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Maximum likelihood calibration of stochastic
multipath radio channel models

Christian Hirsch, Ayush Bharti, Troels Pedersen, and Rasmus Waagepetersen

Abstract—We propose Monte Carlo maximum likelihood es-
timation as a novel approach in the context of calibration and
selection of stochastic channel models. First, considering a Turin
channel model with inhomogeneous arrival rate as a prototypical
example, we explain how the general statistical methodology is
adapted and refined for the specific requirements and challenges
of stochastic multipath channel models. Then, we illustrate the
advantages and pitfalls of the method on the basis of simulated
data. Finally, we apply our calibration method to wideband signal
data from indoor channels.

Index Terms—multipath channels, Monte Carlo methods, max-
imum likelihood estimation, point processes, radio propagation,
shot noise.

I. INTRODUCTION

Stochastic multipath models are indispensable for simu-
lating and analyzing radio systems for communication and
localization. In a stochastic multipath model, the received
signal is modeled as a superposition of attenuated and delayed
signal components, each corresponding to one propagation
path [1]. Such a model can be described by a marked point
process where a marked point represents a delay and its
associated path gain. Provided that the model is calibrated, i.e.
its parameters have been estimated from measurement data,
realizations of the channel can then be simulated from the
model and used in system design or performance analysis,
thus alleviating the need for further measurements. Calibration
of stochastic multipath models is a non-trivial task for several
reasons. In particular, due to the finite measurement bandwidth
and the presence of additive noise, the marked point process
is not observed directly, but should be considered as a hidden
variable. Not least in the context of point processes, estimating
parameters in models with hidden variables is often a highly
involved endeavor [2].

The calibration approach most widely used in the literature
is a two-step procedure dating back to Turin [3], outlined
in Fig. 1. First, the measurement data is reduced to a set
of multipath components, such as delays and path gains.
Then, the parameters of the underlying point process are
estimated from the obtained multipath components. Although
this data reduction step was employed chiefly due to technical
limitations of the measurement equipment and data processing
used by Turin at that time, many works have since adopted
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Fig. 1. Calibration procedure usually followed where estimates of multipath
components are used as summaries.

and expanded upon this calibration method [4]–[10]. The es-
timation of the multipath components from measurement data
involves high-resolution multipath extraction methods such
as CLEAN [11], SAGE [12], and RiMAX [13]. Depending
on whether the stochastic model is cluster-based or not, an
additional step of clustering the multipath components may
also be employed. Clustering is either done manually, e.g. in
[4], [5], [14], [15], leading to subjective and non-reproducible
results, or using automated algorithms such as [16]–[18], that
further increase the complexity of the calibration process.
Implementation of these multipath extraction and clustering
algorihms is typically non-trivial, and requires a number
of arbitrary choices to be made. Moreover, various ad hoc
methods are utilized for obtaining the model parameters after
multipath extraction. Another potential weakness of such two-
step procedures is that the resulting parameter estimates are
highly sensitive to the estimation accuracy of the particular
set of extracted multipath components. Calibration techniques
that do not require multipath extraction but rely on summa-
rizing the data into a set of statistics have been introduced
recently in the literature [19]–[23]. However, these methods
call for definition of appropriate summary statistics that are
informative regarding the model parameters. Moreover, the
approximation arising due to summarizing the data maybe
difficult to quantify.

In this paper, we propose to use the principled and recog-
nized statistical methodology of maximum likelihood estima-
tion (MLE) to calibrate stochastic channel models with inho-
mogeneous intensity function. Thus, our parameter estimates
are the parameter values maximizing the probability density
of the received signals given the transmitted signals. However,
we face a missing data problem where it is not possible to
evaluate the likelihood function by analytical marginalization
with respect to the hidden quantities. We therefore use impor-
tance sampling to compute an approximation of the likelihood
function using a large Markov Chain Monte Carlo (MCMC)
sample from the conditional distribution of the multipath
components given the observed data [24]. Thus, in contrast
to the previously mentioned methods, our method does not
rely on the validity of just one particular set of multipath
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components. We believe this will reduce bias and variance
of the resulting parameter estimates. Moreover, approximated
likelihoods for different models can be used in a natural way
for model selection. Considering a parametric Turin model
for simulated and real data, we demonstrate the feasibility of
Markov Chain Monte Carlo maximum likelihood estimation
(MCMC MLE) for model calibration. The MCMC method can
also be adapted in a straightforward manner to sample from
the posterior distribution of the parameters in case informative
priors are available for the parameters.

The rest of the paper is organized as follows. Section II
introduces the inhomogeneous Turin model as the stochastic
multipath model studied in this paper. Next, in Section III,
we describe our proposed procedure for approximate MLE
using MCMC. We also explain what properties of the stochas-
tic multipath model require us to develop problem-specific
adaptations to standard MCMC and optimization methods.
Section IV illustrates our calibration procedure using simu-
lated datasets. While this already provides an intuition on the
strengths and peculiarities of the calibration procedure, they
become even more apparent in Section V, where we analyze
a real dataset of indoor channel measurements originally con-
sidered in [25]. Finally, Section VI concludes the paper with
a discussion and indications to avenues of future research.

II. STOCHASTIC MULTIPATH MODEL

A. Signal model

Consider frequency domain measurements of a single-input
single-output linear, time-invariant radio channel in the band
[−B/2, B/2] obtained by a vector network analyzer [26]. In
each measurement run, the transfer function is sampled at K
equispaced frequencies. The measurement data is modeled as
a random vector Y = (Y1, . . . , YK) with entries

Yk = Hk +Nk, k = 1, . . . ,K, (1)

where Hk is the transfer function sampled at the kth frequency
and Nk denotes the measurement noise. The noise samples
(N1, . . . , NK) are assumed to be independent and identically
distributed circular symmetric Gaussian random variables each
with variance σ2. We denote a realization of the measurement
vector Y by y = (y1, . . . , yK). Repeating the measurements
M times yields the sequence of independent realizations
y(1), . . . ,y(M).

Taking the discrete-frequency, continuous-time inverse
Fourier transform of the measurement vector gives the time
domain measurement (with a misuse of notation)

Y (t) =
1

K

∑
k≤K

Yk exp(i2πk∆ft), (2)

where ∆f = B/(K − 1) is the frequency spacing between
two measurement points, giving the period of the time domain
signal as τmax = 1/∆f . We denote the imaginary unit by i.
The power delay spectrum of Y (t) is defined as

Py(t) = E
[
|Y (t)|2

]
= (Ph ∗ |s|2)(t), (3)

where s(t) denotes the transmitted signal in the time do-
main1. The power delay spectrum Ph(t) may be informally
interpreted as Ph(t) = E

[
|H(t)|2

]
, with |H(t)|2 being the

instantaneous power delay profile of the channel, see e.g. [27]
or [28].

B. Stochastic multipath model

The channel transfer function of a multipath model is of the
form

Hk =
∑
τ∈Z

ατ exp(−i2π∆fkτ), k = 1, . . . ,K (4)

where Z is a point process on the positive real line R+

containing the propagation time delays τ . A complex-valued
gain ατ is associated to each delay τ ∈ Z. Thereby the process
Zm = {(τ, ατ )}τ∈Z constitutes a marked point process on
R+ × C. Hence, we refer to a pair (τ, ατ ) as a marked
point. The support of the point process Z is the interval
I = [τ0, τmax], where τ0 is the delay of the line-of-sight (LOS)
path.

Particular stochastic multipath models are obtained upon
specifying the marked point process Zm. A multitude of such
models have been proposed in the literature. Here, we follow
the approach by Turin [3], and let Zm be an independently
marked Poisson process. This model is completely specified
by the intensity function (arrival rate) and its mark density.

The power delay spectrum is connected to the arrival
rate and mark density. Assuming the complex gains to be
uncorrelated given the delay variables, (corresponding to the
familiar uncorrelated scattering assumption), the power delay
spectrum factorizes as [28]

Ph(τ) = λ(τ)E[|ατ |2|τ ] (5)

where λ(·) denotes the intensity function (or arrival rate) for
the delays Z. The power delay spectrum is well studied as
it is easy to measure and model. For in-room environments,
the power delay spectrum is well modeled by an exponential
decaying function,

Ph(t) =

{
G0 exp(−t/T ), t > 0

0, t ≤ 0,
(6)

where T is the reverberation time and the gain factor G0 is
a positive constant. See [28], [29] and references therein. We
first define the arrival rate and thereafter specify the mark
density so that its second moment fulfills (5) and (6).

While in his original work, Turin determined the arrival
rate empirically in a non-parametric manner, a number of
parametric models have occurred in the literature [28]. We
consider here the flexible two-parameter model for the arrival
rate proposed in [28]

λ(t) = ctκ1 , t ≥ 0 (7)

with c > 0 and κ1 ∈ R. This model class includes both the
constant rate model λ(t) = c, t ≥ 0, which is widely used in

1In the case considered here, s(t) is the inverse discrete Fourier transform
of the rectangular frequency window applied in the measurements.
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the literature due to its simplicity [4], [6], and the quadratic
rate model λ(t) = ct2 obtained by mirror source analysis of
an empty rectangular room.2 The quadratic rate model is able
to represent the experimentally observed specular-to-diffuse
transition [28], [30]–[32]. In the present study, we use the
model (7). For computational convenience, we reparametrize
the model as

λ(t) = exp(κ0 + κ1 log(t)) (8)

where κ0 = log(c).
Given Z, the path gains ατ for τ ∈ Z are modeled as

independent zero-mean complex Gaussian random variables.
Therefore, conditioned on the delays, the magnitude, |ατ |,
is Rayleigh distributed, with the corresponding phase being
modeled as a uniform distribution on [0, 2π). To satisfy (5),
(6) and (8), we set the second conditional moment of the
magnitude as

E[|ατ |2|τ ] =G0 exp(−κ0) exp[−τ/T − κ1 log(τ)]

= exp[γ0 + γ1τ − κ1 log(τ)]

where we have introduced the reparametrization γ0 =
log(G0) − κ0 and γ1 = −1/T . Note that G0, T, κ1, κ0 can
be recovered uniquely from γ0, γ1, κ0, κ1 and vice-versa. In
other words, conditional on τ , the real and imaginary parts
of ατ are independent zero-mean normal, each with variance
exp[γ0 + γ1t− κ1 log(t)]/2.

The reparametrization using κ0, γ0 and γ1 is not of crit-
ical importance but leads to somewhat nicer expressions for
derivatives when using Newton-Raphson updates later on, see
Section III-C2.

C. Estimation Problem and Likelihood Function
To calibrate the channel model, the parameter vector

θ = [κ, γ, σ2]> with the shorthand notations κ = (κ0, κ1)
and γ = (γ0, γ1) should be estimated from the data
y(1), . . . ,y(M). Following the maximum likelihood principle,
the estimate is obtained as

θ̂ = arg max
θ

M∏
m=1

L(θ;y(m)) (9)

where L(θ;y(m)) = p(y(m); θ) is the likelihood based on one
realization y(m).

Denote by Z
(m)
m the point process associated to the mea-

surement vector Y(m). Suppose for a moment that in addition
to the measurement data y(m) also the corresponding point
process realization z

(m)
m is observed. Then the likelihood

function based on (y(m), z
(m)
m ) is

L(θ;y(m), z(m)
m ) = p(y|z(m)

m ;σ2)p(z(m)
m ;κ, γ) (10)

where p(y(m)|z(m)
m ;σ2) is the complex Gaussian density

p(y(m)|z(m)
m ;σ2) =

(2πσ2)−K exp
(
− 1

2

K∑
k=1

(
|y(m)
k −H(fk)|/σ

)2)
2 [27] alternatively derived the intensity function for a propagation graph

model for the in-room scenario with diffusely reflecting walls. This gives rise
to a two-parameter exponential rate model λ(t) = c exp(κ1t).

and p(z
(m)
m ;κ, γ) is the point process density of Z(m)

m . The
notion of a point density is non-standard as the number
of points varies from realization to realization. Technically
speaking, the density of the delays is a density with respect to
a unit-intensity Poisson process distribution, [2, Section 6.1].
Specifically, the point process density of Z(m)

m can be written
[2, Section 3.3] as

p(z(m)
m ;κ, γ) =

∏
τ∈z(m)

f(ατ ; γ)

× exp
(
−
∫
I

exp(κ0 + κ1 log(t))dt
)

×
∏

τ∈z(m)

exp(κ0 + κ1 log(τ)).

The first factor is the product of the complex Gaussian
densities f(ατ ; γ) for the marks ατ and the product of the
last two factors is the Poisson point density for the delays
τ ∈ z(m).

In practice, z(m)
m is not available and the likelihood is ob-

tained by marginalizing with respect to Z(m)
m . More precisely,

according to the law of total probability,

L(θ;y(m)) = Eθ[p(y(m)|Z(m)
m , σ2)]. (11)

The likelihood function (11) is unfortunately not available in
closed form because it is an expectation of a conditional prob-
ability that depends on Z(m)

m in a complicated way and Z(m)
m

moreover does not have a fixed dimension. Consequently, the
MLE cannot be obtained in a straightforward manner.

The estimation problem is complicated due to the missing
data: the maximization of the likelihood would be straight-
forward if only the point process Zm could be be observed.
Thus it is tempting to resort to a two-step procedure by
first estimating Zm using well known high-resolution path
extraction techniques and thereafter to estimate the model
parameters. However, such two-step procedures are problem-
atic. Commonly, such high-resolution estimators work under
the assumption that the number of points in Zm is known.
This number is particularly challenging to estimate when the
arrival rate is high compared to the inverse of the measurement
signal bandwidth. In the light of the arrival rate model (7) this
situation is very relevant in our study.

III. MCMC MLE

To obtain the MLE, we propose an MCMC approach to
obtain the maximum likelihood estimate of θ. Our approach
is inspired by the method proposed in [2]. Thus, we rely
on the observation that maximization of the likelihood func-
tion is equivalent to maximization of the likelihood ratio
L(θ;y)/L(θ0;y) for a fixed reference parameter value θ0.
This ratio can, as discussed in Subsection III-A, be evaluated
using conditional samples of Zm given y. Furthermore, these
samples can be generated using an MCMC algorithm detailed
in Section III-B. Finally, the approximated likelihood ratio is
maximized with respect to θ as discussed in Subsection III-C.
We comment in Subsection III-D on approaches for model
selection.
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For ease of exposition, we focus in the following on
approximation of the likelihood ratio in case of one realization,
i.e. M = 1 and denote by y the observed measurement data.
The derived methodology is straightforwardly extendable to
the case M > 1, since by (9), the likelihood ratio for multiple
realizations is simply obtained by multiplying the likelihood
ratios for each separate realization.

The proposed MCMC maximum likelihood approach bears
some resemblance to Monte Carlo EM in that it uses samples
from the conditional distribution of the missing data given
the observed data. However, directly maximizing the Monte
Carlo approximation of the likelihood is more efficient than
using EM steps for maximization, see the discussion in [33].

A. Monte Carlo approximations of likelihood

Using a result from [2, Section 8.6.1], the likelihood ratio
can be expressed as3

L(θ;y)

L(θ0;y)
= EZm|y;θ0

[ L(θ;y, Zm)

L(θ0;y, Zm)

]
, (12)

where EZm|y;θ0 denotes conditional expectation with respect
to the hidden multipath components Zm given the data y
under the parameter θ0 and the full data likelihoods on the
right hand side are given by (10). The right-hand side of (12)
is an importance sampling formula allowing us to use the
conditional distribution of Zm given y to integrate out Zm

from the full data likelihood ratio L(θ;y, Zm)/L(θ0;y, Zm).
Thus the right-hand side of (12) can be approximated by an
empirical average based on samples4 Zm,1, . . . , Zm,N from the
conditional distribution of Zm given y,

L(θ;y)

L(θ0;y)
≈ 1

N

N∑
n=1

Wn, (13)

with the notation

Wn = L(θ;y, Zm,n)/L(θ0;y, Zm,n). (14)

A delicate issue of the estimator (13) is its Monte Carlo
variance. If θ differs substantially from θ0, then only a small
number of terms contribute significantly to the Monte Carlo
estimator in (13), which in turn leads to a very high variance
of the estimator. The magnitude of the degeneracy is quantified
by the effective sample size [34]

ESS =

(∑
nWn

)2∑
nW

2
n

. (15)

The effective sample size equals N in the extreme case where
W1 = W2 · · · = WN . In the other extreme where one term
dominates, then the effective sample size approaches unity.
When applied to dependent samples, such as those obtained
by MCMC samples, the effective sample size can be somewhat
optimistic as it does not take into account correlation between
samples. However, we still find it useful for gauging of the

3Replacing the right-hand side of (11) by a direct Monte Carlo approxima-
tion using samples from the marginal distribution of Zm under θ is possible,
but gives an unacceptably high variance of the estimated likelihood.

4An MCMC algorithm for sampling the conditional distribution of Zm is
discussed in Section III-B.

Algorithm 1 Birth/death MCMC sampler (rand/randn means
draw independent standard uniform/normal variate, |I| is
length of I , and n(z) is number of points in z)

Input. θ, z(0)m

Output. z(1)m , z
(2)
m , . . . with stat. distribution p(zm|y, θ)

for k = 1, 2, . . . do
z′m ← z

(k−1)
m [z′m proposal for next state of Markov chain]

if rand < pmove then
Pick (τ, ατ ) uniformly at random from z′m
if rand < pdelay then

τ ← τ + σdelay · randn
mhr ← L(θ;y, z′m)/L(θ;y, z

(k−1)
m )

else
if rand < pphase then

phase(ατ ) ← phase(ατ )+σphase · randn
mhr ← L(θ;y, z′m)/L(θ;y, z

(k−1)
m )

else
v := randn
magn(ατ ) ← magn(ατ ) · exp(σmagnitude · v)
mhr ← exp(v)L(θ;y, z′m)/L(θ;y, z

(k−1)
m )

end if
end if

else
if rand < pbirth then

Add marked point (τ, ατ ) to z′m with τ uniform
in I and ατ ∼ f
mhr ← L(θ;y,z′m)(1−pbirth)|I|

L(θ;y,z
(k−1)
m )pbirthf(ατ )(n(z

′
m)+1)

else
Pick (τ, ατ ) uniformly at random from z′m and
delete it from z′m.
mhr ← L(θ;y,z′m)pbirthf(ατ )n(z

(k−1)
m )

L(θ;y,z
(k−1)
m )(1−pbirth)|I|

end if
end if

if rand < min{1,mhr} then
z
(k)
m ← z′m [go to proposed state]

else
z
(k)
m ← z

(k−1)
m [remain at current state]

end if
end for

quality of the Monte Carlo estimator. Alternatively, the vari-
ance of the Monte Carlo estimator could be estimated using
time series methods [35]. In case of multiple measurements,
M > 1, several MCMC samplers, one for each measurement
vector, would be run in parallel. In that case it would be natural
to consider the minimal ESS over the M samplers.

B. Birth/death MCMC sampling with parallel tempering

1) Birth/Death MCMC: The challenging task of sampling
from Zm|y, θ can be tackled using specialized MCMC sam-
plers for point processes [2]. Here, we rely on Algorithm 1
which is a variant of the birth-death MCMC algorithm from
[2, Chapter 7]. A diagram of one iteration of the birth-death
algorithm is shown in Fig. 2.

The MCMC updates of Algorithm 1 are births, deaths
and moving of marked points (τ, ατ ). We first elucidate the
mechanisms behind the birth and death steps. A birth proposal
attempts to add a marked point (τ, ατ ) where τ is drawn
uniformly at random in the sampling window I and ατ
is drawn from the circular symmetric Gaussian distribution
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No
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Yes

No

Fig. 2. Diagram of one iteration of the birth-death MCMC algorithm.

described in Section II. A death proposal attempts to remove
a marked point selected from the uniform distribution on the
current marked points. The proposals are accepted or rejected
according to Metropolis-Hastings ratios appropriate for the set-
up of a varying number of points, see [2, Chapter 7].

The birth-death MCMC algorithm, unfortunately, suffers
from the problem of slow mixing. The reason for this is that
if a marked point (τ, ατ ) is borne close to the true location of
a delay, this may increase the likelihood of the data under the
model substantially, even if the mark ατ is not entirely correct.
Since such a point dies with small probability, it likely remains
in the MCMC algorithm for a long time, thus leading to slow
mixing of the Markov Chain.

To improve the mixing, we introduce updates that only
change the mark ατ for a uniformly selected point τ . For
instance, if a large mark is changed to a smaller, this may
increase the chance that a death of the associated marked
point becomes accepted later on. In addition, if the originally
proposed mark was too small, the mark change allows for
correcting this by proposal of a larger mark.

To further improve the mixing, we use a parallel tempering
scheme which combines several birth-death Markov chains.
Parallel tempering is a versatile technique to reduce autocor-
relation in slowly-mixing Markov chain samplers by running
in parallel several variants of the chain that mix substantially
faster [24]. Occasionally, the faster chains swap states with the
slower ones, thereby reducing the mixing time of the slower
chains. Here, we can construct faster chains by increasing the
noise level whereby the conditional distribution of the point
process given the data becomes more dispersed, so that the
chain does not get stuck as easily. The swaps between different
chains are controlled by a Metropolis-Hastings criterion as
follows. A chain in state zm with parameters θ swaps states
with a chain in state z′m with parameters θ′ with probability

min

{
1,
L(θ′;y, zm)L(θ;y, z′m)

L(θ;y, zm)L(θ′;y, z′m)

}
. (16)

In the swap phase, we order the parameters according to their
noise level σ and then sequentially attempt a swap move
for every pair of successive parameters. That is, if parallel
tempering considers K noise levels σ1 < · · · < σK , then we
attempt swap moves between σi and σi+1 for i < K.

Large spans of noise variances and large number of parallel
chains generally reduces the mixing time at the cost of

parallelization overhead. We found that working with only
six temperature levels reduces the autocorrelation substantially
while maintaining a reasonable complexity. The distances
between the six noise levels are chosen such that we achieve
the recommended acceptance rates between 20% and 50%
[36].

2) Initialization: In principle, the MCMC sampler con-
verges for any choice of initial configuration. The number
of iterations required to reach the target equilibrium, called
the burn-in, can be reduced by careful initialization. We
proceed in two steps. First, we run the MCMC sampler for
a number of steps starting in a random initial configuration.
This generally leads to a configuration with too many points
and a long burn-in would be needed to eliminate the excessive
points. Therefore, we remove points that are too close together
to obtain a better initial configuration. More precisely, we
achieved good results by removing delays that are less than
1 ns apart.

3) Thinning and swapping: For each of the parallel chains
we apply 400,000 basic birth-death MCMC steps. After each
200th step pairwise swaps of chains are proposed. The first
100,000 samples are discarded as a burn-in. Subsequently,
to reduce autocorrelation and save storage, we only retain
each 200th state of the MCMC sampler. Moreover, the states
of the chains with increased thermal noise are discarded.
This yields in total a sample of 1,500 realizations of the
conditional distribution. For the simulation study presented
in Section IV below, the autocorrelation plots in Figure 3
for the sequence of logarithms of the full data likelihood
logL(θ;y, Zm,n) illustrate that after thinning and parallel
tempering, the autocorrelation remains under control.

C. Optimization methods

To maximize the Monte Carlo approximation of the like-
lihood (13), we use the cross-entropy method (CEM) [37]
which is a gradient free method that works robustly in settings
where the objective function is subject to Monte Carlo errors.
To ensure that the MCMC approximations of the likelihood
within the CEM remain valid, we define a trust region, see
Section III-C1. After convergence of the CEM/trust region
procedure we fine-polish the estimate by applying a few
Newton-Raphson updates. The computation of the gradient
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Fig. 3. Estimated autocorrelation for MCMC samples of the log full data
likelihood in case of the constant (left) and quadratic (right) rate model. The
dashed blue lines indicate lag-wise 95% probability intervals for the estimated
auto-correlations under the null-hypothesis of zero autocorrelation.

Algorithm 2 CEM Maximization of L(θ;y)

Input. data y, initial guess θmax, initial CEM proposal distribution.
Output. ML estimate θ̂ML

repeat
θ0 := θmax

Draw sample {Zm,n}n≤N from p(zm|y; θ0) using Algorithm 1
repeat

repeat
Generate CEM proposal parameter sample inside
trust region of size > 5 times elite sample size.
Get elite sample from CEM proposal sample.
Fit new CEM proposal distribution.
θmax := parameter vector in elite sample with
highest likelihood.

until θmax satisfies stopping criteria (see main text)
until θmax in interior of trust region (see main text)
θ̂ML:= output of Newton-Raphson initialized in θmax

and Hessian matrix required for this is discussed in Sec-
tion III-C2. Algorithm 2 summarizes the resulting procedure
and Fig. 4 depicts the procedure in terms of a block diagram.

The optimization procedure is also applicable in case of
multiple measurements, M > 1. In this case, given θ0, we
would run M MCMC samplers in parallel, one for each
measurement vector y(m), m = 1, . . . ,M , and approximate
the likelihood for each measurement vector using (13). Finally
these approximations are multiplied to get the approximation
of the full likelihood to be maximized.

1) CEM with trust region: In the CEM method, a Gaussian
proposal distribution is iteratively adapted so as to concentrate
it to a small neighborhood of the maximum. More precisely,
we first draw a number of parameter vectors independently
from the current proposal distribution and evaluate the cor-
responding likelihoods. Then, a new proposal distribution is
fitted to the elite sample, that is, the parameter vectors with
the highest likelihoods. This process is repeated until the
increase in the highest evaluated likelihood over the elite
sample is below some user-specified threshold. The CEM
requires evaluations of the likelihood function. However, the
cost of these is minor relative to the cost of running the MCMC
sampler and the operation can be run in parallel.

If θ and θ0 are too distant, the approximation (13) of
the likelihood ratio (12) becomes unreliable. This situation

TABLE I
SETTINGS OF THE CEM ALGORITHM

Parameter Value

Initial standard deviation for CEM proposal 1
Size of elite sample 10

ESS-threshold for the trust region 400
Threshold for likelihood convergence 0.1

Final ESS-threshold for interior 750

is indicated by a small ESS value. Therefore, we restrict
the CEM maximization to a trust region [38] around the
current value θ0 determined so that the ESS is above a certain
threshold for all θ in the trust region. If the CEM maximization
terminates at a value θmax well inside the interior of the trust
region, this value is used as an initial value for some final
Newton-Raphson updates to fine-polish the estimate. By well
inside we mean that ESS at θmax is bigger than a second
threshold exceeding the first threshold used to define the trust
region. Otherwise we set θ0 = θmax, draw a new MCMC
sample and run the CEM maximization procedure once again
over a trust region centered around the new value of θ0 with
the original initial proposal standard deviation.

2) Gradient and Hessian for Newton-Raphson updates: Let

Vθ(z) =
d

dθ

[
log p(y|zm, σ2) + log p(zm;κ, γ)

]
denote the gradient of the log joint density of (y, zm). Fol-
lowing [2, Section 8.6.2], the score function and observed
information are

u(θ) = Eθ[Vθ(Zm)|Y = y]

and

j(θ) = −E[dVθ(Zm)/dθ|Y = y]− Varθ[Vθ(Zm)|Y = y].

The conditional expectations and variances can in general
not be evaluated in closed form. However, it is feasible to
approximate these quantities by importance sampling. For
instance, following [2, (8.43)],

u(θ) ≈
∑
n≤N

Vθ(Zm,n)W̄n

where W̄n = Wn/
∑
n≤N Wn and Wn is defined in (14).

D. Model selection based on likelihood ratios and bridge
sampling

In addition to model calibration, a second application of
the likelihood-ratio computation concerns model selection.
Considering two models A and B with parameter vectors θA
and θB , respectively, we wish to select the model which yields
the highest likelihood value. In terms of the likelihood ratio,
we select model B if L(θB ;y)/L(θA;y) > 1. An appealing
property of this criterion is that the ratio on the left-hand side is
precisely of the form appearing in equation (13) and therefore
amenable to computation via importance sampling. We have
here described the likelihood-ratio approach in the case where
the compared models belong to the same model class. It is,
however, also possible to use the MCMC approach to compute
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Sample from
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Estimate
likelihood ratio

Pick elite
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Adapt proposal
distribution

{θi}
{(
θi, {znm,i}

)}
{(θi,LRi)} {θ̃j}

Fig. 4. An overview of the maximization procedure.

Fig. 5. Power-delay profile for realizations of the constant (left) and quadratic
(right) rate model.

ratios of likelihoods corresponding to different model classes,
possibly with different number of parameters.

If θA and θB are far apart, then the estimate (13) is unreli-
able since the weights are almost degenerate. This problem is
tackled via bridge sampling. Let for ease of notation θ0 = θA
and θM = θB for some M ≥ 1. Then, the likelihood ratio is
expanded as

L(θM ;y)

L(θ0;y)
=
L(θ1;y)

L(θ0;y)

L(θ2;y)

L(θ1;y)
· · · L(θM ;y)

L(θM−1;y)

for intermediate parameters θ1, . . . , θM−1 bridging figuratively
the large difference between θ0 and θM . Subsequently, we
apply Monte Carlo estimation to each of the ratios on the
right-hand side.

IV. SIMULATION STUDY

In this section, we analyze how well MCMC MLE performs
on simulated data. We consider two parameter configurations
θconst and θquad. For both, we use the same parameters driving
the distribution of the thermal noise and the path gains:

log(σ) = −10.5, γ0 = −20, γ1 = −0.029.

Here, the parameters are chosen to resemble the characteristics
from the measurement data discussed in Section V. In the
parameter set θconst, the arrival rate of the Turin model is
constant, i.e.,

κ0 = −0.75, κ1 = 0.

In the parameter set θquad, the rate increases quadratically, i.e.,

κ0 = −10.5, κ1 = 2.

Here we choose κ0 such that the expected number of multipath
components agrees approximately in both models. Moreover,
within the simulation study, we fix the size of the observation
window |I| = 150 and the delay τ0 = 50 associated with the
LOS path. Figure 5 shows the power-delay profiles simulated
from the two models. The settings of the CEM algorithm are
given in Tab. I.

TABLE II
LOG LIKELIHOOD-RATIOS AND EFFECTIVE SAMPLE SIZES FOR BRIDGE

SAMPLING ON SIMULATED DATA.

i 0 1 2 3 4

log
(
L(θi+1;y)/L(θi;y)

)
0.11 -1.62 -2.69 -4.61 -4.21

ESS 761 1170 396 1182 106

A. Bridge Sampling

First we illustrate how to justify selecting either the constant
or the quadratic rate model via bridge sampling. We draw a
realization y from the constant rate model θconst and then
compare the likelihoods of y under θconst and θquad. For
this purpose, we interpolate linearly between κ1 = 0 and
κ1 = 2 with a step size of 0.4. The corresponding values
of κ0 are fixed as (−0.75,−2.7,−4.7,−6.6,−8.6,−10.5). In
particular, the expected total number of points does not fluc-
tuate substantially among consecutive values. The remaining
parameters log(σ), γ0 = −20 and γ1 = −0.029 agree in θconst
and θquad and are therefore kept fixed. Setting θ0 = θconst
and θ5 = θquad, Tab. II shows the estimated log likelihood-
ratios log

(
L(θi+1;y)/L(θi;y)

)
together with the effective

sample sizes based on 2,000 nominal samples. The resulting
log likelihood ratio log

(
L(θquad;y)/L(θconst;y)

)
becomes

−13.02 identifying θconst as the correct model.
In order to assess how robust the model selection method is

with respect to taking a different sample, we took 100 samples
from the constant rate model and compared the likelihood
with that under the quadratic rate model. In all of the 100
samples, bridge sampling indeed indicates a higher likelihood
for the constant rate model. Conversely, when taking 100
samples from the quadratic rate model and comparing it with
the constant rate model, bridge sampling indicates in all of the
considered samples a higher likelihood for the true quadratic
rate model.

B. MLE with known multipath components

The first test case for MLE is the setting of known multipath
components. Although measurements in the field do not reveal
this kind of information directly, such test cases help to build
intuition on how well maximum likelihood estimation can
work in an idealized setting.

As an illustration, we provide profile plots of the log-
likelihood. That is, we fix all but one of the parameters at
their true values and then trace how the log-likelihood changes
when varying the considered parameter.
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Fig. 6. Profile plots of the log-likelihood for known multipath components
in the constant (top) and quadratic (bottom) rate model. Red dashed lines
indicate the true parameters.

In general, Figure 6 suggests that the log-likelihood is max-
imized close to the true parameters. Still, even in this idealized
setting, we do see deviations of the parameter estimates from
the true values, and they become more pronounced as we now
consider the case of unknown multipath components.

C. Unknown multipath components – fixed κ1

After these initial findings, we now rely on Algorithm 2 to
estimate the model parameters from simulated data sets where
for each of the parameter configurations θconst and θquad we
conduct 50 simulations. In this section we regard κ1 to be
known and fix it at its true value. For the remaining parameters,
we initialize the optimization at parameter values obtained
by perturbing the true values of the parameters. Then, we
maximize the log-likelihood via Algorithm 2.

In the present setting, we found CEM to perform robust
optimization. In the first steps, the likelihood improvements
are large, but effective sample sizes at the new parameter
values are small. In other words, although the new parameters
indicate a substantially higher likelihood, the Monte Carlo
approximation of the likelihood could be quite imprecise.
However, as the optimization proceeds, the improvements
become smaller, while the effective sample sizes increase. In

Fig. 7. Fixed κ1. Box plots for estimated parameters in 50 realizations of
the constant (left) and quadratic (right) rate model. Red dashed lines indicate
the true parameters.

particular, the final decision of identifying the maximum is
based on a high effective sample size.

Figure 7 shows boxplot of the parameter estimates under
both true parameter configurations. The boxplots illustrate that
the medians of the estimates are almost identical to the true
values both in the case κ1 = 0 and κ1 = 2. Overall the MCMC
MLE seems to work well.

D. Unknown multipath components – variable κ1
Next, we optimize with respect to the full parameter vector

by including also κ1 in the optimization process. When esti-
mating the parameters from 50 realizations, Figure 8 reveals
that while the medians are still close to the true values, the
estimates of both κ0 and κ1 now fluctuate substantially. In
particular for κ0 it is evident that the estimation variance
is much smaller when κ1 is fixed compared to when κ1
is included in the estimation. This is caused by a strong
entanglement of the parameters κ0 and κ1 that we now explore
in further detail.

E. Issues with parameter idenfiability

Due to the complex interplay between the effects of the
parameters κ0 and κ1, it is difficult to optimize the likelihood
jointly with respect to these parameters. For instance, both κ0
and κ1 influence the total intensity of points (similarly, both
γ0 and γ1 affect the general magnitude of the path gains).
The contour plot of the log likelihood-ratio for a simulated
data set under θconst in Figure 9 illustrates this issue. Indeed,
this plot shows two local maxima, both exhibiting a ridges of
(κ0, κ1)-combinations where the log likelihood-ratio is close
to the local optima.
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Fig. 8. Variable κ1. Box plots for estimated parameters in 50 realizations of
the constant (left) and quadratic (right) rate model. Red dashed lines indicate
the true parameters. Box plot for log σ2 omitted due to space constraints.

Fig. 9. Contour plot of the log likelihood-ratios for varying κ0 and κ1 based
on samples from an MCMC run of length 2,000 in the constant rate model.

The parameters κ0 and κ1 are thus not jointly well identified
by the likelihood. This entails strong correlation between the
estimates of κ0 and κ1 as well as high variance of each of
the estimates. This is further illustrated by the scatterplots
of estimates in Figure 10 for each pair of parameters. The
estimates shown are those obtained from the 50 simulations
under θconst. Supporting the previous findings, we detect a
strong negative linear relation between the estimates of the
intensity parameters κ0 and κ1. Similarly, the estimate of γ0
is nicely approximated by an affine function of the estimates

Fig. 10. Pairwise scatter plots for the parameter estimates of 50 realizations
of the constant rate model.

of κ0 and κ1.
The optimization procedure CEM relies on a Gaussian

proposal distribution with diagonal covariance structure. For
tightly entangled parameters, the optimization therefore ex-
plores the parameter space poorly. Hence, in order to account
for the correlations, we transform the parameters linearly
with a preconditioning matrix prior to applying the CEM. In
the setting of the simulation study we obtain an appropriate
linear transformation from preliminary parameter estimates for
different simulations. It may not be easy to determine such a
transformation in a given application.

V. APPLICATION TO MEASUREMENT DATA

Having analyzed simulated data, we now turn to indoor
channel data originally considered in [25]. The data contains
the channel response for 750 equally-spaced measurements in
the range [2 GHz, 3 GHz]. In particular, the impulse response
lies in the interval [0 ns; 750 ns] and decays rapidly after a
strong peak close to τ0 = 50 ns. Therefore, we henceforth
work with a window of size |I| = 150.

A. MCMC MLE and bridge sampling

As we saw in the simulation section, the optimization is
prone to become unstable when when estimating κ0 and κ1
jointly. Hence, we consider two fixed κ1 values of particular
interest: κ1 = 0 (constant rate model) and κ1 = 2 (quadrati-
cally increasing intensity).

In our MCMC set-up, we found that when starting from rea-
sonably chosen initial parameters, the optimization converges
both for the constant and for the quadratic rate model. Since
random fluctuations were stronger than for the synthetic data,
we stabilized the optimization by increasing the number of
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Fig. 11. Power-delay profile for measurement data (left), a realization of
the constant rate model (center) and a realization of the quadratic rate model
(right).

Fig. 12. Power-delay profile for measurement data (thick), a realization of
the constant rate model (thin) and a realization of the quadratic rate model
(dashed).

MCMC samples from 1,500 to 2,500. Figure 11 illustrates the
power-delay profile of realizations for the fitted constant and
quadratic rate models. Although the plots already provide an
indication on the different structure of the arrival rates, we
stress that the power-delay profile can vary substantially from
one realization to another. To see clearly how the model fits
to the data, we also plot the measured and estimated power
delay profiles on the same figure, see Figure 12.

Let θ̂const and θ̂quad denote the parameter estimates un-
der the constant and quadratic intensity models. In order
to compare the fitted constant rate model with the fit-
ted quadratic rate model, we estimate the likelihood ratio
L(θ̂quad,y)/L(θ̂const,y) via bridge sampling, see Section II.
For this purpose, we bridge linearly between κ1 = 0 and
κ1 = 2 in steps of size 0.125. Also for the other parameters,
we perform linear interpolation. Figure 13 shows the esti-
mated log likelihood ratios log(L(θi+1,y)/L(θi,y)) for the
intermediate parameter vectors together with the associated
effective sample sizes. Aggregating the estimates yields a
negative value for the estimated log likelihood ratio for the
quadratic rate in comparison to the constant rate model. Hence,

Fig. 13. Log likelihood ratios log(L(θi+1,y)/L(θi,y)) plotted against κ1.

for the considered data set, the constant rate model seems more
appropriate than the quadratic rate model.

VI. CONCLUSIONS

The developed calibration method for stochastic multipath
radio channel models is based on the well-established method
of maximum likelihood estimation. Thus, we have shown
that it is possible to approach the calibration problem in
a statistically sound manner without the need to resort to
heuristic techniques. In particular, our approach breaks the
line of the widespread approach originating from the seminal
works of Turin in the 1970s where the calibration problem
is broken down into (arbitrarily defined) sub-problems that
are tackled by estimators developed separately. Although
the developed method has been used to calibrate stochastic
channel models using indoor radio channel measurements, it
is applicable to measurements from other scenarios as well.
Another potential use of the proposed method is for calibrating
stochastic channel models based on the output of a ray tracer
instead of measurement data.

We find that, despite the intractability of the likelihood
function, maximum likelihood estimation is possible by es-
timating the likelihood function using a birth/death MCMC
sampler and then optimizing it using our CEM algorithm.
Obviously, being an Monte Carlo approach, it necessitates
repeated sampling from a Markov Chain, which entails a
significant computational complexity. It was not the objective
of the present work to optimize the estimator for computational
complexity, and thus we envision that more efficient samplers
can be made, in particular considering the availability of more
measurement data. Nevertheless, we find that the proposed
method is indeed viable provided the necessary computational
power.

We observed for the considered model, that only a linear
combination of the parameters κ0 and κ1 is well identified
by the data but not κ0 and κ1 separately. This is apparent
from plots of the likelihood function. On the contrary, we
suspect that such lack of identifiability may be hidden by
the current step wise methods based on initial identification
of delays and gains. The optimization difficulties due to
the poor identifiability can be somewhat mitigated using a
reparametrization. However, we resolve the issue by a more
robust discrete approach where optimization is first performed
over a discrete subset of the parameter space and afterwards
the estimate is refined by the method of bridge sampling.

With a view towards avenues of future research, we note
that although parametric Turin models can represent inhomo-
geneities in the arrival distribution, they are still based on the



11

basic assumption of a Poisson point process. Therefore, they
do not allow for interactions between the different arrivals.
However, a commonly held belief is that arrivals tend to appear
in clusters, which would call for a more flexible point-process
model. By extending the model selection methods from the
present paper, MCMC-based maximum likelihood estimation
makes it possible to analyze this belief on the grounds of a
statistically well-established methodology.
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[27] G. Steinböck, T. Pedersen, B. H. Fleury, W. Wang, and R. Raulefs,
“Distance dependent model for the delay power spectrum of in-room
radio channels,” IEEE Transactions on Antennas and Propagation,
vol. 61, no. 8, pp. 4327–4340, 2013.

[28] T. Pedersen, “Modelling of path arrival rate for in-room radio channels
with directive antennas,” vol. 66, pp. 4791–4805, Sept. 2018.

[29] T. Pedersen, “Stochastic multipath model for the in-room radio channel
based on room electromagnetics,” vol. 67, pp. 2591–2603, Apr. 2019.

[30] J. Kunisch and J. Pamp, “Measurement results and modeling aspects for
the UWB radio channel,” in 2002 IEEE Conference on Ultra Wideband
Systems and Technologies, pp. 19–23, 2002.

[31] T. Pedersen and B. H. Fleury, “A realistic radio channel model based in
stochastic propagation graphs,” in 5th Conf. on Mathematical Modelling
(MATHMOD 2006), pp. 324–331, 2006.
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