, and Lemma 4 allow us to compute the unique elements in the

symmetric, positive definite matrix Σp,q efficiently for all candidate model orders p and q.

For the case of harmonically related frequencies, which is what we focus on in this paper,

Lemma 5 results in a further computational reduction since it shows how the vector fq

can be formed for all candidate frequencies by selecting elements from the DFT of the

data vector. The values for σ̂2
0,q, ρp,q, and Υp,q can all be extracted directly from Σp,q as

described by (23). Thus, the only term left computing in the residual mean square σ̂2
p,q

in (15) is the error term ρ′p,qΥ
−1
p,qρp,q which is what we focus on now.

We first rewrite ρ′p,qΥ−1p,qρp,q in terms of the lower triangular Cholesky factor Cp,q of

Υp,q as

ρ′p,qΥ
−1
p,qρp,q = ρ′p,q

(
Cp,qC

′
p,q

)−1
ρp,q = η′p,qηp,q

where ηp,q = C−1p,qρp,q. For p = 1, . . . , P , ηp,q and, consequently, ρ′p,qΥ−1p,qρp,q can, there-

fore, be computed efficiently and recursively using forward substitution as described in,

e.g., [38, Sec. 3.1.1]. Computing the Cholesky factor Cp,q directly from Υp,q requires

O(p3) operations. Due to the rank-2 update of Σp,q and, consequently, Υp,q in (24),

however, we can instead reqursively update Cp,q in q using two rank-1 Cholesky down-

datings, requiring O(p2) operations each. The rank-1 downdating procedure is described

in the next lemma.

Lemma 6. Let the Cholesky factor Cp,q of the positive definite matrix Υp,q, the vector

vp,q+1, and the positive definite matrix Υp,q+1 all be known and related by

Υp,q+1 = Υp,q − vp,q+1v
′
p,q+1 = Cp,qC

′
p,q − vp,q+1v

′
p,q+1.

The columns of the Cholesky factor Cp,q+1 of Υp,q+1 can then be computed for k = 1, . . . , p

18



as

φk =
[vp,q+1]k
[Cp,q]k,k

[Cp,q+1]1:p,k =
[Cp,q]1:p,k − φkvp,q+1√

1− φ2k
vp,q+1 =

√
1− φ2kvp,q+1 − φk [Cp,q+1]1:p,k

where [·]k:p,j selects the matrix elements in row k trough p in column j. Note that the

k’th iteration introduces a zero in the k’th position of vp,q+1 and the first k− 1 positions

of [Cp,q+1]1:p,k. This can be exploited to make the above recursion more efficient by only

updating the non-zero elements in each iteration. Also note that the Cholesky factor of

an AR-order p can be extracted from the Cholesky factor of the largest AR-order P as

the upper left p× p submatrix.

Proof. See [38, Sec. 6.5.4]. The so-called mixed downdating implementation of the hy-

perbolic rotations used in the lemma is due to [39, App. B.3].

To use Lemma 6 to compute Cp,q for q > 0, we need the Cholesky factor Cp,0 of Υp,0.

Since Υp,0 is a Toeplitz matrix, its Cholesky factorisation can be computed effiently using

a generalized Schur algorithm. Moreover, this algorithm also computes the residual mean

square σ̂2
p,0 which for q = 0 equals the prediction error variance in a linear prediction

problem. The following theorem describes the procedure.

Theorem 7. Initialise the vectors t0 and τ0 as

t0 =
[
σ̂2
0,0 ρ′p,0

]′

τ0 =
[
0 ρ′p,0

]′

where t0 is the first column of the symmetric, positive definite, and Toeplitz matrix Σp,0.

The Cholesky factor Cp,0 of Υp,0, which is the lower-right submatrix of Σp,0 as described

by (23), and the residual mean squares {σ̂2
k,0}pk=1 can then be computed recursively for
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k = 1, . . . , p as

[Cp,0]1:p,k = σ̂−10,0 [tk−1]1:p

νk =
[τk−1]k+1

[tk]k

σ̂2
k,0 = σ̂2

k−1,0(1− ν2k)

tk =

[
0 [tk−1]

′
1:p

]′
− νkτk−1

√
1− ν2k

τk =
√

1− ν2kτk−1 − νktk

where [·]k:p,j selects the matrix elements in row k trough p in column j. Note that the

k’th iteration introduces a zero in the k’th position of tk, in the k + 1’th position of τk,

and in the first k − 1 positions of [Cp,q+1]1:p,k. This can be exploited to make the above

recursion more efficient by only updating the non-zero elements in each iteration. Also

note that the Cholesky factor of an AR-order p can be extracted from the Cholesky factor

of the largest AR-order P as the upper left p× p submatrix.

Proof. The generalized Schur algorithm is derived in [40, Sec. 1.6.4]. The simpler version

of the generalized Schur algorithm for the case of symmetric, positive definite matrices

with a displacement rank of 2 w.r.t. to a lower triangular displacement operator is given

in [41, Sec. 2.4]. The final result is then obtained from this simplified algorithm by using

the Toeplitz displacement operator and the mixed downdating implementation of the

hyperbolic rotations [39, App. B.3].

The results above show how the F0-AR-ML-E algorithm can evaluate the residual

mean square σ̂2
p,q for all orders p and q. In the harmonically related case, pseudo-code

for the F0-AR-ML-E algorithm is outlined in algorithm 1. The total complexity of the

algorithm is in the order of O(F log2 F ) + O(FP (P + Q)), assuming that P � log2 F ,

where F is typically selected around 5TQ [17, 42].

4.2. The F0-AR-ML-A1 Algorithm

The F0-AR-ML-A1 algorithm is based on the asymptotic result in (12) to make the

approximation

E′qEq ≈ TP I2q/2.
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Algorithm 1 Pseudo code for the F0-AR-ML-E algorithm with ω(f) = 2πf/F and

$ =
[
ω(0) · · · ω(F−1)

]′
. The functions gsa and cdd refer to the generalized Schur

algorithm and the Cholesky downdating in Theorem 7 and Lemma 6, respectively. Note

that λP,q =
[
λ̃′0,q λ̃′1,q · · · λ̃′P,q

]′
and ρP,q =

[
ρ̃1,q · · · ρ̃P,q

]′
.

1: Γ
(f)
q has been pre-computed for all candidate fundamental frequencies and orders

(see Theorem 2).

2: σ̂2
0,0 = T−1X ′PXP . O(T )

3: ρP,0 = T−1Z ′PXP . O(TP )

4: {σ̂2
p,0}Pp=1, CP,0 = gsa(σ̂2

0,0, ρP,0) . O(P 2)

5: X̂ = fft(X,F ) . O(F log2 F )

6: Ŷ = diag(X̂)e
−i$

([
0 · · · P

]
+t0

)
. O(FP )

7: for f = 1, 2, . . . , bF/2c do

8: for q = 1, 2, . . . , Q do

9: if f < dF/(2q)e then . Make ω(f) ∈ (0, π/q)

10: λP,q =

q∑

j=1

[
(Γq)1,2j−1 Re(Ŷ (jf))′ − (Γq)2,2j Im(Ŷ (jf))′

]
. O(qP )

11: CP,q = cdd
(
CP,q−1, (λP,q)2:P+1,1

)
. O(P 2)

12: CP,q = cdd
(
CP,q, (λP,q)2:P+1,2

)
. O(P 2)

13: σ̂2
0,q = σ̂2

0,q−1 − λ̃0,qλ̃′0,q . O(1)

14: for p = 1, . . . , P do . Perform forward substitution

15: ρ̃p,q = ρ̃p,q−1 − λ̃p,qλ̃′0,q . O(1)

16: η̃p,q =
ρ̃p,q−(CP,q)p,1:p−1ηp−1,q

(CP,q)p,p
. O(p)

17: σ̂2
p,q = σ̂2

p−1,q − η̃2p,q . O(1)

18: ηp,q =
[
η′p−1,q η̃p,q

]′
. O(1)

19: end for

20: end if

21: end for

22: end for

Making this approximation leads to a lower computational complexity for two reasons.

First, the matrix Σp,q becomes a Toeplitz matrix which means that we can compute the
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error term ρ′p,qΥ
−1
p,qρp,q efficiently using the the Levinson-Durbin algorithm described in

the next theorem.

Theorem 8. The residual mean square σ̂2
p,0 can be computed recursively for p = 0, . . . , P−

1 using the Levinson-Durbin algorithm

νp+1 = σ̂−2p,0

[
β̂′p,0Jp −1

]
ρp+1,0

β̂p+1,0 =


β̂p,0

0


+ νp+1


Jpβ̂p,0
−1




σ̂2
p+1,0 = σ̂2

p,0(1− ν2p+1)

where Jp is the p-dimensional exchange matrix, i.e.,

Jp =




0 1

. .
.

1 0


 ,

and β̂0,0 is an empty vector.

Proof. See [38, Sec. 4.7.3].

The second reason is the fact that the solution to the data independent step in (26)

becomes ζq =
[
0′ I2

]′
. Consequently, λp,q in Theorem 2 will simplify to

λp,q =


X
′
P

Z ′p


 Ẽq.

In total, the computational complexity drops to O(F log2 F ) + O(FP 2) which is es-

sentially the cost of computing a single FFT and that of running the Levinson-Durbin

algorithm for all candidate frequencies. The pseudo-code for the F0-AR-ML-A1 algo-

rithm is given in algorithm 2. Whereas the approximation in (12) has a positive impact

on the computational complexity, it has a negative impact on the estimation accuracy in

some scenarios. We investigate this through experiments in Sec. 5.

4.3. The F0-AR-ML-A2 Algorithm

While the two fast algorithms described so far are all based on the expression of the

residual mean square in (15), it is also possible to derive a fast algorithm, named F0-AR-

ML-A2, based on the expression in (16), provided that the asymptotic approximation
22



Algorithm 2 Pseudo code for the F0-AR-ML-A1 algorithm with ω(f) = 2πf/F and

$ =
[
ω(0) · · · ω(F−1)

]′
. The function lda refers to the Levinson-Durbin algorithm in

Theorem 8. Note that the loop over the frequency bin index f can be vectorised in many

programming languages.

1: σ̂2
0,0 = T−1X ′PXP . O(T )

2: ρP,0 = T−1Z ′PXP . O(TP )

3: {σ̂2
p,0}Pp=1 = lda(σ̂2

0,0, ρP,0) . O(P 2)

4: φ̂ = 2 |fft(X,F )|2 /(TTP ) . O(F log2 F )

5: Φ̂ = cos

([
1 · · · P

]′
$′
)

diag(φ̂) . O(FP )

6: for f = 1, 2, . . . , bF/2c do

7: for q = 1, 2, . . . , Q do

8: if f < dF/(2q)e then . Make ω(f) ∈ (0, π/q)

9: σ̂2
0,q = σ̂2

0,q−1 − φ̂(qf) . O(1)

10: ρP,q = ρP,q−1 − Φ̂(qf) . O(P )

11: {σ̂2
p,q}Pp=1 = lda(σ̂2

0,q, ρP,q) . O(P 2)

12: end if

13: end for

14: end for

in (12) is made. As the naming suggests, the F0-AR-ML-A2 algorithm will produce

the exact same estimates as the F0-AR-ML-A1 algorithm, but will have a complexity

in the order of O(F log2 F ) + O(FPQ) whose last terms is an order Q/P that of the

F0-AR-ML-A1 algorithm. Thus, the complexities suggest that one should prefer F0-AR-

ML-A2 over F0-AR-ML-A1 if P is larger than Q and vice versa. Unfortunately, however,

our simulations suggest that the complexity constants omitted in the big-O notation are

so large for the F0-AR-ML-A2 algorithm that the computation time always seems to be

larger than that of the F0-AR-ML-A1 algorithm for typical values of P and Q. Therefore,

we here only give the pseudo-code for the algorithm in algorithm 3 and refer the interested

reader to the appendix for a derivation of the algorithm. For easy comparison, we have

listed the order of complexities of the three fast algorithms in Table 1.
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F0-AR-ML-E F0-AR-ML-A1 F0-AR-ML-A2

O(F log2 F ) +O(FP (P +Q)) O(F log2 F ) +O(FP 2) O(F log2 F ) +O(FPQ)

Table 1: Order of complexities of the three fast algorithms.
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Figure 2: The computation time in seconds as a function of the maximum harmonic order Q. The data

length was T = 512 and the maximum AR-order was P = 3. Note that the non-smooth increases in

computation time in Fig. 2 is caused by the fact that the number of frequencies F given in (36) depends

nonlinearly on Q.

5. Experimental Results

In this section, we present a number of experimental results. As the main contribution

is fast algorithms, we first measure the computation time of the different algorithms in

different settings and compare these to the computation time of a naïve implementation of

the estimator. Secondly, we assess how the approximations made in the two approximate

estimators affect the estimation accuracy. Thirdly, we show in terms of both computation

time and estimation accuracy that it is advantageous to jointly estimate the sinusoidal

and autoregressive parameters instead of just employing a simpler iterative estimator.

Finally, we give two application examples on real data to demonstrate the benefit of

modelling the noise using an AR-process instead of just making the traditional WGN

assumption. All simulations have been run in MATLAB™ R2020a on a 64 bit Ubuntu

Linux 16.04.6 computer with Linux kernel 4.15.0.101. The code for the estimators and
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Algorithm 3 Pseudo code for the F0-AR-ML-A2 algorithm with ω(f) = 2πf/F and

$ =
[
ω(0) · · · ω(F−1)

]′
. The function lda refers to the Levinson-Durbin algorithm in

Theorem 8. Note that the loop over the frequency bin index f can be vectorised in many

programming languages.

1: σ̂2
0,0 = T−1X ′PXP . O(T )

2: ρP,0 = T−1Z ′PXP . O(TP )

3: {σ̂2
p,0}Pp=1, {νp}Pp=1 = lda(σ̂2

0,0, ρP,0) . O(P 2)

4: X̂ = T−1 diag(fft(X,F ))e−i$t0 . O(F log2 F )

5: for f = 1, 2, . . . , bF/2c do

6: for q = 1, 2, . . . , Q do

7: if f < dF/(2q)e then . Make ω(f) ∈ (0, π/q)

8: g̃0,q = X̂(fq) . O(1)

9: h̃0,q = W̃q g̃0,q . O(1)

10: σ̂2
0,q = σ̂2

0,q−1 − 2|g̃0,q|2T/TP . O(1)

11: d̂0,q = 2g0,qT/TP . O(1)

12: µ0,q = 2h0,qT/TP . O(1)

13: for p = 1, 2, . . . , P do

14: κp,q =
νpσ̂

2
p−1,0−h′p−1,q d̂p−1,q

σ̂2
p−1,q

. O(q)

15: σ̂2
p,q = σ̂2

p−1,q(1− κ2p,q) . O(1)

16: if p < P then

17: g̃p,q = g̃p−1,q − νph̃p−1,q . O(1)

18: h̃p,q = W̃q(h̃p−1,q − νpg̃p−1,q) . O(1)

19: d̂p,q = d̂p−1,q − κp,qµp−1,q . O(q)

20: µp,q =

21: Wq(µp−1,q − κp,qd̂p−1,q) . O(q)

22: end if

23: end for

24: end if

25: end for

26: end for
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Figure 3: The computation time in seconds as a function of the maximum AR order P . The data length

was T = 512 and the harmonic order was Q = 3.

for generating all results can be found at https://github.com/jkjaer/fastF0ArMl. In

all experiments, we used

F = 2dlog2(5QT )e (36)

frequency grid points where d·e denotes the ceiling operation.

5.1. Computation time

We estimated the computation time as a function of the maximum harmonic order Q,

the maximum AR-order P , and the data length T . In all cases, the time for evaluating

the residual mean square σ̂2
p,q for all candidate model orders were estimated by taking

the minimum value of 50 Monte Carlo runs, each measuring the computation time using

the timeit() function in MATLAB™. The estimated computation time should be seen

as an upper bound on the computation time since it can only be overestimated on a

multitasking operating system. Fig. 2, Fig. 3, and Fig. 4 all show the same trend;

the F0-AR-ML-A1 was the fastest algorithm, the F0-AR-ML-A2 was the second fastest

algorithm, and the F0-AR-ML-E was the third fastest algorithm. For high AR-orders,

Fig. 3 shows that the F0-AR-ML-A2 algorithm approached, but never outperformed, the

computation time of the F0-AR-ML-A1 algorithm, despite being an order of complexity

lower in terms of the AR-order P . The fast algorithms all significantly outperformed
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Figure 4: The computation time in seconds as a function of the data length T . The AR-order was P = 3

and the harmonic order was Q = 3.

the naïve algorithm by at least a factor of 100. The naïve implementation is simply a

straight-forward implementation of the expression in (9).

5.2. Estimation accuracy

The estimation accuracy was evaluated as a function of a pre-whitened signal-to-noise

ratio (SNR) and the time-frequency resolution using 10,000 Monte Carlo runs for each

configuration. We here use the SNR of the pre-whitened data instead of the global SNR

since the local SNR at the frequencies of the harmonic components is what influences the

performance of the estimator (see (3)). In each Monte Carlo run, we generated a periodic

function with random fundamental frequency from 2π(f0,MIN, 0.4), a harmonic-order of

q = 6, random phases, and exponentially decreasing amplitudes. The generated AR-noise

was of order p = 3 where the AR-coefficients were generated by selecting one real root

and a complex conjugate root pair from a disc in the complex plane with a minimum

radius of 0.5 and a maximum radius of 0.9. The excitation variance was computed by

1) pre-whitening the generated periodic function with an FIR-filter having the generated

AR-parameters as its coefficients, 2) adding white Gaussian noise with a variance equal

to the excitation variance resulting in the desired SNR of the pre-whitened periodic

function, and 3) post-filtering the noisy pre-whitened periodic function with an all-pole

filter having the generated AR-parameters as its coefficients.
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Figure 5: The FPE and GPE as a function of the SNR. The maximum orders were set to Q = 6 and

P = 3, and the data length was T = 512.

For each SNR and value for f0,MIN, the fundamental frequency estimates from 10,000

Monte Carlo runs were divided into fine pitch errors (FPE) and gross pitch errors (GPE).

These metrics are often used in speech processing (see [2, Ch. 10] for an in-depth discus-

sion) which also explains why the term pitch is used instead of fundamental frequency.

The FPE is the root mean squared error of all fundamental frequency estimates within 20

% of the true value3. The GPE is then the proportion of estimates that falls outside this

range. The main reason for dividing the estimation errors into these two metrics is that

the subharmonic errors discussed in the introduction appear as systematic outliers in the

computed estimates. The GPE metric is used to quantify how often these outliers occur

whereas the FPE metric measures the estimation accuracy of an outlier-free estimator.

Fig. 5 shows the computed results for two of the fast algorithms together with the

asymptotic Cramér-Rao lower bound (CRLB) given by (3), averaged over the 10,000

Monte Carlo runs for each SNR. We did not include the F0-AR-ML-A2 estimator in

the experiment since it produces the same estimates as the F0-AR-ML-A1 estimator.

3Note that this threshold seems to vary between references. Sometimes a threshold of 10 % or an

absolute threshold is used instead.
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Figure 6: The GPE as a function of the lower bound on the fundamental frequency for three different

pre-whitened SNRs. The maximum orders were set to Q = 6 and P = 3.

For this experiment, the value for f0,MIN was set to 6/T which means that at least six

cycles of the periodic function is in a segment. From the figure, we see that the exact and

approximate estimators had the same performance, except for SNRs close to 10 dB where

the GPE of the approximate F0-AR-ML-A1 estimator increased slightly. This is caused

by the approximation made in the estimator as shown in the next experiment. Both

methods had a small gap to the asymptotic CRLB which we believe is due to employing

the autocorrelation method for windowing the data. This suspicion is confirmed by the

fact that both estimators attain the asymptotic CRLB in the WGN case.

To quantify how the asymptotic approximation based on (12) affects the performance

of the F0-AR-ML-A1 and F0-AR-ML-A2 estimators, we evaluated the estimation accu-

racy as a function of the minimum value of the lower bound on the fundamental frequency

at different SNRs. This is essentially the same as benchmarking the time-frequency res-
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Figure 7: The computation time in seconds as a function of the maximum harmonic order Q. The data

length was T = 512 and the AR-order was P = 3.

olution of the estimators. Fig. 6 shows the computed GPEs for pre-whitened SNRs of

0 dB, 5 dB, and 10 dB. The figure shows that the time-frequency resolution of the F0-

AR-ML-A1 estimator decreased with an increasing SNR. This is explained by the fact

that the residual mean square σ̂2
p,q becomes increasingly sensitive to perturbations in the

projection matrices as the SNR increases. Consequently, the F0-AR-ML-A1 and F0-AR-

ML-A2 estimators should only be used in low SNR conditions and when the segment

length is sufficiently long relative to what the minimum expected fundamental frequency

is. We also remark that the threshold for when the approximate estimators start produc-

ing outliers depends on other factors than the SNR, including the number of sinusoidal

and AR components and how close the magnitude of the poles are to one.

5.3. Joint versus iterative estimation

To compare the proposed joint estimation of the sinusoidal and AR-parameters with

an iterative approach, we computed both the computation time as a function of the

harmonic order and the estimation accuracy as a function of the SNR, using the same set-

up as in the previous two experiments, except for that f0,MIN was set to 2/T . The iterative

approach consists of a traditional linear predictor and the F0-AR-ML-E estimator with

an order of P = 0 (i.e., assuming white noise). In each iteration, the linear predictor first

computes an estimate of the AR-parameters, including the order, from the data vector
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Figure 8: The FPE and GPE as a function of the SNR. The maximum orders were set to Q = 6 and

P = 3, and the data length was T = 512.

subtracted by an estimate of the periodic function. The prediction of the AR-signal is

then subtracted from the data vector which is then used as input to the fundamental

frequency estimator that will estimate all harmonic parameters, including the order,

and reconstruct the periodic function. In the experiment, we repeated this procedure

10 times. Fig. 7 and Fig. 8 show that, compared to the F0-AR-ML-E algorithm, the

iterative approach was both slower and produced many outliers compared to the joint

approach. The FPE is more or less the same for the two approaches. The estimation

accuracy of the iterative approach can be improved by running more iterations, but this

will also make the algorithm slower.

5.4. Application example I: order tracking analysis

Order tracking analysis [4, 5] is concerned with finding structural resonances excited

by a rotating machine. During testing, the machine is often accelerated (run-up) and/or

decelerated (coast-down) while the vibrational or acoustical response is recorded. To

avoid time-frequency smearing, the recorded response is resampled uniformly in rotation

angle instead of in time. The resampling requires that the rotation speed of the engine is
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Figure 9: A recording of an engine run-up (upper-left panel) and the estimates of the engine rotation

speed (lower left panel). The upper right panel shows the periodogram and the estimated PSD for

one segment around 10 seconds. The lower right panel shows the periodogram and the periodogram

obtained after pre-whitening the data with the estimated AR-parameters. The F0-ML-E algorithm is

the F0-AR-ML-E algorithm with an AR-order of P = 0.

estimated accurately, and this is often referred to as tracking. The tracking is typically

performed by mounting a tachometer on the engine axle from which the rotation speed

can easily be extracted. However, mounting a tachometer might be difficult and costly

for which reason it is desirable to estimate the rotation speed directly from the recorded

vibrational or acoustical response(s). This is often referred to as autotracking and what

we here focus on.

The upper left panel of Fig. 9 shows a spectrogram of a car engine run-up. The

harmonic structure can clearly be seen from the upper part of the spectrogram, but the

fundamental components are completely hidden in wind and tyre noise also present in the

recording. The lower left panel of Fig. 9 shows the fundamental frequency estimated from

the tachometer signal as well as by the F0-AR-ML-E and the F0-ML-E algorithms. The
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latter is identical to the first, with the exception that the maximum AR-order is set to P =

0, i.e., white noise is assumed. Both algorithms were set-up with a minimum harmonic

order of 20 and a maximum harmonic order of Q = 25. Moreover, the fundamental

frequency was constrained to be in the interval (10 Hz, 100 Hz) and the maximum AR-

order of the F0-AR-ML-E algorithm was set to P = 5. The data were resampled to a

sampling frequency of 2205 Hz and the data length was set to 250 ms. The lower left

panel of Fig. 9 shows that F0-AR-ML-E algorithm worked very well as an autotracker,

and that the F0-ML-E algorithm completely broke down due to the violation of the white

noise assumption. The right panels in Fig. 9 show an example of the periodogram at

around the 10 second mark overlayed with the modelled PSD (top) and the pre-whitened

PSD (bottom). The pre-whitening should be understood in the context of Fig. 1b where

ûp,0 is the pre-whitened signal we compute the periodogram of in the lower right panel

of Fig. 9.

5.5. Application example II: speech in wind noise

Speech recordings are often contaminated by some background noise, and we here

focus on the case where the background noise is wind. In speech enhancement [43], the

goal is to remove as much of the background noise as possible while altering the speech

as little as possible. Typically, the enhancement is performed by designing a soft time-

frequency mask (often a Wiener mask) that applies a small weight (close to zero) to the

noisy parts of the data spectrogram and a large weight (close to one) to the clean parts

of the data spectrogram. To calculate the mask, estimates of the speech and/or the noise

spectra are required and these can, for voiced speech segments, be estimated with the

joint fundamental frequency and AR coefficient estimator.

The upper left panel of Fig. 10 shows a spectrogram of a speech signal in wind noise

at an SNR of 5 dB. The speech signal is taken from the TSP speech database [44] and

the wind noise is taken from a wind noise database [45]. We again compare the F0-

AR-ML-E and F0-ML-E algorithms. As we do not have access to ground truth values

of the fundamental frequency, we also ran the F0-AR-ML-E on the clean speech which

resulted in the solid line shown in the lower left panel of Fig. 10. This panel also shows

the estimates produced by the F0-AR-ML-E and F0-ML-E algorithms. We again see

that modelling the wind noise using a low-order AR-process increased the robustness of
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Figure 10: A recording of a speech signal in wind noise at an SNR of 5 dB (upper-left panel) and the

estimates of the fundamental frequency (lower left panel). The upper right panel shows the periodogram

and the estimated PSD for one segment around 1.4 second. The lower right panel shows the periodogram

and the periodogram obtained after pre-whitening the data with the estimated AR-parameters. The F0-

ML-E algorithm is the F0-AR-ML-E algorithm with an AR-order of P = 0.

the fundamental frequency estimator significantly. As in the previous experiment, the

F0-AR-ML-E and F0-ML-E algorithms were set-up in the same way, with the exception

that we used P = 0 for the F0-ML-E algorithm. The maximum harmonic order was set

to Q = 15, and all lower orders were considered, except for q = 1, 2 which are typically

not observed for speech signals. The fundamental frequency was constrained to be in the

interval (60 Hz, 400 Hz), the sampling frequency was 16 kHz, the data length was set to

25 ms, and the maximum AR-order was P = 10. The right-most panels in Fig. 10 shows

the periodiogram, the modelled PSD, and the pre-whitened periodogram around the 1

second mark.
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6. Conclusion

In this paper, we have derived a joint maximum likelihood estimator and three fast

algorithms for joint fundamental frequency and AR-parameter estimation under model

uncertainty. One of these algorithms evaluates the residual mean square exactly, but also

has the highest computational complexity. The other two fast algorithms are faster, but

only compute approximations to the residual mean square. All three fast algorithms are

asymptotically equivalent. Through experiments and for finite data lengths, we showed

that the two approximate algorithm are accurate provided the data length is sufficiently

long relative to the smallest expected fundamental frequency. If this condition is violated,

the approximate algorithms produced more outliers. The exact algorithm, on the other

hand, worked well, even for short data length, but was also approximately a factor of ten

slower than the fastest approximate algorithm called F0-AR-ML-A1. We also showed

that performing the sinusoidal and autoregressive parameter estimation jointly with the

exact fast algorithm called F0-AR-ML-E algorithm is both faster and more accurate than

performing the estimation iteratively. Finally, we applied the exact algorithm to real-

world data to show examples of the benefit of doing fundamental frequency estimation

using an estimator allowing for autoregressive noise instead of making the convinient and

simpler WGN assumption. These examples clearly showed that the number of ourliers

is dramatically reduced when the estimator allows for autoregressive noise.

Appendix A. Derivation of the F0-AR-ML-A2 Algorithm

As alluded to in Sec. 4, the F0-AR-ML-A2 algorithm is based on the second expression

for the residual error variance σ̂2
p,q given in (16). Since the first term in the expression,

i.e., σ̂2
p,0, can be computed using the Levinson-Durbin algorithm described in Theorem 8,

we will in this section focus on how the second term in the expression, i.e., g′p,qΩ−1p,qgp,q,

can be computed efficiently. We first focus on a recursive update of Ωp,q.

Lemma 9. The 2q × 2q matrix Ωp+1,q can be recursively updated using

Ωp+1,q = Ωp,q − σ̂−2p,0hp,qh′p,q,
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where

hp,q = T−1E′q(z̃p+1 − ZpJpβ̂p,0) = T−1E′qP
⊥
Zp
z̃p+1,

and z̃p+1 is the last column of Zp+1.

Proof. First note that

(Z ′p+1Zp+1)−1 =


(Z ′pZp)

−1 0

0 0


+

1

z̃′p+1P
⊥
Zp
z̃p+1


Z

+
p z̃p+1

−1



[
z̃′p+1

(
Z+
p

)′ −1
]
.

This leads to

PZp+1 =
[
Zp z̃p+1

]
(Z ′p+1Zp+1)−1


 Z ′p

z̃′p+1


 = PZp +

P⊥Zp
z̃p+1z̃

′
p+1P

⊥
Zp

z̃′p+1P
⊥
Zp
z̃p+1

.

Since Z ′pZp is a Toeplitz matrix, we have from the Levinson-Durbin algorithm that

Jpβ̂p,0 = (Z ′pZp)
−1Z ′pz̃p+1

σ̂2
p,0 = z̃′p+1P

⊥
Zp
z̃p+1.

The final result then follows by inserting the above expressions in the definition of Ωp+1,q

in (21), i.e.,

Ωp+1,q = T−1E′qEq − T−1E′qPZp+1Eq.

Next, we find a recursive expression for gp,q in (20).

Lemma 10. The 2q dimensional vector gp+1,q can be recursively updated as

gp+1,q = gp,q − νp+1hp,q

where g0,q = T−1E′qXP , and νp+1 and hp,q are defined in Theorem 8 and Lemma 9,

respectively.

Proof. From the definition of gp,q in (20), it follows that

gp+1,q = T−1E′qXP − T−1E′qZp+1(Z ′p+1Zp+1)−1Z ′p+1XP

= T−1E′qXP − T−1E′q
[
Zp z̃p+1

]
β̂p+1,0.

The result then follows by inserting the recursive expression for β̂p+1,0 from Theorem 8

and by using the definition of hp,q from Lemma 9.
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We now have recursive expressions for both Ωp,q and gp,q. The next result shows how

these can be used in a recursive expression for d̂p,q = Ω−1p,qgp,q.

Lemma 11. The linear parameters d̂p,q = Ω−1p,qgp,q can be recursively computed for

p = 0, . . . , P − 1 as

d̂p+1,q = d̂p,q − κp+1,qΩ
−1
p,qhp,q,

where

κp+1,q =
νp+1σ̂

2
p,0 − h′p,qd̂p,q

σ̂2
p,0 − h′p,qΩ−1p,qhp,q

. (A.1)

Proof. From the recursive expression for Ωp+1,q from Lemma 9 and the matrix inversion

lemma, we obtain for h′p,qΩ−1p,qhp,q 6= σ̂2
p,0 that

Ω−1p+1,q =
(
Ωp,q − σ̂−2p,0hp,qh′p,q

)−1
= Ω−1p,q +

Ω−1p,qhp,qh
′
p,qΩ

−1
p,q

σ̂2
p,0 − h′p,qΩ−1p,qhp,q

.

By right multiplying this by the recursive expression for gp+1,q from Lemma 10, we obtain

the final result.

Based on the above results, a recursive expression for the term g′p,qΩ
−1
p,qgp,q in (16)

can now be computed.

Corollary 12. The mean square error of the estimated sinusoidal signal projected onto

the null space of Zp can be computed recursively for p = 0, 1, . . . , P − 1 as

g′p+1,qd̂p+1,q = g′p,qd̂p,q + κ2p+1,q

(
σ̂2
p,0 − h′p,qΩ−1p,qhp,q

)
− ν2p+1σ̂

2
p,0.

Proof. By inserting the recursive expressions for gp+1,q and d̂p+1,q from Lemma 10 and

11, respectively, we obtain

g′p+1,qd̂p+1,q = (gp,q − νp+1hp,q)
′
d̂p,q − κp+1,q (gp,q − νp+1hp,q)

′
Ω−1p,qhp,q

= g′p,qd̂p,q − νp+1h
′
p,qd̂p,q

− κp+1,q

{
d̂′p,qhp,q − νp+1

(
h′p,qΩ

−1
p,qhp,q − σ̂2

p,0 + σ̂2
p,0

)}

= g′p,qd̂p,q − νp+1h
′
p,qd̂p,q − κp+1,q

(
d̂′p,qhp,q − νp+1σ̂

2
p,0

)

− νp+1

(
νp+1σ̂

2
p,0 − h′p,qd̂p,q

)

= g′p,qd̂p,q + κ2p+1,q

(
σ̂2
p,0 − h′p,qΩ−1p,qhp,q

)
− ν2p+1σ̂

2
p,0.
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From the result in Corollary 12 and the definition of κp+1,q in (A.1), we see that we

need recursions for hp,q and h′p,qΩ−1p,qhp,q as well. The next lemma will be important in

that connection.

Lemma 13. For a non-negative integer j ≤ p, we have

Qp,qE
′
q z̃j = E′q z̃p−j

where z̃0 = XP and Qp,q is an involutory (i.e., symmetric and orthogonal) matrix given

by

Qp,q = G′qW
p
q SqG

−′
q = W p

q SqGqG
−′
q = WqQp−1,q (A.2)

Sq = Iq ⊗


1 0

0 −1


 .

The matrices Gq and Wq are both defined in Lemma 4.

Proof. From Lemma 4, it follows that

E′q z̃p−j = TG′qΞ̃p−j,q = TG′qW
p−j
q ιq = TG′qW

p
qW

−j
q ιq = TG′qW

p
q SqW

j
q ιq

= TG′qW
p
q SqΞ̃j,q = G′qW

p
q SqG

−′
q E

′
q z̃j = Qp,qE

′
q z̃j .

Lemma 13 can now be used to derive a simple recursion for hp,q.

Lemma 14. The vector hp,q can be updated recursively for p = 0, 1, . . . , P − 1 using

hp+1,q = Wq (hp,q − νp+1gp,q)

with initial conditions h0,q = Q0,qg0,q and g0,q = T−1E′qXP .

Proof. From Lemma 13, we first obtain

Qp,qE
′
qZp−1Jp−1 = E′qZp−1.

Thus, since

gp,q = T−1E′qP
⊥
Zp
XP

hp,q = T−1E′qP
⊥
Zp
z̃p+1,
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it follows that

hp,q = Qp,qgp,q. (A.3)

Consequently, we have from (A.2) that

hp+1,q = Qp+1,qgp+1,q = WqQp,qgp+1,q.

Inserting the recursive expression for gp+1,q from Lemma 10 then gives

hp+1,q = Wq (hp,q − νp+1Qp,qhp,q) .

The final result then follows since Qp,qhp,q = Q−1p,qhp,q = gp,q.

So far, we have not made use of the asymptotic result in (12). For the recursion

h′p,qΩ
−1
p,qhp,q, however, we will use it to make the approximation

E′qEq ≈ TP I2q/2

to obtain the following important result.

Lemma 15. When the result in (12) is used to approximate Ω0,q = T−1P E′qEq by its

asymptotic value I2q/2, we obtain

h′p,qΩ
−1
p,qhp,q = g′p,qd̂p,g.

Proof. From (A.3), we have

h′p,qΩ
−1
p,qhp,q = g′p,qQ

′
p,qΩ

−1
p,qQp,qgp,q.

Since, from (12),

Ωp,q = I2qTP /(2T )− T−1E′qPZp
Eq,

and since Qp,q is symmetric and orthogonal, we get

Q′p,qΩ
−1
p,qQp,q =

(
Q′p,qΩp,qQp,q

)−1
=
(
Q′p,qQp,q/2− T−1Q′p,qE′qPZp

EqQp,q
)−1

=
(
I2qTP /(2T )− T−1E′qPZpEq

)−1
= Ω−1p,q

where the second last equality follows from Q′p,qQp,q = I2q, from Lemma 13, and since

(Z ′pZp)
−1 is centrosymmetric so that (Z ′pZp)

−1 = Jp(Z
′
pZp)

−1Jp. Thus,

g′p,qQ
′
p,qΩ

−1
p,qQp,qgp,q = g′p,qΩ

−1
p,qgp,q

from which the result follows.
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The results in Corollary 12 and Lemma 15 can now be used to derive an efficient

recursion for the residual mean square σ̂2
p+1,q.

Theorem 16. The residual mean square σ̂2
p,q can be updated recursively for p = 0, . . . , P−

1 using

σ̂2
p+1,q = σ̂2

p,q

(
1− κ2p+1,q

)

with initial condition

σ̂2
0,q = T−1X ′PXP − 2g′0,qg0,qT/Tp = σ̂2

0,q−1 − 2g̃′0,q g̃0,qT/Tp

where g̃0,q contains the last two elements of g0,q.

Proof. Inserting the result from Corollary 12 and Theorem 8 in (16) gives

σ̂2
p+1,q = σ̂2

p+1,0 − g′p+1,qd̂p+1,q

= σ̂2
p,0

(
1− ν2p+1

)
− g′p,qd̂p,q − κ2p+1,q

(
σ̂2
p,0 − h′p,qΩ−1p,qhp,q

)
+ ν2p+1σ̂

2
p,0

= σ̂2
p,0 − g′p,qd̂p,q − κ2p+1,q

(
σ̂2
p,0 − h′p,qΩ−1p,qhp,q

)
= σ̂2

p,q

(
1− κ2p+1,q

)

where the last equality follows from Lemma 15.

This concludes the derivation of the F0-AR-ML-A2 algorithm whose pseudo-code can

be found in algorithm 3.
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